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Fluid Antenna Enabled Space-Time Block Coding
With Achievable Rate Optimization

Shuaixin Yang, Yue Xiao, Ping Yang, Jiangong Chen, Saviour Zammit, Hyundong Shin, and Kai-Kit Wong

Abstract—The conventional space-time block coding (STBC)
technique offers advantages such as low detection complexity
and full-diversity transmission while suffering from a reduced
achievable rate. Inspired by the novel concepts of fluid antennas
(FAs) exploiting extra spatial flexibility, we propose to maximize
the STBC achievable rate by jointly optimizing the positions of
transmit and receive FAs. In order to solve the corresponding
highly non-convex problem, an alternating optimization (AO)
algorithm based on successive convex approximation (SCA) is
employed to obtain a locally optimal solution. Simulation results
reveal the superiority of the FA-enabled STBC (FA-STBC) system
over its fixed-position antenna (FPA) and STBC counterparts
within limited FA regions.

Index Terms—Achievable rate, space-time block coding
(STBC), fluid antenna (FA), alternating optimization (AO), suc-
cessive convex approximation (SCA).

I. INTRODUCTION

THE space-time block coding (STBC) technique [1]–
[3], as a pivotal paradigm of multiple-input multiple-

output (MIMO) systems, fundamentally enhances wireless
communication reliability by capitalizing on both spatial and
temporal diversity. Its advantages—specifically, the ability to
achieve full diversity gain coupled with the inherent linearity
in detection complexity—render it a highly suitable candidate
for deployment in communication scenarios where stringent
reliability requirements are paramount, such as ultra-reliable
low-latency communications (uRLLC) and massive machine-
type communications (mMTC). However, in light of the ex-
ponential growth of Internet of Everything (IoE) services, the
need for significantly higher achievable rates in future wireless
systems has become increasingly urgent [4], [5]. Despite
having a plethora of studies on STBC systems, their practical
constraint of degradation in achievable rate when compared to
the conventional Vertical Bell Labs Space-Time (V-BLAST)
architecture [6], which ultimately constrains its applicability in
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high-throughput contexts and hindering its ability to meet the
evolving demands of next-generation communication systems,
have received limited attention, despite the many-fold benefits
of STBC systems.

Meanwhile, the concept of fluid antennas (FAs) was recently
introduced in [7] as a novel means to fully exploit the spatial
variability of wireless channels by enabling antenna move-
ment. Unlike conventional fixed-position antennas (FPAs)
confined to static configurations, FAs possess the ability to
traverse a restricted area on the panel, thereby offering a
significantly higher degree of adaptability and operational
flexibility [8]. Distinct from reconfigurable antenna techniques
altering internal antenna states (e.g., patterns/polarization) for
goals like diversity [9] or instantaneous SNR [10], FA’s adapt-
ability stems fundamentally from optimizing their physical
position. This spatial flexibility is made possible through
various enabling technologies, such as motors, fluid-based
systems, microelectromechanical systems (MEMS) [11], pixel-
based antenna arrays and pinching antennas [12]. Conse-
quently, the integration of FA technology holds the potential to
substantially enhance both the adaptability and performance of
next-generation wireless communication systems, particularly
in dynamic environments where traditional antenna systems
struggle to maintain the optimal performance.

Building upon these aforementioned advantages, FA sys-
tems have garnered significant attention in the academic field
of wireless communications, prompting a series of studies aim-
ing at advancing spatial diversity and enhancing multiplexing
capabilities. For instance, in [13], the authors explored the
application of position index modulation (PIM) within FA
systems, proposing a strategy to mitigate bit error rate (BER)
while simultaneously capitalizing on the rate gains inherent to
index modulation. Furthermore, Ref. [14] introduced a method
to boost the achievable rate of FA-enabled MIMO systems by
jointly optimizing both the positions of transmit and receive
FAs and the covariance of the transmit signals, thereby facil-
itating more efficient communication. Additionally, in [15], it
was demonstrated that FA systems could not only simplify
the processing of reconfigurable intelligent surfaces (RIS)
but also enhance their effectiveness in scenarios where only
statistical channel state information (CSI) is available, offering
a promising approach for reducing system complexity without
compromising performance.

