
Correlative Tomography for Polymineralic Inclusion
Composition in Sublithospheric Diamonds
B. D. Rayner1,2 , S. C. Kohn1 , R. J. Garwood3,4 , A. D. Burnham5 , G. P. Bulanova1,
C. B. Smith1, and A. R. Thomson2,4

1School of Earth Sciences, University of Bristol, Bristol, UK, 2Department of Earth Sciences, University College London,
London, UK, 3Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK, 4The Natural
History Museum, London, UK, 5Research School of Earth Sciences, Australian National University, Canberra, ACT,
Australia

Abstract Sublithospheric diamonds and their inclusions are the deepest known samples from the Earth's
mantle. Typically, the inclusions are trapped as minerals which are only stable in the deep mantle, retrogressing
into multiple phases during their uplift. Determining the bulk inclusion composition is difficult but crucially
important. Here we use micron‐scale synchrotron X‐ray computed tomography alongside μ‐Raman mapping to
reconstruct primary inclusion compositions of seven former Ti‐rich CaSi‐perovskite inclusions, which had
retrogressed to assemblages of breyite and perovskite. The inclusions display Ti#s (molar Ti/[Ti + Si]), ranging
from 0.03 to 0.60. In diamonds with previously reported coexisting inclusions, former bridgmanite coexists with
lower Ti# CaSi‐perovskite and garnet inclusions with higher Ti# CaSi‐perovskite. This observation is consistent
with published petrological experiments on mafic compositions suggesting that CaSi‐perovskite undergoes a
decrease in Ti# after the post‐garnet transition. Thus variations in Ti content of CaSi‐perovskite inclusions are
interpreted as differences in formation pressures.

Plain Language Summary Material sourced directly from deep within the Earth's mantle is
extremely rare and sublithospheric diamonds are therefore uniquely valuable. As these diamonds grow they trap
mineral inclusions from their environment and upon ascent to the surface these inclusions depressurize and
decompose into multiple minerals with different compositions. This makes it difficult to measure the
compositions of the originally captured minerals, and thus how and where they formed. Here we apply X‐ray
computed tomography to image these inclusions in three dimensions to reconstruct their original compositions.
We find that these compositions match those expected to occur in cold crustal rock as it sinks through the
mantle.

1. Introduction
Diamonds form at high pressure within the Earth and as they grow, they capture mineral inclusions from their
formation environment, the compositions of which can indicate the conditions of diamond formation. Diamonds
derived from below the lithosphere are called sublithospheric diamonds, and can contain inclusions of minerals
that are not stable at shallower conditions. These inclusions often retrogress into one or more phases upon ascent
(Harte & Hudson, 2013; Stachel et al., 2000; Walter et al., 2011), producing polymineralic inclusions. Inclusions
containing both breyite (CaSiO3) and perovskite (CaTiO3) are among the most common inclusion types within
meta‐basaltic sublithospheric diamonds (Walter et al., 2022). Breyite is a high pressure mineral found exclusively
in sublithospheric diamonds inclusions (Brenker et al., 2021), and is often interpreted as retrograde CaSi‐
perovskite, although in single phase inclusions without perovskite this remains controversial (Woodland
et al., 2020). Here, breyite‐perovskite inclusions are interpreted as retrogressed high‐Ti CaSi‐perovskite (Ca[Si,
Ti]O3); no other known precursor calcium silicate mineral with ABO3 stoichiometry could be sufficiently Ti‐rich
and it is extremely unlikely that any other material, such as multiple minerals or a melt, could reproduce this
precise stoichiometry as frequently as observed. Walter et al. (2022) describe two populations of former CaSi‐
perovskite, referred to as “high‐Ti” (>2 wt% TiO2) and “low‐Ti” (<0.7 wt% TiO2). Breyite‐perovskite in-
clusions in the literature are almost all “high‐Ti,” indicating derivation from subducted mafic crust (Walter
et al., 2022), but it is unclear what causes the significant variation in Ti content within this group.

