Childhood maltreatment and chronic 'all over' body pain in adulthood: a counterfactual analysis using UK Biobank

Kate A. Timmins¹, Tim G. Hales², Gary J. Macfarlane¹

¹ Aberdeen Centre for Arthritis and Musculoskeletal Health (Epidemiology Group), University

of Aberdeen, Aberdeen, UK

² Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine,

Ninewells Hospital, University of Dundee, Dundee, UK

Pages: 17

Figures: 1

Tables: 6

Corresponding Author:

Dr Kate Timmins

Aberdeen Centre for Arthritis and Musculoskeletal Health (Epidemiology Group)

University of Aberdeen, Aberdeen, UK

E: kate.timmins@abdn.ac.uk

Author acknowledgements

The authors submitted this work on behalf of the Consortium Against Pain inequality (CAPE) investigators and Chronic Pain Advisory Group. The investigators on the CAPE consortium are: Tim Hales, Lesley Colvin, Douglas Steele, Andrew Brown (University of Dundee), Gary Macfarlane (University of Aberdeen), Bhuvaneish Selvaraj, Colin Smith (University of Edinburgh), Line Caes (Stirling University), Reecha Sofat, Suellen Walker, Debajit Sen, Madeleine Verriotis (University College London) while the Chronic Pain Advisory Group includes Carolyn Graham, Maureen O'Reilly and Debs Smith, among others.

0

Abstract

Evidence linking adverse childhood experiences (ACEs) and chronic pain in adulthood is largely cross-sectional, potentially subject to recall bias and does not allow exploration of mediating pathways. We analysed a large population-based cohort (UK Biobank) using a causal framework, to determine if childhood maltreatment is related to chronic 'all over' body pain in adulthood. We used doubly-robust estimation with inverse probability weights to estimate the difference in risk of chronic pain 'all over' between those exposed/not exposed to childhood maltreatment (abuse or neglect). Additionally, we looked at interaction with adult stressful life events, and examined mediation using inverse odds weighting in a generalized linear model. Using cases with complete data (n=118,347), the risk of chronic 'all over' body pain was higher in the exposed (6.3%, 95% confidence interval (CI) [6.0%, 6.5%]) than in the unexposed (4.0%;95%CI [3.8%, 4.2%]). This difference remained in analyses stratified by sex. Conversely, when analyses were repeated with a negative control exposure, childhood sunburn, risk differences were 0.8% in women (95% CI [0.3%, 1.3%]); 0.5% in men (95% CI [0.1%, 0.9%]). Childhood maltreatment and adult life events had similar effects, and there was a supra-additive risk (1.2%; 95%CI [0.6, 1.7]) when experiencing both. In mediation analyses, the total effect was a relative risk (RR) of 1.57 (95%CI [1.49, 1.66]), while the estimated indirect effect via all mediators was RR 1.16 (95%CI [1.14, 1.18]). Reducing childhood maltreatment would likely prevent cases of chronic widespread pain in adulthood. Stressful adult events and mediators may offer opportunities for intervention.

Introduction

Adverse childhood experiences (ACEs), including maltreatment (abuse, neglect) and household challenges such as deprivation, have been identified as risk factors for several health conditions in adulthood [9, 16]. A recent review [35] found a consistent association between ACEs and chronic pain in adulthood, with the most common pain outcomes studied being chronic widespread pain and fibromyalgia. The evidence, however, largely comes from cross-sectional studies which suffer several shortcomings, including recall bias [29,41], and a lack of opportunity to explore potential mechanisms or pathways leading from childhood adversity to chronic pain. In prospective studies, a direct effect of maltreatment on chronic pain is not as clear, though study quality is largely poor [26].

Theoretical models of ACEs and chronic pain propose multiple pathways: biological, psychological and social [33]. These imply a cascade of consequences, which ultimately lead to developing chronic pain. Relatively few studies incorporate these concepts in their analyses. Some authors report mediation analyses, implicating, for example, post-traumatic stress disorder [36, 1], or mood disorders [38], but these are typically restricted to single factors.

Additionally, adversity during a sensitive developmental window may cause epigenetic and/or neurobiological changes which affect stress reactivity in later life [21]. Stress is commonly attributed a role in the aetiology of fibromyalgia or chronic widespread pain, both in terms of the presence of life stressors [18] and in observations of perturbations in the hypothalamic-pituitary-adrenal (HPA) axis [5,4]. Only a few studies have analysed the role of both adult life stressors and ACEs on chronic pain [19, 43], but these considered a mediating role, rather than a joint interactive effect

Exposure to ACEs is problematic to measure prospectively (many ACEs are 'hidden' and only later disclosed), yet retrospective assessment may introduce recall bias [20]. A negative control exposure (NCE), which is subject to similar recall processes but lacks a plausible causal mechanism linking it to the outcome, may illustrate the presence and extent of recall bias [11].

A 'potential outcomes' framework [15] is useful for thinking through causal relationships: it helps identify confounding and mediating variables, and encourages consideration of potential sources of bias. Risk differences between counterfactual scenarios (e.g. where either all participants have been exposed to maltreatment or none have) offer a quantification of causal effect.

As part of the Consortium Against Pain InEquality (CAPE), our overall aim is to analyse a population-based cohort using a causal framework, to determine if childhood maltreatment is causally related to chronic 'all over' body pain in adulthood. Specifically we wished to: quantify the excess risk, if any, associated with childhood maltreatment; determine whether any excess risk differed by sex or ethnic group; contrast this with any risk associated with a negative control exposure; quantify the combined effect on risk, if any, of both exposure to childhood maltreatment and adversity in adulthood; and quantify the extent to which the effect, if any, of childhood maltreatment on chronic "all over" body pain is indirect (mediated).