Drawing inspiration from the preceding discussion, this pa-
per explores the potential enhancement of the achievable rate
of STBC systems through the integration of FAs. Specifically,
we address the problem of maximizing the achievable rate
in STBC systems by concurrently optimizing the positions
of both transmit and receive FAs. To solve this, we adopt
an alternating optimization (AO) framework, decomposing
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the problem into two distinct sub-problems. Subsequently,
second-order Taylor expansions are employed to derive a sub-
optimal solution for the position optimization of both transmit
and receive FAs. To the best of the authors’ knowledge,
this study marks the first attempt to exploit the dynamic
positioning capabilities of FA systems as a means to enhance
the performance of STBC, offering a novel perspective in the
optimization of communication systems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Channel Model of FA Systems
We consider an FA-enabled MIMO system with Nt transmit

and Nr receive FAs, respectively, and resort to the field-
response-based channel model [13].

More specifically, the numbers of transmit paths and receive
paths are denoted as Lt and Lr, respectively, and the sig-
nal propagation difference between the transimit FA position
t = [xt, yt]

T ∈ Ct with Ct being the region for the movement
of transmit FAs, and the reference point ot = [0, 0]T for the
p-th (p = 1, 2, . . . , Lt) transmit path can be calculated as
ρpt (t) = xt sin θ

p
t cosϕ

p
t + yt cos θ

p
t , where θpt and ϕp

t denote
the elevation and azimuth angle of departures (AoDs), respec-
tively. Therefore, the phase difference of the p-th transmit path
between the position of the transmit FA and reference point
ot can be further represented as 2πρpt (t)/λ, where λ is the
wavelength of the signal. Thus, the transmit field response
vector of the transmit FA is given by

g(t) ≜
[
ej

2π
λ ρ1

t (t), ej
2π
λ ρ2

t (t), . . . , ej
2π
λ ρ

Lt
t (t)

]T
∈ CLt . (1)

To facilitate subsequent derivations, we define the field
response matrix of all Nt transmit FAs as

G(t̃) ≜ [g (t1) ,g (t2) , . . . ,g (tNt
)] ∈ CLt×Nt . (2)

Similarly, at the receiver side, the elevation and azimuth
angle of arrival (AoAs) of the q-th (q = 1, 2, . . . , Lr) receive
path are represented as θqr ∈ [0, π] and ϕq

r ∈ [0, π], respec-
tively. The field response vector of the receive FA is given
by

f(r) ≜
[
ej

2π
λ ρ1

r(r), ej
2π
λ ρ2

r(r), . . . , ej
2π
λ ρLr

r (r)
]T

∈ CLr , (3)

where ρqr(r) = xr sin θ
q
r cosϕ

q
r + yr cos θ

q
r is the propagation

difference for the q-th receive path between the receive FA
r = [xr, yr]

T ∈ Cr with Cr being the region for the movement
of receive FAs and the reference point or = [0, 0]T . Then, the
corresponding receive field response matrix is

F(r̃) ≜ [f (r1) , f (r2) , . . . , f (rNr )] ∈ CLr×Nr . (4)

The matrix describing the path response from the reference
point of the transmit region ot to the reference point of the
receive region or is established as Σ ∈ CLr×Lt , where Σq,p

represents the field response between the p-th transmit path
and the q-th receive path. Hence, the channel matrix between
the transmitter and receiver is given by

H(t̃, r̃) = F(r̃)HΣG(t̃). (5)

The construction of Σ with varied structures facilitates the
characterization of different types of channels, including line-
of-sight (LoS), geometric, Rayleigh, and Rician channels.