Determining the bulk compositions of polymineralic inclusions accurately is difficult. Methods used previously
are all subject to considerable limitations and are as follows:
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(i) Crushing the host diamond and recovering inclusions from the debris (e.g., Harte & Cayzer, 2007; Hayman
et al., 2005; Stachel et al., 2000). The outside surfaces, or planes polished into the picked inclusions, are then
examined by X‐ray spectroscopy using a scanning electron microscope. This method risks dissociating or
even losing parts of the inclusion, which inhibits its ability to quantitatively assess the abundance of phases.

(ii) Polishing diamonds to expose inclusions at the surface and using electron microbeam techniques to measure
composition. Two variations include:
a. Individual phases within the inclusion are analysed with a focussed beam and bulk compositions are

calculated using each phase's relative area on the exposed surface (Bulanova et al., 2010; Harte &
Cayzer, 2007; Thomson et al., 2014). This assumes that the exposed area of each phase is representative of
its volumetric abundance within the whole inclusion and that all phases within the inclusion are exposed or
have not been polished away. Figure 1 illustrates how unlikely this is to be the case.

b. The inclusion's exposed area is analysed using a broad, defocussed, electron beam (Thomson et al., 2014;
Walter et al., 2011). For small inclusions, the analytical volume is a significant fraction of the inclusion,
and recovered analyses may approach the true bulk chemistry. Nonetheless, this method also assumes that
no phases were destroyed during polishing or are too deep within the inclusion to measure. Moreover, the
matrix corrections used in electron probe microanalysis assume a homogeneous volume of infinite size,
which is not true of a polymineralic inclusion surrounded by a low‐Z matrix such as diamond that
minimally attenuates X‐rays (Bence & Albee, 1968).

These methods all involve the partial destruction of diamonds and inclusions. Non‐destructive alternatives are
attractive as they allow the maximum amount of data to be derived from these exceptionally rare samples in the
future. X‐ray computed microtomography (μCT), combined with knowledge of the inclusion's chemistry gained
through techniques applicable in situ such as Raman spectroscopy, X‐ray diffraction or X‐ray Fluorescence, could
be used to determine a polymineralic inclusion's bulk composition accurately and non‐destructively by imaging
its entire volume. μCT has previously been used to study diamond inclusions in situ (Agrosi et al., 2019; Jacob
et al., 2011; Ketcham & Koeberl, 2013; Nestola et al., 2012), but never for this purpose. Here we demonstrate a
technique for determination of the bulk composition of breyite‐perovskite inclusions.

2. Materials and Methods
2.1. Sublithospheric Diamonds From Juina Area, Brazil

The seven diamonds studied here originate from the Juina‐5 and Collier‐4 kimberlite pipes in Juina, Brazil
(specimen numbers are provided in Table 1) and are of sublithospheric, subduction‐related origin. Previous work
on these diamonds includes work by Walter et al. (2008, 2011), Bulanova et al. (2010), Thomson et al. (2014),
Burnham et al. (2015), Thomson, Kohn, et al. (2016), and Timmerman et al. (2023). The diamonds each contain at
least one breyite‐perovskite inclusion.

2.2. Bulk Composition Reconstructions

Determining the bulk compositions of polymineralic inclusions requires knowledge of the composition, volume
and density (in order to convert volumes to molar ratio) of each of the constituent phases in the inclusions. For the
case of breyite‐perovskite inclusions, these can all be determined using μCT combined with Raman spectroscopy,
but additional techniques may be required when investigating different inclusion mineralogies.

2.2.1. Composition Estimates From Raman Spectroscopy

Raman spectra and micron‐resolution maps were collected with a Thermo DXRxi spectrometer at the University
of Bristol. Data on the conditions of each analysis can be found in Supporting Information S1. The analysis of
sample Ju5‐52 was performed on a Thermo DXR microscope. Phase identification was performed with reference
to library examples.

