

1 **Uveitis in Adults: A Review**

2

3 Panayiotis Maghsoudlou PhD^{1,2}, Simon J. Epps MRCP², Catherine M. Guly MRCOPhth², Andrew D. Dick
4 MD^{1,3,4,5}

5

6 ¹ Academic Unit of Ophthalmology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU,
7 UK

8 ² Regional Ocular Inflammatory Service, Bristol Eye Hospital, Bristol BS1 2LX, UK

9 ³ School of Cellular and Molecular Medicine, University of Bristol, University Walk, BS8 1TD

10 ⁴ UCL Institute of Ophthalmology, London EC1V 9EL, UK

11 ⁵ NIHR - Biomedical Research Centre, Moorfield's and UCL - Institute of Ophthalmology, UK.

12

13 ***Corresponding Author:**

14 Prof. Andrew D. Dick

15 Duke Elder Chair & Director of Institute Ophthalmology

16 UCL Institute of Ophthalmology

17 11-43 Bath St, London EC1V 9EL

18 a.dick@ucl.ac.uk

19 +44 (0) 207 608 6800

20

21 Word count: 4,132

22

23

24

25

26

27

28

29

30

31

32

33

34

35 **Abstract**

36

37 **Importance:** Uveitis is characterized by inflammation of the uvea, the middle portion of the eye composed of the iris, ciliary
38 body and choroid, causing eye redness, pain, photophobia, floaters and blurred vision. Untreated uveitis may cause cataracts,
39 glaucoma, macular edema, retinal detachment, optic nerve damage, and vision loss.

40

41 **Observations:** Uveitis predominantly affects individuals aged 20 to 50 years. Anterior uveitis affects the iris and ciliary body
42 (41-60% of cases), intermediate uveitis affects the pars plana (attachment point of vitreous humor) and peripheral retina (9-
43 15%), posterior uveitis involves the choroid and/or retina (17-23%), and panuveitis involves all uveal layers (7-32%). Uveitis is
44 classified as non-infectious or infectious, with toxoplasmosis, herpes, TB, and HIV comprising 11-21% of infectious cases in
45 high-income countries and 50% in low- and middle-income countries. Incidence and prevalence of uveitis are influenced by
46 genetic (e.g., HLA-B27) factors, environmental factors (e.g., air pollution) and infection rates. In the US and Europe, 27-51%
47 of uveitis cases are idiopathic, and 37-49% are associated with systemic disease, such as axial spondyloarthritis. Treatment
48 goals are to induce and maintain remission while minimizing corticosteroid use to reduce corticosteroid-related adverse
49 effects. Infectious uveitis requires systemic antimicrobial treatment. Active inflammatory disorders associated with uveitis
50 should be treated by the appropriate specialist (e.g. rheumatologist). Treatment for uveitis depends on subtype; anterior
51 uveitis is treated with topical corticosteroids, and mild intermediate uveitis may be monitored without initial treatment. Patients
52 with moderate to severe intermediate uveitis, posterior uveitis, and panuveitis are at high risk of sight-threatening
53 complications and require systemic and/or intravitreal corticosteroids and immunosuppressive agents. For posterior uveitis,
54 first-line therapy with disease-modifying antirheumatic drugs (DMARDs) such as methotrexate achieved remission of
55 inflammation in 52.1% (95%CI: 38.6–67.1), and mycophenolate mofetil controlled inflammation in 70.9% (95%CI: 57.1–83.5).
56 In patients who do not improve or worsen with first-line therapy, adalimumab extended time-to-treatment failure to 24 weeks
57 vs. 13 weeks with placebo and reduced frequency of treatment failure from 78.5% to 54.5% (P<0.001).

58

59 **Conclusions and Relevance:** Uveitis is characterized by inflammation of the uvea and primarily affects adults aged 20 to 50
60 years. For non-infectious anterior uveitis, corticosteroid eyedrops are first-line treatment. For posterior non-infectious uveitis,
61 DMARDs are first-line therapy; biologics such as adalimumab are second-line treatment for patients with inflammation
62 refractory to treatment. Uveitis caused by systemic infection should be treated with antimicrobials, and local or systemic
63 steroids may be used depending on the severity of uveitis and the specific microorganism.

64

65

66

67

68

69

70 **Introduction**

71
72 Uveitis affects 38-714 per 100,000 people worldwide, is reported to be associated with 3-10% of vision impairment in the US
73 and Europe based on studies many of which are from almost 30 years ago, and has been reported to be associated with up
74 to a quarter of cases of blindness in low and middle-income countries.¹ In a retrospective analysis of US insurance claims
75 (1998–2012), 5% of patients with non-infectious intermediate uveitis, posterior uveitis, or panuveitis developed blindness or
76 low vision over 5 years.² Uveitis involves inflammation of the uvea, which consists of the iris, ciliary body and the choroid.
77 Symptoms include eye pain, redness, photophobia, and vision loss. Prompt ophthalmologic evaluation is needed to assess
78 severity, determine etiology, and initiate treatment.

79
80 Uveitis has various etiologies, including autoimmune diseases (e.g. multiple sclerosis; 1%),¹ systemic immune-mediated
81 inflammatory diseases (e.g. sarcoidosis; 2-17%)³⁻⁷ and autoinflammatory diseases (rare genetic disorders affecting the
82 immune system such as Blau syndrome); infections (including TB [1-13%], syphilis [1-4%], HIV [1-14%], and toxoplasmosis
83 [5-7%])⁸⁻¹⁰; and adverse reactions to medications (e.g. immune checkpoint inhibitors, <0.5%).¹¹⁻¹⁴ Masquerade syndromes
84 are ocular conditions with intraocular infiltrating cells such as lymphoma (1-5%).¹⁵ There is geographic variation in the etiology
85 and presentation of uveitis due to variation in the prevalence of risk factors such as infections, air pollution, and tobacco
86 smoking and of genetic variables.^{16,17} The underlying cause of uveitis is unidentified in 27-51% of cases, termed idiopathic
87 uveitis.^{5,11,18-20}

88
89 This review summarizes current evidence regarding pathophysiology, epidemiology, diagnosis and treatment of uveitis in
90 adults.

91

92 **Methods**

93
94 MEDLINE and Embase were searched (January 1, 2000 - March 1, 2025 using keywords and MeSH headings related to
95 epidemiology, pathophysiology, diagnosis, management, and prognosis of uveitis. We prioritized articles according to study
96 quality (randomized trials and larger studies), novel findings, and clinical applicability. Of 2995 articles retrieved, 107 were
97 included, consisting of 23 randomized clinical trials, 18 cohort studies, 17 cross-sectional studies, 26 narrative reviews, 8
98 meta-analyses, and 15 evidence-based guidelines.

99

100

101 **Discussion**

102

103 **Epidemiology**

104

105 Uveitis may occur at any age (Table 1), but presents most frequently (60-80% of cases) in young and middle-aged adults
106 (aged 20-50 years).^{1,18,21} Uveitis is more common in females than males (57% of cases are among women),²² particularly in
107 patients with multiple sclerosis (75% female), juvenile idiopathic arthritis (50-80% female), and sarcoidosis (55-64% female).²³
108 However, HLA-B27-associated uveitis is more common in men (male-to-female ratio of 1.5:1). In the US and Europe, 37-49%
109 of uveitis cases are associated with systemic disease such as axial spondyloarthritis.^{5-7,11-13,18}

110

111 Among patients with uveitis who are evaluated for associated conditions, 11-21% are caused by infection in high-income
112 countries, versus up to 50% in low- and middle-income countries.^{1,8} Toxoplasmosis (5-7%) and herpetic (5-15%) uveitis are
113 the most common infectious causes of uveitis in high-income countries,^{3,4,6} with TB (8-13%)- and HIV (10-14%)-related uveitis
114 more prevalent in low- and middle-income countries.^{9,10,24,25} In Japan, Vogt-Koyanagi-Harada disease, an autoimmune
115 disease that affects melanin-rich tissues, accounts for a higher proportion of uveitis cases (Table 1).^{26,27} The most common
116 form of uveitis in Turkey is Behçet disease (30%), a chronic, autoimmune multisystem inflammatory disorder associated with
117 HLA-B51.²⁸ When compared with other regions of the world, sarcoidosis uveitis is more frequent in Europe and the US (8-
118 10%).^{29,30}

119

120 We summarize epidemiologic data in Table 1.^{3,9,24,26-36}

121

122 Classification and Etiology

123

124 The Standardized Uveitis Nomenclature classified uveitis anatomically into 4 types: 'anterior' (inflammation in the iris and
125 ciliary body), 'intermediate' (pars plana and peripheral retina), 'posterior' (retina and/or choroid), or 'panuveitis' (all areas)
126 (Figure 1).⁸ In the US and Europe, anterior uveitis is most common (41-60%), followed by posterior (17-23%), intermediate (9-
127 15%), and panuveitis (7-32%).^{5,6,11,19,30} In countries with a lower prevalence of HLA-B27, such as Japan, the most common
128 cause is panuveitis (45.6%), followed by anterior (37.8%), posterior (12.5%) and intermediate uveitis (3%).³⁷ Anterior uveitis
129 is frequently unilateral (53% of cases), while intermediate, posterior and panuveitis are typically bilateral (79%, 57% and 75%
130 of cases, respectively).³⁸

131

132 Anterior uveitis is associated with systemic diseases such as axial spondyloarthritis (15-50%) and tuberculosis (1-13%)(Table
133 1).^{39,40} Intermediate uveitis is associated with multiple sclerosis (1-5%).^{26,28,29,41} Causes of posterior uveitis include
134 toxoplasmosis (17-50%) and sarcoidosis (1-9%).^{18,26,28,29} Panuveitis is associated with toxoplasmosis (1-8%), and sarcoidosis
135 (5-29%).^{18,26,28,29} The International Uveitis Study Group provided a clinical classification of uveitis (Table 1).^{42,43}

136

137 Pathophysiology

138

139 The healthy eye possesses immune privilege, allowing it to suppress immune responses against endogenous (e.g., S-antigen;
140 a protein stopping excess sensing of light) and exogenous (e.g., bacterial proteins) antigens. This immune privilege is
141 maintained by the blood-retina barrier, cellular mechanisms including regulatory T cells, and cytokine mechanisms, including
142 TGF β and IL-10. Non-infectious uveitis is hypothesized to result from reduced immune tolerance to retinal proteins, leading to
143 inflammation.^{44,45} In infectious uveitis, the infectious organism breaches the blood-retina barrier, and may contain proteins
144 resembling retinal proteins (a process called antigenic mimicry), exacerbating the inflammatory response (Figure 2). The
145 prevailing theory is that infectious uveitis begins with pathogen-derived antigen presentation, while non-infectious uveitis
146 begins with ocular autoantigen presentation - both involving MHC class II molecules activating naïve T-cells. Naïve CD4+ T-
147 cells differentiate into TH1 and TH17 subsets upon activation and migrate to the retina. These T-cells release pro-
148 inflammatory cytokines (e.g., IFN γ , IL-2, IL-17), triggering a cytokine cascade that recruits immune cells such as macrophages
149 and neutrophils, leading to chorioretinitis, vasculitis and edema.⁴⁵

150

151 **Clinical Presentation**

152

153 Patients with anterior uveitis typically present with eye pain (sharp and worsened by bright light or reading) and perlimbal
154 redness (Fig. 3A). Up to 50% of patients with anterior uveitis have vision loss, defined as visual acuity letter score less than 61
155 in one study.⁴⁶ In this manuscript, we use the Early Treatment Diabetic Retinopathy Study (ETDRS) method to determine
156 visual acuity, where a score of 85 equals 20/20 on the Snellen chart or LogMAR value of 0. In intermediate uveitis, patients
157 report painless floaters and blurred vision.⁴¹ Patients with posterior uveitis may present with vision loss if widespread or
158 involving the macula (Fig. 1C), but can be asymptomatic with peripheral retina involvement. Panuveitis manifests with
159 symptoms from all 3 uveal regions. Patients with endophthalmitis, an infectious panuveitis, may present with sepsis (e.g.
160 fever, hypotension) with eye pain and vision loss.

