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An important issue in the analysis of rare variant association studies is the ability to annotate nonsynonymous variants in terms of
their likely importance as affecting protein function. To address this, AlphaMissense was recently released and was shown to have
good performance using benchmarks based on variants causing severe disease and on functional assays. Here, we assess the
performance of AlphaMissense across 18 genes which had previously demonstrated association between rare coding variants and
hyperlipidaemia, hypertension or type 2 diabetes. The strength of evidence in favour of association, expressed as the signed log p
value (SLP), was compared between AlphaMissense and 43 other annotation methods. The results demonstrated marked variability
between genes regarding the extent to which nonsynonymous variants contributed to evidence for association and also between
the performance of different methods of annotating the nonsynonymous variants. Although AlphaMissense produced the highest
SLP on average across genes, it produced the maximum SLP for only 4 genes. For some genes, other methods produced a
considerably higher SLP and there were examples of genes where AlphaMissense produced no evidence for association while
another method performed well. The marked inconsistency across genes means that it is difficult to decide on an optimal method
of analysis of sequence data. The fact that different methods perform well for different genes suggests that if one wished to use

sequence data for individual risk prediction then gene-specific annotation methods should be used.
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INTRODUCTION
As large exome-sequenced datasets become available it has
become possible to detect gene-level associations between the
burden of extremely rare coding variants and a variety of
phenotypes [1, 2]. Typically, tests for association involve consider-
ing together variants falling into a particular category based on
their predicted effect. Variants expected to completely disrupt
function of a gene, consisting of stop gained, frameshift and splice
site variants are jointly termed loss of function (LOF) or protein
truncating variants (PTV) and when considered jointly it is usually
the case that this category of variant is associated with the largest
effect size. While nonsynonymous variants may also have effects,
the nature and magnitude of these effects is likely to be
heterogeneous and if all nonsynonymous variants are considered
to form a single category then the average estimated effect will
naturally be smaller than that of the variants having the largest
effect sizes. Rare variant association studies which simply consider
all nonsynonymous variants jointly have vyielded informative
results [3]. However a more widely used approach is to use some
form of secondary annotation method which attempts to
distinguish those nonsynonymous variants which are more likely
to have a biological effect and applying such approaches may
allow one to demonstrate that those nonsynonymous variants
predicted to be most impactful are indeed the ones which show
association with a phenotype [4].

A large number of methods are available to carry out such
secondary annotations and we have recently assessed their

relative performance [5]. Since then a new method, AlphaMis-
sense, has been released with the aim of recognising whether a
nonsynonymous variant observed in a patient is or is not likely to
be pathogenic [6]. The report of this study also discusses at length
the various issues involved in attempting to interpret the likely
effects of nonsynonymous variants. The AlphaMissense prediction
is based on machine learning approaches to assimilate informa-
tion about the protein structural context and about evolutionary
conservation to generate a score reflecting likely pathogenicity. It
was demonstrated to perform well on benchmarks derived from
clinically identified variants as well as from multiplexed assays of
variant effect (MAVEs).

Since the publication of AlphaMissense, a small number of
published reports have carried out further evaluation of its ability
to identify pathogenic variants in a clinical context. In a study of
37 nonsynonymous variants in IRF6, experimental work deter-
mined that of 18 variants predicted by AlphaMissense to be
pathogenic 15 were in fact benign [7]. In a study of CFTR variants,
AlphaMissense predicted a high proportion to be pathogenic,
resulting in a high false positive rate and fair classification rate
with only modest correlation with clinical measures of pathogeni-
city [8]. A study of 2073 variants in haematological malignancies
found good agreement between AlphaMissense and previous
classifications which had been made for clinical reporting
purposes although they noted that some of the variants for
which there was disagreement seemed to represent misclassifica-
tions by AlphaMissense [9].
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Table 1. List of genes used for these analyses along with the SLP obtained in the original analyses with the corresponding phenotype [19-21].

