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Nomenclature

Abbreviation
ACC Adaptive Cruise Control

CACC Cooperative Adaptive Cruise Control

CAV Connected and Autonomous Vehicle

CBF Control Barrier Function

CC Central Coordinator

ComZ Communication Zone

CZ Control Zone

DRL Deep Reinforcement Learning

DQN Deep Q Network

EV Electric Vehicle

IC Intersection Controller

IDM Intelligent Driver Model

HDV Human-Driven Vehicle

HJE Hamilton-Jacobi Equation

HIL Human-in-the-Loop

MPC Model Predictive Control

MZ Merging Zone

NN Neural Network

RL Reinforcement Learning

RSU Roadside Unit

SPAT Signal Phase and Timing

V2X Vehicle to Everything
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Notation

aq
l,i, j Vehicle acceleration

Dq
l, j, λ

q
l,i, j Lengths of a platoon and a vehicle

J , V , P Sets of road lanes, vehicles and platoons

L (L̄ ) Set of platoon numbers (queue included)

lq∗
j Optimal number of platoons to cross in

qth phase and jth lane

LComZ, LCZ Lengths of communication, and control zones

LMZ Length of merging zone

pq
l,i, j Vehicle position

S q Information set of the qth signal phase

sq
l,i, j Vehicle headway distance

s0 Standstill spacing between vehicles

Tnq
j

Discharging time required for the queue in

qth phase and jth lane

T0 Safe time headway

T q, T q∗ SPAT duration of qth signal phase and its

optimal value

tq Start time of the qth signal phase

t̃l, j, t̄l, j Platoon ComZ and CZ entering time

twait
l, j Platoon waiting time at the intersection

tq
f ,l, j Target crossing time of lth platoon in the

jth lane

uq
l, j, τ

q
l, j CAV control input and time-lag

vq
l,i, j Vehicle velocity

vq∗
j ,sq∗

j Target driving speed and headway distance

in the CZ

φi, θi The steering angle and the heading angle of the i th vehicle

Ci The ith coalition

ui, xi The control input and state of the ith coalition
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Φ
q
l,i, j, φ

q
l,i, j Vehicle fuel consumption and its rate of

change

R, R≥0 Real numbers and none-negative real numbers

N, N≥0 Nature numbers and none-negative nature numbers

t Independent time variable

| a | The absolute value of the number a ∈ R

|| x ||2 The Euclidian norm of the vector x ∈ Rn

|| x ||∞ The infinity norm of the vector x ∈ Rn

∞ Infinity

∈ X ∈ Y indicates that X takes value from the set Y

∀ For all

⊕ The Minkowski sum of sets W⊕V= {x+ y | x ∈W,y ∈ V}
Subscripts and superscripts

i, j, l, q Index of vehicles, intersection road lanes,

platoons and signal phase

ˆ Estimate
∗ Optimum or steady state



Abstract

In recent years, the advent of connected and autonomous vehicles (CAVs) that fea-

ture advanced sensing, communication, and control capabilities has gained increas-

ing attention and market interest. However, mixed traffic from human-driven ve-

hicles (HDV) and CAVs will dominate road traffic in the foreseeable future, while

complicated interactions between different types of vehicles with various driving

behaviors can affect traffic efficiency and safety. To address such concerns, this

thesis focuses on the control of CAVs in mixed-traffic environments.

The first part of this thesis is dedicated to investigating the trade-off between

intersection throughput and the energy efficiency of all vehicles on the road by co-

optimizing signal phase and time (SPAT) and CAV trajectories. Instead of using fur-

ther alternative signal phases to promote CAV-led platoons, the platoon formation

is enforced by trajectory optimization and lane-changing is not allowed in this part.

However, lane-changing maneuvers are inevitable and thus the interactions between

CAVs and HDVs need further study. In the second part of this thesis, a game-based

optimal lane change control framework for the CAV is proposed. The lane-changing

involves one CAV and one HDV is comprehensively studied where their interaction

is considered by a Stackelberg game, which yields an unconstrained optimal con-

trol solution by the Hamilton–Jacobi equation (HJE). Moreover, a theoretical proof

is provided to show that the unconstrained optimal strategy is an asymptotically

stable equilibrium, and with a suitable design of the weight matrices, safety can

be guaranteed. The final part of this thesis extends to multi-vehicle lane-changing

scenarios. A game-based coalition structure is proposed to group all the vehicles

based on their position and lane-changing intention. To enhance robustness against



Abstract 7

human uncertainty, data-enabled predictive control is applied to the CAVs. Human-

in-the-loop (HIL) experiments are conducted to show the real-time performance of

the proposed method.



Impact Statement

Urban road transportation is facing a growing challenge as the number of vehi-

cles continues to escalate, resulting in significant traffic congestion, elevated energy

consumption levels, and an increased likelihood of accidents [1, 2]. The advent of

CAVs presents a potential solution to these issues by offering a more responsive,

cooperative, and efficient mode of transportation compared to traditional vehicles,

thereby addressing the aforementioned concerns and promoting a more fluid flow

of traffic [3,4]. However, there exists a transition period for road vehicles from cur-

rent HDVs to CAVs [5]. In reality, the uncertainty of human drivers can disrupt the

mixed-traffic system. Therefore, the study of mixed driving environments is more

complicated and challenging than the study of fully connected autonomous driving

environments [6, 7]. CAVs not only need to provide safe and efficient performance

in cluttered environments but also need to interact with other uncertain traffic par-

ticipants [8]. Thus this thesis focuses on the coordination and control of CAVs in

mixed-autonomy environments. In particular, the robustness against human uncer-

tainties, heterogeneity of CAVs, and real-time performance are comprehensively

studied. Moreover, the HIL experiments are also conducted to validate the practical

applicability.
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Chapter 1

Introduction

1.1 Background

With the development of technology and the acceleration of urbanization world-

wide, the number of cars is increasing day by day, and it is expected to exceed

1 billion by 2024, which may bring severe congestion as illustrated by Fig. 1.1,

increased fuel consumption, and ballooned traffic accidents. It is reported that in

2019, atmospheric CO2 concentrations were at the peak in the past 2 million years,

and concentrations of CH4 and N2O were higher at the peak in the past 800,000

years [9]. Moreover, more than 25 thousand people were killed or seriously in-

jured in the U.K. in the last year [10]. Many efforts have been made to mitigate

these issues. Net-zero smart cities are designed to reduce greenhouse gas emis-

sions. It is reported that decarbonizing transportation accounts for about 16% of

global greenhouse gas emissions. With the emerging 5G technology, the intelligent

transportation system is capable of low-latency communication, and real-time traf-

fic monitoring. This cooperative infrastructure can improve safety and overall traffic

efficiency. As a crucial part of the smart city, CAV with enhanced electrification and

digitization also has the potential to address these mentioned issues [11].

The first research on CAV technology can date back to the 1990s [12]. With

the continuous advancement of technologies [13, 14], CAVs at different levels and

functions have developed rapidly, and the market share of L1-L3 CAV is increas-

ing [15]. It is predicted that the global penetration rate of CAVs will increase from
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Figure 1.1: Complex mixed-traffic environments with high uncertainty and high scalability.

10% in 2018 to 70% in 2027. Equipped with advanced sensing and communica-

tion units, CAVs can acquire multi-modal dynamic traffic information, which can

greatly improve road safety and driving comfort. For example, CAVs can reduce

unnecessary vehicle stops and avoid hard acceleration based on information from

the surrounding vehicles. Furthermore, in intelligent transportation systems, where

there is sufficient communication infrastructure (i.e. roadside units (RSUs), central

coordinator (CC)), CAVs can make full use of the real-time on-road traffic informa-

tion such as SPAT plans via vehicle-to-vehicle (V2V), and vehicle-to-infrastructure

(V2I) communications to alleviate traffic congestion and meanwhile improve indi-

vidual driving comfort. Fig. 1.2 gives a sketch of the intersection in the future smart

city. Although there is no doubt that with higher penetration of CAVs, road trans-

portation can be made more flexible, cooperative control of a large number of CAVs

needs further investigation.

When it comes to fuel consumption and greenhouse gas emissions, transporta-

tion electrification is unanimously recognized as a solution to alleviate environmen-

tal pollution, as it utilizes clean energy instead of fossil fuels. According to the

U.K. road-map [16], electric vehicles have higher thermal efficiency and can avoid

the emission of pollutants, and there is an exponential growth in vehicle electrifica-

tion, from under 0.01% in 2010 to over 8.6% of global car shares in 2021. Thus,

electric vehicles shall dominate the road by 2050. Another report [17] can also val-
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Figure 1.2: A sketch of the smart city in the future.

idate this trend, as the percentage of electric vehicles worldwide will rise from 3%

in 2020 to 15% in 2025 and then surge to 32% and 58% in 2030 and 2040, respec-

tively. Despite the huge progress in vehicle electrification, additional efforts are

needed. If net-zero emissions can be achieved in the 2050s, oil share will drop to

over 10% in the transportation area. In addition to electrification, other renewable

energy, such as hydrogen, also need to be explored [10].

However, the current trend of intelligent automobile development is not going

smoothly. There are still technical difficulties that have not yet been overcome in

fully autonomous driving that are applicable to various scenarios. The large-scale

market substitution of CAVs will be slow. It can be seen that the mixed traffic where

HDVs and CAVs coexist will be the mainstream of road traffic in the foreseeable

future [18, 19]. In complex traffic environments mixed with HDVs and CAVs, the

complicated interactions between different types of vehicles may offset the positive

impact CAVs have brought to traffic efficiency and safety. For example, the vari-

ability and unpredictability of human drivers can make CAV control significantly

more challenging. As a result, the mixed traffic scenario has recently received more
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attention. In civil engineering, research focuses on the dynamic road design, in-

cluding dedicated CAV zones and flexible lane markings. In telecommunications

engineering, improving the reliability and quality of vehicle-to-everything (V2X)

communication has become a key area of study. In addition, determining legal

accountability in accidents involving CAVs also receives much research attention.

Despite the breadth of research across these disciplines, this thesis specifically fo-

cuses on the control strategies for CAVs operating in mixed urban traffic.

1.2 Challenges and Contributions
Reviewing the research on the control of CAVs in mixed-traffic environments [20–

31], although certain theoretical achievements and engineering practices have been

made, there are still some shortcomings, and more advanced control approaches are

required to address these challenges.

1.2.1 Research Challenges

Urgent challenges to be solved in the control of CAVs in mixed-traffic environments

are summarized as follows:

• Scalability. As there are a large number of on-road vehicles, it is challenging

to formulate a comprehensive model that can guarantee global optimality and

meanwhile maintaining an affordable computation burden. Furthermore, en-

suring the robustness and real-time applicability of the proposed algorithms

to deal with the time-varying nature.

• Human-machine interaction. HDVs are inevitable in mixed-traffic sce-

narios, which often make the mixed-traffic environment evolve into a com-

plicated state. Firstly, the lack of communication between HDVs and

CAVs [32, 33]. Secondly, HDVs may have behavioral characteristics such

as fluctuations. Thus, modeling the interactions between CAVs and HDVs in

a more realistic way is a challenge [34, 35].

• Environmental impacts. To pursue environmental and sustainability goals,

control of CAVs should emphasize more on fuel consumption reduction.
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However, traffic efficiency and driving comfort are also important objectives

in urban scenarios. It is a challenge to find the balance between fuel consump-

tion, and traffic efficiency. To be specific, this may lead to multi-objective op-

timization, which is hard to solve. Moreover, the energy consumption mod-

eling will bring additional nonlinearity and complexity [36–38].

• AI-based approaches The Learning-based method is a promising solution

in traffic control, however, there are still some concerns. During the training

procedure, although reward functions are designed for safety-critical control,

no hard constraint on safety is activated, such as collision avoidance, speed

limits, etc. Thus, how to guarantee the safety of these methods is the key

challenge [39–41]. In addition, how to deal with the compatibility of data in

different scenarios is also a tough issue [42].

• Network privacy and security. Although connectivity and cloud computing

may facilitate traffic control in mixed-traffic environments, privacy and cyber-

security concerns arise. It is challenging to protect data privacy and maintain

cyber-security during communications and coordination [43, 44].

Among all these challenges, this thesis focuses on the design of HDV-in-the-

loop CAV and traffic control strategies for urban environments, with particular at-

tention to algorithm scalability and energy efficiency. Urban intersections inevitably

involve a large number of vehicles, making the development of a computationally

efficient traffic coordination framework essential for improving overall traffic per-

formance. Traffic congestion may incur increased fuel consumption and greenhouse

gas emissions, which have negative environmental impacts. Multi-objective opti-

mization can be utilized to deal with these different factors, but how to balance

these factors effectively needs further study. To investigate CAV-HDV interactions,

this thesis focuses on lane-changing behavior, which is a fundamental and frequent

maneuver in urban traffic. Understanding lane-changing is crucial, as it forms the

basis for analyzing more complex maneuvers such as overtaking, turning, and nav-

igating roundabouts.
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1.2.2 Aims and Contributions

Considering the above-mentioned research challenges, the objectives to be achieved

in this thesis are listed in Fig. 1.3. To be specific, an urban road system architec-

Figure 1.3: Objectives to be achieved in this thesis.

ture 1.4 in reference to [45] is formulated. As can be seen in Fig. 1.4, the layout

consists of a lane-changing zone and a car-following zone. In the lane-changing

zone, vehicles can conduct lane-changing and overtaking maneuvers, which are

prohibited in the car-following zone. The reason for designing such a layout is that

this thesis focuses on signal-vehicle cooperative control and scenarios where vehi-

cles can change lanes. In particular, lane-changing and overtaking maneuvers can

be carefully studied in the lane-changing zone and then the signal-vehicle coopera-

tive control can be further investigated in the car-following zone. RSUs collect the

vehicles’ information and forward it to CAVs and coordinators. The coordinators

are responsible for control of traffic signals and CAVs. Based on this layout, the

research goals of the proposed CAV control in mixed-traffic environments can be

summarized into the following aspects:

• Design effective intersection traffic optimization model blending SPAT and
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Car Following Zone Lane Changing Zone

Traffic Signal

Roadside Units
RSURSU RSU

Central Coordinator

CAV HDV

Edge Coordinator

Edge Coordinator

RSU

Figure 1.4: The urban road system architecture with mixed autonomy vehicles. RSUs can
gather vehicle information, while coordinators are responsible for manipulating
SPAT and controlling CAVs.

vehicle trajectory control. This model should improve overall intersection

traffic performance while being computationally efficient.

• Develop a novel structure to effectively model the interactions between HDVs

and CAVs, which can benefit the safety-guaranteed lane-changing control in

mixed-traffic environments.

• Combine the model-based method and data-driven method in designing lane-

changing control in mixed-traffic environments. This combination should be

theoretically provable while remaining flexible in dealing with uncertainties

brought by humans and HDVs.

• Design and conduct experiments to evaluate the real-time performance of the

traffic control methods, especially in mixed traffic scenarios

To solve the above-mentioned goals, novel algorithms are proposed, and con-

tributions are listed as follows:

1. This thesis proposes a two-layer signal-vehicle coupled optimal control strat-

egy in mixed-traffic environments, which is formulated as two cascaded op-

timization problems by a notion of mixed platoons. In particular, the upper

layer is designed to minimize the total waiting time of all vehicles in the in-

tersection, while the lower layer is formulated to minimize the aggregated



1.2. Challenges and Contributions 27

vehicle energy consumption by adequately exploiting the signal plan, number

of crossing vehicles, and target crossing speed obtained in the upper layer.

Extensive simulation results are provided to examine the performance of the

proposed framework and to reveal the impact of this algorithm at different

CAV penetration rates, traffic demands, and electric vehicle ratios.

2. A game-theoretic trajectory planning scheme for CAV in response to the

movement of an HDV in the target lane is proposed. The interaction between

the two vehicles is modeled as a Stackelberg game, allowing both vehicles

to change lanes. An optimal control strategy is developed for CAV derived

from the Hamilton–Jacobi equation. These strategies are shown to constitute

equilibrium points, and their stability is analyzed. By constructing a zero-

ing control barrier function, we demonstrate that the designed equilibrium

strategy ensures the collision avoidance set remains forward invariant with

an appropriate choice of weight matrices for the CAV cost function. Finally,

numerical simulations validate the effectiveness of the proposed method.

3. A two-layer learning-and-game-based coalitional decision-making and con-

trol strategy for multi-vehicle lane-changing is proposed. In particular, a

game-based coalition formation is proposed in the upper layer, which could

facilitate lane-changing and improve computation efficiency compared with

global optimal control. In the lower layer, a Stackelberg game-based frame-

work is utilized to model the interaction between CAVs and HDVs. To en-

hance robustness against human uncertainty, a data-enabled predictive control

is applied to CAVs. Extensive simulations are conducted based on data repre-

senting different driving behaviors, whose results demonstrate the effective-

ness of this proposed framework in various lane-changing scenarios involving

HDVs with different aggressiveness.

4. The HIL experiments are conducted in order to verify the practical applica-

bility of the proposed methods in different scenarios. The effect of electric

vehicles on energy efficiency is also examined by comparison with conven-
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tional vehicles.

1.3 Thesis Outline
The remainder of this thesis is structured as follows. In Chapter 2, comprehensive

works on related topics have been carefully reviewed. In Chapter 3, some general

mathematical formulations and preliminary concepts are introduced. In Chapter 4,

the mixed platoon-based hierarchical control framework entailing the mixed pla-

toon model, traffic SPAT optimization, and speed trajectory optimization is pro-

posed. The benefit of this method is shown by comparisons with various traditional

strategies, where the impact of factors such as traffic density, flow distribution, and

penetration rates, are investigated. In Chapter 5, the interaction of both vehicles is

considered by a Stackelberg game, which yields an unconstrained optimal control

solution. Then a theoretical proof is provided to show such a strategy is an asymp-

totically stable equilibrium, and with a suitable design of the weight matrices, safety

can be guaranteed. In Chapter 6, a two-layer coalitional decision-making and con-

trol strategy for multi-vehicle lane-changing in mixed autonomy is proposed. A

game-based coalition control is utilized to promote lane-changing behaviors, while

the data-enabled predictive control is applied to enhance robustness against human

uncertainty. The effectiveness of the proposed method is validated by comprehen-

sive simulations and HIL experiments. Finally, Chapter 7 draws the conclusions

and discusses further works.
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Chapter 2

Related Works and Fundamental

Concepts

In this chapter, relevant works on related topics will be comprehensively reviewed.

To begin with, research on intersection traffic coordination in fully CAV environ-

ments is carefully reviewed. This is to demonstrate how CAV technology alleviates

urban traffic issues. Then, the survey is extended to traffic coordination in mixed-

traffic environments, which is the key problem to be solved in this thesis. The two

key elements of intersection traffic coordination, SPAT, and CAV trajectory plan-

ning, are reviewed separately. However, SPAT and trajectory planning are mutually

coupled, thus the papers on the co-optimization of SPAT and trajectory planning are

carefully reviewed. Only focusing on traffic coordination is not enough, as details

such as collision avoidance or maneuver control of individual vehicles are always

neglected. Therefore, maneuver control of CAVs conducted on arterial roads in

mixed-traffic environments is reviewed. To be specific, model-based methods and

learning-based methods are studied separately.

2.1 Intersection Traffic Coordination in Fully CAV

Environments
Traffic congestion and pollution problems are exacerbated as the number of ve-

hicles continues to increase. However, advanced technologies such as vehicle-to-

infrastructure (V2I), vehicle-to-vehicle (V2V) communication, and L3 self-driving



2.1. Intersection Traffic Coordination in Fully CAV Environments 31

have emerged recently and show great potential in dealing with traffic congestion

and fuel consumption [46], and thus facilitate the development of SPAT control.

With the controllability of CAVs and collected historical and real-time traffic data

such as positions and velocities, trajectory planning of CAVs can be conducted to

improve traffic flow distribution and further enhance overall traffic efficiency. Thus

traffic control with CAVs has become a popular research topic.

Traditional SPAT control has been well studied including the time slotted-

based method [47] and enumerate method [48, 49]. With the engagement of CAVs,

their trajectory data is utilized to predict the movement of traffic flow and further

optimize SPAT [50, 51]. In addition, considering the connectivity and controllabil-

ity of CAVs, the concept of signal-free intersection control is formulated [52, 53].

Under such a concept, the CAVs can drive across the intersection without colli-

sions through effective communication and coordination. Among these works, the

rule-based method is the most common [54–56]. Although such a method can guar-

antee the safety of the intersection, global optimality can not be ensured. Due to

this, optimization-based methods are developed, where factors such as fuel con-

sumption, traffic delay, safety concerns, and waiting time are considered [57–63].

However, the challenge is that the computation burden of such methods are very

high, especially with high traffic demand [64, 65].

Trajectory planning of CAVs can reduce fuel emissions and improve traffic

efficiency. The earliest research begins with the car-following models, such as

Newell’s car-following model [66], Gipps model [67], and Intelligent Driver Model

(IDM) [68]. Eco-driving which intends to improve energy efficiency by optimizing

trajectory profiles is proposed and carefully studied in [36–38, 69]. To be specific,

by providing suggested velocity profiles and velocity limits to CAVs, fuel consump-

tion, vehicle stops and waiting time can be reduced. Feedback control and MPC are

applied [70–72], where velocities and positions are formulated as the state vari-

ables and acceleration strategies are formulated as the control variables [73, 74].

The computation burden is a noticeable challenge for such an optimization-based

control method. To ease the computation burden that comes from the number of ve-
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hicles, a promising solution is to form platoons and only control those vehicles that

lead platoons [75,76]. The research on trajectory planning of CAVs to benefit traffic

can be dated back to 1970s [77]. These studies aimed to find out how much traffic

congestion could be alleviated if the vehicle trajectory was controlled by a cen-

tral coordinator [78–80], where dynamic traffic flow is considered. However, such

methods cannot reflect a practical understanding of on-road vehicle flow. Thus, tra-

jectory planning of CAVs is incorporated with the Cell Transmission Model (CTM)

to make the analysis more realistic [81]. The CTM divides the roadway into small

segments (cells) and updates traffic conditions over time, which can model the com-

plex traffic network in a simple way.

However, the signal and vehicle velocity are mutually coupled. Individual traf-

fic signals or vehicle control is not sufficient to ensure traffic efficiency at a road

intersection. A joint control framework of SPAT and vehicle trajectories is proposed

in [82, 83]. A two-stage optimization problem with SPAT optimization at the first

stage and vehicle trajectory planning at the second stage where no turning move-

ments were considered is formulated in [83]. Dynamic programming is utilized

to optimize SPAT. In [82], a unified framework of vehicle trajectories and SPAT

optimization is proposed and solved by mixed integer linear programming. The co-

operative control of SPAT and vehicle trajectories is also investigated [31, 84–86].

In particular, [86] proposes a cooperative control method that integrates adaptive

cruise control and SPAT. The vehicle trajectory planning is divided into an acceler-

ating segment and a cruising segment. SPAT is determined based on planned vehicle

trajectories, which guarantee vehicles arrive at the stop line during a green signal

phase. In addition, SPAT is further optimized by an enumeration-based method to

minimize traveling time and maximize green phase duration in [85].

However, in the foreseeable future, mixed traffic with HDVs and CAVs will

be prevalent. While traffic control methods under a fully CAV environment can

be a solid foundation for traffic control, there are still some challenges in mixed-

traffic environments. These challenges include the uncontrollability of HDVs, as

well as ineffective communications with HDVs. In addition, the high uncertainty
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and various driving behaviors of humans make it hard to guarantee traffic safety,

which is the most crucial part of traffic control. To overcome the above-mentioned

challenges, new control methods are needed.