B. MIMO and STBC Achievable Rate of FPA Systems
1) MIMO Achievable Rate: Assuming that channel state

information (CSI) is available at the transmitter side, the
MIMO achievable rate can be written as

C = log2 det

(
INr +

P

N0Nt
HQHH

)
, (6)

where INr
is an identity matrix of dimension Nr, Q is

transmit covariance matrix which can be obtained by water-
filling technique, P is the average transmit power, and N0 is
the noise power. It can be lower bounded by

C ≥ log2 det

(
INr

+
P

N0Nt
HHH

)
= log2

(
1 +

P

N0Nt
∥H∥2F + S

)
,

(7)

where S =
(

P
N0Nt

)2 i1<i2∑
i1 ̸=i2

σ2
i1
σ2
i2
+
(

P
N0Nt

)3 i1<i2<i3∑
i1 ̸=i2 ̸=i3

σ2
i1
σ2
i2
σ2
i3
+

· · · +
(

P
N0Nt

)R R∏
i=1

σ2
i , R is the rank of H, and {σi}Ri=1 are

the non-zero singular values of H.
2) STBC Achievable Rate: According to [6], the achievable

rate of STBC systems can be obtained as

CSTBC =
K

T
log2

(
1 +

P

N0Nt
∥H∥2F

)
, (8)

where K represents the number of distinct baseband symbols
contained within the STBC codeword, T denotes the number
of time slots occupied by the STBC, and K

T signifies the
corresponding code rate.

By comparing (7) and (8), the reduction of the achievable
rate can be calculated as
C − CSTBC

≥ T−K
T log2

(
1 + P

N0Nt
∥H∥2F

)
+ log2

(
1 + S

1+ P
N0Nt

∥H∥2
F

)
,

(9)
which is greater than 0. As will be demonstrated in the sub-
sequent analysis, even when the size of the movable region is
limited to a scale on the order of the square of the wavelength,
small adjustments in antenna positions can yield substantial
improvements, effectively compensating for the inherent rate
degradation typically associated with such constraints.

C. Problem Formulation
FAs endow the transceiver with the ability to actively

improve channel conditions. By leveraging the degrees of
freedom induced by antenna movement, the STBC achiev-
able rate can be enhanced, thereby overcoming the inherent
limitations of the STBC scheme. This approach is capable
of achieving higher achievable rate while maintaining low-
complexity detection and full-diversity transmission.

To explore the theoretical achievable rate limit of STBC
systems enhanced by FAs, it is assumed that perfect knowledge
of the multi-path channel components is available. Conse-
quently, the achievable rate of the FA-enabled STBC (FA-
STBC) channel with flexible positions can be expressed as

CSTBC(t̃, r̃) =
K

T
log2

(
1 +

P

N0Nt

∥∥H(̃t, r̃)
∥∥2
F

)
. (10)

This article has been accepted for publication in IEEE Communications Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2025.3571792

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University College London. Downloaded on June 04,2025 at 15:34:20 UTC from IEEE Xplore.  Restrictions apply. 



3

Unlike conventional MIMO channels with FPAs, the achiev-
able rate of FA-STBC systems in (10) relies on the positions
of the transmit and receive FAs t̃, r̃ as they directly impact
the channel matrix H(t̃, r̃).

To prevent the coupling effect among antennas within the
transmit/receive region, it is necessary to maintain a minimum
separation distance D between each antenna pair, such that the
Euclidean distance between any two transmit antennas tk and
tl satisfies ∥tk−tl∥2 ≥ D for k, l = 1, 2, ..., Nt, k ̸= l, and the
distance between any two receive antennas rk and rl satisfies
∥rk − rl∥2 ≥ D for k, l = 1, 2, ..., Nr, k ̸= l. Consequently,
our objective is to enhance the achievable rate of an FA-STBC
channel by simultaneously optimizing the positions of the FAs
t̃, r̃ within the constraints imposed by the minimum distance
requirements for the FA positions.

Based on the above discussion, the optimization problem
can be formulated as

(P1) max
t̃,r̃

K

T
log2

(
1 +

P

N0Nt

∥∥H(t̃, r̃)
∥∥2
F

)
(11a)

s.t. t̃ ∈ Ct, (11b)
r̃ ∈ Cr, (11c)
∥tk − tl∥2 ≥ D, k, l = 1, 2, . . . , Nt, k ̸= l,

(11d)
∥rk − rl∥2 ≥ D, k, l = 1, 2, . . . , Nr, k ̸= l.

