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Abstract 

Genes encode information translated into proteins, essential for biological functions. 

Genetic mutations alter DNA sequences, potentially modifying protein structures and 

functions with diverse effects. In nature, mutations drive genetic diversity, enabling 

beneficial innovations or detrimental changes, including extinction. In health and disease, 

mutations influence susceptibility, resistance, and disease progression, including cancer. 

These impacts underscore the importance of mutations in evolution, health, and disease. 

   

The first project focused on Ideonella sakaiensis PETase (IsPETase), aiming to discover 

potent PETases with improved substrate binding affinity. Computational algorithms 

analysed over a billion metagenomic sequences from the MGnify database, narrowing 

down a PETase subset. Twenty-seven putative PETase sequences were shortlisted, and 

three demonstrated in vitro activity, marking a discovery in identifying naturally evolved 

PETases.   

 

The second project examined amino acid changes in human and SARS-CoV-2 proteins 

affecting binding affinity in human:SARS-CoV-2 complexes. Among 450 human protein 

missense mutations, sixteen were predicted to enhance binding affinity (ΔΔG ≥ 0.5 

kcal/mol) with SARS-CoV-2 proteins, involving cell-entry receptors, immune responses, 

and translation machinery. Additionally, three SARS-CoV-2 mutations were predicted to 

strengthen interactions with human proteins. This research highlighted genetic variations' 

potential role in COVID-19 susceptibility across ethnic groups.   
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The final project studied mutations impacting protein function in lung adenocarcinoma 

(LUAD), analysing data from the TRACERx database. Using paralog protein structures in 

CATH, FunVar identified functional impact events (FIEs) in known and novel driver genes. 

Pre-genome duplication FIEs dominated, while post-duplication FIEs contributed to LUAD 

specialisation. Genes with FIE mutations revealed enriched metabolic pathways in LUAD, 

providing insights into tumour evolution.   

 

Together, these projects advanced understanding of the role of genetic mutations in 

enzyme evolution, disease susceptibility, and cancer progression. 
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Impact statement 

This work advances our understanding of the complex impact of genetic mutations on 

evolution, health, and disease. By employing computational approaches, the studies 

allowed us a deeper understanding into protein sequence-structure-function relationships 

and their implications for enzyme optimisation, disease susceptibility, and cancer 

progression. 

 

Using CATH FunFams, functional determinant (FD) positions were identified based on 

differential conservation across FunFams from over one billion metagenomic sequences. 

FD positions near catalytic triads and binding pockets facilitated the shortlisting of efficient 

putative PETases for experimental validation. Out of these, three sequences were 

confirmed to exhibit PETase activity, marking a valuable advancement in identifying 

functional enzymes. By integrating machine learning with structural prediction, the study 

achieved remarkable accuracy in modelling enzyme structures and guiding substitutions 

to enhance solubility, stability, and performance. These findings provide a robust 

framework for engineering enzymes tailored to degrade diverse plastics and function 

under varying industrial conditions, contributing to scalable solutions to critical 

environmental challenges. 

 

The second research study explored the impact of amino acid changes in human and 

SARS-CoV-2 proteins on the binding affinity of human:SARS-CoV-2 protein complexes, 

shedding light on genetic factors influencing COVID-19 susceptibility across diverse 

ethnic groups. Using publicly available human and viral databases, 12 protein complexes 

critical to viral entry, immune response, and cellular translation were analysed. 
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Computational analysis identified 16 human missense variants that increased binding 

affinity to SARS-CoV-2 proteins (ΔΔG ≥ 0.5 kcal/mol), including three proteins associated 

with spike-binding, immune responses, and translation. Among over 200 SARS-CoV-2 

missense residues, five mutations were found to enhance binding affinity with human cell 

receptors and immune-related proteins.  These findings underscore the influence of 

genetic variation in both host and virus on infection dynamics and immune response. This 

work offers critical insights for understanding COVID-19 susceptibility and guiding 

personalized therapeutic strategies across populations. 

 

The third research study integrated advanced computational tools to deepen our 

understanding of Functional Impact Events (FIEs) from genetic variations on lung 

adenocarcinoma (LUAD) progression. By employing the TRACERx consortium dataset, 

the study identified FIEs near critical protein functional sites, analysing their roles in 

protein stability, ligand affinity, and tumorigenesis. The characterisation of FIEs as loss-

of-function, gain-of-function, or neofunctionalisation provided insights into their biological 

and evolutionary timing, pre- or post-genome duplication. Pathway enrichment analyses 

using g:Profiler and KEGG databases linked FIE-affected genes to key cancer pathways. 

Genes with post-duplication FIEs exhibited greater diversity and were found on the same 

pathways with pre-duplication FIE genes, suggesting their role in amplifying the functional 

impact of genetic variations on cancer genome evolution. This work underscores the 

transformative impact of bioinformatics and high-throughput technologies like AlphaFold2 

in protein structure prediction and mutation analysis. By connecting molecular 

mechanisms with tumorigenesis, the study provides a framework for identifying novel 



  

 7 

therapeutic targets and improving our understanding of LUAD pathology, advancing the 

fight against cancer. 

 

Advancements in machine learning and deep learning are transforming the analysis of 

large-scale datasets, unveiling patterns critical to understanding mutations that drive 

evolution, biodiversity, and their pivotal roles in health and disease.
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Chapter 1: Introduction 

Proteins are essential macromolecules that have evolved to perform a broad spectrum of 

functions in various biological systems, for example: enzymes (e.g., DNA ligase), 

antibodies (e.g., immunoglobulin G), cell receptors (e.g., angiotensin-converting enzyme-

2) cell signalling and cellular pathways (e.g., kinases), structural components (e.g., actin), 

messenger molecules (e.g., growth hormone) and, transport and storage molecules (e.g., 

and haemoglobin and ferritin). Understanding the relationship between protein sequence, 

structure, and function facilitates understanding of the mechanisms underlying protein 

evolution.  

 

Although the number of deposited protein sequences in metagenomic databases is 

exponentially increasing (exceeding 2.4 billion non-redundant sequences according to the 

EMBL-EBI updates (https://www.ebi.ac.uk), the structure of only a fraction of these 

sequences has been resolved due to the cost and time constraints. This gap of 

knowledge, known as the protein sequence structure gap, has driven scientists to employ 

computational methods e.g., AlphaFold2 (1) to predict the proteins’ structures and 

functions. 

 

This chapter describes general and fundamental bioinformatics concepts, methods, and 

resources relevant to the work presented in this thesis, followed by an outline of the 

following chapters.  
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1.1 Characteristics of amino acids and different levels of protein structures 

A combination of 20 amino acids is linked together by covalent bonds between the 

carboxyl and amino groups to form an oligopeptide. Despite their identical core structures, 

the side chain or R group assigns each amino acid with a specific physicochemical 

property (non-polar aliphatic, polar uncharged, positively charged, negatively charged and 

non-polar aromatic), giving proteins specific structures and functions (Figure 1.1).  

Figure 1.1. Classification of amino acids according to their side chain or R group's 
physicochemical properties such as polarity, electric charge, hydrophobicity and size (2). 
 
 
The four levels of protein structures are: the primary structure relates to the sequence of 

amino acids; secondary structure describes local regular structures such as the alpha 

helix, beta-sheets, turns and loops; the tertiary structure is the three-dimensional (3D) 

structure of the entire protein; and, quaternary structure refers to structural assembly of 

proteins that consist of two or more polypeptide chains (Figure 1.2).  
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Figure 1.2. The four levels of hierarchy in protein conformation. From left to right: the 
primary protein structure (the sequence of a chain of amino acids), the secondary protein 
structure (local folding of the polypeptide chain into helices or sheets), the tertiary protein 
structure (3-dimentional folding pattern of a protein due to side chain interactions) and, 
the quaternary protein structure (assembly consisting of more than one amino acid chain). 
Image source: https://microbenotes.com 
 
 
1.2 Domains, motifs, binding sites, catalytic sites  

Structural motifs are short, conserved segments of protein 3D structure, which are 

spatially close but not necessarily adjacent in the sequence. Structural domains are 

globular structural units which are independently stable tertiary structures and which tend 

to have their own function (3). In enzymes, substrates often bind to a small pocket (active 

site) on the tertiary structure. The regions that form non-covalent bonds with the substrate 

and catalyse a reaction of a substrate are called the binding site and the catalytic site, 

respectively (4) (Figure 1.3). 
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Figure 1.3. Illustration of motif and domain. Left) The beta-turn structural motif consists of 
four consecutive residues, where the polypeptide chain folds back on itself by nearly 180 
degrees. Middle) Ribbon structure of an all α-helical domain in HIST1H2B (PDBe: 5KGF). 
Right) The binding pocket (orange) and catalytic site (red) shown with BHET as a 
substrate in IsPETase (PDBe: 5XJH). 
 
 
1.3 Evolvability  

Evolvability is the emergence of change in the sequence and structure of a protein, which 

leads to changes in the function. Mutational robustness is a mechanism that all organisms 

possess to support beneficial mutations and acquire new variations favoured by natural 

selection. This phenomenon is described as divergent evolution. Moreover, as a result of 

mutations, enzymes from distinct organisms can sometimes evolve to catalyse identical 

reactions. This can give rise to proteins having a variety of structures and sequences 

across different host species which are functionally the same. This phenomenon is 

described as convergent evolution (5). 

 

Homologous proteins originate from a common ancestor (6) and can be categorised as 

orthologues or paralogs. Orthologous proteins, typically but not always exhibit highly 

similar functions, and arise from speciation events. Conversely, paralogues emerge 

through gene duplication within the same genome, often acquiring modified functions, 

particularly within catalytic or substrate-binding sites (7). 
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The evolution of the globin family serves as an example of divergence through paralogy. 

Haemoglobin, a tetrameric protein composed of four subunits: two α-globin and two β-

globin (which originated via tandem duplication of a single-copy globin gene in the 

common ancestor of vertebrates), is responsible for oxygen transport in red blood cells 

(8,9). Myoglobin, which stores oxygen in muscle tissues, also belongs to the globin family. 

It is hypothesised that both haemoglobin and myoglobin evolved from a single ancestral 

globin gene encoding a protein with an oxygen transport function. Over time, gene 

duplication events followed by accumulation of mutations modified the structure and 

function of the proteins, resulting in different oligomeric states and properties such as 

oxygen affinity, kinetics, and stability compared to the original ancestral protein. These 

changes likely conferred selective advantages, aligning with environmental pressures 

such as variations in oxygen availability and metabolic demands (10,11). 

	

1.4 Methodological focus and tool selection 

Given the breadth of bioinformatics as a discipline—encompassing a wide array of 

algorithms, analytical frameworks, and software tools—this chapter focuses exclusively 

on the methods that were directly employed in the present study. Rather than offering a 

comprehensive overview of all available solutions, the discussion is limited to those tools 

selected based on their suitability for the specific biological questions and data types 

addressed. 

 

1.5 Bioinformatics methods to analyse protein sequences similarity  

Protein homology and functional prediction often rely on comparing sequences with 

known proteins using bioinformatics tools. These approaches include pairwise alignment, 
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dynamic programming, and multiple sequence alignment. Such methods help identify 

conserved regions and infer protein function based on sequence similarity. For example, 

Multiple Sequence Alignment (MSA) aligns three or more sequences to reveal conserved 

regions, helping to infer structural, functional, or evolutionary relationships. It is essential 

for identifying conserved motifs and domains within protein families. MSA results often 

serve as input for phylogenetic analysis or structural modelling. This method was used in 

Chapter 2 to identify key functional residues in the metagenomic sequences by comparing 

them with the ABH CATH superfamily and known PETases. In addition to Chapter 2, this 

method was also used in Chapters 3 and 4 within relevant CATH functional families to run 

Scorecons and identify conserved positions in the proteins of interest. Techniques such 

as Multiple Sequence Alignment with Fast Fourier Transform (MAFFT), Hidden Markov 

Models, and HH-suite were employed in one or more of the research projects presented 

in this thesis. 

 
1.5.1 Multiple Alignment using Fast Fourier Transform (MAFFT) 

MAFFT (12) is a multiple sequence alignment program that incorporates two key 

techniques: the use of the Fast Fourier Transform (FFT) and a simplified scoring system. 

In the FFT technique, amino acids are converted into numerical values based on the 

BLOSUM (13), which allows for the swift identification of homologous regions between 

the sequences. The simplified scoring system helps reduce CPU time while maintaining 

the accuracy of sequence alignments, even in the presence of large insertions or 

extensions. 

 

MAFFT employs five main steps: pairwise alignment, distance matrix calculation, guide 

tree construction, progressive alignment, and iterative refinement. The procedure begins 
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with pairwise alignment using dynamic programming to identify similar regions among all 

input sequences. The next step involves calculating the distance matrix based on the 

pairwise alignment scores. Using the distance matrix, a guide tree is constructed, 

representing hierarchical clusters of sequences. The guide tree facilitates the progressive 

alignment process, where sequences are aligned incrementally from the leaves to the 

root, resulting in the final multiple sequence alignment. This alignment is further refined 

through iterative alignment, where gaps and insertions are adjusted to enhance accuracy 

(14,15). 

 
1.5.2 Hidden Markov Models (HMMs) 

HMMs are algorithms that align sequences by detecting the pattern of observable events 

that are dependent on hidden internal factors (16). HMMs detects and aligns homologues 

in the same manner as a multiple sequence alignment but the higher sensitivity of this 

algorithm over sequence profile based algorithms is due to the calculation of position-

specific insertion and deletions probabilities along the alignment (17). 

 
An HMM first calculates the probability for the occurrence of each amino acid along the 

multiple alignment, then identifies the residues that are more conserved and important for 

defining members of the family and finally, finds the regions of the sequence where 

insertions and deletions are likely to occur as different residues in a protein sequence are 

subject to different selective pressures (18). Figure 1.4 illustrates the HMM algorithm in 

detail. HMMer software identifies columns of conserved residues between multiple 

sequences (16,19). 
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Figure 1.4. A schematic model of a profile HMM. The multiple alignment of four sequences 
is displayed (top figure) and is used to build a profile HMM (bottom figure) by assigning 
consensus columns in the MSA. An insertion in sequence 2 is shown with green arrows 
going into the insert state I2 then it goes back into the match position M3. A deletion in 
sequence 3 is shown with red arrows where M3 consensus is skipped (The figure is 
adapted from https://www.ebi.ac.uk/training/online/courses/pfam-creating-protein-
families/what-are-profile-hidden-markov-models-hmms/). 
 
 
In this example, the first consensus column, match 1, consists of small amino acids with 

different occurrence probabilities. The height of the letters above the consensus column 

represents how frequently these amino acids are seen. The second consensus column, 

match 2, is invariant across four sequences. So, glycine is expected with a high 

probability. In sequence 2, one amino acid is inserted into a sequence between the 2nd 

and 3rd consensus column. This is considered as an insert because the occurrence 

probability is less than 50% among the four sequences. In sequence 3, the consensus 

column three is skipped which indicates a deletion since there is greater than 50% 

occupancy in that column in other sequences. At M4, even though there are three different 

Entry             Consensus 
  1 2 - 3 4  

Sequence 1  A G - L D  
Sequence 2  N G G F D (insertion) 
Sequence 3  S G - - E (deletion) 
Sequence 4  T G - W Q  
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amino acids present, they are all polar charged amino acids. Aspartic acid comprises 50% 

of the height, while the other two each make up 25%.  

 

HMMs also calculate the frequency of amino acids and convert these into probabilities. 

There are many different search programs implemented based on HMM approaches (18). 

The most widely used ones are:  

• hmmscan (20) is a tool from the HMMER software suite (http://hmmer.org). This tool 

searches a sequence database using profile HMM libraries, such as CATH-Gene3D, 

Pfam and TIGRFAMs, to detect homologous sequences and identify potential family 

relationships within the query sequence. 

 

• hmmsearch (20) is also a tool from the HMMER software suite. The method involves 

the use of a profile HMM for capturing patterns of conserved regions, insertions, and 

deletions. By aligning each sequence in the database against the profile HMM, 

hmmsearch identifies protein sequences that likely belong to the protein family or 

domain represented by the HMM. This method is used to find homologous proteins to 

the family represented by the HMM. Either hmmsearch or hmmscan can compare a 

set of profiles to a set of sequences. The only difference between the two tools is 

speed. While both programs are input-bound, hmmsearch loads less data due to its 

disk access patterns, making it the faster of the two tools. (http://hmmer.org, Version 

3.4; Aug 2023).  

 
• JackHMMER (20) is a tool within the HMMER suite (http://hmmer.org). JackHMMER 

is used for iterative sequence searching and profile building. The method begins with 
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a single protein sequence, which is iteratively searched against a sequence database, 

such as UniProt. In each iteration, JackHMMER identifies sequences that align well 

with the initial query and incorporates them into the profile hidden Markov model 

(HMM). This iterative process refines the HMM by progressively including more remote 

homologs with each round, enhancing the ability to detect distantly related sequences. 

This iterative refinement facilitates the discovery of additional protein family members 

and provides insights into deeper evolutionary relationships (19). In addition to their 

use in building a hierarchical relationship tree in GeMMA, HMMs were frequently used 

in Chapter 1 to construct protein profiles aimed at identifying potential metagenomic 

protein sequences with PETase activity. 

 
1.5.3 HH-suite  

HH-suite is an on online and widely used open-source software for sensitive sequence 

similarity searches to detect distant homologues and predict the function of an unknown 

protein based on the functions of proteins with similar sequences. It is based on the 

pairwise alignment of profile HMMs derived from multiple sequence alignments of 

homologous proteins. The HH-suite software contains in-built tools such as HHsearch 

which aligns a profile HMM against a database of target profile HMMs (18) and HHblits: 

an accelerated version of HHsearch that is fast enough to perform iterative searches 

through millions of profile HMMs (21) and various utilities to build databases of MSAs or 

profile HMMs. HH-suite tools were frequently used in Chapter 1 to perform profile–profile 

comparisons, to identify metagenomic proteins that may exhibit PETase-like functionality. 
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1.5.4 Cluster Database at High Identity with Tolerance (CD-HIT) 

Cluster Database at High Identity with Tolerance (CD-HIT) clusters large protein 

sequence databases to reduce redundancy. This helps in analysing large datasets by 

selecting representative sequences of each cluster rather than the whole sequence 

database. Sequences are first sorted by length to find the longest sequences for rapid 

identification of representative sequences or seed. Subsequent sequences are compared 

against these seed sequences using a sliding window approach combined with a k-mer 

based algorithm. If a sequence meets the specified identity threshold defined by the user 

with any existing cluster representative, it is added to that cluster; otherwise, it will be the 

seed for a new cluster. A higher threshold results in clusters with high similarity, while a 

lower threshold allows for more diverse sequences within each cluster. By setting an 

appropriate threshold, CD-HIT significantly reduces redundancy, representing each 

cluster with usually the longest sequence. This reduction facilitates downstream analyses 

such as database searches by decreasing computational time (22,23). CD-HIT was used 

in the first step of GeMMA, a CATH algorithm for functional family classification, to cluster 

sequences based on sequence identity and reduce redundancy in the dataset. 