Methods

The UK Biobank is a population-based cohort that recruited over 500,000 participants aged 40-69 years between 2006-2010 (www.ukbiobank.ac.uk). NHS-registered adults who lived within 25 miles of the 22 assessment centres were invited to take part, with a participation rate of ~5%. Baseline assessment included clinical and questionnaire measures. Repeat assessment of these measures is conducted every few years with a subset of 20,000-25,000. Over 300,000 of the participants were invited to complete follow-up questionnaires online. in 2016 and 2019.

The UK Biobank lends itself to our aim, given its size (around 500,000), design and the data collected, enabling us to look at effect modification and mediation for a relatively rare outcome (around 5%). We focus on chronic pain experienced 'all over the body' as an indicator of the more severe end of the pain spectrum. In 2019, participants were asked "Are you troubled by pain or discomfort, either all the time or on and off, that has been present for more than 3 months?". Those who responded positively were asked additional questions about pain including "In the last 3 months have you experienced pain or discomfort all over the body?". Those who answered positively to both questions were classified as having chronic "all over" body pain.

Childhood maltreatment was derived from responses to 5 items from the Childhood Trauma Screener [14] that were included in the 2016 questionnaire (see Supplementary material). The primary analysis used a binary variable, indicating whether participants had experienced any of the maltreatment types. In addition, for sensitivity analyses we derived a) a binary indicator for each of the 5 items and b) a 3-category variable indicating frequency of maltreatment (never, rarely/sometimes, often/very often).

All covariates were taken from baseline assessment data. Sex (male, female) was taken from health records. Index of multiple deprivation (IMD) [49, 40,46] was derived from postcodes by the study team. IMD is a UK government-issued measure of the relative deprivation of small geographical areas, which incorporates several facets of living

conditions (such as income, crime, housing, and education). We separated the sample into IMD quintiles separately for England, Scotland and Wales (each of which has its own index), but presented results combined as a measure of relative deprivation. Self-reported ethnicity was coded into 6 categories: White, Mixed ethnicity, Black or Black British, Asian or Asian British, Chinese, and Other ethnic group. The age when participants completed full-time education was used as a proxy of childhood socio-economic position [12]. Five categories were created: three categories for completing education at school (aged <15/16 years (minimum UK school leaving age), at 15/16 years, or between 15/16 and 18 years); and two categories for completing education in adulthood (non-degree/college qualification, degree/college qualification). We used binary variables to indicate whether participants reported ever seeing a general practitioner for "nerves, anxiety, tension or depression" (mental health), whether they felt able to confide in someone at least once every few months (social support), and whether they usually have problems falling asleep or waking in the night (sleep problems). Information was available on whether participants had experienced any of the following events in the previous 2 years: serious illness, injury or assault to themselves or someone close to them, death of a close relative or partner, marital separation or divorce, or financial difficulties. For all these variables, a value of 1 was given if these were reported at any assessment timepoint.

We used childhood sunburn as a negative control exposure in sensitivity analysis to examine the potential influence of recall bias (see below). This was chosen as an appropriate control because it was assessed in the same questionnaire as childhood maltreatment and referred to a similar period of recollection, but we could find no plausible mechanism or evidence linking childhood sunburn to chronic pain or fibromyalgia in adulthood. We would therefore not expect to see an effect of sunburn on risk of chronic 'all over' body pain, and any observed effect could be interpreted as reflecting bias. Participants were asked: "Before the age of 15, how many times did you suffer sunburn that was painful for at least 2 days or caused blistering?". This was dichotomised to 'never' and ≥1 sunburn occasions.

Analysis

We applied g-methods (see [32] for an introduction) to address pre-specified estimands (below). Estimands define the target quantity for estimation in a way that clearly links the aims of the research to the analysis [25]. We ran doubly-robust estimation models [15, 17] to address estimands 1 and 2 (see below). This effectively creates and compares pseudopopulations, for example in which all people are modelled to have been exposed versus one in which all are unexposed. The models are 'doubly-robust' in that they are also

weighted by the inverse of the probability of exposure. Further details of the models are described for each estimand below.

Consideration of the assumptions we made in building and interpreting all models is given in the Discussion. We used an *a priori* process model (a directed acyclic graph, or DAG; see Figure 1) to select measured variables and plan analytical models. Childhood socioeconomic position was identified as a confounder; sex and ethnicity as potential moderators; and we hypothesised 4 potential mediators (estimand 3): IMD, mental health, sleep problems, and social support. We used Stata 15.1 [44] for all analyses.

Estimand 1: what is the average causal effect on the risk of chronic 'all over' body pain all over for those reporting ≥1 childhood maltreatment type compared to those with no childhood maltreatment?

We derived inverse probability weights (IPW) using the method described by [15] to account for differential probabilities of exposure. Risk differences were then calculated using the teffects ra command [45], incorporating the (manually derived) IPW. Manual derivation of IPW allowed stratified weights to be calculated for moderated analyses. To examine moderation, analyses were stratified, first by sex and secondly by ethnicity. To examine the potential influence of recall bias, we additionally constructed a parallel model using a negative control exposure, childhood sunburn.

Estimand 2: what is the joint interactive effect of reporting both ≥1 childhood maltreatment type and ≥1 adverse adult experience on the risk of chronic 'all over' body pain?

We derived a 4-category combined exposure variable: reporting both childhood maltreatment and a recent stressful life event; reporting childhood maltreatment but no recent stressful life event; reporting a recent stressful life event but no childhood maltreatment; reporting neither childhood maltreatment nor a recent stressful life event. The teffects ipwra command [45] was used for doubly-robust estimation. Risk differences were compared to assess if there was an effect of experiencing both events that was greater than the sum of each individual event (an interaction on the additive scale).

