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Matrix-Valued Measures and Wishart
Statistics for Target Tracking Applications

Robin Forsling, Simon J. Julier, and Gustaf Hendeby

Abstract—Ensuring sufficiently accurate models is
crucial in target tracking systems. If the assumed
models deviate too much from the truth, the tracking
performance might be severely degraded. While the
models are usually defined using multivariate condi-
tions, the measures used to validate them are most often
scalar-valued. In this paper, we propose matrix-valued
measures for both offline and online assessment of target
tracking systems. Recent results from Wishart statistics,
and approximations thereof, are adapted and it is
shown how these can be incorporated to infer statistical
properties for the eigenvalues of the proposed measures.
In addition, we relate these results to the statistics
of the baseline measures. Finally, the applicability of
the proposed measures are demonstrated using two
important problems in target tracking: (i) distributed
track fusion design; and (ii) filter model mismatch
detection.

Index Terms—Target tracking, data fusion, evalua-
tion measures, model imperfections, model validation,
Wishart statistics.

I. INTRODUCTION

Target tracking involves estimating the state of a
target of interest using noisy sensor measurements.
The standard paradigm is model-based target track-
ing, where sensor models and motion models are
combined for tracking the target state over time [1]. It
is essential for tracking performance that the assumed
models are sufficiently correct. If the assumed models
deviate too far from the actual underlying models,
there is often an unpredictable degradation in the
tracking performance.

Developing methodologies and measures for ac-
curate model assessment is still an open challenge
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[2–4]. Model imperfection in target tracking is of-
ten evaluated using the normalized estimation er-
ror squared (NEES) and the normalized innovation
squared (NIS) [5]. Both measures penalize the mean
squared error (MSE) weighted by the computed
covariance matrix. Hence, they are scale-invariant
in contrast to the MSE. NEES requires the ground
truth to be known and is therefore suitable for offline
analyses. Since NIS can be computed both online and
offline it is typically the preferred choice. However,
while the models in general are multivariate, both
NEES and NIS are scalar-valued. Hence, despite
their widely spread usage in application areas such
as navigation and target tracking, NEES and NIS
cannot sufficiently address the multivariate relations.
Moreover, as pointed out in [4], NEES and NIS often
fail to be useful even for evaluating scalar relations.

In this paper we propose matrix generalizations
of the NEES and NIS. In particular, by using the
eigenvalues of these matrices, different multivariate
properties and model imperfections can be examined.
We further utilize recent results from Wishart statis-
tics to facilitate the analysis of target tracking systems
based on eigenvalue statistics. A few applications1

are used to demonstrate the usage of the proposed
matrix-valued measures and the implied statistics.

II. RELATED SCALAR-VALUED MEASURES

We start with the notation and mathematical pre-
liminaries. Related measures are then reviewed.

A. Notation

Let Rn be the set of all n-dimensional real-valued
vectors. By A ⪰ B and A ≻ B we denote that
the difference A − B is positive semidefinite and
positive definite, respectively. The identity matrix of
applicable size is given by I. The expected value and
covariance of random vector z are denoted E(z) and
cov(z), respectively.

1MATLAB® code for all developments and applications of this
paper is available at: https://github.com/robinforsling/dtt/.
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Let xk ∈ Rnx be an nx-dimensional state at time
k to be estimated. An estimate of xk is given by
the pair (x̂k,Pk), where x̂k is the state estimate and
Pk ≻ 0 the covariance computed by the estimator for
x̂k. Similarly, (x̂i

k,P
i
k) is the estimate computed in

the ith sample or realization, e.g., in a Monte Carlo
(MC) simulation. The estimation error is defined
as x̃k = x̂k − xk and x̃i

k = x̂i
k − xk is the

estimation error in the ith sample. It is assumed
that x̂k is unbiased, i.e., E(x̃k) = 0. The matrix
Σk = cov(x̃k) = E(x̃kx̃

T
k) is referred to as the MSE

matrix or the true covariance of the estimation error.
Note, we use the same notation for a random variable
and a realization of it.

If z ∼ Nm(µ,Σ), then z is a Gaussian distributed
m-dimensional random vector, where µ = E(z)
and Σ = cov(z). Moreover, if z ∼ Nm(0, I),
then zTz ∼ χ2

m, where χ2
m denotes the central

chi-squared distribution with m degrees of freedom.
Let Z =

[
z1 . . . zn

]
be a m × n real-valued

random matrix, where each column zi ∼ Nm(0, I) is
independent and identically distributed (i.i.d.). Then
ZZT ∼ Wm(n, I) is an m×m positive semidefinite
matrix, where Wm(n, I) is the real Wishart distribu-
tion [6] with n degrees of freedom and covariance
parameter I. The Wishart distribution is the sampling
distribution of covariance matrices where the under-
lying samples are i.i.d. Gaussian random vectors. It is
hence relevant when computing sampled covariance
matrices from a Gaussian distributed error.