 
1.6 Quantifying residue conservation 

Conserved residues within proteins e.g., preserved through evolution, are often found in 

critical regions of the protein necessary for proper folding, stability, and interaction with 

other molecules due to their functional importance (24). Many algorithms have been 

developed to identify conserved regions. They all involve analysis of residues in the 

columns of a multiple sequence alignment to detect highly conserved positions. In this 

study the Scorecons algorithm has been used to detect conserved residues and hence is 

described below. 
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1.6.1 Scorecons  

Scorecons (25) calculates the degree of amino acid variability in each column of a multiple 

alignment sequence. It uses a statistical model to assign conservation scores to individual 

residues based on observed and expected residue frequencies in a multiple-sequence 

alignment. Scorecons assesses the significance of amino acid substitutions and identifies 

conserved residues likely to be functionally important. The method also incorporates the 

existence of gaps in calculating the final conservation score. A column with frequent gaps 

in a multiple sequence alignment indicates that deletion of that position has a negligible 

adverse effect on protein function. Scorecons scores range from 0 to 1. A low score means 

high variability of amino acids in that position indicating mutations at that position are 

unlikely to impact the overall function or structure of the protein. In contrast, a high score 

indicates low variability of various amino acids in a certain position indicating that the 

position is highly conserved among the homologous sequences, probably due to the 

functional or structural role required at that position. Scorecons provides insights into the 

evolutionary and functional importance of individual positions in a protein sequence. 

Residues with scores ≥ 0.7 are considered to be conserved (26). Scorecons was used in 

all three chapters to identify conserved residues within protein alignments, highlighting 

functionally or structurally important positions. 

 

1.6.2 Diversity of positions (DOPs) score 

The DOPs score is a metric employed by Scorecons that quantifies the diversity within a 

multiple sequence alignment by computing the average of conservation scores across all 

positions, taking into account the various conservation scores and their respective 

frequencies. The result is a value between zero for no diversity and 100 for high variability 
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(no alignment positions that have the same conservation score). It is used to ensure that 

sequences in a multiple sequence alignment are sufficiently diverse for the individual 

residue conservation scores to be meaningful. A multiple sequence alignment with a 

DOPs score of at least 70 is considered suitably diverse for identifying conserved residues 

(27). The DOPs score was used in all three chapters to assess the diversity within multiple 

sequence alignments, ensuring that the alignments were sufficiently diverse for 

meaningful residue conservation analysis. 

 

1.6.3 Identification of specificity determining positions in a protein family 

Proteins can gain new functions following gene duplication followed by specialisation of 

the paralogues by divergence of residue positions (Kimura, 1979). Therefore, proteins in 

a homologous family can be clustered into subgroups, called functional families (Das, et 

all, Mirny & Gelfand, 2002), if they differ to other relatives in the family e.g., due to a 

different substrate, ligand or protein interaction. Algorithms to detect Specificity 

Determining Positions (SDPs) identify these functional groups within a protein family.  

 

There are a number of SDP identification algorithms such as GroupSim (Capra & Singh, 

2008) and SPEER (Chakraborty, Mandloi, Lanczycki, Panchenko, & Chakrabarti, 2012) 

with different scoring methods but all follow the same concept of identifying the conserved 

residues within subfamily specificity groups that are different between subgroups. 

GroupSim distinguishes the difference between specificity groups by employing a 

baseline for the comparison method that includes all pairs of amino acids within and 

between groups. First, GroupSim calculates the mean similarity between each pair of 

equivalent amino acids in a group based on a similarity matrix in the alignment. Next, the 



  

 32 

average similarity of every residue between the groups is calculated. Each column is then 

given a score, which is the average within-group similarity minus the average between-

group similarity. Higher scores indicate a greater probability to be an SDP (Capra & Singh, 

2008).  

 

GroupSim implements sequence alignment-based filtering levels to exclude residues that 

are conserved across all the specificity groups due to their functional importance to the 

whole family. These filters determine the level of conservation in a subfamily group and 

whether the residues are conserved in a similar way in the second group. An example is 

defined in figure 1.5. In the creation of CATH functional families, FunFamer uses 

GroupSim to identify differentially conserved residues between clusters. 

Figure 1.5. Sequence alignment-based filtering of columns by GroupSim (Capra & Singh, 
2008). Columns from left to right: the first column is conserved across all specificity groups 
and therefore excluded (∅). There is no conserved residue between and within specificity 
groups, so the second column is removed (∅). The third column passes the low-overlap 
filter as ‘K’ and ‘A’ are conserved within group one and two, respectively (L). The fourth 
column passes the low-overlap and the one-group-conserved filter as ‘D’ is conserved 
across all sequences in group one while ‘F’ and ‘Y’ are conserved in group two sequences 
(O). The fifth column is the best example of an SDP as one amino acid within each group 
is completely conserved and it differs from the other subgroup (A).  
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1.7 Resources for protein classification 

Protein classification is the process of grouping proteins based on their structure, function 

or evolutionary relationships. This classification facilitates the understanding of how 

protein function has evolved in protein families, as well as predicting the roles of newly 

discovered proteins that lack experimental data. 

1.7.1 Pfam 

Pfam is an open-access database of protein domain families that classifies protein 

sequences into families (28–30). Each Pfam family contains a set of sequences that share 

a conserved region, which usually corresponds to a functional or structural domain. A 

seed multiple sequence alignment built from a representative set of sequences in the 

corresponding Pfam family is the basis for creating a profile hidden Markov model (HMM) 

using the HMMER software (31). This profile HMM captures the conserved regions and 

features of the family and is then queried against the pfamseq, sequence database, via 

the HMMER software (http://hmmer.org/). The pfamseq sequence database is derived 

from the Reference Proteomes in the UniProt Knowledgebase (UniProtKB) Bateman et 

al. 2025). All sequence regions that meet the curated threshold are re-aligned to the profile 

HMM to build the full alignment. Sequences in Pfam families are annotated with available 

experimental data. Pfam (through InterPro) release 102 contains 26,073 families. 

 
1.7.2 CATH 

Since the protein structure is known to be highly conserved during evolution (32), 

structural comparison of proteins can be used to identify homologous proteins.  

 

CATH (33) is a hierarchical protein domain classification database comprising three-

dimensional (3D) structures of proteins deposited in the PDB. CATH also classifies 
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predicted protein domain sequences from UniProt (without experimental structures) in the 

CATH-Gene3D sister resources (34), in specific CATH superfamilies and incorporates 

supplementary functional annotations from Gene Ontology (GO), Enzyme Classification 

(EC) and catalytic sites (from CSA). CATH classifies protein domains into four major 

hierarchical categories as stated below and shown in Figure 1.6. 

- Class (C-level) refers to the secondary structure content. This level classifies protein 

domains based on their prominent secondary-structure composition into three major 

classes: mainly α (Class 1), mainly β (Class 2), α/β and α + β (Class 3). Domains with 

few or no secondary structures (Class 4), and multi-domain proteins (Class 5) (35,36) 

are also grouped together in the classification. 

- Architecture (A-level) refers to the general arrangement of the secondary structures in 

3D irrespective of connectivity between them (e.g., alpha/beta sandwich). There are 

currently 41 architecture groups (37). 

- Topology (T-level or fold) refers to a group of domains that share similar structures 

and connectivity of secondary-structure elements. This level comprises 1390 topology 

groups. 

- Homologous Superfamily (H-level) refers to a set of domains with significant structural 

or sequence similarity that share a conserved structural core, likely diverging from a 

common ancestor. There are 5,481 homologous superfamilies in groups 1 to 4 in 

CATH version 4.3 (38). Sub-clusters of homologous superfamilies are grouped into 

Functional Families (FunFams) based on predicted functional similarity (39). 

 
Every domain receives a unique identifier that specifies its classification across multiple 

hierarchical levels. For example, in 3.40.50.620, the 3 refers to the class (mixed alpha-

beta), the 40 refers to the architecture (3-layer alpha-beta-alpha sandwich), the 50 refers 
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to the topology the domain adopts (Rossmann fold) and 620 is the homologous 

superfamily code (HUPs).  

 

CATH contains high-quality protein structures from the PDB (X-ray crystallography or 

Nuclear Magnetic Resonance (NMR) resolution equal to or below 3Å resolution (40), 

polypeptide length over 40 amino acids.  Chop-Close (41), an automated process in Auto 

Chop, uses the Secondary Structure Alignment Program (SSAP) algorithm (35,42) to scan 

the query structure against the protein structures that have been classified into their 

constituent domains in CATH. If the query matches any CATH domain structures, the 

alignment induces the dissection of the query chain; otherwise, a manual curation 

procedure is applied to identify domains with the aid of several software tools including 

DETECTIVE, PUU and DOMAK (43,44) and information reported in the scientific 

literature. According to the latest update in May 2024, CATH version 4.3 consists of 

536,613 structural domains classified into 6631 homologous superfamilies (Figure 1.6). 
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Figure 1.6. An example CATH classification of two proteins: lactate dehydrogenase and 
flavodoxin, according to Class, Architecture, Topology and Homology levels. Both lactate 
dehydrogenase and flavodoxin proteins are described as alpha-beta proteins as they are 
composed of both alpha helices and beta sheets (Class level). Their arrangement of 
secondary structures forms an alpha-beta sandwich architecture in three-dimensional 
space. Whilst adopting similar core folds (Topology level) they belong to different 
evolutionary superfamilies. 
 
 
 
Gene3D (34), a complementary platform to CATH, assigns protein domain sequences to 

CATH superfamilies by using sequences from CATH domain structures to build domain 

superfamily-specific profile HMMs. These HMMs are then employed to identify domains 

in structurally uncharacterised protein sequences in UniProtKB Bateman et al. 2025) and 

Ensembl (45). There are currently 82,665,384 protein sequences and 151,013,797 CATH 

domain predictions in Gene3D v21. 
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1.7.2.1 Sub-classification of CATH evolutionary superfamilies into functional 

families 

Protein superfamilies can have diverse functional relatives as a result of their evolutionary 

pathways and structural flexibility. Proteins within a superfamily share a common 

ancestor, similar folding arrangements, and a conserved structural framework. However, 

over time, small changes in their amino acid sequences, particularly at the binding pocket, 

can lead to different biochemical functions. This process, known as divergent evolution, 

allows proteins to adopt new roles by preserving the core structure while undergoing 

modifications, resulting in superfamilies with diverse functional families. 

CATH superfamilies are therefore subclassified into functional families (FunFams) in 

which relatives share significant structural and functional similarity. FunFams are 

identified in a two-step process. The Genome Modelling and Model Annotation (GeMMA) 

algorithm first performs agglomerative clustering to group relatives in a hierarchical tree. 

This is subsequently analysed by the FunFam algorithm to generate FunFams. 

 

GeMMA is an automated method for classifying functional subfamilies within protein 

superfamilies. A key advantage of GeMMA is its capability to subclassify extremely large 

and diverse superfamilies without requiring an initial multiple sequence alignment. The 

GeMMA algorithm (Lee, Rentzsch, & Orengo, 2010) generates a hierarchical tree of 

sequence relationships across a superfamily by first assembling the leaves and then 

working inwards towards the trunk. One GeMMA run comprises the following steps (Figure 

1.7):  
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1. CD-HIT is employed to generate a set of non-redundant representative sequences by 

clustering relatives at 90% identity (S90), referring to the nodes on the far left in figure 

1.7. 

2. MAFFT aligns the S90 non-redundant representative sequences. As GeMMA is 

computationally expensive, S90 clusters that, according to the UniProt Bateman et al. 

2025) have no experimental GO annotations are discarded. 

3. Profile hidden Markov model (profile HMMer) method (46) converts the given multiple 

sequence alignment into a position-specific scoring system (sequence profile). 

The sequence profile specifies a preference for the 20 standard amino acid residue 

types at each of the residue positions in the given multiple sequence alignment (47).  

4. Profile HMM-HMM comparison using the HH-align (48) method to compare two 

adjacent nodes against one another to detect similar patterns of conservation and 

preferred residues for each position in the alignment. All the cluster HMMs are 

compared against each other using this approach. 

5. The two nodes with the highest HH-align score e.g., the most similar patterns, are 

merged. 

6. Once merged, all the sequences from the two merged groups are combined and the 

sequence alignment of sequences in the merged nodes regenerated using MAFFT. A 

revised HMM is generated for the merged set of sequences. This cycle repeats until 

no new nodes can be merged.  This gives a tree of sequence relationships across the 

superfamily. 

7. Finally, CATH superfamilies are subclassified into FunFams by cutting the tree into 

subfamilies using the FunFamer algorithm (described in the next section). 
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Figure 1.7. The basic GeMMA clustering pipeline algorithm. 
 
 
Two different versions of GeMMA have been developed, each with different features and 

abilities for different purposes: the basic algorithm is called Full-Scale GeMMA (FS-

GeMMA) and the faster high-throughput version is known as HT-GeMMA. 

 

FS-GeMMA algorithm starts with an iteration of all-against-all profile-profile comparison of 

a set of sequence clusters. Next, it merges the highly similar clusters and realigns the 

newly merged clusters. Finally, a FASTA format of newly clustered subfamilies sequences 

and a hierarchical tree are generated. HT-GeMMA and FS-GeMMA both follow the same 

approach in merging similar clusters depending on the E-value returned from their 

comparison. Clusters are merged with an increasing E-value, for example, E-value cut-off 

from 10-80 for the first iteration to 10-30 for the last iteration. However, for analysing a large 

superfamily of protein domains, HT-GeMMA is employed. The main difference between 

S90

Merging 
alignments
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the two versions of GeMMA is that HT-GeMMA exploits multiple nodes on a compute 

cluster. This means that HT-GeMMA is able to analyse a large superfamily with up to 

50,000 sequences much faster. 

 
1.7.2.2 FunFamer 

The FunFamer algorithm (Das et al., 2015) determines an optimal cut of the hierarchical 

clustering tree of sequence relatives within a given superfamily produced by the clustering 

algorithm, GeMMA (Lee et al., 2010). The FunFamer algorithm evaluates Diversity of 

Position Scores (DOPS) for multiple sequence alignments using Scorecons (Valdar, 

2002), which identifies conserved positions across the superfamily. The DOPS score is 0 

if all positions in the alignment have the same conservation score, and 100 if no two 

positions share the same conservation score. The FunFamer algorithm considers 

alignments with a DOPS > 70 as sufficiently diverse (25).   It then uses GroupSim (Capra 

& Singh, 2008) to predict specificity-determining positions (SDP) in a given cluster. While 

the conserved residues are important for the stability and folding of the protein domain, 

SDPs are important for function. SDP residues are conserved within a functional family 

but differ between the two functional families. GroupSim predicts SDP for each position 

by comparing two sets of MSA, one for each putative FunFam and gives a score (Gs) 

range between 0 to 1. Positions in the top 30% of Gs range in an alignment are considered 

to be SDPs (Capra & Singh, 2008). FunFamer uses the identification of differentially 

conserved residues between two FunFams to determine whether to merge the FunFams 

into a single FunFam (Figure 1.8). 
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Figure 1.8. The FunFamer algorithm determines an optimal cut of the tree by incorporating 
Scorecons and GroupSim algorithms (Das et al., 2015). 
 
 
Various methodologies of the GeMMA algorithm were introduced to accelerate the 

generation of the tree of relationships across the superfamily (e.g., MARC and FRAN). 

 

1.7.2.3 FunFam generation by Multidomain Architecture-based Clustering 

FunFam generation by Multidomain Architecture-based Clustering (FunFam-MARC) 

algorithm (49) is a modification of GeMMA for superfamilies that are very large, with more 

than 2000 S90 clusters. FunFam-MARC significantly reduced the analysis time for the 

5,481 superfamilies in CATH version 4.3 from six months to only six weeks.  

 

The algorithm begins by partitioning the set of protein functional unit sequences into 

smaller sets with the same Multi-Domain Architectures (MDAs) with domains following the 

same order in the protein sequence. The process of constructing MDAs, which involves 

determining the order of domains along the protein sequence including the CATH domain 

superfamily being classified and additional domain partners, is accomplished using the 
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CATH resolve-hits protocol (50). CATH resolve-hits employs an optimisation algorithm to 

resolve matches to the CATH HMM libraries, resulting in a set of non-overlapping domain 

annotations for the sequence (Figure 1.9). 

 

Figure 1.9. Multi-Domain Architecture (MDA) construction (49). Different MDAs reflect 
different domain contexts for the CATH domain superfamily (B) being sub-classified. 
 
 
 
CD-HIT (22) clusters sequences within each MDA partition into 90% sequence identity 

clusters (S90). Annotated clusters are then used as the starting point (51) for a GeMMA 

sub-clustering of each MDA protein. 

 

When all MDAs are processed, FunFam clusters from each MDA partition are combined 

to form the starting clusters for another run of GeMMA and FunFamer. The final FunFams 

are identified following the ultimate FunFamer algorithm run (Figure 1.10). Finally, the 

sequences from the uncharacterised experimental S90 clusters, which were excluded in 

the early stage, are added. 
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Figure 1.10. A schematic pipeline of FunFam-MARC, multiple parallel and separate 
GeMMA runs (49). 
 
 
1.8 MGnify: resource for storing and assembling metagenomic samples 

Metagenomics is a newly emerged field of molecular biology to analyse the genetic 

material of microorganisms acquired from a particular environment (biome) such as the 

abyssal waters and sediments of the oceans (Liu et al., 2019), ice and soil from the 

mountains (S. Kumar, Suyal, Yadav, Shouche, & Goel, 2019; Simon, Wiezer, Strittmatter, 

& Daniel, 2009). Unlike traditional microbiology methods that require pure cultures, 

metagenomics provides high-quality genomic datasets and can discover novel genes and 

proteins (metaproteomics) of un-cultivatable microorganisms. For example, by analysing 

protein sequences directly extracted from environmental samples, metagenomics has 

enabled the discovery of diverse microbial genes encoding PET-degrading enzymes and 

facilitates understanding of the genetic diversity in bacteria involved in PET degradation 

in natural ecosystems (52,53). 
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MGnify (Mitchell et al., 2020), formerly known as EBI Metagenomics, provides a series of 

tools for the assembly, analysis, exploration and archiving of microbiome sequencing 

data. MGnify in collaboration with the European Nucleotide Archive (ENA) is able to 

provide taxonomic and functional analysis of microbiome sequence data and provides a 

repository of analysed microbiome data from similar environments. Raw metagenomic 

reads are one of many data types that MGnify analyses and provides. Figure 1.11 outlines 

key steps in transforming raw reads from environmental samples into meaningful 

biological information.  

