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1. Introduction and background

Healthcare facilities are complex systems where the efficiency of the
services depends on factors such as the quality of the built environ-
ment, resource utilisation, Human Resources (HR)!, and supply chain
management [1]. In particular, healthcare services do not operate in
isolation; instead, their operational flow is significantly influenced by
the spatial layout and physical condition of the building. From patient
movement [2] to communication patterns of medical personnel [3], the
design and infrastructure of a healthcare building play a crucial role in
determining general efficiency and effectiveness. The complex interde-
pendencies between healthcare operations and the built environment
require advanced tools and approaches to address inefficiencies arising
from the interaction between these factors, ensuring the delivery of
high-quality healthcare services.

A key challenge faced by operations managers is balancing the use
of constrained resources while safeguarding the quality and timeliness
of services provided, thus increasing operational efficiency. A common
technique used is simulation modelling, in which a digital replica of the
system to be optimised is used for scenario analyses and to empower
the decision-making process. In this context, one of the most widely
used techniques is Discrete Event Simulation (DES) [4].
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1 A full list of abbreviations can be found in Table 1.
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However, whereas many studies on process simulation for opera-
tions management and built environment analysis for patient safety
exist, few consider how hospital infrastructure impacts operational
efficiency, and fewer still do so in a dynamic manner — for ex-
ample, being able to automatically detect core infrastructure failures
that can create critical operational disruptions (such as lift break-
downs affecting patient transfers or access control failures delaying
staff movement), immediately evaluate their effects on the facility’s key
performance indicators, and take actions to mitigate these effects as
much as possible.

These complex decision-making and dynamism requirements are
encapsulated within the concept of a Digital Twin (DT), which links
a computational representation of a physical asset, entity (such as
medical staff and patients), or process with its physical counterpart,
with bidirectional flow of right-time data, forming a cyber—physical
system. This powerful link between physical and digital can help mon-
itor, optimise and remotely control the physical asset entity or process
throughout its life cycle [5,6]. Recent advancements in research have
demonstrated how assets and processes are digitalised to develop DTs,
which simulate and predict performance under various conditions, and
automate the systems’ operation. [7].
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Table 1
List of abbreviations used in this paper.
Abbr. Full name
ABS Agent-Based Simulation
AECO Architecture, Engineering, Construction, and Operations
BAS Building Automation System
BMS Building Management System
BIM Building Information Modelling
BPMN Business Process Modelling Notation
COBie Construction-to-Operations Building Information Exchange
CT Computed Tomography
DES Discrete Event Simulation
DEVS Discrete Event System Specification
DT Digital Twin
FM Facilities Management
HR Human Resources
ICU Intensive Care Units
IFC Industry Foundation Classes
IoT Internet of Things
T Information Technology
KPI Key Performance Indicator
LtSFM Low-trust Social Force Model
MAS Multi-Agent System
M&S Modelling and Simulation
O&M Operations and Maintenance
oT Operating Theatre
PIR Project Information Requirements
RAAC Reinforced Autoclaved Aerated Concrete
SOP Standard Operating Procedure
TAT Turnaround Time
UML Unified Modelling Language
UWB Ultra Wide Band
WBS Work Breakdown Structure

However, a large part of DT research has focused on the digiti-
sation, update, and curation of digital models of physical assets [8],
e.g., equipment, building systems, elements, spaces, and infrastruc-
tures. In contrast, significantly less attention has been paid to the
application of the DT concept to processes. In particular, additional
research is needed on the ideation, development, and testing of inter-
disciplinary approaches that combine physical and geometric digital
models, performance models, and process flow models into an inte-
grated DT that delivers increased operational efficiency in healthcare
facilities.

In Architecture, Engineering, Construction, and Operations (AECO),
the DT concept is typically closely related to Building Information
Modelling (BIM) [9], which is considered the main information man-
agement framework in this sector [10]. In this article, we refer to BIM
as the set of processes, methods, and open data schemes defined in the
ISO 19650 framework [10]. BIM data and information management
techniques form a rich source of built asset information, which can
be interoperated with Building Management and Automation Systems
(BMS/BAS) and Internet of Things (IoT) data, for improved opera-
tions, maintenance and space management [11,12]. Therefore, it can
be inferred that BIM provides the opportunity of using a variety of
information, methods and tools, and rich sources of data supporting
the development of DTs in healthcare facilities.

To address the research gaps identified in this paper (see a more
detailed description in Section 2.5), we hypothesise and propose a
space-aware process DT architecture and an integration framework
through which building information, in this case BIM data, can be
incorporated within a healthcare process simulation model (as part
of the larger DT of hospital operations). As a proof of concept, the
proposed framework is applied to a multi-storey Histopathology labo-
ratory. The case study demonstrates how disruptions, such as a broken
lift, increase travel times between process stages and how this delay
can significantly impact the laboratory’s overall turnaround time (TAT).
Incorporating up-to-date building information into process simulation
enables the proposed DT to inform Facilities and Operations Managers
by anticipating, quantifying, and responding to such disruptions in
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a timely manner. Additionally, BIM data enables dynamic access to
spatial and functional information, which is crucial for modifying
the spatial assignment of process stages (e.g., for improving process
efficiency).

1.1. Research question and hypothesis

In this paper, given the identified knowledge gaps, we formulate the
following research question: How can information about the layout,
built assets and systems be integrated with process simulation models
to enable effective analysis and improvement of operations within
complex healthcare facilities?

The research question is motivated by the findings that many inef-
ficiencies in current healthcare facilities are related to the layout and
factors of the built environment. A more detailed discussion of such
identified inefficiencies is given in Section 2.1.

To answer our research question, we start by asking: How does the
condition or layout of a building affect the main activities carried out
inside it? And how can this kind of spatial information be used to
support better decisions in managing those operations? We suggest that
a practical way to connect this building information with operational
decision-making is using existing BIM standards (ISO 19650 [10,13]),
in particular the Industry Foundation Classes (IFC, ISO 16739-1 [14]).
These standards provide structured data on building elements that can
be used to link building conditions with process simulation models.

Accordingly, we define the following hypothesis: Integrating BIM-
derived spatial and asset performance data with discrete event simula-
tion models will significantly improve the facility’s ability to anticipate
and respond to disruptions, thereby reducing process bottlenecks and
improving overall turnaround times.

In simple terms, our hypothesis states that where BIM information
is available, IFC data can be used to bring together building layout
and performance information with process simulations. This integration
forms a decision support tool that helps to improve the efficiency with
which healthcare processes are run. Using open standards like IFC also
makes this integration easier because they ensure compatibility across
different software tools, commercial or open source. The success of this
approach depends on understanding exactly what data the simulation
model requires, and building a data pipeline that extracts and trans-
forms only that data. In this paper, we explore how to define those data
needs and construct such a pipeline. This enables us to analyse how
changes in the building’s state affect operational efficiency, directly
addressing our research question.

1.2. Contributions of this paper

In this paper, we present a framework that connects BIM data with
DES to support more realistic and effective simulation of healthcare
facility operations. Our approach enables the use of geometric and spa-
tial data from BIM to model and manage the performance of a hospital
laboratory in operation. Traditionally, BIM data has been underused
during buildings’ operational phase, especially for improving the ef-
ficiency and resilience of core service delivery. This work addresses
that gap. We focus on using open standards, such as IFC, to build a
flexible and interoperable data pipeline between BIM and DES. Using
a BIM model and process data from a hospital in the East of England,
we show how building-related disruptions such as a lift failure can be
quantified and analysed in terms of their impact on core processes, such
as laboratory TAT. Additionally, we demonstrate how updated BIM
information can be used to inform the re-definition of the laboratory
functional layout, given the constraints of the existing facility. By
enhancing the DES model with spatial and asset performance data, our
simulation becomes more realistic, reliable, and actionable. We planned
this work within the broader scope of a space-aware process DT that
supports better operational decision-making and we made the following
specific contributions:
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Developed a BIM-DES integration framework that enables the use
of building geometry and topology to inform and enrich process
simulation.

Proposed a space-aware process DT architecture that combines
simulation and building state data for proactive and reactive
decision-making.

Demonstrated the practical use of open BIM standards (e.g. IFC) to
improve core-process simulation interoperability and information
exchange.

Quantified the operational impact of infrastructure failures, such
as lift outages, on laboratory performance using real hospital
data.

Showcased how BIM methods can be extended into the use phase
to support both operations and Facilities Management (FM).
Improved decision-making capabilities for Operations Managers
and Facility Managers through a more integrated view of process
and infrastructure performance.

2. Background and related work
2.1. Healthcare facilities operations inefficiencies

Healthcare facilities, and specifically hospitals, exhibit various op-
erational inefficiencies when performing care activities, such as (i)
delays in bed turnover [15] and (ii) patients’ transfer [16], (iii) poor
space utilisation [17], (iv) workflow disruptions [18], (v) high staff
workload [19], and (vi) resource misallocation [20]. In particular,
hospital layout inefficiencies significantly impact staff movement, pa-
tient care process, and workflow efficiency. Poor design in emergency
departments and laboratories results in congestion and bottlenecks,
slowing down operations and increasing turnaround times [17]. Beyond
layout inefficiencies, poor space utilisation and ineffective building
design create additional operational challenges. Underutilised hospital
spaces can result in wasted resources, while overcrowded areas, such
as phlebotomy labs, contribute to errors, distractions, and reduced
efficiency. [18]. Operational inefficiencies in hospitals also impact staff
well-being, TAT, and patient safety. Long walking distances and ineffi-
cient workflows due to poorly designed workspaces contribute to staff
fatigue, burnout, and dissatisfaction [19]. Inefficient workflows further
disrupt bed assignments, patient transfers, and overall hospital opera-
tions, leading to delays in care delivery and increased patient waiting
times. Delays in bed turnover processes can extend waiting times for
inpatient beds, causing patient care delays and decreased satisfaction
[15]. The physical distance between wards and the Operating Theatre
(OT) is a key factor in patient transfer, as greater distances can lead to
unwanted delays in reaching the OT [16]. Addressing these inefficien-
cies requires data-driven approaches to optimise workflow efficiency,
hospital layout, and resource management. In this regard, DTs and
Simulation Models present innovative solutions that enable real-time
tracking, predictive modelling, and process optimisation. Section 2.2
explores how DTs can transform hospital management by integrating
real-time or right-time data, enhancing space utilisation, and reducing
operational bottlenecks.