Estimand 3: what is the indirect effect of childhood maltreatment on the risk of chronic 'all over body pain, mediated by deprivation in adulthood (IMD), mental health, social support, or sleep problems?

We incorporated inverse odds weighting (IOW) in generalized linear models, as suggested by Nguyen *et al* [34]. Direct and total effects (relative risks) were estimated with a log link function assuming a Poisson distribution, the model for the direct effect weighted by the

inverse odds. Simple post-estimation contrast of these models showed the estimated indirect effect, with bootstrapped confidence intervals.

Sensitivity analyses

For quantifying the risk of chronic 'all over' body pain with exposure to childhood maltreatment (estimand 1), we undertook sensitivity analyses with the following adjustments: assessing risk differences for each of the five types of maltreatment individually; examining exposure across three categories of frequency; excluding individuals who reported chronic 'all over' body pain at baseline; substituting the negative control exposure (childhood sunburn) in place of childhood maltreatment; and using multiple imputation (with chained equations) to gauge the extent of bias from missing data. Data were imputed from baseline values for a sample size of 502,367 in each of 10 imputations. Details of the imputation model can be found in the Supplementary materials.

Patient and public involvement

A Chronic Pain Advisory Group, comprising 5-6 people, has been involved in all stages of CAPE. Group members all have lived experience of chronic pain and childhood adversity. For these analyses, two online meetings and one in-person workshop were held. Advisory group members received compensation for their time, based on NIHR involvement guidelines. The group provided input at the planning stage, when identifying potential mediating and moderating factors, and prioritising analysis objectives, as well as helping to interpret the key findings. In particular, the decision to investigate a potential interaction with adult stressful events was largely driven by conversations with the advisory group. Members also cautioned against the use of a summed 'score' of adversity types.

Results

A total of 118,347 people had all data available (complete cases); 57% were female, 97% of white ethnicity, 47% had a university or college qualification, and they had a median age of 57 years at recruitment. Five percent of the sample (n=6,207) reported chronic 'all over' body pain and 42% (n=49,485) reported any form of maltreatment: emotional neglect (23%), physical abuse (19%), emotional abuse (16%), sexual abuse (9%) and physical neglect (5%). There were higher proportions of ethnic minorities, those living in the most deprived areas, and people that left education at a young age amongst those who reported childhood maltreatment compared to those who did not (Table 1).

The risk of chronic 'all over' body pain was higher in the exposed pseudo-population in which everyone had experienced some form of childhood maltreatment (6.3%, 95% confidence intervals (CI) [6.0%, 6.5%]) than in the unexposed pseudo-population in which no one had experienced childhood maltreatment (4.0%; 95% CI [3.8%, 4.2%]). This difference remained when analyses were stratified by sex: females 8.1% (95% CI [7.7%, 8.4%]) vs 5.0% (95% CI [4.8%, 5.3%]); males 3.9% (95% CI [3.6%, 4.2%]) vs 1.3% (95% CI [0.9%, 1.6%]). When stratified by ethnicity, estimates of risk differences lacked precision (with very wide confidence intervals), making it difficult to discern a moderating effect. Estimates were similar regardless of whether IPW were included (Table 2).

There was evidence of independent (and similar) effects of both childhood maltreatment and recent adult stressful life events on the risk of chronic 'all over' body pain (Table 3). There was an additional (supra-additive) risk of 1.2% (95% CI [0.6, 1.7]) of chronic 'all over' body pain compared to the individual risks associated with each of childhood and adulthood adversity. In mediation analyses (Table 4), the total effect of exposure to childhood maltreatment was a relative risk of 1.57 (95% CI [1.49, 1.66]), while the estimated indirect effect, via all of the mediators combined, was RR 1.16 (95% CI [1.14, 1.18]). When examined individually, mental health was the mediator with the largest indirect effect: RR 1.09 (95% CI [1.08, 1.11]), as compared to IMD (RR 1.03, 95% CI [1.02, 1.03]), sleep problems (RR 1.04, 95% CI [1.03, 1.05]) and social support (RR 1.01, 95% CI [1.01, 1.02]).

Whilst prevalence of each type of maltreatment varied widely, sensitivity analyses showed an increase in risk of chronic 'all over' body pain for each type of maltreatment (Table 5). There was also an increase in risk with increasing frequency of exposure to any maltreatment: rarely/sometimes risk difference 1.4% (95% CI [1.1%, 1.7%]); often/very often 3.4% (95% CI [2.8%, 4.0%]). Excluding those with chronic 'all over' body pain at baseline attenuated estimates only slightly (absolute risk difference 2% (95% CI [1.7%, 2.3%])). Results from analyses using imputed data were confirmatory, so we present complete case analyses (see Supplementary material for full details of sensitivity analyses).

When analyses were repeated with the control exposure, sunburn (Table 6), only a small risk difference was found in women (0.8%; 95% CI [0.3%, 1.3%]) and even smaller in men (0.5%; 95% CI [0.1%, 0.9%]). Descriptive statistics for the negative control exposure are found in the Supplementary material.

Discussion

Counterfactual comparisons indicated that childhood maltreatment increases the population risk of chronic 'all over' body pain by 2-3%. Increased risk was associated with each type of reported maltreatment and there was additional risk of chronic 'all over' body pain associated with the combination of both childhood maltreatment and adversity in adulthood.