2.2 Intersection Traffic Coordination in Mixed-

Traffic Environments

2.2.1 Signal Control and Trajectory Planning in Mixed-Traffic

Environments

Traffic signal control in mixed-traffic environments has been well-studied and

mainly based on vehicle trajectory data or the integration of vehicle trajectory

and infrastructure-based detector data. Infrastructure-based detector data are of-

ten used as supplementary data, which can provide traffic flow parameters such

as traffic volumes and queue lengths to enhance the accuracy of traffic condition

estimation [50,87]. Optimization-based methods [88–91] and learning-based meth-

ods [92–99] are the primary methodologies when conducting SPAT control in mixed

traffic environments. In [50], both macroscopic traffic data and detector data are

used to estimate the arrival time of traffic flows. A two-level optimization problem is

formed. In the upper layer, a ring barrier structure is utilized for SPAT optimization,

where barrier durations are optimized by dynamic programming to minimize queue

lengths and traffic delay. In the lower layer, SPAT sequences and durations were

optimized by enumeration for the given barrier derived from the upper layer. [87]

proposes a real-time feedback control method for SPAT based on vehicle cumula-

tive travel time. Kalman filter-based stochastic estimation method was utilized to

estimate the vehicle’s cumulative travel time, and the SPAT was selected to allow

vehicles with the largest cumulative travel time to pass the intersection. More-

over, the intersection capacity is also improved while the vehicle delay is reduced

in [100–103]. As for the learning-based method, [97] uses a transformed version of

the deep Q network (DQN) model to improve the training efficiency. The number

of vehicles in each road segment is used as the input of the network, while the total
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waiting time of vehicles is set as the reward function. Although the research on this

topic is dominant, microscopic CAV trajectory data are not fully used, as they can

reflect the states of individual vehicles instead of overall traffic flow.

The Eco-driving in the mixed traffic environment optimizes CAV trajecto-

ries based on SPAT and traffic flows to reduce fuel consumption at intersec-

tions [104–113]. For example, [104] utilized MPC to optimize the accelerations

of CAVs for reduced fuel consumption according to the SPAT and states of the

preceding vehicles, which are assumed to be known or can be collected by on-

board sensors of CAVs. The queuing effect is also studied when traffic demand is

high [105]. However, Eco-driving may incur increased travel time. Therefore, fac-

tors other than fuel consumption are considered in the objective function of trajec-

tory planning, such as vehicle delay [107,108], driving smoothness [112], and safety

concerns [107]. In addition, lane changing is further considered in [108], where a

two-layer optimization framework jointly optimizes the lateral moving strategies

and the longitudinal acceleration strategies for CAVs in mixed-traffic environments

is proposed. The parallel Monte Carlo tree search algorithm is designed to find an

efficient lane-changing strategy. The above studies only focus on the benefits of tar-

get CAVs and mixed platoons, without considering the impact on the overall traffic

flow. In [6], an optimal control model is formulated with terminal cost concerning

the final states of CAVs at the stop bar (e.g., velocity and time of arrival), which

is designed to improve intersection traffic efficiency, and with operating cost con-

cerning the fuel consumption of each CAV. Different from [6], where the passing

velocity of CAV is maximized, [114] finds out a higher passing velocity does not

ensure a higher traffic efficiency at intersections. The concept of “1+N” mixed pla-

toon is proposed and the passing velocity of the mixed platoon is designed such that

the number of vehicles passing the intersection can be maximized. Besides model-

based methods, the learning-based method is also comprehensively investigated for

trajectory planning in mixed-traffic environments [111, 112]. In [112] a reinforce-

ment learning (RL)-based trajectory prediction method is formulated. The velocity

of a leading CAV is optimized to reduce the jerking phenomenon, which can offset
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the oscillation wave caused by stopping during the red signal phase. CAV states

(i.e., positions and velocities), SPAT, relative velocity, and distance with the preced-

ing vehicles are the network inputs. The collision avoidance, desired velocity, and

arrival time are considered in the reward function. Despite comprehensive research

conducted on mixed traffic, the interaction between vehicle trajectory planning and

SPAT is not fully discussed. The cooperative control of SPAT and trajectory plan-

ning in a unified framework should be further studied in mixed-traffic environments.

2.2.2 Signal and Vehicle-Coupled Coordination in Mixed-

Traffic Environments

Analytical optimization models are commonly used to jointly optimize SPAT and

CAV trajectories at intersections in mixed-traffic environments [20–31, 115–117].

Some of these works use an integrated optimization framework to jointly control

signal timing and vehicle trajectory, such as [20–22]. For instance, in [22], multi-

objective mixed-integer non-linear programming is established to optimize signal

timing and vehicle trajectories. This aims to reduce stops at the traffic light and

overall delays. Lagrangian relaxation is applied to decompose the original problem

into separated lane-level submodels for reduced complexity.

Although the unified framework of SPAT and CAV trajectory planning has the

potential to reach the global optimum, the computational burden remains high for

such joint optimization schemes due to the scale of the problem [118, 119]. In this

context, the hierarchical control/optimization architecture emerges as a promising

solution, where, in most cases, SPAT is optimized in the first place, followed by the

vehicle trajectory control such as velocity profiles and passing sequences subject

to the SPAT plans formed in the upper layer [23], [24]. More specifically, in [23],

the signal phase duration is optimized to minimize total delay in the upper layer

based on the fundamental diagram model of mixed traffic flow, which embeds CAV

penetration rate and stable space headway. Next, the intersection arrival time of

all CAVs is determined by finding their individual speed profiles using empirical

rules( i.e. a CAV will follow the IDM car-following model if it arrives at the stop

line after the planned arrival time). In [25], a joint traffic signal and vehicle speed
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rolling-horizon optimization method is introduced. It uses CAV data to optimize

SPAT and then offers speed recommendations to each vehicle to reduce the total

stops. This takes into account the possible response delay of the HDVs.

The computational burden remains heavy if each CAV is regarded as the

individual control unit. An alternative is to form mixed platoons where only

the trajectories of platoon-leading CAVs are co-optimized with SPAT at intersec-

tions [120, 121]. Platoon-following vehicles are assumed to follow a specific car-

following model such as IDM. Recently, [26] proposed a new scheduling method

by introducing an additional “white signal phase”, during which connected vehicles

are forced to keep up with the vehicle immediately ahead to pass the intersection

as a platoon. The optimization problem is formulated as a mixed-integer non-linear

program linearized and incorporated into a receding horizon framework to tackle

the complexities. [27] further investigate the influences of various driving aggres-

siveness of CAVs on the safety performance of the intersection, which is operated

by the additional white signal phase. The robustness of these methods should be

further investigated when considering the interactions with HDVs. In addition to

model-based methods, promising results have been shown using data-driven and

learning-based methods [79, 122] in the context of vehicle and traffic efficiency. In

particular, a two-stage framework that sequentially optimizes SPAT and CAV trajec-

tories is formulated in [79]. This framework aims to improve traffic efficiency and

reduce total delay, which consists of estimation, planning, and optimization. Long

short-term memory networks are utilized in this work to learn traffic patterns and

driving behaviors according to CAV information. Then the states of HDVs can be

predicted. Deep reinforcement learning (DRL) is applied to optimize SPAT dura-

tions with the inputs being the number of arriving vehicles and velocities. Based on

the optimized SPAT, the velocities of CAVs will be adjusted for the maximum use of

green phase duration. Differently, a joint optimization of SPAT and CAV trajectory

is proposed in [122, 123]. The problem is solved using RL to improve traffic safety

and efficiency. To be specific, a signal-vehicle control architecture integrating adap-

tive SPAT control and velocity advisories is proposed in [122]. This method utilizes
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the Soft-Actor Critic RL framework to improve real-time traffic safety. The rear-

end conflict rate is estimated based on real-time collected traffic parameters such

as SPAT. Then the traffic parameters and conflict rate are utilized as inputs to the

control system, which aims to minimize the total conflicts and extend the current

signal phase accordingly. However, the performance of this learning-based method

is largely affected by the quality of training data [42].

Traffic signal control enhances the overall traffic efficiency by optimizing in-

tersection SPAT, while CAV trajectory planning improves the benefits of mixed pla-

toons by optimizing velocity trajectories and acceleration strategies given the spe-

cific SPAT information. Although there is no doubt that co-optimization of CAV

trajectory planning and SPAT can achieve a better performance than optimization

of either one, there exist research gaps in existing co-optimization methods: 1) In-

vestigating more efficient solving methodology to guarantee real-time applicability,

while maintaining relatively good performance. 2) The interactive relationship be-

tween SPAT and CAV trajectory planning needs further investigation. 3) Study the

trade-off between traffic efficiency and vehicle energy consumption.

2.3 Maneuver Control of CAVs on Arterial Roads in

Mixed-Traffic Environments
In most research on the cooperative control of SPAT and trajectory planning of

CAVs in mixed-traffic environments, HDVs are assumed to follow a specific car-

following model such as IDM, and the complicated interactions between HDVs and

CAVs are also ignored. However human drivers often make mixed-traffic envi-

ronments more complex [124, 125]: human driving behaviors fluctuate randomly;

illegal driving such as illegal speeding and lane-changing; defecting driving such

as slow reactions. In addition, the car-following or lane-changing behaviors of hu-

man drivers may change sharply due to their limited observation of the surrounding

environments and other uncertainties [126–128]. To comprehensively study this

interaction and mutual influences between HDVs and CAVs, safety-oriented lane-

changing strategies for CAVs are a good entry point and receive much research
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attention.

2.3.1 Model-based Maneuver Control of CAVs

In general, lane-changing control can be classified into model-based and learning-

based approaches. The model-based described in this thesis refers to a series of al-

gorithmic knowledge based on mathematical/physical models, empirical knowledge

of rules, and domain knowledge for specific applications [129–132]. In can be fur-

ther divided into rule-based approaches [133], artificial potential fields [134], sam-

pling method [135], optimization-based methods [41, 136–139], PID-based meth-

ods [140, 141], Fuzzy logic control [142, 143], etc.

However, rule-based methods can only deal with simple scenarios. When it

comes to complex systems, these methods are no longer effective. As the comput-

ing power of the controller increases, optimization-based approaches have become

the interest of the present research. Among all the optimization-based approaches,

Pure Pursuit [144], Linear Quadratic Regulator, and MPC [145, 146] are the most

commonly adopted methods. Numerical optimization-based trajectory planners are

formulated in [139], which can generate trajectories with continually changing sur-

roundings. In [134, 137], MPC is utilized to generate safe trajectories for CAVs.

In addition, with the implementation of MPC, real-time performance can also be

ensured. Optimization-based methods have a complete theoretical support sys-

tem and have natural advantages in analyzing algorithm stability, optimality, and

convergence. In addition, the optimization-based model has better interpretability.

However in real-world applications, the parameters of optimization-based meth-

ods are difficult to tune, the detailed vehicle dynamic mechanism is not yet com-

pletely clear, and the cost of knowledge acquisition is high. Meanwhile, exist-

ing optimization-based methods are difficult to support the continuous learning and

evolution of control behavior. Furthermore, the interaction with surrounding HDVs

is often ignored or simply viewed as an obstacle. However, this ignored interac-

tion between CAVs and HDVs is crucial for CAV decision-making and trajectory

planning [147–149].

Game theory methods are very promising for dealing with conflict behavior
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and cooperation between players, which recently turned out to be an efficient way

to model the interaction between CAVs and HDVs [33, 150]. In this context, a

differential game theoretical framework is applied in [151] to model the interac-

tion between multi-agents. The differential game is a game that is played in a dy-

namic environment [152]. Moreover, the iterative linear-quadratic regulator was

used, where repeated approximations converge reliably and can be implemented in

real time [153,154]. In [155], the mixed strategy Nash equilibrium theory, together

with the intention prediction method, was used to formulate the trajectory planning

framework. This combination improves both the driving comfort and the safety of

vehicles at uncontrolled intersections.

Another effective game-theoretical framework to model the interaction be-

tween HDVs and CAVs is the Stackelberg game because the two players involved

in lane-changing can directly observe each other’s strategies and intentions, al-

lowing them to minimize their game costs accordingly [32, 156, 157]. Based on

this premise, both players adjust their strategies, forming a dynamic game prob-

lem. In [158], a game-based model predictive controller is designed to address the

mandatory lane change problem in mixed traffic environments. It generates appro-

priate speed trajectories for CAVs to arrive at a desired longitudinal position and

conduct the lane change maneuver optimally. In [159], a merging control for CAVs

at ramp intersections considers the interaction between following vehicles in the

main lane and merging vehicles. The predicted trajectories of the following vehi-

cles are used to maintain safe longitudinal distances during lane changes. However,

the simplicity of the driver model may lead to inaccurate estimations of surround-

ing positions and future actions. Moreover, these researches ignore the interactions

between different CAVs (i.e. CAVs intend to change lanes), and safety cannot be

ensured when the surrounding HDVs take a sudden break or acceleration [160].

In [161, 162], mandatory lane-changing strategies for CAVs are designed by

considering the cooperation between different CAVs. [163] further investigates the

cooperation between CAVs in the merging zone. In [164], a game-based decision-

making model allows lane changes at intersections, accounting for the level of co-
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operation among vehicles in adjacent lanes, rendering the problem more realistic.

In [165, 166], DRL is integrated with the game theoretical framework to deal with

the decision-making of CAVs. Scenarios of multilane merging and non-signalized

roundabouts are considered in [34, 35], where a game-based Stackelberg method is

proposed for the decision-making and trajectory planning of CAV. Moreover, per-

sonalized objective functions of each vehicle and system traffic efficiency are taken

into account, demonstrating the application of game-based lane change and formu-

lating methodologies to better model the interaction between CAVs and HDVs in

mixed traffic.

2.3.2 Learning-based Maneuver Control of CAVs

The learning-based approach focuses on machine learning algorithms that have

emerged widely in recent years, such as deep learning and RL [41, 136, 167–170].

Traditionally, learning-based approaches can be segmented into three broad cat-

egories, including supervised learning, unsupervised learning, and RL. For lane-

changing control specifically, most of these learning-based approaches are either

supervised learning (such as Behavior cloning) which extracts a policy based on

the demonstrated inputs and outputs [171], or RL which is an area concerned with

how controllers take actions in an environment in order to maximize the cumu-

lative rewards by trial-and-error [172–174]. Data-driven methods realized by ma-

chine learning have the characteristics of no need for accurate modeling, continuous

learning, evolution from data, strong algorithm versatility, etc. And it is supported

by tools such as massive open-source models and algorithm libraries. A deep neu-

ral network-based decision-making strategy is formulated in [136], which is flexible

and can be used in real traffic scenarios. However, such methods often have diffi-

culties in the analysis of theoretical characteristics, and their typical “black box”

characteristics also bring problems such as poor generalization and high reliance on

high-quality big data [39] or high-fidelity simulation model [40]. A small change

in the neural network can cause serious traffic accidents [41]. An alternative is to

make use of RL. In [175], a stochastic Markov Decision Process (MDP) is used

to model the CAV’s interaction with the environment, and then based on the re-
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ward function of MDP, RL is applied. However, the learning efficiency of RL needs

to be improved. In other words, learning-based methods, whose performance is

largely influenced by the quality and quantity of data, still have a long way to go.

The data-driven model predictive control method, which is based on the measur-

able data [43, 44], can overcome the above-mentioned shortcomings. In particular,

the data-enabled predictive control method proposed in [44, 176] can achieve safe

and optimal control for unknown systems under state measurements. Such meth-

ods can avoid identifying a parametric system model and, instead, directly learn

the behavior of the system based on Willems’ fundamental lemma [177]. Existing

work shows that data-enabled predictive control can achieve comparable perfor-

mance with respect to MPC with precise knowledge of nonlinear and stochastic

systems [178, 179].

However, there are still several limitations of the existing works on the lane-

changing control of CAVs in mixed-traffic environments: 1) Game-based methods

may incur a heavy computation burden and are not applicable when the number of

vehicles is large. 2) How to deal with human uncertainty and enhance robustness.

3) CAVs are treated equally. In fact, CAVs have their own driving intentions and

are not willing to sacrifice their own driving comfort or efficiency to facilitate other

CAVs.

2.4 Summary

This chapter reviews the state-of-the-art research on intelligent control of CAVs.

Particular attention is given to studies on intersection traffic coordination and ma-

neuver control on arterial roads. While extensive work has been done in this area,

several important limitations remain: 1) High computational demands of existing

methods when applied to large-scale traffic with many vehicles. 2) Insufficient ex-

ploration of the trade-off between traffic efficiency and vehicle energy consumption.

3) Lack of realistic and safe models for capturing the interactions between HDVs

and CAVs, along with limited theoretical analysis of such models. 4) Limited ex-

perimental validation of the real-time performance of control strategies in mixed-
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traffic environments. This thesis aims to address these gaps by developing scalable,

energy-aware, and experimentally validated control strategies for CAVs operating

alongside HDVs in urban traffic.



Chapter 3

Preliminary

3.1 Introduction

Following the urban traffic coordination framework in Fig. 1.4, the thesis can be

divided into two separate control problems, including the signal-vehicle coupled

cooperative control and the lane-changing control. This involves solving some fun-

damental control problems (i.e., trajectory planning), which include different tech-

niques, such as optimal control-based methods and MPC-based methods. Some

general mathematical formulations and preliminary concepts are introduced in this

chapter to bridge the general concepts introduced in Chapter 2 and the specific prob-

lems considered in the later chapters.

3.2 General Mathematical Formulations and Prelim-

inary Concepts

Trajectory planning and control of CAVs is a critical component in urban traffic.

In the signal-vehicle coupled coordination problem, CAVs need to navigate from a

starting position to pass the intersection without collision. In particular, this thesis

relies on optimization-based methods to formulate trajectory planning as a math-

ematical optimization problem, aiming to find the best trajectory according to de-

signed cost functions (e.g., shortest trajectory, minimum energy, comfort) while

satisfying constraints (e.g., collision avoidance). The problem formulation can be
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given as follows:

min
u

J(x,u)

s.t. g(x,u)≤ 0,

ẋ = f (x,u)

(3.1)

where J(x,u) is the cost function, which may consider energy consumption (Chap-

ter 4, Chapter 6), comfort (Chapter 6), or deviation from a reference trajectory

(Chapter 4, Chapter 5, Chapter 6). x denotes the vehicle states, u is the control

input, and g(x,u) stands for inequality constraints. In the context of vehicle trajec-

tory planning, the inequalities may include speed limits, acceleration limits, colli-

sion avoidance, road boundaries (Chapter 6), etc. f (x,u) denotes the vehicle motion

model. Depending on different scenarios, different motion models are required. For

example, in the car-following (Chapter 4) or high-level traffic coordination prob-

lems (Chapter 6), the double integrator model can be utilized to characterize the

evolution of the vehicle states. While in scenarios where there is lane-changing or

overtaking (Chapter 5, Chapter 6), a bicycle model is often required to model the

lateral movements of the vehicle.

Figure 3.1: Illustration of the bicycle model. With L, LW , and LB being the length, width,
and wheelbase of the vehicle.

More specifically, the double integrator model is a fundamental second-order
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dynamic model, which treats the vehicle as a point mass with position and velocity

states, where vehicle acceleration is the control input. The formulation can be given

as follows:  ṗ = v,

v̇ = a,
(3.2)

where p ∈ R denotes the vehicle longitudinal positions, v denotes the velocity, and

a denotes the acceleration. However, the double integrator model cannot reflect the

lateral movement of a vehicle in a realistic way. On the other hand, the bicycle

models are often utilized to model the lateral movements of a vehicle. The bicycle

model is a kinematic representation of a car-like vehicle, which is more realistic than

the double integrator model. The bicycle model utilized in this thesis is illustrated

in Fig. 3.1, with the formulation given as follows:

ṗx = vcos(θ),

ṗy = vsin(θ),

θ̇ = v
LB

tan(φ),

v̇ = a,

(3.3)

where θ and φ are the heading angle and steering angle, respectively. px ∈R, py ∈R

are the longitudinal and lateral positions, respectively.

The cost function J(x,u) in traffic trajectory planning often follows a quadratic

form. When the vehicle motion model is linear, an unconstrained problem can be

formulated as follows:

min
u

J(x,u) =
∫
∥x∥2

Q +∥u∥2
R dt

s.t. ẋ = Ax+Bu

x(0) = x0

(3.4)

where Q and R are the positive definite weighting matrices for the state and control

input, respectively. x(0) is the initial state of the vehicle. A and B are matrices to

characterize the vehicle motion model. A common approach to solving this problem
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is by the optimal feedback law:

u =−Kx (3.5)

where K is the constant gain matrix and is computed via the Algebraic Riccati

Equation, which is given as follows:

AT P+PA−PBR−1B⊤P+Q = 0

K = R−1B⊤P
(3.6)

This controller is known as the linear quadratic regulator (LQR), which can find

the optimal control for CAVs and ensure stability, however, there are some limita-

tions. In practice, the vehicle motion model is time-varying and nonlinear, which

greatly influences the performance of the LQR. In addition, as the constraints are

not included in LQR, the collision avoidance of different vehicles is not guaranteed.

Different from LQR, where the control input is determined without feedback

from the system’s output, MPC uses predictive models to anticipate changes and

adjust control input proactively. To be specific, MPC solves finite-horizon optimal

control problems iteratively based on real-time measurements while implementing

only the first control action. This approach is particularly useful in constrained, mul-

tivariable systems like CAVs in urban traffic environments. For the sake of further

discussion, the system is specified in discrete time. The mathematical formulation

of MPC at each time step k is given as follows:

min
u(k)

J(x(k),u(k)) = ∑
N−1
j=0 l(x( j|k),u( j|k))+Vf (x(N|k))

s.t. for j = 0,1,2, . . . ,N−1,k ∈ N

x( j+1|k) = f (x( j|k),u( j|k))

x( j|k) ∈ X

u( j|k) ∈ U

x(N|k) ∈ X f

x(0|k) = xk

where N is the control horizon. l(x( j|k),u( j|k)) denotes the stage cost. Vf (x(N|k))
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denotes the terminal cost, which is designed to ensure stability for MPC. X and U

denote the constraint set for the state and control input, respectively. X f is the ter-

minal set and xk is the current state. Compared with the full horizon optimal control

method, MPC is more flexible for constrained, nonlinear urban traffic systems and

is more adaptive to sudden changes on roads.

This real-time optimization capability of MPC is particularly valuable for im-

plementing adaptive cruise control (ACC) in car-following zones of Fig. 1.4, where

vehicles must continuously adjust to dynamic traffic conditions while ensuring col-

lision avoidance. The scheme of ACC can be seen in Fig. 3.2, and a typical formu-

lation is given as follows:

min
u

∑
N−1
k=0

∥∥x(k)− xre f
∥∥2

Q +∥u(k)∥2
R +∥x(N)∥2

W

s.t. x(k+1) = f (x(k),u(k)),k ∈ N

x(k) ∈ X

u(k) ∈ U

d(k)≥ dsa f e

x(k) = xk

(3.7)

where x(k) = [d(k),v(k)]⊤, d(k) denotes the distance to the preceding vehicle. xre f

includes the desired velocity and the following distance. d(k) ≥ dsa f e is to avoid

collision. Under such a control method, CAV automatically adjusts its speed to

maintain a predefined speed and keep a safe following distance.

Figure 3.2: The scheme of ACC.