161

162 **Assessment and Diagnosis**

163

164 Patients with suspected uveitis should be referred to an ophthalmologist for diagnosis and treatment. Urgent same-day
165 referral is necessary for vision loss or distortion, especially with eye pain and redness. Patients with visual symptoms and
166 systemic illness (e.g., fever, hypotension) should be referred to the emergency department for evaluation and treatment due
167 to the risk of vision-threatening endophthalmitis and potentially life-threatening sepsis. Some signs of uveitis, like posterior
168 synechiae (iris-lens adhesions causing a distorted pupil), can be identified without specialized equipment. Direct
169 ophthalmoscopy can identify retinitis, choroiditis, and optic disc swelling. Definitive diagnosis requires a slit lamp to examine
170 the anterior segment of the eye and a handheld lens for the fundus (i.e. indirect ophthalmoscopy). Signs of uveitis on slit lamp
171 include a cellular infiltrate in the anterior chamber, and keratic precipitates (cell deposits on the posterior cornea) (Fig.
172 1A-B). In intermediate uveitis, cellular infiltrate appears in the vitreous humor, and choroidal and/or retinal inflammation in the
173 ocular fundus (Figure 1). Figure 3 provides a diagnostic algorithm for suspected uveitis.

174

175 Patients who initially present with unilateral anterior uveitis without signs or risk factors for infection or systemic symptoms
176 indicating autoimmune disease (e.g. joint pain and skin rash) do not require additional testing. Patients with recurrent or
177 bilateral anterior uveitis, intermediate uveitis, posterior uveitis, or panuveitis should be tested for infection (e.g., syphilis) and
178 systemic disease (eg, sarcoidosis). Figures 3 and 4 detail tests for systemic conditions. Aqueous humor and/or vitreous
179 sampling (for microscopy and culture) should be performed if infection is suspected. Because infectious organisms are
180 identified in only 22–32% of cases, a negative result does not exclude infection.⁴⁷ Additional systemic testing, particularly for
181 syphilis or tuberculosis, is needed.

182

183 There is no international consensus on the best diagnostic approach for uveitis. Testing varies by regional infection
184 prevalence, comorbidities, immunocompromise, and clinical presentation. Patients who are immunocompromised, especially
185 those with HIV, require comprehensive infectious screening for both HIV-related and opportunistic infections, including
186 cytomegalovirus and candida.

187

188 **Treatment**

189

190 Treatment is determined by the patient's anatomical uveitis subtype, infectious exposures, age, comorbidities, country of
191 origin, signs of infection and sight-threatening features of uveitis (such as severe vitritis, macular edema, retinochoroiditis, and
192 forms of uveitis carrying high risk of visual loss e.g. Behçet disease). The goal of therapy is to reduce inflammation in the
193 uvea, thereby lowering the risk of vision loss.

194

195 **Non-Infectious Anterior Uveitis**

196

197 **Topical Corticosteroids**

198 For non-infectious anterior uveitis, prednisolone acetate is the most commonly used first-line topical corticosteroid,⁴⁸ which is
199 administered initially as hourly steroid drops during waking hours in the affected eye for 7 days, followed by a taper. Tapering
200 typically reduces the dose by one drop weekly (6 times daily, 5 times daily, etc.) until discontinuation, individualized based on
201 clinical response. A randomized trial of 78 patients with acute, chronic and recurrent anterior uveitis compared the effectiveness of
202 prednisolone acetate 1% and rimexolone 1% ophthalmic suspensions in reducing anterior chamber inflammatory cells, a marker
203 of uveitis, as measured by slit-lamp examination at 28 days. Mean anterior chamber cell scores decreased from 1.79 to 0.13
204 (P<0.05) with prednisolone and from 1.81 to 0.14 (P<0.05) with rimexolone, both treatments achieving clinical meaningful change.
205 The difference between the two treatments was not statistically significant.⁴⁹

206

207 **Ocular Corticosteroids**

208 Localized corticosteroid injections are used as second-line therapy for non-infectious anterior uveitis if topical corticosteroids
209 are ineffective and when systemic treatment (such as systemic corticosteroids) is unsuitable or not tolerated.⁵⁰ However, in
210 cases of severe uveitis, systemic corticosteroids are favored. Options include short-acting steroid injections around the eye
211 (sub-Tenon's space overlying the sclera or orbital floor; 1-2 months duration, such as triamcinolone acetonide), intermediate-

212 acting steroid implants into the vitreous (3-6 months duration, such as dexamethasone), and longer-acting steroid implants
213 into the vitreous (36 months duration, such as fluocinolone acetonide). A 6-month multicenter RCT (N=192) of patients with
214 uveitic macular edema reported significantly reduced macular thickness at 8 weeks with use of intravitreal triamcinolone
215 implants (39%) and dexamethasone implants (46%) at 8 weeks compared with periocular triamcinolone implants (23%,
216 p<0.0001 vs. baseline for all comparisons).⁵¹ A recent RCT (n=160) reported that suprachoroidal triamcinolone improved
217 visual acuity by 15 or more letters in 47% of patients at 4 weeks compared to 16% with placebo (p<0.001).⁵²

218

219 **Systemic Corticosteroids**

220 Systemic corticosteroids are recommended for severe non-infectious anterior uveitis that does not improve or worsens with
221 topical or regional corticosteroids.^{53,54} Treatment typically begins with high-dose oral prednisone at 1 mg/kg/day, up to 60-80
222 mg daily, tapering over 4-10 months.⁵³

223

224 **Complications associated with use of Ocular and Systemic Corticosteroids**

225 Ocular hypertension, glaucoma, and cataracts can develop from prolonged topical, periocular, intravitreal implant and
226 systemic corticosteroid use. Up to 18-24% of patients treated with steroids may require cataract or glaucoma
227 surgery.^{48,55,56} Complication frequency depends on corticosteroid type, administration route, application frequency, and
228 treatment duration. Among 192 patients with uveitic macular edema, the intravitreal dexamethasone implant had a cumulative
229 risk of ocular hypertension at 24 weeks of 41% (95%CI: 26-53%), comparable to intravitreal triamcinolone at 30% (95%CI: 17-
230 40%;P=0.37), but significantly higher than periocular triamcinolone at 20% (95%CI: 9-29%,P=0.007).⁵¹ In a randomized trial of
231 160 patients with uveitic macular edema, suprachoroidal triamcinolone and sham treatment had similar frequency of ocular
232 hypertension(11.5% vs 15.6%) and cataracts (7.3% vs 6.3%),with no significant differences.⁵²

233

234

235 **Non-Infectious Posterior Uveitis**

236

237 While mild intermediate uveitis may be monitored without initial treatment, patients with moderate to severe intermediate
238 uveitis, posterior uveitis, and panuveitis are at high risk for sight-threatening complications and require systemic and/or
239 intravitreal corticosteroids and immunosuppressive agents.

240

241 **Systemic Corticosteroids**

242 Systemic corticosteroids are typically used to achieve remission in patients with non-infectious posterior uveitis, regardless of
243 the cause (Figure 3). For vision-threatening conditions, such as Behçet disease or Vogt-Koyanagi-Harada syndrome, high-
244 dose intravenous methylprednisolone (1 gram, once daily for 3 days) may be prescribed.⁵³ Long-term use of systemic
245 corticosteroids, especially at doses exceeding 7.5 mg daily of prednisone, is associated with risks including hyperglycemia
246 and osteoporosis. The SITE retrospective cohort study (N=9,263) examined treatment outcomes for ocular inflammation.
247 Among 47 patients with non-infectious uveitis, 57% (95%CI: 33-83%) attained complete remission of inflammation within 1
248 month after receiving intravenous methylprednisolone (500-1000 mg, once daily up to 3 days), followed by tapering oral

249 prednisone over 4-10 months.^{53,57} Treatment aims for rapid remission, verified by resolution of uveitis findings on eye
250 examination and imaging (eFigure 1).⁵³ An RCT that included 255 patients with non-infectious intermediate, posterior, and
251 panuveitis reported that those treated with systemic therapy (corticosteroids and/or disease-modifying antirheumatic drugs
252 [DMARDs] and/or biologics) had clinically meaningful improvements in visual acuity over 7 years, gaining 7.2 letters compared
253 with those receiving fluocinolone acetonide implants (95%CI: 2.1-12; p<0.01).⁵⁸⁻⁶⁰

254

255 **Disease-modifying antirheumatic drugs**

256 Evidence-based guidelines recommend systemic corticosteroids in combination with DMARDs as first-line therapy for non-
257 infectious posterior uveitis to control severe/persistent inflammation and decrease the risk of complications (Box 1).^{61,62}
258 DMARDs alone can be used for patients with contraindications to or intolerance of corticosteroids. Dosing, adverse effects,
259 contraindications, and effect of DMARDs and biologics are listed in Table 2.

260

261 In the SITE cohort of patients with non-infectious uveitis (N=168), 52.1% (95%CI: 38.6–67.1%) of patients with posterior or
262 pan-uveitis and 74.9% (95%CI: 56.1–90.3%) of patients with intermediate uveitis receiving weekly methotrexate achieved
263 control of inflammation, defined as complete suppression of inflammation on examination sustained for 28 days or more, at 12
264 months.⁶³ Additionally, 40% to 50% of patients taking methotrexate maintained control of inflammation with a prednisone
265 equivalent dose of 10mg or less daily. Approximately 15% of patients discontinued methotrexate due to lack of efficacy and
266 another 15% discontinued it due to adverse effects such as gastrointestinal upset or bone marrow suppression.⁶³

267

268 In the SITE study, among 145 patients with non-infectious uveitis, treatment with mycophenolate mofetil was associated with
269 control of inflammation, defined as no inflammatory activity on ocular examination, at 12 months in 70.9% (95%CI: 57.1-
270 83.5%) of patients with posterior or pan-uveitis and 76.7% (95%CI: 49.1-95.6%) of patients with intermediate uveitis.⁶⁴ An
271 open-label, multicenter RCT of 41 patients with non-infectious intermediate uveitis reported a lower relapse rate over 15
272 months with use of prednisone plus mycophenolate mofetil compared with prednisone alone (40.9% vs 78.9%, P<0.05).⁶⁵

273

274 In an RCT of patients with Behçet's syndrome (N=73), among those without eye involvement at the start of the study (N=25),
275 8.3% in the azathioprine group developed uveitis, compared with 61.5% in the placebo group (P<0.01).⁶⁶ Additionally, among
276 patients with Behçet's syndrome who already had eye involvement (N=48), azathioprine reduced recurrent uveitis episodes
277 (4% vs 65.2%, P<0.001). In the SITE cohort of patients with non-infectious uveitis (N=91), azathioprine was associated with
278 complete control of inflammation on ocular examination at 6 months in 69% (95%CI: 41-93%) of patients with intermediate
279 uveitis, 44% (95%CI: 28-64%) of patients with posterior or pan-uveitis, and 24% (95%CI: 10-52%) of those with anterior
280 uveitis.⁶⁷

281

282 In the SITE study of non-infectious uveitis of all etiologies (N=373), cyclosporine was associated with controlled inflammation
283 at 1 year on ocular examination in 51.7% (95%CI: 42.6-61.6%) of patients with posterior or pan-uveitis and 51.8% (95%CI:
284 40.4-64.2%) of patients with intermediate uveitis.⁶⁸ In an RCT of 70 patients with Vogt-Koyanagi-Harada disease, recurrence
285 or worsening of uveitis at 1 year was reported in 15.0% (95%CI: 3-27%) of patients receiving cyclosporine plus oral

286 prednisone compared with 25.0% (95%CI: 11-39%) receiving intravenous steroid pulse followed by oral prednisone.⁶⁹ The
287 absolute risk difference between groups was -10.0% (90%CI -27.0% to 6.0%), meeting the predefined noninferiority margin of
288 20.0% (P=0.001 for noninferiority).