 

Figure 1.11. Procedure for transforming raw reads from environmental samples into 
meaningful biological information (54). 
 
 
1.9 Protein structure prediction 

Understanding the three-dimensional structures of proteins facilitates comprehension of 

their molecular functions and of their quaternary structure and interactions with other 

molecules, elucidating their relevance in biological systems (55,56). Despite continuous 

Remove reads below a certain quality threshold or those that are too short.

Assemble reads into longer contiguous sequences (contigs)

Cluster contigs into bins that represent genomes or partial genomes

Identify genes within contigs and assign functions to predicted genes using 
databases such as KEGG

Assess the diversity of microbial communities and examine the metabolic 
potential of the community 
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advancements in structure determination technologies, such as Electron Microscopy, X-

ray crystallography, or NMR spectroscopy (57,58), the rate of experimentally determined 

novel complex structures remains significantly lower than known sequences. However, 

protein structures can be predicted using a variety of approaches e.g., homology 

modelling. This leverages the structure of a related protein (59). Recently, the 

development of deep learning-based methods such as AlphaFold2, from DeepMind (1) 

has revolutionised protein structure prediction providing 3D-models which are often of 

comparable quality to those determined experimentally.  

 

1.9.1 Homology modelling 

Homology modelling involves aligning the target protein sequence with the template 

protein sequence and applying this alignment to construct a model of the target protein's 

structure. The higher the similarity between the target and template sequences, the more 

accurate the predicted model. Several homology modelling techniques have been 

developed, including MODELLER (60), SWISS-MODEL (59,61), I-TASSER (62). This 

approach has been widely used to obtain accurate models for proteins with a close 

homologue (≥30% sequence identity) which has an experimentally determined structure 

that can be used as the template.  

 

1.9.2 SWISS-MODEL 

SWISS-MODEL (59,61) is a widely used web-based tool for protein structure homology 

modelling. The query sequence in the FASTA format can be uploaded onto the server’s 

modelling workplace to build the most suitable template using BLAST and HHblits in which 

the selected template will be provided with cross-references to structural databases such 
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as PDB via the link to the SWISS-MODEL library. The search results consist of a list of 

50 templates sorted in descending order according to a template score.  

 

Before the advent of high-quality predicted structure by AlphaFold, the best model was 

selected according to the following criteria (importance descending order):  

1. Coverage: coverage is represented as a percentage and indicates how much of the 

sequence of interest is covered by the chosen template.  

2. Identity and resolution: higher scores for both properties would generate a better 

model.  

 

SWISS-MODEL uses two quality assessment metrics to evaluate the accuracy of 

predicted protein structures: 

1. GMQE (Global Model Quality Estimation) scores the expected quality of the model 

between 0 and 1 where the greater number indicates higher quality of the model. If 

AlphaFold DB is used as a template for building a model, GMQE is calculated by 

summing the per-residue plDDT values of the aligned template residues and 

normalizing by the target sequence length. 

2. QMEAN Z-scores (63,64) calculates the degree of nativeness of the built model based 

on multiple factors such as: 

o Interaction potential between beta carbons or all atoms 

o The solvation potential estimates the solubility of the protein 

o The torsion angles for each amino acid and the neighbouring residues based on 

the Ramachandran plot. 

QMEAN Z-scores range starts from zero to negative values. QMEAN Z-scores closer to 
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zero indicates a more reliable model and is comparable to what one would expect from 

experimental structures of similar size. No model with QMEAN Z-scores below -4.0 would 

be suitable for downstream analysis. The local quality plot gives a quick overview to find 

any low-quality regions of the model where predicted local similarity to target score is 

below 0.6 zone (the range is between 1 to 0). The QMEAN Z-scores is not computed for 

models that use AlphaFold DB templates. 

 
The comparison plot helps to understand how good the model is in comparison to 

structures with a similar length from the PDB database. It is generated based on the 

normalised QMEAN Z-score (y-axis) against the experimental protein structures of similar 

sizes (x-axis) to represent an estimation of the quality of the model in the real life. The 

model will be more reliable and has similar properties to the experimentally determined 

PDB structures if it falls in the darker zone (Z-score will be between 0 to 1). More recently, 

SWISS-MODEL is selecting and displaying predicted structures from the AlphaFold 

database which allows users to access AlphaFold-predicted structures directly through 

the SWISS-MODEL interface. 

 

Lastly, the PDB format of the selected model of interest can be downloaded to be used 

for further analysis (Figure 1.12). This tool was employed in the preliminary research to 

predict some metagenomic PET-degrading enzymes in Chapter 2, followed by the use of 

AlphaFold2 for structural prediction of all sequences in Round 2 in Chapter 2, and for 

human complexes in Chapter 3, where no experimental structures were available. 
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Figure 1.12. Building homology mode using SWISS-MODEL. QMEAN Z-score provides 
an estimation of the degree of nativeness of the structural features observed in the model 
on a global scale. The lower local quality of the model is coloured in red on the structure.  
 
 
1.9.3 Deep learning-based modelling 

Deep learning-based structure prediction predicts the three-dimensional structures of 

proteins from their amino acid sequences by using extensive protein sequence and 

structural data to learn patterns that indicate how proteins fold into their functional forms. 

For example, platforms like AlphaFold2 (1,65) and RoseTTAFold (66) have predicted 

highly accurate structures, often comparable to those obtained through experimental 

techniques such as X-ray crystallography or NMR spectroscopy. AlphaFold2 and 

RoseTTAFold use evolutionary information from multiple sequence alignments (MSAs). 

However, there is a limited amount of data for orphan proteins and rapidly evolving 

proteins, making this information less abundant than these methods require. AlphaFold2 

also employs deep learning for structure prediction. Deep learning uses neural networks 

with multiple layers of nodes. The network is a collection of simulated nodes, linked by 

connections that can become stronger or weaker. RoseTTAFold integrates evolutionary 

information and structure modelling techniques. 
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AlphaFold2 was used to predict the structure of all proteins in UniProt release October 

2024 lacking experimental three-dimensional structure for the analyses reported in 

chapters 2, 3 and 4. 

 
1.9.4 AlphaFold2 

AlphaFold2, developed by DeepMind, is a free and accessible platform for predicting 

protein structures with high accuracy using deep learning techniques. DeepMind 

collaborates with Google Colab (1) offering researchers a cloud-based platform that 

facilitates seamless access to powerful computational resources which exploit GPUs and 

TPUs to accelerate the complex calculations required for the protein structure predictions. 

 

The process commences with the generation of multiple sequence alignments through 

tools like HHblits and JackHMMER, which extract evolutionary information critical for 

predicting the protein fold. Leveraging these alignments, AlphaFold2 predicts residue-

residue contacts by using deep learning strategies to identify three-dimensional 

constraints crucial for guiding the folding process. The deep learning models, integrate 

convolutional and recurrent neural networks, to predict the three-dimensional coordinates 

of amino acids. These initial predictions undergo iterative refinement to improve accuracy, 

incorporating physical principles such as clashes and hydrogen bonding. AlphaFold2 

validated its predictions against experimental data from the Protein Data Bank, optimising 

metrics such as Global Distance Test (GDT) and predicted local distance difference test 

(pLDDT) scores to ensure reliability. 

 

GDT is a measure of global similarity between two protein structures with known amino 

acid correspondences. It compares the predicted protein structure with the experimentally 
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determined structure. The pLDDT is a per-residue estimate of local confidence, ranging 

from 0 (no confidence) to 100 (high confidence). A higher pLDDT score indicates that the 

region of the protein is modelled with high accuracy. 

 

The Critical Assessment of Structural Prediction (CASP) is a competition platform for 

evaluating the accuracy of in silico protein structure modelling from amino acid sequences 

that have little to no similarity to existing structures. In December 2020, AlphaFold2 won 

the 14th CASP competition, significantly outperforming the other 146 participating groups 

due to its highly accurate predictions for 88 out of 92 targets. AlphaFold2 achieved a 

Global Distance Test Total Score (GDT_TS) Z-score of 244.0217, while the second-place 

group had a Z-score of 92.1241. 

 
AlphaFold-Multimer (67) is an extension of AlphaFold2 developed to predict the structures 

of protein-protein complexes such as homomeric (proteins composed of identical 

subunits) and heteromeric (proteins composed of different subunits) complexes. To 

predict interactions between two proteins, AlphaFold-Multimer identifies these interactions 

and predicts the structure of the entire complex. Both AlphaFold and AlphaFold-Multimer 

use the same deep learning architecture. However, AlphaFold-Multimer incorporates an 

approach that selects subsets of residues for training, allowing the model to learn how 

protein chains interact with each other. Additionally, it introduces small adjustments to loss 

functions to refine the structure at the interface, enabling accurate interaction predictions 

between proteins while maintaining high intra-chain accuracy. This extension is 

accessible through the Google Colaboratory platform, and more information can be found 

on its GitHub repository at https://github.com/sokrypton/ColabFold. AlphaFold2 was used 

in Chapter 2 to build models of the selected putative metagenomic PETases, due to its 
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high accuracy in protein structure prediction, as demonstrated by its top-ranking 

performance in the CASP14 competition. In Chapter 3, both AlphaFold2 and AlphaFold-

Multimer were employed to construct human–SARS-CoV-2 protein complexes, exploiting 

their capabilities for both monomeric and multimeric structure prediction. 

 
1.10 Protein functional annotation 

Protein functional annotation is the process of identifying the biochemical, biological, and 

cellular functions of proteins according to their activities and interactions within a biological 

context by using computational and experimental approaches (68).  A number of 

resources have been established to collate and disseminate experimental and predicted 

data for protein functions. These are described below. 

 

1.10.1 Enzyme commission number 

The enzyme commission (EC) number provides a numerical hierarchical classification 

scheme of four levels describing an enzyme catalytic reaction (69). The first number (x.-

.-.-) presents the enzyme class, the second number (-.x.-.-) refers to the type of bond that 

is acted on, the third (-.-.x.-) describes the details of reaction and the fourth number (-.-.-

.x) refers to the substrate.  

 

At the top EC level, the six main reactions are EC 1 for Oxidoreductase reactions, EC 2 

for Transferase reactions, EC 3 for Hydrolase reactions, EC 4 for Lyase reactions, EC 5 

for Isomerase reactions, and EC 6 for Ligase reactions (70,71). 

 

The EC number links the genomic repertoires of enzyme genes or proteins to reactions in 

metabolic pathways (72,73). The Joint Commission on Biochemical Nomenclature of the 



  

 52 

International Union of Biochemistry and Molecular Biology and the International Union of 

Pure and Applied Chemistry manually assigns EC numbers based on published articles 

reporting the full characterisation of enzymes (72,73). 

 

One limitation of the EC system is that non-enzymatic proteins are excluded from this 

numeric system and since the EC number only classifies the enzymes’ chemical-

reactions, the classification does not provide the roles of a specific enzyme within a 

biological system (74). The EC number helped identify enzymes within the ABH CATH 

superfamily, enhancing our understanding of how similar enzymes catalyse PET 

degradation or other types of plastic hydrolysis. 

 
1.10.2 Gene Ontology (GO) 

GO (75) is a comprehensive framework that describes the roles of genes and gene 

products (e.g., proteins) consistently across species and databases. The aim of the GO 

consortium is to standardise vocabulary for describing the gene and gene product across 

the multiplicity of species in the tree of life.  

 

Each term in the ontology is assigned with a unique identifier and a definition. GO is 

structured as a hierarchical ontology, grouped into three ontologies (Figure 1.13): 

- Molecular function:  this level explains the activities of proteins at the molecular level, 

such as catalytic activities. (e.g., kinase activity or DNA binding). 

- Biological process: This category describes the biological pathway accomplished by 

one or more proteins (e.g., cell cycle or response to stress). 

- Cellular component: This level describes the location of proteins within the cell or 

extracellular environment (e.g., nucleus, mitochondria, or cell membrane). 
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Figure 1.13. GO annotations. Showing GO annotations for human lipase family members. 
The molecular function (left diagram), the biological process (middle diagram), and the 
cellular component (right diagram). Image is taken from the GO website (75). 
 
 
1.10.3 Analysing metabolic pathways 

A pathway is a group of functionally associated genes that work together to carry out a 

specific biological process. By identifying a set of differentially expressed genes in 

genome-scale experiments and applying relevant statistical techniques, pathway 

enrichment analysis enables researchers to suggest novel biological functions associated 

with the particular conditions, genotype-phenotype relationships and disease mechanisms 

(76,77). Gene Ontology Biological Process (GOBP), which is part of the Gene Ontology 

resources (https://geneontology.org), a widely used platform for pathway enrichment 

analysis, provides curated annotations for biological processes, molecular functions, and 

cellular components across multiple species (78). Other biochemical pathway databases, 

Reactome (79) and KEGG (80) are also widely used and include multiple types of 

pathways, such as pathways involved in cancer and immune response. 
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Changes in expression of metabolic enzymes can occur in cancer tumours resulting from 

gene duplication or deletion. Accumulation of mutations, overexpression of oncogenes 

and loss of multiple tumour suppressors can lead to extreme variation in the genetic 

composition of human tumour cells. One advantage of this alteration is the enhancement 

of various metabolic pathways to survive and grow (81). When a treatment inhibits one 

metabolic pathway, the tumour can substitute it with another. Therefore, understanding 

which metabolic pathways are most exploited by a specific cancer type allows researchers 

to develop treatments to target the key genes in these pathways (82).  

 

1.10.4 Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) 

STRING (Szklarczyk et al. 2019) is a database and a user-friendly web resource providing 

information on known and predicted protein-protein interactions, represented as direct 

physical or indirect functional associations, along with the pathways in which they 

participate (Figure 1.14). 

 
The interaction score is calculated by combining probabilities from various evidence 

sources, including experimental data, computational predictions, literature, and databases 

of known interactions (e.g., Gene Ontology and KEGG), while correcting for the probability 

of randomly observing an interaction (83). The types of evidence include high-throughput 

experimental results, curated interaction databases, and computational predictions based 

on genomic and proteomic data. STRING also groups statistical enrichment observations 

for various pathways and functional subsystems, therefore enables exploring potential 

drug targets, understanding disease mechanisms, and identifying biological pathways 

relevant to specific conditions. 
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Figure 1.14. An example of STRING protein-protein interactions. In this example, 
Tryptophan synthase, Alpha subunit was used. The Alpha subunit is responsible for the 
aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. 
Network nodes represent proteins, and each node represents all the proteins produced 
by a single, protein-coding gene locus. The edges represent protein-protein associations 
and proteins jointly contribute to a shared function (The image is taken from the STRING 
website (84). 
 
 
1.11 Genetic variants and disease susceptibility  

Studying human genetic variation is crucial for understanding susceptibility to infectious 

diseases such as COVID-19 or the development and progression of diseases such as 

cancer. Individual genetic differences can influence responses to pathogens, with variants 

in immune-related genes potentially affecting infection severity and treatment outcomes. 

This knowledge aids in identifying at-risk populations and tailoring prevention, diagnosis, 

and therapy strategies to genetic profiles. Genetic variations can also change gene 

function or regulation, which may lead to cancerous transformations in cells by promoting 

uncontrolled cell growth and accumulation of genetic mutations. 
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1.11.1 Genomic instability and cancer transformation 

Cancers exhibit an abnormal phenotype due to the imbalance between DNA damage and 

repair which results in accumulating numerous mutations. Genomic instability, from 

mutations to chromosomal rearrangements and transcriptional activity, leads to the 

transformation of normal cells into malignant ones (85–89). This process was first reported 

in 1974 (90). 

 

In acute myeloid leukaemia, unbalanced translocations result in the loss of chromosomal 

material and the gain of selected genes (91). Additionally, the Philadelphia chromosome, 

which results from a reciprocal translocation of chromosomes 9 and 22, has been 

associated with chronic myelogenous leukaemia and is reported in 95 percent of patients 

(92). 

 

Extending this understanding to lung adenocarcinoma (LUAD), our study identifying driver 

mutations in LUAD focuses on the impact of mutations affecting protein function, 

particularly in relation to their correlation with the emergence of such mutations pre- and 

post-genome duplication. 

 

1.11.2 Prediction of mutation effects on proteins 

Genome-wide association studies (93) identify Single Nucleotide Polymorphisms (SNPs) 

that are associated with diseases by scanning genomes for variations more frequent than 

expected in affected individuals. Experimental functional genomics tools, including 

CRISPR/Cas9 (94,95), investigate SNP effects on gene function. Molecular assays such 

as luciferase reporter assays study SNP effects on gene regulation (96). However, due to 
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the high costs and the requirement for access to cutting-edge techniques, various in silico 

approaches have been developed to study the impact of SNPs and other genetic 

variations on protein functions and, consequently, human diseases. 

 

1.12 Predicting the impact of genetic variations 

Predicting genetic variations in individuals is a significant challenge in systems biology. 

Accurate prediction of the impact of genetic variants enhances our understanding of how 

genetic information influences molecular and cellular functions and contributes to clinical 

factors such as susceptibility to diseases, resistance to illnesses, and response to 

medications (97).  

 

mCSM-PPI2 and MutPred2 are used in the work presented in chapters 3 and 4 of this 

thesis to predict the impact of mutations in human proteins concerning COVID-19 and 

lung cancer. Additional tools, including PolyPhen-2, SIFT, CADD and VarMap, were also 

employed in chapter 4 to assess mutation impacts in proteins in LUAD cancer. 

 

1.12.1 mCSM-PPI2  

mCSM-PPI2 (98) is a web-based machine learning tool that predicts the effect of 

missense mutations on protein–protein interaction binding affinity. Multiple features such 

as evolutionary data, inter-residue non-covalent interaction networks analysis, energetic 

terms and data from various other multiple outsourced tools are embedded into this 

algorithm to enhance its prediction accuracy.  

The method exploits evolutionary information using BLAST (99) since typically some 

residues in the interface region are evolutionarily conserved. It also considers the 
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difference in the number of van der Waals’, aromatic and hydrogen bond contacts of the 

wild-type and mutant residue using Arpeggio (100). It calculates the interaction energy 

between the two interacting chains using FoldX (101).  