2.2. DT for improved complex healthcare facilities operations management

Trauer et al. [21] define a DT as “a virtual dynamic representation
of a physical system, which is connected to it over the entire lifecycle
for bidirectional data exchange”. They also emphasise that “only data
required for the respective use case should be entailed”. In the field
of manufacturing, DTs are covered by the ISO 23247 series [22].
However, there has also been a push towards defining a set of more
general standards for DTs; so far, this has led to ISO 30173 [23].

In this section we consider not only the DTs, but also what Kritzinger
et al. [24] define as Digital Shadows (i.e., digital systems in which
there is a unidirectional automatic data flow from the physical to
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the digital counterpart), and DT with human-in-the-loop, where data
flow from the digital to the physical counterpart (e.g., recommended
actions) is reviewed by a human operator before being applied [25].
This allows us to broaden the scope of the analysis, understand how
digital technologies can help solving healthcare facilities inefficiencies,
including also those applications where full automation is not yet
achieved. Table 2 summarises these applications, the inefficiencies
addressed and the benefits achieved.

The reviewed applications summarise the benefits of healthcare
DT development, though highlighting a main limitation, which is the
narrow purpose of the applications developed. Each application, in fact,
focuses exclusively on one domain area: either patient flow manage-
ment, asset and facilities management, portering, or medical equipment
management. However, processes do not operate in isolation, and
this aspect requires a multi-disciplinary approach to modelling and
simulation in order to deliver deeper insights and enhance the decision-
making capabilities of hospital managers. In addition to this, all the
reviewed applications either impact on or are constrained by space and
building services. However, BIM data is seldom utilised to inform spa-
tial and built asset variables, and this represents a missed opportunity,
considering the rich information that can be used to inform the process
operation through BIM approaches. For these reasons, Sections 2.3
and 2.4 delve into the problem of process modelling, simulation and
openBIM (broadly defined as “seamless data sharing and collabora-
tion across platforms and stakeholders”?), which is functional to the
definition of an integrated space-process DT.

2.3. Simulation and its role in process improvement

Simulation techniques are essential for improving hospital opera-
tions by modelling complex processes and predicting outcomes [39].
Three widely used simulation methods in healthcare are DES [40,
41], Agent-Based Simulation (ABS), and hybrid models. DES mod-
els workflows as discrete events, useful for analysing patient flow
and resource allocation, while ABS simulates individual behaviours of
agents like staff and patients to understand movement patterns and
decision-making.

There have been many studies on simulation modelling in health-
care and other fields of operational research [4,41-47]. Simulation
modelling supports process managers in decision-making by enabling
detailed process analysis, evaluating current and future scenarios, pre-
dicting the impact of changes, and optimising performance through
risk-free experimentation [48]. In this subsection, we will focus mainly
on simulation studies using DES, ABS or hybrid methods for healthcare
which incorporate spatial information to optimise hospital layouts or
improve indoor navigation systems for better movement of personnel
and resources.

Simulation studies have been used to identify multiple bottlenecks
in healthcare delivery, covering operational views such as patient flow
and overcrowding [49,50], nurse travel distance [51], patient transfer
delay [52], clinical laboratory throughput [53,54], utilisation of critical
resources (e.g., bed or Computed Tomography — CT) [55], and ap-
pointment delays or cancellations [56]. Some have proposed actionable
improvement measures for changeable design elements [49-51], while
others have provided insights on operational policies about workplace
behaviour, opening hours and access control [52]. However, while it
has been found that many of the challenges faced in healthcare facilities
(particularly hospitals) in the literature are related to the building
layout, a large majority of publications which consider these challenges
do not in fact make this association [57]. In the following text, we
specifically study applications of space-aware simulation models in
healthcare services delivery.

2 https://www.buildingsmart.org/about/openbim/.
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Table 2
Applications of DTs in hospital management with the related benefits.
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Domain Application

Inefficiency

Benefits

Patient flow
management

Bed planning (trauma and
orthopaedic) with dynamic update
[26].

Delays in bed turnover.

Improved daily/weekly prediction of admissions.

Agent-based emergency department
simulation [25].

Patient transfer delays.

Improved management of patient pathways
through what-if scenario analysis.

Asset and facilities NFC-based system for hospital

Resource misallocation, Workflow

Reduced bed turnaround time and automate the

management discharge tracking and bed disruptions. notification to the cleaning staff.
management [27].
Bluetooth/Wi-Fi-based [28] and Ultra Resource misallocation. Dynamic asset tracking.
Wide Band (UWB) [29] location
system for movable assets.
BIM/I0oT/OT enabled twin of a Resource misallocation, Workflow Reduced energy consumption, facility faults,
hospital [30,31]. disruptions. number of requested repairs, and enhanced the
quality of daily maintenance work.
Robot dispensary with a real-time High staff workload, Resource Reduced dispensing error and stock-out rates and
stock management system [32,33]. misallocation. high staff satisfaction. Reduced time for stock
management.
Intensive Care Units (ICUs) hybrid High staff workload, Workflow Improved design and test different intervention
DES-ABS-based simulation [34]. disruptions. strategies which can reduce clinicians’ task
durations and inform new discharge policy.
Portering Robotic portering with automated Poor space utilisation, Workflow Optimised decision variables and determined the

guided vehicles [35].

disruptions, High staff workload,
and Resource misallocation.

best output for each supply chain. Avoid
bottlenecks and congestion. Reduced staff
workload.

Indoor location-based hospital porter
management system [36].

Workflow disruptions, Resource
misallocation.

Real-time location information of porters, prioritise
tasks and manage assignments.

Medical equipment
management

Virtual patient with temporal
evolution for mechanical ventilation
through stochastic modelling [37,38].

Resource misallocation.

Optimised bedside mechanical ventilation guidance
protocols through in-silico simulation and
validation. Reduced need for lengthy, resource
intensive, high cost clinical trials.

Lee et al. [51] used ABS to model nurse travel distance in wards.
They found that by revising the spatial layout of single, double, and
multi-bed rooms, nurse travel distance was reduced by more than 15%,
thus reducing fatigue and securing more nurse time for direct patient
care. In particular, the common practice of grouping multi-bed rooms
along one of the corridors was found to be inefficient; instead, single,
double, and multi-bed rooms should be interspersed.

Li et al. [50] used a combination of mathematical optimisation and
ABS to evaluate hospital ward design with respect to walking distance
and human density. Locations in the ward were classified as fixed
(patient rooms, lifts, stairwells) or movable (e.g., offices, nurse stations,
storerooms). Then, mathematical methods were used to identify nine
candidate layouts (A1-A3 along the Pareto front and six additional
near-optimal layouts, labelled A4-A9), which were then compared
using ABS, along with an additional layout AO designed manually.
Based on the simulation results, the automatically generated layout A2
was chosen as the best overall

Schaumann et al. [58] used a narrative-based simulation to explore
potential implications of including or excluding a day room in the
design of an internal medicine ward. It overcame the limitations of
typical DES models and considered the movement and activities of
individual occupants and the impact of building design on the flow
of resources. The results of the simulation suggested that the presence
of a day room reduces visitors’ density in corridors and diminishes
the number of staff-visitor interactions that can delay the scheduled
medical procedures.

Xu et al. [59] applied DES with a low-trust social force model
(LtSFM) to analyse passenger flow distribution and facility utilisation.
It demonstrated that spatial planning in hospitals can be significantly
optimised using improved simulation models. Improvement measures,
such as removing two self-service check-in machines near the entrance
of the outpatient hall, were compared to address density, queue time,
facility usage, and infection risk.

Meephu et al. [52] used DES to optimise intra-hospital patient
transfer. Among the key policies proposed is to prioritise critical pa-
tients (which require two accompanying staff instead of one), obtaining
the next patient for transfer without the need to return to base, and
choosing staff based on proximity rather than balancing workloads
(however, this may not be desirable based on other criteria such as
fairness). By combining these policies, the authors found that mean
waiting time could be reduced by 21%. However, the spatial model
of the hospital was not explicitly presented in the paper, nor was the
methods of obtaining such a model discussed.

Ahmadi and Lather [49] They used DES to compare layouts for a
walk-in vaccination clinic. It was found that perimeter-based layouts
were more efficient than serpentine layouts in terms of average patient
travel distance and time-in-system. However, since patients in the clinic
model would only queue along the main path itself or outside the clinic
(before the check-in point), the authors did not find any significant
relationship between arrival load and average patient travel distance.
The authors did not consider the case where heavy arrival load may
lead to changes in the patient path configuration, for example, the
introduction of holding areas for queuing patients.

Note that the publications listed above generally focus on one-off
modifications to facility layouts for process improvement, but do not
focus on layout resilience and actions for preventing or mitigating the
effect of core infrastructure failures, e.g. lift outages or malfunctioning
access card readers.

In summary, as the state of the built environment can change,
it is important to study the ongoing interactions between the built
environment and the processes carried out therein, particularly the core
business processes in addition to those related to building maintenance.
On the other hand, while there have been a few studies on the effect
of building layout on process efficiency, especially for layout redesign,
these do not consider naturally occurring changes to the building state,
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2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

6 Life Cycle Management 5 Asset operation

4 Energy performance W 3 Site logistic

2 Construction process M 1 Design process optimisation

Fig. 1. Key studies on BIM-process M&S integration and applications, by year.

Table 3

Applications of BIM and process M&S integration.
Application Papers
Design authorising [74]
Construction process [75-82]
Site logistics [65,66,83,84]
Energy performance [70,85-89]
Asset & operations management [90-92]
Lifecycle management [93]

e.g., due to random failures, and therefore cannot be used for day-to-
day decision-making. This forms a knowledge gap which we elaborate
upon in Section 2.5.

2.4. BIM as an enabler for space-aware process digital twins

In the context of developing building-level DTs, BIM improves the
sharing of project and asset information among stakeholders through-
out the building lifecycle, enhancing collaboration and decision-making
[60,61]. For example, it is used as a static visualisation tool to en-
hance traditional building design, drawing modification, construction
scheduling, and cost estimation [62]. BIM also integrates with green
building practices, aiding in energy and thermal analyses, and sup-
porting sustainable design and construction [63,64]. Other applications
demonstrated how it can facilitate the Life Cycle Assessment by es-
timating environmental impacts and energy consumption during the
design stages [63]. BIM supports construction process simulations,
improving planning, scheduling, and productivity through dynamic
visualisation and alternative design explorations [65-67]. It also en-
hances facility operation and maintenance by improving data exchange
efficiency and supporting Operations and Maintenance (O&M) prin-
ciples, though challenges in data interoperability remain [11,68,69].
BIM models are used for energy performance evaluations, optimising
building energy efficiency and performance [70-72]. It also serves as
a systematic risk management tool, integrating with other BIM-based
tools for comprehensive risk analysis across the building lifecycle [73].