289

290 **Biologics**

291 For patients with poorly controlled non-infectious posterior uveitis despite treatment with DMARDs, biologic therapy is second-
292 line treatment,^{61,62} with adalimumab having the strongest evidence of effectiveness.⁷⁰⁻⁷⁷

293

294 Adalimumab was approved by the US Food and Drug Administration (FDA) in 2016 to treat adults with non-infectious uveitis
295 (Table 2).^{70,71} The VISUAL placebo-controlled RCTs compared adalimumab's efficacy in patients with non-infectious posterior
296 uveitis.^{70,71} In the VISUAL I trial (N=217 with active non-infectious intermediate uveitis, posterior uveitis, or panuveitis despite
297 prednisone for >2 weeks), time to treatment failure (defined by new lesions, persistent inflammation, or vision loss \geq 15 letters
298 after week 6) was 24 weeks with adalimumab vs 13 weeks with placebo (HR 0.50; 95%CI, 0.36-0.70).⁷⁰ However,
299 adalimumab was associated with higher rates of adverse events such as reduced visual acuity and fatigue (1052.4 vs 971.7
300 per 100 person-years) and serious adverse events such as pneumonia and demyelination (28.8 vs 13.6 per 100 person-
301 years) compared with placebo.⁷⁰ In the VISUAL II trial (N=226 with inactive non-infectious intermediate, posterior, or
302 panuveitis controlled by 10-35 mg/day of prednisone), time to treatment failure was longer with adalimumab (median not
303 reached [>18 months] vs 8.3 months with placebo; HR 0.57; 95%CI, 0.39-0.84).⁷¹

304

305 Golimumab, a biologic agent that blocks tumor necrosis factor alpha (TNF- α), was FDA-approved for treatment of adults with
306 axial spondyloarthritis. A multicenter prospective study (N=93) of patients with axial spondyloarthritis, who often experience
307 anterior uveitis, evaluated its efficacy.⁷⁴ Comparing pre- and post-treatment periods, golimumab was associated with a
308 reduction in anterior uveitis episodes from 11.1 to 2.2 per 100 person-years (rate-ratio 0.20, 95%CI 0.04-0.91).⁷⁴

309

310 Certolizumab pegol, a monoclonal antibody to TNF- α , was FDA-approved for treatment of adults with axial spondyloarthritis,
311 and was evaluated in an open-label trial (N = 115) of patients with axial spondyloarthritis and recurrent uveitis.⁷⁵ In the 2-year
312 pre-treatment period, all patients experienced more than 1 uveitis episode, with 59.6% experiencing more than 2 episodes of
313 uveitis. Following 2 years of certolizumab treatment, 11.2% of patients had more than 2 episodes of uveitis (P<0.001; pre- vs
314 post-treatment).⁷⁵

315

316 **Infectious Uveitis**

317

318 For patients with infectious uveitis, the primary goal is treating the underlying infection with systemic and/or local antimicrobials,
319 guided by evidence-based guidelines. Treatment with concomitant corticosteroids depends on clinical findings (e.g., vision-
320 threatening chorioretinitis) and clinician judgment (considering disease severity, vision loss risk, corticosteroid-related risks).
321 Corticosteroids should not be used alone in viral retinitis or toxoplasmosis because they suppress immune function without
322 controlling pathogen replication, risking disease progression.⁷⁸

323

324 **Infectious Panuveitis (Endophthalmitis)**

325 Treatment of infectious panuveitis (also termed endophthalmitis) varies based on whether the source of infection is exogenous
326 (e.g.,surgery) or endogenous (e.g.,endocarditis). Exogenous cases require intravitreal antimicrobials, while endogenous cases
327 should be treated with systemic antimicrobials plus targeted infection management (e.g., abscess drainage, valve replacement).
328 Empiric broad-spectrum antimicrobials should be initiated, and subsequently tailored based on microbiological results. A
329 retrospective study of 278 US patients with endogenous and exogenous endophthalmitis reported 78.5% had gram-positive
330 organisms (100% sensitive to vancomycin, 63.6% to ceftazidime) and 11.8% had gram-negative organisms (94.2% sensitive to
331 ciprofloxacin, 80.9% to amikacin); the remainder were fungi.⁷⁹

332

333 **Tuberculosis**

334 Uveitis may be caused by TB infection within the eye or as an inflammatory reaction to TB infection elsewhere in the body. The
335 decision to start antitubercular therapy for uveitis should be based on the likelihood of active tuberculosis infection, as indicated by
336 immunological (e.g. IGRA or Mantoux) and radiological findings and the population-based prevalence of tuberculosis.⁸⁰ The World
337 Health Organization (WHO) recommends a 6-month regimen: isoniazid/rifampicin/pyrazinamide/ethambutol for 2 months, followed
338 by isoniazid/rifampicin for 4 months, achieving 85% success for drug-susceptible TB.⁸⁰⁻⁸² In a meta-analysis of 49 retrospective
339 studies with 4017 participants with tubercular uveitis, complete resolution of inflammation on ocular examination and imaging was
340 achieved in 83% (95%CI: 77-89%) of 1,812 patients, and visual acuity improved in 65% (95%CI: 51-78%) of 542 patients.⁸¹

341

342 **Syphilis**

343 Syphilitic uveitis can present at any stage but is most common in secondary and late latent (after primary symptoms resolved).⁸³
344 For early syphilis, the WHO and CDC recommend a single 2.4-million-unit intramuscular benzathine penicillin dose.^{84,85} For ocular
345 syphilis, the CDC recommends daily intravenous aqueous crystalline penicillin (10-14 days)⁸⁵ and WHO recommends weekly
346 intramuscular benzathine penicillin (3 weeks).⁸⁴ A meta-analysis of 32 retrospective studies (670 patients) with ocular syphilis
347 reported treatment success for improving visual acuity of 91% (95%CI 84–97%) with antibacterial agents alone (penicillin,
348 ceftriaxone, tetracycline or doxycycline), and 95% (95%CI 91–98%) with antibacterial agents with systemic corticosteroids.⁸⁶
349 Systemic corticosteroids (e.g.,oral prednisone, 60mg/day for 1 week then tapered) are typically started 48 hours before antibiotics
350 to mitigate the inflammatory response, although controlled studies are lacking.

351

352

353 **HSV and VZV**

354 There is a paucity of high-quality evidence regarding management of viral uveitis. The Infectious Uveitis Treatment Algorithm
355 Network expert consensus (87% agreement) recommends administration of both antiviral and anti-inflammatory treatments for HSV
356 and VZV anterior uveitis based on clinical appearance alone, without confirmatory testing. Experts advise against using topical
357 corticosteroids alone for viral uveitis.^{87,88} Antiviral treatment for HSV and VZV anterior uveitis consists of acyclovir or its prodrug
358 valacyclovir.⁸⁹ These medications can also be used as preventive therapy, to help reduce future recurrences, which were
359 experienced by 44.9% of patients within 10 years.⁹⁰ Although duration of prophylactic therapy should be individualized based on

360 disease severity and recurrence history, long-term prophylaxis with oral acyclovir (400-800 mg twice daily) or valacyclovir (500 mg
361 once daily) can be used and typically is continued for one year after the last episode of inflammation. The treatment of viral
362 posterior uveitis (less common than viral anterior uveitis) combines systemic antiviral therapy with intravitreal antiviral therapy.⁹¹

363

364 **Cytomegalovirus**

365 No RCTs have examined treatments for CMV-related uveitis. A systematic review of retrospective and open-label studies of
366 106 patients with CMV anterior uveitis reported inflammation resolution among 90% of patients (95%CI: 74–100%) treated
367 with topical ganciclovir gel and 95% (95%CI: 88–100%) with oral valganciclovir.⁹² CMV posterior uveitis, which occurs in
368 patients who are immunocompromised, may be treated with intravenous ganciclovir or oral valganciclovir. Patients with CMV
369 posterior uveitis and HIV should also receive anti-retroviral medications.^{93,94} Foscarnet is used for CMV uveitis resistant to
370 ganciclovir or valganciclovir.

371

372 **Candidiasis**

373 Current treatments for ocular candidiasis have not been evaluated by high-quality RCTs.⁹⁵ A trial comparing amphotericin B
374 and fluconazole in 206 patients with candidemia reported no significant difference in symptom resolution and fungemia—79%
375 for amphotericin B and 70% for fluconazole (P=0.22).⁹⁶ The Infectious Diseases Society of America (IDSA) recommends
376 systemic antifungal therapy for candida chorioretinitis without vitritis, with either fluconazole or voriconazole for susceptible
377 strains of candida, and amphotericin B for resistant strains.⁹⁷ For patients with macular involvement or vitritis, intravitreal
378 amphotericin B is also recommended.⁹⁷ For patients with vitritis, vitrectomy may be considered to reduce the fungal load and
379 excise vitreous abscesses.

380

381 **Aspergillosis**

382 For patients with uveitis due to aspergillus, IDSA recommends oral or intravenous voriconazole with either intravitreal
383 voriconazole or intravitreal amphotericin B, along with vitrectomy.⁹⁸

384

385 **Toxoplasmosis**

386 Systemic therapy (pyrimethamine-sulfadiazine or trimethoprim-sulfamethoxazole) is first-line treatment for ocular toxoplasmosis.⁹⁹
387 A systematic review of 3 RCTs (N = 227) comparing antibiotics with placebo for toxoplasma chorioretinitis reported recurrence
388 rates over 12-20 months of 18.9% in the placebo group vs 4.5% in the antibiotic group (P < 0.001).¹⁰⁰ A systematic review of 2
389 RCTs (N=86) comparing different systemic antibiotic regimens (trimethoprim-sulfamethoxazole vs. pyrimethamine-sulfadiazine or
390 azithromycin) reported that no antibiotic regimen was superior to others in reducing eye inflammation on ocular examination (62.8%
391 vs. 62.8%; RR, 1.08; 95%CI, 0.59-1.98).¹⁰¹

392

393 **Complications of uveitis**

394

395 Severe and chronic inflammation due to uveitis may cause vision-threatening complications such as cataracts (18-49%),
396 glaucoma (7-56%), and macular edema (8-10%), which can develop despite appropriate treatment(Fig. 1).^{55,56,102} Elevated

397 intraocular pressure (i.e. ocular hypertension) without nerve damage precedes glaucoma with optic nerve damage causing
398 progressive vision loss. Macular edema impairs detailed central vision.