These conclusions are based on a set of assumptions, that: exposure to maltreatment was independent between individuals (no interference); whilst the experiences of maltreatment cannot be assumed to be identical across individuals, these variations would not have differential effects (treatment variation irrelevance); all participants had a chance of being exposed or not to childhood maltreatment (positivity); exposed and unexposed groups are exchangeable following the application of IPW, with no unmeasured confounding; there was no unmeasured confounding of exposure, mediator and outcome relationships; data about childhood is an antecedent of data regarding adulthood, despite the retrospective data being collected with or after other data (temporality). We used IPW to balance the exposed and unexposed groups, but this assumes that the IPW adequately captured confounding. Our DAG suggested childhood socioeconomic position as a key confounding variable, yet a direct measure was not available in the UK Biobank, and we instead used age on leaving education/educational attainment as a proxy. Due to lack of information available in UK Biobank, we were unable to investigate the effects of childhood experiences other than abuse and neglect, though several other household challenges and traumatic events have also been implicated in poor health outcomes [e.g. 23, 27]. Selection bias in the UK Biobank has been well described [10], and we recognise the potential of bias through selection of 'healthy volunteers', though we suspect the direction of this bias, if present, would be an attenuation. Attrition within the recruited sample may be another selection bias, which we attempted to address in our sensitivity analysis using imputed data. It should also be noted that the wording of the second question which we used to identify people with chronic 'all over' body pain may have included people with discomfort rather than pain all over the body, though participants must also have indicated chronic pain in the prior question to be counted as a case.

An advantage to the UK Biobank is its size, which enabled us to describe the risk of chronic 'all over' body pain by type of maltreatment, by sex, across several ethnic groupings and further to assess the joint effects of exposures in childhood and adulthood. Additionally, we were able to include, and jointly assess, four potential mediators.

A key strength of our analyses was the inclusion of a negative control exposure, childhood sunburn. With no plausible mechanism linking sunburn to adult chronic pain, we would not expect to see an effect on risk, and we would conclude that any such estimated effect would likely be due to bias. Our analysis found a very small effect of the negative control exposure, suggesting some bias; however, the risk difference was much smaller than that of childhood maltreatment. Our interpretation of this is that only a small proportion of the estimated effect of childhood maltreatment is due to recall bias, assuming that similar recall mechanisms operate for the retrospective reporting of childhood maltreatment and sunburn. Previous authors have identified discrepancies between the conclusions of retrospective and prospective studies and suggested that recall bias explains much of the observed associations [26, 37]. By triangulating with findings using a negative control exposure, our analyses suggest that recall bias is not (wholly) responsible for these discrepancies.

Attempting to quantify the impact of recall bias is important in a field where at least some reliance on retrospective assessment is necessary – the often delayed disclosure of adverse childhood experiences makes purely prospective measurement unrealistic [3].

Several other studies have demonstrated a dose-response relationship, summing the number of types of ACEs [7]. We were also able to demonstrate a dose-response relationship with frequency, but even maltreatment occurring 'sometimes' conferred risk. We preferred to use frequency as an indicator of severity rather than an accumulation of multiple types of adversity, though further research could investigate if particular patterns of co-occurring maltreatment types, or the experience of 'polyadversity', confer extra risk in this context (see for example [22]).

In our mediation analyses, we found that anxiety/depression alone mediated the greatest proportion of the effect. This accords with another analysis in this sample, which found interactions between childhood maltreatment and some anxiety symptoms (rather than diagnosis), impacting on the odds of reporting any chronic pain (not necessarily all over the body) [8]. With some exceptions [39], mediation analyses in other samples have tended not to find such an effect for anxiety or depression [50, 6], though other psychological factors have been implicated, such as PTSD [36, 26, 1], emotion regulation [48] and stress [43]. We note, however, that the data we used for mediation was captured in mid-to-later life and therefore did not capture potential mediators more proximal to exposure.

The results suggest that adult trauma may also have a causal role in the development of chronic 'all over' body pain: both independently and by exacerbating the effect of childhood trauma. Stressful adult events have previously been implicated as a risk factor in the development of pain both in this [47] and other populations [13], and they have been investigated as potential mediators leading from childhood experiences [19, 43].

Some of the potentially confounding aspects of studying the impact of traumatic events are absent in animal models of adversity. Nor is it possible to model all aspects of childhood trauma in animals. Studies of maternal neglect during the neonatal period reveal an impact on persistent pain in adulthood [31, 42]. Furthermore, exposure of rodents subjected to early life adversity to stress in adulthood increases the association with persistent hyperalgesia [2]. To our knowledge, though, our study provides the first evidence of a joint interactive effect in humans. Finding an independent effect of adult experiences lends weight to a cumulative model of exposures (in childhood and adulthood), rather than there being a sensitive period in childhood.

There remained a risk of chronic 'all over' body pain in (pseudo)populations who did not report any of the childhood maltreatment in this survey. This risk differed between demographic groups, being higher in women, and amongst Black participants. It is possible that the questions did not capture other forms of childhood adversity that have been proposed as influential [3]. The wider context of structural and societal inequalities and experiences of discrimination could also play a role in these differences [24].

The key implication of these findings is that reducing childhood maltreatment is likely to prevent cases of chronic widespread pain in adulthood. Mental health as a key mediator of the causal pathway suggests that successfully identifying and treating psychological disorders in survivors of maltreatment could help to prevent some cases of chronic pain. Our findings suggest that stressful life events through adulthood may also be important opportunities for intervention. Longitudinal analysis of data across the life course would be necessary to understand more about these potential mediators and interactions.

In conclusion, we need no further evidence that prevention of childhood maltreatment is a worthy goal, but an improved understanding of the mechanisms linking childhood adversity to poor adult health could guide targeted interventions. To that end, causally linking childhood maltreatment to chronic pain in adulthood is an important step from which to channel future efforts in research and practice. Identifying modifiable mediators – such as mental health - could guide preventative efforts.