Taking into account all the above features and employing the Gibbs free energy 

formulation (102) the output in kcal/mol represents the changes in binding affinity with a 

positive or negative value for increasing or decreasing binding affinity, respectively. 

An mCSM-PPI2 threshold cut-off value of ΔΔG ≥ 0.5 Kcal/mol is implemented to exclude 

any possible false positives driven by a minor systematic error in the predictions. This 

threshold is considered to be associated with a significant enhancement of the binding 

affinity between the two-interacting proteins in a complex. This threshold has been 

previously validated with experimental analyses on protein-protein complexes (103,104). 

 

1.12.2 MutPred2 

MutPred2 is a machine learning-based tool that uses multiple sequence alignments. It 

probabilistically assesses the pathogenicity of amino acid substitutions by analysing 

protein sequence conservation, physical and chemical properties of amino acid 

substitutions, and conservation scores to generate a comprehensive pathogenicity 

prediction score (105). MutPred2 scores equal to or greater than 0.5 are considered 

indicative of predicted pathogenicity.  

 
1.12.3 Polymorphism Phenotyping  

Polymorphism Phenotyping (PolyPhen) version 2 (106) is a computational tool that 

employs a high-quality multiple sequence alignment pipeline (data derived from the 
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UniRef100 database), to detect conserved residues. It also exploits physicochemical 

properties, structure-based predictive features and, a probabilistic classifier based on a 

machine-learning method to predict the potential impact of an amino acid substitution on 

the structure and function of the human protein, particularly in the context of identifying 

disease-associated variants in the human genome. PolyPhen v2 uses a scoring system 

to reflect the degree of change between the wild-type and mutant amino acids:  

- 0 to 0.15: Probably benign (likely not damaging) 

- 0.15 to 0.85: Possibly damaging (uncertain) 

- 0.85 to 1.0: Probably damaging (likely to be damaging) 

 

1.12.4 Sorting Intolerant From Tolerant (SIFT) 

SIFT (107) is a computational tool to predict the potential impact of amino acid 

substitutions on a protein by employing sequence homology information and evaluating 

the conservation of a particular amino acid position throughout evolution across different 

species. SIFT uses a scoring system to reflect the degree of change between the wild-

type and mutant amino acids:  

- A score close to zero indicates that the substitution is predicted to have a significant 

impact on the protein and likely to be intolerant, damaging, or deleterious. 

- A SIFT score close to one suggests that the substitution is predicted to be tolerated 

and less likely to have an adverse impact on the protein. 

 

1.12.5 Combined annotation dependent depletion (CADD) 

CADD (108), a meta-predictor, is a scoring system that employs various human genomic 

annotations (such as functional annotations and conservation) within a metric framework 
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to assess the impact of single nucleotide variants, as well as short insertions and deletions 

in the human genome. CADD integrates information from diverse genomic features, gene 

model annotations, evolutionary constraints, epigenetic measurements, and functional 

predictions (109). CADD scores range from 1 to 99, with higher scores likely to be 

damaging or deleterious. A score of 10 is considered the threshold for the top 10% most 

deleterious variants, and a score of 20 corresponds to the top 1% most deleterious 

variants. 

 

1.12.6 VarMap 

VarMap (110) maps single nucleotide polymorphisms (SNPs) onto their respective 

canonical UniProt isoform sequences and corresponding protein 3D structures. It enables 

clinical geneticists to investigate the impact of genetic variants on the structure of the 

associated protein. 

VarMap performs a GRCh37/CGCh38 assembly check using the Ensembl REST API 

(111,112) and extracts relevant information for a given SNP from various databases 

including Ensembl Variant Effect Predictor (VEP) (113), UniProt (114,115), SWISS-PROT 

(59), BioMart (116), HGNC (117), CATH (27), Pfam (30), M-CSA (118), FASTA (119), 

PDBsum (120), Scorecons (25), gnomAD (121), and ClinVar (122). 

VarMap provides information on mutation impacts as measured by Polymorphism 

Phenotyping (106) or The Sorting Intolerant from Tolerant scores (107), and VEP (113) 

for insertions, deletions, copy number variations (CNVs), or structural variants. Initially, 

the corresponding transcript RefSeqs are extracted from Ensembl BioMart. Then, the 

UniProt canonical isoform is retrieved from the SWISS-PROT database, it is compared 

against all PDBe sequences to align the variant amino acid to its relevant position in the 
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3D structure of the protein entry in the PDB that best matches the canonical form. This 

comparison allows VarMap to determine if the substitution occurs at a catalytic residue, is 

involved in a disulfide bond, or interacts with DNA, proteins, ligands, or metals (obtained 

from PDBsum).  

Additionally, VarMap extracts the RefSeq Select accession for each gene from HGNC, 

retrieves the global allele frequency of each variant from gnomAD, and calculates amino 

acid conservation using Scorecons (25). Information about clinically approved diseases 

related to amino acid substitutions are extracted from UniProt and ClinVar. CATH and 

Pfam provide information about domain properties. 

 
1.13 Resources providing information of known and predicted functional sites  

Several resources have been developed to predict and analyse interactions between 

biomolecules, such as proteins and their ligands. These tools focus on identifying protein 

ligand interactions, enzyme binding and catalytic sites, and protein-protein interactions, 

providing valuable insights into biological mechanisms. The platforms which predict 

molecular interactions affected by mutations in LUAD cancer in Chapter 4, are described 

below. 

 
1.13.1 BioLip 

BioLip (123) is a semi-manually curated database that comprehensively collects and 

analyses biologically significant interactions between proteins and various ligands, 

including small molecules, cofactors, metal ions, and other biologically active compounds. 

Data are sourced from protein structures deposited in the Protein Data Bank (PDB). Each 

entry undergoes extensive annotation to provide detailed information such as ligand-

binding residues, affinity, catalytic sites, Enzyme Commission numbers, and Gene 
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Ontology terms pertaining to specific protein-ligand interactions. BioLip utilises 

hierarchical classification schemes to facilitate systematic comparisons and analyses 

across related protein-ligand complexes. 

 

1.13.2 Mechanism and Catalytic Site Atlas (M-CSA) 

M-CSA (118) is a database dedicated to annotating and analysing enzyme active sites 

and their catalytic mechanisms. It compiles data from enzyme structures deposited in the 

Protein Data Bank (PDB). Each enzyme structure undergoes detailed annotation to 

identify specific residues and regions involved in catalysis, including substrate-binding 

sites, catalytic residues, and essential cofactors or metal ions crucial for enzyme activity. 

Enzymes are categorised according to their catalytic mechanisms, which describe their 

roles in chemical reactions. 

 
1.13.3 Inferred Biomolecular Interaction Server (IBIS)  

IBIS (124) is a bioinformatics tool and web server dedicated to predicting and analysing 

protein-protein interactions (PPIs) and other molecular interactions. It utilises sequence 

and structural information to infer potential binding partners and interaction interfaces 

based on the analysis of homologous structural complexes. IBIS integrates data from 

protein databases and experimental interaction data to enhance the accuracy and 

biological relevance of predicted interactions. The web server provides tools for visualising 

and analysing predicted interaction networks, facilitating comprehensive exploration of 

molecular interaction data.
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1.14 Overview of the thesis 

This thesis comprises three protein research projects all of which examine the impacts of 

residue mutations on the protein structure and function in different contexts. A brief 

description of each chapter is outlined below. 

 

Chapter 2 reports the application of a diverse set of computational algorithms to 

investigate the sequence and structural attributes of Ideonella sakaiensis PETase 

(IsPETase). This protein has been shown to have catalytic activity against polyethylene 

terephthalate (PET), a component of some plastics. This analysis served as the basis for 

the identification and analysis of novel and potent PETases from metagenome samples 

predicted to have enhanced substrate binding affinity when compared to the IsPETase 

enzyme. To accomplish this, Hidden Markov Model (HMM) based protocols were applied 

to select putative PETase-like enzymes from over a billion metagenome sequences in the 

EBI-EMBL MGnify database. From this subset, a total of twenty-seven putative PETase 

sequences (based on the variations in size, hydrophobicity and, possessing beneficial 

residues in the binding pocket), were shortlisted through a two-step process (sixteen in 

phase one and eleven in phase two). Of the 11 selected in phase two, three demonstrated 

PETase activity in vitro.  

 

In chapter 3, with the emergence of SARS-CoV-2 and the onset of the COVID-19 

pandemic, this research focused on understanding the impact of amino acid changes in 

SARS-CoV-2 proteins and human interactor proteins on the binding affinity between the 

human and viral proteins. To accomplish this, missense variants from various ethnic 

groups in human and SARS-CoV-2 proteins from several publicly accessible human and 
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viral databases respectively, were compiled. A set of twelve human:SARS-CoV-2 

complexes (from the protein data bank or built using AlphaFold-multimer) were identified 

for analysis due to their involvement in the host cell entry, mediating immune responses 

and cellular translation machinery. Subsequently various computational algorithms were 

applied to predict the impact of missense variants on binding affinity. The analyses 

predicted that sixteen human missense variants present in twelve human proteins 

increase the binding affinity to SARS-CoV-2 interacting proteins by ΔΔG ≥ 0.5 kcal/mol. 

Three of these proteins were implicated in host cell entry receptors through spike-binding, 

mediating immune responses or cellular translation machinery. This research therefore 

identified putative impacts of human and virus genetic variation on cell entry and infection 

and, immunity responses. Variation in mutations and their impact across diverse ethnic 

groups was also considered.  

 

In chapter 4, the impact of mutations affecting the function in proteins associated with lung 

adenocarcinoma (LUAD) was investigated together with their correlation with the 

emergence of such mutations, depending on whether they occurred pre- or post-genome 

duplication in the cancer tumour. Mutation data were compiled from the TRACERx 

database. Knowledge of the protein functional sites and cancer mutation clusters were 

derived from paralogues in CATH Functional Families. An in-house method, FunVar 

(https://funvar.cathdb.info/), was used to identify mutations likely to have functional impact 

(Functional Impact Events - FIEs) in known driver genes and predicted potential novel 

driver genes in LUAD. Genes harbouring FIE mutations were further analysed to identify 

enriched pathways. While the majority of known FIEs were found to occur pre-genome 
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duplication, post-duplication FIEs were observed to contribute to tumour specialisation 

during the evolution of LUAD. 
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1 Chapter 2: Exploration of naturally evolved polyethylene 

terephthalate hydrolases from metagenomic data 
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Chapter 3: Computational analysis of the effect of amino acid 

changes in SARS-CoV-2 proteins and human interactor proteins on 

the binding affinity between the host and viral proteins 

3.1. Introduction 

The difference among individuals in the world population is due to genetic variation of 

two to three million base pairs in the entire three billion nucleotide base pairs in the 

haploid human genome which accounts for 0.1% of total DNA (208,209). Advanced 

molecular techniques make it possible to discover the differences in genetic variation 

and allele frequency of individuals within and between continental groups. Analyses 

suggests that only about 10% of polymorphisms result in differences between 

individuals from continental groups (210,211). For example, large-scale efforts such 

as the 1000 Genomes Project have systematically catalogued human genetic 

diversity, identifying over 88 million variants from 26 populations across 18 countries 

in Africa, East and South Asia, Europe, and the Americas (212). While underlying 

health conditions and differences in socioeconomic status can also have an impact on 

how individuals respond to diseases, these genetic variations may play a key role in 

contributing to greater susceptibility or resistance to diseases for some racial and 

ethnic groups than for others (213,214). 

 

Severe viral acute respiratory syndrome coronavirus 2 (SARS-CoV-2/ScoV2) was first 

reported in Wuhan, China in December 2019 and rapidly spread globally. This virus is 

responsible for the Coronavirus Disease-19 (COVID-19) pandemic with over 

704,753,890 confirmed infections and over 7,010,681 deaths according to the 
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Worldometer (https://www.worldometers.info/coronavirus/), a real-time statistic on 

world population.  

 

By employing data on the human genetic variation and viral genus from several web-

resources, bioRxiv and literature analysis (of well-studied complexes and other less 

studied complexes), this study aims to predict the likely impact of human and SARS-

CoV-2 genetic variation on COVID-19 disease susceptibility and severity of disease 

from asymptomatic to severe pneumonia and even death (215) in individuals across 

different ethnicities. It is crucial to comprehend how variations in human proteins affect 

a person's vulnerability to COVID-19 to improve diagnostics and therapeutic 

treatment. 

 

3.1.1 Comparison of SARS-CoV and SARS-CoV-2 

In the early days of the SARS-CoV-2 outbreak in Wuhan, the complete genome 

sequences from infected patients with SARS-CoV-2 were released and available from 

many different publicly accessible sequence resources such as ViralZone (216), NCBI 

Reference Sequence (www.ncbi.nlm.nih.gov/nuccore/) and CoV-GLUE-Viz 

(http://cov-glue-viz.cvr.gla.ac.uk/index.php). SARS-CoV-2 genome sequences share 

79.5% sequence identity to SARS-CoV that caused the respiratory illness responsible 

for the 2002–2004 SARS outbreak (217). Both SARS-CoV-2 and SARS-CoV use the 

spike receptor binding domain (RBD) protein to recognise human angiotensin-

converting enzyme 2 (hACE2) and infect the host cells (Figure 3.1) (218). 
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Figure 3.1. Similarities and differences in SARS-CoV-2 and SARS-CoV RBDs. Top) 
Sequence alignment of the SARS-CoV-2 and SARS-CoV RBDs. Contacting residues 
in the SARS-CoV-2 RBD are indicated by black dots; contacting residues in the SARS-
CoV RBD are indicated by red dots (219). Bottom-Left: interface residues of SARS-
CoV-2 RBD-ACE2. Bottom-Right) interface residues of SARS-CoV RBD-hACE2. 
Residues in both RBDs that are involved in hACE2 binding are indicated by red labels 
(220). 
 

Despite many similarities between these two viruses, the slight differences in SARS-

CoV-2 spike protein led to a 10-fold higher binding affinity to hACE2 and consequently 

more pathogenicity compared to SARS-CoV. While the spike proteins in both viruses 

are capable of “up” and “down” status, SARS-CoV-2 adopts a different conformation 

to SARS-CoV. SARS-CoV-2 RBD is positioned nearer to the central cavity of the spike 

protein trimer while RBD is packed tightly against the N-terminal domain (NTD) in 

SARS-CoV (220). Another difference is that different amino acids in RBD lead to a 
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higher binding affinity in SARS-CoV-2 (Table 3.1). In SARS-CoV-2, Lys417 forms a 

salt-bridge connection with Asp30 of hACE2 while in SARS-CoV a valine at the same 

position forms no interaction with any residues in hACE2 (219). 

 

SARS-CoV-
2/SARS-CoV 

SARS-CoV-2 interaction with 
hACE2 

SARS-CoV interaction with 
hACE2 

K417/V404 Salt-bridge with D30 Unable to form any 
interaction 

F486/L472 Q24, L79, M82 and Y83 The same but weaker 
interaction 

Q493/N479 K31, H34 and E35 H34 
L455/Y442 Both have similar interactions with D30, K31 and H34 
N501/Y487 Both have similar interactions with Y41, K353, G354 and D355 

Q498/Y484 Both have similar interactions with D38, Y41, Q42, L45 and 
K353 

Table 3.1. Summary of SARS-CoV-2 and SARS-CoV interactions with hACE2. 

 

3.1.2. SARS-CoV-2 structure  

SARS-CoV-2 belongs to the betacoronavirus 2B lineage (221), in the subfamily 

Coronavirinae of the family Coronaviridae (222) and the order Nidovirales (223). 

SARS-CoV-2, similar to other two members of the family: Severe Acute Respiratory 

Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome 

coronavirus (MERS-CoV), has zoonotic origins and is likely to have originated in bats 

and camels, respectively (224,225). It has a sequence identity of 79.5% and 50% to 

SARS-CoV and MERS, respectively (217,226). 

SARS-CoV-2 is a positive-strand single-stranded RNA virus (+ssRNA) of 

approximately 30 Kb. Its mutation rate compared to other RNA viruses such as 

influenza is lower (227) due to the proofreading activity of the viral replicative complex 

(228,229). SARS-CoV-2 virions are 60 - 140 nm in diameter, have four structural 
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proteins: the spike (S), envelope (E), membrane (M) and nucleocapsid (N) proteins 

(Figure 3.2) and 16 non-structural proteins (Nsp1–16) (230,231). 

Figure 3.2. Schematic structure of SARS-CoV-2. The viral structural proteins are spike 
(S), membrane (M), envelope (E), and nucleocapsid (N) proteins. The origin of the 
lipid bilayer is the host cell membrane. The S, M, and E proteins are implanted in the 
envelope (232). 
 

 

SARS-CoV-2 entry into human angiotensin-converting enzyme 2 (hACE2), the cell 

surface receptor in humans, is mediated by the spike protein, a transmembrane 

glycoprotein. hACE2 is a protease, responsible for blood pressure and volume 

regulation and expressed in a number of tissues including the lung, heart, kidneys and 

gastrointestinal tract (233). However, epithelial cells of the upper and lower respiratory 

tracts are the main tissue for SARS-CoV-2 infection (234–236). 

 

Thus nonsynonymous mutations leading to amino acid changes in the spike protein, 

are of particular concern as they alter the surface spike structure which recognises the 
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hACE2 receptor (237) and may enhance virus transmissibility, reduce antibody binding 

and immune protection and vaccine efficacy (238). 

 

3.1.3 SARS-CoV-2 spike protein structure 

The spike protein is responsible for human ACE2 receptor binding and the viral fusion 

to the epithelial cells of the upper and lower respiratory tracts membranes. Each 

homotrimeric Spike (S) protein consists of two subunits (Figure 3.3): S1 and S2 which 

stick out from the viral surface (220,239). The smaller subunit, S1 fragment, at the 

membrane distal tip of the Spike, is formed of an N-terminal domain (NTD) receptor 

binding domain (RBD), C-terminal domain 1 (CTD1) and C-terminal domain 2. SARS-

CoV-2 RBD interacts with the surface of hACE2 (219) with a high binding affinity of 

approximately 15 nM (239,240).  
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Figure 3.3. Sequence and structure of the Spike protein. A) Diagram of full-length 
SARS-CoV2 Spike protein; S1 receptor binding subunit; S2 membrane fusion subunit; 
TM, transmembrane domain; HR-N, heptad repeat-N; HR-C, heptad repeat-C. B) the 
schematic structure of the Spike protein. Figure is taken from Sun et al., (2021) (241). 
 