399

400 **Prognosis**

401

402 **Infectious uveitis**

403 Long-term outcome data for infectious uveitis are limited. In a US study of 77 patients with infectious uveitis, (most commonly,
404 herpetic anterior uveitis and toxoplasmosis),¹⁰³ 55.8% of patients had visual acuity better than 70 letters at presentation,
405 decreasing to 50.6% after 5 years despite treatment. In 66 patients with ocular syphilis treated with intravenous
406 penicillin/doxycycline/ceftriaxone, 71.8% had improved visual acuity, with a mean 30-letter gain over 10 months.¹⁰⁴ In patients
407 with ocular toxoplasmosis (N=92), 21% of affected eyes had vision below 35 letters at final follow-up, with a 33.9% recurrence
408 rate at 3 years post-antibiotics.¹⁰⁵

409

410 **Non-infectious uveitis**

411 The 7-year MUST cohort of posterior uveitis (N=177) reported that visual acuity declined annually, more in eyes with macular
412 edema (-1.82 vs -0.72 letters/year; P<0.01).¹⁰⁶ The VISUAL III study (N=214 with noninfectious intermediate, posterior, or
413 panuveitis) reported that adalimumab 40 mg subcutaneous every other week increased quiescence rates—defined as the
414 absence of active eye inflammation—from 34% to 85% over three years.¹⁰⁷

415

416 **Limitations**

417

418 This review has limitations. First, some publications may have been missed. Second, the review process lacked a systematic
419 evaluation of evidence quality. Third, the review is limited by varying study eligibility criteria, outcome measures, and follow-up
420 lengths, as well as lack of long-term data on the effectiveness of newer treatments.

421

422 **Conclusion**

423

424 Uveitis is characterized by inflammation of the uvea and primarily affects adults aged 20 to 50 years. For non-infectious
425 anterior uveitis, corticosteroid eyedrops are first-line treatment. For posterior non-infectious uveitis, DMARDs are first-line
426 therapy; biologics such as adalimumab are second-line treatment for patients with inflammation refractory to treatment.
427 Uveitis caused by systemic infection should be treated with antimicrobials, and local or systemic steroids may be used
428 depending on the severity of uveitis and the specific microorganism.

429

430

431 **Acknowledgements**

432

433 Dr. Panayiotis Maghsoudlou has received honoraria from Bayer. Dr. Simon Epps has received honoraria from Alimera and
434 GlaxoSmithKline. Prof. Andrew Dick has received research grants from Janssen Pharmaceutical, Novartis and the NIHR
435 Biomedical Research Centre, consulting fees or honoraria from Affybody, Revolobio, Gilead, and Alimera and is a co-founder
436 of Cirrus Therapeutics.

437

438

439

440

441

442

443

444

445

446

447 **Figure Legends**

448

449 **Figure 1 Clinical Features of Uveitis.**

450

451 (A) Illustrates anterior uveitis characteristics, including ciliary injection. The iris may develop adhesions either anteriorly to the
452 structures of the anterior chamber angle and/or corneal posterior surface (anterior synechiae) or posteriorly to the lens (posterior
453 synechiae), causing pupil distortion. Both forms of synechiae increase the risk of raised intraocular pressure and glaucoma. A
454 hypopyon may be present, characterized by an accumulation of white blood cells in the inferior portion of the anterior chamber (the
455 fluid-filled space between the cornea and iris), appearing as a whitish or yellowish layer at the bottom of the anterior chamber. (B)
456 Depicts anterior chamber cells, flare, and KPs associated with anterior uveitis. In chronic disease, the cornea may develop a
457 progressive calcific opacification usually beginning at the 3 and 9 o'clock positions then spreading centrally and referred to as band
458 keratopathy. (C) Shows features of posterior uveitis, split into acute (top half) and chronic (bottom half). Acutely optic disc swelling
459 (papillitis) with its attendant risk of optic nerve dysfunction may be seen as a complication of uveitic inflammatory activity directly or
460 secondary to hypotony. Occlusive vasculitis, vascular sheathing, hemorrhages, and focal chorioretinal spots can also present with
461 different types of uveitis. The lower half of this figure demonstrates posterior segment complications, including glaucomatous optic
462 neuropathy, which is associated with poorer long-term visual outcomes. Neovascular responses, particularly in the form of
463 choroidal neovascular macular membranes may develop in the chronic phase. Epiretinal membrane formation on the inner surface
464 of the macula can cause visual distortion. A variety of disease mechanisms may result in retinal detachment. Chorioretinal scarring
465 and subretinal fibrosis may cause severe visual impairment especially if the macula is affected and has a poor visual prognosis with
466 limited treatment options.^{1,90,91} Clinical features suggestive of infection include uveitis with corneal disease (e.g. corneal swelling),
467 iris atrophy, or increased intraocular pressure (herpes), hypopyon with vitritis (endophthalmitis), string-of-pearls appearance to
468 vitreous (fungal), occlusive retinal vasculitis (TB), placoid chorioretinopathy (syphilis), and chorioretinitis adjacent to a pigmented
469 chorioretinal scar (toxoplasmosis). These sketches are preliminary and will be refined by the in-house professional medical
470 illustrators, as agreed with the editorial team; KPs: keratic precipitates.

471

472 **Figure 2 Uveitis Pathogenesis**

473

474 The retina's immune privilege relies on the blood-retina barrier, which shields ocular tissue proteins from the systemic immune
475 system. This protective mechanism can be compromised, leading to autoimmune reactions. Within the retina, regulatory T cells
476 (Tregs) marked by CD4+, CD25+, and FoxP3+ identifiers contribute to immune tolerance by emitting neuropeptides and anti-
477 inflammatory cytokines. These Tregs can suppress other T cells that escape the thymus without proper immune tolerance,
478 producing cytokines like IL-10, TGF β , and IL-35 to reduce inflammation. Furthermore, retinal pigment epithelium and retinal cells
479 express certain proteins on their surfaces that deactivate lymphocytes, thereby regulating ocular inflammation. Uveitis often begins
480 when immune privilege breaks down, leading to an intolerance of retinal proteins such as S-antigen. Retinal antigens can reach
481 peripheral tissues via ocular trauma or mimicry mechanisms and interact with self-reactive cells, which have escaped from central
482 and peripheral tolerance. Disease onset is typically associated with MHC class II molecule-mediated presentation of autoantigens
483 or cross-reactive foreign peptides to naive T-cells, disrupting self-tolerance. Activated CD4+ T-cells differentiate into CD4+ TH1 and
484 TH17 cells that migrate to the affected tissue, recruiting inflammatory cells and producing tissue damage. TH1 cells, release
485 cytokines like IFN γ and IL-2, while TH17 cells produce IL17 and IL23. These facilitate the recruitment activation of downstream
486 cytokine release and innate inflammatory response, for example, IL-6 and TNF α , granzyme B, which in turn can lead to vasculitis
487 and edema^{21,22}. These sketches are preliminary and will be refined by the in-house professional medical illustrators, as agreed with
488 the editorial team.

489

490

491

492 **Figure 3 Algorithm for the initial investigation and management of patients with possible uveitis**

493 The figure provides a detailed flowchart for the management of patients with suspected uveitis, categorized by the type of uveitis.

494 Patients with possible uveitis will develop symptoms dependent on the anatomical location of the inflammation and should be

495 referred to an ophthalmologist for assessment. If the patient is acutely ill, or experiencing vision loss this should be an urgent
496 referral. The management of anterior uveitis varies depending on whether it is the first episode or recurrent. If it is the first episode
497 with no signs suggestive of infection and no risk factors, treatment proceeds without investigation. However, if the uveitis is
498 recurrent or if risk factors are present, blood tests and a chest X-ray are recommended. Anterior chamber sampling is considered if
499 there are signs of viral infection, such as corneal edema, elevated intraocular pressure, or iris atrophy. Treatment involves using
500 oral antivirals and low-frequency topical steroids if there are signs of viral infection, or high-frequency topical steroids if no infection
501 is suspected while awaiting results. For posterior segment uveitis, which includes intermediate, posterior, and panuveitis, the
502 investigation involves blood tests and imaging for all cases. Anterior chamber and vitreous sampling are recommended if signs of
503 infection are present. Treatment varies based on whether the case is vision-threatening. For non-vision-threatening cases, if signs
504 of infection are present, treatment with broad-spectrum antibiotics or antivirals is initiated while awaiting results. For all other cases,
505 infection is excluded using blood tests and imaging before inducing remission with high-dose local and systemic corticosteroids.
506 Early systemic immunosuppression is considered to reduce corticosteroid load and associated side effects. For acutely unwell or
507 vision-threatening cases, a comprehensive investigation with blood tests, imaging, and ocular sampling is conducted. Treatment
508 includes broad-spectrum antibiotics or antivirals while awaiting results, followed by high-dose local and systemic corticosteroids if
509 infection is excluded. Joint management with internists is considered for acutely unwell patients.

510
511 *Bloods to include ANA (Juvenile Idiopathic Arthritis), ACE/lysozyme (sarcoidosis), HLA-B27, Renal panel (creatinine and beta-2
512 macroglobulin levels for Tubulointerstitial Nephritis and Uveitis [TINU] Syndrome). Urinalysis to assess for proteinuria in TINU and
513 hematuria in IgA nephropathy

514 ** Bloods to include FBC, Renal panel, Syphilis serology, ACE/lysozyme, interferon gamma release assay (IGRA; for TB), ANA,
515 HLA-B27

516 † Bloods to include FBC, Renal panel, Syphilis serology, ACE/lysozyme, interferon gamma release assay (IGRA; for TB),
517

518
519 **Figure 4 Clinical Approach to Uveitis: Linking Suggestive Features, Etiologies, and Diagnostic Tests**

520 Diagnostic approach to uveitis based on clinical features, showing key signs and symptoms that suggest specific conditions. The
521 figure is organized into major presenting features (left), leading to suspected conditions (center), required confirmatory tests
522 (center-right), and epidemiological information including prevalence and anatomical patterns (right). Common presentations include
523 joint symptoms, neurological manifestations, viral prodromes, endemic exposures, and immunosuppression. Each path provides
524 relevant diagnostic tests and disease-specific details to guide clinical decision-making.

525
526 **eFigure 1 Imaging modalities used in the diagnosis and monitoring of uveitis.**

527 Non-invasive techniques include fundus photography, optical coherence tomography (OCT), ultra-widefield retinal photography,
528 fundus autofluorescence, and OCT angiography, which are routinely used. Invasive methods, used in select cases of intermediate,
529 posterior, or panuveitis, include fluorescein angiography for identifying retinal vascular inflammation and leakage; indocyanine
530 green angiography for detecting choroidal inflammation; and B-scan ultrasonography for evaluating the posterior segment when
531 fundal view is obscured or diagnosing posterior scleritis, although it has low sensitivity for discriminating disease.