With a focus on the integration of BIM with process Modelling and
Simulation (M&S), which is key for this article, the literature has been
classified according to applications and techniques utilised, in Fig. 1
and Tables 3 and 4.
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Table 4
BIM and M&S techniques and integration approaches.

Technique Papers

[65,66,74,77,80,85,90,91]
[65,66,83,89]

Business process model
Work Breakdown Structure (WBS) method

Activity network model [74,79,81]
Simulation, discrete event [65,79,87,88]
Simulation, energy [85,87,88]
Simulation, fluid dynamics [70,92]
Simulation, multi-agent [66]

Particle swarm optimisation [65]
Computer vision [75,84]

The review of the literature highlights that although BIM techniques
are known to have an impact in the field of FM — e.g., through Con-
struction Operations building information exchange (COBie) [94-96]
and the ISO 19650 series [13] — its use in conjunction with M&S
is still largely shifted towards the design and construction phase of a
building’s lifecycle, with only three articles [90-92] reporting the use
of BIM for Asset & operations management, which primarily relates to
the use phase. This is despite this phase accounting for a large part of a
building’s lifecycle, where BIM can inform space management, environ-
mental monitoring, energy management, asset maintenance and other
improvements, when integrated with IoT, BMS and BAS technologies
[69]. In fact, BIM is primarily utilised to model and simulate building
components for design and delivery; to enhance collaboration among
construction professionals, support time and cost simulations in the
construction process; and, in fewer cases, to provide enriched building
information in asset performance monitoring and control.

With regard to the innovation proposed in this paper, when BIM
data is available, it can be used beyond the current state-of-art, to
inform the space variables and constraints of the healthcare facilities’
operation process simulation, connecting two domains which are cur-
rently siloed. Although there are other possible sources of space and
layout data, such as BMS, these sources would only work for modern
buildings with a BMS built-in with such features. In contrast, our
approach is agnostic to the availability of such technologies and relies
on the availability of a BIM model, which if not existing could also
be generated with relative ease to meet the space-aware simulation
requirements described in Section 4.3. This builds on previous works on
BIM to DES integration for building operation and addresses technical
challenges such as modular design, data integration, simulation model
development and validation [97]

A viable BIM-DES integration approach is the use of an intermediate
open data format, which provides a view of the original BIM data
in a manner tailored for the specific use case. The nature of this
intermediate data will depend on the geometric and semantic building
information needs (i.e., the Level Of Information Need, according to the
ISO 1S07817-1:2024 [98]) of each specific use case. To enable the in-
teroperation between the BIM model and the operational process model
(e.g., a process simulation model, which we describe in this paper), the
intermediate data format should be based on open standards — this
is one of the core principles of openBIM [99]. The main interoperable
data standard in this context is IFC [14], which we use in this work.
Other open built environment data models exist, such as IndoorGML,*
GreenBuildingXML* and BIMXML,® although they are beyond the scope
of this paper.

3 https://www.ogc.org/publications/standard/indoorgml/.
4 https://www.gbxml.org/.
5 https://bimxml.org/.
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2.5. Identification of knowledge gaps

The review of the literature highlights some research gaps with
respect to addressing the stated research question of this paper. Firstly,
although many challenges and sources of inefficiency in healthcare
settings are associated with space, most case studies do not study this
association in depth [57]. Of those that do, many focus on one-off
changes to layout or process design, and do not study the ongoing
interactions between building state and process efficiency, as a DT
would allow us to do. Conversely, many existing building-level DTs in
academia and industry focus primarily on physical assets only, with
less focus on the core business process that take place within the built
spaces. Among DTs that focus on processes, most focus primarily on
construction, manufacturing, or maintenance processes only. There is
thus a lack of research on frameworks to not only integrate geomet-
ric, topological, semantic, and operational information from different
sources, but to do so in a continuous manner as required for a space-
aware process DT for core business operations. There is therefore a lack
of research/evidence on how such frameworks and DT implementations
can be used to inform the decision-making process and improve oper-
ational efficiency and resilience of business operations against failures
in core building infrastructure, e.g. lifts, access card readers, etc.

3. BIM-DES integration methodology

In this paper, we develop a BIM-to-DES integration approach that
enables the use of streamlined BIM data to inform the simulation of
core-process operations in specialised buildings, i.e., facilities where
the core business function is closely related to the built assets, such as
hospitals. To define this approach, we used a mix of evidence-based
research and empirical case-study-based research methodologies and
general data processing methods, which simplify the data pipeline and
can be deployed in any Python-based environment.

This section contains the generic aspects of the BIM-DES integra-
tion methodology. In Section 4, we provide specific implementation
details relating to a case study of the Histopathology laboratory at
Addenbrooke’s Hospital, Cambridge, UK.

3.1. Discrete event simulation

In this paper, we used the Python library salabim [100]° as a
basis for our DES framework. A benefit of salabim is the inclusion of
built-in statistics collection for resources and other simulation compo-
nents. However, while salabim provides primitive constructs such as
resources and events to support DES, the nature of our process model
prompted us to create an additional framework layer for representing
common tasks in the process logic, such as batching, collation, and
delivery. To break the process logic into manageable code blocks,
each step in the process is represented by an instance of BasePro-
cess, which includes the derived classes Process, BatchingPro-
cess, CollationProcess, and DeliveryProcess, as shown in
Fig. 2.

Each process instance defines an infinite loop:

» Process takes entities from its in_queue and launches the
process defined by fn for each entity. To register a process, we
make it a member function of the appropriate class using the code
in Listing 1.

Listing 1: Register a new function to a class. The function
represents a task that operates on instances of the given
in_type.

setattr(self.in_type, self.name(), fn)

6 https://www.salabim.org/manual/.
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The process defined by fn is responsible for forwarding entities
to the in_queue of the next process in the process chain (unless
it is the last process in the chain).

BatchingProcess takes batch_size entities from
its in_queue and places a Batch entity in the in_queue of
the next process in the process chain, as defined by the string
out_process.

CollationProcess takes entities from its in_queue and
collates them according to their parent attribute. When all
child entities of a parent entity are collated (as tracked by the
specified counter), the parent entity is placed in the in_queue
of the next process in the process chain, as defined by the string
out_process.

DeliveryProcess takes entities (possibly Batch entities) and
delivers them to the specified out_process, using one of re—
source and requiring time as defined by durations. Batch
entities are unbatched before being placed in the in_queue of
the output process.

Note that some process classes shown in Fig. 2 are analogous to
logic blocks available in some graphical trajectory-based DES software,
e.g. Process and Batch in Arena. However, the advantage of our Python-
based DES approach is easier integration with other components such
as the BIM component described in the following subsection.

3.2. OpenBIM and Industry Foundation Classes

In this paper, we use IFC4 ADD2 TC1.” The goal is to test the
usability of IFC as data input for the process simulation component of
our BIM-DES methodology. Therefore, we use both the semantic and
geometric information represented within the IFC schema. For example,
in our DES model, some system attributes, such as task duration (partic-
ularly for delivery tasks), are space-dependent, e.g., the time needed to
reach room B in a building from room A or the waiting time in a lift to
reach the desired floor. To feed these DES space-dependent variables
with deterministic values, the location of any IfcProduct (e.g. a
space, door, wall, stairwell, or lift) can be modelled in IFC and the
schema can be parsed to extract all necessary geometric and semantic
information required. However, the geometric representation of the
IFC classes derived from the IfcProduct instances can differ, thus
requiring different data discovery mechanisms to retrieve the geometric
and spatial representations of the BIM objects.

In this article, we use the spatial representation of doors and walls
and internal partitions in a building to feed the DES model, and we
assume that the spatial containment relationships of the IFC schema are
fulfilled. As an example, consider an IfcDoor. This door is spatially
contained within an IfcBuildingStorey (through the IfcRel-
ContainedIn SpatialStructure class), which is in turn con-
tained within an IfcBuilding.® However, the door itself may be
represented using IfcExtrudedAreaSolid, IfcBooleanClip-
pingResult, or IfcAdvancedBrep and each of these geometries
are represented differently in the IFC data model. Therefore, a variety
of methods are required to obtain the location of IfcDoor instances
relative to the global coordinate system, making the manual parsing of
the IFC schema very complicated.

To automate the process of parsing these varied geometric repre-
sentations of doors and walls in our IFC data file, in this article we
use the ifcOpenShell Python library,® which we chose since our process

7 https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/
HTML/.

8 Although other hierarchies exist, e.g., involving IfcSpace or IfcSite,
these are ignored in Listing 2, as the BIM model under study only consists of
doors associated with building stories.

9 https://ifcopenshell.org/.
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Fig. 2. UML Class diagram for the BaseProcess and related classes in our DES framework (“s” is an alias for salabim). Lines with white arrowheads denote class inheritance
while dashed lines denote a general association. Key attributes (middle box) and methods (bottom box) of selected classes are also shown.
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function is used to obtain the bounding box of each wall or door. While
the geometry definition of the IFC objects is much more complex than
this, the current approach suffices for the model under consideration,
in which all walls and doors are contained rectangular prisms aligned
along the axes of the global coordinate system.

In our case study, detailed in Section 4, Autodesk Revit 2022 was
used to prepare the BIM model, exported to IFC4, with the renamed
doors.

3.3. BIM-DES integration approach

The DES techniques are used in our proposed integration approach
to model the core processes in a healthcare facility, while the adop-
tion of the openBIM methods enables the calculation of the durations
of space-dependent activities. Fig. 3 represents the main phases of
our proposed approach. Phase 1 (Experimental settings definition)
involves defining the service requirements of the simulation with the
key stakeholders. Since the focus is on the building’s core processes,
these stakeholders include Operations and Facilities Managers. This
phase concerns the definitions of the desired capabilities of the process
simulation, which will be used for decision-making in operation and

improvements

model
\ 4
5.1 Assgt 6. Process
Information . :
; simulation
Requirements
7.1 Process 7. Analysis

and assessment

Fig. 3. Phases of research for our proposed BIM-DES integration approach. Phases

addressed in this paper are highlighted in grey.

process improvements. Phase 2 corresponds to process logic modelling,
carried out via empirical research, collaboration with Operations Man-
agers, and data extraction from Standard Operating Procedure (SOP)
documents. This allows us to identify the main process stages, their
inter-dependencies, the key process parameters, and the constraints/in-
puts/outputs of each stage, as described in [101]. Phase 2 also forms
the basis of the mathematical modelling performed in Phase 3.