(11e)

Given the positive correlation between STBC achievable
rate and channel gain

∥∥H(t̃, r̃)
∥∥2
F

, maximizing STBC achiev-
able rate is equivalent to maximizing the corresponding chan-
nel gain. Therefore, the optimization problem (P1) can be
reformulated as

(P2) max
t̃,r̃

∥∥H(t̃, r̃)
∥∥2
F

(12)

s.t. (11b), (11c), (11d), (11e).

III. PROPOSED ALGORITHM

In this section, we present an AO algorithm to solve (P2).
Two subproblems are solved in the sequel, which respectively
optimize the transmit FA position tn and the receive FA
position rm, with all the other variables being fixed. The AO
algorithm devised can guarantee a solution that is at least
locally optimal for (P2).

A. Optimization of tn given {tk, k ̸= n}Nt

k=1 and {rm}Nr
m=1

In this subproblem, we will consider the optimization of
tn in (P2) given {tk, k ̸= n}Nt

k=1 and {rm}Nr
m=1. Initially, we

consider isolating the impact of tn on channel gain from the
objective function. In particular, this can be achieved through
some mathematical derivations as∥∥∥F(r̃)HΣG(t̃)

∥∥∥2
F
= g(tn)

HΣHF(r̃)F(r̃)HΣg(tn) + Ct
1,

(13)

where Ct
1 =

Nt∑
i=1,i̸=n

∥∥∥F(r̃)HΣg(ti)
∥∥∥2
2

is a constant indepen-

dent of tn. By defining

D = ΣHF(r̃)F(r̃)HΣ, (14)

the subproblem for optimizing tn can be expressed as

(P3-n) max
tn

g(tn)
HDg(tn) (15a)

s.t. tn ∈ Ct, (15b)
∥tn − tk∥2 ≥ D, k = 1, 2, . . . , Nt, k ̸= n.

(15c)
It is evident that the objective function of (P3-n) is neither

convex nor concave with respect to tn, and the minimum
distance constraints exhibit the same characteristics. Con-
sequently, (P3-n) remains a highly non-convex optimization
problem, posing significant challenges to its solution.

To address the issue, we adopt successive convex approxi-
mation (SCA) for the optimization of tn. A lower bound for
the objective function of (P3-n) is given by

g (tn) ≜g(tn)
HDg(tn)

≥g
(
tin
)
+ 2Re

{
g
(
tin
)H

D
(
g (tn)− g

(
tin
))}

=2Re
{
g
(
tin
)H

Dg (tn)
}
+ Ct

2,

(16)
where tin is the position of tn in the i-th iteration and
Ct

2 = −g
(
tin
)H

Dg
(
tin
)

is a constant that is independent
of tn. Thus, maximizing g (tn) is equivalent to maximizing
ḡ (tn) ≜ Re{g(tin)HDg(tn)}, which can be lower-bounded
by its second order expansion as

ḡ (tn) ≥−δtn
2
tTn tn +

(
∇ḡ

(
tin
)
+ δtnt

i
n

)T
tn

+ Ct
3,

(17)

where δtn is a positive real number satisfying δtnI2 ⪰ ∇2ḡ(tn)

and Ct
3 = ḡ

(
tin
)
− δtn

2

(
tin
)T

tin is a constant term indepen-
dent of tn. Evidently, maximizing ḡ (tn) can be converted
to maximizing g̃ (tn) ≜ − δtn

2 tTn tn +
(
∇ḡ

(
tin
)
+ δtnt

i
n

)T
tn.

To this end, in the i-th iteration of SCA, the optimization
subproblem for determining the n-th transmit FA position tn
can be relaxed as

(P4-n) max
tn

−δtn
2
tTn tn +

(
∇ḡ

(
tin
)
+ δtnt

i
n

)T
tn (18)

s.t. (15b), (15c).