532
533
534
535
536
537

538

539

540

541

542

543

544

545

546

547

548

549

550

Domain	Characteristics
Prevalence	38 - 714 per 100,000 people globally
Incidence	17 - 52 per 100,000 people globally
Age Distribution	Most common in young and middle-aged adults (20-50 years), comprising 60-80% of cases. Can present at any age.
Gender Distribution	Overall, slightly more common in females. Female preponderance in multiple sclerosis (75% female), juvenile idiopathic arthritis (50-80% female), and sarcoidosis (55-64% female). HLA-B27 associated-uveitis more common in men (male: female ratio up to 1.5:1).
Laterality	Unilateral uveitis is at least as common as bilateral uveitis in specialist and non-specialist clinics.
Types of Uveitis	Classified anatomically as: Anterior uveitis (41-60%), Intermediate uveitis (9-15%), Posterior uveitis (17-23%), Panuveitis (7-32%) Specific diseases target distinct locations, with axial spondyloarthritis predominantly anterior (90.5%) and multiple sclerosis typically intermediate (80%)..
Symptoms	Anterior uveitis: Pain, redness, photophobia Intermediate uveitis: Increased floaters, painless, blurred vision Posterior uveitis: Blurred vision, visual distortion, or asymptomatic Panuveitis: Pain, redness, photophobia, blurred vision
Etiology	Infectious (11-50% of cases): <i>Endophthalmitis</i> (an infection-driven inflammation of the entire eye): Endogenous (from hematogenous spread) or exogenous (following surgery or trauma). <i>Viral</i> Herpes simplex/Herpes zoster (5-15%), Cytomegalovirus (1-5%), HIV (1-14%, rest of viral causes listed are rare), Chikungunya, Zika, HTLV-1, West Nile, measles, mumps, rubella, dengue, Ebola. <i>Bacterial</i> Tuberculosis (1-13%), syphilis (1-4%), lyme (<1%, rest of bacterial causes rare), leprosy, bartonella, leptospirosis, Whipple's disease (T. whipplei). <i>Parasitic</i> Toxoplasmosis (5-7%), toxocariasis (<1%, rest of parasitic causes rare), onchocerciasis, cysticercosis. <i>Fungal</i> Candidiasis (<1%, rest of fungal causes rare), aspergillosis, histoplasmosis, Pneumocystis jirovecii, cryptococcus. Non-infectious(52-79%): <i>With known systemic association</i> Sarcoidosis, Behcet disease, Vogt-Koyanagi-Harada syndrome*, Juvenile Idiopathic Arthritis, Tubulointerstitial Nephritis with Uveitis, IgA nephropathy, Multiple Sclerosis, HLA-B27-associated (axial spondyloarthritis, reactive arthritis, psoriatic arthritis, inflammatory bowel disease). <i>With no known systemic association</i> Fuch's heterochromic uveitis, Posner-Schlossman syndrome, Multifocal Choroiditis with Panuveitis, Punctate Inner Choroidopathy, Acute Posterior Multifocal Placoid Pigment Epitheliopathy, Serpiginous Choroidopathy, Birdshot Uveitis, Acute Zonal Occult Outer Retinopathy, Multiple Evanescent White Dot Syndrome, Sympathetic Ophthalmia, Idiopathic Retinal Vasculitis and Neuroretinitis syndrome. Idiopathic (27-51%): No identifiable cause despite full workup. Trauma (5-20%) Masquerade syndromes (1-5%) <i>Neoplastic</i> <i>Non-neoplastic</i> Ocular ischemia, Schwartz-Matsuo syndrome (anterior uveitis, raised intraocular pressure and retinal detachment) Medication-induced (0.5%) Immune checkpoint inhibitors, bisphosphonates, latanoprost, rifabutin, fluoroquinolones, sulfonamides, topiramate

Geographic Distribution	Low- and middle-income countries: infections 50% (TB most common: 8-10%). High-income countries: infections 11-21% (herpes 10%, toxoplasmosis 7%) Sarcoidosis uveitis more common in US and Europe (3-7% of all cases) Behçet uveitis more common in Turkey and along historical Silk Road regions (Japan, China, Iran, Iraq, Korea, Saudi Arabia; 25-32% of all cases) Vogt-Koyanagi-Harada disease more common in Japan, Korea, China, and India (5-8% of all cases)
-------------------------	--

551

552

Table 1 Major epidemiologic and clinical characteristics of uveitis

554

555 *Footnote: Vogt-Koyanagi-Harada syndrome is a rare autoimmune disorder against melanocytes, causing bilateral panuveitis
 556 with retinal detachments, along with neurological (meningism), auditory (tinnitus) and skin (vitiligo, alopecia, poliosis [a white
 557 streak in the hair]) signs.

558

559

560

561

562

563

564

565

Class	Category	Drug	Population	Design	Effect Size	Adult Dose & Administration	Adverse Effects	Monitoring
Disease Modifying Antirheumatic Drugs	Antimetabolites	Methotrexate	168 patients with non-infectious uveitis	Retrospective cohort study	<u>Control of inflammation at 12 months:</u> Anterior uveitis: 67.2% (95% CI: 56.7–77.3) Intermediate uveitis: 74.9% (95% CI: 56.1–90.3) Posterior/Panuveitis: 52.1% (95% CI: 38.6–67.1) <u>Patients stopping medication</u> for any reason (32%), side-effects (18.1%), ineffectiveness (15.4%)	7.5–25 mg/week	Embryofetal toxicity, gastrointestinal reaction (10%), bone marrow suppression (2%), hepatotoxicity (15%)	Complete L GFR, Liver
		Mycophenolate Mofetil	145 patients with non-infectious uveitis	Retrospective cohort study	<u>Control of inflammation at 12 months:</u> Anterior uveitis: 72.4% (95% CI: 52.4 – 89.2) Intermediate uveitis: 76.7% (95% CI: 49.1 – 95.6) Posterior/Panuveitis: 70.9% (95% CI: 57.1 – 83.5) <u>Patients stopping medication</u> for any reason (34%), side-effects (12%), ineffectiveness (9.7%)	1-2g BID	Embryofetal toxicity, gastrointestinal reaction (20%), Bone marrow suppression (2%), hepatotoxicity (20%)	Complete L GFR, Liver
		Mycophenolate Mofetil	42 patients with non-infectious intermediate uveitis	RCT (prednisone & mycophenolate vs. prednisone)	<u>Relapse rate at 15 months:</u> 40.9% (mycophenolate) vs. 78.9%			
		Azathioprine	91 patients with non-infectious uveitis	Retrospective cohort study	<u>Control of inflammation at 12 months:</u> Anterior uveitis: 34.6% (95% CI: 15.2 – 66.7) Intermediate uveitis: 89.8% (95% CI: 63.6 – 99.4) Posterior/Panuveitis: 59.7% (95% CI: 40.9 – 79.3) <u>Patients stopping medication</u> for any reason (68%), side-effects (24%), ineffectiveness (15%)	150-200mg QD	Gastrointestinal reaction (10%), Bone marrow suppression (5%), hepatotoxicity (4%), hypersensitivity syndrome (rash and arthralgia)	Complete L GFR, Liver
		Azathioprine	73 patients with Behçet	RCT (placebo-controlled)	<u>In patients with pre-existing uveitis:</u> Episodes of uveitis 65.2% (placebo) vs. 4% (azathioprine) <u>In patients with no pre-existing uveitis:</u> Episodes of uveitis 61.5% (placebo) vs. 8.3% (azathioprine)			
	Calcineurin Inhibitors	Cyclosporine	70 patients with Vogt-Koyanagi-Harada disease	RCT (cyclosporine + oral prednisone vs. intravenous + oral prednisone)	<u>Recurrence rate at 12 months</u> 15.0% (95% CI: 3-27%) for combination therapy vs 25% (95% CI: 11-39%) for prednisone	1.5mg/kg BID	Nephrotoxicity (4%), hypertension (3%), hepatotoxicity (1.5%), gum hyperplasia (1%), skin cancer	Complete L GFR, Liver pressure Cyclosporine for patients therapy
			373 patients with non-infectious uveitis	Retrospective cohort study	<u>Control of inflammation at 12 months:</u> Anterior uveitis: 54.3% (95% CI: 40 – 69.9) Intermediate uveitis: 51.8% (95% CI: 40.4 – 64.2) Posterior/Panuveitis: 51.7% (95% CI: 42.6 – 61.6) <u>Patients stopping medication</u> for any reason (49%), side-effects (13%), ineffectiveness (7%)			
Biologics	TNF blockers	Adalimumab	217 adults with active non-infectious posterior	RCT (placebo-controlled)	<u>Treatment failure (new inflammatory lesions, anterior chamber or vitreous inflammation, or worsening of visual acuity)</u> 54.5% (adalimumab) vs. 78.5% (placebo)	40mg SC every 2 weeks	Infusion reactions (20%), gastrointestinal reaction (15%), Hepatotoxicity (10%),	Complete L GFR, Liver pressure

		segment uveitis				demyelination, increased risk of malignancy and infection (including TB, HepB)	Repeat IGD symptoms
		226 adults with inactive non-infectious posterior segment uveitis	RCT (placebo-controlled)	<u>Treatment failure (new inflammatory lesions, anterior chamber or vitreous inflammation, or worsening of visual acuity):</u> 39% (adalimumab) vs. 55% (placebo)			Consider b symptoms disorders.
		114 children with active Juvenile Idiopathic Arthritis-associated uveitis	RCT (placebo-controlled)	<u>Treatment failure (persistent or worsening intraocular inflammation, lack of improvement, development or worsening of coexisting ocular conditions, or protocol deviations such as ineligible medications or prolonged suspension of the trial regimen):</u> 27% (adalimumab) vs. 60% (placebo)			Anti-adalimumab measured responding
		31 children with chronic Juvenile Idiopathic Arthritis-associated uveitis	RCT (placebo-controlled)	<u>Reduction of inflammation by 30% determined by laser flare photometry, with no worsening on slit-lamp examination:</u> 56.3% (adalimumab) vs. 20% (placebo)			
	Golimumab	93 patients with axial spondyloarthritis and recurrent uveitis	Prospective study	<u>Episodes of uveitis</u> 11.1 per 100 person-years (12 months before golimumab) vs. 2.2 per 100 person-years (12 months after); 80.2% reduction	50mg SC monthly	Hepatotoxicity, bone marrow suppression, Infusion reactions (2%), hypertension (2%), demyelination, increased risk of malignancy and infection (including TB, HepB)	Complete IGD GFR, Liver
	Certolizumab	115 patients with axial spondyloarthritis and recurrent uveitis	Prospective study	<u>Episodes of uveitis:</u> More than 1: 100% (before treatment) vs. 20.2% (2 years after) More than 1: 59.6% (before treatment) vs. 11.2% (2 years after) More than 3: 17.9% (before treatment) vs. 0% (2 years after)	200mg SC every 2 weeks	Hepatotoxicity, bone marrow suppression, gastrointestinal reaction, infusion reactions, demyelination, increased risk of malignancy and infection (including TB)	Repeat TB pulmonary
JAK inhibitor	Filgotinib	74 patients with non-infectious posterior segment uveitis	RCT (placebo-controlled)	<u>Treatment failure (new inflammatory lesions, anterior chamber or vitreous inflammation, or worsening of visual acuity)</u> 37.5% (filgotinib) vs. 67.6% (placebo)	200mg PO	Major cardiovascular events, malignancy, venous thromboembolism, serious infections (side-effects currently considered as class-effect from tofacitinib) Embryofetal toxicity, gastrointestinal reaction (4%), bone marrow suppression (1%), nephrotoxicity, hepatotoxicity, hyperlipidemia,	Complete IGD GFR, Liver pressure High suspect thromboembolism skin lesion Repeat TB pulmonary

566

567

568

569

570

Table 2 DMARDs and biologics for uveitis BID: twice a day, CI: confidence interval, HepB: hepatitis B, IV: intravenously, HZV: herpes zoster virus disease, RCT: randomized-clinical trial, SC: subcutaneously, TB: tuberculosis, TNF: tumor necrosis factor, vs: versus, QD: once a day.