Acknowledgements

The study was funded under the Advanced Pain Discovery Platform (MR/W002566/1). For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission. The investigators on the CAPE consortium are: Tim Hales, Lesley Colvin, Douglas Steele,

Andrew Brown (University of Dundee), Gary Macfarlane (University of Aberdeen), Bhuvaneish Selvaraj, Colin Smith (University of Edinburgh), Line Caes (Stirling University), Reecha Sofat, Suellen Walker, Debajit Sen, Madeleine Verriotis (University College London) while the Chronic Pain Advisory Group includes Carolyn Graham, Maureen O'Reilly and Debs Smith, among others. We thank Jisha Babu (University of Aberdeen) for her work involved in administration in relation to access to data as part of this programme of work. Thanks also to Marcus Beasley and John McBeth for advice on analyses. The authors do not report any conflicts of interest. This research has been conducted using the UK Biobank Resource under application number 1144. UK Biobank data are available to registered researchers: see ukbiobank.ac.uk. UK Biobank has approval from the North West Multicentre Research Ethics Committee (MREC) as a Research Tissue Bank (RTB) approval, REC reference: 21/NW/0157, IRAS project ID: 299116. This approval means that researchers do not require separate ethical clearance and can operate under the RTB approval. A General Analysis Plan for this work package of CAPE is available on the OSF: osf.io/shdy3. Stata code for these analyses is shared on the OSF project site.

Tables & Figures

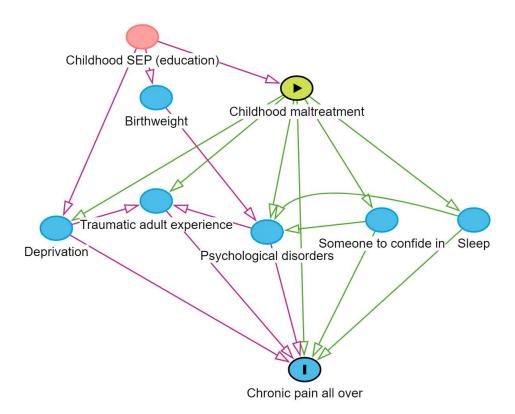


Figure 1: Directed acyclic graph (DAG) showing hypothesised causal pathways from childhood maltreatment to the development of chronic pain all over, showing measured factors in the UK Biobank. Moderators are not depicted in the graph, but include biological sex and ethnicity. Supporting references for each arc are listed in Appendix A. SEP: socioeconomic position.

Table 1: Characteristics of the analytical sample

Characteristic		All	No	Childhood	Childhood	Childhood
			childhood	maltreatment	maltreatment	maltreatment
		(n=118,347)	maltreatment	(any)	(rarely/	(often/very
			(n=68,933)	(n=49,414)	sometimes)	often)
					(n=37,264)	(n=12,150)
% Female	% Female		57%	57%	56%	62%
Ethnicity	White	97%	98%	96%	97%	94%
	Asian or	<1%	<1%	1%	<1%	1%
	Asian British					
	Black or	<1%	<1%	1%	<1%	2%
	Black British					
	Chinese	<1%	<1%	<1%	<1%	<1%
	Mixed	<1%	<1%	<1%	<1%	1%
	All other	<1%	<1%	<1%	<1%	1%
	ethnic					
	groups					
Age at recr	uitment (median	57 (50, 62)	57 (51, 62)	56 (49, 61)	56 (49, 61)	56 (49, 61)
years, IQR)					
Education	Degree/college	47%	48%	46%	55%	45%
	qualification					
	Other adult	9%	10%	9%	10%	10%
	education					
	Left education	16%	17%	16%	18%	18%
	at 18yr					
	Left education	14%	13%	16%	16%	25%
	at minimum					
	school-leaving					
	age*					
	Left education	1%	1%	1%	1%	3%
	before					
	minimum					
	school-leaving					
	age					

Characteristic		All	No	Childhood	Childhood	Childhood
			childhood	maltreatment	maltreatment	maltreatment
		(n=118,347)	maltreatment	(any)	(rarely/	(often/very
			(n=68,933)	(n=49,414)	sometimes)	often)
					(n=37,264)	(n=12,150)
IMD	1 (least	24%	26%	22%	24%	19%
	deprived)					
	2	22%	23%	21%	22%	20%
	3	20%	20%	20%	20%	21%
	4	18%	17%	19%	19%	20%
	5 (most	13%	12%	16%	15%	20%
	deprived)					
Stressful lif	e event in prior	50%	47%	53%	52%	56%
2 yr						
Chronic pain all over		5%	4%	7%	6%	10%
Sunburn ≥1 occasion in		52%	50%	55%	56%	51%
childhood						

^{*}in England & Wales the minimum school-leaving age was raised in 1972. Derived data took this into account, based on year of birth. IMD = Index of Multiple Deprivation.

Table 2: Risks and risk differences from the treatment effects models, comparing the effects of exposure to childhood maltreatment on the risk of chronic pain all over

Model	Weights	n	Baseline	Exposed risk	Risk difference
			(unexposed)		(treatment
			risk		effect)
Whole sample	-	118,347	0.042	0.068	0.026
(unweighted)			(0.040, 0.043)	(0.065,	(0.023, 0.029)
				0.070)	
Whole sample	Education	103,725	0.040	0.063	0.023
(no stratification)	Sex		(0.038, 0.042)	(0.060,	(0.020, 0.025)
	Ethnicity			0.065)	
Men	Education	44,673	0.013	0.039	0.026
	Ethnicity		(0.009, 0.016)	(0.036,	(0.024, 0.028)
				0.042)	
Women	Education	58,952	0.050	0.081	0.030
	Ethnicity		(0.048, 0.053)	(0.077,	(0.026, 0.035)
				0.084)	
White	Education	100,783	0.039	0.062	0.023
	Sex		(0.038, 0.041)	(0.059,	(0.020, 0.025)
				0.064)	
Mixed ethnicity	Education	547	0.046	0.090	0.044
	Sex		(0.016, 0.075)	(0.059,	(0.002, 0.086)
				0.120)	
Asian or Asian	Education	815	0.059	0.097	0.038
British	Sex		(0.034, 0.083)	(0.069,	(0.001, 0.075)
				0.124)	
Black or Black	Education	660	0.106	0.118	0.012
British	Sex		(0.062, 0.150)	(0.089,	(-0.041, 0.066)
				0.148)	
Chinese	Education	244	0.052	0.067	0.015
	Sex		(0.007, 0.096)	(0.028,	(-0.044, 0.074)
				0.105)	
Other ethnic	Education	576	0.066	0.103	0.038
groups	Sex		(0.034, 0.097)	(0.071,	(-0.008, 0.083)
groupo					

^{*95%} confidence intervals are shown in brackets.