At this point, the space dependencies of the core processes can be
identified, such that the process schema in Fig. 3 branches into two.
If the modelled process is not space-dependent, the process simula-
tion (Phase 6) can be developed without using BIM data; otherwise,
BIM data is used to obtain the location, geometry, and semantics

simulation was also developed in Python. IfcOpenShell offers a set of
methods to navigate the geometry definitions in an IFC model; this
is shown in Listing 2. In particular, the get_level_name function
traverses the IFC object hierarchy to obtain the human-readable name
for the IfcBuildingStorey each wall or door is on. Additionally,
we have prepared the IFC model file such that all doors of interest
have names of the form d1, d2, etc. Meanwhile, the get_coords

of the spaces and physical assets involved. However, since the BIM
information is not usually created to support the simulation of core
processes in buildings, the BIM-DES information requirements must be
defined (Phase 4). In this phase, the geometric, alphanumerical Level Of
Information Need [13,98] is defined (4.1 BIM-DES requirements) and
mapped to the existing BIM data to ensure the BIM-DES integration.
These information requirements are embedded into the BIM model (5.1:
Asset Information Requirements — AIR) and can be also used as a
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Listing 2: Import ifcOpenShell packages and obtain the required
spatial/semantic data.

from ifcopenshell import geom as ifc_geom
from ifcopenshell.util import shape as ifc_shape

# Get the level that an IFC object is on.
def get_level_name(obj: ifc.entity_instance) -> str:
return (
obj.ContainedInStructure[0] .RelatingStructure.Name
)

# Get the list of elevations for each IfcBuildingStorey
# Our IFC file is known to express elevation in mm,
# convert to m.
elevations: dict[str, float] = reduce(
lambda di, d2: di | d2,
map (
lambda s: {s.Name: s.Elevation/1000.0},
ifc_file.by_type("ifcBuildingStorey")

)

# Get the bounding box of an IFC object; for our IFC file,
# all walls and doors are aligned to the xyz axes.
def get_coords(
obj: ifc.entity_instance) -> dict[str, float]:
shape = ifc_geom.create_shape(settings, obj)
grouped_verts = ifc_shape.get_vertices(shape.geometry)
return {
'x0': min(map(lambda xyz: xyz[0], grouped_verts)),
'y0': min(map(lambda xyz: xyz[1], grouped_verts)),
'z0': min(map(lambda xyz: xyz[2], grouped_verts)),
'x1': max(map(lambda xyz: xyz[0], grouped_verts)),
'y1': max(map(lambda xyz: xyz[1], grouped_verts)),
# 'z1': max(map(lambda xyz: xyz[2], grouped_verts))
}

# Extract door data, only for doors labelled di, d2, d3...
# through the IfcDoor.Name property
doors: list[ifc.entity_instance] = list(
filter(
lambda door: bool(re.match(r'd\d+$', door.Name)),
ifc_file.by_type("IfcDoor")
)
)

doors_coords = [get_coords(door) for door in doors]

# Extract wall data
walls = ifc_file.by_type("IfcWall")
wall_coords = [get_coords(wall) for wall in walls]

reference to inform the design process of similar buildings where a
BIM-DES integration is needed.

The DES-informed AIRs are then used in the process simulation
(Phase 6) to investigate how space and location impact process per-
formance. Finally, Phase 7 corresponds to the analysis and assessment
carried out to evaluate the simulated process performance against a
set of Key Performance Indicators (KPIs) derived from the service
requirements. The output of this phase is a set of process improvements
in the form of recommendations, system automation, and notifications
(7.1: Process improvements).

The phases highlighted in grey in Fig. 3 are addressed in Section 4
of this paper with respect to a case study of a clinical laboratory. Note,
however, that the framework itself is general and can be applied to core
business processes in other types of buildings.

4. Histopathology laboratory case study and implementation re-
sults

The proposed BIM-DES approach has been implemented in the
Histopathology laboratory at Addenbrooke’s Hospital in Cambridge,
UK. The Histopathology laboratory provides crucial functionality for
the efficient treatment of patients. Within the Histopathology depart-
ment, histological specimens (i.e., a section of human tissue, once taken
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Level 4 - Stages 1-7 and 9-10

Level 3 —Stage 8

Fig. 4. 3D model in IFC of the Biomedical building of Addenbrooke’s hospital. The
Histopathology laboratory is hosted in Levels 3 and 4, corresponding to the first and
second floors above the ground.

from a patient) undergo a series of stages until a pathological diagnosis
is carried out and reported to the patient. These phases are enumerated
in Table 5 (re-elaborated from [101]) and are located in the levels
3 and 4 of the building represented in Fig. 4, part of the Cambridge
Biomedical Campus.

In this section, we first define (Section 4.2) our BIM-DES archi-
tecture, constructed using the BIM-DES integration approach in Sec-
tion 3.3, and its context within a future DT. In Section 4.3, we complete
Phase 4 of our integration approach (as shown in Fig. 3) by describing
the requirements for parsing and processing the BIM data into a format
usable by our BIM-informed physical process model. In Section 4.4,
we describe how we use our DES framework (see Section 3.1) to
create a simulation model (Phase 6 of the integration approach) for
the Histopathology laboratory. Section 4.5 shows how the parsed and
processed BIM data is fed into the process simulation model (Phase 5 of
the integration approach) in order to compute the travel times between
stages of the overall Histopathology process. Finally, two numerical
examples are described in Sections 4.6 and 4.7 highlighting how our
BIM-DES integration approach can be applied to quantify and evaluate
the impact of state changes in a built space on the performance of
processes conducted therein.

4.1. Case study overview

The main KPI used to assess the Histopathology service is the
percentage of cases processed end-to-end within a given time frame,
from case creation (when the sample is booked-in at the lab) to the
issuing of a histopathologist report (i.e., the turnaround time or TAT).
However, within the laboratory setting, the reporting time cannot be
completely controlled, since it depends on the pathologists who are
external to the laboratory (Stage 12 in Table 5). Therefore, we define
the main laboratory process as Stages 1 to 11 in Table 5. The crucial
KPI within the laboratory is thus the “lab TAT”, which unlike overall
TAT lies within the control of the laboratory’s Operation Managers.

Between laboratory stages 1 to 10 in Table 5, the specimens are
transferred individually or in batches between each pair of consecutive
stages. In contrast, Stages 11 and 12 of the process are not dependent on
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Table 5
Main histopathology process stages. Note that Levels 3 and 4 correspond to the first
and second floors of the building, as illustrated in Fig. 4.

N Stage Level Sample processing
1 Reception 4 —

2 Cut-up 4 Single
3 Processing 4 Batch
4 Embedding 4 Single
5 Microtomy 4 Single
6 Staining 4 Batch
7 Cover-slipping 4 Batch
8 Digital scanning 3 Batch
9 Collation 4 Single
10 Block check & quality check 4 Single
11 Case allocation 4 Batch
12 Reporting — Single

the physical movement of specimens. As a result of the physical move-
ment of specimens between Stages 1 through 10, the laboratory TAT
is affected by space-time variables. Furthermore, not all the process
stages are executed in functional areas located on the same floor of the
Addenbrooke’s Hospital Biomedical building. In particular, since digital
scanning (Stage 8) is located on a different floor from all the other
stages (except Reporting), batches of specimens are transferred from
Stage 7 to Stage 8 and from Stage 8 to Stage 9 using the lift. This ties the
laboratory throughput to the maintenance condition of that asset — if
the lift fails and is out of order, whoever carries the batch of specimens
between floors (the “runner”) must instead use the stairs, significantly
impacting the laboratory TAT (see Fig. 4). However, the laboratory
operations managers can only guess from experience the effect of
this dependency, and have no detailed control over the laboratory
process’s throughput under this scenario, nor decision-making power
over the lift inspection and maintenance schedule. At the time this
study was carried out, the process was monitored using a combination
of spreadsheets, the HR management system, the patients’ records, and
audio recordings, which do not allow tracking of the space and asset
variables influencing the process. To fully quantify the effect of the built
assets’ state (such as lifts) on the Histopathology process, one needs an
integrated DT that informs the Operations and Facilities Managers of
the current shortest path for specimen transfer based on the current
state of the built assets, and of the predicted TAT after any change of
the transfer pathways. The current case study is intended as an initial
step towards the construction of such a DT.

Corresponding to Step 4 of our approach as outlined in Fig. 3, we
have identified, through co-operation with the laboratory operations
team, the following requirements for this case study:

1. Support the team to identify where the bottlenecks are.

2. Predict what the impact of staff allocation is to TAT and service
levels.

3. Determine what the staff-machine utilisation is.

4. Quantify the impact of equipment failure on the laboratory KPIs.

5. Quantify the effect of the layout organisation on flow and KPIs.

A DES-only solution addressing Requirements 1-3 above was previ-
ously proposed in [53]. In this article, we describe how our proposed
solution addresses Requirements 4 and 5.

4.2. Developed BIM-DES Digital Twin architecture

As mentioned in the previous subsection, the current case study is
intended as an initial step towards the construction of a DT that can
fully quantify the effect of the built assets’ state (demonstrated through
the lifts operation) on the Histopathology process. The paradigm of
“DT with human-in-the-loop” [25] was adopted for this use case. The
Operations and Facilities Managers are considered to be the direct
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Fig. 5. Conceptual level Histopathology Laboratory DT UML architecture. Plain arrows
represent the data flow. Dashed arrows represent the actuation flow. Greyed out parts
represents aspects that are within the scope of this paper.

beneficiaries of the DT deployment, and play the role of the human
in the “human-in-the-loop” design; thus, they can both input data into
the DT environment and use its outputs to implement actions on the
physical process.

A conceptual representation of our proposed BIM-DES DT archi-
tecture is depicted in Fig. 5, showing the loop formed by the NHS
Histopathology laboratory environment, the DT environment, and the
human-in-the-loop. The DT architecture is further composed of a fron-
tend with decision-making and visualisation tools, and a backend com-
posed of independent modules which we describe below. The backend
modules are designed to address the need for data availability, ac-
cessibility, and timeliness in responding to the Histopathology lab’s
needs. In the current paper, we focus on the BIM, Indoor navigation,
and Process simulation modules (highlighted in grey in Fig. 5), while
the rest of the DT architecture is out-of-scope. The three modules
are designed to run independently, enabling the parallel computation
of the results used by the Data integration and fusion module. This
fourth module aggregates and transforms the data from the other ones
based on the data requirements of the frontend tools, which access the
fit-for-purpose DT data via a backend access layer.