Phenotype Gene symbol
Hyperlipidaemia LDLR
Hyperlipidaemia ABCG5
Not hyperlipidaemia NPCILT
Not hyperlipidaemia PCSK9
Not hyperlipidaemia ANGPTL3
Not hyperlipidaemia APOC3
Hypertension DNMT3A
Hypertension FES
Hypertension SMAD6
Hypertension NPR1
Hypertension GUCYI1A1
Hypertension ASXL1
Not hypertension INPPL1
Not hypertension DBH
Type 2 diabetes GCK
Type 2 diabetes HNF4A
Type 2 diabetes HNF1A
Type 2 diabetes GIGYF1

Gene name SLP

Low Density Lipoprotein Receptor 156.81
ATP Binding Cassette Subfamily G Member 5 6.95
NPC1 Like Intracellular Cholesterol Transporter 1 7.60
Proprotein Convertase Subtilisin/Kexin Type 9 43.57
Angiopoietin Like 3 12.68
Apolipoprotein C3 13.19
DNA Methyltransferase 3 Alpha 14.20
FES Proto-Oncogene, Tyrosine Kinase 9.92
SMAD Family Member 6 6.02
Natriuretic Peptide Receptor 1 7.98
Guanylate Cyclase 1 Soluble Subunit Alpha 1 9.13
ASXL Transcriptional Regulator 1 835
Inositol Polyphosphate Phosphatase Like 1 7.09
Dopamine Beta-Hydroxylase 9.71
Glucokinase 32.11
Hepatocyte Nuclear Factor 4 Alpha 9.39
HNF1 Homeobox A 7.98
GRB10 Interacting GYF Protein 1 7.58

Variants which impaired functioning of NPCTL1, PCSK9, ANGPTL3 and APOC3 were found to be protective against hyperlipidaemia so for convenience the
phenotype of interest is stated to be “Not hyperlipidaemia” Likewise, variants impairing functioning of INPPLT and DBH are protective against hypertension.

Although one might hope that the same classification methods
used to identify single variants causing severe disease might also
be helpful in attempting to discriminate those variants increasing
risk of common phenotypes, this is not necessarily the case. For
example, when using PolyPhen-2 it is recommended that the
version trained on HumVar be used to assist the diagnosis of
Mendelian disorders while the version trained on HumDiv should
be used to evaluate rare alleles for complex genotypes (Adzhubei
et al. [10]). This consideration means that it would be helpful to
assess the extent to which AlphaMissense could assist as an
annotation tool in the context of large case control studies of
exome-sequenced datasets aiming to identify genes influencing
the risk of common phenotypes.

The aim of the present study is to compare the performance of
AlphaMissense with other annotation methods in terms of
their ability to produce evidence for association between a gene
and a common, clinically relevant phenotype. Such associations
were previously established using weighted burden analyses,
in which different variants within a gene were weighted
differentially according to their annotation and rarity. In the
present analyses, variants are weighted for rarity and then the
contributions to evidence for association are examined sepa-
rately for AlphaMissense and a number of other annotation
methods.