571 **Box 1: Commonly asked questions about uveitis**

572

573 **What are the most common causes of uveitis worldwide?**

574 In high-income countries, 52-79% of uveitis cases are non-infectious (systemic diseases such as axial spondyloarthritis account for
575 37-49%). Infectious causes of uveitis such as tuberculosis and toxoplasmosis are common in low- and middle-income countries,
576 accounting for up to 50% of cases. In 27-51% of all cases worldwide, no specific cause can be identified (idiopathic uveitis).

577

578 **Which symptoms suggestive of uveitis should prompt referral to ophthalmology?**

579 Individuals with symptoms of uveitis, such as eye pain, redness, photophobia, floaters, or vision loss, should be referred to
580 ophthalmology. An urgent same-day referral is needed for patients with sudden vision loss or visual distortion with eye pain or
581 redness. Patients with uveitis and signs and symptoms of systemic illness (e.g., fever, hypotension) require emergency care.

582

583 **What are the first-line treatments for infectious and non-infectious uveitis?**

584 For infectious uveitis, treatment should target the underlying infection (such as antibiotics for TB, antiviral medications for herpes)
585 often combined with corticosteroids. For non-infectious uveitis, treatment varies by uveitis location. Anterior uveitis should be
586 treated with topical corticosteroid drops. First-line treatment for posterior uveitis are disease-modifying antirheumatic drugs
587 (DMARDs; such as methotrexate); biologics such as adalimumab are second-line therapy if uveitis persists or worsens despite
588 initial treatment with DMARDs.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

References

608

609 1. Misericocchi E, Fogliato G, Modorati G, Bandello F. Review on the worldwide epidemiology of uveitis. *European journal of ophthalmology*.
610 2013;23(5):705-717. doi:10.5301/EJO.5000278

611 2. Dick AD, Tundia N, Sorg R, et al. Risk of Ocular Complications in Patients with Noninfectious Intermediate Uveitis, Posterior Uveitis, or
612 Panuveitis. *Ophthalmology*. 2016/3// 2016;123(3):655-662. doi:10.1016/J.OPHTHA.2015.10.028

613 3. Cimino L, Aldigeri R, Salvarani C, et al. The causes of uveitis in a referral centre of Northern Italy. *Int Ophthalmol*. Oct 2010;30(5):521-9.
614 doi:10.1007/s10792-010-9359-y

615 4. Hermann L, Falcão-Reis F, Figueira L. Epidemiology of Uveitis in a tertiary care centre in Portugal. *Semin Ophthalmol*. Feb 17 2021;36(1-2):51-
616 57. doi:10.1080/08820538.2021.1885721

617 5. Bertrand PJ, Jamilloux Y, Ecochard R, et al. Uveitis: Autoimmunity... and beyond. *Autoimmunity reviews*. 2019/9//
618 2019;18(9)doi:10.1016/J.AUTREV.2019.102351

619 6. Bajwa A, Osmanzada D, Osmanzada S, et al. Epidemiology of uveitis in the mid-Atlantic United States. *Clin Ophthalmol*. 2015;9:889-901.
620 doi:10.2147/opth.S80972

621 7. Bro T, Tallstedt L. Epidemiology of uveitis in a region of southern Sweden. *Acta Ophthalmol*. Feb 2020;98(1):32-35. doi:10.1111/aos.14130

622 8. Tsirouki T, Dastiridou A, Symeonidis C, et al. A Focus on the Epidemiology of Uveitis. *Ocul Immunol Inflamm*. 2018;26(1):2-16.
623 doi:10.1080/09273948.2016.1196713

624 9. Tyagi M, Das AV, Kaza H, et al. LV Prasad Eye Institute EyeSmart electronic medical record-based analytics of big data: LEAD-Uveitis
625 Report 1: Demographics and clinical features of uveitis in a multi-tier hospital based network in Southern India. *Indian J Ophthalmol*. Apr
626 2022;70(4):1260-1267. doi:10.4103/ijo.IJO_1122_21

627 10. Mwanza J-CK, Kayembe DL. Uveitis in HIV-Infected Patients. *European Journal of Ophthalmology*. 2001;11(1):53-56.
628 doi:10.1177/112067210101100110

629 11. Barisani-Asenbauer T, MacA SM, Mejdoubi L, Emminger W, MacHold K, Auer H. Uveitis- a rare disease often associated with systemic
630 diseases and infections- a systematic review of 2619 patients. *Orphanet journal of rare diseases*. 2012;7(1)doi:10.1186/1750-1172-7-57

631 12. London NJS, Garg SJ, Moorthy RS, Cunningham ET. Drug-induced uveitis. *Journal of ophthalmic inflammation and infection*. 2013;3(1):1-18.
632 doi:10.1186/1869-5760-3-43

633 13. Hu J, Vu JT, Hong B, Gottlieb C. Uveitis and cystoid macular oedema secondary to topical prostaglandin analogue use in ocular hypertension
634 and open angle glaucoma. *Br J Ophthalmol*. Aug 2020;104(8):1040-1044. doi:10.1136/bjophthalmol-2019-315280

635 14. Iqbal KM, Hay MW, Emami-Naeini P. Medication-induced Uveitis: An Update. *J Ophthalmic Vis Res*. Jan-Mar 2021;16(1):84-92.
636 doi:10.18502/jovr.v16i1.8254

637 15. Rothova A, Ooijman F, Kerkhoff F, Van Der Lelij A, Lokhorst HM. Uveitis masquerade syndromes. *Ophthalmology*. Feb 2001;108(2):386-99.
638 doi:10.1016/s0161-6420(00)00499-1

639 16. Guo X, Chen Z, Xing Y. Immune-Mediated Uveitis and Lifestyle Factors: A Review. *Ophthalmic Research*. 2021;64(5):687-695.
640 doi:10.1159/000518496

641 17. Bai YC, Wang CY, Lin CL, Lai JN, Wei JC. Association Between Air Pollution and the Risk of Uveitis: A Nationwide, Population-Based
642 Cohort Study. *Front Immunol*. 2021;12:613893. doi:10.3389/fimmu.2021.613893

643 18. Rothova A, Buitenhuis HJ, Meenken C, et al. Uveitis and systemic disease. *The British journal of ophthalmology*. 1992;76(3):137-141.
644 doi:10.1136/BJO.76.3.137

645 19. Jabs DA, Busingye J. Approach to the diagnosis of the uveitides. *Am J Ophthalmol*. Aug 2013;156(2):228-36. doi:10.1016/j.ajo.2013.03.027

646 20. Chang JH, Wakefield D. Uveitis: a global perspective. *Ocul Immunol Inflamm*. Dec 2002;10(4):263-79. doi:10.1076/ocii.10.4.263.15592

647 21. Saari KM, Päivönsalo-Hietanen T, Vaahtoranta-Lehtonen H, Tuominen J, Sillanpää M. Epidemiology of endogenous uveitis in south-western
648 Finland. *Acta ophthalmologica Scandinavica*. 1995;73(4):345-349. doi:10.1111/J.1600-0420.1995.TB00040.X

649 22. Thorne JE, Suhler E, Skup M, et al. Prevalence of Noninfectious Uveitis in the United States: A Claims-Based Analysis. *JAMA Ophthalmol*.
650 Nov 1 2016;134(11):1237-1245. doi:10.1001/jamaophthalmol.2016.3229

651 23. Yeung IY, Popp NA, Chan CC. The role of sex in uveitis and ocular inflammation. *Int Ophthalmol Clin*. Summer 2015;55(3):111-31.
652 doi:10.1097/iio.0000000000000072

653 24. Agrawal R, Gunasekeran DV, Agarwal A, et al. The Collaborative Ocular Tuberculosis Study (COTS)-1: A Multinational Description of the
654 Spectrum of Choroidal Involvement in 245 Patients with Tubercular Uveitis. *Ocul Immunol Inflamm*. Sep 30 2020;28(sup1):38-48.
655 doi:10.1080/09273948.2018.1489061

656 25. Alli HD, Ally N, Mayet I, Dangor Z, Madhi SA. Global prevalence and clinical outcomes of tubercular uveitis: a systematic review and meta-
657 analysis. *Surv Ophthalmol*. May-Jun 2022;67(3):770-792. doi:10.1016/j.survophthal.2021.10.001

658 26. Das D, Bhattacharjee H, Bhattacharyya PK, et al. Pattern of uveitis in North East India: a tertiary eye care center study. *Indian journal of
659 ophthalmology*. 2009/6// 2009;57(2):144-146. doi:10.4103/0301-4738.45506

660 27. Wakabayashi T, Morimura Y, Miyamoto Y, Okada AA. Changing patterns of intraocular inflammatory disease in Japan. *Ocular immunology and
661 inflammation*. 2003/12// 2003;11(4):277-286. doi:10.1076/OCII.11.4.277.18260

662 28. Çakar Özdal MP, Yazici A, Tüfek M, Öztürk F. Epidemiology of uveitis in a referral hospital in Turkey. *Turkish journal of medical sciences*.
663 2014;44(2):337-342. doi:10.3906/SAG-1302-132

664 29. Engelhard SB, Patel V, Reddy AK. Intermediate uveitis, posterior uveitis, and panuveitis in the Mid-Atlantic USA. *Clinical ophthalmology*
(Auckland, NZ). 2015/8// 2015;9:1549-1555. doi:10.2147/OPHTH.S89428

665 30. Jones NP, Pockar S, Steeples LR. Changing Trends in Uveitis in the United Kingdom: 5000 Consecutive Referrals to a Tertiary Referral
666 Centre. *Ocular immunology and inflammation*. 2023;31(5):921-926. doi:10.1080/09273948.2022.2067067

667 31. Zeboulon N, Dougados M, Gossec L. Prevalence and characteristics of uveitis in the spondyloarthropathies: a systematic literature review.
668 *Ann Rheum Dis*. Jul 2008;67(7):955-9. doi:10.1136/ard.2007.075754