B. Preliminaries

Two central concepts are credibility and conserva-
tiveness. An estimator of xk that computes (x̂k,Pk)
is credible at time k if E(x̃k) = 0 and2

Pk = Σk. (1)

An estimator of xk that computes (x̂k,Pk) is con-
servative at time k if

Pk ⪰ Σk. (2)

In, e.g., [7], the conservativeness criterion is relaxed
using the trace operator. An estimator of xk that
computes (x̂k,Pk) is trace-conservative at time k if

tr(Pk) ≥ tr(Σk), (3)

which is a weaker property than conservative [8].
Since Pk ≻ 0, it has a unique Cholesky factor-

ization Pk = LkL
T
k, where Lk is lower-triangular

2It should be pointed out that the probability that a sampled
approximation, e.g., an MC estimator, of Pk equals to Σk is zero.

and invertible. Moreover, an eigendecomposition of
an n×n symmetric positive semidefinite matrix S is
given by

S =

n∑
i=1

λiuiu
T
i , (4)

where λi = λi(S) ≥ 0 is the ith eigenvalue of S and
ui is the associated eigenvalue. Note, if unambiguous,
for simplicity we use λi instead of λi(S) for the ith
eigenvalue of S. It is assumed that

λmax = λ1 ≥ · · · ≥ λn = λmin. (5)

The condition in (1) is equivalent to

Pk = Σk ⇐⇒ I = L−1
k ΣkL

−T
k . (6)

Similarly, the condition in (2) is equivalent to

Pk ⪰ Σk ⇐⇒ I ⪰ L−1
k ΣkL

−T
k

⇐⇒ 1 ≥ λi(L
−1
k ΣkL

−T
k ),∀i

⇐⇒ 1 ≥ λmax(L
−1
k ΣkL

−T
k ). (7)

C. Related Work

The NEES is introduced in [9] as a measure for the
uncertainty assessment in target tracking algorithms.
The NEES is computed as

NEESk =
1

M

M∑
i=1

(x̃i
k)

T(Pi
k)

−1x̃i
k, (8)

where M is the number of MC runs. The NIS is
computed similarly. Let ỹk be the innovation at time
k, where ỹk = yk−ŷk is the difference between mea-
surement yk and predicted measurement ŷk at time
k, cf. a Kalman filter (KF, [10]). Let Sk = BkB

T
k

be the covariance computed for ỹk. Then the NIS at
time k is computed as

NISk =
1

K

K∑
l=k−K+1

ỹTl S
−1
l ỹl, (9)

where K is the number of time steps used.
As pointed out in [11–13], NEES exhibits a few

drawbacks: (i) it penalizes optimism and pessimism
asymmetrically; and (ii) it is inconvenient for com-
paring different estimators’ credibility. To overcome
these drawbacks the same authors propose the non-
credibility index (NCI) defined as

NCIk =
10

M

M∑
i=1

log10

(
(x̃i

k)
T(Pi

k)
−1x̃i

k

(x̃i
k)

T(Σi
k)

−1x̃i
k

)
, (10)
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where Σi
k is the MSE matrix of ith MC run. If

unknown, Σi
k is approximated by

Σ̂k =
1

M

M∑
i=1

x̃i
k(x̃

i
k)

T. (11)

In [5] NEES and NIS are used to evaluate filter
consistency. A consistent filter ensures two important
properties [14]: (i) the error statistics computed by the
filter is the same as the true error statistics; and (ii)
the filter mixes information obtained from the process
with measurement information in an optimal way.
To this end, a recent paper [4] suggests extending
NEES and NIS by including terms for the second-
order moments. This works remarkably well for filter
tuning and it has been shown that the extended
measures can be integrated into an automatic filter
tuning framework [4].

The measures mentioned so far—including NEES,
NIS, and NCI—are all scalar measures. However, for
an estimator to be credible or conservative, certain
matrix conditions must be fulfilled. Satisfying the
scalar conditions is not sufficient to ensure that the
matrix conditions are satisfied. For instance, for a
strict evaluation of conservativeness it is necessary to
consider semidefinite conditions, cf. (2). This aspect
is briefly addressed in [12], where the credibility
interval is defined as3

[λmin(Ξk), λmax(Ξk)], (12)

with
Ξk = L−1

k ΣkL
−T
k . (13)

To compute Ξk, both Σk and Pk = LkL
T
k must

be known. A workaround is to approximate these
covariances. An unknown covariance Σk = cov(x̃k)
can be approximated by Σ̂k as defined in (11).
Similarly, Pk can be approximated by the mean

P̂k =
1

M

M∑
i=1

Pi
k. (14)

If the system is linear, then Pi
k = Pk for all i and

hence P̂k = Pk.
In [15], the conservativeness index (COIN) is de-

fined by

COINk = λmax(L
−1
k Σ̂kL

−T
k ). (15)

The next proposition4 is a direct consequence of (7).

3For a perfectly credible estimator the credibility interval would
reduce to the single value 1.

4If Σ̂ ̸= Σ, then this is only an approximation. In [15] it is
assumed that Pi

k = Pk . If not, Pk can be approximated by P̂k .

Proposition 1. If Σ̂k = Σk, then (x̂k,Pk) is
conservative if and only if COINk ≤ 1.

Proof. An estimate (x̂k,Pk), where Pk = LkL
T
k, is

conservative if Pk ⪰ Σk. Hence, if Σ̂k = Σk, it
follows from (7) and by definition of COINk, that

Pk ⪰ Σ̂k ⇐⇒ 1 ≥ λmax(L
−1
k Σ̂kL

−T
k ) = COINk.