The closed-form global optimum can be obtained by ignor-
ing the non-convex constraints (15b), (15c) since (18) is con-
cave over tn. By setting ∇g̃ (tn) = −δtntn +∇ḡ

(
tin
)
+ δtnt

i
n

to zero, we can obtain the optimal solution as

t∗n,i+1 =
1

δtn
∇ḡ

(
tin
)
+ tin. (19)

If t∗n,i+1 satisfies (15b) and (15c), it is the global optimum
for (P4-n). Otherwise, no optimal solution can be obtained due
to the non-convex constraint (15c), and we alternatively resort
to obtaining a sub-optimal local maximum by applying convex
relaxation to constraint (15c). More precisely, by conducting
the first-order Taylor expansion of the convex function with
respect to tn, we can derive a lower bound of ∥tn − tk∥2 as

∥tn − tk∥2 ≥
∥∥tin − tk

∥∥
2
+
(
∇

∥∥tin − tk
∥∥
2

)T (
tn − tin

)
=

1∥∥tin − tk
∥∥
2

(
tin − tk

)T
(tn − tk) ,

(20)
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thereby allowing convex relaxation of the constraint to

1∥∥tin − tk
∥∥
2

(
tin − tk

)T
(tn − tk) ≥ D, (21)

and furthermore, (P4-n) can be transformed into

(P5-n) max
tn

−δtn
2
tTn tn +

(
∇ḡ

(
tin
)
+ δtnt

i
n

)T
tn (22a)

s.t.
1∥∥tin − tk

∥∥
2

(
tin − tk

)T
(tn − tk) ≥ D,

k = 1, 2, . . . , Nr, k ̸= n, (22b)
(15b),

which is a convex quadratic programming (QP) problem and
can be efficiently solved.

B. Optimization of rm given {rl, l ̸= m}Nr

l=1 and {tn}Nt
n=1

In this subproblem, we will consider the optimization of
rm in (P2) given {rl, l ̸= m}Nr

l=1 and {tn}Nt
n=1. Similar to the

approach in Section III-A, we first isolate the impact of the
receive antenna positions on the objective function of (P2) as∥∥∥G(t̃)

H
ΣF(r̃)

∥∥∥2
F
= f(rm)HΣHG(t̃)G(t̃)HΣf(rm) + Cr

1 ,

(23)

where Cr
1 =

Nr∑
i=1,i̸=m

∥∥∥G(t̃)
H
Σf(ri)

∥∥∥2
2

is a constant indepen-

dent of rm. It can be observed that the effective terms in
(23) share the same structure as that in (15a). Therefore, the
optimization sub-problem for rm can be formulated as

(P6-m) max
rm

f(rm)HBf(rm) (24a)

s.t. rm ∈ Cr, (24b)
∥rm − rl∥2 ≥ D, l = 1, 2, . . . , Nr, l ̸= m,

(24c)

where
B = ΣHG(t̃)G(t̃)HΣ. (25)

Similarly, the formulations of problems (P6-m) and (P3-n)
have the same form. Consequently, by adhering to the same
procedure in Section III-A, a locally optimal solution can be
obtained, a detailed exposition of which is omitted herein for
brevity. The overall algorithm is summarized in Algorithm 1.

C. Complexity Analysis

The computational complexity of Algorithm 1 is analyzed as
follows. In Step 2, the computational complexity for obtaining
D is O (NrLt) and from Steps 3 to Step 5, the corresponding
complexity to determine all positions of the transmit FAs is
O
(
NtLtγ

1
t +N2.5

t ln (1/β) γ2
t

)
, where γ1

t and γ2
t represent

the maximum numbers of inner iterations for Step 1 and
Step 5, respectively, and β is the accuracy of the inner-point
method. Similarly, the complexities for calculating B and
determining the positions of all receive FAs are O (NtLr) and
O
(
NrLrγ

1
r +N2.5

r ln (1/β) γ2
r

)
and thus the overall compu-

tational complexity is O(NrLt+NtLtγ
1
t +N2.5

t ln (1/β) γ2
t +

NtLr+ NrLrγ
1
r +N2.5

r ln (1/β) γ2
r ).

Algorithm 1 Alternating Optimization for Solving Problem
(P1)

Input: Σ, Nt, Nr, Lr, Lt, {θpt }
Lt
p=1, {ϕp

t }
Lt
p=1, {θqr}

Lr
q=1,

{ϕq
r}

Lr
q=1, Ct, Cr, D, ϵ.