669 32. Messenger W, Hildebrandt L, Mackensen F, Suhler E, Becker M, Rosenbaum JT. Characterisation of uveitis in association with multiple
670 sclerosis. *Br J Ophthalmol*. Feb 2015;99(2):205-9. doi:10.1136/bjophthalmol-2014-305518

671 33. Kopplin LJ, Mount G, Suhler EB. Review for Disease of the Year: Epidemiology of HLA-B27 Associated Ocular Disorders. *Ocul Immunol
672 Inflamm*. Aug 2016;24(4):470-5. doi:10.1080/09273948.2016.1175642

673 34. Tay-Kearney ML, Schwam BL, Lowder C, et al. Clinical features and associated systemic diseases of HLA-B27 uveitis. *American journal of
674 ophthalmology*. 1996;121(1):47-56. doi:10.1016/S0002-9394(14)70533-1

675 35. Laroni A, Calabrese M, Perini P, et al. Multiple sclerosis and autoimmune diseases: epidemiology and HLA-DR association in North-east Italy.
676 *Journal of neurology*. 2006/5// 2006;253(5):636-639. doi:10.1007/S00415-006-0084-4

677 36. de-la-Torre A, López-Castillo CA, Rueda JC, Mantilla RD, Gómez-Marín JE, Anaya JM. Clinical patterns of uveitis in two ophthalmology
678 centres in Bogota, Colombia. *Clin Exp Ophthalmol*. Jul 2009;37(5):458-66. doi:10.1111/j.1442-9071.2009.02082.x

679

680 37. Liba T, Gorenstein A, Leibovitch I, Gepstein R, Machinski E, Segal O. Epidemiological Characterization of Uveitis in Japan: a Systematic
681 Review. *Ocular Immunology and Inflammation*. 1-10. doi:10.1080/09273948.2025.2452193

682 38. Rodriguez A, Calonge M, Pedroza-Seres M, et al. Referral patterns of uveitis in a tertiary eye care center. *Archives of Ophthalmology (Chicago, Ill : 1960)*. 1996;114(5):593-599. doi:10.1001/ARCHOPHT.1996.01100130585016

683 39. Chang JH, McCluskey PJ, Wakefield D. Acute anterior uveitis and HLA-B27. *Surv Ophthalmol*. Jul-Aug 2005;50(4):364-88. doi:10.1016/j.survophthal.2005.04.003

684 40. Rademacher J, Poddubnyy D, Pleyer U. Uveitis in spondyloarthritis. *Therapeutic Advances in Musculoskeletal Disease*. 2020;12:1759720X20951733. doi:10.1177/1759720X20951733

685 41. Jones NP. The Manchester Uveitis Clinic: the first 3000 patients--epidemiology and casemix. *Ocul Immunol Inflamm*. Apr 2015;23(2):118-26. doi:10.3109/09273948.2013.855799

686 42. Deschenes J, Murray PI, Rao NA, Nussenblatt RB. International Uveitis Study Group (IUSG): clinical classification of uveitis. *Ocul Immunol Inflamm*. Jan-Feb 2008;16(1):1-2. doi:10.1080/09273940801899822

687 43. Grange LK, Kouchouk A, Dalal MD, et al. Neoplastic masquerade syndromes in patients with uveitis. *Am J Ophthalmol*. Mar 2014;157(3):526-31. doi:10.1016/j.ajo.2013.11.002

688 44. Lee RWJ, Dick AD. Current concepts and future directions in the pathogenesis and treatment of non-infectious intraocular inflammation. *Eye (London, England)*. 2012;26(1):17-28. doi:10.1038/EYE.2011.255

689 45. Egwuagu CE, Alhakeem SA, Mbanefo EC. Uveitis: Molecular Pathogenesis and Emerging Therapies. *Frontiers in immunology*. 2021/4// 2021;12doi:10.3389/FIMMU.2021.623725

690 46. Durrani OM, Tehrani NN, Marr JE, Moradi P, Stavrou P, Murray PI. Degree, duration, and causes of visual loss in uveitis. *The British journal of ophthalmology*. 2004/9// 2004;88(9):1159-1162. doi:10.1136/BJO.2003.037226

691 47. AlBloushi AF, Ajamil-Rodanes S, Testi I, Wagland C, Grant-McKenzie N, Pavesio C. Diagnostic value of culture results from aqueous tap versus vitreous tap in cases of bacterial endophthalmitis. *Br J Ophthalmol*. Jun 2022;106(6):815-819. doi:10.1136/bjophthalmol-2021-318916

692 48. Gutteridge IF, Hall AJ. Acute anterior uveitis in primary care. *Clinical & experimental optometry*. 2007/3// 2007;90(2):70-82. doi:10.1111/J.1444-0938.2006.00128.X

693 49. Biswas J, Ganeshbabu TM, Ramesh Raghavendran S, Raizada S, Mondkar SV, Madhavan HN. Efficacy and safety of 1% rimexolone versus 1% prednisolone acetate in the treatment of anterior uveitis – a randomized triple masked study. *International Ophthalmology*. 2004/05/01 2004;25(3):147-153. doi:10.1007/s10792-004-5195-2

694 50. Takase H, Acharya NR, Babu K, et al. Recommendations for the management of ocular sarcoidosis from the International Workshop on Ocular Sarcoidosis. *British Journal of Ophthalmology*. 2021;105(11):1515-1519. doi:10.1136/bjophthalmol-2020-317354

695 51. Thorne JE, Sugar EA, Holbrook JT, et al. Periocular Triamcinolone vs. Intravitreal Triamcinolone vs. Intravitreal Dexamethasone Implant for the Treatment of Uveitic Macular Edema: The PeriOcular vs. INTravitreal corticosteroids for uveitic macular edema (POINT) Trial. *Ophthalmology*. 2019/2// 2019;126(2):283-295. doi:10.1016/J.OPHTHA.2018.08.021

696 52. Yeh S, Khurana RN, Shah M, et al. Efficacy and Safety of Suprachoroidal CLS-TA for Macular Edema Secondary to Noninfectious Uveitis: Phase 3 Randomized Trial. *Ophthalmology*. 2020/7// 2020;127(7):948-955. doi:10.1016/J.OPHTHA.2020.01.006

697 53. Jabs DA, Rosenbaum JT, Foster CS, et al. Guidelines for the use of immunosuppressive drugs in patients with ocular inflammatory disorders: recommendations of an expert panel. *Am J Ophthalmol*. Oct 2000;130(4):492-513. doi:10.1016/s0002-9394(00)00659-0

698 54. Zhang H, Nicholson CM, Kempen JH, Ying GS, Gangaputra SS. Management of Acute Non-Infectious Anterior Uveitis in Adults - Practice Patterns Among Uveitis Specialists in North America. *Ocul Immunol Inflamm*. May 15 2024;1-6. doi:10.1080/09273948.2024.2346819

699 55. Urban RC, Cotlier E. Corticosteroid-induced cataracts. *Survey of Ophthalmology*. 1986/09/01/ 1986;31(2):102-110. doi:[https://doi.org/10.1016/0039-6257\(86\)90077-9](https://doi.org/10.1016/0039-6257(86)90077-9)

700 56. Prieto-del-Cura M, González-Guijarro JJ. Risk factors for ocular complications in adult patients with uveitis. *European journal of ophthalmology*. 2020/11// 2020;30(6):1381-1389. doi:10.1177/1120672119899379

701 57. Charkoudian LD, Ying GS, Pujari SS, et al. High-dose intravenous corticosteroids for ocular inflammatory diseases. *Ocular immunology and inflammation*. 2012/4// 2012;20(2):91-99. doi:10.3109/09273948.2011.646382

702 58. Kempen JH, Altawee MM, Drye LT, et al. Benefits of Systemic Anti-inflammatory Therapy versus Fluocinolone Acetonide Intraocular Implant for Intermediate Uveitis, Posterior Uveitis, and Panuveitis: Fifty-four-Month Results of the Multicenter Uveitis Steroid Treatment (MUST) Trial and Follow-up Study. *Ophthalmology*. Oct 2015;122(10):1967-75. doi:10.1016/j.ophtha.2015.06.042

703 59. Kempen JH, Altawee MM, Holbrook JT, et al. Randomized comparison of systemic anti-inflammatory therapy versus fluocinolone acetonide implant for intermediate, posterior, and panuveitis: the multicenter uveitis steroid treatment trial. *Ophthalmology*. 2011/10// 2011;118(10):1916-1926. doi:10.1016/J.OPHTHA.2011.07.027

704 60. Kempen JH, Altawee MM, Holbrook JT, Sugar EA, Thorne JE, Jabs DA. Association Between Long-Lasting Intravitreous Fluocinolone Acetonide Implant vs Systemic Anti-inflammatory Therapy and Visual Acuity at 7 Years Among Patients With Intermediate, Posterior, or Panuveitis. *JAMA*. 2017/5// 2017;317(19):1993-2005. doi:10.1001/JAMA.2017.5103

705 61. NICE. Adalimumab and dexamethasone for treating non-infectious uveitis. Accessed 1/12/2024, 2024. <https://www.nice.org.uk/guidance/ta460/chapter/1-Recommendations>

706 62. Dick AD, Rosenbaum JT, Al-Dhibi HA, et al. Guidance on Noncorticosteroid Systemic Immunomodulatory Therapy in Noninfectious Uveitis: Fundamentals Of Care for Uveitis (FOCUS) Initiative. *Ophthalmology*. May 2018;125(5):757-773. doi:10.1016/j.ophtha.2017.11.017

707 63. Gangaputra S, Newcomb CW, Liesegang TL, et al. Methotrexate for ocular inflammatory diseases. *Ophthalmology*. Nov 2009;116(11):2188-98.e1. doi:10.1016/j.ophtha.2009.04.020

708 64. Daniel E, Thorne JE, Newcomb CW, et al. Mycophenolate mofetil for ocular inflammation. *Am J Ophthalmol*. Mar 2010;149(3):423-32.e1-2. doi:10.1016/j.ajo.2009.09.026

709 65. Deuter CME, Engelmann K, Heiligenhaus A, et al. Enteric-coated mycophenolate sodium in the treatment of non-infectious intermediate uveitis: results of a prospective, controlled, randomised, open-label, early terminated multicentre trial. *Br J Ophthalmol*. May 2018;102(5):647-653. doi:10.1136/bjophthalmol-2017-310156

710 66. Yazici H, Pazarli H, Barnes CG, et al. A controlled trial of azathioprine in Behcet's syndrome. *N Engl J Med*. Feb 1 1990;322(5):281-5. doi:10.1056/nejm199002013220501

711 67. Pasadhika S, Kempen JH, Newcomb CW, et al. Azathioprine for ocular inflammatory diseases. *Am J Ophthalmol*. Oct 2009;148(4):500-509.e2. doi:10.1016/j.ajo.2009.05.008

712 68. Kaçmaz RO, Kempen JH, Newcomb C, et al. Cyclosporine for ocular inflammatory diseases. *Ophthalmology*. Mar 2010;117(3):576-84. doi:10.1016/j.ophtha.2009.08.010

713 69. Ono T, Goto H, Sakai T, et al. Comparison of combination therapy of prednisolone and cyclosporine with corticosteroid pulse therapy in Vogt-Koyanagi-Harada disease. *Japanese journal of ophthalmology*. 2022/3// 2022;66(2):119-129. doi:10.1007/S10384-021-00878-W