III. DEVELOPING STATISTICAL MEASURES FOR
EVALUATING MATRIX-VALUED PROPERTIES

We start with a motivating example to illustrate
that scalar-valued measures such as NEES in general
fail to evaluate matrix-valued conditions.

A. Motivating Example
It is now illustrated how merely looking at NEES

might lead to the conclusion that an estimator is
credible or conservative when it in fact is neither.
Let

Σ =

[
8 1
1 2

]
, P =

[
8 0
0 2

]
.

Clearly Σ ̸= P, i.e., the credibility condition is
violated. Moreover,

Ξ =

[
1 0.25

0.25 1

]
,

with eigenvalues λmin = 0.75 and λmax = 1.25.
Hence, neither the conservativeness condition holds.

Consider now a stationary setting, where the es-
timation error x̃k ∼ N2(0,Σ) and P = LLT is
the covariance computed for x̃k at each k. If we
sample x̃k ∼ N2(0,Σ) over independent MC runs,
the NEES statistics can be computed using (8). For a
filter consistent estimator we should have NEESk =
nx = 2 and that NEES is χ2 distributed. The NEES
statistics is plotted in Fig. 1 and we see that NEESk/2
is very close to 1. In addition, the sampled probability
density function (PDF) of ∥L−1x̃∥2 is computed as a
histogram and plotted against the theoretical χ2 PDF.
By pure inspection, the NEES statistics is what we
would expect for a filter consistent estimator. How-
ever, since λmin(Ξ) = 0.75 and λmax(Ξ) = 1.25
we know that this estimator is not credible nor even
conservative.

B. Problem Formulation
In this paper, the objective is to develop measures

that can be used to evaluate matrix-valued conditions,
e.g., credibility and conservativeness. This means that
we do not only need new measures, but also statistical
properties related to these measures.
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Fig. 1. Motivating example. The estimation error is sampled
from N2(0,Σ) and P ̸= Σ is the covariance computed
by the estimator. However, from the NEES it might be
concluded that P = Σ despite that λmin(Ξ) = 0.75 and
λmax(Ξ) = 1.25.

IV. PROPOSED MATRIX-VALUED STATISTICS

In this section the proposed matrix-valued statistics
are presented. We start with a matrix generalization of
NEES which is suitable for offline evaluation of target
tracking and data fusion systems. Then a similar
generalization of NIS is proposed that can be used
in online applications.

A. The Normalized Estimation Error Squared Matrix

The motivating example in the preceding section
illustrates that NEES is not sufficient to evaluate
credibility and conservativeness. However, still, the
normalized error and innovation are useful tools
which we want to generalize to the multivariate case.
The NEES matrix is proposed below in Definition 1.
It is defined for MC based simulations and interpreted
as the sampled Ξ, i.e., the sampled covariance of the
normalized estimation error L−1x̃.

Definition 1 (The NEES Matrix). Let x̃i
k be the

estimation error of the ith sample at time k. Let
Pi

k = Li
k(L

i
k)

T ≻ 0 be the covariance computed
by the estimator. The NEES matrix is defined as

Ξ̂k =
1

M

M∑
i=1

(Li
k)

−1x̃i
k(x̃

i
k)

T(Li
k)

−T. (16)

Note that

tr(Ξ̂k) = tr

(
1

M

M∑
i=1

(Li
k)

−1x̃i
k(x̃

i
k)

T(Li
k)

−T

)

=
1

M

M∑
i=1

tr
(
(x̃i

k)
T(Li

k)
−T(Li

k)
−1x̃i

k

)
=

1

M

M∑
i=1

(x̃i
k)

T(Pi
k)

−1x̃i
k = NEESk,

where it is utilized that (Li
k)

−T(Li
k)

−1 = (Pi
k)

−1.
Let λ̄(A) denote the average of the eigenvalues of
A. If we normalize NEES using nx

1

nx
tr(Ξ̂k) =

1

nx

nx∑
i=1

λi(Ξ̂k) = λ̄(Ξ̂k), (17)

which is also referred to as the average NEES [5].

B. The Normalized Innovation Squared Matrix
The NEES statistic requires knowledge about the

true error and is hence used in offline applications
where a large number of independent MC runs are
simulated for a particular problem. A statistic that can
be computed online, and for single runs, is the NIS
statistics defined in (9). In a single run evaluation we
average over subsequent time steps instead of MC
runs. The NIS matrix is proposed in Definition 2.
It is interpreted as the sampled covariance of the
normalized innovation B−1ỹ.

Definition 2 (The NIS Matrix—Single Run Statis-
tics). Let ỹk ∈ Rny be the innovation at time k. Let
Sk = BkB

T
k ≻ 0 be the covariance computed for ỹk.

The single run NIS matrix is defined as

Π̂k =
1

K

k∑
l=k−K+1

B−1
l ỹlỹ

T
l B

−T
l . (18)

Analogously to the NEES case, we have that

tr(Π̂k) = tr

(
1

K

k∑
l=k−K+1

B−1
l ỹlỹ

T
l B

−T
l

)

=
1

K

k∑
l=k−K+1

tr
(
ỹTl B

−T
l B−1

l ỹl

)
=

1

K

k∑
l=k−K+1

ỹTl S
−1
l ỹl = NISk,

where it is utilized that S−1
l = B−T

l B−1
l . If we divide

NIS by ny

1

ny
tr(Π̂k) =

1

ny

ny∑
i=1

λi(Π̂k) = λ̄(Π̂k). (19)
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In various applications, e.g., filter tuning, it is
relevant to compute also the NIS in an MC setup.
In this case the NIS matrix is defined as follows.