When launched for the first time, the BIM module parses and ex-
tracts the relevant BIM information from IFC, based on a set of process
operations-based information requirements described in Section 4.3.
The Indoor Navigation module then computes the shortest path for
completing the transfer of the samples across the laboratory spaces
and returns the transfer times for each process phase (see Section 4.5).
Finally, the process simulation is utilised to compute the laboratory
throughput and TAT (see Sections 4.4 and 4.5). At this stage, the
Process Simulation and Indoor Navigation modules can be used to
develop scenario analyses on the joint impact of space, built asset
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Table 6
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IfcDoor information requirements for the OpenBIM to DES Integration, representing the current laboratory configuration.

Level IfcName IfcDescription Process phase

Level 3 First floor d16 Digital pathology Digital scanning

Level 3 First floor d15 Corridor

Level 3 First floor di4 Corridor

Level 3 First floor d13 Lift

Level 3 First floor di2 Landing

Level 4 Second floor d11 Lift

Level 4 Second floor d10 Landing

Level 4 Second floor d9 Staining room H&E staining, Slide cover-slipping

Level 4 Second floor ds8 Main lab Microtomy/Slide printing, Case/slide collation,
Block check and Quality check, Case allocation

Level 4 Second floor d7 Corridor

Level 4 Second floor dé Processing room (Embedding) Cut-up

Level 4 Second floor d5 Green room (Cut-up) Cut-up

Level 4 Second floor d4 Yellow room (Cut-up) Cut-up

Level 4 Second floor d3 White room (Cut-up) Cut-up

Level 4 Second floor d2 Lilac room (Cut-up) Cut-up

Level 4 Second floor d1l Specimen reception Reception

conditions, staff allocation, and equipment capacity. Two numerical
examples are presented in Sections 4.6 and 4.7 with a focus on the
variation of built assets’ condition and the functional layout of the
laboratory.

Once the Indoor Navigation module is updated with the latest
spatial and semantic data, it can run independently from the BIM
module. In fact, the latter is updated only in case of changes to the
building layout and components due to, for example, refurbishments
and replacements, and can be used for other purposes. This simple
and flexible architecture allows one to decouple the three modules and
extend the DT architecture to incorporate additional service modules
(e.g., IoT, Asset maintenance, etc.) without affecting the existing ones.

4.3. Defining the BIM information requirements

The principle adopted for the definition of the BIM information re-
quirements is that any element which has an impact on the Histopathol-
ogy laboratory throughput must be modelled in BIM with a certain
level of geometric and semantic detail (see phases 4 and 5 in Fig. 3).
Each Histopathology process has a physical location, and the samples
follow the process logic, being physically moved across the laboratory
spaces. The time spent by a runner to transfer the samples (or batches of
samples) from one space-function (corresponding to the process stages)
to another is computed using BIM data. Since the resolution of the
process simulation does not require calculating the time for moving the
materials within the same space, the door-to-door time is sufficient to
inform the DES model.

To satisfy the above requirements, the doors (i.e., IfcDoor ele-
ments) used as access to the functional areas of Histopathology labora-
tory have been identified and tagged in IFC, as described in Section 3.2
and shown in Table 6. Additionally, to form the full topology of the
building as it relates to the Histopathology process, certain doors have
been included for connectivity purposes even though they are not
directly associated with a functional area of the process. These doors
are d7 and d10 to d15. This set of openBIM information requirements is
sufficient to use the geometric definition of the assets and spaces mod-
elled in BIM to enable the development of the BIM-informed physical
model as described in Fig. 3.

4.4. Process simulation

Based on the methods outlined in Section 3.1, we implemented a
DES simulation program in Python for the Histopathology laboratory
(see Phase 6 in Fig. 3). To model the flow of entities through the
histopathology lab, a class hierarchy of Specimen’s, Block’s, and

10

Slide’s was defined. A generic Batch class was also defined to hold
multiple specimens, blocks, or slides in a single entity, for machine
processes and deliveries. Note that the output type of a process can be
different from its input type if splitting is performed within the process.
Additionally, Process instances may have multiple outputs, with each
entity sent to one of the outputs based on the internal rules of the
process.

A flowchart of the defined processes of the simulation program
is given in Fig. 6. The colours of each process indicate the process
type (green = Process, pink = BatchingProcess, orange = Col-
lationProcess, blue = DeliveryProcess) as defined in Sec-
tion 3.1. The arrow colours denote the type of entity being passed
between processes (black = Specimen, red = Batch[Specimen],
blue = Block, green = Batch[Block], pink = Slide, purple =
Batch[Slidel).

Statistics collection for resources and queues in the simulation is
enabled by default in the salabim Python library. For example, the
Resource class contains a number of Monitor objects to track the
number of claimed resources, the total capacity of the resource, and the
number of waiting requests over time. In addition, we attach a Python
dictionary to the simulation model to store specimen attributes, partic-
ularly timestamps recording the start and end of each process stage or
group of stages. Note that, in Fig. 6, staining and coverslip application
(Stages 6 and 7 in Table 5) have been combined, as further study of the
Histopathology process revealed that these two stages are completed
by the same combination machine (except for mega slides which are
coverslipped manually). Finally, the openpyx1 Python library'® was
used to extract simulation parameters from an Excel configuration file
including:

+ specimen arrival rates, hourly;

« task durations;

« batch sizes;

- staff allocation schedules;

+ branching probabilities (e.g., cut-up type);

« process stage-to-door mapping for BIM-DES integration; and

» number of blocks and slides per specimen (set of random distri-
bution parameters for each specimen and block type).

4.5. BIM-DES integration and pathfinding algorithm

The purpose of the BIM-DES integration is to inform the simulation
model with the duration of the space-dependent specimen transfer

10 https://openpyxl.readthedocs.io/.
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times (see phase 6 in Fig. 3, when the process is space dependent). The
steps followed to develop the integration are as follows:

1. For each door, wall, and column obtain the local coordinates.
G 2. Overlay a rectangular grid to each floor in the study and mark
| each grid square as open space (no containment of any of the
; * previous objects), obstacle (contains wall or column), or door
I V_;_\

(contains a door).
M 3. For each pair of doors on the same floor:
B
((anvar ) (a) Filter out all grid nodes blocked by an obstacle or door
g (other than the source and target door).

[ff&"ﬁiﬁmw (b) Add diagonal edges to the grid, but only inside complete
- rectangles of four non-diagonal edges.
(c) Compute the distance and travel time between the two
m... bms ) (.m.._,.,l ) (.m..,_u.,,. uum' doors by applying Dijkstra’s!! algorithm to the marked

v grid, and a predefined walking speed for horizontal move-

batch batch batch ment within a single floor.

( deliver | \ delver D Ldellver D 4

.
sﬁlmng_regulars

llnclude:
cover-: shpplng)

F[ |

N
\

Use the distances computed in Step 3 to build a logical graph

of the floors under study. Add edges corresponding to transfer
Bt modes between floors, depending on the state of each transfer
mode (for example, if the lift is out of order, do not add the

(tver) corresponding edge to the logical graph). The reason we process
each floor separately and add modes of transport between floors
manually is because the movement speed for vertical movement
(i.e., taking the stairs or lift) is generally different than for
horizontal movement.

decalc ‘

_bone_oven |

b Y ~ 4
decale | T

| _bone_station | '

N |

batch

; L 5. For each pair of consecutive stages, use Dijkstra’s algorithm on
pu— — (semer ) the logical graph to compute the travel time between the doors
\_';‘;;;‘;_‘:3,“ ,| corresponding to the two stages.
(a) For the cut-up stage, which takes place in multiple cut-up
bmh hmh hm hmh Y rooms, all four room doors are treated as a single node
i i i { -~ m and the average travel time used.
".’.‘:5.‘::1“’ i ":"m‘.‘u‘:"" ) "l'.",f,‘.‘,""“ i ":‘.‘;.’i'"’ ’ 717 r
; . ; ; : ¢ . (surming_ugulcr! ] (;unninq_m-qu ]
/4\'1;\\ : Q‘—\\'r ’ The Python code corresponding to the steps above is given in
(et v Listings A.1 and A.2, providing the BimModel and ShapelyModel
v L_",L classes, respectively. In particular, BimModel contains semantic and
(“‘"'“ ‘ e numerical coordinate data for each door and wall under study us-
((catee ) ing a pair of Pandas dataframes, while ShapelyModel represents
these doors and walls as Polygon objects using the Shapely library.'*
Plotting functionality was also added to the ShapelyModel class,
batch resulting in the graphical output shown in Fig. 7. This ShapelyModel
JL P instance corresponds to the output of Step 1 above.
(aaer) I Figs. 8 and 9 show the rectangular grid and logical graph corre-

sponding to Steps 2 and 4 above, respectively. They are computed and
represented using the networkX Python library,'® which is also used to
execute Dijkstra’s algorithm in Step 5. For each application of Dijkstra’s
algorithm, the graph nodes are the centroids of each open (white) grid

square in Fig. 8, plus the squares corresponding to the source and target
_\L doors. The grid size of 0.5 m is defined to be always smaller than the
minimum standard width of a door (which is 0.9 m). It can be seen that
\A doors d1 to d7 and d10 form a complete graph (free travel between
any two doors in this group), whereas the remaining doors are more
weakly connected to the core of the graph, with d7 and d10 forming
bottlenecks that all specimens must pass through.

\ deliver \

Fig. 6. The defined processes of the discrete-event simulation model as a UML activity
diagram. See Section 4.4 for a detailed explanation, including colour codes.

11 Note that heuristic-based algorithms such as A* will still require exhaust-
ing all nodes reachable from the originating door if it is not connected to
the destination door in our grid, thus performing no better than Dijkstra’s
algorithm.

12 https://shapely.readthedocs.io/.

13 https://networkx.org/.
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Fig. 7. Result of plotting the two ShapelyModel instances representing Levels 3 and
4 of the Histopathology laboratory, respectively.
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Fig. 8. Grid approximation of Levels 3 and 4 of the Histopathology laboratory,
respectively.

Note the addition of diagonal edges in Step 3b. This helps to
find edge lengths closer to the shortest possible path in free space.
The reason we do not allow diagonal edges except within complete
rectangles is illustrated in Fig. 10, where the diagonal line touches
the corner of the obstructed grid square, leaving no space between the
straight-line path and the obstruction.
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Fig. 9. Logical graph of the Histopathology laboratory process. A lift failure is modelled
by removing the edge between doors d11 and d13.