 

The RBD of SARS-CoV-2 is formed from two subdomains: a twisted five-stranded 

antiparallel β sheet (β1-β4 and β7) and the core subdomain containing the short β5 

and β6 strands, α4 and α5 helices and loops which form a gently concave surface with 

a ridge on one side. The core is known as the Receptor Binding Motif (RBM) and this 

binds to the exposed outer surface of the claw-like structure of hACE2 (219,239). In 

RBD, of nine cysteine, eight of them form four disulfide bonds: Cys336–Cys361, 

Cys379–Cys432 and Cys391–Cys525 stabilise the β sheet structure in the core and 

Cys480–Cys488 connects the loops in the far end of the RBM (Figure 3.4). 

B
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Figure. 3.4. Sequence and structure of SARS-CoV-2 RBD. Top) SARS-CoV-2 RBD 
sequence and secondary order of the structure, residues in red represent Receptor 
Binding Motif (RBM). Bottom) overall structure of SARS-CoV-2 RBD bound to ACE2 
(219). SARS-CoV-2 RBD (cyan) interacts with hACE2 (green) through RBM (red). 
RBD’s disulfide bonds are displayed in yellow.    
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As presented in figure 3.5, the Spike protein has two distinct structural states: 

prefusion and post-fusion (242). 

Figure 3.5. The structures of the prefusion and post-fusion trimeric spike for SARS-
CoV-2. Images 1 to 3 from left to right: when the Spike is in the closed status, none of 
the RBDs are in 'up' conformation. During the prefusion, first, one, and then the second 
RBD change conformation shifts from 'down' to 'up' which makes the Spike fully open 
and ready for fusion. Small arrows show the open RBD in the prefusion subclasses 
(243). PDB structures: post-fusion (6M3W), closed prefusion (6VXX), open 1 RBD 
prefusion (6VYB), and open 2 RBD prefusion (6X2B).  
 

 

3.1.4 SARS-CoV-2 RBD:hACE2 interface binding and the mechanism of host 

infection 

The Spike protein exhibits two main conformational states, including the open state or 

up conformation and the closed state or down conformation (Figure 3.6). In the fully 

open state, the three RBDs protrude from the interface formed by three spike protein 

protomers. In the fully closed state, the three RBD are bound in trans into a pocket 

formed by the NTD and the receptor binding site is largely occluded (220).  
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Although RBD is usually packed down against the top of Spike (244), binding to hACE2 

initiates a down-to-up conformational change in the spike protein as the transition to 

open state is necessary for the fusion of the SARS-CoV-2 and the host cell 

membranes (Walls et al., 2020, Huo et al., 2020). 

Figure 3.6. Stepwise demonstration of conformational changes of RBD. In the closed 
state, all three RBDs are in the 'down' conformation (stable conformation) and in the 
open state in the ‘up’ conformation, which can interact with hACE2 (infectious status). 
Stimulation factors trigger the conformation change of RBD from ‘down’ to ‘up’ in the 
prefusion state to make the Spike fully open and ready for fusion. Small arrows show 
the open RBDs (243). PDB structures: closed prefusion (6VXX), open 1 RBD prefusion 
(6VYB), and open 2 RBD prefusion (6X2B).  
 
 
 
As shown in figure 3.7, hACE2-RBD binding destabilises the spike prefusion structure 

which leads to the S1 subunit disconnection. The S2 subunit refolds to form a stable 

post-fusion conformation. Next, RBD goes through conformational transitions from 

down to up conformation. SARS-CoV-2 RBD slightly move into the small claw-like lobe 

of the N-terminal of ACE2. 
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Figure 3.7. A cartoon representation showing the pre- to the post-fusion transition of 
the SARS-CoV-2 Spike. The binding to ACE2 induces the ‘down’ to ‘up’ transition of 
RBDs, promotes the disassociation of the S1-ACE2 complex from the S1/S2 cleaved 
S glycoprotein, induces the pre- to the post-fusion transition of the S2 subunit, and 
finally initiates the membrane fusion. Figure is taken from Song et al., (2018) (247).  
 
 
At the Phe486 position, SARS-CoV-2 interacts with hACE2 Gln24, Leu79, Met82, and 

Tyr83. SARS-CoV-2 Gln493 forms a hydrogen bond with Glu35. Gln493 also interacts 

with hACE2 Lys31 and His34 (219). Lys417 creates a positive charge patch distal 

(>5Å) from the main binding interface. It also forms a salt bridge with hACE2 Asp30. 

hACE2 glycosylated Asn90 forms a hydrogen bond with Arg408 of the RBD core. 

Arg408 is conserved between SARS-CoV and SARS-CoV-2; thus it is concluded that 

this host-pathogen glycan mechanism is one of the key factors of receptor recognition 

by SARS-CoV-2 (248). Figure 3.8 presents a summary of interactions between hACE2 

and RBD provided by PDBSum.  
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Figure 3.8. A summary of the hACE2:SCoV2 RBD interactions. One salt bridge, ten 
hydrogen bonds and 101 non-bonded contacts are predicted. For non-bonded 
contacts, the width of the striped line is proportional to the number of atomic contacts. 
Data collected from PDBSum (120).  
 
 
RBM contact with the N-terminal helix of hACE2 is maximised due to the combination 

of two flexible and two bulky residues. This four-residue motif glycine-valine/glutamine-

glutamate/threonine-glycine which forms the loop in RBD adopts a conformation which 

brings the residues closer to hACE2. As a result, an extra hydrogen bond between 

Ala475 of the SARS-CoV-2 RBM, and Gln24 of ACE2 is formed. Other hydrogen 
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bonds between the SARS-CoV-2 RBM and ACE2 are separate bonds between 

Gln493 of the SARS-CoV-2 RBM with Lys31 and Glu35 of ACE2 (248). 

 

Thus, it is important to assess the impact of single amino acid changes in the RBD of 

the SARS-CoV-2 in the emerged variants of concern to monitor changes in the 

receptor recognition mechanism of the SARS-CoV-2 and the binding affinity to human 

hACE2, which determines the transmissibility, infectivity, pathogenesis of the virus. 

 

3.1.5 SARS-CoV-2 variants of concern  

The World Health Organisation (WHO) has been assessing the mutations that could 

affect SARS-CoV-2 RBD binding affinity or have other impacts on the disease (249). 

Those variants with a significantly higher transmissibility, severity and/or immunity are 

associated with increased risks to global public health and therefore are classified as 

Variant Of Concern (VOC). From the start of the pandemic through the first quarter of 

2024, mutations in Spike proteins of variants of concern: Alpha (lineage B.1.1.7), Beta 

(B.1.351, B.1.351.2 and B.1.351.3), Gamma (P.1, P.1.1 and P.1.2), Delta (B.1.617.2, 

AY.1 and AY.2) and Omicron (BA.1, BA.2, BA.2.12.1, BA.2.75, BA.4, BA.5, XBB.1.5, 

BA.2.86 and JN.1) led to an enhanced binding affinity to the hACE2 receptor and 

escape from neutralizing antibodies; thus an increase in infectivity and transmission 

(249–252). 

 

While the mutations on the RBD-ACE2 interface have a direct effect on binding affinity, 

non-interface mutations may have an impact on forming different hydrogen bonding 

patterns and back-bone torsional changes thus the preference for one RBD 
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conformation (‘down’ and ‘up’ state) over another. SCoV2 RBD in the ‘up’ state, leads 

to increased SARS-CoV-2 virulence and transmissibility. For example, the first 

observed single mutation in SARS-CoV-2 RBD was Asp614Gly. Although, Asp614 

interacts with Lys854 and Thr859 through hydrogen bonds to retain the RBD in ‘down’ 

state, Gly614, works in favour of the up conformation by reducing the energy cost of 

the conformational transition due to lack of ability to form hydrogen bonds with Lys854 

and Thr859 (Ray et al., 2021, Mansbach et al., 2021). This hypothesis was 

experimentally validated in vitro, as the RBD ‘up’ state was observed nearly seven 

times more than the full ‘down’ state while the occurrence for both conformations is 

equal in the wild-type strain (254). 

 

3.1.5.1. Alpha variant 

On 14 December 2020, the United Kingdom officially announced the emergence of a 

new SARS-CoV-2 variant and soon after, it spread world-wide. It was named lineage 

B.1.1.7 or Alpha variant (255). The mutation Asn501Tyr is found in RBD and 

Ser98Phe, Asp138His and Trp152Arg in NTD (216). The sole mutation in RBD, 

Asn501Tyr forms a new favourable 𝜋-𝜋 stacking interaction (Figure 3.9) with Tyr4. 

Tyr501 also forms a hydrogen bond with Lys353 of ACE2 (256). 
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Figure 3.9. The interaction network of RBD (brown) with ACE2 (green). The mutation, 
Asn501Tyr in RBD forms a new 𝜋-𝜋 stacking interaction with Tyr41 in ACE2. Figure is 
taken from Han et al., (2022) (256).  
 

Ala570Asp mutation in subdomain1 (SD1) replaces a hydrophobic amino acid with a 

charged one. This mutation alters the interaction of RBD with the S2 core (257) which 

may facilitate the RBD conformation change to the ‘up’ state (258). Table 3.2 presents 

all emerged mutations in Spike protein (NTD and RBD) in the Alpha variant. 

 

Spike Domain Mutations in Alpha variant 
NTD S98F, D138H, W152R 
RBD N501Y 

Table 3.2. List of Spike’s NTD and RBD mutations in Alpha variant. Source: 
viralzone.expasy.org (216).  
 
 
3.1.5.2.  Beta variant 

The emergence of lineage B.1.351 or Beta variant was reported in South Africa on 18 

December 2020. This variant carries four mutations: Phe384Leu, Lys417Asn, 

Glu484Lys and Asn501Tyr in RBD. Beta variant’ RBD binding affinity to hACE2 is 

4.62-times greater than the wild-type RBD (259). The Glu484Lys mutation on RBD of 

Lineage B.1.351 is the key mutant associated with a high rate of immune escape. The 
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replacement of the negatively-charged Glutamic acid with a positively-charged Lysine 

at residue 484 leads to changes in RBD’s interface charge with a higher electrostatic 

complementarity and consequently to higher affinity binding to hACE2 (249). Table 3.3 

presents mutations in Spike protein (NTD and RBD) in the Beta variant. 

Spike Domain Mutations in Beta variant 
NTD L18F, T19I, A27S, D80A, D215G 
RBD P384L, K417N, E484K, N501Y 

Table 3.3. List of Spike’s NTD and RBD mutations in Beta variant. Source: 
viralzone.expasy.org (216).  
 

3.1.5.3. Gamma variant 

The first confirmed cases with gamma variants were Brazilian tourists vising Japan on 

6 January 2021. Although beta and gamma share the same mutations in RBD: 

Lys417Thr, Glu484Lys and Asn501Tyr, these mutations arose independently (260). 

While the mutation at 417 is common between the two variants, Lys417Thr makes 

Gamma less resistant to naturally acquired or vaccine-induced antibody responses. 

This unfavourable mutation in RBD leads to the loss of a salt bridge bond with Asp30 

of hACE2; thereby reducing the binding affinity (261). Table 3.4 presents mutations in 

Spike protein (NTD and RBD) in Gamma variant. 

Spike Domain Mutations in Gamma variant 
NTD L18F, T20N, P26S, D138Y, R190S 
RBD K417T, D427N, E484K, N501Y 

Table 3.4. List of Spike’s NTD and RBD mutations in Gamma variant. Source: 
viralzone.expasy.org (216).  
 
 
 
3.1.5.4. Delta variant 

The first SARS-CoV-2 delta variant infected cases were detected in India in late 2020 

(255). This variant carries fourteen mutations in the Spike glycoprotein as published 



  

 83 

in the Centres for Disease Control and Prevention (www.cdc.gov). Asn417 of RBD 

forms a salt bridge with Asp30 of hACE2 which contributes to higher receptor-ligand 

binding affinity (256). 

  
The Pro681Arg mutation in the S protein of delta increases the concentration of the 

cleaved S2 subunit. The level of cleaved S2 subunit was even higher in presence of 

both mutations: Asp614Gly and Pro681Arg (262). Table 3.5 presents mutations in 

Spike protein (NTD and RBD) in Delta variant. 

Spike Domain Mutations in Delta variant 
NTD T19R, T95I, G142D, Y145H (sublineage AY.2), R158G, 

A222V, W258L 
RBD K417N (sublineage AY.1), L452R, T478K, N501Y 

Table 3.5. List of all mutations in Spike’s Delta variant. Source: viralzone.expasy.org 
(216).  
 
 
 
3.1.5.5. Omicron variant 

The World Health Organisation announced the emergence of a new variant of COVID-

19, B.1.1.529 (Omicron variant) in South Africa on the 24th of November 2021. 

Compared with other variants, omicron possesses the most mutations in the receptor-

binding motif of RBD-Spike protein. 

 

The surface charges of the omicron RBD change to be significantly more positive due 

to mutations in three residues in the RBD: Thr478Lys, Gln493Arg, and Gln498Arg. 

This leads to enhancing the binding affinity as Arg493 and Arg498 interact with Glu35 

and Asp38 of hACE2, respectively. A new hydrogen bond is formed between Asn477 

of RBD and Ser19 of hACE2 (256). Although, Lys478 is not in direct contact with any 
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residues in hACE2; it may have an impact on hACE2 binding allosterically. In contrast, 

Glu484Lys/Ala reduces the negative charge in RBM.  

 

While Ser477Asn and Asn501Tyr in omicron RBD lead to higher binding affinity to 

hACE2 (256), other substituted residues (e.g., Lys417Asn, Gly446Ser, 

Glu484Lys/Ala, Gly496Ser, and Tyr505His) reduced the binding affinity. E484A leads 

to lower binding affinity due to lack of side chains to interact with Lys31 of hACE2 

(263). Tyr505His mutation is unable to form the same contacts with ACE2; thus, 

resulting in weaker binding affinity. It could explain that even though, the omicron 

lineage showed higher transmissibility; its binding affinity to hACE2 is weaker than 

delta strain (256). Table 3.6 presents mutations in Spike protein (NTD and RBD) in 

variants of concerns in Omicron sub-lineages BA.1, BA.2, BA.2.12.1, BA.2.75, BA.4, 

BA.5, XBB.1.5, BA.2.86 and JN.1. 
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Omicron 
stains 

Spike 
domain 

Non-synonymous mutation in BA.1, BA.2, BA.2.12.1, 
BA.2.75, BA.4, BA.5, XBB.1.5, BA.2.86 and JN.1 

BA.1 

NTD V83A, G142D, H146Q, Q183E, V213E, G252V. 

RBD 
G339H, R346T, L368I, S371F, S373P, S375F, T376A, D405N, 
R408S, K417N, N440K, V445P, G446S, N460K, S477N, T478K, 
E484A, F486P, F490S, Q498R, N501Y, Y505H, D614G. 

   

BA.2 

NTD T19I, G142D, V213G. 

RBD 
G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, 
N440K, S477N, T478K, E484A, Q493R, Q498R, N501Y, 
Y505H, D614G. 

   

BA.2.12.1 

NTD T19I, LPPA24-27S, G142D, V213G. 

RBD 
G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, 
N440K, L452Q, S477N, T478K, E484A, Q493R, Q498R, 
N501Y, Y505H, D614G. 

   

BA.2.75 

NTD T19I, G142D, K147E, W152R, F157L, I210V, V213G, G257S. 

RBD 
G339H, S371F, S373P, S375F, T376A, D405N, R408S, K417N, 
N440K, G446N, N460K, S477N, T478K, E484A, Q498R, 
N501Y, Y505H, D614G. 

   

BA.4 and 
BA.5  

NTD T19I, G142D, V213G. 

RBD 
G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, 
N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, 
Y505H, D614G. 

   

XBB.1.5 

NTD T19I, V83A, Q52H, G142D, H146Q, Q183E, V213E, G252V. 

RBD 
G339H, R346T, L368I, S371F, S373P, S375F, T376A, D405N, 
R408S, K417N, N440K, V445P, G446S, F456L, N460K, S477N, 
T478K, E484A, F486P, F490S, Q498R, N501Y, Y505H, D614G. 

   

BA.2.86 
NTD T19I, V83A, Q52H, G142D, H146Q, Q183E, V213E, G252V. 

RBD I332V, R403K, D339H, V445H, G446S, N481K, N450D, L452W, 
483del, E484K, F486P, N501Y, Y505H, D614G. 

   

JN.1 
NTD T19I, V83A, Q52H, G142D, H146Q, Q183E, V213E, G252V. 

RBD I332V, R403K, D339H, V445H, G446S, L455S, N481K, N450D, 
L452W, 483del, E484K, F486P, N501Y, Y505H, D614G. 

Table 3.6. List of common Spike’s NTD and RBD mutations in Omicron sub-lineages. 
Source: viralzone.expasy.org (216). 
 
 



  

 86 

3.1.6 The role of other SARS-CoV-2 proteins in COVID-19 susceptibility and 

infection 

The fourteen open-reading frames (ORFs) in the 30Kb genome of SARS-CoV-2 are 

translated to four structural proteins: spike (S), envelope (E), membrane (M) and 

nucleocapsid (N); 16 non-structural proteins (NSPs) and 9 accessory factors (Figure 

3.10). 

 

Figure 3.10. A schematic presentation of the SARS-CoV-2 genome and encoded 
proteins. Fourteen ORFs encode 4 structural proteins (red bars), 16 Nsps (blue bars) 
and nine accessory factors (green bars). Sequence similarity of each protein in SARS-
CoV-2 and SARS-CoV is presented as the gradient. Figure is taken from Gordon et 
al., (2020) (264). 
 
 

ORF1a and ORF1b encode the non-structural proteins (Nsp1–Nsp16) that assemble 

as the replicase transcriptase complex which comprises of multiple enzymes, such as 

the papain-like protease (Nsp3), the main protease (Nsp5), the Nsp7–NSP8 primase 

complex, the primary RNA-dependent RNA polymerase (Nsp12), a helicase–

triphosphatase (Nsp13), an exoribonuclease (Nsp14), an endonuclease (Nsp15) and 

N7- and 2′O-methyltransferases (Nsp10 and Nsp16) (264–267). 
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In an early study, Gordon et al., (2020) (264) found 322 high-confidence protein-

protein interactions (PPIs) between the SARS-CoV-2 and human proteins in a variety 

of host pathways and biological processes such as: 

- Nsp5, Nsp8, Nsp13 and E complex interact with the host epigenetic and gene-

expression regulators.  

- Nsp2, Nsp6, Nsp7, Nsp10, Nsp13, Nsp15, ORF3a, E, M and ORF8 interact with 

the host vesicle trafficking proteins. 

- Nsp8 and N interact with the host RNA processing and regulation. 