Breyite has no significant solid solutions (Brenker et al., 2021), so it is assumed that all breyite regions in in-
clusions consist of pure CaSiO3. In contrast, the equilibrium Ti‐Si ratio of perovskite coexisting with breyite in the
CaSiO3‐CaTiO3 system varies with pressure (Kubo et al., 1997). As majoritic garnet inclusions from these di-
amonds demonstrate high equilibration pressures (Thomson et al., 2021) it is important to constrain the perovskite
Ti# (molar Ti/[Ti + Si]) when calculating bulk breyite‐perovskite inclusion compositions.
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The Si‐content of each perovskite can be established using the peak positions of the collected Raman spectra.
CaSi‐perovskite has a smaller unit cell volume than pure CaTiO3 perovskite (Thomson et al., 2025) and Raman
peak positions vary with chemistry; the ∼780 cm− 1 peak (in CaTiO3) increases in frequency with increasing
CaSiO3 component. We utilize a Raman frequency composition relationship produced by Thomson et al. (2025):
mol% CaSiO3 = 0.46 * (ν − 772.8) where ν is the Raman frequency of the 780 cm− 1 peak. However, increasing
pressure also produces an upward shift of 5.78 cm− 1/GPa in this Raman peak (Guennou et al., 2010), so a
correction is required to avoid overestimating the Si‐content in perovskite inclusions with remanent pressure
(which can be up to 5.4 GPa (Genzel et al., 2023)). Combining the two relationships produces a simple pressure
correction on the Raman frequency‐composition relationship of 2.659 mol% CaSiO3/GPa, that is, for every GPa
of remanent pressure, 2.659 mol% is subtracted from the perovskite component's CaSiO3 content.

Internal pressures were evaluated using the breyite barometer of Anzolini et al. (2018)—which uses the positive
linear relationship between pressure and the frequency of the 977 cm− 1 peak.

Figure 1. Schematic of a two‐phase inclusion showing how different exposed surfaces could give unrepresentative estimates
of phase proportions. The three polished planes shown could contain all B, all A or anything intermediate.
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This technique assumes that these perovskites are an ideal CaTiO3‐CaSiO3 mixture with no otherwise negligible
impurities present, reasonable to expect in natural perovskites. This may affect the Raman spectra and cause an
over‐estimation of perovskite Si contents. Therefore they are treated as maximum constraints only.

2.2.2. Volume Reconstructions From μCT

Coherent, pink‐beam synchrotron μCT imaging was used to recover the volume fraction of inclusion phases.
Measurements were conducted at the I13 beamline of Diamond Light Source. 1,800 projections were collected
over a 180° rotation on a pco.edge 5.5 sCMOS Camera using 4× (0.05 s exposures; 0.81 μm voxels) and/or 10×
(0.3 s exposures; 0.33 μm voxels) objective lenses. All samples were initially studied using the 4× objective,
whilst time allowed only some to be restudied at higher resolution.

Computed tomograms were reconstructed using DAWN (Basham et al., 2015), and subsequently analysed using
the Drishti 2.7 (Hu et al., 2020), SPIERS 3.0.0 (Sutton et al., 2012) and ImageJ 1.54d packages. 32‐bit floating
point tiffs were loaded in Drishti import, the histogram was windowed to cover the lightest and darkest voxels,
and the data sets were exported as 8‐bit PNG stacks. For noisier data sets—all 10× scans and two of the 4× scans
from diamonds Ju5‐52 and Col‐N‐18—2D mean filter smoothing was applied slice‐by‐slice using ImageJ. Data
sets were imported into SPIERSedit for volume measurements. This was achieved using the segments tool, which
allows a gray level range (between “threshold” values) to be assigned to a particular phase. Tomogram greyscale
corresponds to the average X‐ray attenuation of the material at each point in the reconstructed volume. In this
instance the darkest, hence the least X‐ray attenuating, region surrounding each inclusion is diamond. The
brightest phase observed is perovskite: the high Ti content provides a greater mean atomic density, and so higher
attenuation, than breyite. To extract the relative proportions of breyite and perovskite in each inclusion, two
segments were created based on the greyscale histogram. The darker portions within each inclusion are inter-
preted as breyite, including all voxels at gray levels between the diamond‐breyite and breyite‐perovskite
thresholds. The perovskite segment selects voxels with a brightness above the higher threshold.