Fig. 10. A grid with three open (green) and one obstructed (red) square. Since the
edge between the centres of the two diagonal open squares (black dashed) touches the
obstructed square, only the two solid lines are considered as part of the final grid in
Step 3b of the BIM-DES integration process.

4.6. Numerical example 1: impact of asset failure on the process perfor-
mance

In this example, we quantify the impact of a change in the state of
the physical process flow on the overall performance of the Histopathol-
ogy laboratory (i.e., the core business). In particular, we demonstrate
how a small change in travel times caused by a lift outage can result in
a significant decrease in the proportion of specimen reports delivered
in a timely manner. This numerical example addresses Requirement 4
in Section 4.1.

Fig. 11 shows the runner times between each pair of doors in the
Histopathology lab (Step 4 output) under normal operation, i.e., lift is
working. This results in the total runner times between stages (Step 5
output) as shown in Table 7. It can be seen that the runner times to
and from the Scanning stage are much longer than between any of the
other process stages, due to the digital scanning room being located on
a different floor (level 3 in Fig. 4) from the rest of the Histopathology
lab (level 4 in Fig. 4). Note that Table 7 shows door-to-door runner
times only; an additional duration of 30 s is added for all deliveries to
represent pick-up and drop-off times within each room.

To test the capabilities of the integrated BIM-DES approach and
verify the impact of the space variables on the process performance,
we consider the scenario where the lift used to carry the slides from
the main lab to the digital scanning and back (process phases 7-9 in
Table 5) is out of order. Thus, the resultant runner times between stages
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Fig. 11. Runner times between doors for the base scenario, using a speed of 1.2 m/s
within each floor. For the lift-down scenario, the highlighted (red outline) entries,
corresponding to the graph edge marked “lift” in Fig. 9, are removed.

Table 7
Runner times computed from the logical graph shown in Fig. 9.

Runner journey Duration, seconds

Base scenario Lift down
(reception, cutup) 8.452 8.452
(cutup, processing) 6.969 6.969
(processing, microtomy) 28.089 28.089
(microtomy, staining) 3.679 3.679
(staining, labelling) 3.679 3.679
(labelling, scanning) 86.898 155.863
(scanning, qc) 86.898 155.863

must be computed considering the delay due to the use of the stairs
instead. The glass slides are very fragile objects, and the runner needs to
pay extra attention when they are moved through the stairs and when
crossing doors, which are always closed for safety reasons in the lab
environment. Also, the dimension of the batch can be large in some
cases, and this may require breaking it down into smaller assemblies
to be carried to the digital scanning one by one, as opposed to using a
trolley and carrying all of them to the next stage using the lift. For these
reasons, the runner times to and from the Scanning stage are estimated
to be almost 80% higher than in the base scenario where the lift is
working.

To gauge the impact of this increase, we ran the process simulation
model for both sets of runner times, with results shown in Fig. 12. It
is demonstrated that the increase in runner times under the lift-down
scenario results in a lower service level of the laboratory. In particular,
the difference in the proportion of specimens completed — Reception
to Block & Quality Check stages as defined in Table 5, i.e., used to
calculate the laboratory TAT — is statistically significant at the 7- and
10-day marks.

The result here can seem counterintuitive at first, as the mean
lab TATs for the two scenarios are 8.6 and 9.4 days, respectively,
corresponding to a TAT increase of 9.3% when the lift is out of
order relative to the base scenario. On the other hand, the transfer
of specimens between floors only accounts for a small percentage of
this increase. This large performance loss relative to the small increase
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Fig. 12. Comparison of lab TAT for two scenarios with the lift working and out-of-
order, respectively. The runner speed is set at 1.2 m/s within each floor for horizontal
transfers. Error bars denote 95% confidence intervals based on 30 simulation runs.

in runner times can be explained by the knock-on effects of increased
staff utilisation on the queuing times of other tasks in the overall
Histopathology process, some of which may be pushed to the next day
due to shift scheduling caused by the longer time in moving samples
(slides in this case) between floors.

4.7. Numerical example 2: impact of the redefinition of the laboratory
layout on the process performance

The high travel time to and from the digital scanning room has a
significant impact on lab efficiency, and, as shown in Fig. 12, causes the
system to be quite sensitive to disruptions to lift connectivity between
the two floors of the lab. We use the BIM-DES framework to predict
the effect on the lab TAT of swapping the digital scanning room with
a room on Level 4 of the lab — in particular, the amount of increase
in specimens completed within a given number of days.

This scenario analysis serves as an example of the BIM-DES frame-
work’s ability to estimate runner times for new pathways in the
histopathology lab, and demonstrates the system’s sensitivity to the spa-
tial layout, in response to requirement 5 in Section 4.1. The availability
of BIM information allows us to check whether the two swapped rooms
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Table 8
Room areas in the histopathology laboratory. The rooms marked with asterisks are those considered for reassignment of the Digital Scanning
function.
IfcDescription Area (m?) Level Associated stages Associated door
Main lab 102.112 4 Microtomy, Labelling, Block check/quality check ds8
Processing room (embedding) 42.976 4 Processing dé
Lilac room cut-up 41.988 4 Cut-up d2
Specimen storage 31.310 4 - (unnamed)
Specimen reception 29.160 4 Specimen reception dl
Staining room 27.772 4 Staining do
Yellow room cut-up 27.488 4 Cut-up d4
Green room cut-up 26.867 4 Cut-up d5
White room cut-up 26.103 4 Cut-up d3
Main lab section leaders* 16.413 4 - d19
Filing room* 14.239 4 - d20
Ventilated stores* 14.012 4 - dis
Block & slide* 13.815 4 - d17
Digital pathology 12.651 3 Digital scanning di6

in this scenario analysis are compatible with their newly assigned
functions. For illustrative purposes, we use the room size and topology
of the space-function configuration to choose the two alternative rooms
for relocating the digital scanning function. However, we do not
consider the effect of auxiliary tasks in the lab, under the assumption
that the lab TAT is dominated by tasks on the critical path.

To identify spaces (If cSpace) to which the digital scanning stage
(Stage 8 in Table 5) can be relocated, we first obtain a list of all
named spaces (non-empty IfcDescription) from the BIM module
(as shown in Fig. 5) with a floor area equal or larger than current digital
scanning room, using the code in Listing 3. The result of this search
is shown in Table 8. Auxiliary spaces such as toilets and circulation
areas have been excluded. Based on these results, we have several
rooms as candidates for swapping functions with the current digital
scanning room, which have a room area between 12.6 and 16.5 m?,
corresponding to the space needed to host the function.

Listing 3: Compute the floor area of an IfcSpace.

from ifcopenshell import geom as ifc_geom
from ifcopenshell.util import shape as ifc_shape

settings = ifc_geom.settings()
settings.set(settings.USE_WORLD_COORDS, True) #
< Find global coordinates

def get_area(x):
shape = ifc_geom.create_shape(settings, x)
geom = shape.geometry
return ifc_shape.get_footprint_area(geom)

Running the Indoor navigation module for the new scenario analysis
results in the runner times shown in Table 9. It can be seen that the
runner times to and from the scanning stage are much reduced in the
new cases compared to the d16 (base) case, while all other durations
remain unchanged. Based on Table 9, we can identify the optimal
relocation space for digital scanning to be the d17 Block & slide room
option and all alternatives are shown to outperform the base case for
all four thresholds shown in Fig. 13 compared to the base case. Note
that Table 9 shows door-to-door runner times only; as in Numerical
Example 1, an additional duration of 30 s is added for all deliveries to
represent pick-up and drop-off times within each room.

Running the Process simulation module using the runner times in
Table 9 leads to the lab TAT results shown in Fig. 13. It can be seen
that swapping digital scanning functionality to a room on Level 4 leads
to a higher proportion of specimens completed in a timely manner,
especially for the 7- and 10-day thresholds. As an example, 78.7% of
specimens can be completed when digital scanning is moved to Block

14

1.0 A
0.8 1
el
3
i
Q.
E
S 0.6 |
wu
c
7]
E
v
@
o
]
—
[«]
S 041
S
Q
| i]i
a
0.2 1
EEE d16 Digital pathology (base case)
w d17 Block & slide
d18 Ventilated stores
N d19 Main lab section leaders
B d20 Filing room
0.0 -

o

<
-~

-
Elapsed time [days]

Fig. 13. Comparison of lab TAT with respect to room assignment for the digital
scanning function. Legend labels show the current description for each candidate room
and its associated IfcDoor. Error bars denote 95% confidence intervals based on 30
simulation runs.

& slide room, compared to 73.9% in the base case and 62.6% when
digital scanning is kept in its current location in the Digital pathology
room and the lift is non-functional.

The results in this subsection supports our finding in Section 4.6
(Numerical example 1) that small changes in runner times between
histopathology stages can result in a significant change in overall lab
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Table 9
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Runner times for the scenario analysis in Section 4.7. Descriptions for each room (associated doors d16 to d20) under the

current process layout are given in Table 8.

Runner journey

Duration (s) when digital scanning is in:

d16 (Base) di17 d18 d19 d20
(reception, cutup) 8.452 8.452 8.452 8.452 8.452
(cutup, processing) 6.969 6.969 6.969 6.969 6.969
(processing, microtomy) 28.089 28.089 28.089 28.089 28.089
(microtomy, staining) 3.679 3.679 3.679 3.679 3.679
(staining, labelling) 3.679 3.679 3.679 3.679 3.679
(labelling, scanning) 86.898 1.839 23.261 5.762 3.923
(scanning, qc) 86.898 1.839 23.261 5.762 3.923

efficiency, due to the proportion of lab TAT actually associated with
manual tasks including specimen deliveries.

5. Discussion and conclusions

This paper presented a BIM-DES integration framework, using the
open IFC data format for incorporating BIM data into a space-aware
process DT for hospital operations. As shown by the two numerical
examples, even a small change in travel times, such as that caused by
the malfunction of critical building infrastructure (i.e., a lift) or a reor-
ganisation of room-function assignments, can have a significant impact
on core process performance in a specialised building. The proposed
BIM-DES integration framework allows us to quantify such impacts,
improving the Operations Managers’ decision-making process when
faced with such disruptions. The benefits of the proposed approach are
discussed below.