Definition 3 (The NIS Matrix—MC Statistics). Let
ỹi
k be the innovation of the ith sample at time k. Let

Si
k = Bi

k(B
i
k)

T ≻ 0 be the covariance computed for
ỹi
k. The MC based NIS matrix is defined as

Π̂′
k =

1

M

M∑
i=1

(Bi
k)

−1ỹi
k(ỹ

i
k)

T(Bi
k)

−T. (20)

C. Test Statistics

The NEES matrix and the NIS matrix are statis-
tics suitable for testing matrix relationships such
as credibility, cf. (1), and conservativeness, cf. (2).
In particular, we are interested in the probability
distributions of the smallest and largest eigenvalues of
Ξ̂ and Π̂. With such distributions it is, for instance,
possible to evaluate if the innovations are samples
from a white process with B−1

k ỹk ∼ N (0, I). The
null hypothesis, in this case, is formulated as

H0 : Πk = I, (21)

which is accepted or rejected using λmin(Π̂k) and
λmax(Π̂k) as test statistics. In the next section we
study the marginal distributions of the smallest and
largest eigenvalues of Wishart distributed matrices.

Remark 1. In this paper we mainly focus on the problem of
identifying if something is wrong, e.g., model errors, rather
than pointing out how it is wrong, e.g., which components
the model errors affect. This means that we are mainly
interested in the eigenvalue statistics. However, in one
of the applications we briefly analyze the corresponding
eigenvectors which contain information about in which
components the models errors contribute.

V. WISHART EIGENVALUE STATISTICS

If L−1x̃ ∼ Nnx(0, I) and B−1ỹ ∼ Nny (0, I),
then Ξ̂ ∼ Wnx(M, I) and Π̂ ∼ Wny (K, I). Hence,
we can utilize Wishart statistics to draw conclusions
about, credibility, filter consistency, and the models
used in a target tracking system.

In this section statistical properties of λmin(V) and
λmax(V) are analyzed, where V ∼ Wm(n, I). It is
assumed that n ≥ m such that V ≻ 0.

A. Joint Probability Distribution

Let Γ(z) denote the gamma function, γ(z, a, b) =∫ b

a
tz−1 exp(−t) dt be the generalized incomplete

gamma function, and r(z, a, b) = 1
Γ(a)γ(z, a, b) de-

note the generalized regularized incomplete gamma

function. Define Γm(z) = πm(m−1)/4
∏m

i=1 Γ(z −
(i− 1)/2) and g(z, t) = tz exp(−t).

Let V ∼ Wm(n, I) and λmax = λ1 ≥ · · · ≥ λm =
λmin be the ordered eigenvalues of V. The joint PDF
of λ =

[
λ1 . . . λm

]
is given by [16, 17]

fλ(ξ1, . . . , ξm) = KJ

m∏
i=1

exp(−ξi/2)ξαi
m∏
i<j

(ξi−ξj),

(22)
where α = (n −m − 1)/2, ξ1 ≥ · · · ≥ ξm, and the
normalization constant KJ is given by

KJ =
πm2/2

2mn/2Γm(m/2)Γm(n/2)
. (23)

B. Exact Marginal Probability Distributions

The exact probability that all eigenvalues of V ∼
Wm(n, I) lie within an arbitrary interval is developed
in [18]. The cumulative density functions (CDFs) of
the smallest and largest eigenvalues of V are then
obtained as special cases5.

The probability that all eigenvalues of V ∼
Wm(n, I) lie within an interval [a, b] ⊆ [0,∞) is
[18]

ψ(a, b) = Pr (a ≤ λmin(V) , λmax(V) ≤ b)

= Kλ

√
det(A(a, b)), (24)

where

Kλ = KJ2
αm+m(m+1)/2

m∏
i=1

Γ(α+ i)

=
πm2/2

Γm(m/2)Γm(n/2)

m∏
i=1

Γ(α+ i), (25)

and A(a, b) is a skew symmetric matrix. A recursive
formula for ψ(a, b) is provided in Algorithm 1.

With ψ(a, b), the CDFs Fλmin and Fλmax for the
smallest and largest eigenvalues of V, respectively,
are given by

Fλmin
(a) = Pr (λmin ≤ a) = 1− ψ(a,∞), (26a)

Fλmax
(b) = Pr (λmax ≤ b) = ψ(0, b). (26b)

since ψ has a positive support.