Prior to volume estimation, known tomographic artifacts were removed from the data. First, spurious isolated
voxels of apparent perovskite, created by noisy data within breyite regions, were manually removed using the
SPIERS brush tool to avoid incorrect assignment as unlikely pixel sized perovskite grains. Second, partial volume
averaging where the brightest phase (perovskite) is in contact with the darkest phase (diamond) can create regions
of the intermediate phase (Sutton et al., 2014). In this situation, where perovskite exists along the edge of in-
clusions, these voxels contain perovskite and diamond. Their gray value is an average of both, creating breyite
rims around perovskite grains. As no such ubiquitous breyite rims are observed in polished slices (Bulanova
et al., 2010; Thomson et al., 2014) these were removed by manually assigning such rims to the perovskite phase
using a SPIERS region of interest, or mask. Following corrections, thresholding allows volume estimates—
however, the threshold values applied remain subjective. A sensitivity analysis examines how thresholding
choices affect volume measurements. Four volume ratios for each inclusion were determined, whereby both
threshold values were varied from their highest to lowest reasonable values and combined in each of four possible

Table 1
Data Summary

Diamond Ju5‐52 Ju5‐13 Col‐N‐4 Ju5‐104 Ju5‐119 Col‐N‐18 Ju5‐82

Lens objective in acquisition: 10× 4× 10× 4× 4× 4× 4× 10× 4× 4×

Vol % of perovskite from μCT: 2.9(4) 2.9(3) 3.9(4) 4.2(2) 7.3(8) 10.1(8) 11.3(34) 21.0(12) 25.2(10) 53.8(41)

Internal pressure (GPa): 1.0 1.7 2.3 2.1 0.0 1.2 1.0

Perovskite mol% CaSiO3 from Raman: n/a 3.0 5.3 7.1 9.8 5.2 8.9

Density (g/cm3) Breyite 3.09 3.16 3.18 3.17 3.09 3.14 3.13

Perovskite, CaTiO3 4.04 4.07 4.09 4.08 4.04 4.06 4.06

Perovskite, high CaSiO3 n/a 4.08 4.09 4.09 4.05 4.07 4.07

Calculated bulk Ti# 0.033(5) 0.032(4) 0.043(5) 0.045(3) 0.078(1) 0.11(12) 0.12(41) 0.22(18) 0.27(16) 0.54(65)

Note. Volume ratio derived from μCT and calculated bulk Ti# are given as the mean of the maximum and minimum constraints, alongside half the range. * Perovskite
Raman spectrum from Ju5‐52 was not acquired, so maximum constraint on Ti# was calculated using CaTiO3 perovskite component.
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ways. Upper and lower bounds for volume ratios are provided using whichever two of the four reconstructions
produce the highest and lowest volume fractions respectively.

2.2.3. Density Estimates

Conversion of volume to mass ratios, for composition determination, requires multiplication by the material
density. As they remain fully entrapped, each inclusion is subject to internal pressure. As breyite and perovskite
have different compressibilities, their relative densities change with internal pressure. Inclusion pressures were
estimated using the breyite Raman barometer (Anzolini et al., 2018). Equations of state for breyite (Anzolini
et al., 2016), perovskite (Ross &Angel, 1999) and CaSi‐perovskite (Thomson et al., 2019) were used to determine
the densities of these minerals within each inclusion, given the determined internal pressure. The perovskite
component's Si content is calculated by assuming that density varies linearly between the Ti and Si‐rich
endmembers.