In mixed traffic environments, however, HDVs are not controllable, and car-
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following models are utilized to describe how HDVs adjust their speed based on

the vehicle ahead. Among different car-following models, this thesis adopts the

intelligent driver model (IDM) to realistically simulate human-like acceleration and

braking behavior, which is given as follows:

a = amax

(
1−
(

v
vd

)δ

−
(

sd (v,∆v)
s

)2
)

(3.8)

where amax is the maximum vehicle acceleration, δ is the acceleration exponent.

s denotes the actual gap to the preceding vehicle. ∆v is the velocity difference

between the preceding vehicle and the HDV (the velocity of the preceding vehicle

minus the velocity of the HDV). vd is the desired constant following velocity of

the HDV. sd is the desired distance headway of a human driver, which is given as

follows:

sd = s0 + vT − v∆v
2
√

amaxab
(3.9)

with s0 the standstill spacing between consecutive vehicles, ab the comfortable de-

celeration of each HDV, and T the safe time headway. HDVs could smoothly adjust

their speed in response to both the gap to the preceding vehicle s and the veloc-

ity difference ∆v based on IDM. By dynamically balancing the pursuit of a desired

speed vd with the maintenance of a safe following distance, IDM generates more

realistic and human-like driving behavior compared to rigid constant-time-gap mod-

els. Additionally, IDM inherently accounts for driver comfort by constraining jerk,

resulting in naturalistic acceleration and deceleration profiles that mimic real-world

driving.

Figure 3.3: Cooperative control architecture of a heterogeneous vehicle platoon. sd , vd are
the desired following distances and the target velocity of the platoon at the
steady state, respectively.
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By incorporating the advanced V2X communications, ACC can be extended

to the cooperative adaptive cruise control (CACC) with a faster response time that

enables a tighter vehicle following distance, as illustrated in Fig 3.3. In mixed urban

traffic environments, the mixed platoons will naturally form when the vehicles tend

to keep a tighter distance, where CAVs can positively influence the surrounding

HDVs [180], [114], [181]. The formation of mixed platoons and how to make

use of mixed platooning to benefit the overall urban traffic will be discussed in

Chapter 4.

Figure 3.4: Lane-changing of the CAV in mixed traffic environments.

Moving on to the lane-changing zone of Fig. 1.4, this thesis utilizes the Stackel-

berg game to strategically model the previously neglected CAV-HDV interactions,

which is illustrated in Fig. 3.4. In a Stackelberg game, the leader has a signif-

icant influence over the follower’s behavior by moving first, effectively dictating

the follower’s optimal response based on the leader’s chosen strategy. This strate-

gic advantage allows the leader to anticipate and shape the follower’s actions. By

modeling the CAV as the leader and the HDV as the follower (without specifically

controlling the HDV), a fully controllable CAV can be used to positively influence

HDV behavior, improving overall traffic efficiency and safety. However, this level

of control is not possible in a Nash game, where both players (CAV and HDV)

are treated equally. In such a scenario, the controllability of CAVs in mixed-traffic

environments cannot be fully leveraged. The feasibility of applying a Stackelberg

framework in autonomous driving control has been demonstrated in previous stud-

ies [34, 35, 158, 182]. The game is solved using backward induction by
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u∗L = argmin
uL∈UL

(
min

uF∈U ∗
F

JL (x0,uL,uF)

)
(3.10)

U ∗
F (uL)≜ {u∗F ∈UF : JF (x0,uL,u∗F)

≤ JF (x0,uL,uF) ,∀uL ∈UL}
(3.11)

where x0 denotes the initial state, uL and uF are the actions of the leader and fol-

lower, respectively, while u∗L and u∗F are the optimal actions. UL and UF are the

action spaces. JL and JF stand for the leader’s and follower’s cost functions, respec-

tively. From (3.10), (3.11), the definition of the Stackelberg equilibrium is given

below, which will be the cornerstone of the forthcoming analysis.

Definition 3.1. If there exists u∗F ∈UF such that, for any fixed uL ∈UL

JF (x0,u∗F ,uL)≤ JF (x0,uF ,uL) (3.12)

and if there exists u∗L ∈UL such that

JL (x0,u∗F ,u
∗
L)≤ JL (x0,u∗F ,uL) (3.13)

for all uL ∈UL, then {u∗L,u∗F} ∈UL×UF is called a Stackelberg equilibrium.

3.3 Conclusions
This chapter introduces general mathematical formulations and preliminary con-

cepts needed for the urban traffic coordination discussed in this thesis. Starting from

a generic trajectory planning problem, we introduce different vehicle motion mod-

els, including the double integrator model and the bicycle model. Then different

control methods utilized to solve trajectory planning problems are introduced, i.e.,

LQR and MPC. ACC, IDM, and mixed platooning are introduced to characterize

the car-following behaviors in mixed traffic environments. Finally, the Stackelberg

game is introduced to model CAV-HDV interactions in lane-changing scenarios.

All these will be specifically used in the development of the algorithms discussed

in the following chapters. In particular, the mixed platooning and the IDM will be
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employed in the signal-vehicle coupled coordination framework in Chapter 4. In

Chapter 5, the Stackelberg game will be used for strategic interactive modeling of

lane-changing behaviors in mixed traffic environments. Finally, in Chapter 6, an

MPC-based method is applied to CAVs in multi-vehicle lane-changing scenarios.



Chapter 4

Intersection Signal-Vehicle Coupled

Coordination

4.1 Introduction

In this chapter, the scalability and environmental impact issues in mixed traffic en-

vironments are investigated. An intersection signal-vehicle coupled coordination

is proposed, which is utilized in the car following zone in Fig. 1.4. Some exist-

ing works use an integrated optimization framework to jointly control signal tim-

ing and vehicle trajectory, such as [20–22]. While these methods are capable of

identifying the global optimum, the joint optimization structure incurs significant

computational costs due to the problem’s large scale [118,119]. An alternative is to

adopt the hierarchical control framework, with SPAT optimization performed at the

higher level, followed by lower-level vehicle trajectory control that complies with

the predetermined SPAT schemes [23, 24, 26]. The existing methods are mainly

designed for maximizing travel time , whereas energy efficiency is either omitted

or taken into account through conventional fuel consumption. As travel time and

energy efficiency usually lead to contradicting optimal solutions, this chapter inves-

tigates the trade-off between intersection throughput and the energy efficiency of

all vehicles by co-optimizing the traffic SPAT and CAV trajectories (whereby the

velocities of HDVs are indirectly governed following the notation of “1+N” mixed

platoon [180], [114]). Instead of using further alternative signal phases to pro-
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mote CAV-led platoons (like [26]), the platoon formation is enforced by trajectory

optimization in the present work. To avoid solving a complex joint optimization

problem that is computationally demanding, a two-layer control architecture is de-

signed, respectively, for finding the SPAT and vehicle speed plans. The novelty of

the work in this chapter is as follows:

1. In contrast to the majority of existing SPAT control solutions that rely on

macroscopic traffic flow models [26, 50, 183, 184], the proposed solution

makes use of microscopic vehicle motion and queue discharging models in-

stead. Therefore, the control solution tends to be more responsive to the time-

varying traffic demands at a road intersection.

2. A novel signal-vehicle coupled optimal control strategy is proposed for mixed

platoons, which can find the trade-off between the two key metrics: traf-

fic throughput and vehicle energy consumption, unlike most of the existing

methods, which solely focus on one aspect.

3. The benefit of the newly developed method is shown by comparisons with

various traditional strategies [23]. Additionally, the impacts of intersection

traffic density, flow distribution, and the penetration rates of CAV and EV are

investigated by comprehensive simulation trials.

The remainder of this chapter is organized as follows. Section 4.2 introduces

the problem and the intersection model. The mixed platoon-based hierarchical con-

trol framework entailing the mixed platoon model, traffic SPAT optimization and

speed trajectory optimization is presented in Section 4.3. Simulation results and

discussion are shown in Section 4.4. Finally, concluding remarks are given in Sec-

tion 4.5.

4.2 Signalized Intersection Model
As illustrated in Fig. 4.1, this chapter considers a signalized road intersection with

mixed traffic flow of CAVs and HDVs. The intersection layout studied in this work

consists of two single-lane perpendicular and flat roads. The center of the intersec-
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CAV

HDV

Control Zone

Communication Zone

Intersection Controller

Merging Zone

Roadside Unit

LComZ

LCZ

Figure 4.1: The system architecture of a signalized four-way road intersection problem
with consideration of mixed traffic flow of CAVs and HDVs. This single-lane
scenario can be easily extended into multi-lane scenarios, although still in the
context of no turning and no lane changing.

tion is the Merging Zone (MZ). Outside the MZ is the Control Zone (CZ), where the

motion of each CAV can be fully controlled by a central intersection controller (IC).

The lengths of the CZ and MZ are LCZ and LMZ, respectively. In this framework,

the IC is responsible for manipulating both the traffic SPAT and the trajectories of

the CAVs to maximize the intersection traffic throughput and vehicle energy effi-

ciency. Further from the center, there is a Communication Zone (ComZ), in which

the IC can communicate with the CAVs. Moreover, there exist roadside units and

sensors (camera, loop detector, etc.) at the entry points of the ComZ, where the

entry speed, time, and length of the vehicles are measured and shared with the IC.

For simplicity, turning is not considered in this framework, while lane changes are



4.2. Signalized Intersection Model 55

only allowed outside the CZ. This may involve introducing an additional zone (cen-

tered at the intersection) beyond the control zone, where vehicles are allowed to

perform lane changes in line with their turning intentions [185]. The Chapter 5

and the Chapter 6 will focus on the decision-making and control of lane-changing

in mixed-traffic environments. As such, the control design for lane changes may

be decoupled from the control design for the intersection crossing (as addressed in

the present chapter). Fig. 4.2 shows a graphical representation of a typical signal

𝑇! 𝑇" 𝑇# 𝑇$

𝒕𝟎 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒

𝑗 = 1,3

𝑗 = 2,4

Figure 4.2: Graphical representation of signal cycles.

cycle for every approach at the intersection. In each phase the signal indicator is

either green or red, while the amber phase is integrated into the red phase for safety

purposes. Let Iq
j ∈ {0,1} be the signal indicator at the qth (q ∈ N) phase for the

jth direction with j∈J = {1,2,3,4}, which collects the four approaches of the

intersection, with {1,3} perpendicular to {2,4}. Iq
j =1 is the green light and Iq

j =0

is the red light. For the sake of further discussion, let S q
j be the SPAT information

set at the qth phase for the jth direction, it is defined as:

S q
j = {T q, Iq

j }, q ∈ N (4.1)

where S 0
j = {T 0, I0

j } is the predefined initial condition and T q is the time duration

of the qth signal phase. Then, let

tq= t0 +
q−1

∑
k=0

T k (4.2)

be the start time of the qth SPAT provided t0 is the initial time. The signal indication

of the two perpendicular roads in this work are always reversed, and therefore, when
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the SPAT is determined for one direction, the other is determined accordingly. To

complete the intersection model, the following assumptions are also needed.

Assumption 4.1. Each CAV can communicate with the IC without errors and delays

once the vehicles enter the control zone.

Assumption 4.2. After entering the CZ, all CAVs are fully controllable and capable

of precisely following the trajectories provided by the IC.

Assumption 4.3. The communication zone is large enough, such that any vehicle

that enters the ComZ at a green phase will not reach the stop line within the same

phase.

Assumptions 4.1 and 4.2 are commonly used in existing works, such as

[25, 114, 186]. In this context, the IC can be informed of the type (whether it is

a CAV or HDV) and the length of each vehicle upon arrival at ComZ. Assump-

tion 4.3 is added to enable the formulation such that the corresponding optimization

problem (the algorithm will be introduced in Section 4.3) does not depend on un-

known information outside the ComZ. Given the maximum vehicle speed vmax at

a road intersection and the upper time duration limit of a signal phase Tmax chosen

in the present work, it is straightforward to determine the appropriate radius of the

ComZ (i.e., LComZ ≥ vmaxTmax which may be realized by multi-hop communica-

tion), such that Assumptions 4.3 is satisfied. For instance, when vmax = 15 m/s and

Tmax = 50s, Assumption 4.3 holds if LComZ ≥ 750 m.

4.3 Mixed Platoon-based Signal-Vehicle Coupled Co-

ordination Scheme
Mixed platooning is well established and frequently used in urban traffic con-

trol [23,26,114]. Recent research shows a growing trend of using CAVs as adminis-

trative vehicles to lead HDVs [187], which can be extended to platooning scenarios.

In each platoon, CAVs can positively influence the behavior of surrounding HDVs,

improving overall traffic performance at the platoon level. Meanwhile, treating
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groups of vehicles as coordinated platoons offers computational advantages, mak-

ing it a practical solution for managing large-scale traffic in complex urban envi-

ronments. Thus, to address the signalized intersection coordination problem with

mixed autonomy vehicles as illustrated in Fig. 4.1, this chapter exploits the notion of

the “1+N” mixed platoon [114, 180] where “1” represents the CAV leading a pla-

toon and “N” collects the following HDVs with N ∈ N. In particular, when N = 0,

it represents a platoon with only a single CAV. As such, any mixed traffic flow can

be decoupled into multiple mixed platoons with individual CAV leads. The mixed

platoon model will be introduced in Section 4.3.1, followed by the proposed signal-

vehicle coupled control algorithm that is based on the concept of mixed platoons.

The control algorithm follows a hierarchical architecture, where the upper layer is

the traffic SPAT controller (see Section 4.3.2) and the lower layer is the speed tra-

jectories controller of CAVs (while the HDVs are indirectly controlled). The two

layers are respectively presented in Section 4.3.2 and Section 4.3.3. The overall

control scheme is sketched in Fig. 4.3. The upper-level is designed to find the op-

timal light duration for the next phase T q∗, the number of mixed platoons allowed

to cross the intersection within the phase lq∗
j and the target equilibrium speed (i.e.,

crossing speed) of the mixed platoons vq∗
j in terms of maximizing the intersection

throughput. Note that a single vq∗
j is used for all crossing platoons to avoid rear-end

collision between platoons. Then, at the lower-level, the optimal speed trajectories

of each CAV are determined according to T q∗, lq∗
j , vq∗

j obtained at the upper-level

so as to minimize the control effort of all each mixed platoon.

Before the introduction of the upper-level SPAT optimization, some prelimi-

naries are introduced first. Let us consider J1 = { j | Iq
j = 1,∀q ∈ 2N+ 1} and

J2 = { j | Iq
j = 0, ,∀q ∈ 2N+2} with J = J1∪J2. Without loss of generality,

in the rest of Section 4.3 we assume q ∈ 2N+ 1 in the proposed method, although

the method can be easily applied to q ∈ 2N+2. Let the set V q represent the set of

all vehicles inside the ComZ at t = tq, then V q = ∪ j∈J V q
j where V q

j collects the

vehicles in direction j. The set V q
j , ∀ j ∈J1 is formed by the remaining vehicles

Ṽ q
j after the last green phase t ∈ (tq−2, tq−1],∀q≥ 2 and the vehicles V̄ q

j arriving at
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the ComZ during the subsequent red phase t ∈ (tq−1, tq]. Note that Ṽ 1
j , j ∈J1 rep-

resents the vehicles in the ComZ at t = t0 that is predefined. With reference to the

1+N mixed platoon model, V̄ q
j can be decomposed into multiple CAV-led mixed

platoons and some HDVs ahead of the first CAV, such that V̄ q
j = H q

j ∪l∈L̄ q
j
Pq

l, j,

where H q
j is the set of HDVs ahead of the first CAV in V̄ q

j and H q
j = /0 if the first

element in V̄ q
j is a CAV, Pq

l, j = {1,2, . . . , |P
q
l, j|} the set of lth mixed platoon ve-

hicles in V̄ q
j and L̄ q

j = {1,2, · · · l̄q
j} is the set of mixed platoons with the maximum

platoon number denoted by l̄q
j . By combining the uncontrollable HDVs H q

j with

the awaiting vehicles Ṽ q
j and letting Pq

0, j = H q
j ∪ Ṽ q

j , we have V q
j = ∪l∈L q

j
Pq

l, j

with L q
j = 0∪ L̄ q

j . Finally, V j,∀ j ∈J2 only collects the residual vehicles after

the green phase t ∈ (tq−1, tq], thus Pq
0, j = V j,∀ j ∈J2. For ease of notation, one

sets nq
l, j = |P

q
l, j| that is the number of vehicles involved in a platoon Pq

l, j.

Traffic SPAT Optimization (upper-level) 

Target 
speed

No. of 
platoons 
to cross

Signal 
duration

Communication ZoneControl ZoneMerging Zone RSU

Speed Trajectory Optimization (lower-level)

Platoons follow IDM and stop 
at the intersection

if platoon can 
cross within 𝑞th

signal phase

Yes NoCAV model 

Mixed platoon system 

HDV model 
(IDM)

Vehicle Modeling framework

Incoming and queueing platoons 
Information, 𝒫!,#

$ , 𝜏!,#
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$

Traffic Information

Solve 𝑂𝐶𝑃!
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Figure 4.3: The scheme of the hierarchical mixed platoon control framework with traffic
SPAT optimization and speed trajectory optimization for the signalized mixed
intersection problem sketched in Fig. 4.1. CAVs and HDVs are represented by
green and red vehicles, respectively. The optimization problems in upper and
lower level are formulated in (4.22) and (4.33), respectively. Note that HDVs
are not controlled and they always follow IDM with vd = vmax (4.3).

4.3.1 Modeling of a mixed platoon system

The following assumption is invoked to model the mixed platoon system.

Assumption 4.4. The motion of the HDVs can be characterized by the IDM car-

following model.

By organizing vehicles into mixed platoons, lane-changing and overtaking
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behaviors can be reasonably restricted, allowing these maneuvers to be specif-

ically managed within designated lane-changing zones, as discussed in the fol-

lowing chapters. Such formulation can be supported by many of the existing

works [24, 25, 114, 188].

For the sake of further analysis, let us denote pq
l,i, j(t), vq

l,i, j(t) and aq
l,i, j(t)

respectively the (front-end) position, velocity and acceleration of the ith vehicle

within the lth mixed platoon approaching from the direction j during qth signal

phase. In particular, pq
l,i, j = 0 refers to the entry point of the ComZ. Under As-

sumption 4.4, the acceleration of each HDV follows the equation (3.8), which can

be expressed as

ȧq
l,i, j(t) = F

(
sq

l,i, j(t), ṡ
q
l,i, j(t),v

q
l,i, j(t)

)
. (4.3)

where F
(

sq
l,i, j(t), ṡ

q
l,i, j(t),v

q
l,i, j(t)

)
is a nonlinear function of the following dis-

tance sq
l,i, j(t)= pq

l,i−1, j(t)− pq
l,i, j(t) and the velocity difference ṡq

l,i, j(t)=vq
l,i−1, j(t)−

vq
l,i, j(t) between the preceding vehicle i−1 and the vehicle i. amax is the maximum

vehicle acceleration, δ is the acceleration exponent, and vd is the desired constant

following velocity of an individual HDV. In the present chapter, δ = 4 and vd = vmax

are utilized, which are common choices in the literature to represent realistic driv-

ing behavior [68]. s0 the standstill spacing between consecutive vehicles, ab the

comfortable deceleration of each HDV, and T0 the safe time headway.

It is worth remembering that HDVs are not controllable. Conversely, CAVs

are fully controllable, and their longitudinal motion is modeled by a commonly

used third-order model [189]:
ṗq

l,1, j(t) = vq
l,1, j(t) ,

v̇q
l,1, j(t) = aq

l,1, j(t),

ȧq
l,1, j(t) =

1
τ

q
l, j

uq
l, j(t)−

1
τ

q
l, j

aq
l,1, j(t)

(4.4)

where τ
q
l, j and uq

l, j(t) are the inertial time-lag and the control input of the lth platoon

leading CAVs in approach j of the qth phase, respectively. As it can be noticed, the

heterogeneity of CAVs can be taken into account by τ
q
l, j, which can be shared with
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the IC when the CAV enters the ComZ.

Considering vq∗
j the equilibrium speed of the mixed platoon and sq∗

j the equi-

librium following distance, it holds that

v̇q
l,i, j = F

(
sq∗

j ,0,vq∗
j

)
= 0. (4.5)

By introducing the error variables s̃q
l,i, j(t)=sq

l,i, j(t)−sq∗
j and ṽq

l,i, j(t)=vq
l,i, j(t)−vq∗

j ,

the IDM model for an HDV (4.3)-(3.8) can be linearized around the equilibrium

point, leading to ˙̃sq
l,i, j(t) = ṽq

l,i−1, j(t)− ṽq
l,i, j(t),

˙̃vq
l,i, j(t) = α1s̃q

l,i, j(t)−α2ṽq
l,i, j(t)+α3ṽq

l,i−1, j(t)
(4.6)

where α1=
∂F

∂ sq
l,i, j

,α2=
∂F

∂ ṡq
l,i, j
− ∂F

∂vq
l,i, j

,α3=
∂F

∂ ṡq
l,i, j

evaluated at the equilibrium state

(vq∗
j ,sq∗

j ).

Consider an arbitrary mixed platoon Pq
l, j (which involves nq

l, j− 1 HDV fol-

lowers by definition). By combining the system equations (4.4) and (4.6) for all nq
l, j

vehicles within the mixed platoon, the mixed platoon system can be recast into a

single state-space model:

ẋq
l, j(t) = Aq

l, jx
q
l, j(t)+Bq

l, ju
q
l, j(t) (4.7)

where the aggregated state and input vectors are

xq
l, j(t) =

[
pq

l,1, j(t), vq
l,1, j(t), aq

l,1, j(t), s̃q
l,2, j(t), ṽ

q
l,2, j(t),

s̃q
l,3, j(t), ṽ

q
l,3, j(t), . . . , s̃q

l,nq
l, j−1, j(t), ṽ

q
l,nq

l, j−1, j(t)
]⊤
∈ R2nq

l, j+1. (4.8)
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and Aq
l, j∈R

(2nq
l, j+1)×(2nq

l, j+1) and Bq
l, j ∈ R(2nq

l, j+1) are given as follows

Aq
l, j =



Al,1 0 . . . . . . 0 0

H2 H1 0 . . . . . . 0

0 H2 H1 0 . . . 0
... . . . . . . . . . . . . ...

0 . . . 0 H2 H1 0

0 . . . . . . 0 H2 H1


, (4.9)

Bq
l, j =

[
0 0

1
τl, j

0 0 . . . 0
]⊤

, (4.10)

with

Al,1=


0 1 0

0 0 1

0 0 − 1
τl, j

 ,H1=

 0 −1

α1 −α2

 ,H2=

0 1

0 α3

 . (4.11)

The controllability of the mixed platoon system (4.7) is characterized by the follow-

ing Lemma [114].

Lemma 4.1. The 1+N mixed platoon system is controllable when the following

condition holds

α1−α2α3 +α
2
3 ̸= 0 (4.12)

4.3.2 Traffic SPAT planner

In the SPAT optimization, vehicles belonging to Pq
0, j are assumed static, and it

yields a queue of nq
0, j vehicles ahead of the l̄q

j platoons. In the following, we denote

by λ
q
l,i, j the length of the ith vehicle in Pq

l, j. The objective of the SPAT optimization

is to minimize the total waiting time of all vehicles. The waiting time T wait
l, j of a

vehicle in the lth mixed platoon to enter the MZ can be evaluated for all l ∈L q
j by:

T q,wait
l, j =

 T q∗− T̂ q,stop
l, j , if j ∈J2,

β
q
l, j(T

q∗+ T̂ q+1− T̂ q,stop
l, j ), if j ∈J1,

(4.13)
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where T̂ q,stop
l, j is the minimum time required for lth platoon to reach the stop line

T̂ q,stop
l, j =

LComZ− pq
l,1, j(t

q)

vmax

The elimination of T̂ q,stop
l, j is motivated by the fact that the initial distance to the stop

line of a platoon is an indispensable part of the mission regardless of the crossing

decision. In addition, β
q
l, j is a binary indicator given by

β
q
l, j =

 0, if l ≤ lq∗
j ,

1, if l > lq∗
j ,

(4.14)

where β
q
l, j=0 represents platoon l can complete the intersection crossing during the

qth green signal light phase. Conversely, β
q
l, j =1 is the case that the platoon cannot

pass through the intersection within the current phase and has to wait for another

red phase T q+1. T̂ q+1 is the estimate of T q+1, and is approximated by the prior red

light duration time, T̂ q+1 = T q−1, when evaluating the waiting time in the SPAT

optimization (4.22), which is compatible with the traffic flow that does not change

suddenly.