- Nsp9, Nsp15 and ORF6 interact with the host nuclear transport machinery. 

- Nsp1 And Nsp13 interact with the host cytoskeleton. 

- Nsp4, Nsp8 and ORF9c interact with the host mitochondria. 

- Nsp9 interacts with the host the extracellular matrix. 

They showed that different proteins of SARS-CoV-2 such as Nsp13, Nsp15, 

ORF9b and envelope proteins interact and compete with human immune-associated 

proteins in innate immune pathways to suppress or block triggering interferon (IFN) 

and NF-B pathways in response to the infection.  

SARS-CoV-2 suppresses the production and activation of type I interferons, more 

effectively than SARS-CoV. Interferons are important messenger molecules in the 

innate immune response (268). It has been reported that SARS-CoV-2 VOCs are more 

resistant to interferons and more capable of evading innate immunity which both are 

key factors in the evolution of the SARS-CoV-2 virus (269).  
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Therefore, in this study, in addition to studying the impact of genetic variants across 

different human populations on the binding between human ACE2 and SARS-CoV-2 

Spike protein, the changes in protein-protein interaction and binding affinity between 

the relevant immune-associated proteins and their partner proteins in SARS-CoV-2 

were also investigated.
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3.1.7 Aim of the project 

Since the beginning of the pandemic in early 2020, it has been observed that certain 

ethnic groups, albeit being clinically healthy, experienced severe morbidity compared 

to other groups. Although environmental elements such as access to health care, 

cultural factors and lifestyle play an important role, genetic variation may also have an 

impact on a broad range of COVID-19 morbidity. This research project applies several 

computational algorithms to predict the likely impact of human missense mutations on 

proteins that interact with SARS-CoV-2’s proteins and consequently alter human:virus 

complex binding affinity.  

 

Briefly, proteomics-based studies by Gordon et al., (2020) (264) and the dataset of 

SARS-CoV-2-interacting proteins in humans were collected from the UniProt-SARS-

CoV-2 resource and IntAct’s COVID-19 dataset (https://www.ebi.ac.uk/intact/home) 

identified the human:virus interacting proteins. Human:viral protein complexes were 

compiled from the PDB or modelled. Human genetic variation information and 

associated allele frequencies were collected from several publicly accessible 

databases. Subsequently, changes in binding affinity of human:virus complexes were 

predicted, and the functional sites and potential structural and functional impacts 

associated with the human mutations were investigated. In summary, this study 

discloses the importance of genetic variants in human proteins and their possible 

impact in putting particular ethnic communities at a higher risk of COVID-19 morbidity. 
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3.2 Methods 

Genomic variation databases provide comprehensive data on genetic differences 

across various human populations, allowing researchers to analyse and compare 

patterns of genetic variation, such as single nucleotide polymorphisms (SNPs), and 

understand genetic diversity. In addition to exploring how populations have adapted 

to different environments and tracing human migration patterns, these databases 

serve as a fundamental resource for investigating and identifying population-specific 

disease susceptibilities. In this project, we used two viral and six human genomic 

databases, as described below. 

3.2.1. Viral zone  

ViralZone (216) is a publicly available data-sharing platform of viral genomic and 

proteomic sequences for all known viruses. The information on this website is provided 

by the SWISS-Prot virus annotation database. ViralZone utilises the Baltimore system 

(270) for its database virus classification which is based on the nature of the nucleic 

acids in the virion particle: dsDNA, ssDNA, dsRNA, ss(+)RNA, ss(-)RNA, ssRNA(RT) 

or ssDNA(RT). The data is organised according to fact sheets that hold 

comprehensive information about the virus’s genome, replication cycle, taxonomy and 

epidemiology, virion organisation, genome transcription and translation program. 

ViralZone is constantly being updated with new information extracted from the 

International Committee on Taxonomy of Viruses (ICTV), and scientific publications. 
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3.2.2. CoV-GLUE-Viz 

CoV-GLUE-Viz (http://cov-glue-viz.cvr.gla.ac.uk) maintains a database of mutations, 

insertions and deletions which have been observed in GISAID (271) hCoV-19 

sequences sampled from the ongoing COVID-19 pandemic. The website provides 

tailored information according to user’s preference such as displays based on one 

specific or all SARS-CoV-2’s lineages, Open Reading Frames, mutation types, details 

of a specific mutation across all observed lineages and the proportion of a specific 

mutation. 

 

3.2.3. The Genome Aggregation Database (gnomAD) 

The Genome Aggregation Database (gnomAD) browser 

(https://gnomad.broadinstitute.org/) has deposited data from over 195,000 individuals 

with no reported disease and contains harmonised sequencing data including features 

such as allele frequency, per‐base expression levels, constraint scores, and variant 

co‐occurrence (272). 

 

One of the main features in gnomAD version 2.1.1 is information on the frequency of 

a variant in the general population which depends on the number of heterozygous and 

homozygous individuals. The population frequency for a particular gene provides 

enrichment of variants within five continental populations (Africans/African Americans, 

Latino/Admixed American, East Asians, South Asians and non-Finnish European), two 

demographically distinct populations (Ashkenazi Jewish and Finnish), and any 

remaining un-categorised (other) samples (Figure 3.11). Although most pathogenic 
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variants are found to be infrequent, identifying them is the first step in correlating them 

to specific disease morbidity or the emergence of rare new diseases. 

 

Figure 3.11. The number of people in the gnomAD database, broken down by 
demographic and subpopulation (272,273). 
 

3.2.4. All of Us  

The All of Us is a research program funded by the United States of America National 

Institutes of Health (NIH) which comprises one million individuals from all backgrounds 

across the USA to establish a diverse health database. It allows the researchers to 

understand how the individuals' biology, lifestyle, and environment affect health, 

prevent disease, and propose new treatments (https://allofus.nih.gov). 

 

3.2.5. SweGen 

SweGen data set (274) is a whole-genome data resource of genetic variability in the 

Swedish population reflecting a cohort of over 1,000 Swedish-born individuals 

composed of 506 males and 494 females with an average age of 65.2 years at the 
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time of sampling. The database provides a total of 29.2 million single-nucleotide 

variants with an average of 7199 individual-specific variants per sample. The database 

is accessible through https://swefreq.nbis.se. 

 

3.2.6. GenomeAsia 100K 

The GenomeAsia 100K Project (275) (http://www.genomeasia100k.com) comprises a 

whole-genome sequencing reference dataset from 1,739 individuals of 219 population 

groups and 64 countries across Asia. It reflects genetic variation, population structure, 

and disease associations. The GenomeAsia 100K consortium includes 598 genomes 

from India, 156 from Malaysia, 152 from South Korea, 113 from Pakistan, 100 from 

Mongolia, 70 from China, 70 from Papua New Guinea, 68 from Indonesia, 52 from the 

Philippines, 35 from Japan and 32 from Russia. About a fifth of sequencing data in 

GenomeAsia 100K has come from Africans, Europeans, and Americans samples to 

provide a comprehensive and comparative analysis. This consortium provides broader 

genetic diversity data of the population in the centre of Asia as they are more 

underrepresented in worldwide studies. 

 

3.2.7. IndiGenomes 

IndiGenomes database (276) (http://clingen.igib.res.in/indigen/) comprises whole 

genome sequencing of 1029 healthy Indian individuals (534 females and 495 males 

with a mean age of 32.96 and 41.35 years, respectively) from the different states in 

India. Analysis of the participants' genomic DNA generated 55,898,122 single allelic 

genetic variants from geographically distinct Indian genomes. The database provides 
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calculated allele frequency, allele count, and allele number, as well as the number of 

heterozygous or homozygous individuals. 

 

3.2.8. jMorp 

jMorp (277) (www.jmorp.megabank.tohoku.ac.jp) is a metabolome and proteome 

database of 5,093 Japanese healthy volunteers (male: 2077, female: 3016) who 

participated in the Tohoku Medical Megabank Project Cohort Study. This database 

comprises metabolome data measured by proton nuclear magnetic resonance (NMR) 

and liquid chromatography-mass spectrometry (LC–MS) and proteome data obtained 

by nano LC–MSin plasma. 

 

3.2.9. Dataset of human:SARS-CoV-2 interactor protein complexes 

The human:SARS-CoV-2 interacting proteins were collected from the UniProt-SARS-

CoV-2 resource and IntAct’s COVID-19 dataset (https://www.ebi.ac.uk/intact/home). 

The data from both resources are compiled from experimentally proven interactions in 

the literature. Every interaction in IntAct is assigned with a Molecular Interaction (MI) 

score (a range from 0 to 1) which is mainly evaluated according to experimental 

evidence. MI score ≥ 0.45 is considered to be associated with high-confidence 

interactions (278) thus we used it as a threshold to select suitable complexes for 

downstream analysis. For the human:SARS-CoV-2 immunity-associated proteins, 

mapping UniProt IDs to the InnateDB database (http://innatedb.sahmri.com) and 

evidence from the literature (264) were applied to further shortlist the dataset from 650 

to 94 (for example, excluding complexes where the human protein domain interacting 

with the SARS-CoV-2 protein had no reported mutations in gnomAD). 
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Models of 94 human proteins interacting with SARS-CoV-2 complexes were built using 

both the AlphaFold2_ptm and AlphaFold2-multimer (v1) methods, which were made 

available in July 2021 and March 2022, respectively. A model was then selected from 

one of these methods—whichever had the best interface quality (1,67). High-

confidence models were chosen where models had an overall pLDDT (predicted local 

difference distance test) ≥ 70, as well as a pTM-Score (predicted TM-score) ≥ 70. 

Protein–protein models for which high-quality predictions were not achieved were 

excluded. Complexes were further filtered based on interface quality, including 

interface-pLDDT (complexes with scores < 70 were excluded) and interface-PAE 

(predicted alignment error > 10 were excluded). Models exhibiting overlapping or 

entangled interfaces, as identified through manual inspection, were excluded. 

Interface stability scores were evaluated using the PIZSA method, which assesses 

protein interaction stability; a Z-score ≥ 1.5 indicates a stable interface (279). Predicted 

binding affinities of the complexes were assessed using PROtein binDIng enerGY 

prediction (PRODIGY) for binding energy (ΔG) scores (280,281) the more negative 

ΔG, the stronger the binding between the receptor and the ligand. Additional filters 

reduced the models to 12, and based on further investigation through literature review, 

the 7 complexes were selected for downstream analysis (Table 3.7).  
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Human: SCoV2 
complex 

Type of 
interaction 

Source of the human: 
SCoV2 complex 

Interface 
pLDDT 

Interface 
PAE 

PIZSA Interface 
stability Z-score 

PRODIGY 
ΔG 

(Kcal/mol) 

hTOM70:ORF9b immunity-
associated PDB: 7KDT N/A N/A 2.507 (stable) -17.4 

hRPS3:Nsp1 immunity-
associated PDB: 6ZMT N/A N/A 2.805 (stable) -4.5 

hhPASL1:E-protein immunity-
associated PDBe ID: 7M4R N/A N/A 1.685 (stable) -6.6 

ISG15:PLpro immunity-
associated PDBe ID: 7RBS N/A N/A 2.046 (stable) -13.4 

hACE2:RBD receptor-binding PDBe ID: 6M0J (WT SCoV2) N/A N/A 2.582 (stable) -11.9 

hIFIT2:PLpro immunity-
associated AF2 72.82 9.86 2.46 (stable) -11.3 

hIFIH1:PLpro immunity-
associated AF2- m 83 10 2.375 (stable) -10.1 

hTRIM25:N-protein immunity-
associated AF2 93.15 2.87 2.24 (stable) -9.1 

hKREMEN1:RBD receptor-binding AF2 81.02 4.74 2.148 (stable) -10.2 

hARF6:Nsp15 immunity-
associated AF2 82.61 7.20 2.063 (stable) -7.5 

hTRIMM:Nsp14 immunity-
associated AF2 81.24 7.58 1.974 (stable) -8.8 

hAXL:NTD receptor-binding AF2 75.31 8.55 2.321 (stable) -10.6 
Table 3.7. Details of complexes selected for downstream human: SCoV2 interactor protein-protein analysis. PDBe ID of 
experimentally resolved structures are outlined. The quality of AlphaFold2 models was assessed with algorithms such as Interface 
pLDDT (acceptable range is ≥70), Interface PAE (acceptable range is <10), PIZSA Interface stability Z-score (acceptable range is 
>1.5 indicates stable interface) as well as the predicted PRODIGY binding energy (ΔG). Abbreviations: Wild-type (WT), AlphaFold2-
advanced (AF2) and AlphaFold-multimer (AF-m). Abbreviations: N-protein and E-protein are SCoV2 Nucleocapsid and Envelope 
proteins, respectively. 
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3.2.10. HADDOCK 

High Ambiguity Driven biomolecular DOCKing (HADDOCK) is an intuitive docking 

webserver (282,283) platform with the capacity to perform the docking of up to 20 

macromolecules including proteins, small-molecules, nucleic acids, peptides, cyclic 

peptides, glycans, and glycosylated proteins (284,285). HADDOCK uses experimental 

and theoretical information derived from interface restraints from NMR, mutagenesis 

experiments, or bioinformatics predictions (286,287); shape data from small-angle X-

ray scattering (288); cryo-electron microscopy experiments (289); orientations of the 

individual structures in the complex from NMR residual dipolar couplings (290), 

relaxation anisotropy (291) and pseudo-contact shifts experiments (292) to drive a 

data-driven docking method and assess the ligand:receptor binding affinity (284,293). 

The key docking steps are as follows: 

i. The 3D structures of the protein and ligand are provided by the user. 

ii. HADDOCK uses information about potential interaction sites (ambiguous or 

unambiguous) to predict the docking models. 

iii. After predicting several docking models, it refines these models using energy 

minimisation and molecular dynamics. 

iv. The models are scored based on the overall energy, including binding energy, 

between the protein and ligand. A lower score indicating a more thermodynamically 

favourable binding affinity. 

 

3.2.11. Validating the AlphaFold2 models conformation using HADDOCK 

HADDOCK was employed to verify AlphaFold2 and AlphaFold-multimers prediction of 

the complexes for which no experimental structures (e.g., from NMR or X-ray 
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crystallography) are available in the Protein Data Bank (PDB), at the time of 

conducting this research. Prior to validating our predicted AlphaFold2/multimers 

models, we first used HADDOCK to predict the best human:SCoV2 complexes 

conformation of complexes whose experimental structures are available (according to 

their corresponding PDB structures). Each protein structure, whether human or SCoV2 

was uploaded separately, and the binding residues for each protein in the complex 

were provided, treating the structures as if they were part of an unknown complex. 

Then, HADDOCK predicted the most favourable interactions between the two, based 

on these interface residues. At this stage, our objective was to determine how accurate 

HADDOCK's predictions are. The best HADDOCK prediction was superposed on the 

PDB structure of the known structures, and we measured the RMSD of the structural 

differences (PDB versus HADDOCK’s prediction). This was performed on five 

human:SCoV2 complexes outlined in Table 3.8.  

Several published molecular docking validation methods (294–296) have suggested 

that an RMSD < 2.0 Å corresponds to good docking solutions. As the RMSD values 

for the five human:SCOV2 experimental complexes were below this suggested RMSD 

threshold, the same method was applied to the complexes modelled by 

AlphaFold2/multimers (hARF6:Nsp15, hAXL:NTD, hIFIH1:PLpro, hhIFIT2:PLpro, 

KREMEN1:RBD, hTRIM25:N, hTRIMM:Nsp14). All RMSD values of the superposed 

best HADDOCK pose to the predicted AlphaFold2/multimers models were below the 

threshold and thus they could be used for downstream analysis (Table 3.8). 

The outcome of the docking is a list of all possible water-refined structure 

conformations that are ranked according to their intermolecular energy or HADDOCK 



  

 99 

score, the lower the energy the better-predicted conformation. In addition to the 

HADDOCK score, the Z-score is a statistical measure used to calculate the quality of 

the predicted protein-protein complex structure. A lower Z-score suggests that the 

predicted complex structure is more energetically favourable or closer to the likely 

native or experimentally observed structure; therefore, indicates a better result 

(284,293). 
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Validation of the method using the PDB structures 

Complex 
(human:SCoV2) 

PDB 
structure 

HADDOCK 
score 

HADDOCK 
Z-score 

RMSD 
(HADDOCK vs 
PDB complex) 

hTOM70:SCoV2 
ORF9b 7KDT -134.2 +/- 4.0 -2.9 0.445 

hISG15:SCoV2 
PLpro 7RBS -130.9 +/- 2.1 -1.7 0.404 

hPALS1:SCoV2 
Envelope protein 7M4R -94.4 +/- 3.2 -2.0 0.586 

hRPS3:SCoV2 
Nsp1 6ZMT -77.3 +/- 19.0 -1.8 1.137 

hACE2:SCoV2 
RBD 7A95 -125.4 +/- 3.8 -2.3 0.546 

     

Application of the method on the AF2/m models 

Complex 
(human:SCoV2) AF2 model HADDOCK 

score 
HADDOCK 

Z-score 
RMSD 

(HADDOCK vs 
AF2 complex) 

hARF6:SCoV2 
Nsp15 AF2 model -105.5 +/- 

10.2 -1.7 0.459 

hAXL SCoV2 NTD AF2 model -143.8 +/- 3.3 -2.6 0.462 
hIFIH1:SCoV2 

PLpro 
AF2-

multimer -106.3 +/- 4.3 -1.4 0.405 

hIFIT2:SCoV2 
PLpro AF2 model -135.2 +/- 

11.8 -2.3 0.517 

hKREMEN1:SCoV2 
RBD AF2 model -138.0 +/- 1.1 -2.3 0.766 

hTRIM25:SCoV2 
Nucleocapsid 

protein 
AF2 model -93.1 +/- 2.9 -1.7 0.467 

hTRIMM:SCoV2 
Nsp14 AF2 model -97.6 +/- 2.5 -2.7 0.385 

Table 3.8. Verification and application of conformation and interaction in AlphaFold2 
modelled complexes. Top table: the PDB complexes were used to validate the 
method. The HADDOCK predicted docking conformation were superposed on the 
corresponding PDB structure and assessed using RMSD. Bottom table: following the 
validation, the method was used to assess the AlphaFold2/multimer modelled 
complexes of proteins used in this study. 
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3.2.12. OHM, Allostery site prediction  

OHM, a protein structure network-based method, identifies and characterises 

allosteric communication networks within proteins. OHM’s approach is independent of 

simulation-based methods and is based on the structure of the protein of interest 

(297). Upon uploading a PDB file, OHM determines all contacts from the tertiary 

structure of the protein and calculates the average atom-contacts matrix in the given 

3D structure. A probability matrix is generated by computing the number of contacts 

between each pair of residues divided by the number of atoms in each residue. At the 

next step, the algorithm perturbs residues in the active site and the perturbation is 

propagated to other residues according to the probability matrix, 10,000 times. 