The genes and phenotypes used in this study are listed in Table 1
and they were selected because they had previously produced
exome-wide significant results in weighted burden analyses using
phenotypes of hypertension, hyperlipidaemia and type 2 diabetes in
the UK Biobank dataset [11-13]. In Table 1, the SLP entry indicates
the signed log10 p value for the evidence in favour of association, as
explained in greater detail in the Methods section below. For
convenience, if variants in a gene are protective against, for
example, hyperlipidaemia then the phenotype of interest is
characterised as “Not hyperlipidaemia”. For a number of these
genes, their association with the relevant phenotype was previously
well established and for others there is at least some independent
evidence for their involvement, increasing the confidence that they
do not represent false positives. These findings are summarised as
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follows. Rare variants with a large dominant effect in LDLR, APOB and
PCSK9 are recognised to cause 40% of cases of familial hyperlipi-
daemia [14]. Recessively acting variants in ABCGS5, involved in the
intestinal and biliary excretion of cholesterol, are recognised to
cause sitosterolemia and recent reports support an effect of
heterozygous variants as causes of hypercholesterolaemia [15, 16]
The product of NPCTL1, is involved in intestinal sterol absorption and
is the target of ezetimibe, a cholesterol absorption inhibitor which
lowers blood cholesterol [17] The product of ANGPTL3 is the target
of evinacumab, a human monoclonal antibody for treating
hypercholesterolaemia [18, 19]. The therapeutic role of ANGPTL3
inhibition for hyperlipidaemia has recently been reviewed [20] The
well-established evidence for variants impairing the function of
PCSK9 and APOC3 as being protective against hyperlipidaemia is
fuelling research into developing strategies to find novel ways to
antagonise PCSK9 and lower apoC-lll [21, 22]. Knockdown of Dnmt3a
in mice results in reduced methylation of the gene for angiotensin
receptor type 1a, Agtria, leading to increased Agtria expression and
salt-induced hypertension [23]. In studies using common variants, an
SNP close to FES, rs2521501, shows robust evidence for association
with blood pressure [24]. NPR1 and GUCYIAT both code for
guanylate cyclases producing cyclic GMP, which acts as an
intracellular messenger to mediate responses such as vasodilation
in order to reduce blood pressure [25, 26]. DBH codes for dopamine
beta hydroxylase, which catalyzes the oxidative hydroxylation of
dopamine to norepinephrine and recessively acting variants are
known cause norepinephrine deficiency syndrome, characterised by
reduced blood pressure [27]. Rare variants in GCK, HNF1A and HNF4A
are recognised as causes of maturity onset diabetes of the young
[28]. The association of rare predicted loss of function variants in
GIGYF1 with T2D was replicated in an independent cohort and these
variants were also shown to be associated with associated with
decreased cholesterol levels and increased risk of hypothyroidism
[29]. Overall, there is good to excellent evidence that rare variants in
these genes are associated with the relevant phenotype and hence
it becomes reasonable to investigate the relative performance of
different annotation methods in terms of detecting these
associations.
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Table 2. Table showing annotations produced by VEP, the weights
assigned to them for the previous weighted burden analyses and the
categories they were assigned to for the current analyses.

VEP annotation Weight Category
intergenic_variant 0 Unused
feature_truncation 0 IntronicEtc
regulatory_region_variant 0 IntronicEtc
feature_elongation 0 IntronicEtc
regulatory_region_amplification 1 IntronicEtc
regulatory_region_ablation 1 IntronicEtc
TF_binding_site_variant 1 IntronicEtc
TFBS_ampilification 1 IntronicEtc
TFBS_ablation 1 IntronicEtc
downstream_gene_variant 0 IntronicEtc
upstream_gene_variant 0 IntronicEtc
non_coding_transcript_variant 0 IntronicEtc
NMD_transcript_variant 0 IntronicEtc
intron_variant 0 IntronicEtc
non_coding_transcript_exon_variant 0 IntronicEtc
3_prime_UTR_variant 1 ThreePrime
5_prime_UTR_variant 1 FivePrime
mature_miRNA_variant 5 Unused
coding_sequence_variant 0 Unused
synonymous_variant 0 Synonymous
stop_retained_variant 5 Synonymous
incomplete_terminal_codon_variant 5 Unused
splice_region_variant 1 SpliceRegion
protein_altering_variant 5 ProteinAltering

missense_variant 5 ProteinAltering
inframe_deletion 10 InDelEtc
inframe_insertion 10 InDelEtc
transcript_amplification 10 InDelEtc
start_lost 10 ProteinAltering
stop_lost 10 ProteinAltering
frameshift_variant 100 LOF
stop_gained 100 LOF
splice_donor_variant 100 LOF
splice_acceptor_variant 100 LOF
transcript_ablation 100 LOF

Annotations marked as unused were not applied to any of the variants in
the genes studied.

MATERIALS AND METHODS

The methods used closely followed those described in the previous study
exploring different annotation and weighting schemes, and the descrip-
tion is partly repeated here for the convenience of the reader [5].