5Pioneering work on the marginalization of the extreme eigen-
values of Wishart distributed matrices are found in [16, 19–21].
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Algorithm 1 Probability ψ(a, b) that all eigenvalues
of V ∼ Wm(n, I) lie within [a, b] [18]
Input: m, n, a, and b

A = 0m×m ▷ m×m matrix of zeros
αℓ = α+ ℓ ▷ ℓ is an integer
Kλ = πm2/2

Γm(m/2)Γm(n/2)

∏m
i=1 Γ(α+ i)

for i = 1, . . . ,m− 1 do
for j = i, . . . ,m− 1 do

[A]i,j+1 = [A]i,j

+
21−αi−αjΓ(αi + αj)

Γ(αj + 1)Γ(αi)
r(αi + αj , a, b)

− g(αj , a/2) + g(αj , b/2)

Γ(αj + 1)
r(αi, a/2, b/2)

if m is odd then
c = 0m×1 ▷ column vector of zeros
for i = 1, . . . ,m do

[c]i = r(αi, a/2, b/2)

A←
[

A c
01×m 0

]
A← A−AT

Output: ψ(a, b) = Kλ

√
det(A)

C. Approximate Marginal Probability Distributions

The CDFs Fλmin
and Fλmin

computed using Al-
gorithm 1 are exact. However, for large m,n the
asymptotic behavior is often sufficient. In addition,
numerical issues might arise when m and n (or n
alone) are large6. In these situations approximate
CDFs are useful. It is known that the smallest and
largest eigenvalues converges to a shifted Tracy-
Widom distribution as m,n → ∞ [18, 23]. Here,
we will use the simpler approximations proposed
in [18, 22] which are based upon shifted gamma
distributions.

Let V ∼ Wm(n, I) and let r(z, a) be the lower
regularized gamma function. Moreover, let µ1, σ2

1 ,
and s1 be the mean, variance, and skewness of the
Tracy-Widom distribution7 of type 1. Define

κ =
4

s21
, θ =

σ1s1
2

, ρ = κθ − µ1. (27)

The CDF Fλmin
is approximated using the result from

[18]

Pr (λmin(V) ≤ a) ≈ r

(
κ,

max(0,−a′ + ρ)

θ

)
,

(28)

6m,n on the order of ≥ 100 are large in this context [22].
7For details about these parameters, see, e.g., [23].

where

a′ =
a− µmin

σmin
, (29a)

µmin =
(√
n+ cn −

√
m+ cm

)2
, (29b)

σmin =
√
µmin

(
1√

m+ cm
− 1√

n+ cn

) 1
3

, (29c)

and where cm and cn are tuning parameters, here set
to cm = cn = −1/2 following [22].

Similarly, Fλmax
is approximated using [22]

Pr (λmax(V) ≤ b) ≈ r

(
κ,

max(0, b′ + ρ)

θ

)
, (30)

where

b′ =
b− µmax

σmax
, (31a)

µmax =
(√
m+ cm +

√
n+ cn

)2
, (31b)

σmax =
√
µmax

(
1√

m+ cm
+

1√
n+ cn

) 1
3

.

(31c)

D. Expected Values

Assume that z is a random variable with nonneg-
ative support and CDF Fz(ζ). Then [24]

E(z) =

∫ ∞

0

(1− Fz(ζ)) dζ. (32)

Hence, since both λmin and λmax have positive
support only, their expected values are given by

E(λmin) =

∫ ∞

0

(1− Fλmin
(ξ)) dξ, (33a)

E(λmax) =

∫ ∞

0

(1− Fλmax
(ξ)) dξ. (33b)

Let V ∼ Wm(n, I). The expected values of
λmin(V) and λmax(V) are plotted in Fig. 2 for
m = 3 and different values of n. The inverse CDFs
F−1
λmin

and F−1
λmax

are also plotted, corresponding to
one-sided 95% confidence intervals for λmin and
λmax, respectively. All curves are normalized with
n. The curves approaches 1 as n tends to infinity.

E. Relation to χ2 Statistics

The Wishart distribution is a multivariate gen-
eralization of the χ2 distribution. Let Z =
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Fig. 2. Expected values and inverse CDFs of λmin and
λmax as functions of n. The curves are normalized with n.

[
z1 . . . zn

]
, where zi ∼ Nm(0, I) are i.i.d.. Then

ZZT ∼ Wm(n, I) and

tr(ZZT) = tr

(
n∑

i=1

ziz
T
i

)
=

n∑
i=1

tr
(
ziz

T
i

)
=

(
n∑

i=1

zTi zi

)
∼ χ2

mn.

Hence, the χ2 statistics is closely related to the
Wishart statistics. However, it is not possible to re-
construct the Wishart statistics from the χ2 statistics.
Still, the χ2 statistics is relevant when it comes to
the evaluation of scalar properties such as trace-
conservativeness, cf. (3), in which case the scalar
NEES can be used.

F. Example: Switching Target Dynamics

We will now use a target tracking example to
demonstrate the proposed statistics and compare them
to their scalar analogs. A target is first tracked using
correct models of the dynamics using a KF. After
a certain time, the target dynamics change without
changing the models in the KF. The goal is to be
able to detect these changes. To this end, we analyze
the NEES matrix and the NIS matrix before and after
the change in the target dynamics.