Ultimately, the allosteric coupling intensity (ACI) frequency is evaluated. ACI is a 

floating-point number between zero and one in which ACI ≥ 0.85 are considered to be 

allosteric residues. 

 
3.2.13. Predicting the impact of human and viral protein variants on the 

binding affinity of the corresponding complexes using mCSM-PPI2 

mCSM-PPI2 (method described in the introduction chapter) was employed to predict 

the impact of missense variants in different human populations reported in human 

databases: gnomAD (272), SweGen (274), GenomeAsia1000K (275), allofus 

(https://allofus.nih.gov) by the National Institutes of Health (NIH), jMorp (277) and 

IndiGenome (276) on the binding affinity of the corresponding complexes. An mCSM-

PPI2 threshold cut-of value of ΔΔG ≥ 0.5 Kcal/mol is implemented to exclude any 

possible false positives driven by a minor systematic error in the predictions. This 

threshold is considered to be associated with a significant enhancement of the binding 
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affinity between the two-interacting proteins in a complex. This threshold has been 

previously validated with experimental analyses on protein-protein complexes 

(103,104). 

 

Additional investigations of affinity enhancing mutations were also performed. The 

degree of conservation of the variant position and the conservation of neighbouring 

residues within 5Å was determined using Scorecons (25) if the representative protein 

is a member of a functional family in CATH with diversity of positions (DOPS) score 

greater than 70 (26,27), as discussed in the introduction chapter. Allosteric site 

prediction of the corresponding position and neighbouring residues within 5Å was 

performed using OHM (298), and the probable pathogenicity effect of the missense 

mutation was determined using MutPred2 (105). See chapter one for details of these 

methods. 

 

Based on the position of an amino acid in the 3D structure and ability to interact with 

the corresponding SARS-CoV-2 protein, a mutation was labelled as a direct contact 

residue in the interface (DC) or a residue whose atoms are within 5Å of direct contact 

residues (DCEX). DC residues are compiled from PDBSum (120) or identified using a 

distance cut-off of 4Å (between any atoms), from each interacting chain using the 

Chimera built-in tool (185).  
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3.2.14. Predicting the impact of human protein variants on the binding 

affinity of the human:SCov2 complexes using PROtein binDIng enerGY 

prediction  

PROtein binDIng enerGY prediction (PRODIGY) is a computational tool designed to 

predict the strength of interaction or binding affinity of proteins in a protein complex 

based on their 3D structures. It uses a statistical-based approach, considering various 

biological aspects and molecular interactions. 

 

PRODIGY correlates the number of interfacial contacts in a protein-protein complex 

with experimental binding affinity. It includes the properties of non-interacting surfaces 

in the final calculation, as suggested by Kastritis et al., (2014). (299), where non-

interacting surfaces may influence protein-protein binding affinity. The calculation 

incorporates factors such as van der Waals interactions, electrostatic forces (both 

attractive and repulsive) between charged particles, hydrogen bonds, and entropy 

changes to determine the binding energy (ΔG). 

 

PRODIGY is trained using experimentally measured protein-protein binding affinities 

datasets, enabling it to identify patterns in the structural features of protein complexes 

associated with binding affinity. The tool predicts the binding affinity of a given 3D-

protein complex based on its structural characteristics, presenting the outcome as a 

numerical value (ΔG, kcal/mol). A lower or more negative value implies a stronger 

binding affinity. 
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In this chapter, PRODIGY was employed to validate predictions made by mCSM-PPI2 

for human mutations exhibiting enhanced binding affinity to their corresponding SARS-

CoV-2 partners. This involved calculating the binding affinity (ΔG, kcal/mol) for both 

the wild-type and mutant versions of residues predicted to enhance affinity. 

 

3.2.15. Other algorithms and methods 

In addition to the algorithms and methods described above, four other tools were used, 

which are detailed in the Introduction chapter: 

• Grantham matrix (190): to measure the degree of change in the physicochemical 

properties of wild-type and mutant residues. 

• Scorecons (25): to calculate the degree of amino acid variability in each column of 

a multiple sequence alignment. 

• AlphaFold2 (65): to predict protein structures with high accuracy using deep 

learning techniques, particularly for complexes where no experimental structure is 

available. 

• MutPred2 (105): to predict the pathogenicity of amino acid substitutions based on 

conservation, as well as physical and chemical properties.
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3.3. Results 

As described in the Methods section, we collected 322 experimentally determined 

human protein SARS-CoV-2 interactors reported by Gorden et al., (2020) (264) and 

after applying several criteria, the impact of amino acid mutations in twelve human 

proteins interacting with their likely partner in SARS-CoV-2 was evaluated (Table 3.9). 

For the amino acid mutations predicted to increase affinity to SARS-CoV-2, additional 

analyses were performed including exploring the degree of conservation using 

Scorecons, probability of allosteric effects using OHM (score range 0 to 1, score for a 

probable allosteric site ≥ 0.85) and pathogenicity using MutPred2 to better understand 

the impact of the mutation on the human protein function and structure. 

 

We analysed the impact of all reported mutations in gnomAD for the selected 12 

human proteins. However, in this chapter we only provide detailed summaries for 

mutations predicted by mCSM-PPI2 (ΔΔG ≥ 0.5 kcal/mol) to be significantly affinity-

enhancing to the corresponding SARS-CoV-2 protein (Table 3.9). This threshold was 

implemented to exclude any possible false positives driven by a minor systematic error 

in the predictions. The mutations in the human genome, identified by mCSM-PPI2 as 

potentially enhancing the binding affinity to the corresponding SARS-CoV-2 protein, 

underwent further validation through an additional binding affinity prediction tool, 

PRODIGY. This secondary assessment was performed to reaffirm the initial 

predictions. 

 

We analysed all mutations found in gnomAD or other databases, even if some of them 

have a low allele frequency (<0.0001) in order to increase awareness of existing 
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mutations. This could be beneficial, even if a low-frequency mutation was found in only 

one nation or region. The effects of the affinity-enhancing human mutations on their 

corresponding SARS-CoV-2 protein interactions were further evaluated. Three 

selected complexes are described and discussed below (hTOM70: SCoV2 ORF9b, 

hIFIH1: SCoV2 PLpro and hIFIT2: SCoV2 PLpro), while the remaining results are 

provided in Appendix 3. 
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Complex 
(human: 
SCoV2) 

No. of 
reported 
human 

mutations in 
gnomAD 

No. of 
human 

mutations 
with 

enhancing-
affinity 

Number and type of affinity-
enhancing mutation to the 

interface 

hACE2: 
SCoV2 RBD 162 2 One mutation 

in DCEX 

One mutation 
>5Å of DC 
residues 

hKREMEN1: 
SCoV2 RBD 37 2 Two mutations in DCEX 

hAXL: SCoV2 
NTD 18 1 One mutation in DC 

hTOM70: 
SCoV2 ORF9b 25 3 Two mutations 

in DCs 
One mutation in 

DCEX 

hRPS3: 
SCoV2 Nsp1 9 1 One mutation >5Å of DCs 

hPALS1: 
SCoV2 

Envelope 
protein 

13 2 One mutation 
in DCEX 

One mutation 
>5Å of DCs 

hTRIM25: 
SCoV2 

Nucleocapsid 
protein 

16 1 One mutation in DCEX 

hTRIMM: 
SCoV2 Nsp14 14 1 One mutation in DCEX 

hARF6: 
SCoV2 Nsp15 4 1 One mutation >5Å of DC residue 

hISG15: 
SCoV2 PLpro 15 1 One mutation in DC 

hIFIH1: SCoV2 
PLpro 21 2 Two mutations in DC 

hIFIT2: SCoV2 
PLpro 67 6 Two mutations 

in DCEX 

Four mutations 
>5Å of DC 

residue 
Table 3.9. A summary of reported human mutation in each human:SCoV2 complex in 
gnomAD and the number of affinity-enhancing mutations in the corresponding 
complex. Abbreviation: directly contacting residues in the interface of the complex 
(DC), residues within 5Å from the DC residues (DCEX).
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3.3.1. Impact of hTOM70 mutations on hTOM70:SARS-CoV-2 ORF9b interaction 

TOM70, an outer mitochondrial membrane receptor, comprises of 25 helices and 

transfers polypeptide chains from the cytosol into the mitochondria (300,301). In 

addition, TOM70’s NTD-pocket is responsible for the activation of host antiviral 

immune responses through interacting with heat shock protein 90 (HSP90) to mediate 

TOM70-dependant IFN-I activation (302). 

 

SCoV2 ORF9b, one of the coronavirus’s accessory proteins, is encoded by an 

alternative open reading frame within the nucleocapsid (N) (221,303,304) and 

interacts with TOM70’s CTD hydrophobic pocket. Occupation of TOM70 CTD by 

SCoV2 ORF9b reduces the binding affinity of TOM70:HSP90 by about 29-fold and 

consequently suppresses the host innate immunity (305–307). 

 

Of twenty-five reported and analysed mutations for hTOM70, three are predicted to 

enhance the binding affinity of hTOM70:SCoV2 ORF9b by over 0.5 kcal/mol of which 

two are in direct contact (Val556Leu and Ala591Thr) and one within 5Å of a direct 

contact (Lys576Arg) residue (Figure 3.13). While Val556Leu and Lys576Arg only 

cause an increase in interactions with the corresponding neighbouring residues in 

hTOM70, Ala591Thr forms additional hydrophobic bonds with Phe69 in SCoV-2 

ORF9b (Appendix 3.4). PRODIGY also predicted that these three mutations increase 

the binding affinity between human:SCoV2 complex. In addition, Val556Leu and 

Ala591Thr are predicted to be pathogenic by MutPred2 which reports that they may 

have an impact by altering the coiled-coil domain (Val556Leu) and a predicted metal 
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binding site (Ala591Thr). Each mutation is observed in a specific human population 

but with very low frequency (Table 3.10).  

 

Figure 3.13. Positions of hTOM70 affinity-enhancing residues: V556, K576 and A591 
(in red). Positions Val556 and Ala591 are in direct contact and Lys576 is within 5Å of 
a direct contact residue to SCoV2 ORF9b interface. hTOM70 (tan) and SCoV2 ORF9b 
(grey), PDBe ID: 7KDT.  
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V556L 2.69  
(DC) 0.905 14 

(23) 
9 

(8) 
5 

(4) 
0 

(6) 
0 

(0) -11.5 No 
32 

(conservativ
e) 

No No 

Latino/Admi
xed 

Americans: 
0.00002917 

K576R  6.01 
(DCEX) 0.618 0 

(0) 
5 

(7) 
2 

(3) 
1 

(2) 
0 

(0) -11.9 No 
32 

(conservativ
e) 

No 

(score = 
0.58) 

altered 
coiled 

coil 

South 
Asians: 

0.00003267 

A591T  3.45 
(DC) 0.599 4 

(8) 
6 

(11) 
3 

(6) 
1 

(5) 
0 

(0) -11.4 No 

58 
(moderately 
conservativ

e) 

No 

(score = 
0.535) 
altered 
metal 

binding 

Non-Finnish 
Europeans: 
0.00000881

1 

Table 3.10. Summary of three hTOM70 mutations with predicted increase in binding affinity. The distance to the interface, ΔΔGAffinity 
(kcal/mol) and type of interactions by mCSM-PPI2; PRODIGY binding affinity score for wt-hTOM70:SCoV2 ORF9b is (ΔGAffinity = -10.5 
kcal/mol); conservation by Scorecons (conserved residue and/or within 5Å of conserved residues with Scorecons ≥ 0.9); degree of 
changes in physicochemical properties by Grantham score; allosteric site prediction by OHM; and predicted pathogenicity by MutPred2. 
Abbreviations:  direct contact residue (DC), within 5Å of a direct contact residue (DCEX), hydrophobic (HP), Hydrogen bond (H-bond), 
van der Waals contacts (VdW), and Scorecons score (sc). Variants with allele frequency >1% are considered common variants in the 
population.  
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3.3.2. SARS-CoV-2 papain-like protease targets hISG15, hIFIH1 and hIFIT2 to 

supress the immune response 

The SARS-CoV-2 papain-like protease (SCoV2 PLpro) is an essential coronavirus 

functional replicase complex. It enables viral spread by viral polyprotein chain 

processing and evades the immune system by impairing the type I interferon (IFN-1)-

dependant production. The hISG15, hIFIH1 and hIFIT2 (308–310) are primary proteins 

triggering IFN-1 production. SCoV2 PLpro interacts with these proteins to hinder their 

functions and suppress the immune response. Affinity-enhancing mutations in 

selected complexes are discussed below for hIFIH1 and hIFIT2, while the analysis of 

hISG15 is included in Appendix 3.10. 
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3.3.3. Impact of hIFIH1 mutations on hIFIH1:SARS-CoV-2 PLpro interaction 

IFIH1 (also known as Melanoma differentiation-associated protein 5 or MDA5) is 

a cytoplasmic innate immune receptor. It detects viral RNA with its C-terminal 

domain and consequently triggers activation of antiviral immunological genes 

transcription including IFN-Alpha, IFN-Beta and pro-inflammatory cytokines 

(309,311). In the case of infection with coronaviruses, SARS-COV-2 employs PLpro 

to bind and block the activation of an IFIH1-dependent cascade of antiviral responses 

(309). 

 

Of twenty-one reported and analysed mutations in hIFIH1, mutations in two direct 

contact residues: Tyr13Asn and Ser16Leu (Appendix 3), are predicted to increase 

binding affinity to SCoV2 PLpro (ΔΔG=0.835 kcal/mol and ΔΔG=0.769 kcal/mol, 

respectively). PRODIGY also predicted that these two mutations increase the binding 

affinity between human:SCoV2 complex (ΔGwt = -10.1 kcal/mol, ΔGY13N=-11.2 

kcal/mol and, ΔGS16L = -11.9 kcal/mol). Both Tyr13Asn and Ser16Leu mutations 

significantly alter the physicochemical properties of the residue (Grantham score: 143 

and 145, respectively, within a range of 5 - 215). MutPred2 predicted that Tyr13Asn 

and Ser16Leu may result in the loss of allosteric site at the neighbouring residue 

Phe12 and Arg19, respectively. Loss of allosteric site at Phe12 may also alter 

conserved metal (e.g., zinc) binding motif, predicted by MutPred2. Tyr13Asn has been 

identified in three databases: gnomAD (Korean), jMorp, and GenomeAsia100k, 

indicating that it is unique to East and South Asia, although at low frequency. Ser16Leu 

is recorded throughout Europe and Africa at low frequency (Table 3.12).  
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3.28  
(DC) 0.835 13 

(0) 
11 

(10) 
5 

(6) 
6 

(4) 
0 

(0) -11.2 No 143 
(radical) No 

(Score: 0.64) 
loss of allosteric site at 

the neighbouring 
residue F12 and altered 

metal binding 

Koreans: 
0.0005238 

 

Jmoph: 
0.00262 

 

GenomeAsia1
00k: 0.0006 

S16L  3.26 
(DC) 0.769 0 

(8) 
9 

(4) 
4 

(4) 
4 

(2) 
0 

(0) -11.9 No 145 
(radical) No 

(Score: 0.65) 
loss of allosteric site at 

the neighbouring 
residue R19 

North-western 
Europeans: 
0.00002376 

 

Europeans: 
0.000007 
(allofus) 

 

Africans: 
0.00002 
(allofus) 

Table 3.12. Summary of two hIFIH1 mutations with predicted increase in binding affinity. The distance to the interface, ΔΔGAffinity (kcal/mol) 
and type of interactions by mCSM-PPI2; PRODIGY binding affinity score for wt-hIFIH1:SCoV2 PLpro is (ΔGAffinity = -10.1 kcal/mol); 
conservation by Scorecons (conserved residue and/or within 5Å of conserved residues with Scorecons ≥ 0.9); degree of changes in 
physicochemical  properties by Grantham score; allosteric site prediction by OHM; predicted pathogenicity by MutPred2; max population 
and corresponding allele frequency is according to gnomAD unless stated otherwise; Abbreviations: direct contact residue (DC), 
hydrophobic (HP), Hydrogen bond (H-bond), van der Waals contacts (VdW), and Scorecons score (sc). Variants with allele frequency >1% 
are considered common variants in the population.
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3.3.4. Impact of hIFIT2 mutations on hIFIT2:SARS-CoV-2 PLpro interaction 

Human interferon-induced protein with tetratricopeptide repeats 2 (hIFIT2) is an RNA-

binding protein and able to distinguish the viral RNA from the host RNA by recognising 

5′ triphosphate (312) or the lack of 2′-O-methylation (313) on viral RNA, and hence, 

have an inhibitory effect on the expression of viral mRNA. hIFIT2 is involved in 

triggering IFN signalling (314) and regulation of the production of cytokines in the 

inflammation process. SCoV2 PLpro interacts with hIFIT2 to hinder its function and 

suppresses the immune response (314–316). 

 

Of sixty-seven reported and analysed mutations for hIFIT2, six mutations are predicted 

to enhance the binding affinity of hIFIT2:SCoV2 PLpro by over 0.5 kcal/mol of which 

three (Leu373Phe, Leu343Thr and Lys221Glu) are within 5Å of direct contact residues 

and three (Ala239Asp, Ala319Ser and Ala319Thr) are located more than 5Å away 

from the directly contacting residues. PRODIGY also predicted that these six 

mutations increase the binding affinity between human:SCoV2 complex. Residues 

Ala319 and Lys221 are located in the host RNA-binding site where the entry of the 

host-RNA will be affected if PLpro binds hIFIT2 thus preventing hIFIT2 from triggering 

IFN signalling. Among these six mutations, Ala239Asp mutation significantly alters the 

physicochemical properties of the residue (Grantham score: 126, within a range of 5 - 

215).  All six residues are within 5Å of highly conserved residues (sc ≥ 90) (Figure 

3.13, Appendix 3). In addition, these mutations cause an increase in interactions 

between the two proteins in the interface. Leu373Phe and Lys221Glu are solely 

reported in Asia, Leu343Phe and Ala239Asp whereas only seen in Europe. Ala319Ser 
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is only present in the Africans/African Americans population, whereas Ala319Thr is 

widespread in all four continents (Table 3.14).  

 

 

 
Figure 3.14. The position of affinity enhancing residues (dark blue) in hIFIT2 and their 
proximity to conserved residues (light blue) in space-filled (top) and ribbon (bottom) 
models. hIFIT2 (tan) and SCoV-2 PLpro (grey). 
 