To determine the number of vehicles that can pass through the intersection, the

queue discharge time at the intersection needs to be estimated. The initial distance

(at t = tq) from the rear end of the last vehicle in the queue Pq
0, j to the exit of the

MZ is defined as Dq
0, j, which is calculated by

Dq
0, j = LMZ +

nq
0, j

∑
i=1

(
λ

q
0,i, j + s0

)
− s0 (4.15)

For computational efficiency of the prediction, when the traffic signal turns to green

indication, we simply assume that all the vehicles in the queue follow a constant

acceleration ad (ad ≤ amax) until vmax is reached, where vmax is the maximum speed

limit. Being ad a tuneable parameter, it is possible to design a suitable ad to ensure

safety and comfort [190]. In this context, the time required for the last vehicle in
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the queue to leave the MZ can be estimated by:

Tnq
j
=



nq
0, j

∑
i=1

κ
q
0,i, j +

√
2adDq

0, j

ad
if Dq

0, j ≤
v2

max
2ad

nq
0, j

∑
i=1

κ
q
0,i, j +

vmax

ad
+

Dq
0, j−

v2
max

2ad

vmax
otherwise

(4.16)

where κ
q
0,i, j represents the anticipated response delay of a human driver. Therefore,

κ
q
0,i, j = κ0 when the queueing vehicle i is an HDV and κ

q
0,i, j = 0 in the case of a

CAV, with κ0 ∈ R>0 being a tunable parameter.

To ensure that the first mixed platoon Pq
1, j, j ∈J1 does not (rear-end) collide

with the last vehicle in the discharge queue and to maximize the traveling speed of

all platoons, the target crossing speed vq∗
j of the first platoon is set to

vq∗
j = min

(
vmax,

LComZ+LMZ−pq
1,1, j(t

q)

Tnq
j

)
(4.17)

which is then utilized for all platoons allowed to cross during the qth phase for

safety consideration as the movement of the remaining platoons is constrained by

the first one. The length of the lth mixed platoon, Dq
l, j, at steady state with target

velocity vq∗
j can be determined by

Dq
l, j =

nq
l, j

∑
i=1

(
λ

q
l,i, j + sq∗

j

)
(4.18)

where the steady state headway sq∗
j can be expressed as a function of vq∗

j owing to

(4.5), as given by:

sq∗
j =

s0 + vq∗
j T0√

1−
(

vq∗
j /vmax

)4
. (4.19)

The SPAT optimization aims to find the optimal signal phase T q∗ that allows a

certain number of mixed platoons lq∗
j , j ∈J1 to cross the intersection. To this end,

let us define T q
min,l, j the minimum time required for the entire lth platoon to pass the
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intersection. It can be represented as a function of vq∗
j , as follows:

T q
min,l, j =


Tnq

j
, l = 0

LComZ +LMZ− pq
l,1, j +Dq

l, j

vq∗
j

, l ∈ L̄ q
j

(4.20)

where j ∈J1. It is evident that a platoon l can cross the intersection if T q
min,l, j ≤

Tmax. For the sake of further discussion, consider L q
j, f = {l | T

q
min,l, j ≤ Tmax, j ∈

J1} ⊂ N the feasible set of platoons that could potentially cross the intersec-

tion within the upcoming green phase. Furthermore, given the optimal number

of platoons that are allowed to cross the intersection in both green phase directions,

lq∗
j , j ∈J1 and the resulting T q∗

min,l, j by (4.20), the optimal signal phase duration is

defined by

T q∗ = max
j∈J1

(T q∗
min,l, j) (4.21)

We now have all ingredients to formulate the upper-level SPAT optimization, which

has now been reduced to find the optimal number of crossing platoons lq∗
j , j ∈J1

so as to minimize the total waiting time of all vehicles approaching from the four

directions for each traffic signal cycle. This leads to an integer programming prob-

lem:

OC Pq
1 : min

lq∗
j ∈L

q
j, f

∑
j∈J

∑
l∈L q

j

nq
l, jT

q,wait
l, j (4.22)

where T q,wait
l, j can be determined by (4.13)-(4.21) utlizing T q∗ determined by (4.21).

The minimum solution of problem OC Pq
1 can be found by searching over the space

L q
j, f .

Remark 4.1. The optimization problem (4.22) may be infeasible if there does not

exist a T q∗ (following (4.21)) that satisfies the constraint [0,Tmax] (e.g., the initial

waiting queue Pq
0, j is extremely long, which implies heavy traffic). In such a cir-

cumstance, the optimal phase duration follows T q∗ = Tmax.
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4.3.3 Speed trajectory controller

Given the optimal vq∗
j , T q∗, lq∗

j determined at the upper-level, the aim of the speed

trajectory planning at the lower level is to ensure that the vehicles in Pq
l, j can ef-

ficiently form a mixed platoon at the steady state velocity vq∗
j and complete the

intersection crossing within the time duration T q∗ of the green signal light phase if

l ≤ lq∗
j or otherwise stop properly.

Let us first focus on the platoons l ≤ lq∗
j that are permitted to cross within the

qth signal phase. According to Assumption 4.3, the optimal decisions vq∗
j , T q∗, lq∗

j

are not available when a mixed platoon Pq
l, j enters the ComZ. To facilitate the

platoon control inside the CZ, the IC will suggest each leading CAV of a platoon

that has not yet entered the CZ a target velocity, v̂q∗
l, j, and the movement of those

CAVs will be governed by IDM as with uncontrolled HDVs.

With the aim of maximizing the throughput and avoiding rear-end collisions,

v̂q∗
l, j,∀l ∈ L̄ q

j is calculated by:

v̂q∗
l, j = min

(
vmax,

LComZ+LMZ

t̂q
l, j− t̃q

l, j

)
(4.23)

where t̃q
l, j is the ComZ entering time of the platoon Pq

l, j and t̂q
l, j is the estimated

arriving time of the lead vehicle of the lth platoon at the exit point of the MZ. t̂q
l, j is

estimated by

t̂q
l, j =

 tq + T̂0,nq
j
, l = 1

t̂q
l−1, j + T̂l−1,nq

j
, l ∈ L̄ q

j \1
(4.24)

where T̂l−1,nq
j

is the estimated discharging time required for the (l− 1)th platoon,

which is determined as follows:

T̂l−1,nq
j
=


Tnq

j
, l = 1,

nq
l−1, j

∑
i=1

(
λ

q
l−1,i, j + ŝq∗

l−1, j

)
− ŝq∗

l−1, j

v̂q∗
l−1, j

, otherwise,

(4.25)

where Tnq
j

is the queue discharging time defined in (4.16), ŝq∗
l, j is the steady state
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headway associated with v̂q∗
l, j, determined by (4.19). In view of (4.23)-(4.25), given

Tnq
j
, then T̂l−1,nq

j
, t̂q

l, j and v̂q∗
l, j can be recursively determined for each l.

For every platoon entering the CZ, the IC optimizes its trajectory by solving

an individual OCP (for the speed trajectory optimization) based on vq∗
j , T q∗ and lq∗

j

from the upper layer obtained at tq. Consider t̄q
l, j the CZ entering time of the platoon

Pq
l, j. For the sake of further discussion, let us denote L̃ q

j = {l|t̄q
l, j ≥ tq} the index

of platoons that can be informed of the target speed vq∗
j and the signal phase T q by

the upper-level SPAT planner upon arrival at the CZ. Then, L̄ q
j \L̃

q
j represents the

platoons which enter the CZ before tq, and therefore can not be informed. In this

framework, the lower-level speed trajectory optimization is activated at t = t̄q
l, j for

l ∈ L̃ q
j , while for l ∈ L̄ q

j \L̃
q
j , it is triggered at t = tq, and for t ∈ [t̄q

l, j, t
q) (when

the mixed platoon is in the CZ but the results of upper-level optimization are not

available), the leading CAV of each of those platoons will continue following the

IDM with the target speed specified in (4.23). Before introducing the OCP for speed

optimization, let us define the coordination constraints.

To avoid rear-end collisions between vehicles in a platoon, and the lead ve-

hicle of the lth platoon and the last vehicle in its preceding platoon, the following

collision avoidance constraints are enforced, respectively:

s̃q
l,i, j(t)+ sq∗

j ≥ s0 + vq
l,i, j(t)T0 (4.26)

pq
l,1, j (t)≤ pq

l−1,nq
l−1, j, j

(t)− (s0 + vq
l,1, j(t)T0),∀l ∈ L̄ q

j (4.27)

Moreover, for safety purposes, the velocity of any vehicles and the control input of

the leading CAV of any platoon are constrained by:

0 < vq
l,1, j ≤ vmax, (4.28a)

amin ≤ aq
l,1, j ≤ amax, (4.28b)

0 < ṽl,i, j(t)+ vq∗
j ≤ vmax, i ∈Pq

l, j\1 (4.28c)

umin ≤ uq
l, j(t)≤ umax, (4.28d)
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where umin and umax are the minimum and maximum CAV control input, respec-

tively.

To ensure that the full body length of the last vehicle in a platoon (that is

allowed to cross) can leave the MZ within the green phase, the following constraint

is also required:

LComZ +LMZ− p̄q
l,nq

l, j, j
+λ

q
l,nq

l, j, j
≤ dq

l,nq
l, j, j

(4.29)

where p̄q
l,nq

l, j, j
is the position of the last vehicle in Pq

l, j when the speed optimization

is triggered

p̄q
l,nq

l, j, j
=


pq

l,nq
l, j, j

(t̄q
l, j), l ∈ L̃ q

j

pq
l,nq

l, j, j
(tq), l ∈ L̄ q

j \L̃
q
j

p̄q
l,nq

l, j, j
is available to the IC by vehicular communication if the vehicle is connected

(CAVs and connected HDVs) or by prediction through IDM refer to Assumption 4.4

(unconnected HDVs). dq
l,nq

l, j, j
is the total distance traveled by the last car in the

platoon during the entire time horizon of the optimization, that is [t̄q
l, j, tq

f ,l, j] for

l ∈ L̃ q
j and [tq, tq

f ,l, j] for l ∈ L̄ q
j \L̃

q
j with tq

f ,l, j the terminal (MZ exit) time of the

lth platoon in jth direction and qth phase. Instead of enforcing a prescribed terminal

time, which might be restrictive, in this work, a time slot for a platoon to leave the

MZ is assigned (i.e., a constraint for the terminal time):

 tq
f ,l, j ∈ [max(t̂q

l, j, t
q +Tnq

j
),min(¯̂tq

l, j, t
q +T q∗)], l = 1

tq
f ,l, j ∈ [max(t̂q

l, j, t
q∗
f ,l−1, j),min(¯̂tq

l, j, t
q +T q∗)], l > 1

(4.30)

where tq∗
f ,l, j is the optimal terminal time for lth platoon and

t̂q
l, j=


LComZ +LMZ− p̄q

l,nq
l, j, j

+λ
q
l,nq

l, j, j

vmax
+ t̄q

l, j, l ∈ L̃ q
j

LComZ +LMZ− p̄q
l,nq

l, j, j
+λ

q
l,nq

l, j, j

vmax
+ tq, l ∈ L̄ q

j \L̃
q
j

(4.31)
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¯̂tq
l, j=



LComZ +LMZ− p̄q
l,nq

l, j, j
+λ

q
l,nq

l, j, j

min(vq∗
j , v̂q∗

l, j)
+ t̄q

l, j, l ∈ L̃ q
j

LComZ +LMZ− p̄q
l,nq

l, j, j
+λ

q
l,nq

l, j, j

min(vq∗
j , v̂q∗

l, j)
+ tq, l ∈ L̄ q

j \L̃
q
j

(4.32)

Note that consideration of tq +Tnq
j
, tq∗

f ,l, j and tq +T q∗ can prevent overlaps between

time slots and late MZ exit time (> tq +T q∗), which may lead to infeasibility.

Now, we can formulate the OCP to optimize the trajectory of a platoon Pq
l, j.

The problem is given by

OC Pq
2 : min

uq
l, j,t

q
f ,l, j

W1∥uq
l, j(t)∥+W2∥vq

l, j(t)− vq∗
j ∥

+W3∥sq
l, j(t)− sq∗

j ∥, (4.33a)

s.t. (4.7)− (4.11), (4.24)− (4.32) (4.33b)

given: x̄q
l, j,v

q∗
j ,Sq

j ,P
q
l, j (4.33c)

where uq
l, j(t) is the control input of the leading CAV in the mixed platoon Pq

l, j,

vq
l, j(t) = [vq

l,1, j,v
q
l,2, j, ...,v

q
l,nq

l, j, j
]⊤ ∈ Rnq

l, j and sq
l, j(t) = [sq

l,2, j,s
q
l,3, j, ...,s

q
l,nq

l, j, j
]⊤ ∈

Rnq
l, j−1 are stacked vectors of the velocity and inter-vehicle distance of each ve-

hicle in the platoon Pq
l, j respectively. x̄q

l, j is the initial condition of the platoon

system (4.7), expressed as:

x̄q
l, j =

 xq
l, j(t̄

q
l, j), l ∈ L̃ q

j

xq
l, j(t

q), l ∈ L̄ q
j \L̃

q
j

The objective function in (4.33a) is designed to minimize the control effort (which

is loosely related to the energy consumption) and the deviations from the target

speed vq∗
j and headway distance sq∗

j so that the platoon is formed. W1, W2 and W3

are the weighting coefficients respective for the three objectives. The optimization

problem (4.33) involves quadratic cost function and linear constants and can be

solved efficiently by standard convex optimization tools.

During [tq−1, tq+1], the platoons arriving at the ComZ after the lq∗
j th platoon
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are not permitted to cross the intersection within the qth signal phase. Conversely,

they will form the waiting queue, Pq+2
0, j , for the (q + 2)th signal phase. In the

proposed framework, these vehicles will be informed of the decision (at t = tq for

platoons arriving at the ComZ before t = tq or upon arrival at the ComZ), and they

will follow the IDM model subject to a desired velocity vd to form the queue. In the

proposed framework, vd is set to vmax (as with the HDV model (3.8)) to conforms

with the assumption – the queue Pq
0, j is static – imposed in the upper layer SPAT

planner at the price of potentially increasing energy usage. Further optimal design

of vd corresponds to another optimization problem, which is beyond the scope of

the present article. For instance, to avoid stops at the red light, vd can be optimized

by taking into account the present green and upcoming red phases (see, for example,

[114]). Nevertheless, this could lead to an extremely small target velocity, thereby

reducing the inflow speed at the intersection, and such a slow speed may not be

preferred by human drivers.

Remark 4.2. OC Pq
2 may be infeasible due to the bi-level optimization structure.

For example, the lq∗
j th platoon can not fully cross the intersection by the end of

the green phase. To deal with this limitation, the first platoon that can not yield

a feasible solution of OC Pq
2 will be truncated by dropping the last HDV and re-

solving OC Pq
2. This will be repeated recursively until a feasible solution is found,

and the truncated vehicles and platoons after that will be added to Pq+2
0, j .

4.4 Simulation Validation
In this section, the performance of the proposed control framework is evaluated

and compared with a recently proposed coupled vehicle-signal control (CVSC)

method [23] and two traditional benchmark methods in terms of traffic throughput

and energy economy. In contrast to the proposed signal-vehicle co-control method,

the two benchmark methods involve either SPAT or vehicle speed optimization only

whereas the other layer in both methods is pre-defined, respectively. The two meth-

ods are defined below in Section 4.4.1 followed by the introduction of the energy

consumption model and the simulation environment. The impact of EV penetra-
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tion rate on energy consumption is also studied. In addition, the impacts of traffic

volume distribution across the perpendicular directions (i.e., either the same or dif-

ferent arrival rates of the horizontal directions from the vertical directions) and CAV

penetration rate on the traffic energy economy and throughput are investigated. The

robustness of the proposed method is also validated by introducing uncertainties to

the mixed platoons.

4.4.1 Benchmark algorithms and comparison metrics

Fixed SPAT and Speed Optimization (F-SPAT) This benchmark method finds

the optimal velocity trajectories of all vehicles by following the proposed lower-

layer optimal control scheme (4.33) subject to a fixed (non-optimized) SPAT policy.

Herein, the fixed SPAT follows a constant time duration for all signal phases, which

is set to Tmax/2, the middle value of the time duration limits of a signal indication.

Optimized SPAT and IDM (O-SPAT) This method adopts the SPAT optimization

algorithm (4.22) to find an optimized SPAT. However, the vehicle speed trajectories

are not optimized. Instead, both CAVs and HDVs follow the IDM car-following

model (3.8) with vd = vmax.

To fairly compare the eco-driving performance of all algorithms, the fuel con-

sumption model developed in [191] is utilized for post-evaluation of the resulting

traditional vehicles’ energy usage of the speed trajectories in all algorithms. Con-

sidering a vehicle i in platoon Pq
l, j, the fuel consumption rate of this vehicle φ

q
l,i, j

(in milliliters per second) can be estimated by

φ
q
l,i, j = b0 +b1vq

l,i, j +b2(v
q
l,i, j)

2 +b3(v
q
l,i, j)

3 + â
(

c0 + c1vq
l,i, j + c2(v

q
l,i, j)

2
)

(4.34)

where â is the estimated “total” acceleration required by each vehicle to follow

the specified speed trajectory, which includes the actual vehicle acceleration aq
l,i, j

and the “acceleration” required to counterbalance friction forces due to the air

drag and tire rolling resistances. Therefore, â = aq
l,i, j +

1
2mCDρaAV (v

q
l,i, j)

2 + µg,

where m is the vehicle mass, AV is the vehicle frontal area, ρa is the air density,

CD and µ are air drag and tire rolling resistance coefficients, respectively. Note
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that the parameters AV ,CD,µ, m are fixed (that represents a general-purpose car,

see Table 4.1) in the post-evaluation for simplicity. The fitting parameters in (4.35),

(4.34) are b0 = 0.1569, b1 = 2.450×10−2,b2 =−7.415×10−4,b3 = 5.975×10−5,

c0 = 0.07224,c1 = 9.681×10−2, and c2 = 1.075×10−3, which are obtained by fit-

ting the map of a 1.3L engine [191].

To study the influence EV penetration rate on the energy efficiency, the com-

monly used energy consumption (in watt) model for an electric drive is introduced:

φ
q
l,i, j = e1mvq

l,i, ja
q
l,i, j + e2(maq

l,i, j)
2 (4.35)

where e1 = 1.052×10−3,e2 = 4.458×10−7 are obtained by fitting the experimental

data [192].

Eventually, the fuel/energy consumption of an individual vehicle is calculated

by

Φ
q
l,i, j==

∫
T q

l,i, j

φ
q
l,i, jdt, (4.36)

where T q
l,i, j is the time duration required by the vehicle to leave the MZ from the

entry point of the ComZ, available once each vehicle leaves the MZ. By introducing

the calorific value of the gasoline C f , the fuel consumption (in milliliters) can be

transformed into energy consumption (in KJ) for a fair comparison.

Without loss of generality, the control problem is initialized with randomized

ComZ arrival conditions (time and speed for each vehicle), vehicle lengths and the

inertial time-lags (only for CAVs, see (4.4)) in the following case studies. In par-

ticular, the inertial time-lags and the vehicle lengths are generated within suitable

sets (see Table 4.1), which can represent internal combustion engine vehicles with

similar car dimensions so that the two parameters are compatible with the fuel con-

sumption model (4.34) and its overall parameter choices. Moreover, the arrival

(initial) speeds of the vehicles follow a uniform distribution within (0,vmax], while

their arrival times follow a Poisson distribution. Finally, the vehicle and intersection

parameters are summarized in Table 4.1, and all simulation case studies are carried

out in the Matlab environment.
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Table 4.1: Vehicle and intersection parameters

symbol value description
m 1200 kg vehicle mass
T0 0.5 s safe time headway
s0 1 m standstill distance
λ

q
l,i, j [4 m, 5 m] car length

∆t 0.1 s sampling time interval for vehicle
Ts 1 s sampling time interval for IC
LCZ 300 m length of control zone
LComZ 750 m length of communication zone
LMZ 10 m length of merging zone
Tmax 50 s upper time limit of a signal light phase
vmax 15 m/s maximum velocity
amin/amax −6/4 m/s2 maximum deceleration and acceleration
ad 3m/s2 acceleration of the discharging queue
ab −2m/s2 comfortable deceleration
τ

q
l,i, j [0.4, 0.7] CAV inertial time-lag

AV 2.5m2 vehicle frontal area
ρa 1.184kg air density
Cd 0.32 air drag coefficient
C f 34.5 kJ/mL calorific value of the gasoline
µ 0.015 tire rolling resistance coefficient
κ0 0.7 s response delay of a human driver
W1 1000 Weighting parameter of OC Pq

2
W2,W3 10 Weighting parameter of OC Pq

2

4.4.2 Simulation Results

In the first instance, the proposed SPAT and vehicle co-control method is simulated

in a scenario where the vehicle arrival rate in each direction (lane) is 1000 veh/h/lane

(vehicles per hour per lane) with an overall penetration rate of CAV of 50%. The

position trajectories of all vehicles (from the entry point of the CZ to the exit of the

MZ) and the phases of the traffic signals are shown in Fig. 4.4. Note that for clarity

of the figure, only two perpendicular approaches are shown here.

As it can be seen, there are no rear-end (the position trajectories do not intersect

each other) and lateral collisions (vehicles from the two perpendicular directions do

not appear in the MZ at the same time) and all vehicles follow the traffic lights,

which verifies the feasibility of the proposed approach. Additionally, considering

that all vehicles are conventional, the resulting intersection vehicle throughput and
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Figure 4.4: Traffic SPAT and vehicle position trajectories (from the entry point of the CZ
at 450 m to the exit of MZ at 760 m, note that the entry of the MZ is at 750
m) for 200 s solved by the proposed methodology subject to a CAV penetration
rate of 50% and a balanced traffic volume of 1000 veh/h across all lanes. The
trajectories of HDVs are denoted by dashed lines, and the trajectories of CAVs
are represented by solid lines. Only two perpendicular lanes, NS refers to the
direction from north-to-south, and EW is the direction from east-to-west, are
shown for clarity of the figure.

average vehicle fuel consumption of the proposed method are compared with the

results of the baseline approaches. As shown in Table 4.2, an increase of 7.92% in

the traffic throughput of intersections compared to the F-SPAT, while the proposed

method achieves a similar result to O-SPAT and CVSC. The results imply that the

throughput mainly depends on the signal control.

Table 4.2: Vehicle throughput and average fuel usage comparison between the proposed
method and the benchmark methods for a 200 s simulation trial.

Vehicle throughput [veh] Average fuel usage [mL]
Proposed 218 64.596
F-SPAT 202 68.558
O-SPAT 218 72.663
CVSC 218 68.691

The comparative results also show a reduction in average fuel consumption

of 12.49%, 6.13% and 6.34% when comparing the proposed method with F-SPAT,

O-SPAT and CVSC, respectively. It can be understood that the speed optimization

of CAVs plays a more critical role than the SPAT optimization in terms of fuel

economy. In contrast to CVSC in [23], where speed profiles are determined by

empirical rules, the proposed optimization of the speed trajectory can lead to more
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Figure 4.5: Intersection traffic throughput and average fuel consumption of the proposed
and benchmark methods under balanced and unbalanced traffic volume across
the lanes subject to a CAV penetration rate of 60%. Top two: balanced cases.
Bottom two: unbalanced across a pair of perpendicular lanes with an aggre-
gated arrival rate of 2000 veh/h. The opposite directions have the same traffic
volume.
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energy efficiency results without sacrificing traffic efficiency.