Incorporating our BIM-DES integration framework into a DT archi-
tecture, as proposed in this paper, allows Facilities Managers to make
reactive and proactive decisions for protecting process performance
in response to continuous information updates regarding the building
state. Adding space-awareness to the process simulation model also
allows for the identification of inefficiencies in the core processes, so
that normal operations can also be improved. Thus, Facilities Managers
can use the results of the BIM-DES integration to define a prioritisation
strategy for service-based asset maintenance, identifying and allocating
more investment to parts of the building where disruptions have the
highest impact on core business processes (e.g., see the results of
Numerical example 1 in Section 4.6). This gives clear evidence of
why Estates (healthcare facilities in this case) and clinical services
should not be siloed, instead making decisions together based on the
interdisciplinary insights provided by the space-process DT.

The DT architecture proposed in this paper provides a flexible and
modular way to identify, parse, process and use multi-disciplinary
BIM, Operations and Facilities Management information from multiple
sources to make complex decisions in highly specialised and complex
facilities. The data pipelines and algorithms allow for the flexible inte-
gration of additional modules (see Section 4.2), without compromising
the functionality of the existing ones. In this paper, the effectiveness of
the BIM, Indoor Navigation and Process Simulation modules have been
tested. The proposed architecture sits outside the NHS environment
and can run independently, complementing the functionality of legacy
Information Technology (IT) systems and providing right-time data
used to control the physical process.

For estimating the performance of the laboratory’s core processes,
comparable methods to the proposed BIM-DES integrated framework
include DES alone and ABS. The advantages of the BIM-DES integrated
framework are as follows:

« First, BIM information can be used to automatically reconfigure
the BIM-DES simulation model parameters when changes occur
to the process layout (reassignment of tasks to locations in the
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second numerical example in Section 4.7), whereas non-BIM-
integrated DES and ABS models require this information to be
incorporated into the simulation model manually.

Second, the rich BIM information, including details on the areas of
spaces, the activities they can support, and the distance between
them, can be used to dynamically perform different scenario
analyses using the BIM-DES integrated framework. In contrast,
non-BIM-integrated DES and ABS models are typically built-for-
purpose and may lack the information and capabilities required
for new scenario analyses.

Finally, by directly connecting core process performance to the
available BIM information, we can model the effect of building
design and state (numerical examples 1 and 2) on new process
models while reducing the need for new data collection, such as
measuring travel times between locations with a stopwatch. These
new process models may reflect existing processes that have not
been studied previously or optimisations to existing processes
to reduce turnaround times. Note that the BIM standard covers
not only geometric and spatial information but also semantic
information, all of which can be used to inform the simulation
model of the integrated BIM-DES framework.

Overall, the proposed approach can increase the laboratory resilience
and helps to find viable solutions in the case of disruptions to the core
process. The numerical example in Section 4.6 describes a scenario in
which the Histopathology process needs to be re-routed using the exist-
ing built environment (space and asset performance) constraints. The
same framework has been used to assess multiple space-functional re-
configuration alternatives to identify the best option for the laboratory
performance. Assuming that BIM data is available, the proposed ap-
proach can be extended and used in the case of a temporary decamp or
when the entire function needs to be moved to a new building, with the
latter being a real need expressed by the Addenbrooke’s Histopathology
Operations team. Leveraging the proposed methods, the new sample
transfer time is automatically obtained using IFC data, shortest path
calculation, and DES, saving decision-making time and ensuring effi-
cient operation under the effect of a built-environment-related process
disruption. Having clarity on this issue can save time-critical resources
and help control the backlog of medical cases. For example, key medical
facilities may be forced to temporarily or permanently relocate due
to various factors such as risk of contamination (a typical situation
during the COVID-19 emergency) or the presence of highly degraded
Reinforced Autoclaved Aerated Concrete (RAAC). RAAC was widely
used in mid-20th century in the UK and its service life is now coming
to an end [102], posing a serious problem for the NHS Estates.

5.1. Limitations and future work

In this subsection, we highlight the remaining research gaps and
limitations, thus setting the direction for future work.
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5.1.1. Improved BIM-based indoor navigation

The indoor navigation algorithm used in this paper only allows
travel in the eight ordinal directions. A more advanced pathfinding
algorithm may allow travel in a straight line between any two grid
points, as long as the path between them is unobstructed (any-angle
path planning) [103]. Moreover, we used a weighted graph method to
compute the travel time in 3D (through the stairs and the lift). Although
more advanced navigation methods exist in literature [104,105], in the
current implementation, which serves as a proof-of-concept of BIM-
DES integration, we have chosen simplicity of pathfinding algorithm
over optimality. In fact, we have used the distance between doors as
a proxy for the runner time between process stages, while ignoring
the internal geometries of each room involved in the Histopathology
process, e.g. workbenches and machines.

The relevant spatial variables for the Histopathology laboratory
were originally identified and described in [101], and are modelled in
BIM at a low level of geometric detail in accordance to the informa-
tion requirements needs of the current use case. This depends on the
fidelity of the process simulation, which has been developed to support
decision-making at the whole-laboratory level. However, the original
BIM model supports a higher level of granularity, which can be used
to compute internal travel times within each space. This presents an
opportunity for additional research to further develop the integration
approach.

5.1.2. Real-time data communication

The simulation model in this paper can, with some modification, be
used for short-term forecasting of the process performance by reading
in a fresh building state (i.e., whether the lift is working) and process
state (i.e., the status of all work-in-progress specimens) at the beginning
of each simulation round. This will require a data serialisation format
for reading and writing the full simulation state from and to a file,
e.g., JSON (ISO 21778), MessagePack or HDF5. A method of estimating
residual task durations based on time elapsed is also required, i.e., gen-
erating random variates from the truncated probability distribution
(i.e., the distribution of a task’s remaining duration conditioned on
the time already elapsed). Rejection sampling is suitable for this but
requires further study to minimise the rejection rate for computational
efficiency.

Alternatively, the process flow logic of the simulation model can
be used to track the progress of the specimens within the laboratory
in real-time. Combined with the results of the process simulation, this
can enhance control operations. However, such fine-grained progress
tracking of specimens requires location tracking and real-time data
collection (e.g., using barcode scanners or sensors to ensure that the
specimens are where they are supposed to be according to the process
logic). Further research is required to determine the granularity of the
real-time process tracking and the simulation-based forecasting.

Under the FM perspective, the performance of the built assets has
been considered as an input for the scenario analysis presented in
Section 4.6. However, this is a simplified model of asset performance
containing a single high-risk situation (i.e., a faulty lift), used to demon-
strate the impact of a critical asset on overall process performance.
In contrast, built asset performance can be modelled with a higher
level of detail, and the condition of both the built assets and spaces
can be defined using a statistical approach or data-driven methods —
e.g., using environmental and asset monitoring sensors such as IoT
or BMS and BAS data, if available. For example, this integration can
enable to automatically check whether the swapped rooms in the sce-
nario analysis in Section 4.7 are compatible with their newly assigned
functions, considering building services constraints. This requires to
develop new Facilities Management and IoT engines for our proposed
DT architecture, which requires further research work.

Moreover, the performance of the clinical equipment has not been
considered in the process simulation model, as staffing is the primary
resource constraint in the current case study. On the other hand, the
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condition of these assets (which can be monitored via sensors as well)
represents a critical factor, and similarly to the built assets, any disrup-
tion to clinical equipment could heavily impact the core process. The
integration of this data represents a further research opportunity and a
closer relationship with the Clinical Engineering team to define an ad-
ditional Asset Management engine. The authors are currently working
at further developing and testing the proposed approach in additional
case studies, where built asset and clinical equipment monitoring data
can be integrated in the DT ecosystem.

5.1.3. An ontology for the hospital Digital Twin

To realise the full potential of the proposed BIM-informed DT
architecture, M&S, AM, FM, and IoT information must be structured
in a consistent and interoperable manner. For example, within the BIM
domain, the IFC schema is an application-agnostic and non-proprietary
data schema which offers the opportunity to access and use building
information using a variety of software and libraries (such as IfcOpen-
Shell in this paper). IFC also contains classes for process modelling,
including IFCProcess corresponding to the processes described in
Fig. 2 and IfcWorkCalendar to define the allocation of staff re-
sources. Therefore, it may be possible to describe the operations of the
Histopathology laboratory within the IFC schema.

However, IFC does not contain enough classes representing the clini-
cal assets, other than the generic IFCProduct. Furthermore, it may be
preferable to describe these processes using other modelling schemas,
such as UML, particularly activity and sequence diagrams, or BPMN
(ISO 19510). To describe the events (corresponding to IfcEvent)
of these processes and corresponding changes to the laboratory state,
formal specifications include the Discrete Event System Specification
(DEVS) and its extensions [106], as well as stochastic Petri nets [107].

Finally, research on ontologies and knowledge graphs for the built
environment has demonstrated the possibility of enriching existing
schemes and standards with a wide variety of data models [108], which
increase capability of representing any asset, spatial, process object,
physical and virtual agents. The scope is potentially much broader
and creates the opportunity of developing a full-hospital DT ontology,
including clinical services, logistics and remote patient monitoring.

5.2. Conclusions

The research on healthcare facilities DTs has flourished in the past
few years. Here we reiterate the knowledge gaps and how they have
been addressed.

1. Isolated Process Improvements: Most research has focused on iso-
lated process improvements without a multi-disciplinary ap-
proach. This gap is addressed by modelling the joint effect of
space and asset performance on core processes using a BIM-DES
integration approach.

2. Building Layout and Process Efficiency: Few studies consider the
effect of building layout on process efficiency, especially with
naturally occurring changes. This gap is addressed by developing
a space-aware process DT architecture that handles multi-source
data and provides insights based on a DT-with-the-human-in-the-
loop paradigm.

3. Focus on Physical Assets: Many existing DTs focus on physical
assets rather than core business processes within built spaces.
This gap is addressed by using IFC as an openBIM standard to
inform space variables and constraints in an integrated process
simulation of hospital operations, connecting currently siloed
domains.

In summary, this paper answers the research question by proposing
a BIM-DES integration approach and showing how it can be integrated
into a DT architecture for a histopathology laboratory. In particular, we
used IFC data to generate a logical graph of the histopathology labora-
tory, from which the travel times between stages of the histopathology
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process can be computed. This processed data was then used to create
a BIM-informed physical process model, upon which we used DES
to compute the KPIs of the histopathology process, in particular the
proportion of specimens completed within a certain lab TAT threshold.
Finally, we demonstrated how the effect of changes in the building’s
state due to a lift failure and the laboratory’s functional configuration
on the histopathology process’s KPIs can be quantified and estimated.