Table 3: Differences in risk of chronic pain all over compared by exposure to childhood maltreatment and/or recent stressful life events. Covariates are education, sex and ethnicity (n=103,344)

Exposure group	Risk of chronic pain all	Risk difference (compared	
	over	to unexposed)	
No ACEs, no stressful life event	0.033 (0.030, 0.035)	-	
≥1 ACE, but no stressful life event	0.048 (0.045, 0.051)	0.016 (0.012, 0.019)	
No ACEs, but ≥1 stressful life events	0.048 (0.045, 0.050)	0.015 (0.012, 0.018)	
≥1 ACE and ≥1 stressful life events	0.075 (0.072, 0.078)	0.042 (0.039, 0.046)	

Table 4: Total, indirect and direct effects (relative risks and 95% confidence intervals) of childhood maltreatment on chronic 'all over' body pain. Inverse odds weights incorporate mediators (as specified for each model), sex and ethnicity. IMD: index of multiple deprivation

	Model 1:	Model 2:	Model 3:	Model 4:	Model 5:
	All 4	Mental	IMD	Sleep	Social
	mediators	health		problems	support
Indirect	1.16	1.09	1.03	1.04	1.01
effect	(1.14, 1.18)	(1.08, 1.11)	(1.02, 1.03)	(1.03, 1.05)	(1.01, 1.02)
Direct	1.35	1.44	1.53	1.51	1.55
effect	(1.28, 1.43)	(1.36, 1.52)	(1.45, 1.62)	(1.43, 1.60)	(1.47, 1.64)
Total	1.57	1.57	1.57	1.57	1.57
effect	(1.49, 1.66)	(1.49, 1.66)	(1.49, 1.66)	(1.49, 1.66)	(1.49, 1.66)

Table 5: Risks and risk differences, comparing the effects of 5 types of childhood maltreatment on the risk of chronic pain all over

Maltreatment	Sex	n	Baseline	Exposed risk	Risk difference
type			(unexposed)		(treatment
			risk		effect)
Physical abuse	Male	44,897	0.028	0.043	0.014
			(0.027, 0.030)	(0.039,	(0.010, 0.018)
				0.047)	
	Female	59,525	0.058	0.089	0.031
			(0.056, 0.060)	(0.083,	(0.025, 0.036)
				0.094)	
Emotional	Male	44,889	0.029	0.051	0.023
abuse			(0.027, 0.030)	(0.046,	(0.017, 0.029)
				0.057)	
	Female	59, 468	0.056	0.098	0.042
			(0.054, 0.058)	(0.092,	(0.036, 0.048)
				0.103)	
Sexual abuse	Male	44,716	0.031	0.041	0.010
			(0.029, 0.032)	(0.033,	(0.002, 0.017)
				0.048)	
	Female	58,777	0.060	0.089	0.029
			(0.058, 0.062)	(0.082,	(0.022, 0.036)
				0.096)	
Physical	Male	44,759	0.030	0.061	0.031
neglect			(0.029, 0.032)	(0.050,	(0.020, 0.042)
				0.072)	
	Female	59, 253	0.061	0.106	0.046
			(0.059, 0.063)	(0.096,	(0.034, 0.057)
				0.117)	
Emotional	Male	44,815	0.029	0.041	0.011
neglect			(0.027, 0.031)	(0.037,	(0.007, 0.016)
				0.044)	
	Female	59,453	0.055	0.090	0.034
			(0.053, 0.058)	(0.085,	(0.029, 0.039)
				0.095)	

Doubly-robust estimation with inverse probability weights for education and ethnicity. Brackets show 95% confidence intervals.

Table 6: Risks and risk differences from the treatment effects models, comparing the effects of exposure to childhood sunburn (negative control exposure) on the risk of chronic pain all over.

Model	Weights	n	Baseline	Exposed risk	Risk difference
			(unexposed)		(treatment
			risk		effect)
Whole sample	-	125,663	0.063	0.057	-0.007
			(0.062, 0.065)	(0.055, 0.058)	(-0.010, -0.004)
Whole sample	Education	110,583	0.054	0.061	0.007
	Sex		(0.052, 0.056)	(0.058, 0.064)	(0.004, 0.010)
	Ethnicity				
Men	Education	47,076	0.035	0.040	0.005
	Ethnicity		(0.033, 0.037)	(0.037, 0.043)	(0.001, 0.009)
Women	Education	63,507	0.068	0.076	0.008
	Ethnicity		(0.065, 0.071)	(0.072, 0.080)	(0.003, 0.013)