To examine the influence of traffic volume (arrival rate), we further compare

the proposed approach with the three baseline algorithms under various scenarios,

considering both balanced and unbalanced arrival rates across all lanes. Without

loss of generality, the CAV penetration rate is set to 60%. The two top figures in

Fig. 4.5 present the control solutions for three methods with a balanced arrival rate

in all directions. The three methods exhibit comparable performance when deal-

ing with a low traffic volume case, 400 veh/h/lane. As traffic volume increases,

the proposed method, CVSC [23] and O-SPAT can result in better throughput com-

pared to F-SPAT, and the maximum benefit of 8.65% is achieved at 1170 veh/h/lane.

In addition, the proposed method costs the least fuel due to joint control of the

SPAT and the vehicle speed trajectory. As traffic volume increases, the proposed

method shows an improved energy efficiency compared to O-SPAT, and the benefit

is maximized at 12.65% when the arrival rate reaches 1170 veh/h/lane. Compared

to CVSC, the proposed method can achieve a maximum improvement of 8.67% in

fuel consumption. Although the fuel savings of the proposed method are not as high

when compared to F-SPAT, it remains the best for all arrival rates.

The unbalanced cases are illustrated at the bottom of Fig. 4.5. The aggregated

arrival rates of any two perpendicular approaches are fixed at 2000 veh/h whereas

the arrival rates for any two opposite directions are identical. It is important to

highlight that only F-SPAT and the CVSC are depicted for comparison, whereas

O-SPAT can attain comparable throughput to the proposed method; however, its

energy efficiency is significantly compromised, as observed in the top two plots in

Fig. 4.5 and Table 4.2. The proposed method results in a traffic throughput per-

formance comparable to that of the CVSC method while showing a significant im-

provement compared to F-SPAT. The improvement of the proposed method in terms

of throughput becomes more pronounced as the level of imbalance intensifies. In

particular, in the scenario with a volume distribution of 400/1600 veh/h/lane, the

benefit amounts to 14.10%, which is significantly higher than the 7.12% achieved

in the case of 1000/1000 veh/h/lane. Regarding fuel consumption, a similar con-



4.4. Simulation Validation 76

clusion can be drawn based on the results compared to F-SPAT and CVSC, where

maximum improvements of 8. 33% and 7.22% are observed, respectively, when the

volume distribution follows 400/1600 veh/h/lane.

Fig. 4.6 presents a speed comparison between the proposed method and the

other three benchmark algorithms. The balanced case is shown on the left, where

the CAV penetration rate is set to 60%. The proposed algorithm can lead to a higher

average speed compared to the other three methods in all cases.

In the balanced case, F-SPAT can outperform O-SPAT when the volume is

low, but as the volume of traffic increases, the performance of F-SPAT degrades

and becomes the least-performing method. The proposed method and CVSC [23]

can outperform both F-SPAT and O-SPAT for all traffic volumes, while the fastest

average speed is always achieved by the proposed method. More specifically, the

proposed method shows an improved average speed compared to O-SPAT, which

is maximized at 2.95% when the arrival rate reaches 1080 veh/h/lane. Compared

to CVSC, the proposed method can achieve a maximum improvement of 2.20% in

average speed.

The unbalanced case is illustrated on the right. The proposed method results

in slightly faster average speed performance compared to the other three methods

when the level of imbalance is low. The improvement of the proposed method

in terms of average speed becomes more significant as the level of imbalance

increases. In particular, in the scenario with a volume distribution of 400/1600

veh/h/lane, the benefit amounts to 6.55%, 4.71%, and 2.77% when compared with

the F-SPAT, the O-SPAT, and the CVSC method, respectively.

To assess how the adoption of EVs impacts the energy efficiency of the pro-

posed method, three different scenarios with 100%, 50%, and 0% EV penetration

rates are examined. For illustrative purposes, we base our analysis on a scenario

featuring an evenly distributed traffic volume of 1000 veh/h across all lanes, and a

CAV penetration rate of 60%. We subsequently evaluate energy consumption using

equations (4.34) to (4.36). It is noteworthy that in the 50% EV penetration scenario,

all EVs are also CAVs, as automation often coincides with electrification. As illus-
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Figure 4.6: Average speed of the proposed and benchmark methods under balanced and
unbalanced traffic volume across the lanes subject to a CAV penetration rate of
60%. Top: balanced cases. Bottom: unbalanced across a pair of perpendicular
lanes with an aggregated arrival rate of 2000 veh/h. The opposite directions
have the same traffic volume.

trated in Fig.4.7, an increase in the penetration of EVs leads to a substantial reduc-

tion in energy consumption. This is because of the improved efficiency of electric

drives and the occurrence of numerous stop-and-go situations at intersections.

In addition, the influence of the CAV penetration rate, ranging from 30% to

100%, on the energy consumption and vehicle throughput of the proposed method

is investigated under a fully electric environment. In this specific case, it is assumed

that the volume of vehicles is evenly distributed in all directions. As shown in the

left plot of Fig. 4.8, the traffic throughput is primarily influenced by traffic volume

rather than penetration rate. In principle, the throughput increases linearly as the

volume rises, but it peaks at about 1200 veh/h/lane, which represents the capacity

for the lane. As previously mentioned, the traffic throughput is heavily influenced

by SPAT control, which greatly relies on the knowledge of the vehicle location.
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Figure 4.7: The impact of EV penetration rate on the vehicle energy efficiency subject to a
1000 veh/h/lane traffic volume and a fixed 60% CAV penetration rate.

As uncertainties are not considered in the present work, the benefit of additional

automation may not be readily apparent, particularly when the traffic volume is low.

However, in high-traffic volume scenarios, an increased number of CAVs can have

a more positive impact on SPAT optimization, thereby improving traffic throughput.

The impact of the penetration rate on traffic throughput becomes most evident when

the traffic volume reaches 1000 veh/h/lane. With a penetration rate of 100%, traffic

throughput can be improved by 5.03% compared to the 30% case.

In contrast, the average electricity consumption, as presented in the right plot of

Fig. 4.8, can be reduced when the CAV penetration rises, given the same traffic vol-

ume. This reduction becomes slightly more pronounced with higher traffic volumes.

This can be understood as follows: 1) the energy cost is primarily influenced by op-

timizing speed trajectories, and as the penetration rate increases, more vehicles can

be precisely controlled, allowing for faster platoon formation, and therefore greater

energy savings; and 2) vehicle movement is less restrained by safety constraints in

low traffic volume cases, thereby fewer acceleration and deceleration during driv-

ing are required. The most apparent energy reduction caused by an increase in the

penetration rate occurs when the traffic volume is 1200 veh/h/lane, with a reduction

of 11.47%.

Finally, the robustness of the proposed method is also assessed. An input dis-
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Figure 4.8: Intersection traffic throughput and average electricity consumption of the pro-
posed method obtained under different CAV penetration rates and traffic vol-
umes.
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Figure 4.9: Traffic SPAT and vehicle position trajectories. The trajectories of HDVs are
denoted by dashed lines, and the trajectories of CAVs are represented by solid
lines. Only two perpendicular lanes, NS refers to the direction from north-to-
south, and EW is the direction from east-to-west, are shown for clarity of the
figure.

turbance is added to the mixed platoon model (4.7) to simulate the uncertainty of

HDVs. This disturbance follows a Gaussian distribution with zero mean and a vari-

ance of 0.01. Traffic SPAT and vehicle position trajectories (from the entry point

of the CZ at 450 m to the exit of MZ at 760 m) for 200 s solved by the proposed

methodology subject to a CAV penetration rate of 50% and a balanced traffic vol-

ume of 1000 veh/h across all lanes. As can be seen in Fig. 4.9, there are no rear-end

(the position trajectories do not intersect each other) and lateral collisions (vehicles

from the two perpendicular directions do not appear in the MZ at the same time),

and all vehicles follow the traffic lights, which shows the robustness of the proposed

approach.

4.5 CONCLUSIONS
Following the control framework in Fig. 1.4, this chapter introduces a two-layer in-

tersection signal-vehicle coupled coordination scheme for joint control of the inter-

section SPAT and speed trajectory of CAV and HDV for traffic management within

the car-following zone. The method is developed based on a CAV-led mixed pla-

toon model, where the motion of the HDVs is governed by a linearized intelligent

driver model. In addition to the SPAT, the target platoon velocity and the number

of passing platoons are continuously updated in the upper layer to minimize the

total waiting time. Subsequently, the intersection controller utilizes the SPAT infor-
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mation to conduct optimal control of the mixed platoon within the control zone by

manipulating the speed of the leading CAVs.

A comparative analysis is performed, contrasting the proposed method with

conventional approaches focusing solely on optimizing signal duration or vehicle

trajectory, as well as a recently proposed coupled vehicle-signal control method

[23]. Through these comparisons, the advantages of the proposed method are re-

vealed in terms of average fuel consumption and traffic throughput. The proposed

method improves throughput by 7.92% while achieving additional fuel savings of

5.97% compared to the method with optimized vehicle trajectories only. Further-

more, it reduces fuel consumption by 11.54% compared to the benchmark method,

which solely optimizes SPTA, and shows a reduction of 6.34% compared to a state-

of-the-art method [23] while maintaining a similar traffic throughput. The simu-

lation results also highlight the significant roles of SPAT control and vehicle tra-

jectory control in enhancing throughput and achieving energy savings, respectively.

The benefits of the proposed control solution are further amplified in the presence

of unbalanced traffic volumes across the intersection lanes. Lastly, the simulation

results validate the advantages of increasing the CAV market penetration rate, par-

ticularly in terms of electricity savings, which can reach as high as 11.47% when

the penetration is escalated from 30% to 100% in the given simulation.

As lane-changing and overtaking are not allowed in the concerned zone, the

interaction between CAVs and HDVs is not investigated here. In Chapters 5 and 6,

we will focus on the lane-changing zone, where the human-machine interactions

are thoroughly studied.



Chapter 5

A Game-based Optimal and Safe

Lane Change control of single CAV

5.1 Introduction

In the previous chapter, lane changing is not allowed inside the car following zone,

which neglects the interactions between CAVs and HDVs. However, this neglected

interaction is crucial in ensuring safety in mixed traffic environments. To find out

how to model the CAV-HDV interaction in a realistic and safe way, the overtaking

and lane-changing behaviors in the lane-changing zone of Fig. 1.4 will be investi-

gated in this chapter.

Game-theoretic methods are commonly used to model and analyze conflict

behaviors among multiple intelligent agents or players [193], which provides a valid

tool for addressing the interaction problem between CAVs and HDVs [194–196].

Different types of games have been investigated, such as the inverse differential

game [151], the mixed strategy Nash game [155], the Stackelberg game [152, 153,

158,159,196]. Despite the rich literature, there remains a lack of theoretical analysis

concerning the equilibria of game-theoretic lane-changing strategies. To address

this gap, this chapter proposes a Stackelberg game-based optimal lane-changing

control framework, with a particular focus on theoretical analysis. Specifically,

lane-changing scenarios involving one CAV and one HDV are investigated in detail.

The work in this chapter has the following novelty:
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1. Unlike many existing works, the HDV in this study is capable of changing

lanes while the CAV is changing lanes. The interaction of both is taken into

account by a Stackelberg game, which yields an unconstrained optimal con-

trol solution by the Hamilton–Jacobi equation (HJE).

2. A theoretical proof is provided to show that the unconstrained optimal strat-

egy is the asymptotically stable equilibrium, and with a suitable design of the

weight matrices, safety can be guaranteed by the obtained optimal strategy.

The remainder of this chapter is organized as follows. Section 5.2 introduces

the overall framework for changing lanes. In Section 5.3, the Stackelberg game-

based control scheme is introduced. A theoretical proof is presented to show that

with a suitable choice of the weighting parameters of the CAV’s reward function,

safety can be ensured by the derived strategy. The simulation results and the discus-

sion are shown in Section 5.4. Finally, concluding remarks are given in Section 5.5.

5.2 Problem Formulation
This chapter focuses on the autonomous lane-changing of CAV on roads in the

presence of a potential conflict HDV. This scenario is fundamental for studying

CAV-HDV interactions, as more complex maneuvers like overtaking, turning, and

roundabout driving can be derived from it. As shown in Fig. 5.1, this chapter con-

siders a scenario where there is a fully controllable CAV and an uncontrollable HDV

traveling in the neighboring lane. The CAV intends to make a lane change while the

HDV either keeps driving on its original lane or turns to its destination lane. To suc-

cessfully and safely change lanes, the CAV must decide whether to merge in front

or behind the HDV depending on the initial conditions (position, velocity, etc.) of

both vehicles, the intention of the HDV, and how the HDV interacts with the CAV.

In particular, depending on the intention of the HDV, there are two lane-changing

interactions between the two vehicles, which are illustrated in Fig. 5.1. As can be

seen in Figs. 5.1 (a)-(b), only the CAV changes the lane, while the HDV continues

to drive in its original lane. In Fig. 5.1 (a), when the relative distance between the

two vehicles is small and the CAV is faster than the HDV, the CAV can choose to
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Figure 5.1: The complex lane-changing decision in mixed traffic scenarios involving HDV
and CAV.

accelerate and overtake the HDV. Meanwhile, the HDV may maintain its current

speed or even decelerate to facilitate the CAV. In Fig. 5.1 (b), if the HDV is faster

than the CAV or the relative distance between the two vehicles is large, the CAV

will choose to merge behind the HDV. To leave enough space for the CAV to merge

into the lane, the HDV may choose to accelerate in such circumstances. In Fig. 5.1

(c), both HDV and CAV decide to change lanes, which yields a more challenging

case. In this case, both vehicles need to determine individual lane-changing accord-

ing to their driving preferences, which could include driving efficiency, comfort,

and safety concerns.

The chapter aims to address the problem of lane change control for the CAV

by designing a decision-making and trajectory control method. To make the de-
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rived control solution more realistic and considering the lane-changing maneu-

ver, we use the bicycle model illustrated in Fig. 3.1 to model the vehicle dy-

namics, with the details given in (3.3). The vehicle state is denoted by xk(t) =[
pk,x(t) pk,y(t) θk(t) vk(t)

]⊤
, where the CAV and the HDV are indexed by

k = 0 and k = 1, respectively. pk,x(t) and pk,y(t) represent the longitudinal and lat-

eral position of each vehicle in the global coordinate, respectively, and LB is the

length of the wheelbase. θk(t) is the vehicle heading angle and vk(t) is the forward

velocity. ϕk(t) and ak(t) are the steering angle of the front wheels of the vehicle and

the acceleration of the vehicle, which represent the manipulated variables of both

vehicles.

Assumption 5.1. It is assumed that the initial direction of both vehicles is straight

ahead, with heading angles of 0, and during the task, the two vehicles can only

move straight ahead or move toward the target (neighboring) lane.

According to Assumption 5.1, considering that the heading angle of the CAV

satisfies θ0(t) ≤ 0, it can be inferred that the heading angle of the HDV satisfies

θ1(t) ≥ 0, under the same coordination system. To ensure the safety of the CAV

lane change maneuver, it is requested to meet the velocity constraint v0(t)< vmax, ∀t

and the collision avoidance constraint against the HDV, as described below. To deal

with collision avoidance, the vehicle will be viewed as a rectangle with length L and

width LW , which can be expressed as: Ok(t)=
{

p(t) ∈ R2 : Ak(t)p(t)≤ bk(t)
}
, k∈

{0,1}

The collision avoidance constraint can be written as

dist(O0(t),O1(t))≥ dmin (5.1)

with

dist(O0(t),O1(t))=min
r

{
∥r∥ :

(
O0(t)

⊕
r
)
∩O1(t) ̸=∅

}
denoting the distance between two vehicles in this chapter. dmin > 0 denotes the

minimum safe distance.
⊕

denotes the Minkowski sum, which can be expressed as

C = A
⊕

B = {c : c = α +β ,α ∈A ,β ∈B}. The equivalent conditions of this
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collision avoidance constraint are given in the following lemma, which is based on

the existing work [197].

Lemma 5.1. [197] The constraint (5.1) holds if there exist λ (t) ∈ R4,ν(t) ∈ R4

belongs to constraint set D(b0(t),b1(t),A0(t),A1(t),dmin) with parameter matrices

b0(t),b1(t) ∈ R4, A0(t),A1(t) ∈ R4×2, which can be expressed as

−b⊤0 (t)ν(t)−b⊤1 λ (t)≥ dmin, (5.2a)

A⊤0 (t)ν(t)+A⊤1 (t)λ (t) = 0, (5.2b)

λ (t)⪰ 0,ν(t)⪰ 0, (5.2c)∥∥∥A⊤1 (t)λ (t)
∥∥∥≤ 1. (5.2d)

To simplify the notation, we have dropped the dependence of all variables on

t in the subsequent equations. Given the lateral and longitudinal positions of CAV

(p0,x, p0,y) and HDV (p1,x, p1,y), the driving angle of two vehicles θ0, θ1, respec-

tively. With L being the vehicle length and LW being the vehicle width, the matrices

Ak,bk, where k ∈ {0,1} can be expressed as follows:

bk=


pk,x cosθk + pk,y sinθk +

L
2

−pk,x cosθk− pk,y sinθk +
L
2

−pk,x sinθk + pk,y cosθk +
LW
2

pk,x sinθk− pk,y cosθk +
LW
2



Ak=

cosθk −cosθk −sinθk sinθk

sinθk −sinθk cosθk −cosθk

⊤

5.3 Game-based lane-changing strategy

5.3.1 Stackelberg Game

To model the interaction between CAV and HDV appears in the lane change sce-

nario shown in Fig. 5.1, the Stackelberg game model will be utilized. The reason

to adopt the Stackelberg game has been elaborated in Chapter 3. To introduce the
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game-based control strategy, consider x = [x⊤0 x⊤1 ]
⊤ ∈R8 and uk = [tanϕk ak]

⊤, k ∈

{0,1}. Note that tanϕk is used as a control instead of ϕ for ease of analysis. The

joint dynamics of both vehicles can be recast in the following form:

ẋ = f (x)+g0(x)u0 +g1(x)u1 (5.3)

where f (x)=[v0cosθ0 v0sinθ0 0 0 v1cosθ1 v1sinθ1 0 0]⊤

g0(x) =

 0 0 L−1
B v0 0 0 0 0 0

0 0 0 1 0 0 0 0

⊤ .

g1(x) =

 0 0 0 0 0 0 L−1
B v1 0

0 0 0 0 0 0 0 1

⊤

are all verified to be Lipschitz continuous.

As can be seen in Chapter 3, the Stackelberg game model allows for optimal

control of the CAV subject to optimal response of the HDV. Compared to some

of the existing works that model the HDV using a macroscopic driver model, the

HDV involved in the proposed game-based framework does not necessarily follow

a specific car-following model. Instead, the optimized response of HDV tends to

be more realistic and, in turn, could yield more reliable control solutions of the

CAV. Denote xi = x(0) the initial state of the vehicles, u0 and u1 are the actions

(acceleration) of the leader and follower actions, respectively, while u∗0 and u∗1 are

the optimal actions for the leader and follower. U0 and U1 are the action spaces

of the leader and follower. J0 and J1 stand for the leader’s and follower’s cost

functions, respectively. The solution of the game gives a planned trajectory for

the lane change vehicles to change lanes successfully (in the absence of a collision

avoidance constraint (5.1)).
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5.3.2 Stackelberg Game-Based CAV Lane Changing Strategy

In this article, the cost function of each player Jk is designed as

Jk (xi,u0,u1) =
∫

∞

0
rk (x,u0,u1)dt, k ∈ {0,1} (5.4)

where the reward functions of both vehicles follow

rk (x,u0,u1) = ∥x− xd∥2
Qk

+∥uk∥2
Rk
, k ∈ {0,1} (5.5)

where Qk = diag{qk, j}, j = 1,2, . . . ,8, Rk = diag{rk,l}, l = 1,2 with qk, j ≥ 0, rk,l >

0 are design weights of the rewards. xd ∈R8 is the desired state of two vehicles after

the lane change maneuver of the CAV. Next, we have the individual value function.

Vk (x,u0,u1)=
∫

∞

t
rk (x(τ),u0(τ),u1(τ))dτ, k ∈ {0,1} (5.6)

In this context, the associated Hamiltonians can be constructed as:

Hk (x,∇Vk,u0,u1) = rk (x,u0,u1)+∇V⊤k ( f (x)+g0(x)u0 +g1(x)u1) (5.7)

where ∇Vk = (∂Vk(x)/∂x), k ∈ {0,1}.

Given (5.5), (5.6) and (5.7), it is immediate to show that Hk is convex with

respect to uk. Therefore, the first optimality condition holds, and the optimal control

can be obtained by solving ∂H0
∂u0

= ∂H1
∂u1

= 0. In particular, the optimal action for the

follower is

u∗1 (u0)=argmin
u1

H1(x,∇V̄1,u0,u1)=−
1
2

R−1
1 g1(x)⊤∇V̄1 (5.8)

where V̄1 is the value function evaluate with u0 and u∗1(u0). In the case u0 = u∗0, we

have

u∗1 = u∗1(u
∗
0) =−

1
2

R−1
1 g1(x)⊤∇V ∗1 (5.9)

where ∇V ∗k ,k ∈ {0,1} is obtained when u∗0 and u∗1 are applied. Similarly, according
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to the definition of the Stackelberg game, the optimal action of the leader can also

be determined

u∗0=argmin
u0

H0(x,∇V ∗0 ,u0,u∗1 (u0))=−
1
2

R−1
0 g0(x)⊤∇V ∗0 (5.10)

According to the HJE, the following holds for u∗0, u∗1

Hk (x,∇V ∗k ,u
∗
0,u
∗
1) = rk (x,u∗0,u

∗
1)+∇V ∗Tk

× ( f (x)+g0(x)u∗0 +g1(x)u∗1) = 0, k ∈ {0,1}. (5.11)

Theorem 5.1. The system (5.3) is asymptotically stable, such that ||x−xd||= 0, t→

∞ under the control u∗k , k ∈ {0,1} given by (5.9), (5.10). Furthermore, u∗k is the

equilibrium of this Stackelberg game with the game values being V ∗k (xi), where V ∗k ,

k ∈ {0,1} are the smooth solutions to (5.11)

Proof. According to the chain rule, it holds that

V̇k = ∇V⊤k ẋ = ∇V⊤k ( f (x)+g0(x)u0 +g1(x)u1)

From (5.11), we also have

∇V ∗⊤k ( f (x)+g0(x)u∗0 +g1(x)u∗1) =−rk (x,u∗0,u
∗
1)

which implies V̇ ∗k =−rk
(
x,u∗0,u

∗
1
)
< 0 Let e = x− xd , it can be shown that V ∗k is a

valid Lyapunov candidate with respect to e (V ∗k is semi-positive definite and V ∗k = 0

only when e = 0). As a consequence, the system (5.3) is asymptotically stable. In

view of (5.4), the cost function Jk (xi,u0,u1) can be written as

Jk (xi,u0,u1) =
∫

∞

0
rk (x,u0,u1)dt +V ∗k (xi)+

∫
∞

0
V̇ ∗k (x)dt−V ∗k (∞)

=
∫

∞

0
Hk (x,∇V ∗k ,u0,u1)dt +V ∗k (xi) (5.12)

where Vk (∞) is dropped due to the convergence of the system. As H0
(
x,∇V0,u∗0,u

∗
1
)
=
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0, for the leader CAV, it can be inferred that J0
(
xi,u∗0,u

∗
1
)
= V ∗0 (xi) . By (5.8) and

(5.10), it also holds that

Hk (x,∇V ∗k ,u0,u1)≥Hk (x,∇V ∗k ,u
∗
0,u
∗
1) , k ∈ {0,1} (5.13)

In view of (5.12), it can be derived that

J0 (xi,u0,u∗1(u0)) =
∫

∞

0
H0 (x,∇V ∗0 ,u0,u∗1(u0))dt +V ∗0 (xi)

≥
∫

∞

0
H0 (x,∇V ∗0 ,u

∗
0,u
∗
1)dt +V ∗0 (xi) = J0 (xi,u∗0,u

∗
1) (5.14)

where the inequality is inferred from (5.13). Similarly, for the follower vehicle, we

have J1
(
xi,u∗0,u

∗
1
)
= V ∗1 (xi) Given the optimal action of the leader u∗0, suppose the

follower takes the action u1 other than u∗1, then we have

J1 (xi,u∗0,u1) =
∫

∞

0
Hi (x,∇V ∗1 ,u

∗
0,u1)dt +V ∗1 (xi)

≥
∫

∞

0
H1 (x,∇V ∗1 ,u

∗
0,u
∗
1)dt +V ∗1 (xi) = J1 (xi,u∗0,u

∗
1) (5.15)

By (3.13) and (3.12) in Definition 3.1, u∗0 and u∗1 are the equilibrium of this Stack-

elberg game with the game values being V ∗k (xi).