The UK Biobank Research Analysis Platform was used to access the Final
Release Population level exome OQFE variants in PLINK format for 469,818
exomes which had been produced at the Regeneron Genetics Center using
the protocols described here: https://dnanexus.gitbook.io/uk-biobank-rap/
science-corner/whole-exome-sequencing-ogfe-protocol/protocol-for-
processing-ukb-whole-exome-sequencing-data-sets [2]. UK Biobank had
obtained ethics approval from the North West Multi-centre Research Ethics
Committee which covers the UK (approval number: 11/NW/0382) and had
obtained written informed consent from all participants. The UK Biobank
approved an application for use of the data (ID 51119) and ethics approval
for the analyses was obtained from the UCL Research Ethics Committee
(11527/001). To obtain 20 population principal components reflecting
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ancestry, version 2.0 of plink (https://www.cog-genomics.org/plink/2.0/)
was run with the options --maf 0.1 --pca 20 approx [30, 31].

To assess overall evidence for gene-wise associations with different
phenotypes, weighted burden analyses had previously been carried out
using the SCOREASSOC and GENEVARASSOC programs [32]. Attention was
restricted to rare variants with minor allele frequency (MAF) < 0.01 in both
cases and controls. As previously described, variants were weighted by
overall MAF so that variants with MAF =0.01 were given a weight of 1
while very rare variants with MAF close to zero were given a weight of 10,
with a parabolic function used to assign weights with intermediate MAFs
[33]. Additionally each variant was annotated with the Variant Effect
Predictor (VEP), SIFT and PolyPhen SIFT [10, 34, 35]. A weight was assigned
according to this annotation and the overall weight for each variant
consisted of the frequency weight multiplied by the annotation weight. For
each subject and each gene, the weights for the variants carried by the
subject were summed to provide an overall weighted burden score.
Regression modelling was done to calculate the likelihood for the
phenotype data given covariates consisting of sex and the first 20
principal components and then the likelihood was recalculated for the
model additionally incorporating the weighted burden score. Twice the
natural log of the ratio of these likelihoods is a likelihood ratio statistic
taken to be distributed as a chi-squared statistic with 1 degree of freedom.
The evidence for association is summarised as the signed log p value (SLP)
taken as the log base 10 of the p value and given a positive sign if there is
a positive correlation between the weighted burden score and the
phenotype.

For the present study variant annotation was performed in two stages.
First, a primary categorisation was made using VEP, which uses information
based on the reference sequence and coordinates of known transcripts to
report findings such as whether variants occur within exons, if so whether
they change amino acid sequence, etc. [34]. For purposes of the present
analyses, variants predicted to have a similar kind of effect were grouped
together so that, for example, stop gained, frameshift and essential splice
site variants were all treated as LOF. The full list of annotations as reported
by VEP and the category they were assigned to is shown in Table 2, along
with the weights which were used for the previous weighted burden
analyses, which had been arbitrarily assigned based on expectations of the
likely biological importance of each annotation. Each of the annotation
categories was then used to generate a separate burden score, so that for
example the burden score relating to the category LOF for a subject would
consist of the number of LOF variants carried by that subject, each
multiplied by the weight according to allele frequency as described above.

In order to obtain secondary annotations using AlphaMissense for all
nonsynonymous variants, VEP was run with the options b --canonical
-regulatory --plugin AlphaMissense [6].This produces two AlphaMissense
annotations, a raw score and a categorisation of likely pathogenic, likely
benign or ambiguous. These three categories were converted to numerical
scores of 2, 0 or 1 respectively. To obtain secondary annotations for other
predictors, dbNSFP v4 was used [36]. For the nonsynonymous and splice
site variants listed in dbNSFP v4, secondary annotation scores were
obtained consisting of the rank scores for a variety of different prediction
and conservation methods. For each secondary annotation for a variant,
the annotation score was then multiplied by the weight based on allele
frequency. Thus, a subject’s overall score for the SIFT annotation would
consist of the sum of all the SIFT rank scores of the variants carried by that
subject, with the score for each variant also each being weighted
according to allele frequency. For ease of processing, special characters in
dbNSFP annotation names were replaced, for example GERP++ was
changed to GERPPP. A total of 43 such scores were used, as presented
below and as detailed at http://database.liulab.science/dbNSFP.