3. Results
Raman spectra from each inclusion are shown in Figure 2, with the exception of Ju5‐52 for which no perovskite
spectrum could be obtained. The spectra clearly constrain the mineralogy, and the subtle changes in peak po-
sitions are sufficient to estimate remanent pressure and perovskite composition. These parameters are shown in
Table 1 along with the results of μCT reconstructions.

The bulk compositions of each inclusion were calculated as upper and lower bounds by Ti content. The lower
bound is calculated using the minimum perovskite volume percentage from μCT, and uses the perovskite
component CaSiO3 mol% derived from the Raman spectrum and the perovskite density derived for that perovskite
composition. The upper bound is calculated with the maximum perovskite component volume percentage and
assumes that the perovskite component is pure CaTiO3. This is elaborated on in Table S2. The final bulk CaSi‐
perovskite inclusion compositions are presented as Ti# (molar Ti/[Ti+ Si]) and vary from between 0.03 and 0.60.
The upper and lower bound values of the parameters are given in Table S2.

Figure 3 shows the volume reconstruction of the inclusion within diamond Col‐N‐18, together with two con-
trasting slices of this volume and the distribution of phase proportions produced by a series of random slices
through the inclusion. The kernel probability distribution is broad and its peak is offset from the relative volume
calculated from the μCT data. This emphasizes the improvement in compositional measurements using relative
volumes recovered from μCT rather than a single polished surface.

Whilst there remain several sources of uncertainty in the compositional estimates via μCT, probably the largest
stems from the volumetric proportions of the two phases (as discussed in Section 2.2.2). This is because whilst the
uncertainties in pressure and perovskite Si concentration are both large in an absolute sense, neither significantly
changes the perovskite component's density, so both only have a small impact on the final bulk Ti# of the bulk
CaSi‐perovskite inclusion.

Three specimens were scanned using both the 4× and 10× objective. For the inclusions in diamonds Ju5‐52 and
Ju5‐13, which both have low Ti contents, there is little difference in volume estimates using different resolution
objectives. The mean of the upper and lower composition bounds produced by 4× scans of the Ju5‐52 and Ju5‐13
inclusions produce, respectively, Ti#s which are 2.5% below and 6.6% above those produced by 10× scans.
However, measurements of the inclusion in diamond Col‐N‐18 indicate greater perovskite volumes in the lower
resolution scan; its 4× scan produces a Ti# which is 19.7% above that of its 10× scan. This inclusion also has a
much more complicated geometry than the other inclusions with several large perovskite grains, many facets and
small details which are clearly resolved properly only by the 10×.

4. Discussion
This study reports a large range in the Ti contents of former CaSi‐perovskite inclusions (Figure 4a). To understand
the cause, the variation in CaSi‐perovskite compositions within subducting mafic crust at different depths must be
considered. Subducting basalt entering the transition zone consists of garnet + stishovite, with all pyroxene
having already dissolved into garnet solid solution as a majorite component (Ishii et al., 2019). As pressure in-
creases, the Ca‐rich endmember of garnet begins to exsolve Ca in the form of CaSi‐perovskite (Ishii et al., 2019).
At this point, most of the Ti in the system is expected to partition into CaSi‐perovskite (Ishii et al., 2019). This is
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demonstrated in high‐pressure experiments on meta‐basaltic compositions; CaSi‐perovskite produced in exper-
iments at lower pressures (<20 GPa) has the highest Ti contents (Figure 4b). As pressure increases further, the
increasing modal abundance of CaSi‐perovskite leads to a decrease in Ti concentration. At even higher pressures,

Figure 2. Breyite and perovskite Raman spectra with the diagnostic peaks highlighted with shaded bars. Spectra from the
literature are provided for comparison. The noticeable shift in the 977 cm− 1 breyite peak and the 776 cm− 1 perovskite peak
are used respectively to establish internal pressure and the Si content of the perovskite component.
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where bridgmanite becomes stable, Ti partitions into bridgmanite, resulting in much lower Ti concentrations in
CaSi‐perovskite (Ishii et al., 2019, 2022) (Figure 4b).