Assume two spatial dimensions and let Tk be the
sampling time. The target state xk evolves according
to a discrete time (nearly) constant velocity (CV)
model

xk+1 = Fkxk +Gkwk, (34)

where wk ∼ N2(0,Qk) is the process noise, Qk the
process noise covariance, and8

Fk =


1 0 Tk 0
0 1 0 Tk
0 0 1 0
0 0 0 1

 , Gk =


T 2
k

2 0

0
T 2
k

2
Tk 0
0 Tk

 .
(35)

A measurement yk ∈ R2 at time k is given according
to the linear measurement model

yk = Hkxk + vk =

[
1 0 0 0
0 1 0 0

]
xk + vk, (36)

where vk ∼ N2(0,Rk) is the measurement noise and
Rk = σ2

vI the measurement noise covariance.
We will simulate xk according to (34) using a Qk

that switches at time kswitch. Let u∥
k and u⊥

k be two-
dimensional unit vectors, where u

∥
k is longitudinal

and u⊥
k is lateral to the target velocity at time k. At

k = 1, . . . , kswitch

Qk = q2
[
1 0
0 1

]
, (37)

and at k = kswitch + 1, . . . , 20

Qk = q2
[
u
∥
k u⊥

k

] [10−6 0
0 2

] [
u
∥
k u⊥

k

]T
, (38)

where q is the magnitude of the random acceleration.
The target hence first evolves according to isotropic
random accelerations and then according to nearly
central random accelerations.

The problem is evaluated using MC simulations.
We compute the NEES matrix Ξ̂ using Definition 1
and the NIS matrix Π̂′ using Definition 3. Both are
averaged over the MC simulations for each time k.
The results are summarized in Fig. 3. It is seen that
λmin and λmax respond very quickly when the switch
occurs. Since the change in dynamics is such that the
acceleration decreases in the longitudinal component
and increases in the lateral component, λmin falls and
λmax rises. This is true for both the NEES and NIS
statistics. However, λ̄ is approximately the same after
the kswitch. Hence, it would be difficult to observe
the change by merely looking at the scalar-valued
NEES and NIS. Confidence intervals derived from
the inverse CDFs are also included. By F−1

χ2
Mm

we
denote the inverse CDF of the χ2 distribution with
Mm degrees of freedom.

8This corresponds to a sample-and-hold model.
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Fig. 3. Switching dynamics example. At kswitch, the target dynamics switches from a CV model with isotropic random
accelerations to a CV model with central random accelerations. The switch is captured by λmin and λmax for both Ξ̂
and Π̂′, but not clearly by λ̄. The confidence intervals given by F−1 have been normalized for comparison reason.

VI. TARGET TRACKING APPLICATIONS

In this section we demonstrate two important appli-
cations for the proposed matrix-valued measures. In
the first application we consider track fusion design
where the task is to choose a track fusion method
offline evaluation of the NEES matrix. In the second
application we use the NIS matrix for online detection
of process model mismatch. In both applications
the eigenvalues of NEES/NIS matrix are evaluated
by utilizing the Wishart statistics presented in the
previous section.

MATLAB® source code for the applications is
available at https://github.com/robinforsling/dtt/. The
repository also contains the functionality described in
the previous section.

A. Distributed Track Fusion Design

Track fusion is a type of data fusion. It is an
integral part of network-centric target tracking sys-
tems9 where multiple agents track overlapping sets of
targets [15]. The goal with this example is to illustrate
how the NEES matrix statistics is used to evaluate
conservativeness.

1) Scenario and Models: Assume a target tracking
scenario where two agents track a common target in
two spatial dimensions. The target state xk is assumed
to evolve according to the CV model

xk+1 = Fkxk +wk, wk ∼ N4(0,Qk), (39)

9For instance, target tracking in distributed sensor networks.

where Fk is given in (35) and

Qk = q2


T 3
k

3 0
T 2
k

2 0

0
T 3
k

3 0
T 2
k

2
T 2
k

2 0 Tk 0

0
T 2
k

2 0 Tk

 , (40)

with Tk = 1. At each time k the agents filters their
local measurements using a KF. A nonlinear mea-
surement model is assumed for both agents, where a
measurement yi

k in Agent i at time k is generated
according to

yi
k = h(xk, s

i
k) + vk, vk ∼ N2(0,Rk), (41)

where sik is the position of Agent i, h( · ) is a
mapping from Cartesian to polar coordinates with
origin in sik, and Rk = diag(σ2

r , σ
2
ϕ) with σ2

r and
σ2
ϕ denoting the variances of the radial and azimuthal

error, respectively. At odd k Agent 1 shares its local
track with Agent 2 who fuses the tracks. At even k
a local estimates is shared in the opposite direction
for track fusion.

Assume now that a local extended Kalman filter
(EKF, [25]), which only uses local measurements
and no track fusion, has already been tuned in a
satisfactory way for this particular problem. To utilize
a received track a track fusion method is needed.
The task is here to select a track fusion method
based on performance and uncertainty assessment
obtained using an MC study. For this simple example
we consider covariance intersection (CI, [26]) and
the largest ellipsoid (LE, [27]) method as the two
candidate track fusion methods. For implementation
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TABLE I
TRACK FUSION DESIGN PARAMETERS

Parameter Description

M = 10 000 number of MC runs
q = 5 process noise parameter [ms−

3
2 ]

σr = 100 standard deviation of radial uncertainty [m]
σϕ = 2 standard deviation of azimuthal uncertainty [◦]

details and comparisons, see, e.g., [28]. Simulation
parameters are summarized in Table I.