The genes selected for this study are listed in Table 1 and consisted of
those which had previously produced exome-wide significant results in
weighted burden analyses using phenotypes of hypertension, hyperlipi-
daemia and type 2 diabetes [11-13]. For each phenotype, a mixture of self-
report, recorded diagnoses and medication reports was used to designate
a set of participants as cases, with all other participants taken to be
controls. There were a total of 469,818 exome-sequenced UK Biobank
participants, of whom 167,127 were designated cases for hypertension,
106,091 for hyperlipidaemia and 33,629 for type 2 diabetes. As noted in the
legend for Table 1, for some of these genes the original SLPs obtained
were negative, indicating that variants impairing the function of these
genes were protective and were associated with lower risk of developing
the clinical phenotype. For the purpose of the current study, in order to
make it easier to interpret the results for these genes alongside the others,
the phenotype of interest for these genes is taken to be “being a control”,
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Fig. 1 Heatmap of SLPs produced by each variant category for
each gene. The sizes of the dots for each gene are proportional to
the SLP for each variant category relative to the maximum category
SLP obtained for that gene. White circles indicate negative SLPs.

meaning that all variants associated with the phenotype would tend to
generate positive SLPs. The magnitude of the SLP represents the strength
of evidence in favour of association and hence, when applied to truly
associated gene-phenotype pairs, the relative values of SLPs obtained
using different methods provide an indication of their relative utility in
terms of their ability to correctly assess the effect of variants on a
phenotype.

To gain an understanding of the relationships between the different
annotation methods, a correlation matrix was produced of all the
secondary annotation scores across all the nonsynonymous variants in
all these genes and this matrix was visualised using the correl package in R
[37, 38].

In order to assess the contributions of each different category of variant
to the evidence for association, a logistic regression analysis was
performed separately on the weighted burden score for each of the
primary categories, with population principal components and sex being
included as covariates. The Wald statistic was then used to obtain an SLP
for each variant category for each gene and these were tabulated and
compared.

Similar analyses were performed for secondary annotations obtained
from AlphaMissense and dbNSFP, except that for these analyses the
weighted burden score produced by the ProteinAltering category was
included as an additional covariate. This is because the overall burden for
each of these secondary annotations would depend on the total number
of nonsynonymous variants each subject carries and the purpose of these
analyses is to assess the relevant performance of the different secondary
annotation methods to distinguish the effect of different nonsynonymous
variants. Again, the Wald statistic was used to obtain SLPs for each
secondary annotation and these were tabulated and compared.

Data manipulation and statistical analyses were performed using
GENEVARASSOC, SCOREASSOC and R [32, 33, 38].

RESULTS

Figure 1 shows a heatmap which illustrates the relative magnitude
of the SLP produced by each variant category for each gene and
the actual SLPs are shown in Table 3. From this it can be seen that
for most genes the only variant categories to generate SLPs of a
large magnitude were LOF and ProteinAltering. However for
ABCG5 and ANGPTL3 the SpliceRegion category had large SLPs
whereas for LDLR and HNF4A the InDelEtc category had large SLPs.
For some genes both the LOF and ProteinAltering categories had
large SLPs but for others only one category did. For example, for
HNF1A the LOF category produced a much larger SLP than
ProteinAltering did, whereas for HNF41A this situation was
reversed and the ProteinAltering category produced a fairly large
SLP whereas the LOF SLP was minimal. Thus it can be seen that
there is no consistency across genes regarding which variant
categories make the most substantial contribution to evidence for
association, implying that no single scheme could be optimal for
all genes.

In order to gain insights into the relationships between the
secondary annotations, pairwise correlation coefficients were
obtained between all pairs across variants in all genes, comprising
10,567 nonsynonymous variants, and a heatmap illustrating
these correlations is shown in Fig. 2. The raw correlation
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SLPs produced individually by each variant category for each gene, including sex and principal components as covariates.

Table 3.