References

- [1] Alhalal E, Ford-Gilboe M, Wong C, AlBuhairan F. Factors mediating the impacts of child abuse and intimate partner violence on chronic pain: a cross-sectional study. BMC Women's Health 2018;18:160.
- [2] Alvarez P, Green PG, Levine JD. Stress in the Adult Rat Exacerbates Muscle Pain Induced by Early-Life Stress. Biological psychiatry (1969) 2013;74:688–695.
- [3] Asmussen K, Fischer F, Drayton E, McBride T. Adverse childhood experiences: What we know, what we don't know, and what should happen next. 2020. London: Early Intervention Foundation.
- [4] Begum N, Taylor JR, Brown C, Rajan J, Keevil B, Pye E, Rainey T, Jones A. Morning and evening salivary cortisol levels in patients with chronic widespread pain and those at high risk. European Journal of Pain 2022;26:197–206.
- [5] Beiner E, Lucas V, Reichert J, Buhai D, Jesinghaus M, Vock S, Drusko A, Baumeister D, Eich W, Friederich H, Tesarz J. Stress biomarkers in individuals with fibromyalgia syndrome: a systematic review with meta-analysis. Pain 2023;164:1416–1427.
- [6] Brown RC, Plener PL, Braehler E, Fegert JM, Huber-Lang M. Associations of adverse childhood experiences and bullying on physical pain in the general population of Germany. Journal of Pain Research 2018;11:3099–3108.
- [7] Bussieres A, Hartvigsen J, Ferreira ML, Ferreira PH, Hancock MJ, Stone LS, Wideman TH, Boruff J, Elklit A. Adverse childhood experience and adult persistent pain and disability: protocol for a systematic review and meta-analysis. Systematic Reviews 2020;9:215.

- [8] Dalechek DE, Caes L, McIntosh G, Whittaker AC. An analysis on history of childhood adversity, anxiety, and chronic pain in adulthood and the influence of inflammatory biomarker C-reactive protein. Scientific Reports 2023;13:18000.
- [9] Felitti VJ, Anda RF, Nordenberg D, Williamson DF, Spitz AM, Edwards V, Koss MP, Marks JS. REPRINT OF: Relationship of Childhood Abuse and Household Dysfunction to Many of the Leading Causes of Death in Adults: The Adverse Childhood Experiences (ACE) Study. Am J Prev Med 2019;56:774–786.
- [10] Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, Collins R, Allen NE.
 Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank
 Participants With Those of the General Population. American Journal of Epidemiology
 2017;186:1026–1034.
- [11] Gage SH, Munafò MR, Davey Smith G. Causal Inference in Developmental Origins of Health and Disease (DOHaD) Research. Annual Review of Psychology 2016;67:567–585.
- [12] Galobardes B, Shaw M, Lawlor DA, Lynch JW, Davey Smith G. Indicators of socioeconomic position (part 1). Journal of Epidemiology & Community Health 2006;60:7–12.
- [13] Generaal E, Vogelzangs N, Macfarlane GJ, Geenen R, Smit JH, de Geus EJCN, Penninx BWJH, Dekker J. Biological stress systems, adverse life events and the onset of chronic multisite musculoskeletal pain: a 6-year cohort study. Annals of the Rheumatic Diseases 2016;75:847–854.
- [14] Glaesmer H, Schulz A, Häuser W, Freyberger HJ, Brähler E, Grabe H. The childhood trauma screener (CTS) development and validation of cut-off-scores for classificatory diagnostics. Psychiatrische Praxis 2013;40:220–226.

- [15] Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC, 2020.
- [16] Hughes K, Bellis MA, Hardcastle KA, Sethi D, Butchart A, Mikton C, Jones L, Dunne MP. The effect of multiple adverse childhood experiences on health: a systematic review and meta-analysis. The Lancet.Public Health 2017;2:e356–e366.
- [17] Jonsson Funk M, Westreich D, Wiesen C, Sturmer T, Brookhart MA, Davidian M. Doubly robust estimation of causal effects. American Journal of Epidemiology 2011;173:761–767.
- [18] Kaleycheva N, Cullen AE, Evans R, Harris T, Nicholson T, Chalder T. The role of lifetime stressors in adult fibromyalgia: systematic review and meta-analysis of case-control studies. Psychological Medicine 2021;51:177–193.
- [19] Kascakova N, Furstova J, Trnka R, Hasto J, Geckova AM, Tavel P. Subjective perception of life stress events affects long-term pain: the role of resilience. BMC Psychology 2022;10:54.
- [20] Kelsall H, McKenzie D, Sim M, Leder K, Ross J, Forbes A, Ikin J. Comparison of self-reported and recorded vaccinations and health effects in Australian Gulf War veterans. Vaccine 2008;26:4290–4297.
- [21] Koss KJ, Gunnar MR. Annual Research Review: Early adversity, the hypothalamic–pituitary–adrenocortical axis, and child psychopathology. Journal of Child Psychology and Psychiatry 2018;59:327–346.
- [22] Lacey RE, Howe LD, Kelly-Irving M, Bartley M, Kelly Y. The Clustering of Adverse Childhood Experiences in the Avon Longitudinal Study of Parents and Children: Are Gender and Poverty Important? Journal of Interpersonal Violence 2022;37:2218–2241.

[23] Lee H, Slack KS, Berger LM, Mather RS, Murray RK. Childhood Poverty, Adverse Childhood Experiences, and Adult Health Outcomes. Health & Social Work 2021;46:159–170.

[24] Letzen JE, Mathur VA, Janevic MR, Burton MD, Hood AM, Morais CA, Booker SQ, Campbell CM, Aroke EN, Goodin BR, Campbell LC, Merriwether EN. Confronting Racism in All Forms of Pain Research: Reframing Study Designs. The Journal of Pain 2022;23:893–912.

[25] Lundberg I, Johnson R, Stewart BM. What is Your Estimand? Defining the Target Quantity Connects Statistical Evidence to Theory. American Sociological Review 2021;86:532–565.

[26] Marin TJ, Lewinson RE, Hayden JA, Mahood Q, Rossi MA, Rosenbloom B, Katz J. A Systematic Review of the Prospective Relationship between Child Maltreatment and Chronic Pain. Children (Basel) 2021;8:806.