It could be argued that the high and low‐Ti inclusions crystallized from environments with high or low bulk Ti
concentrations respectively, or that another unseen phase may selectively partition Ti when present. However, a
simpler explanation is that these inclusions sample a meta‐basaltic assemblage equilibrated at different pressures,
mirroring the experimental CaSi‐perovskite described above. This hypothesis is supported by phase co‐
occurrences (observations of other non‐touching inclusions which appear in the same diamonds, published in
the literature). The three highest Ti# inclusions in this study (Figure 4a) all co‐occur with garnet inclusions
(Burnham et al., 2015; Thomson et al., 2014). The lower Ti# breyite‐perovskite inclusion from Ju5‐13 co‐occurs
with a former aluminous bridgmanite inclusion (Thomson et al., 2014). Figure 4 demonstrates that the overall
range of Ti# in the inclusions matches the range in experiments, and the specific values where co‐occurrences are
recorded also match the range of values for the different assemblages in experiments. Thus, the most Ti‐rich

Figure 3. Errors in estimating phase proportions using a random slice through a polymineralic inclusion. (a) Volume
reconstruction from μCT data. (b) Two slices through the data. The lighter material is perovskite, the intermediate is breyite
and the surrounding darkness is diamond. The top slice consists largely of perovskite and the lower is pure breyite. (c) A
series of random slices (n = 30) were taken from the μCT data of the same inclusion and the phase proportions calculated in
each, then plotted here as a histogram and a kernel density estimation. Random slices can give variable, inaccurate phase
proportions.
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inclusions likely crystallized within the majoritic garnet stability field, and the more Ti‐poor samples formed at
greater depths, in the presence of bridgmanite. In reality the genesis of these diamonds must be more complex
than simple sub‐solidus trapping of metabasalt as demonstrated by trace element concentrations and the chemical
compositions of other phases (Thomson, Kohn, et al., 2016; Thomson, Walter, et al., 2016; Walter et al., 2008).
Nonetheless, the similarity between the Ti# of inclusions measured here and experimentally produced CaSi‐
perovskite is striking, so crystallization depth and the nature of coexisting phases is probably an important
constraint on CaSi‐perovskite inclusion chemistry.

The novel combination of techniques used here is able to reliably measure the relative abundance of breyite and
perovskite phases within an inclusion, as well as estimate the composition of each phase. They produce the best
measurements to date of the chemistry of unmixed CaSi‐perovskite inclusions. These non‐destructive techniques
represent a significant advance in the study of sublithospheric diamonds and should be applied to other localities
and inclusion types. Exactly the same μCT + Raman method could be used for unmixed stishovite inclusions; for
other phases where the unmixed phases have more complex solid solutions (e.g., majoritic garnet, bridgmanite)
μCT would have to be combined with alternative techniques to constrain inclusion chemistry. These methods can
maximize the information that can be extracted from these uniquely valuable samples.

Data Availability Statement
The tomography data used for volume measurements in the study are available within the UCL data repository.
Each inclusion tomogram is provided as a stack of tiff images. Data sets are available in these in‐text data citation
references: Rayner (2024a, 2024b, 2024c, 2024d, 2024e, 2024f, 2024g, 2024h, 2024i), etc.

Figure 4. (a) Reconstructed bulk perovskite Ti#. Green and orange symbols represent Ca‐perovskite with non‐touching,
coexisting garnet or former bridgmanite inclusions respectively. Markers represent the mean of maximum and minimum
constraints. (b) Ti# of CaSi‐perovskites produced in published experiments on mafic compositions with pressure. Green
symbols: experiments produced garnet with no bridgmanite; orange symbols: experiments produce bridgmanite with or
without garnet. Experimental data sources are provided in Table S3.
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