Output: {tn}Nt
n=1, {rm}Nr

m=1.
1: while Increase of the STBC achievable rate is above ϵ do
2: Obtain D via (14).
3: for n = 1 → Nt do
4: Given {tk, k ̸= n}Nt

k=1 and {rm}Nr
m=1,

5: while Increase of the objective value in (P3-n) is
above ϵ do

6: Update δtn and obtain t∗n,i+1 via (19).
7: if t∗n,i+1 statisfies (15b) and (15c) then
8: ti+1

n =t∗n,i+1.
9: else

10: Obtain ti+1
n by solving (P5-n).

11: end if
12: end while
13: end for
14: Obtain B via (25).
15: for m = 1 → Nr do
16: Given {rl, l ̸= m}Nr

l=1 and {tn}Nt
n=1, solve (P6-m)

with similar procedure as above.
17: end for
18: end while

IV. SIMULATION RESULTS

In this section, computer simulations are carried out to
demonstrate the effectiveness of the algorithms for maximizing
the 1% outage achievable rate of FA-STBC systems. In the
simulations, we consider Alamouti’s STBC with Nt = 2
transmit FAs and the code in [3] with Nt = 4 transmit FAs.
The regions for moving are square with a size of A × A
and A = 2λ unless otherwise specified. The numbers of
transmit and receive paths are set as Lt = Lr = 5 and
the path response matrix is assumed to be diagonal with
Σ1,1 ∼ CN (0, 1/2) and Σl,l ∼ CN (0, 1/(2Lt − 2)) , l =
1, 2, . . . , Lt. We assume that the elevation and azimuth
AoDs/AoAs {θpt }

Lt
p=1, {ϕ

p
t }

Lt
p=1, {θqr}

Lr
q=1, {ϕq

r}
Lr
q=1 to be in-

dependent and identically distributed (i.i.d.) variables with
the uniform distribution over [0, π]. The minimum distance
required between FAs is set as D = λ/2 and the signal-
to-noise ratio (SNR) is defined as ρ = P/N0. For baselines
of close-loop STBC and FPA systems, we consider both the
transmitter and receiver equipped with a uniform linear array
of antenna spacing in λ/2.

Fig. 1 depicts the convergence behavior of the proposed
algorithm for FA-STBC systems with different numbers of
receive FAs at SNR = 15 dB. The results demonstrate that
the algorithm consistently achieves rapid convergence within
three iterations across all scenarios. Notably, for Nr = 1,
the converged achievable rate exhibits an increase of 39.46%
compared to the initial value.

Fig. 2 illustrates the performance comparison of FA-STBC,
conventional FPA and STBC systems equipping Nr = 1
receive antenna with respect to SNR. STBCs with different
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Fig. 1. Convergence of Algorithm 1 under different values of Nr .

transmit FAs are considered. It is revealed that the achievable
rate of FA-STBC not only exceeds that of the original STBC
but also outperforms FPA over the entire SNR range in both
cases. Moreover, for the baseline FPA and STBC schemes,
STBC exhibits a loss in achievable rate compared to FPA,
which aligns with the analysis presented in Section II-B2.
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Fig. 2. Achievable rate versus SNR.

Fig. 3 shows the achievable rates of the FA-STBC system
and baselines with Nr = 2 receive antennas at SNR = 5 dB
with respect to the region size. Even within a limited region,
FA-STBC achieves substantial performance gains. While the
achievable rate increases with the size of the region, this trend
gradually levels off. This implies that a region size with merely
A = 2λ can yield near-optimal performance. Specifically, for
a region of 2λ × 2λ, FA-STBC attains gains of 35.91% and
61.25% compared to FPA and STBC, respectively.

V. CONCLUSION

This paper studied the achievable rate maximization prob-
lem for point-to-point FA-STBC systems via jointly optimiz-
ing the positions of transmit and receive FAs. An AO algorithm
with a rapid convergence rate was developed to obtain a
locally optimal solution by iterative optimization. Simulation
results demonstrated the performance gains of the FA-STBC
system over the conventional FPA and STBC counterparts and
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Fig. 3. Achievable rate versus normalized region size.

revealed that the maximum achievable rate can be achieved
within a limited region for FAs.
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