The results of this paper support our hypothesis in Section 1.1
that, where BIM is available, valid IFC can be used to integrate this
data with simulation modelling to form a decision-making framework.
This BIM data provides our framework with information about the
layout, systems, and fabric of our facility, thus informing actions for
improving core-process efficiency, particularly within complex health-
care facilities, as specified in our stated research question. Operations
and facilities managers can use our approach to:

1. simulate failures of critical built assets and their impact to the
core processes,

2. build scenario analyses and compare the performance of the
facility under current and hypothetical situations, and

3. develop a strong business case for allocating additional invest-
ments on spaces and built assets, allowing more efficient opera-
tions and resilience against any disruptions to the workflow.

Furthermore, because our proposed methodology, as implemented in
this paper, is developed using open-source technologies, it is compati-
ble with a wide range of BIM editing software, as long as export to the
IFC format is supported and meets the standard schema requirements.
Additionally, the generic nature of the proposed space-aware process
DT architecture means it can be applied to a variety of buildings across
various applications.
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Listing A.1: BIMModel class definition for the BIM-DES integration.

from dataclasses import dataclass
from functools import reduce
from itertools import islice, product

import ifcopenshell as ifc, ifcopenshell.geom as ifc_geom, ifcopenshell
< .util.shape as ifc_shape

import matplotlib.axes, natsort, networkx as ntx, numpy as np, pandas
< as pd, re, shapely as shp

from os import PathLike
from typing import Self
from shapely.plotting import plot_polygon

import sys
if '..' not in sys.path: sys.path.append('..")

from histopath_bim_des.config.runners import RunnerConfig

(settings := ifc_geom.settings()).set(settings.USE_WORLD_COORDS, True)
< # Find global coordinates

@dataclass

class BimModel:
elevations: dict[str, float]
doors: pd.DataFrame
walls: pd.DataFrame

Ostaticmethod
def from_ifc(path, door_filter = r'd\d+$):
ifc_file = ifc.open(path)
elevations: dict[str, float] = reduce(
lambda di, d2: di | 42,
map(lambda s: {s.Name: s.Elevation/1000.0}, ifc_file.by_type
< ("ifcBuildingStorey")))

def get_level_name(obj): return obj.ContainedInStructurel[0].
< RelatingStructure.Name

def get_coords(obj):

shape = ifc_geom.create_shape(settings, obj)

v = ifc_shape.get_vertices(shape.geometry)

return {x0': min(map(lambda xyz: xyz[0], v)), x1': max(map(
< lambda xyz: xyz[0], v)),
'y0': min(map(lambda xyz: xyz[1], v)), 'y1': max(map(

< lambda xyz: xyz[1], v)),

'z0': min(map(lambda xyz: xyz[2], v))}

# Extract door data
doors = list(filter(lambda door: bool(re.match(door_filter,
< door.Name)),
ifc_file.by_type("IfcDoor")))
doors_coords = [get_coords(door) for door in doors]
doors_df = pd.DataFrame ({
'‘door_name': [door.Name for door in doors], 'floor': [
< get_level_name(door) for door in doors],
'x0': [box[x0] for box in doors_coords], 'x1': [box[x1] for
< box in doors_coords],
'y0': [box[y0] for box in doors_coords], 'y1': [box[y1] for
< box in doors_coords],
'z0': [box['z0] for box in doors_coords],
A
.sort_values(by="door_name',key=natsort.natsort_keygen())\
.reset_index (drop=True)

# Extract wall data
walls = ifc_file.by_type("IfcWall")
wall_coords = [get_coords(wall) for wall in walls]
walls_df = pd.DataFrame ({
'‘wall_name': [wall.Name for wall in walls], 'floor': [
< get_level_name(wall) for wall in walls],
'x0': [box[x0] for box in wall_coords], 'x1': [box['x1] for box
< in wall_coords],
'y0': [box[y0] for box in wall_coords], 'y1': [box['y1] for box
< in wall_coords],
'z0': [box[z0] for box in wall_coords]})
return BimModel (elevations,doors_df,walls_df)

def to_shapely(self, level: int) -> 'ShapelyModel':
""Returns a Shapely representation of a floor in the "BimModel-.
o mm
wall_shapes = [
shp.box(wall.x0, wall.y0, wall.x1, wall.yl, ccw=False)
for wall in self.walls.loc[self.walls.floor.str.contains(f'
< Level {level})].itertuples()]
door_shapes = {
door.door_name: shp.box(door.x0, door.y0, door.x1, door.yl,
< ccw=False)
for door in self.doors.loc[self.doors.floor.str.contains(f'
< Level {level})].itertuples()}
for s in wall_shapes + door_shapes.values(): shp.prepare(s)
return ShapelyModel(wall_shapes, door_shapes)

Data availability

Appendix. Program listings The key code used in this paper is available in the Appendix. The
full Python code base for this paper can be found at https://github.
Program listings for Section 4.5 (BIM-DES integration and pathfind-

ing algorithm) are given in Listings A.1 and A.2.

com/yinchi/histopath-bim-des.
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Listing A.2: ShapelyModel class definition for the BIM-DES integration. See Listing A.1 for required import statements.

@dataclass

class ShapelyModel:
""Shapely representation of a single floor in the Histopathology lab.""
wall_shapes: list[shp.Polygon]
door_shapes: dict[str, shp.Polygon]

def is_valid_box(self, box: shp.Polygon, ok_doors: list[str]):
""Determines if box intersects with a wall or door except for ~ok_doors-.""
ok_door_shapes = [self.door_shapes[x] for x in ok_doors]
shp. prepare (box)
return (
(True, 'ok_door') if any(box.intersects(ok_door_shapes))
else (False, 'wall) if any(box.intersects(self.wall_shapes))
else (True, 'empty'))

def shortest_path(self, from_door: str, to_door: str, grid_size=0.5,bottom_left=(30, 45), top_right=(90, 70)):
""Find the shortest path between two doors in the model.™"
x_min, y_min = bottom_left
x_max, y_max = top_right
n_x, n_y = len(np.arange(x_min, x_max, grid_size)), len(np.arange(y_min, y_max, grid_size))

# Create base grid
grid = ntx.grid_2d_graph(n_x, n_y)
for i, j in grid.nodes:
grid.nodes[(i, j)][box] = shp.box(
x0 := x_min + i*grid_size, yO := y_min + j*grid_size, xO+grid_size, yO+grid_size, ccw=False)
shp.prepare(grid.nodes[(i, j)][box])
grid.nodes[(i, j)]['pos] = ((centroid := grid.nodes[(i, j)][box].centroid).x, centroid.y)

selected_nodes = [n for n, v in grid.nodes(data=True)
if self.is_valid_box(v[box'], ok_doors=[from_door, to_door]) [0]]
grid2 = ntx.Graph(grid.subgraph(selected_nodes))

# Add diagonals to grid2 within each complete 'box" of 4 edges
for _, _, v in grid2.edges(data=True): v[weight] = 1.0
for x, y in grid2.nodes:
if ((x+1, y) in grid2.nodes and (x, y+1) in grid2.nodes and (x+1, y+1) in grid2.nodes):
grid2.add_edge((x, y), (x+1, y+1), weight=2%x0.5) # northeast direction
if ((x+1, y) in grid2.nodesand (x, y-1) in grid2.nodes and (x+1, y-1) in grid2.nodes):
grid2.add_edge((x, y), (x+1, y-1), weight=2%*0.5) # southeast direction

# Get node indexes for from_door and to_door
from_node = [n for n, v in grid.nodes(data=True) if v[box].intersects(self.door_shapes[from_door].centroid)] [0]
to_node = [n for n, v in grid.nodes(data=True) if v[box'].intersects(self.door_shapes[to_door].centroid)][0]

path_nodes = ntx.shortest_path(grid2, from_node, to_node, weight='weight‘)

path_edges = list(zip(path_nodes[:-1], path_nodes[1:]1))

path_graph = ntx.Graph()

for i, n in enumerate(path_nodes): path_graph.add_node(i, pos=grid2.nodes(data=True) [n] [')pos])
for i, e in enumerate(path_edges): path_graph.add_edge(i, i+1, weight=grid2.edges[e] ['weight'])
path_length = ntx.shortest_path_length(grid2, from_node, to_node, weight=weight) * grid_size
return path_length, path_graph

def plot_floor(self, ax: matplotlib.axes.Axes, title: str, bottom_left=(30, 45), top_right=(100, 80)):
""Plots the floor model using Matplotlib.""
for p in self.wall_shapes: plot_polygon(p, ax, facecolor=gray', add_points=False, linewidth=0)
for n, p in self.door_shapes.items():
plot_polygon(p, ax, facecolor=red',add_points=False, linewidth=0)
ax.text(p.centroid.x, p.centroid.y, n, color=red)
ax.axis('square’)
x0, yO = bottom_left
x1, y1 = top_right
ax.set (xlim=(x0, x1), ylim=(y0, y1), title=title)

def logical_graph(model: ShapelyModel, speed: float):
"Construct a logical graph representation of a floor.""
graph = ntx.Graph().add_nodes_from(keys := list(model.door_shapes.keys()))
for i, k1 in enumerate(keys):
for _, k2 in islice(enumerate(keys), i+1, None):
try:
path_len, _ = model.shortest_path(kl, k2)
graph.add_edge(k1, k2, weight=path_len/speed)
except ntx.NetworkXNoPath:
continue
return graph

def runner_times(model: BimModel, cfg: RunnerConfig) -> dict[tuple, float]:
""Compute runner times between process stages in the Histopathology model.""
target_levels = [re.match(r'Level (\d+)', s).group(1) for s in model.doors.floor.unique()]
logical_graphs = {level: logical_graph(model.to_shapely(level=level), speed=1.5)
for level in target_levels}
full_logical_graph = ntx.compose_all(logical_graphs.values())
for path in cfg.extra_paths: full_logical_graph.add_edge(*path.path, weight=path.duration_seconds)

d = cfg.door_map.model_dump()
pairs = list(zip(k := list(d.keys()), k[1:1))

ret = {}
for u, v in pairs:
if 'cutup' in (u, v):
du, dv = d[u] if u == 'cutup' else [d[ull, d[v] if v == 'cutup' else [d[v]]

# compute the average runner time for all cutup rooms
ret[(u, v)] = np.average(

ntx.shortest_path_length(full_logical_graph, di, d2, weight='weight")
for di, d2 in product(du, dv)
1, weights=cfg.cutup_dist
)
else:
ret[(u, v)] = ntx.shortest_path_length(full_logical_graph, d[ul, d[v], weight='weight')
return ret
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