INPPL1 DBH GCK HNF4A HNF1A GIGYF1 Mean
—0.85 —0.37

—0.65

ABCG5 NPCIL1 PCSK9 APOC3 ANGPTL3 DNMT3A FES ASXL1 SMAD6 NPR1 GUCY1A1
—0.42 —0.34 -0.77 —0.51

LDLR

Variant category

2.35 —0.10

0.56

—0.99

117

0.04
—0.20
—0.49

0.00

0.29

0.05
—0.17

0.04 —1.15

—0.31

FivePrime
InDelEtc

0.69
0.08
8.84
7.64
—0.12

0.5
0.23

0.05
]

1.1

10.83
1.50
—0.06
—0.62
—0.78

.49
3
032

1.38
—0.15
10.42
2.25
0.
0.

4.12
047
0.27
5.42
0.73
0.02
—0.59

0.75
0.89
21.42
6.23
0.50
0.03
—0.69

0.39
1.36

0.38
7.82
—0.36
2.25
—0.06

—0.99
0.25
1.80
3.98

21
0.09
—0.31

0.

—0.62
0.75
5.36
2,67
0.28
2.58
2.79

0.15
—0.83
3.09
1.75
32
—0.37
—0.19

0.

229
4.09
—0.18
—1.45
—0.04

09
—1.09
14.11
—0.04
0.23
0.84
0.06

0.50
0.09
49
1.84
~055
~0.20
—0.21

0.68
—0.44
9.70
5.47
—0.32
0.14
—1.85

0.83
—0.08
8.3
2.68
4.57
0.44
0.41

0.
—0.02

0.81
1.31
10.88
1.3
—0.12

—1.36
17.57
14.78

—0.39

—0.06

—0.12

—0.41

—0.21
5.15
2.28

0.36
0.56
0.26

0.18
0.82
1.15
7.80
6.07

29

0.
—0.80

4.82
—0.03
30.87
65.60
—1.35

—1.45
—0.27
SLPs of 3 or more are shown in bold and SLPs of 6 or more in bold italics. The final column shows the mean SLP achieved by each category across all genes.

IntronicEtc
ProteinAltering
SpliceRegion
Synonymous
ThreePrime

LOF
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correlations and white circles negative correlations.

coefficients themselves are tabulated in Supplementary Table 1. It
can be seen that the AlphaMissense annotations are positively
correlated with each other and with 15 other annotations, forming
a block. There is then a second block comprising 8 annotations
which are again positively correlated with each other but which
show little correlation with any of the annotations forming the first
block. Interestingly, the Mutation Predictor (MutPred) score is
positively correlated with the annotations of the first block and
somewhat negatively correlated with those in the second block

[39]. Following these two

blocks are a number of other

annotations showing little in the way of correlation with any
of the others. Notably, this list includes the CADD annotations,
which are quite widely used but which somewhat surprisingly
seem to pick up different variant characteristics than the other

methods [40].
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The relative performance of the different secondary annotations
in terms of producing evidence for association is displayed as a
heatmap in Fig. 3 and the underlying SLPs are listed in Table 4.
One thing of note is that there is considerable variability between
genes as to the extent to which any of the secondary annotation
methods produces evidence for association, as measured by the
magnitude of the SLP. For some genes the methods are clearly
quite effective. For example, LDLR, PCSK9 and GCK all yield large
SLPs for a variety of different annotations. Interestingly, although
APOC3 produced a negligible SLP of 1.34 for the ProteinAltering
category taken as a whole, when these variants are annotated
with MutationTaster they yield an SLP of 11.33 [41]. Conversely,
ABCG5 produced SLP = 7.80 for the ProteinAltering category but
none of the secondary annotation methods seems able to
distinguish which variants within this category are more
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Fig.3 Heatmap of SLPs produced by each secondary annotation for each gene. The sizes of the dots for each gene are proportional to the
SLP for each annotation relative to the maximum SLP produced by any annotation for that gene. White circles indicate negative SLPs.

associated with risk and the maximum any of them produces is
SLP = 2.25 for the SiPhy score, which is a conservation score based
on comparison of human and mammalian genomes [42].