2) Measures for Estimation Quality: Let (x̂i
k,P

i
k)

denote the local estimate, at time k and in MC run i,
after track fusion in one of the agents. Performance
is evaluated using the root mean trace (RMT) defined
as

RMTk =

√√√√ 1

M

M∑
i=1

tr(Pi
k). (42)

A robust design of the track fusion must also
take into account the uncertainty assessment. To this
end we consider conservativeness, which basically
means that we want a track fusion method that is
able to ensure conservative estimates or at least does
not violate the conservativeness property too much.
Conservativeness is evaluated using λmax(Ξ̂), where
Ξ̂ is the NEES matrix given in Definition 1. In
particular, λmax(Ξ̂) is compared to a predetermined
value of F−1

λmax
(p). For V ∼ Wm(M, I), the confi-

dence parameter p corresponds to the probability that
λmax(V ) ≤ F−1

λmax
(p). Hence, since Ξ̂ is normalized

by M , we compare λmax(Ξ̂) with F−1
λmax

(p)/M . If
λmax(Ξ̂) ≤ F−1

λmax
(p)/M , the estimator is considered

conservative.
3) Results: The NEES matrix statistics, com-

puted over all MC runs, for each k are displayed
in Fig. 4. The gray area and curve correspond
to {λmin, λ̄, λmax} for the local EKF (LKF). Us-
ing CI for track fusion results in conservative but
rather pessimistic estimates as λmax is below 1 <
F−1
λmax

(p)/M . On the other hand, we cannot say that
LE is conservative with respect to (w.r.t.) the confi-
dence p. It is interesting that λ̄ for LE does not deviate
considerably from the LKF which by assumption
is satisfactorily tuned. Moreover, both are below 1.
Hence, if we had only looked at λ̄, or equivalently
NEES = nxλ̄, then we would probably have arrived
at the conclusion that also LE is conservative.

The RMT results are presented in Fig. 510. The

10Only the results for Agent 1 are presented. The results for
Agent 2 are almost identical.

curves have been normalized by the Cramér-Rao
lower bound (CRLB, [5]) such that RMTk = 1 is
optimal. It is clearly seen that LE outperforms CI
w.r.t. RMT.

In summary, LE shows better performance than CI,
but at the cost of not being conservative. The main
point is that it requires the NEES matrix statistics
to be able to detect that LE is not conservative—the
NEES, cf. (8), is not sufficient in this case.

B. Filter Model Mismatch Detection

Using a representative process model is key to the
performance of any target tracking system. In prac-
tice, the assumed process model used in a tracking
filter almost always deviates from the true dynamics
of the tracked target. We will now demonstrate how
the NIS matrix can be used online to detect a process
model mismatch.

1) Scenario and Models: The considered scenario
is similar to the example in Sec. V-F, but without the
switching dynamics. In that example, a linear KF was
used to track a single target. The actual target state
x evolves in continuous time according to

ẋ =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

x+


0
0
ax
ay

 , (43)

where ẋ is the time derivative of x, ax and ay are
continuous white noise accelerations along the x-axis
and y-axis, respectively. It is assumed that

Qa = cov

([
ax
ay

])
= q2

[
α2 0
0 1/α2

]
, (44)

where α = 2. Note that, for all α ̸= 0, det(Qa) = q2.
Discretizing the continuous time model in (43) results
in Fk according to (35) and [29]

Qk = q2


α2T 3

k

3 0
α2T 2

k

2 0

0
T 3
k

3α2 0
T 2
k

2α2

α2T 2
k

2 0 α2Tk 0

0
T 2
k

2α2 0 Tk

α2

 . (45)

If α = 1, then this Qk reduces to (40).
The linear sensor model in (36) is assumed, where

Rk = σ2
vI. The simulation parameters are summa-

rized in Table II.
The target is simulated using Qk with α = 2 but

the KF uses Qk with α = 1. Apart from that, all
models used in the KF are correct. The task is to
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Fig. 4. NEES matrix results for the track fusion design. To evaluate if a track fusion method leads to conservative
estimates, λmax(Ξ̂) is compared with F−1

λmax
/M . For convenience, also λ̄(Ξ̂) = NEES/nx and λmin(Ξ̂) are included.

10 20 30 40 50 k

1.0

1.25

1.5

1.75

R
M

T

LKF CI LE

Fig. 5. RMT results for the track fusion design. The RMT
curves have been normalized by the CRLB.

TABLE II
MODEL MISMATCH DETECTION PARAMETERS

Parameter Description

M = 10 000 number of MC runs
q = 10 process noise parameter [ms−

3
2 ]

σv = 10 standard deviation of measurement error [m]

detect the process model mismatch. Essentially, we
want to test the null hypothesis

H0 : Πk = I. (46)

Note, we will not design an actual detection algo-
rithm, but instead compute statistics related to the
model mismatch.