714 70. Jaffe GJ, Dick AD, Brézin AP, et al. Adalimumab in Patients with Active Noninfectious Uveitis. *N Engl J Med*. Sep 8 2016;375(10):932-43. doi:10.1056/NEJMoa1509852

754 71. Nguyen QD, Merrill PT, Jaffe GJ, et al. Adalimumab for prevention of uveitic flare in patients with inactive non-infectious uveitis controlled
755 by corticosteroids (VISUAL II): a multicentre, double-masked, randomised, placebo-controlled phase 3 trial. *Lancet*. Sep 17 2016;388(10050):1183-92.
756 doi:10.1016/s0140-6736(16)31339-3

757 72. Ramanan AV, Dick AD, Jones AP, et al. Adalimumab plus Methotrexate for Uveitis in Juvenile Idiopathic Arthritis. *N Engl J Med*. Apr 27
758 2017;376(17):1637-1646. doi:10.1056/NEJMoa1614160

759 73. Quartier P, Baptiste A, Despert V, et al. ADJUVITE: a double-blind, randomised, placebo-controlled trial of adalimumab in early onset,
760 chronic, juvenile idiopathic arthritis-associated anterior uveitis. *Ann Rheum Dis*. Jul 2018;77(7):1003-1011. doi:10.1136/annrheumdis-2017-212089

761 74. van Bentum RE, Heslinga SC, Nurmohamed MT, et al. Reduced Occurrence Rate of Acute Anterior Uveitis in Ankylosing Spondylitis
762 Treated with Golimumab - The GO-EASY Study. *J Rheumatol*. Feb 2019;46(2):153-159. doi:10.3899/jrheum.180312

763 75. van der Horst-Bruinsma IE, van Bentum RE, Verbraak FD, et al. Reduction of anterior uveitis flares in patients with axial spondyloarthritis
764 on certolizumab pegol treatment: final 2-year results from the multicenter phase IV C-VIEW study. *Ther Adv Musculoskelet Dis*.
765 2021;13:1759720x211003803. doi:10.1177/1759720x211003803

766 76. Srivastava SK, Watkins T, Nguyen QD, et al. A phase 2 randomized controlled trial of the Janus Kinase (JAK) inhibitor filgotinib in patients
767 with noninfectious uveitis. *Investigative Ophthalmology & Visual Science*. 2022;63(7):2678-2678.

768 77. Srivastava SK, Watkins TR, Nguyen QD, et al. Filgotinib in Active Noninfectious Uveitis: The HUMBOLDT Randomized Clinical Trial.
769 *JAMA Ophthalmol*. Jul 18 2024;doi:10.1001/jamaophthalmol.2024.2439

770 78. Takakura A, Tessler HH, Goldstein DA, et al. Viral retinitis following intraocular or periocular corticosteroid administration: a case series and
771 comprehensive review of the literature. *Ocul Immunol Inflamm*. Jun 2014;22(3):175-82. doi:10.3109/09273948.2013.866256

772 79. Benz MS, Scott IU, Flynn HW, Jr., Unionius N, Miller D. Endophthalmitis isolates and antibiotic sensitivities: a 6-year review of culture-
773 proven cases. *Am J Ophthalmol*. Jan 2004;137(1):38-42. doi:10.1016/s0002-9394(03)00896-1

774 80. Agrawal R, Testi I, Mahajan S, et al. Collaborative Ocular Tuberculosis Study Consensus Guidelines on the Management of Tubercular
775 Uveitis-Report 1: Guidelines for Initiating Antitubercular Therapy in Tubercular Choroiditis. *Ophthalmology*. Feb 2021;128(2):266-276.
776 doi:10.1016/j.ophtha.2020.01.008

777 81. Betzler BK, Putera I, Testi I, et al. Anti-tubercular therapy in the treatment of tubercular uveitis: A systematic review and meta-analysis. *Surv
778 Ophthalmol*. Mar-Apr 2023;68(2):241-256. doi:10.1016/j.survophthal.2022.10.001

779 82. WHO. *Guidelines for treatment of drug-susceptible tuberculosis*. 2017.

780 83. Ozdemir Yalcinsoy K, Cakar Ozdal P. Ocular syphilis. *Eur Eye Res*. 2022;2(3):124-134. doi:10.14744/eer.2022.57966

781 84. WHO. WHO Guidelines Approved by the Guidelines Review Committee. *WHO Guidelines for the Treatment of *Treponema pallidum* (Syphilis)*.
782 World Health Organization
783 © World Health Organization 2016.; 2016.

784 85. Workowski KA, Bachmann LH, Chan PA, et al. Sexually Transmitted Infections Treatment Guidelines, 2021. *MMWR Recomm Rep*. Jul 23
785 2021;70(4):1-187. doi:10.15585/mmwr.rr7004a1

786 86. Zhang T, Zhu Y, Xu G. Clinical Features and Treatments of Syphilitic Uveitis: A Systematic Review and Meta-Analysis. *J Ophthalmol*.
787 2017;2017:6594849. doi:10.1155/2017/6594849

788 87. Thng ZX, Putera I, Testi I, et al. The Infectious Uveitis Treatment Algorithm Network (TITAN) Report 1-global current practice patterns for
789 the management of Herpes Simplex Virus and Varicella Zoster Virus anterior uveitis. *Eye (Lond)*. Jan 2024;38(1):61-67. doi:10.1038/s41433-023-
790 02630-9

791 88. Thng ZX, Putera I, Testi I, et al. The Infectious Uveitis Treatment Algorithm Network (TITAN) Report 2-global current practice patterns for
792 the management of Cytomegalovirus anterior uveitis. *Eye (Lond)*. Jan 2024;38(1):68-75. doi:10.1038/s41433-023-02631-8

793 89. Zandi S, Bodaghi B, Garweg JG. Review for Disease of the Year: Treatment of Viral Anterior Uveitis: A Perspective. *Ocular Immunology and
794 Inflammation*. 2018/10/03 2018;26(7):1135-1142. doi:10.1080/09273948.2018.1498109

795 90. Brodie JT, Thotathil AZ, Jordan CA, Sims J, Niederer RL. Risk of Recurrence in Acute Anterior Uveitis. *Ophthalmology*. 2024/06/08/
796 2024;doi:<https://doi.org/10.1016/j.ophtha.2024.06.003>

797 91. Lin P. Infectious Uveitis. *Curr Ophthalmol Rep*. Sep 2015;3(3):170-183. doi:10.1007/s40135-015-0076-6

798 92. La Distia Nora R, Putera I, Mayasari YD, et al. Clinical characteristics and treatment outcomes of cytomegalovirus anterior uveitis and
799 endotheliitis: A systematic review and meta-analysis. *Survey of Ophthalmology*. 2022;67(4):1014-1030. doi:10.1016/j.survophthal.2021.12.006

800 93. Ude IN, Yeh S, Shantha JG. Cytomegalovirus retinitis in the highly active anti-retroviral therapy era. *Annals of Eye Science*. 2021;7:5.

801 94. Chiang W-Y, Lin C-P, Cho W-H, et al. Cytomegalovirus Uveitis: Taiwan expert consensus. *Journal of the Formosan Medical Association*.
802 2023/08/01/ 2023;122(8):668-674. doi:<https://doi.org/10.1016/j.jfma.2023.03.014>

803 95. Khan FA, Slain D, Khakoo RA. Candida Endophthalmitis: Focus on Current and Future Antifungal Treatment Options. *Pharmacotherapy: The
804 Journal of Human Pharmacology and Drug Therapy*. 2007;27(12):1711-1721. doi:<https://doi.org/10.1592/phco.27.12.1711>

805 96. Rex JH, Bennett JE, Sugar AM, et al. A Randomized Trial Comparing Fluconazole with Amphotericin B for the Treatment of Candidemia in
806 Patients without Neutropenia. *New England Journal of Medicine*. 1994;331(20):1325-1330. doi:doi:10.1056/NEJM199411173312001

807 97. Pappas PG, Kauffman CA, Andes DR, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious
808 Diseases Society of America. *Clin Infect Dis*. Feb 15 2016;62(4):e1-50. doi:10.1093/cid/civ933

809 98. Patterson TF, Thompson GR, 3rd, Denning DW, et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update
810 by the Infectious Diseases Society of America. *Clin Infect Dis*. Aug 15 2016;63(4):e1-e60. doi:10.1093/cid/ciw326

811 99. Kalogeropoulos D, Sakkas H, Mohammed B, et al. Ocular toxoplasmosis: a review of the current diagnostic and therapeutic approaches. *Int
812 Ophthalmol*. Jan 2022;42(1):295-321. doi:10.1007/s10792-021-01994-9

813 100. Pradhan E, Bhandari S, Gilbert RE, Stanford M. Antibiotics versus no treatment for toxoplasma retinochoroiditis. *Cochrane Database Syst Rev*.
814 May 20 2016;2016(5):Cd002218. doi:10.1002/14651858.CD002218.pub2

815 101. Feliciano-Alfonso JE, Muñoz-Ortiz J, Marín-Noriega MA, et al. Safety and efficacy of different antibiotic regimens in patients with ocular
816 toxoplasmosis: systematic review and meta-analysis. *Systematic Reviews*. 2021/07/19 2021;10(1):206. doi:10.1186/s13643-021-01758-7

817 102. Maini R, O'Sullivan J, Reddy A, Watson S, Edelsten C. The risk of complications of uveitis in a district hospital cohort. *Br J Ophthalmol*. Apr
818 2004;88(4):512-7. doi:10.1136/bjo.2002.013334

819 103. Engelhard SB, Haddad Z, Bajwa A, Patrie J, Xin W, Reddy AK. Infectious uveitis in Virginia. *Clin Ophthalmol*. 2015;9:1589-94.
820 doi:10.2147/opth.S86578

821 104. Ahmed AS, Nivedita N, Sudharshan S, et al. Ocular Syphilis - Clinical Features and Outcome in HIV Positive and HIV Negative Patients
822 from a Tertiary Eye Center from India - A Comparative Study. *Ocul Immunol Inflamm*. Aug 15 2024;1-8. doi:10.1080/09273948.2024.2382347

823 105. Sittivarakul W, Treerutpun W, Tungsattayathitthan U. Clinical characteristics, visual acuity outcomes, and factors associated with loss of vision
824 among patients with active ocular toxoplasmosis: A retrospective study in a Thai tertiary center. *PLoS Negl Trop Dis*. Jun 2024;18(6):e0012232.
825 doi:10.1371/journal.pntd.0012232

826 106. Tomkins-Netzer O, Lightman SL, Burke AE, et al. Seven-Year Outcomes of Uveitic Macular Edema: The Multicenter Uveitis Steroid
827 Treatment Trial and Follow-up Study Results. *Ophthalmology*. 2021/5/ // 2021;128(5):719-728. doi:10.1016/j.jophtha.2020.08.035

828 107. Suhler EB, Jaffe GJ, Fortin E, et al. Long-Term Safety and Efficacy of Adalimumab in Patients with Noninfectious Intermediate Uveitis,
829 Posterior Uveitis, or Panuveitis. *Ophthalmology*. 2021/6/ // 2021;128(6):899-909. doi:10.1016/j.jophtha.2020.10.036