From Theorem 5.1, the optimal lane changing control u∗0 for the CAV can be

obtained by solving two sequential optimization problems described below:

u∗1 = argmin
u1∈U1

J1 (xi,u0 ∈U0,u1) (5.16a)

u∗0 = argmin
u0∈U0

J0 (xi,u0,u∗1) (5.16b)

5.3.3 Safety Guarantees

Note that the optimal control strategy obtained in (5.9) and (5.10) is obtained with-

out considering collision avoidance and velocity constraints. In this section, we

show that by appropriately choosing the weighting parameters of the CAV reward
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function, the optimal lane change control action u∗k , k ∈ {0,1} can avoid colli-

sions between the two vehicles using the notion of zeroing control barrier function

(ZCBF).

Lemma 5.2. (ZCBF) [198]. Consider a dynamical system ẋ = f (x) with f locally

Lipschitz continuous. Let C = {x ∈ Rn : h(x)≥ 0} be the 0-super level set of a

constraint function h. h is a zeroing control barrier function (ZCBF) if there exists

a K function γ and there exists u ∈U such that

sup
u∈U

[
L f h(x)+Lgh(x)u+ γ(h(x))

]
≥ 0,∀x ∈ C (5.17)

Then, for any u that belongs to the following set:

{u ∈U :
[
L f h(x)+Lgh(x)u+ γ(h(x))

]
≥ 0} (5.18)

will guarantee the forward invariance of C .

Next, we will show how to construct a ZCBF for system (5.3) based on the

collision avoidance constraints defined previously in (5.2) so that the resulting set

C is forward invariant and thus the lane changing control is safe. The following

assumption is needed for the main result.

Assumption 5.2. The desired speed of the CAV is vmax, such that vd = vmax. The

CAV starts with an initial speed strictly below this limit v0(0)< vmax.

Consider a candidate control barrier function from (5.2a)

B(t) =−b⊤0 ν−b⊤1 λ −dmin + c1(v0(0)− vd)+θ0

√
p2

0,x + p2
0,y−θ1

√
p2

1,x + p2
1,y

(5.19)

where c1 ≥ 0 is a tunable constant. Being v0(0)< vd (see Assumption 5.2), θ0 ≤ 0

and θ1 ≥ 0 (see Assumption 5.1), the last three terms are negative, which makes

B(t) ≥ 0 a more strict collision avoidance condition. In the following, it will be

verified that B(x,u) indeed satisfies the required CBF properties (i.e., (5.17)) subject

to (5.2b)-(5.2d).
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Lemma 5.3. Given system (5.3) and the control u∗0, the velocity of the CAV v∗0

asymptotically converges to vd .

Proof. Let ev = v∗0 − vd and consider a candidate Lyapunov function Ω(ev) =∫
∞

t e2
vdτ and Ω(0) = 0, it holds that

Ω̇ = ėv

∫
∞

t
2evdτ = v̇∗0

∫
∞

t
2evdτ = a∗0

∫
∞

t
2evdτ

where a∗0 is the optimal acceleration of the CAV (second element in u∗0). Given (5.9)

and (5.10), it can be derived that a∗0 = −w1
∫

∞

t (v0− vd)dτ⊤ with w1 = q0,4/r0,2.

Then we have the following:

Ω̇ =−w1

(∫
∞

t
evdτ

)2

≤ 0

Thus, we can conclude that v∗0 asymptotically converges to vd . Under Assump-

tion 5.2, the CAV can comply with the velocity restriction during the maneuver.

Theorem 5.2. Under Assumptions 5.1 and 5.2, given the system (5.3) and the con-

trol u∗k , k ∈ {0,1}, B(t) defined by (5.19) is a ZCBF if w1 is designed such that the

following condition is satisfied.

w1 ≥
2
√

3amaxvmax

∆v2c1
(5.20)

where ∆v = vmax− v0(0) and amax is the maximum acceleration of the CAV.

Proof. In view of (5.2d), it holds that

(λ1−λ2)
2 +(λ3−λ4)

2 ≤ 1 (5.21)

where λi, i = {1,2,3,4} represents ith entry of λ . Then, from (5.2b), we have

A⊤0 ν =−A⊤1 λ , and similarly to (5.21), it can be shown that

(ν1−ν2)
2 +(ν3−ν4)

2 ≤ 1 (5.22)
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where νi, i = {1,2,3,4} represents ith entry of ν . To ensure (5.17) is satisfied for

the control u∗k obtained in (5.9) and (5.10), it is required that

∇B(t)⊤( f (x)+g0(x)u∗0 +g1(x)u∗1)≥ 0 (5.23)

with λ ≥ 0, ν ≥ 0 from (5.2c). After some cumbersome algebra, full expressions

of ∇B(t), g1(x)u∗1 and g0(x)u∗0 can be calculated and given as follows

∇B(t) =



−((ν1−ν2)cosθ0 +(ν4−ν3)sinθ0)

−((ν1−ν2)sinθ0 +(ν3−ν4)cosθ0)

−((ν1−ν2)p0,y +(ν4−ν3)p0,x)cosθ0−

((ν2−ν1)p0,x +(ν4−ν3)p0,y)sinθ0 +
√

p2
0,x + p2

0,y

c1

−((λ1−λ2)cosθ1 +(λ4−λ3)sinθ1)

−((λ1−λ2)sinθ1 +(λ3−λ4)cosθ1)

−((λ1−λ2)p1,y +(λ4−λ3)p1,x)cosθ1−

((λ2−λ1)p1,x +(λ4−λ3)p1,y)sinθ1−
√

p2
1,x + p2

1,y

0



(5.24)

g1(x)u∗1 =−0.5g1(x)R−1
1 g1(x)⊤∇V ∗1 =−0.5g1(x)R−1

1 g1(x)⊤Q1

∫
∞

t
(x− xd)dτ

=−
[
0 · · · 0 v2

1
L2

B
w4
∫

∞

t θ1dτ w3
∫

∞

t (v1− vd)dτ

]⊤
, (5.25)

and

g0(x)u∗0=−
[
0 0 v2

0
L2

B
w2
∫

∞

t θ0dτ w1
∫

∞

t (v0−vd)dτ 0 · · · 0
]⊤

(5.26)

where w2 = q1,8/r1,2, w3 = q0,3/r0,1, w4 = q1,7/r1,1. By applying (5.24)-(5.26) and

after some algebra, the condition (5.23) can be rewritten, as follows

3

∑
i=1

ηi + c1w1

∫
∞

t
(vd− v0)dτ ≥ 0 (5.27)
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with

η1=((λ1−λ2)cosθ1+(λ4−λ3)sinθ1)(v0 cosθ0−v1 cosθ1)

+((λ1−λ2)sinθ1 +(λ3−λ4)cosθ1)(v0 sinθ0− v1 sinθ1)

η2=
v2

0

L2
B

w2[
√

p2
0,x + p2

0,y− ((ν1−ν2)p0,y +(ν4−ν3)p0,x)

× cosθ0− ((ν2−ν1)p0,x+(ν4−ν3)p0,y)sinθ0]
∫

∞

t
−θ0dτ

η3 =
v2

1
L2

B
w4
[
−((λ1−λ2)p1,y +(λ4−λ3)p1,x)cosθ1

−((λ2−λ1)p1,x +(λ4−λ3)p1,y)sinθ1−
√

p2
1,x + p2

1,y]
∫

∞

t
−θ1dτ

Considering η1 in (5.27), from the Cauchy-Schwartz inequality, it can be shown

that

| ((λ1−λ2)cosθ1 +(λ4−λ3)sinθ1)(v0 cosθ0− v1 cosθ1)+

((λ1−λ2)sinθ1 +(λ3−λ4)cosθ1)(v0 sinθ0− v1 sinθ1) |≤√
((λ1−λ2)2 +(λ3−λ4)2)(v2

0 + v2
1− v0v1 cos(θ0−θ1))≤

√
v2

0 + v2
1 + v0v1≤

√
3vmax

(5.28)

where the second inequality is obtained by (5.21). Consider η2 in (5.27). Similarly,

by using (5.22) it can be shown that

| ((ν1−ν2)p0,y +(ν4−ν3)p0,x)cosθ0

+((ν2−ν1)p0,x +(ν4−ν3)p0,y)sinθ0 |≤√
(cosθ 2

0 + sinθ 2
0 )(((ν1−ν2)2 +(ν3−ν4)2))(p2

0,x + p2
0,y)≤

√
p2

0,x + p2
0,y (5.29)

Being θ0 ≤ 0, we can conclude that η2 is always non-negative. Similarly, η3

in (5.27) is also non-negative. Due to the asymptotic convergence of v∗0 to vd , it can

be inferred that ∫
∞

t
(vmax− v0)dτ ≥ ∆v2

2amax
(5.30)
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Therefore, (5.27) holds if

c1w1

∫
∞

t
(vmax− v0)dτ−

√
3vmax ≥ 0 (5.31)

Therefore, we reach the conclusion that provided (5.20), condition (5.23) is satis-

fied. According to Lemma 5.2, B(t) is a ZCBF, and the control u∗k obtained in (5.9)

and (5.10) render the set C forward invariant.

Theorem 5.2 implies that collision avoidance is guaranteed, provided the CAV

and HDV are controlled by (5.16). As there is no disturbance considered in this

work, when provided two players exactly follow the optimal strategies of the Stack-

elberg game, then deadlock is naturally avoided, according to Theorem 5.1 and

Theorem 5.2.

5.4 Simulation Validation

5.4.1 Simulation setup

In this section, the performance of the proposed control framework is evaluated con-

sidering only one CAV and one HDV, which travel in two separate lanes, as shown

in Fig. 5.1. All other surrounding vehicles are not considered. Two case studies are

conducted. In case one, only the CAV changes lanes, whereas the HDV stays in

its initial lane throughout the simulation. On the contrary, both vehicles intend to

change lanes in the second case. In both case studies, the initial lateral position of

the CAV (that is, the center of the lane on which the CAV initially drives) is 0m,

and the initial lateral position of the HDV is 5m, which also represents the center

of the destination lane of the CAV. In both case studies, it is reasonable to set the

desired velocities of both vehicles at the maximum allowed speed, vmax (for a re-

duced travel time), and the desired heading angles at t = 0. For vehicles attempting

to change lanes, the desired lateral positions are the center of the destination lanes;

otherwise, the desired lateral positions are the center of the original lanes. With

the target lateral positions, velocity, and steering angle, the desired state xd can be

specified for the problem.
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The first case study involves two different scenarios with the same initial longi-

tudinal position of the CAV, 10m, and the HDV, 14m, but different initial velocities

for the sake of comparison. More specifically, in Scenario 1, the initial speeds of

the CAV and the HDV are close to each other, set to 16m/s and 15m/s, respectively.

In scenario two, the initial speeds of CAV is set to 19m/s, which is much faster

than the HDV’s initial speed of 10m/s. In the second case study where both the

CAV and the HDV change lanes, the initial speed of the CAV and the HDV is set to

15m/s and 14m/s, respectively. The initial longitudinal position of the CAV and the

HDV is 10m and 15m, respectively. As both vehicles change lanes in this case, the

target lateral position of the HDV is 0m whereas the target for the CAV is 5m. The

remaining vehicle parameters are summarized in Table 5.1.

Table 5.1: Simulation parameters

symbol value description
∆t 0.1 s sampling time interval
L 4.6 m vehicle length
LB 2.7 m vehicle wheelbase
LW 1.8 m vehicle width
vmax 20 m/s maximum velocity
amax 5m/s2 maximum acceleration

In addition, the robustness of the proposed method is also tested based on case

study 2. A disturbance is added to the optimal control of HDV u∗1 derived from

equation (5.9) to simulate human uncertainties. This disturbance follows a Gaussian

distribution with zero mean and a variance of 0.05.

5.4.2 Analysis of simulation results

Following the approach designed in Section 5.3.2, simulation results are obtained

by solving unconstrained optimizations (5.16), and the solutions are supposed to

satisfy the collision avoidance constraints as justified in Section 5.3.3

As shown in Fig. 5.2 (a), the CAV conducted a successful lane-changing in the

first scenario of case one. The convergence of the cost of each player is shown in

Fig. 5.3 (a), which implies that both vehicles reach their desired velocity and target

lanes. Although the CAV is slightly faster than the HDV at first, the CAV chooses
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Figure 5.2: (a) is the trajectory of both vehicles in case study 1 scenario 1, (b) is the trajec-
tory of both vehicles in case study 1 scenario 2, and (c) is the trajectory of both
vehicles in case study 2.

to merge behind the HDV. It can be understood that the CAV is not sufficiently

fast to overtake the HDV in a short time interval and therefore merges behind to

accomplish the lane change and reach its desired state more quickly. Furthermore,

collision avoidance is also guaranteed, which can be illustrated by the distance be-

tween the two vehicles in Fig. 5.3 (a).
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Figure 5.3: Results for the two case studies. (a) is the result of Case Study 1 scenario 1, (b)
is the result of Case Study 1 scenario 2, and (c) is the result of the case study 2
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Figure 5.4: The Gaussian disturbance is added to the optimal strategy of HDV in case study
2 that is derived from equation (5.9). The blue line is the optimal strategy with
the added disturbance, while the red line is original optimal strategy.
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Figure 5.5: Robustness test of the proposed method under disturbances. The trajectory of
both vehicles in case study 2 under the added disturbances.

In the second scenario, the CAV also performs a successful lane change, which

can be validated in Fig. 5.2 (b), and Fig. 5.3 (b). The CAV performs an overtaking

maneuver to complete the lane change, while collision avoidance is also guaran-

teed. The convergence of each vehicle’s cost indicates that each vehicle reaches its

desired velocity and target lane. In the case study in which both the CAV and the

HDV need to change lanes, each vehicle successfully reaches its target lane, as can

be seen in Fig. 5.2 (c). Both vehicles are steered to their destination lanes without

collision and reach their desired speed, which is validated by Fig. 5.3 (c). All these

simulation results show the validity of the lane-changing scheme.

The robustness test results are shown in Fig. 5.4 and Fig. 5.5. As can be seen

in Fig. 5.5, both vehicles conducted a successful lane-changing without collision

when a Gaussian disturbance with zero mean and a variance of 0.05 is added to the

optimal control of HDV in case study 2 to emulate human uncertainty. This result

shows that the proposed game-based lane-changing method is robust to a certain

level of uncertainties. The theoretical analysis on the robustness remains further



5.5. CONCLUSIONS 99

investigation.

5.5 CONCLUSIONS
In this chapter, a game-based lane change framework is proposed for complex traffic

environments mixed with HDVs and CAVs. A Stackelberg game method is used to

model the interaction between HDVs and CAVs. An optimal strategy is designed,

which is further shown to provide the asymptotically stable equilibrium point. The

condition under which the optimal strategy can render the collision avoidance set

invariant is provided. Numerical results show that the CAV can conduct a successful

and safe lane change without colliding with the HDV.

This chapter mainly focuses on the fundamental analysis of the Stackelberg

game-based lane-changing strategies. Therefore, a simplified mixed traffic scenario

that only contains one CAV and one HDV is studied. However, the single CAV-

HDV interaction is not sufficient in the real-world mixed traffic environments where

there is a large number of vehicles. To further improve this work, the multi-vehicle

lane-changing decision-making and control will be investigated in Chapter 6.



Chapter 6

A Game-Theoretical Framework for

Safe Decision-Making and Control of

Multi-CAV

6.1 Introduction

Following the results presented in Chapter 5 regarding a single pair of CAV and

HDV, this chapter introduces a two-layer coalitional decision-making and control

strategy for multi-vehicle lane-changing.

Although various game-theoretical approaches have been proposed to inves-

tigate interactive coordination of multiple CAVs and HDVs [158, 159, 182, 196],

several limitations remain. In particular, most existing methods focus on small-

scale scenarios with a limited number of vehicles, often neglecting the challenges

of large-scale traffic environments. To deal with these limitations, a two-layer coali-

tional decision-making and control strategy for multi-vehicle lane-changing is pro-

posed. As different vehicles have different driving intentions and conducting global

optimal control is infeasible, a game-based coalition control is applied to group the

vehicles in the upper layer. Then the interactions between HDVs and CAVs are

modeled by the Stackelberg game, and data-enabled predictive control is applied to

CAVs to enhance robustness against modeling uncertainty. The real-world applica-

bility of the proposed method is validated by HIL experiments. The novelty of the
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work in this chapter is as follows.

1. In the upper layer, a game-based coalition structure is proposed to group the

vehicles involved in lane-changing based on their positions and initial con-

ditions. Such a method can avoid exhaustive computation compared with

the method that optimizes the trajectories of all vehicles involved in lane-

changing as a whole while maintaining a comparably good performance.

2. In the lower layer, unlike many existing works [158, 182], the HDVs in this

study are capable of changing lanes while the CAVs are changing lanes. The

interaction of CAVs and HDVs is taken into account by a Stackelberg game

in each coalition, which is more realistic.

3. To enhance robustness against modeling uncertainty, the data-enabled predic-

tive control is applied to the CAVs. The dual collision avoidance constraint

is also incorporated to ensure lane-changing safety. The effectiveness of the

proposed method is validated by utilizing data representing different driving

aggressiveness in a large number of experiments.

The remainder of this chapter is organized as follows. Section 6.2 introduces

the overall framework for the multi-vehicle lane-changing scenario. In Section 6.3,

the hierarchical game-based data-enabled control framework is proposed. In the

upper layer, the vehicles are split into different coalitions based on game-theoretical

strategy. In the lower layer, a Stackelberg game-based control scheme is intro-

duced. Considering the uncertainty of human drivers, the data-enabled predictive

control is applied to CAVs. The simulation results and discussion are shown in Sec-

tion 6.4. Moreover, HIL experiments are also included. Finally, concluding remarks

are given in Section 6.5.

6.2 Problem Formulation
As shown in Fig. 6.1, this chapter considers a scenario where there are fully con-

trollable CAVs and uncontrollable HDVs traveling in the neighboring lane. As can

be seen, there exist roadside units (RSU) and sensors (camera, loop detector, etc.)
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along the road, which can gather HDVs’ information such as positions, velocities,

and lane-changing intentions and forward them to CAVs. The CAV in the second

lane intends to make a lane change while the surrounding vehicles continue to drive

in their original lanes or turn to their destination lanes. Then the central coordinator

(CC) will plan the trajectory for this CAV to successfully change the lane.

It is infeasible and ineffective for the CC to consider all the vehicles on the road

when planning the lane-changing for a CAV. Thus it needs to decide which cars are

more likely to influence lane-changing and how many cars should be involved in

order to ensure the safety and efficiency of lane change with the help of the roadside

units (RSU). Moreover, the CC will decide this CAV whether to merge in front or

behind a vehicle in the target lane depending on the states (position, velocity, lane-

changing intention, etc.) of the involved vehicles, and how these vehicles interact

with it.

Figure 6.1: The complex lane-changing decision in mixed traffic scenarios involving HDVs
and CAVs.

Assumption 6.1. The lane-changing intention, position, and velocity of the HDVs

involved in lane-changing can be collected by RSUs without error and delay.

Assumption 6.1 is commonly used in existing works, such as [25, 114, 186].

Here, we assume HDVs are rational, which means HDVs will activate turn signals

when intending to change lanes; otherwise, they remain in their current lane. Un-

der this assumption, the turning intention, along with velocity and position, can be

detected by RSUs.
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6.3 Hierarchical Game-based Data-enabled Predic-

tive Control Scheme
To address the multi-vehicle lane-changing problems depicted in Fig. 6.1, a two-

layer hierarchical control architecture is proposed in this chapter. In reality, it is

impractical to conduct the global optimal control for all vehicles on the road. Alter-

natively, it is reasonable to consider a group of vehicles that may influence and in-

teract with each other during lane-changing. In this context, a coalition establishing

method is proposed in the upper layer, which will be introduced in Section 6.3.1.

In the lower layer, after the CC determines the coalition structure, it will provide

each CAV with a trajectory to change lanes. As there may be HDVs within each

coalition, the Stackelberg game will be utilized to model the interaction between

CAVs and HDVs, which will be introduced in Section 6.3.2. Then the data-enabled

predictive control is applied to CAVs which is introduced in Section 6.3.3. The

overall control scheme is sketched in Fig. 6.2.
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Figure 6.2: The scheme of the learning-and-game-based coalitional decision-making and
control strategy for multi-vehicle lane-changing. In the upper layer, a coalition
establishing optimization is proposed. In the lower layer, the interaction be-
tween HDVs and CAVs is modeled by the Stackelberg game, and CAV driving
strategies are solved by data-enabled predictive control.

6.3.1 Coalition Establishing

In the multi-vehicle lane-changing problem, cooperation between each vehicle

translates into better performance. However, this comes at the expense of higher
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computation and communication requirements. The effort required for coordina-

tion increases with the number of vehicles involved in a coalition, which brings a

heavy computation burden to the CC and CAVs. As such, our aim is to split all the

vehicles into different coalitions, which can largely reduce the computation com-

plexity and meanwhile maintain good control performance for lane-changing. In

this section, we propose a game theoretical framework for the coalition establishing

of a multi-vehicle system, where each coalition contains at least one CAV. The es-

tablishing of coalitions is conducted by the CC and CAVs involved in lane-changing

together, and such a coalition structure is only formulated once.

Consider the ith coalition Ci with |Ci| individual vehicles, the dynamic of jth

vehicle, j ∈ {1, · · · , |Ci|} is given as

ẋ j(t) =
[

v j,x(t) v j,y(t) a j,x(t) a j,y(t)
]⊤

(6.1)

with

x j(t) =
[

p j,x(t) p j,y(t) v j,x(t) v j,y(t)
]⊤

where p j,x(t) and p j,y(t) represent the longitudinal and lateral position of each vehi-

cle in the global coordinate, respectively, while v j,x(t) and v j,y(t) represent the lon-

gitudinal and lateral velocity of each vehicle. u j(t) = [a j,x(t)a j,y(t)]⊤ where a j,x(t),

a j,y(t) are the longitudinal and lateral acceleration. Thus, the overall dynamic of

the ith coalition can be given as

ẋi(t) = Acoa
i xi(t)+Bcoa

i ui(t) (6.2)

with xi ∈ R4|Ci|, ui ∈ R4|Ci|. Acoa
i ∈ R4|Ci|×4|Ci|, Bcoa

i ∈ R4|Ci|×2|Ci|, which can be

given as follows:

Acoa
i =


H1 0 . . . 0

0 H1 . . . 0
... . . . . . . ...

0 . . . . . . H1

 ,B
coa
i =


H2 0 . . . 0

0 H2 . . . 0
... . . . . . . ...

0 . . . . . . H2

 , (6.3)
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with

H1=


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 ,H2=

 0 0 1 0

0 0 0 1

⊤ . (6.4)

Let us consider the vehicle j, j ∈Ci, conducting an optimal lane-changing pol-

icy aimed at minimizing its local cost ℓ j(x j,u j), over a time interval TF , where TF

denotes the time when the multi-vehicle lane-changing behavior is finished. Note

that the local cost of each vehicle is implicitly a function of other vehicles’ states,

including positions, velocities, etc. In each coalition Ci, the coalition stage cost

is defined as Λi (xi,ui). Based on the local objective of each vehicle, this coali-

tional objective allows for improvement by exploiting the shared vehicle informa-

tion available at the coalition level and explicitly including the coupling variables

in its formulation.