[27] Marin TJ, Hayden JA, Lewinson R, Mahood Q, Pepler D, Katz J. A Systematic Review of the Prospective Relationship Between Bullying Victimization and Pain. Journal of Pain Research 2021;14:1875–1885.

[28] McBeth J, Silman AJ, Gupta A, Chiu YH, Ray D, Morriss R, Dickens C, King Y, Macfarlane GJ. Moderation of psychosocial risk factors through dysfunction of the hypothalamic–pituitary–adrenal stress axis in the onset of chronic widespread musculoskeletal pain: Findings of a population-based prospective cohort study. Arthritis and Rheumatism 2007;56:360–371.

[29] McBeth J, Morris S, Benjamin S, Silman AJ, Macfarlane GJ. Associations between adverse events in childhood and chronic widespread pain in adulthood: are they explained by differential recall? Journal of Rheumatology 2001;28:2305–2309.

- [30] Mclean MA, Nakajima L, Chau CMY, Weinberg J, Synnes AR, Miller SP, Grunau RE.

 Cortisol levels are related to neonatal pain exposure in children born very preterm at age 18 months in two independent cohorts. Paediatric and Neonatal Pain 2023;5:86–95.
- [31] Melchior M, Kuhn P, Poisbeau P, Robinson O. The burden of early life stress on the nociceptive system development and pain responses. The European Journal of Neuroscience 2022;55:2216–2241.
- [32] Naimi AI, Cole SR, Kennedy EH. An Introduction to G Methods. International Journal of Epidemiology 2017;46:756–762.
- [33] Nelson SM, Cunningham NR, Kashikar-Zuck S. A Conceptual Framework for Understanding the Role of Adverse Childhood Experiences in Pediatric Chronic Pain. Clin J Pain 2017;33:264–270.
- [34] Nguyen QC, Osypuk TL, Schmidt NM, Glymour MM, Tchetgen Tchetgen EJ. Practical Guidance for Conducting Mediation Analysis With Multiple Mediators Using Inverse Odds Ratio Weighting. American Journal of Epidemiology 2015;181:349–356.
- [35] Nicolson KP, Mills SEE, Senaratne DNS, Colvin LA, Smith BH. What is the association between childhood adversity and subsequent chronic pain in adulthood? A systematic review. BJA Open 2023;6:100139.
- [36] Powers A, Ph.D, Fani N, Ph.D, Pallos A, B.A, Stevens J, M.A, Ressler, Kerry J., M.D., Ph.D, Bradley B, Ph.D. Childhood Abuse and the Experience of Pain in Adulthood: The Mediating Effects of PTSD and Emotion Dysregulation on Pain Levels and Pain-Related Functional Impairment. Psychosomatics (Washington, D.C.) 2014;55:491–499.
- [37] Raphael KG, Chandler HK, Ciccone DS. Is childhood abuse a risk factor for chronic pain in adulthood? Current Pain & Headache Reports 2004;8:99–110.

- [38] Sachs-Ericsson NJ, Sheffler JL, Stanley IH, Piazza JR, Preacher KJ. When Emotional Pain Becomes Physical: Adverse Childhood Experiences, Pain, and the Role of Mood and Anxiety Disorders. J Clin Psychol 2017;73:1403–1428.
- [39] Sachs-Ericsson NJ, Sheffler JL, Stanley IH, Piazza JR, Preacher KJ. When Emotional Pain Becomes Physical: Adverse Childhood Experiences, Pain, and the Role of Mood and Anxiety Disorders. J Clin Psychol 2017;73:1403–1428.
- [40] Scottish Government. Scottish Index of Multiple Deprivation: 2009 General Report. 2009.
- [41] Sheikh MA. Childhood adversities and chronic conditions: examination of mediators, recall bias and age at diagnosis. International Journal of Public Health 2018;63:181–192.
- [42] Singleton S, Sneddon C, Bakina A, Lambert JJ, Hales TG. Early-life adversity increases morphine tolerance and persistent inflammatory hypersensitivity through upregulation of δ opioid receptors in mice. Pain 2023;164:2253–2264.
- [43] Smith BW, Papp ZZ, Tooley EM, Montague EQ, Robinson AE, Cosper CJ. Traumatic events, perceived stress and health in women with fibromyalgia and healthy controls. Stress and Health 2010;26:83–93.
- [44] StataCorp. Stata Statistical Software: Release 15.1. 2017.
- [45] StataCorp. Stata 18 Causal Inference and Treatment-Effects Estimation Reference Manual. College Station, TX: StataCorp LLC, 2023.
- [46] StatsWales. WIMD 2008.
- [47] Tanguay-Sabourin C, Fillingim M, Guglietti GV, Zare A, Parisien M, Norman J, Sweatman H, Da-Ano R, Heikkala E, Perez J, Karppinen J, Villeneuve S, Thompson SJ,

Martel MO, Roy M, Diatchenko L, Vachon-Presseau E. A prognostic risk score for development and spread of chronic pain. Nature Medicine 2023;29:1821–1831.

[48] Thomas P, Goodin B. Adverse Childhood Experiences and Chronic Low Back Pain in Adulthood: Role of Emotion Regulation. The Journal of Pain 2022;23:53.

[49] UK Government. The English Indices of Deprivation 2010. Ministry of Housing, Communities & Local Government 2011.

[50] Walsh CA, Jamieson E, MacMillan H, Boyle M. Child Abuse and Chronic Pain in a Community Survey of Women. Journal of Interpersonal Violence 2007;22:1536–1554.

[51] Wyns A, Hendrix J, Lahousse A, De Bruyne E, Nijs J, Godderis L, Polli A. The Biology of Stress Intolerance in Patients with Chronic Pain—State of the Art and Future Directions.

Journal of Clinical Medicine 2023;12:2245.