SCoV PLpro
hIFIT2

SCoV PLpro

hIFIT2

Residue 221

Residue 239

Residue 373

SCoV PLprohIFIT2

Residue 343
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L373F 8.13  
(DCEX) 0.887 23 

(37) 
5 

(11) 
1 

(6) 
0 

(7) 
0 

(12) 
aromatic 

-13.3 

No but within 5Å 
of conserved 

residues: 
338, 372, 375 

22 
(conservative) 

 
No No 

South 
Asians: 

0.00003268 
 

Asians: 
0.00004 
(allofus) 

L343F 7.38  
(DCEX) 0.734 11 

(26) 
6 

(9) 
6 

(6) 
3 

(4) 
0 

(0) -12.5 
No but within 5Å 

of conserved 
residues: 
338, 339 

22 
(conservative) 

 
No No 

North-
western 

Europeans: 
0.0001163 

 
Europeans: 

0.0001 
(allofus) 

A239D 21.71 0.696 3 
(3) 

6 
(14) 

5 
(8) 

3 
(7) 

0 
(0) -11.5 

No but within 5Å 
of conserved 

residues: 
213, 238 

126 (radical) No No 
Europeans: 

0.00001 
(allofus) 
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K221E 
rs13052
23950 

4.66 
(DCEX) 0.627 0 

(0) 
4 

(5) 
3 

(4) 
1 

(2) 
0 

(0) -12.1 
No but within 5Å 

of conserved 
residues: 216 

56 (moderately 
conservative) 

 
No No 

South 
Asians: 

0.00003268 
 

Asians: 
0.00002 
(allofus) 

A319S 
rs77502

7680 
11.25 0.532 2 

(0) 
8 

(10) 
4 

(5) 
2 

(2) 
0 

(0) -11.6 

No but within 5Å 
of conserved 

residues: 
289, 339 

99 
(moderately 

conservative) 
 

No No 

Africans/Afric
an 

Americans: 
0.00006460 

A319T 
rs77502

7680 
11.25 0.516 2 

(5) 
8 

(9) 
4 

(7) 
2 

(2) 
0 

(0) -12.3 

No but within 5Å 
of conserved 

residues: 
289, 339 

58 
(moderately 

conservative) 
 

No No 

Africans/Afric
an 

Americans: 
0.00006460 

 
East Asians: 
0.00007130 

 
Latino/Admix

ed 
Americans: 
0.00007008 

 
Swedish: 

0.00003832 
Table 3.13. Summary of six hIFIT2 mutations with predicted increase in binding affinity. The distance to the interface, ΔΔGAffinity (kcal/mol) 
and type of interactions by mCSM-PPI2; PRODIGY binding affinity score for wt-hIFIT2:SCoV2 PLpro is (ΔGAffinity = -11.3 kcal/mol); 
conservation by Scorecons (conserved residue and/or within 5Å of conserved residues with Scorecons ≥ 0.9); degree of changes in 
physicochemical  properties by Grantham score; allosteric site prediction by OHM; predicted pathogenicity by MutPred2; max population 
and corresponding allele frequency is according to gnomAD unless stated otherwise; Abbreviations: within 5Å of a direct contact residue 
(DCEX),  hydrophobic (HP), Hydrogen bond (H-bond), van der Waals contacts (VdW), and Scorecons score (sc). Variants with allele 
frequency >1% are considered common variants in the population. 
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3.3.5. Impact of SARS-CoV-2 mutations on binding affinity to human interactor 

proteins 

Classification of SARS-CoV-2 emerged lineages as variants of concerns (VOCs) has 

been mostly based on mutations in the Spike protein. However higher morbidity and 

mortality are not solely due to a higher binding affinity between human cell receptors 

and the Spike protein, but also how the mutations in other SARS-CoV-2 proteins 

suppress and evade the host's innate immune response. A study has shown that 

higher expression of SCoV2 ORF9b, Nucleocapsid, and ORF6 results in lower 

production of interferons and impairment of the innate immune system (317).  

 

In addition to the affinity-enhancing mutations in RBD in SCoV2 VOCs (Pro384Leu, 

Lys417Asn, Glu484Lys, Asn501Tyr, Asp427Asn, Leu452Arg, Thr478Lys) that were 

experimentally verified using surface plasmon resonance by MacGowan et al., (2022) 

(318), we detected the impact of over 250 mutations in nine SCoV2 proteins (RBD, 

NTD, ORF9b, Nsp1, Nsp14, Nsp15, PLpro, envelope and nucleocapsid) on binding 

affinity to human interactor proteins using mCSM-PPI2. Here, mutations in SARS-

CoV-2 proteins with binding affinity changes to human interactors greater than 0.5 

kcal/mol are listed (Table 3.14). We identified two mutations in SCoV2 Nsp14: 

Leu6074Phe and Asn6054Ile predicted to enhance the binding affinity to 

hTRIMM by ΔΔG=0.609 and 0.53 kcal/mol, respectively. In addition, Leu1774Phe in 

SCoV2 PLpro is predicted to increase affinity to both hISG15 (ΔΔG=0.728 kcal/mol) 

and hIFIT2 (ΔΔG=0.71 kcal/mol). As of January 2024, in the SARS-CoV-2 JN.1 

variant, a mutation in the Spike-RBD, Leu455Ser, leads to an enhanced binding affinity 

to ACE2, resulting in a ΔΔG increase of 0.475 kcal/mol (Appendix 3.13). 
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SCoV-2 variant SCoV-2 
protein Mutation mCSM-PPI2 

ΔΔGAffinity (kcal/mol) 

Human 
interactor 

protein 

Omicron (B.1.1.529) Nsp14 L6074F 0.609 hTRIMM 

Omicron (XBB.1.5) Nsp14 N6054I 0.53 hTRIMM 

Omicron (BA.4 and 
BA.5) PLpro L1774F 

0.728 hISG15 

0.71 hIFIT2 

Omicron (JN.1) RBD L455S 0.475 hACE2 

Table 3.14. SARS-CoV-2 mutations and their effects on human protein interactions. 
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3.4. Conclusion and future work 

In addition to differences in socio-economic and demographic factors, clinically proven 

host factors such as age, gender, and body-mass index in individuals with no chronic 

underlying health condition are correlated with a wide range of COVID-19 morbidity 

(319); however, the influence of host genome variability has been less studied (320). 

 

The human protein variants that enhance the binding affinity to SARS-CoV-2 proteins, 

either in a receptor that facilitates viral entry into the host cell and causes infection or 

in a mediator of innate immune-associated pathways which interact with the virus, 

thereby suppressing the immune response, may play a role in COVID-19 morbidity. 

This study aimed to understand the impact of changes in binding affinity with SARS-

CoV-2 human interactor proteins following amino acid mutations in three human cell-

receptors (hACE2, hKREMEN1, and hAXL), seven human proteins mediating immune 

response (hTOM70, hTRIM25, hTRIMM, hARF6, hISG15, hIFIH1, and hIFIT2), one 

protein involved in mRNA synthesis in human cells (hRPS3) and one involved in cell 

polarity in human epithelial cells (hPALS1). Human genetic databases gnomAD, All of 

us, SweGen, GenomeAsia100K, IndiGenome and jMorp were used to collect 

information about populations and sub-populations' genetic variations and their allele 

frequencies (Table 3.15). 

 

The CATH classification groups protein domains into superfamilies and further into 

Functional Families (FunFams), which consist of relatives that are highly structurally 

and functionally similar. We identified conserved residues in these FunFams using 

Scorecons. Binding affinity changes for missense mutations in both human and SARS-
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CoV-2 proteins were predicted using mCSM-PPI2 and validated with PRODIGY. Of 

23 affinity-enhancing mutations across 12 complexes, many occurred at conserved or 

contact residues, suggesting possible functional effects. MutPred2 predicted several 

as potentially pathogenic. Although the frequency of these enhancing-affinity 

mutations is low (allele frequencies 10-6 to 10-5), this may be due to them being 

underrepresented populations in the five most comprehensive human variation 

databases. With regard to the affinity enhancing SCoV2 mutations in Nsp14 and 

PLpro, these two SCoV2 proteins bind to the corresponding human protein interactor 

to suppress the innate immune response; therefore, monitoring of emerging mutations 

in these proteins in addition to the Spike protein may be necessary. 

 

The identification of affinity-enhancing mutations particularly at conserved or contact 

sites in human proteins interacting with SARS-CoV-2 proteins, can inform several 

practical areas. First, these mutations could serve as genetic biomarkers for increased 

susceptibility to infection or altered immune response, enabling more personalised risk 

assessments. Second, insights into how viral proteins like PLpro target interferon-

associated proteins (e.g., hISG15, hIFIH1, hIFIT2) may guide the development of 

antiviral therapies aimed at protecting these host interactions. Lastly, this work 

supports future studies in population genetics and vaccine response by identifying 

variants with geographic prevalence that may influence regional differences in COVID-

19 severity or outcomes. 

 

At the onset of the COVID-19 pandemic, the CATH team employed multiple 

computational tools—including mCSM-PPI2—to predict potential interactions between 
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the SARS-CoV-2 spike protein and ACE2 receptor orthologues from a broad range of 

mammalian species (321). Our predictions identified American mink (ΔΔG = 0.632 

kcal/mol), cattle (ΔΔG = 0.56 kcal/mol), and rabbits (ΔΔG = 0.91 kcal/mol) as being 

at elevated risk of SARS-CoV-2 infection. Subsequent in vivo studies confirmed the 

susceptibility of both cattle and rabbits to SARS-CoV-2, supporting our computational 

findings. Moreover, the predictive accuracy of mCSM-PPI2 was experimentally 

validated by MacGowan et al., (2022), who employed surface plasmon resonance 

(SPR) assays and adopted the same ΔΔG threshold of 0.5 kcal/mol to evaluate 

binding affinities (318). Building on this approach, in the present study we applied the 

same ΔΔG threshold of 0.5 kcal/mol to identify mutations in human proteins that 

interact with SARS-CoV-2 proteins, where values above this threshold are predicted 

to result in a stabilising interaction and may enhance viral binding or host susceptibility. 

 

It is essential to emphasise that validating the predicted affinity-enhancing human 

mutations interacting with SARS-CoV-2 requires experimental mutagenesis and 

binding affinity assays, such as surface plasmon resonance and isothermal titration 

calorimetry, particularly for predictions indicating subtle or borderline changes in 

binding affinity (0.5 < ΔΔGAffinity < 1 kcal/mol), as these values, though classified as 

significant, may still represent modest effects requiring cautious interpretation. 

Functional cell-based assays may further reveal the biological impact of these 

mutations, particularly for immune-related proteins like hIFIH1 and hIFIT2. These 

validations are crucial not only for confirming the predictions but also for potentially 

repurposing drugs or establishing foundational points for the structure-based design 

of new medications. Additionally, population-level genetic data could be used to 
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explore correlations between these variants and clinical outcomes of SARS-CoV-2 

infection, supporting their potential relevance in real-world contexts. 

 

Predicting accurate protein–protein complexes remain challenging due to the difficulty 

in capturing conformational flexibility, which plays a critical role in real biological 

interactions. In this study, HADDOCK was used as an additional tool to verify the 

proteins’ conformations, following initial complex modelling with AlphaFold2. While 

HADDOCK produced favourable scores suggesting close-to-native conformations, 

these results may not fully reflect docking performance. For example, without 

accounting for side-chain rearrangements, the predicted complexes may overlook 

critical aspects of native binding interactions. To overcome this, approaches such as 

ensemble docking (using flexible receptor) and molecular dynamics simulations to 

sample structural flexibility for a better approximate in vivo interaction status. 

 

As well as the common variants, the impact of the rare non-synonymous coding 

variants has also been of interest since they may reveal the potential for therapeutic 

targets in under-represented populations.  Therefore, continued efforts to increase the 

global representation in genetic studies, as well as the compilation of disease-relevant 

phenotypic information should be prioritised. Accessing relevant medical data 

recorded in the BioBank allows a better understanding of host genetic factors 

for COVID-19 susceptibility and may provide more precise insight into therapeutic 

development and drug repurposing (322–325). 
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In summary, to the best of our knowledge, this work is one of the most comprehensive 

studies of its kind, as we used all available human genetic databases to ensure the 

inclusion of populations that are under-represented in gnomAD. It allowed us to 

provide a more comprehensive understanding of mutation frequencies across diverse 

global populations. The approach in this study can be applied to analyse other 

experimentally determined proteins or complexes predicted by recent advanced 

structural prediction methods, not only for COVID-19, but also for other persistent and 

emerging infectious diseases. 
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human:SCoV2 complex The position of affinity-enhancing mutations to the protein interface 

hACE2: SCoV2 RBD - G326E is a DCEX residue to the interface. 
- V447F is a conserved residue in a cluster of conserved residues. 

hKREMEN1: SCoV2 
RBD 

- V191I is a DC residue and within 5Å of three conserved residues. 
- Y68H is a DCEX and conserved residue, and in a cluster of other conserved residues. 

hAXL: SCoV2 NTD - V38M is a DC residue. 

hTOM70: SCoV2 ORF9b 

- V556L is a DC residue. 
- L576R is a DCEX residue to the interface. L576R is predicted to have pathogenetic impact on the 

protein function. 
- A591T is a DC residue. A591T is predicted to have pathogenetic impact on the protein function. 

hRPS3: SCoV2 Nsp1 - V91I is within 5A of one conserved and a putative allosteric position. 

hPALS1: SCoV2  
Envelope protein 

- L484F is a conserved residue, and in a cluster of other conserved residues. 
- L321F is a DCEX residue to the interface. L321F is predicted to have pathogenetic impact on the 

protein function. 
hTRIM25: SCoV2 
Nucleocapsid protein 

- A466T is a DCEX residue to the interface and conserved residue, and in a cluster of other conserved 
residues. A466T is predicted to have pathogenetic impact on the protein function.  

hTRIMM: SCoV2 Nsp14 - I105F is a DCEX residue to the interface and predicted allosteric site, and in a cluster of other predicted 
allosteric sites. 

hARF6: SCoV2 Nsp15 - L166F is a conserved residue, and in a cluster of other conserved and predicted allosteric residues. 
L166F is predicted to have pathogenetic impact on the protein function. 

hISG15: SCoV2 PLpro - L121Q is a DC residue and within 5Å of a conserved and probable allosteric site. 

hIFIH1: SCoV2 PLpro - Y13N is a DC residue. Y13N is predicted to have pathogenetic impact on the protein function. 
- S16L is a DC residue. S16L is predicted to have pathogenetic impact on the protein function. 

hIFIT2: SCoV2 PLpro 

- L373F is a DCEX residue to the interface and within 5Å of three conserved residues. 
- L343F is a DCEX residue to the interface and within 5Å of three conserved residues. 
- A239D is and within 5Å of three conserved residues. 
- K221E is a DCEX residue to the interface and within 5Å of three conserved residues. 
- A319S/T is and within 5Å of three conserved residues. 

Table 3.15. Summary of affinity-enhancing mutations in human proteins and corresponding SCoV2 protein interactors and their 
associated functional features. Abbreviations: directly-contacting interface residues (DC), residues within 5Å from the DC (DCEX).
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Chapter 4: Identifying driver mutations in lung adenocarcinoma 
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Chapter 5: Conclusions and future directions 

Genes carry information that is translated into proteins, which perform numerous vital 

functions in biological systems. Genetic mutations, or changes in the DNA sequence, 

can significantly alter protein structure and function, leading to diverse outcomes. In 

nature, mutations contribute to genetic diversity, producing effects that range from the 

emergence of novel and beneficial enzymes to detrimental changes that may put the 

host microorganism at risk of extinction. In the context of health and disease, 

mutations can influence susceptibility, making some individuals more resistant or more 

vulnerable to specific illnesses. Additionally, genetic mutations can modify proteins in 

ways that cause healthy cells to become cancerous, driving disease progression and 

malignancy. These varied impacts highlight the central role of genetic mutations in 

evolution, health, and disease. 

In Chapter 3, this research investigated the impact of amino acid changes in SARS-

CoV-2 and human proteins on the binding affinity of human:SARS-CoV-2 protein 

complexes, particularly in the context of the COVID-19 pandemic. Missense variants 

from various ethnic groups were compiled using publicly available human and viral 

databases. Twelve human:SARS-CoV-2 complexes were analysed, selected for their 

roles in host cell entry, immune response mediation, and cellular translation 

machinery. These structures were sourced from the Protein Data Bank or built using 

AlphaFold2-multimer. 

Using computational algorithms, the analysis predicted that 16 human missense 

variants across 12 human proteins increased binding affinity to SARS-CoV-2 proteins 

(ΔΔG ≥ 0.5 kcal/mol). Of these, three proteins were linked to spike-binding, immune 
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responses, or cellular translation. Additionally, among over 200 SARS-CoV-2 

missense residues (including RBD), five viral mutations were found to enhance binding 

affinity with human proteins involved in immune response and cell receptor 

interactions. This research highlighted how genetic variation in both humans and 

SARS-CoV-2 may influence infection and immune responses, providing insights into 

COVID-19 susceptibility across diverse ethnic groups. 

The field of bioinformatics is advancing rapidly, driven by the exponential growth of 

metagenomic data, a method for analysing genetic material directly from 

environmental samples, which has significantly expanded our understanding of 

microbial communities. Additionally, breakthroughs in high-throughput technologies, 

such as AlphaFold2, have set new benchmarks in protein structure prediction. 

AlphaFold2 empowers researchers to study proteins whose structures are challenging 

to determine using conventional in vitro imaging techniques. 

These advancements, coupled with the dynamic progress of machine learning and 

deep learning algorithms, are unlocking the potential of large-scale datasets by 

revealing patterns and correlations previously undetectable. Such innovations are 

especially crucial for understanding mutations, which have long been recognised as 

fundamental drivers of evolution, genetic variation across populations, and 

biodiversity. Mutations also play a pivotal role in human health and disease, 

contributing to the development of conditions like cancer, genetic disorders, and 

infectious diseases. 

AlphaFold3 (395), released by DeepMind in May 2024, elevates protein structure 

prediction by enabling the modelling of interactions between proteins and other 
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biomolecules, including DNA, RNA, small molecules, ions, and modified residues. This 

advancement is likely to significantly enhance our understanding of complex biological 

processes and accelerates progress in drug discovery, molecular biology research, 

and areas like personalised medicine and synthetic biology. As bioinformatics 

continues to evolve, these technological strides are poised to unravel the complexities 

of biology, profoundly influencing science, medicine, and technology.
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