2) Measures for Model Mismatch Detection: The
NIS matrix Π̂ is used for online evaluation of the
model assumption. We compute an accumulated Π̂k

in a single run according to

Π̂k =
1

k

k∑
l=1

B−1
l ỹlỹ

T
l B

−T
l . (47)

The single runs are evaluated separately using MC
simulations to obtain good statistics. The performance
is evaluated using the probability pdet of detecting a
model mismatch. For a certain probability parameter
p ∈ [0, 1], we define

pWdet = Pr ((λmin < aλmin
) ∨ (λmax > bλmax

)) ,
(48)

where aλmin = F−1
λmin

(1 − p), bλmax = F−1
λmax

(p),
and ∨ denotes logical or. This corresponds to the
probability that at least one λ(Π̂) is outside a
100(2p − 1)% confidence interval. As a reference,
we define the corresponding probability for the λ̄(Π̂)
statistics accordingly as

pχ
2

det = Pr
(
(λ̄ < aχ2) ∨ (λ̄ > bχ2)

)
, (49)

where aχ2 = F−1
χ2 (1 − p) and bχ2 = F−1

χ2 (p). For a
fixed p, larger pdet means a more sensitive detector.

3) Complementary Measures: We also analyze
the eigenvectors of Π̂ to investigate if they add
any complementary information related to the model
mismatch. The idea is that the eigenvectors should
contain information about which directions there is a
mismatch in the process noise. For instance, in the
x-axis the actual white noise accelerations have a
variance of q2α2 but the filter is based on q2.

Let umax,k be the eigenvector associated with
λmax(Π̂k). By construction, Π̂k is computed in a
transformed domain due to the B−1

k . We therefore
define

bmax,k = Bkumax,k. (50)

Let θk be the angle between bmax,k and the x-axis,
which might be both positive and negative, computed
in each of the single runs. We compare bmax,k and
the x-axis since for the true dynamics the process

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2025.3571685

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University College London. Downloaded on May 27,2025 at 20:01:58 UTC from IEEE Xplore.  Restrictions apply. 



11

10 20 30 40 50 k

1.0

2.0

3.0

4.0

λmax(Π̂) F−1
λmax

(0.995)/k

λ̄(Π̂)

F−1

χ2
mk

(0.995)/mk

F−1

χ2
mk

(0.005)/mk

λmin(Π̂) F−1
λmin

(0.005)/k

Fig. 6. Filter model mismatch detection, where mean values
of λmax, λ̄, and λmin are plotted. Dashed lines refer to
normalized inverse CDFs of the computed quantities.

noise is larger in the x-component which should be
captured by λmax. For each time k, we will examine
θ̄k and σθk , corresponding to the mean and standard
deviation of θk, respectively, obtained by averaging
over the MC runs. Note that, since the eigenvectors
are orthogonal, identical results would be obtained
by making the corresponding comparison with the
eigenvector associated with λmin(Π̂k) and the y-axis.

4) Results: Fig. 6 illustrates the single run statis-
tics with p = 0.995. The thick solid curves represent
mean values of λmax, λ̄, and λmin, averaged over
the MC runs for each time k. The dashed curves
illustrate normalized inverse CDFs under H0. We see
that λmax crosses F−1

λmax
(0.995)/k somewhere around

k = 30. This indicates that there is a significant
level of probability to detect the model mismatch. The
same cannot be said for λ̄ which relates to detecting
the model mismatch using χ2 statistics.

The probabilities pWdet and pχ
2

det are approximated by
their sample means. That is, for each k, we average
the logical expressions inside Pr( · ) in (48) and (49)
over the MC runs. The results are plotted in Fig. 7,
where p̂Wdet and p̂χ

2

det refer to the sampled approxi-
mations of (48) and (49), respectively. It is clear
that using Wishart statistics the detection performance
is significantly improved compared to using the χ2

statistics.
The results related to bmax,k and θk are presented

in Fig. 8. These are the single run results which have
been averaged over the MC for easier interpretation.
While θ̄ is approximately zero-mean over all k, the
standard deviation σθ is initially very high. However,
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p
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t
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Fig. 7. Filter model mismatch detection, where p̂Wdet and p̂χ
2

det
are sampled approximations of (48) and (49), respectively.
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Fig. 8. Filter model mismatch detection. The angle θ
represents the deviation of bmax from the x-axis.

as k increases, σθ decreases and somewhere between
k = 30 and k = 40 it becomes less than 10◦. Hence,
it seems like the eigenvectors of Π̂ contain some
additional information, although noisy, that can be
used to draw conclusions about which components
the assumed model fails to match the actual process.
This opens up for the possibility to use the eigenvalue
statistics to say whether there is a filter model mis-
match at all, and then use the eigenvectors to decide
how the filter can be retuned, in online applications.
However, we consider this to be future work.

VII. CONCLUSIONS

We have proposed matrix-valued measures, the
NEES matrix and the NIS matrix, with applications to
the design and evaluation of target tracking systems.
In particular, it has been shown how the eigenvalues
of the NEES and NIS matrices and the associated
eigenvalue statistics can be used to draw conclusions
about properties such as credibility, filter consistency,
and conservativeness. The applicability of the pro-
posed measures was demonstrated using two target
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tracking problems: (i) distributed track fusion design;
and (ii) filter model mismatch detection.

While the focus of this paper has been on spe-
cific target tracking applications, we argue that the
proposed measures are useful in essentially all types
of estimation problems. For instance, the NIS matrix
can be used to evaluate the correctness of land-
mark initializations in simultaneous localization and
mapping (SLAM). It can also serve as an online
computable quality measure for, e.g., localization and
decision-making problems in general. It would also
be interesting to integrate the proposed measures in
an auto-tuning framework such as [4]. To this end
it might be useful to further elaborate on how the
eigenvectors of the NIS matrix can be exploited.
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