In the context of multi-vehicle lane changing, gathering information from each

vehicle needs sufficient computation and communication resources. These costs are

not negligible, and therefore constitute the cooperation costs for the coalitions. In

the following, we will introduce a term that expresses the control performance and

cooperation costs within a given vehicle coalition. The value of ith coalition V (Ci)

is defined as follows:

V (Ci) =
∫ TF

0
Λi (xi(t),ui(t))+χ (|Ci|)dt (6.5)

where the cooperation cost χ(·) depends on the number of vehicles in the coali-

tion Ci, and is monotonically increasing in the number of vehicles of the coalition.

Define χ (|Ci|) as:

χ (|Ci|) = wcoal|Ci|2 (6.6)

with wcoal being the coefficient of the cooperation cost. The coalition stage cost

of the ith coalition Λi(xi(t),ui(t)) can be expressed as the sum of the local cost of
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vehicle j ∈ Ci:

Λi(xi(t),ui(t)) =
|Ci|

∑
j=1

ℓ j(x j(t),u j(t)), j ∈ Ci (6.7)

To form an effective coalition for lane-changing control, the CC must consider var-

ious factors influencing vehicle’s lane-changing behavior, including driving safety,

comfort, target lane selection, and overall driving efficiency. Thus, the local cost

ℓ j of the jth vehicle in the coalition i consists of two parts, the cost of cooperation

willingness ℓwil
j and the cost of individual driving comfort ℓsel f

j , which can be given

as follows:

ℓ j(x j,u j) = ℓwil
j + ℓ

sel f
j (6.8)

The cooperation willingness cost ℓwil
j represents a driver’s intention to join a coali-

tion, while the individual driving comfort cost ℓ
sel f
j shows that a driver wants

to maintain a comfortable and successful lane-changing. To be specific, ℓwil
j

takes into account the relative distance between vehicle j and each other vehicle

η ,η ̸= j,η ∈ Ci, j ∈ Ci in the coalition i. ℓwil
j can be expressed as:

ℓwil
j =

η∈Ci

∑
η ̸= j

wwil
j ((p j,y− pη ,y)

2 +(p j,x− pη ,x)
2)2

v j
(6.9)

where wwil
j is the weight parameter for the cost of cooperation willingness,

(p j,x, p j,y), (pη ,x, pη ,y) is the position of the vehicle j and vehicle η , respectively, v j

is the speed of vehicle j. When the vehicle is traveling at a higher speed, the relative

distance between each vehicle can be larger. Thus, for a fair evaluation, we add the

speed v j to the denominator of the driving safety cost. Note that the cost ℓwil
j will

increase with the number of vehicles in the coalition i. In addition, a larger relative

distance between vehicles will increase ℓwel
j , which may reduce the possibility of

forming a coalition. ℓsel f
j consists of three parts, which can be expressed as

ℓ
sel f
j =

∥∥u j
∥∥2

wcom
j

+
∥∥p j,y− p j,d

∥∥2
wdes

j
+
∥∥v j− vd

∥∥2
we f f

j
(6.10)

where wcom
j ,wdes

j ,we f f
j is the weight parameter for the cost of driving comfort, des-
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tination lane, and driving efficiency respectively. The term
∥∥u j
∥∥2

wcom
j

is to avoid

excessive acceleration/deceleration behavior so that comfortable driving can be en-

sured. The term
∥∥p j,y− p j,d

∥∥2
wdes

j
is to ensure that lane-changing maneuvers can be

accomplished where p j,d is the lateral position of destination lane. The last term∥∥v j− vd
∥∥2

we f f
j

is to consider the overall traffic efficiency where vd is the desired

velocity.

Given two vehicle subcoalitions P1,P2,P1 ∪P2 = Ci, (6.5) is calculated

separately for the two subcoalitions (unilateral strategies) and for their merger

(coalition strategy for Ci). In particular, for the coalition strategy relative to

P1∪P2, Λi(·, ·) is calculated with the optimal lane-changing strategies u∗1∪2 and

the associated x∗1∪2 obtained as a solution of (6.13). Note that the coalition value is

an economic index, i.e., the surplus of the merger V (P1)+V (P2)−V (P1∪P2),

can be reallocated between each vehicle [199]. A necessary condition for establish-

ing a vehicle coalition requires that the benefit outperforms the total outcome of

unilateral strategies, which can be expressed as:

V (P1∪P2)≤V (P1)+V (P2) (6.11)

In such a case, the establishment of the vehicle coalition expects a decrease in the

control cost to (at least) compensate for the increased coordination effort. When a

new coalition is formed, the value will be reallocated to each vehicle in this coali-

tion, and it holds that ∑ j∈Ci rc(i)j = V (Ci) where rc(i)j ∈ R is the cost reallocated to

vehicle j in the coalition Ci.

To complete the formulation, the constraints set consisting of the speed and

acceleration limits has to be imposed.

0 < v j ≤ vmax, (6.12a)

amin ≤ |u j| ≤ amax, (6.12b)

where amax,amin denote the maximum and the minimum acceleration respectively.

Now, we can formulate the OCP to find the optimal coalitional control for the
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ith coalition:

u∗i =argmin
ui

∫ TF

0
Λi (xi(t),ui(t))dt (6.13a)

s.t. (6.2), (6.12) (6.13b)

The establishing of the coalition structure can be found in Algorithm 6.1. The

initialization of {C1, . . . ,Cnc} depends on the number of CAVs nc. Each CAV will

form a coalition, and an HDV will join the coalition held by the CAV nearest to it.

Algorithm 6.1 Overall Coalitional Control
Input: P = {C1, . . . ,Cnc}
Output: coalition structure P∗, allocation vector rc∗ ∈ R|N |

if nc > 1 then
for all pairs Ci,C j ∈P where i, j ∈ {1, . . . ,nc} do

Call Algorithm 6.2
end for

else
Call Algorithm 6.3

end if

Algorithm 6.2 Coalition Establishing
Input: Ci,C j ∈P
Output: coalition structure P+, allocation vector (rck)k∈Ci∪C j

V
(
Ci∪C j

)
← minimize (6.13) over ui∪ j

initialize ui,u j with u∗i∪ j respectively
V (Ci)← solve (6.13) over ui w.r.t. u j = u∗i∪ j| j
V
(
C j
)
← solve (6.13) over u j w.r.t. ui = u∗i∪ j|i

if (6.11)is verified then
P+←P\

{
Ci,C j

}
∪
{
Ci∪C j

}
; Form Coalition

rck :=V
(
Ci∪C j

)
/
∣∣Ci∪C j

∣∣ for all k ∈ Ci∪C j
(rck)k∈Ci∪C j

← Call Algorithm 6.3
else

Call Algorithm 6.3 for Ci and C j
end if

Remark 6.1. When there is a large number of vehicles, it is impractical to exhaus-

tively evaluate all coalition pairs in {C1, . . . ,Cnc}. The outcome of the coalition

structure might be influenced by the selection order of coalition splitting [199].
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Algorithm 6.3 Coalition Splitting
Input: C , allocation vector (rck)k∈C , maxloop
Output:

{
C ′1, . . . ,C

′
nm

}
where

⋃
i C
′
i = C ,

(
rc′k
)

k∈
⋃

i
C ′i

nm← 0; nloops← 0; flag← FALSE
if C contains only one CAV then

break
end if
Repeat

randomly choose S1 ⊂ C and S2 = C \S1, where both
S1 and S2 contain at least one CAV
π1← ∑k∈S1 rck, π2← ∑k∈S2 rck
V (S1∪S2)← minimize (6.13) over ui∪ j
initialize u1,u2 with u∗1∪2 respectively
V (S1)← solve (6.13) over u1 w.r.t. u2 = u∗1∪2|2
V (S2)← solve (6.13) over u2 w.r.t. u1 = u∗1∪2|1
if π1 +π2 >V (S1)+V (S2) then

flag← TRUE; P splits into S1 and S2
for i = 1,2 do

nm← nm +1; Cnm ←Si
Initialize payoff of every agent in Cnm

with egalitarian allocation
Call Algorithm 6.3 for Cnm

end for
else

if π1 >V (S1) or π2 >V (S2) then
e← π1−V (S1)
rc′k← rck− e/ |S1| ,k ∈S1
rc′k← rck + e/ |S2| ,k ∈S2

end if
end if
nloops← nloops +1

Until flag=FALSE and nloops < maxloop
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Remark 6.2. The coalition scheme is designed to group vehicles with potential

conflicts while separating those that are more distant or have non-conflict inten-

tions (see the cooperation willingness cost ℓwil
j in (6.9)). As a result, vehicles in

different coalitions tend to be spatially separated, reducing the overall risk of col-

lision. However, the collision avoidance can not be guaranteed by this coalition

scheme.

If condition (6.11) is satisfied for Ci and C j, then the coalition Ci∪C j is estab-

lished. The allocation of all vehicles in the new coalition is initialized by an equal

share of the total cost. However, such allocation may violate the individual interests

of some vehicles, thus Algorithm 6.3 is conducted. Algorithm 6.3 is performed also

in the case where two coalitions fail to merge. Let Ci be the coalition under anal-

ysis and S1,S2 ⊂ Ci. S1 and S2 can also leave the coalition if condition (6.11)

is not satisfied. Therefore, while any coalition is established through a bilateral

agreement, a vehicle can leave it unilaterally.

6.3.2 Stackelberg Game-based Lane-changing Strategy

After the coalition structure is determined, the CC plans the trajectory of each CAV

in the coalition to change lanes. We will focus on a single coalition Ci as the lane

change strategy is applicable to all coalitions. For the sake of further analysis, let

us denote the set Cc,i consisting of all CAVs within the coalition Ci, while the set

Ch,i collects all HDVs within the coalition, such that Cc,i∪Ch,i = Ci. For the sake

of brevity, the dependence on i of all variables will be dropped in the remainder of

this section.

To account for the potential lane-changing maneuver, we use a bicycle model to

describe the dynamics of vehicle j in the coalition Ci, with the details given in (3.3).

The vehicle state is given by x j(t) =
[

p j,x(t) p j,y(t) θ j(t) v j(t)
]⊤

, where Lb

is the length of the wheelbase. θ j(t) is the vehicle heading angle and v j(t) is the for-

ward velocity. ϕ j(t) and a j(t) are the steering angle of the front wheels of the vehi-

cle and the acceleration of the vehicle, which represent the manipulated variables of

each vehicle. Denote x = [x⊤1 , . . . , x⊤|Ci|]
⊤ ∈ R4|Ci| and u = [u⊤1 , . . . , u⊤|Ci|]

⊤ ∈ R2|Ci|

with u j = [ϕ j a j]
⊤, j ∈ {1, . . . , |Ci|} the state and control input of coalition Ci re-
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spectively.

To model the interaction between HDVs and CAVs that appears in the lane-

changing scenario, the Stackelberg game model will be utilized [35], where all

CAVs in Cc,i are considered as one leader and all HDVs in Ch,i are considered as

one follower. In this context, HDVs can observe the CAVs’ actions and accordingly

choose their actions, while CAVs can optimize their actions based on the antici-

pated actions of HDVs. x0 denotes the initial state of all vehicles in the coalition

Ci. u⊤ is rewritten as u⊤ = [u⊤L ,u⊤F ]⊤, where uF ∈ R2|Ch,i| and uL ∈ R2|Cc,i| denotes

all the HDVs’ control input and all the CAVs’ control input respectively. u∗L and

u∗F are the optimal actions. ((UL,UF),(JL,JF)) denotes the single-leader single-

follower game with 2|Cc,i| CAVs (leader) and 2|Ch,i| HDVs (follower). JL and JF

represent the cost functions of the leader and follower, respectively. As can be seen

in chapter 3, the Stackelberg game yields the optimal strategies of CAVs subject to

the optimal response of the HDVs. The HDVs involved in the proposed game-based

framework do not need to follow a specific car-following model. Instead, the opti-

mized response of HDVs is more realistic and, as a result, could yield more reliable

control strategies for the CAVs.

To introduce the game-based control strategy, the joint dynamics of all the

vehicles in the coalition Ci based on (3.3) can be recast in the following form:

ẋ(t) = f (x(t),u(t)) (6.14)

where f (x(t),u(t)) = col
(

f1, . . . , f|Ci|
)
∈ R4|Ci| with

f j=
[
v j cosθ j v j sinθ j

v j tanϕ j
Lb

a j

]⊤
, j ∈ Ci. (6.15)

For the sake of further discussion, a linearized and discrete equation (6.14) is pre-

sented. The transformed linear system is expressed as:

x(k+1) = Adx(k)+Bdu(k), (6.16)
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where Ad = eA∆t ∈R4|Ci|×4|Ci|,Bd =
∫

∆t
0 eAtBdt ∈R4|Ci|×2|Ci|. xi(k)∈R4|Ci|,ui(k)∈

R2|Ci| denote the state and control input, respectively. A and B are given by

A =
∂ f
∂xi

∣∣∣∣
x(t),u(t)

, B =
∂ f
∂u

∣∣∣∣
x(t),u(t)

(6.17)

To tackle collision avoidance, each vehicle will be regarded as a convex hull

shown in Fig. 6.3, which can be expressed as:

O j(k) =
{

p(k) ∈ R2 : C j(k)p(k)≤ b j(k)
}

j ∈ Ci (6.18)

Given the lateral and longitudinal positions of j-th vehicle (p j,x, p j,y), and the

driving angle θ j, the matrices b j,C j can be expressed as follows:

b j =


p j,x cosθ j + p j,y sinθ j +L/2

−p j,x cosθ j− p j,y sinθ j +L/2

−p j,x sinθ j + p j,y cosθ j +Lw/2

p j,x sinθ j− p j,y cosθ j +Lw/2

 (6.19)

C j=

cosθ j −cosθ j −sinθ j sinθ j

sinθ j −sinθ j cosθ j −cosθ j

⊤ (6.20)

where L is the vehicle length, and Lw is the vehicle width.

Similarly, the road boundary set B containing two elements, the right bound-

ary and the left boundary, with each one regarded as the convex hull, which can be

given as:

Bk(k)=
{

p(k) ∈ R2 :Ck(k)p(k)≤ bk(k)
}
, k ∈ {r, l} (6.21)

with

Ck(k)=

 0 0 0 0

1 0 0 0

⊤ ,bk(k)=
[

Bk 0 0 0
]⊤

. (6.22)

The collision avoidance constraint can be written as

dist
(
O j(t),Oη(t)

)
≥ δη , j,η ∈ Ci (6.23)
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with

dist
(
O j(t),Oη(t)

)
=min

r

{
∥r∥ :

(
O j(t)

⊕
r
)
∩Oη(t) ̸=∅

}
(6.24)

denoting the distance between two vehicles (similarly for the distance between road

boundary and vehicles).

Figure 6.3: Convex hull of vehicles and road boundaries

According to [197], the collision avoidance can be guaranteed if the following

condition holds for all j ∈ Ci, η ̸= j,η ∈ Ci∪B

−b⊤η (k)νη(k)−b⊤j λ j(k)≥ δη , (6.25a)

C⊤η (k)νη(k)+C⊤j (k)λ j(k) = 0, (6.25b)

λ j(k)⪰ 0,νη(k)⪰ 0, (6.25c)∥∥∥C⊤j (k)λ j(k)
∥∥∥≤ 1. (6.25d)

Note δη is not a constant, instead it is a slack variable with

δη ≥ 0 (6.26)

Instead of imposing a hard constraint, δη is introduced such that vehicles have more

control freedom.
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The cost function of the HDV j in the coalition Ci where j ∈ Ch,i should also

include driving safety, driving comfort, driving destination, and traffic efficiency.

Therefore, the cost JF, j(x j,u j) can be given as

JF, j(x j,u j)=Jsa f
j +

∥∥u j
∥∥2

Qcom
j
+
∥∥p j,y−p j,d

∥∥2
Qdes

j
+
∥∥v j−vd

∥∥2
Qe f f

j
(6.27)

where Qcom
j ,Qdes

j ,Qe f f
j is the weight parameter for the driving comfort, destination

lane, and driving efficiency respectively. The term
∥∥u j
∥∥2

Qcom
j

is to realize comfort-

able driving,
∥∥p j,y− p j,d

∥∥2
Qdes

j
aims to achieve successful lane-changing behavior,

and
∥∥v j− vd

∥∥2
Qe f f

j
is to improve traffic efficiency. Jsa f

j is a driving safety cost for

the HDV j, it is defined as

Jsa f
j = Qsa f

j

η∈Ci∪B

∑
η ̸= j

1
δ 2

η +ξ
(6.28)

where Qsa f
j is the weight parameter for the driving safety, ξ is a small positive

constant, and δη is a slack variable in (6.25).

Thus the overall cost function for the follower JL in Ci will be expressed as

JF(xi(k),uF(k)) = ∑
j∈Ch,i

JF, j(x j(k),u j(k)) (6.29)

In order to ensure safety during the lane-changing, vehicle j, j ∈ Ci needs to

drive within its speed and acceleration limit, which can be expressed as

0 < v j(k)≤ vmax, (6.30a)

[amin,ϕmin]
⊤ ≤ u(k)≤ [amax,ϕmax]

⊤, (6.30b)

where ϕmax is the minimum and maximum steering angle of the front wheel, re-
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spectively. Thus the following optimization problem can be obtained:

u∗F = argmin
ui,F

Tf ut−1

∑
t=0

JF (x(t | k),uF(t | k)) (6.31a)

s.t. (6.16), (6.25), (6.26), (6.30) (6.31b)

This optimization problem (6.31) will be solved for HDVs (follower) in the coalition

i to find the optimal strategy. Tf ut is the control horizon. The CAVs (leader) will

then utilize this information to decide their optimal strategies based on data-enabled

predictive control.

6.3.3 Data-Enabled Predictive Control

Data-enabled predictive control can bypass the need for model identification, en-

suring safe and robust driving in unknown systems [44, 176, 179]. This approach

is applied to CAVs, helping the CC manage the heterogeneity present in different

CAVs, which are typically not accessible to the CC. In contrast, the movement of

HDVs is predicted using a model-based approach through the Stackelberg game.

Although numerous open datasets exist, accurately capturing the specific human

driver behavior encountered by a CAV remains challenging. Therefore, instead of

relying on data-driven control based on a predefined dataset, a general HDV model

is utilized. However, the uncertainty introduced by HDVs (deviation from the game

model) can be mitigated by incorporating a robustified design of the data-driven

controller that will be elaborated later.

According to [44], a valid length-L,(L ∈ N) trajectories of the linear sys-

tem (6.16) can be constructed using a length-T (T ∈ N) sequence, which consists

of the CAV input sequence ud
L = col

(
ud

L(1), . . . ,u
d
L(T )

)
∈ R2|Cc,i|T and the corre-

sponding state sequence xd = col
(
xd(1), . . . ,xd(T )

)
∈ R4|Ci|T . T > N. The Hankel

matrix plays a key role in data-enabled predictive control, therefore defined below.

Definition 6.1. The signal ω = col(ω(1),ω(2), . . . ,ω(T )) of length T,(T ∈ N) is
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exciting of order l,(l ≤ T, l ∈ N) if the following Hankel matrix

Hl(ω) :=


ω(1) ω(2) · · · ω(T − l +1)

ω(2) ω(3) · · · ω(T − l +2)
...

... . . . ...

ω(l) ω(l +1) · · · ω(T )

 (6.32)

is of full rank.

Denote Tini ∈N,Tf ut ∈N as the time length of past and future data, respectively.

Note that the length of future data Tf ut is equal to the control horizon of HDVs

(follower) in the Stackelberg game. The data Hankel matrices formulated from the

collected data (ud
L,x

d) are partitioned into two parts, which is corresponding to past

data and future data respectively: Up

Uf

 := HTini+Tf ut

(
ud

L

)
,

 Xp

Xf

 := HTini+Tf ut

(
xd
)
, (6.33)

where Up contains the first Tini block rows of HTini+Tf ut

(
ud

L
)

and U f contains the

last Tf ut block rows of HTini+Tf ut

(
ud

i,L

)
. Similarly, Xp and Xf consist of the first

Tini block rows and the last Tf ut block rows of HTini+Tf ut

(
xd) respectively. Each

column represents a length-Tini+Tf ut trajectory, with length-Tini past trajectory and

length-Tf ut future trajectory.

At each time step k, denote uini = col(uL(k−Tini),uL(k−Tini +1), . . . ,uL(k−

1)), u f = col(uL(k),uL(k + 1), . . . ,uL(k + Tf ut − 1)) as the past control sequence

with length Tini, and the future control sequence with length Tf ut (similarly for xini,

x f ).

Note that in our proposed framework, the future state of HDVs is inferred by

the Stackelberg game. This future state of HDVs, i.e. positions, accelerations, and

speeds will be used as future trajectories and control sequences in the data-enabled

predictive control of CAVs.

According to [200], col(uini,u f ,xini,x f ) is a length-Tini+Tf ut trajectory of sys-
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tem (6.16) if and only if there exists h ∈ RT−Tini−Tf ut+1 such that

h⊤
[
U⊤p X⊤p U⊤f X⊤f

]⊤
=
[
u⊤ini x⊤ini u⊤f x⊤f

]⊤
(6.34)

Equation (6.34) indicates that we can predict the future state sequence x f under

a future control input sequence u f directly from the collected data (ud
L,x

d), given

the past trajectory (uini,xini). From (6.34), future state trajectory can be predicted

without an explicit parametric model.

We consider the performance of all vehicles in the coalition i for controller

design. In particular, we use a quadratic cost function Jc
L(x,uL) to quantify the

overall performance by penalizing both the deviation from the desired state of all

the vehicles after the lane change maneuvers and control effort of the CAV uL,

defined as:

Jc
L(x,uL)=

t+Tf ut−1

∑
k=t

∥x(k)−xd∥2
Q +∥uL(k)∥2

R (6.35)

where Q = diag{q j}, j = 1,2, . . . ,4|Ci| and R = diag{rl}, l = 1,2, . . . ,2|Cc,i| with

q j ≥ 0, rl ≥ 0 are design weights of the rewards. Note that if a vehicle is HDV, its

corresponding entries in the control weight matrix R are 0. xd ∈R4|Ci| is the desired

state of all vehicles in the coalition i after the lane change maneuvers are finished. It

includes the target lateral positions, desired velocity, and the desired heading angle.

The safety cost Jsa f
L is designed similar with (6.28), which can be written as

Jsa f
L =

j∈Cc,i

∑
j

Jsa f
j (6.36)

Next, several constraints will be introduced for this data-enabled predictive

control. Firstly, for safety purposes, the velocity and the control input of each vehi-

cle in the coalition i are constrained by:

0 < v j(k)≤ vmax, (6.37a)

[amin,ϕmin]
⊤ ≤ uL(k)≤ [amax,ϕmax]

⊤, (6.37b)
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where k ∈
{

1, . . . ,Tf ut
}

, v j, j ∈ Cc,i is the velocity of each vehicle in the coalition i.