When a secondary annotation method is able to produce a high
SLP, there is inconsistency between genes with regard to the
relative performance of the different methods. While the
AlphaMissense annotations have the best performance on

SPRINGER NATURE

average across all genes (for AlphaMissense category SLP =7.12
and for AlphaMissense score SLP =7.50), they actually produce
the maximum SLP for only 4 genes: LDLR, ANGPTL3, NPR1 and
HNFA1. There are some genes where AlphaMissense is able to
produce reasonable evidence for association but other methods
do considerably better. For example, PCSK9 yields SLP=11.70
with the AlphaMissense score but SLP=21.07 with
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MutationTaster, while GCK yields SLP = 6.49 with the AlphaMis-
sense category but SLP =18.46 with MutationTaster and SLP =
18.35 with the Variant Effect Scoring Tool (VEST4) [43]. More
strikingly, there were genes for which AlphaMissense was not able
to find any evidence for association whereas another method
performed well. For example, AlphaMissense produces negligible
SLPs for both APOC3 and ASXL1 whereas MutationTaster produces
SLP = 11.07 for APOC3 and CADD produces SLP = 4.50 for ASXL1.

DISCUSSION

Examining this relatively small number of gene-phenotype pairs in
detail is sufficient to establish that there is dramatic variability in
the performance of secondary annotation methods in terms of
their ability to produce evidence for association. We should note
that for AlphaMissense the categorical predictions and raw scores
have been used whereas for the other methods rank scores were
extracted from dbNSFP and this might possibly have had some
impact on the results obtained. However, we note that for
AlphaMissense the category is in fact simply a trichotomized
version of the score, consisting of highest, lowest and inter-
mediate scores, and that both the category and the score produce
very similar results (as seen in Table 4). This supports the notion
that using rank scores rather than raw scores for the other
methods may be unlikely to have a major effect. Additionally, we
have chosen to incorporate a scheme to weight variants by rarity
and this may also have led to results which differ somewhat from
those which would have been obtained if a simple frequency cut-
off had been applied, as demonstrated in previous investigations
[5]. Nevertheless, it seems unlikely that such considerations would
dramatically alter the main conclusion, which is that some
secondary annotation methods work better than others but that
their relative performance varies between genes. This would seem
to have a number of implications.

The first implication is that it is not at all clear what is the
optimal approach to use when testing for association between
coding variants and a complex phenotype. For some genes
nonsynonymous variants produce little evidence for association
with any of the annotation methods, meaning that weighted
burden analysis would have no advantage over simply testing for
an excess of LOF variants among cases. If weighted burden
analysis is to be used then there are choices to be made between
carrying out multiple different analyses using different categorisa-
tions, annotation methods and weighting schemes or attempting
to combine information from multiple sources into a smaller
number of analyses. The results shown here seem to demonstrate
that relying on a single annotation method would risk failing to
detect some real associations, although if one were forced to rely
on a single method then it does seem that AlphaMissense has the
best performance on average.

The second implication seems to be that, because different
methods work better for different gene-phenotype pairs, one
would want to take account of this if the aim was to use sequence
data for individual level risk prediction. For example, if one wished
to obtain a comprehensive assessment of an individual's
probability of developing type 2 diabetes by combining informa-
tion from rare variants into some form of risk score, then based on
these results one might use the MutationTaster prediction for GCK
variants, AlphaMissense for HNF4A and CADD for HNF1A and for
GIGYF1. It would be suboptimal to apply a single annotation
method to characterise variants across multiple genes.

Finally, it seems that it would be very desirable to be in a
position where one could in advance identify for a given gene or
gene-phenotype pair which annotation method would best
distinguish the relevant variants. As knowledge accrues it would
be helpful to investigate what are the characteristics of a gene
which mean that one method will perform well and another
poorly. Ultimately one would then seek to develop an automated

SPRINGER NATURE

method in which the first step was gene classification and then
this would be followed by application of a gene-relevant
annotation method.

DATA AVAILABILITY

The raw data are available on application to UK Biobank. Detailed results with variant
counts cannot be made available because they might be used for subject
identification.

CODE AVAILABILITY

Scripts and relevant derived variables will be deposited in UK Biobank. Software and
scripts used to carry out the analyses are also available at https://github.com/
davenomiddlenamecurtis.
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