Note that given the cost function (6.8), the vehicles within each coalition are

relatively close to each other. Thus, the information of the HDVs such as positions,

velocities can be acquired by the CAV ζ via the roadside units without error and

delay. The coalition scheme is designed to group vehicles with potential conflicts

while separating those that are more distant or have non-conflict intentions (see

the cooperation willingness cost ℓwil
j in (6.9)). As a result, vehicles in different

coalitions tend to be spatially separated, reducing the overall risk of collision. Thus,

collision avoidance of vehicles in different coalitions is not considered. To further

enhance safety awareness, the weight parameter wwil
j of ℓwil

j (see (6.9) and (6.10))

can be adjusted to place greater emphasis on cooperation willingness.

In practice, linearization of the system can make (6.34) inconsistent. Thus,

we introduce a slack variable σ ∈ R6|Ci|(Tini+Tf ut) for the state of the system, which

guarantees the feasibility of the equality constraint (6.34), and then leads to the

following optimization problem:

min
h,uL,x,σ

Jc
L(x,uL)+λh∥h∥2

2 +λ ∥σ∥2
2 + Jsa f

L

s.t. h⊤
[
U⊤p X⊤p U⊤f X⊤f

]⊤
=
[
u⊤ini x⊤ini u⊤f x⊤f

]⊤
+σ⊤, (6.25), and (6.37).

(6.38)

Note (6.38) is a centralized optimization and is conducted by the CC. In (6.38),

the slack variable σ is penalized with a weighted quadratic penalty function and the

weight coefficient λ is chosen sufficiently large to ensure the feasibility of the equal-

ity constraint. Moreover, the norm penalty on h is also included to avoid overfitting

and reduce the complexity of the data-centric representation. The constraints (6.25),

(6.37) ensure the safety for the control of CAVs.

6.4 Simulation Validation

6.4.1 Simulation setup

In this section, the performance of the proposed control framework is evaluated

considering a group of CAVs and HDVs, which travel in three separate lanes, as
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shown in Fig. 6.4. Two case studies are conducted. In Case 1, there are 3 CAVs

and 3 HDVs. In Case 2, there are only 2 CAVs and 3 HDVs. In each case, the

initial lateral position of the vehicle in the first lane is 10m, and the initial lateral

position of the vehicle in the second lane is 5m, which also represents the center of

the destination lane of the CAV. Similarly, the initial lateral position of the vehicle

in the third lane is 0m. In each case, it is reasonable to set the desired velocities

of each vehicle at the maximum allowed speed, vmax (for a reduced travel time).

The dynamics of all HDVs follow the commonly used bicycle model. For vehicles

intending to change lanes, the desired lateral positions are the center of the target

lanes; otherwise, the desired lateral positions are the center of the original lanes.

With the target lateral positions, velocity, and steering angle, the desired state xi,d

can be specified for the problem.

Case 1 involves two scenarios with the same number and initial positions of the

vehicles but different velocities and lane-changing intentions. Each scenario con-

tains two experiments, in which two sets of typical experimental data representing

different driving aggressiveness are selected. The changes in acceleration decide

the aggressiveness. In the first experiment, all HDVs are conservative, while in the

second experiment, all HDVs are aggressive. In Case 1, the initial longitudinal po-

sition of CAV 1, HDV 2, CAV 3, HDV 4, HDV 5, and CAV 6 is 45m, 32m, 20m,

12m, 0m, 13m respectively. In the first scenario of Case 1 (Case 1.1), the initial

speeds of CAV 1 and HDV 2 are set to 14m/s, while the initial speeds of CAV 3,

HDV 4, and HDV 5 are set to 13m/s. The initial speed of CAV 6 is 12m/s. In the

second scenario of Case 1 (Case 1.2), the initial speed of CAV 1 is 13m/s, while

the initial speed of HDV 2, CAV 3, HDV 4, HDV 5, and CAV 6 is 14m/s. The

initial lateral positions and lane-changing intentions of each vehicle in Case 1 can

be found in Fig. 6.4.

Similar to Case 1, two experiments based on two different data sets are con-

ducted in Case 2. There are five vehicles, consisting of 2 CAVs and 3 HDVs. The

initial longitudinal position of CAV 1, HDV 2, CAV 3, HDV 4, and HDV 5 is 43m,

28m, 13m, 0m, 13m respectively. The initial speed of CAV 1, HDV 2, and CAV 3 is
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14m/s, while the initial speed of HDV 4 and HDV 5 is 13m/s. Similarly, the initial

lateral positions and lane-changing intentions of each vehicle in Case 2 are shown

in Fig. 6.4. The remaining vehicle parameters are summarized in Table 6.1.

HDV4

CAV1CAV3 HDV2

CAV6

HDV4

HDV5

CAV1HDV2CAV3

HDV5

CAV1HDV2CAV3

CAV6

HDV4HDV5

(a)

(b)

(c)

Figure 6.4: Lane-changing intentions of each vehicle and the final coalition structure in two
case studies. (a) Case 1.1, (b) Case 1.2, and (c) Case 2

The parameter setup for data-enabled predictive control is as follows. Offline

data collection: the length for the pre-collected trajectory is chosen as T = 800

with a sampling interval ∆t = 0.1s. The data has been widely used in existing

articles, modeling the vehicle lane-changing behaviors under the bicycle model.

When the average acceleration of a vehicle is larger than 3m/s2 it will be considered

aggressive, and when the average acceleration of a vehicle is smaller than 1m/s2 it

will be considered conservative. Real-time predictive control: the time horizons

for the future control sequence and past sequence are set to Tf ut = 5, Tini = 20

respectively. In (6.38), the parameters are set to λi = 10000 and λh = 10. In the cost

function (6.35), the weight coefficient matrix Qi and Ri are set to Qi = diag(Qi, j)

with Qi, j = diag(0,10,1,2), j ∈ Ci, and Ri = diag(Ri, j) with Ri, j = diag(10,1), j ∈

Ci.
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Table 6.1: Simulation parameters

symbol value description
∆t 0.1 s sampling time interval
L 4.6 m vehicle length
Lb 2.7 m vehicle wheelbase
Lw 1.8 m vehicle width
vmax 15 m/s maximum velocity
amax 5m/s2 maximum acceleration
amin −3m/s2 maximum acceleration
Br/Bl 2-.5 m/12.5 m right/left roadside boundary

6.4.2 Analysis of simulation results

As shown in Fig. 6.5, the total coalitional cost of two scenarios in Case 1 keeps

reducing, which implies the establishment of coalitions. In addition, the different

reducing trend means the different coalition structures. As can be seen in Fig. 6.4,

two different coalition structures are formulated in Case 1. In Case 1.1, three coali-

tions are formulated, while there are only two coalitions formed in Case 1.2, despite

the same initial positions of vehicles in the two scenarios. It can be concluded that

the coalition establishment does not depend solely on the distance between each

vehicle. Based on the settings of these two scenarios in Case 1, it can be inferred

that the difference in coalition structures comes from the various initial speeds and

the lane-changing intentions of each vehicle. For example, in Case 1.1, HDV 4 in-

tends to keep driving in the third lane, while HDV 5 intends to change to the first

lane, which has no conflict with the destination lane. These two vehicles have little

chance of collision and thus tend to stay in different coalitions. Things are different

in Case 1.2 when both HDV 4 and HDV5 intend to drive in the second lane. The

incurred collision risk keeps these two vehicles in one coalition. Moreover, CAV 3

will interact with HDV 4 and CAV 6 during its lane-changing procedure, and under

such circumstances, a coalition including CAV 3, HDV 4, HDV 5, and CAV 6 is for-

mulated in Case 1.2. In the same way, CAV 1 and HDV 2 always form a coalition

in Case 1.

In Case 2, two coalitions are formed, with a singleton coalition and another

coalition containing the remaining vehicles, which can be seen in Fig. 6.4. Although



6.4. Simulation Validation 122

both CAV 1 and HDV 2 intend to drive to the second lane, a singleton coalition

only consisting of CAV 1 is formulated. In particular, the collision risk between

CAV 1 and HDV 2 is small, despite the shorter distance between the two vehicles.

Therefore, CAV 1 and HDV 2 remain in different coalitions. In contrast, the initial

longitudinal speed of HDV 2 is less than that of CAV 3 that continues to drive in

the second lane. This may incur a larger collision risk, and thus these two vehicles

stay in one coalition. HDV 5 has a high collision risk with both CAV 3 and HDV 4,

which is obtained from their same destination lanes and a small distance between

each vehicle. Hence, all four vehicles form one coalition.

1 2 3 4 5 6 7 8 9 10 11

1

1.1

1.2

10
4

Case1-1 Case1-2 Case2

Figure 6.5: The total coalitional cost in three scenarios of two case studies

As can be seen in Figs. 6.6(a) and 6.7(a), each vehicle successfully changed

lanes in both experiments of Case 1.1. The differences between Fig. 6.8(a) and

Fig. 6.9(a), Fig. 6.10(a) and Fig. 6.11(a) show that CAVs adopt various lane change

strategies when HDV driving behaviors differ. Both CAV 1 and HDV 2 accelerate

to change lanes in each experiment. The difference is that HDV 2 in the second

experiment drives more aggressively, and thus CAV 1 takes a larger acceleration to

keep enough distance from HDV 2. The two vehicles adopt such strategies because

they can reach their destination lanes faster and there is enough space to prevent col-

lisions in both experiments. CAV 3 merges in front of HDV 4 in both experiments,

although HDV 4 adopts different acceleration strategies. Specifically, conservative

HDV 4 will decelerate and then maintain a relatively slow speed to give way to

CAV 3 when they become closer to each other. On the contrary, the aggressive

HDV 4 will accelerate in the beginning but decelerate when approaching CAV 3.

Accordingly, CAV 3 takes a slower lane-changing in the first experiment than in the
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Figure 6.6: Trajectory of each vehicle in two case studies when HDVs are conservative. (a)
is the result in Case 1.1, (b) is the result in Case 1.2, and (c) is the result in the
Case 2

second. HDV 5 merges behind CAV 6 in both experiments despite its initial speed

advantage over CAV 6. The aggressive HDV 5 in the second experiment changes

to its destination lane with a larger acceleration compared to the conservative one

in the first experiment. CAV 6 also drives faster in the second experiment to make

enough space for HDV 5.

In both experiments of Case 1.2, all vehicles conduct successful lane-changing

maneuvers, which is illustrated in Fig. 6.6(b), and Fig. 6.7(b). CAVs utilize different

strategies in the two experiments, as shown by the differences between Fig. 6.8(b)

and Fig. 6.9(b), Fig. 6.10(b) and Fig. 6.11(b). In the coalition consisting of CAV 1

and HDV 2, HDV 2 merges behind CAV 1 in both experiments, despite its faster

initial speed. This is because the positional advantage of CAV 1 over HDV 2 is

large, making it difficult for HDV 2 to overtake CAV 1 even for the aggressive one.

As for the coalition consisting of the other four vehicles, HDV 4 merges in front

of HDV 5 in both experiments, where HDV 4 adopts a larger acceleration in the
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Figure 6.7: Trajectory of each vehicle in two case studies when HDVs are aggressive. (a)
is the result of Case 1.1, (b) is the result of Case 1.2, and (c) is the result of
Case 2

second experiment when HDV 5 is also aggressive. CAV 3 merges in front of CAV

6 in both experiments as its positional advantage over CAV 6 is enough to perform

such a merging behavior. The difference is that CAV 3 takes a larger acceleration

to facilitate the lane-changing of HDV 4 in the second experiment than in the first

one. Consequently, CAV 6 reaches the desired velocity in a shorter time when CAV

3 ahead finishes the lane change with a higher acceleration.

As shown in Fig. 6.6(c), and Fig. 6.7(c), all vehicles in both experiments of

Case 2 conduct successfully change lanes. As illustrated in Fig. 6.8(c), Fig. 6.9(c),

Fig. 6.10(c) and Fig. 6.11(c), CAV 3 gives way to the lane-changing of HDV 2 in

both experiments regardless of the different driving behaviors of HDV 2. In the first

experiment, CAV 3 drives with a bigger acceleration than in the second experiment,

as the aggressive HDV 2 changes to the second lane immediately and maintains

enough distance from CAV 3. Unlike HDV 2, HDV 5 merges behind CAV 3 in both

experiments. The reason is that there is no positional advantage of HDV 5 over



6.4. Simulation Validation 125

12

13

14

15

CAV1

HDV2

CAV3

HDV4

HDV5

CAV6

12

13

14

15

CAV1

HDV2

CAV3

HDV4

HDV5

CAV6

0.5 1  1.5 2  2.5 3  3.5 4  4.5
12

13

14

15

CAV1

HDV2

CAV3

HDV4

HDV5

Figure 6.8: Speed of each vehicle in two case studies when HDVs are conservative. (a) is
the result in Case 1.1, (b) is the result in Case 1.2, and (c) is the result in the
Case 2

CAV 3 and the initial speed of HDV 5 is slower than that of CAV 3. It is impractical

for HDV 5 to overtake CAV 3, even for the aggressive one. The conservative HDV

4 decelerates and then drives slowly to give way to the merging of HDV 5 in the first

experiment, while the aggressive HDV 4 will accelerate at first and then decelerate

when approaching HDV 5 in the second experiment. In both experiments, HDV 5

merges in front of HDV 4.

Further simulations are conducted to demonstrate the computational efficiency

of our proposed method. For a fair comparison, the method that optimizes the trajec-

tories of all vehicles involved in lane-changing as a whole is used as the benchmark.

Each experiment runs 5 times to calculate the average running time for each step.
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Figure 6.9: Speed of each vehicle in two case studies when HDVs are aggressive. (a) is the
result in Case 1.1, (b) is the result in Case 1.2, and (c) is the result in the Case 2

The computation time of coalition establishment is also included. In addition, the

average distance to finish lane-changing is also compared. The computation time

for coalition establishment in Case 1.1, Case 1.2, and Case 2 are 1.67s, 1.59s, and

1.34s respectively. As shown in Table 6.2, the average running time for each step of

our proposed method is about 60ms and slightly increases with the increased num-

ber of vehicles. This running time is smaller than the sampling time interval ∆t,

indicating the real-time applicability of the proposed method. Next, the benchmark

method is taken for comparison, with an average running time of 0.3s. This running

time is larger than ∆t and grows sharply when the number of vehicles increases from

5 to 6. Even with computation time for coalitions, the proposed method is still more

computationally efficient than the benchmark method. Meanwhile, as shown in Ta-
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Figure 6.10: Acceleration of each vehicle in two case studies when HDVs are conservative.
(a) is the result in Case 1.1, (b) is the result in Case 1.2, and (c) is the result in
the Case 2

ble 6.3, the average distance to finish lane-changing of the two methods is similar,

indicating our proposed method achieves a comparable good performance.

Table 6.2: Average running time for each step of two methods

Proposed Method Benchmark Method
Case 1.1 61.23 ms 472.4 ms
Case 1.2 62.18 ms 463.6 ms
Case 2 60.72 ms 302.1 ms

6.4.3 HIL simulation

In this section, to better emulate human drivers’ behaviors and show the real-time

performance of our proposed method, two HIL experiments are conducted based on
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Figure 6.11: Acceleration of each vehicle in two case studies when HDVs are aggressive.
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the Case 2

Figure 6.12: Human in the loop driving simulator.
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Figure 6.13: HIL trajectory of each vehicle in Case 1.1. (a) is the result when HDVs are
conservative, (b) is the result when HDV are aggressive
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Figure 6.14: HIL trajectory of each vehicle in Case 1.1 when HDVs are conservative. (a)
is the acceleration, (b) is the velocity
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Table 6.3: Average distance to finish lane-changing of two methods

Proposed Method Benchmark Method
Case 1.1 58.24 m 57.96 m
Case 1.2 57.65 m 56.88 m
Case 2 56.83 m 56.31 m
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Figure 6.15: HIL trajectory of each vehicle in Case 1.1 when HDVs are aggressive. (a) is
the acceleration, (b) is the velocity

Case 1.1. For simulating the three HDVs in the HIL experiment, three experienced

human drivers simultaneously controlled three driver simulators (see Fig. 6.12),

each performing real-time operations to mimic realistic driving behavior. In each

experiment, drivers were instructed to accelerate to the desired velocity vmax and to

reach the destination lanes, in accordance with the game cost function (6.27). To

examine different driving behaviors, all drivers were asked to adopt conservative

behaviors in one experiment and aggressive behaviors in the other. Conservative

driving is characterized by gradual acceleration changes, whereas aggressive driv-

ing involves sharper variations in acceleration.

Each driving simulator includes three 65-inch displays, a Logitech G29 steer-

ing wheel, a throttle/brake pedal, and other components. The computer is equipped
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with an Inter Core i5-10500 CPU, featuring 6 cores and 12 threads. This hardware

configuration efficiently handled real-time vehicle control and interactions. The vir-

tual scenarios are built in PreScan GUI, and all the construction of vehicle models

and algorithms is completed on the Simulink platform. The parameter setup is the

same as the parameters in Section 6.4.1.

As shown in Figs. 6.13 – 6.15, our proposed method is feasible and real-time

applicable. Moreover, the performance of HIL experiments shown in Fig. 6.13

and Fig. 6.14 is not as smooth as the results shown in Fig. 6.8 to Fig. 6.11 (i.e.

speed and acceleration). This is due to disturbances and lags involved in the sensors

and experimental equipment used in the HIL setup, and the potential nonsmooth

behavior introduced by the human pilots.

6.5 CONCLUSIONS
This chapter introduces a two-layer hierarchical control architecture for multi-

vehicle lane-changing in mixed autonomy, which expands the single vehicle lane-

changing control in Chapter 5 and completes the overall control framework pro-

posed in this thesis. In the upper layer, vehicles are divided into different coali-

tions by the intersection controller based on vehicle states and lane-changing in-

tentions, which could facilitate lane-changing while reducing the computation bur-

den of global coordination. In the lower layer, the Stackelberg game is utilized

to model the interactions between CAVs and HDVs within each coalition in the

lane-changing scenario. Considering the modeling uncertainty, CAVs are governed

by data-enabled predictive control, bypassing the system identification of complex

environmental uncertainties instead of game-based optimal strategies.

In simulations, two case studies that contain HDVs with different driving styles

are comprehensively analyzed. The results show that all vehicles perform success-

ful lane-changing without colliding with other vehicles in each scenario. Moreover,

HIL experiments are also conducted to show the feasibility and real-time perfor-

mance of our proposed method.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Urban traffic coordination is a complex challenge due to the large number of ve-

hicles involved, and this challenge becomes even greater in mixed traffic environ-

ments where both HDVs and CAVs coexist. This thesis proposes the urban traffic

coordination framework shown in Fig. 1.4 to deal with the mixed traffic problem.

By dividing the roads into the car-following zone and the lane-changing zone, this

framework can decouple the traffic coordination problem into sub-problems, which

can be solved efficiently through two separate control modules. The signal-vehicle

coupled control module and the lane-changing control module are developed re-

spectively for the car-following zone and the lane-changing zone in Fig. 1.4, with

scalability and environmental impact considerations.

The signal-vehicle coupled control module is introduced in Chapter 4, where

a two-layer intersection signal-vehicle coupled coordination scheme for joint con-

trol of intersection SPAT and speed trajectory of CAV and HDV is proposed. The

method is developed based on a CAV-led mixed platoon model, where the motion

of the HDVs is governed by a linearized intelligent driver model. In addition to the

SPAT, the target platoon velocity and the number of passing platoons are continu-

ously updated in the upper layer to minimize the total waiting time. Subsequently,

the intersection controller utilizes the SPAT information to conduct optimal con-

trol of the mixed platoon within the control zone by manipulating the speed of the
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leading CAVs. In addition, the benefit of our newly developed method is shown by

comparisons with various traditional strategies. Additionally, the impacts of inter-

section traffic density, flow distribution, and the penetration rates of CAV and EV

are investigated by comprehensive simulation trials.

The lane-changing control module is introduced in Chapter 5 and Chapter 6. In

particular, a simple mixed traffic lane-changing scenario that contains one CAV and

one HDV is considered in Chapter 5. A game-based lane change framework is pro-

posed for the CAV, where the Stackelberg game method is used to model the inter-

action between HDVs and CAVs. An optimal strategy is designed, which is further

shown to provide the asymptotically stable equilibrium point. The condition under

which the optimal strategy can render the collision avoidance set invariant is pro-

vided. Numerical results show that the CAV can conduct a successful and safe lane

change without colliding with the HDV. To extend the work proposed in Chapter 5,

Chapter 6 introduces a two-layer hierarchical control architecture for multi-vehicle

lane-changing in mixed autonomy. In particular, a game-based coalition formation

is proposed in the upper layer, which could facilitate lane-changing control in the

lower layer, and can significantly improve computation efficiency compared with

the benchmark method that optimizes the trajectories of all vehicles involved in

lane-changing as a whole. In the lower layer, a Stackelberg game-based framework

is utilized to model the interaction between CAVs and HDVs, where both types of

vehicles can change lanes. To enhance robustness against modeling uncertainty, a

data-enabled predictive control is applied to CAVs. Numerical simulations and HIL

experiments are conducted based on data representing different driving behaviors,

whose results demonstrate the effectiveness of our proposed framework in various

lane-changing scenarios involving HDVs with different aggressiveness.

7.2 Future Work

In the near future, multimodal urban transport involving different modes of trans-

portation (like pedestrians, bicycles, and trains) will be mainstream. Enhancing the

overall efficiency and safety of such complex systems, involving large numbers of
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participants, will require the collection and analysis of vast amounts of data. To

make use of this data and be computationally efficient, the AI-based methods and

edge-cloud distributed control architectures will be utilized. However, the resilience

to Cyber-Physical threats and communication delays is a big concern. As connec-

tivity increases, so do vulnerabilities. Future studies should address cybersecurity

risks and develop methods to remain robust against communication loss. The ex-

plainable AI should be pursued as a future research direction for AI-based traffic

coordination. Further investigation should focus on developing interpretable AI

models for CAVs’ decisions, which is crucial for regulatory compliance and public

trust, particularly in case scenarios (e.g., unpredictable pedestrians).

Large-scale traffic optimization in mixed urban traffic environments is needed.

A feasible method is to decouple the network-level optimization into a series of

sub-optimization problems, which greatly reduces the computational burden, but

losing guarantees of global optimality. Thus, balancing the optimality and the com-

putational efficiency in network-level traffic control is one of our future research

directions. Another way is to develop a hierarchical control framework, which may

contain the path planning layer, decision-making layer, SPAT optimization layer,

etc. How to ensure reliability across different layers is a common issue. The the-

oretical analysis of these methods is worth further investigation. Moreover, traffic

control at different levels is another important future research direction. For ex-

ample, the SPAT control at the network level and the mixed-platoon formation at

the arterial level are interdependent. Traffic control at different levels can jointly

influence the operation of overall traffic networks. Future research may integrate

different levels of traffic control to improve overall traffic efficiency by building a

multi-level model. This multi-level model, combining macroscopic, mesoscopic,

and microscopic control with consideration of various road users, should be devel-

oped to address different optimization objectives.

In addition, human uncertainties should also be considered more comprehen-

sively in future research. The uncertainty of HDVs should be included in the theo-

retical analysis. For example, distributionally robust chance constraints can be used
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to model human uncertainty and perform robustness analysis. The estimation of

HDVs’ aggressiveness should also be included to make the analysis more realistic.

The rationality of humans is another concern. For example, in many game-based

methods, humans are always assumed to be fully rational (i.e., human drivers acti-

vate turn signals before lane-changing), which is not always the case. The bounded

rationality or irrationality of humans should be considered in future research. Fi-

nally, real vehicle testing is crucial to validate the robustness against human uncer-

tainty. Restricted by experimental sites and equipment, few such tests have been

conducted. Thus, large-scale mixed autonomy on-road simulation should be further

conducted to validate the robustness under complex environments.
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bust output feedback model predictive control of constrained linear systems.

Automatica, 42(7):1217–1222, 2006.

[72] David Q Mayne, Marı́a M Seron, and Saša V Raković. Robust model predic-
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