Reinforcement learning from
imperfect data

Yicheng Luo

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
of
University College London.

Department of Computer Science

University College London

March 8, 2025

I, Yicheng Luo, confirm that the work presented in this thesis is my own.
Where information has been derived from other sources, I confirm that this has

been indicated in the work.

Abstract

Reinforcement learning (RL) is a powerful branch of machine learning where
agents learn to make decisions by interacting with an environment to maximize
cumulative rewards. However, traditional RL methods often face the challenge of
high sample complexity, requiring vast amounts of online interactions to achieve
proficiency. This thesis delves into the untapped potential of leveraging pre-
existing, imperfect data—such as sub-optimal experiences, incomplete datasets,
and unstructured data—to reduce reliance on costly, high-quality datasets, making
RL more practical for real-world applications.

This thesis makes three key contributions:

1. We investigate the benefits and trade-offs of RL algorithms that build on
sub-optimal experiences. By studying how these algorithms can capitalize
on imperfect data, we enable more sample-efficient learning and achieve

performance unattainable through offline learning alone.

2. We introduce a new offline imitation learning algorithm designed to handle
diverse, reward-free datasets. This approach allows learning from mixed-
quality demonstrations, reducing the need for meticulously annotated behavior

data, which is often challenging to obtain.

3. We present a new dataset and benchmark that uses unstructured data from
chess to explore RL in a new dimension. This dataset bridges behavior and
language, opening the door to the development of generalist agents capable

of learning from unstructured, real-world information.

Our work demonstrates that incorporating imperfect data into RL frameworks

can significantly reduce sample complexity, broadening the horizons for RL

Abstract 4

applications in more complex, data-scarce environments. These advances offer
promising new directions for future research and the practical deployment of RL

in diverse domains.

Acknowledgements

I would like to express my deepest gratitude to my advisors, Marc Deisenroth
and Edward Grefenstette, for their unwavering support throughout my studies. I
have been fortunate to work with Marc since my undergraduate years at Imperial,
and I am profoundly thankful for the many invaluable lessons he has imparted,
both in research and beyond. His mentorship has been a cornerstone of my
academic journey. I am equally grateful to Ed, whose guidance has instilled in
me a problem-driven approach to research and the confidence to tackle even the
most challenging problems.

My heartfelt thanks go to my friends, colleagues, and collaborators at Imperial
and UCL, whose friendship and support have made this journey truly special. I
am especially thankful to Daniel Giles, Sicelukwanda Zwane, Mathieu Alain,
Vignesh Gopakumar, Jackie Kay, Noah Siegel, Daniel Augusto de Souza, Jake
Cunningham, Samuel Cohen, James Rudd-Jones, Chong Chen, Dongmei Mo,
Florian Pfaff, Kenta Hoshino, Yasemin Bekiroglu, So Takao, Giovanni Franzese,
Oscar Key, Daniel Tan, Fabian Paischer, Alexander Terenin, Mihaela Rosca,
Zhengyao Jiang, Yinchen Xu, Xidong Feng for the stimulating discussions and
exchange of ideas that have enriched my work.

To my dear friends Cassie, Lulu, Nan, James, Chunyi, Husheng, and Fangyi:
starting my PhD during the challenging times of COVID-19 would have been far
more difficult without your companionship and support. I am immensely grateful
for the solace and encouragement you’ve provided.

A special thank you to Audrey — your presence has been a constant source of
strength during this demanding phase of my life. None of this would have been
possible without your willingness to listen to me talk endlessly about computers

and Al over the past four years. To the moon and back, thank you.

Acknowledgements 6

Finally, I want to offer my deepest gratitude to my family, whose support has
been immeasurable and unconditional in ways I can never fully repay.

This research is funded by UCL through the UCL Overseas Research Schol-
arships (ORS) and Graduate Research Scholarships (GRS).

Yicheng Luo
London, September 2024

Impact Statement

This thesis presents novel approaches for leveraging imperfect data in reinforce-
ment learning (RL) to make RL more practical and accessible for addressing
complex real-world challenges. By developing methods that utilize sub-optimal
experiences, incomplete datasets, and unstructured data, the findings of this
research have the potential to substantially reduce the reliance of RL systems on
expensive, high-quality datasets, thereby broadening their applicability.

The research advances data-efficient methods in reinforcement learning,
which are particularly valuable in domains where data collection is either pro-
hibitively costly or hazardous, such as robotics and autonomous systems. It
contributes to the evolution of RL methodologies, equipping them for broader
applications in areas such as healthcare, transportation, and industrial automation.
Moreover, the techniques, software, and datasets introduced in this thesis provide
a foundation for future research, offering a robust platform for studying the
challenges of reinforcement learning with imperfect data.

This research holds the potential to enhance commercial activities by facil-
itating the application of RL in industries characterized by the availability of
large yet imperfect datasets. For instance, in industrial automation and robotics,
the ability to train RL agents using sub-optimal or incomplete data can substan-
tially reduce costs and development time for autonomous systems. Additionally,
sectors such as healthcare could benefit from RL agents trained on imperfect
clinical data, leading to improvements in decision support systems and ultimately
enhancing patient care, even in scenarios where data may be incomplete or
noisy. The practical applications of these advancements are both promising and
wide-reaching.

From a public policy perspective, the methodologies developed in this thesis

Impact Statement 8

could inform the design of RL-driven systems aimed at optimizing resource allo-
cation, infrastructure management, and environmental conservation. Integrating
unstructured datasets—such as textual reports or satellite imagery—can further
support public health initiatives and disaster management efforts, enabling gov-
ernmental and organizational bodies to make more informed decisions in the
presence of sub-optimal or incomplete data.

As reinforcement learning’s role in addressing complex, real-world problems
continues to expand, the approaches proposed in this thesis offer the potential
to make RL systems more accessible and further reduce their dependence on
costly, high-quality data. This research paves the way for the broader adoption of
intelligent and adaptive systems across industries, governments, and communities,

thereby contributing to meaningful societal and economic advancements.

Contents

1 Introduction

1.1 Reinforcement learning

1.2 Imperfect data and where to find them

1.3 Contributions

1.4 Thesis organization

2 Background

2.1 Reinforcementlearning,

2.1.1
2.1.2
2.13
2.14

Markov decision process
Policy and value functions
Online reinforcement learning

Offline reinforcement learning

2.2 Imitationlearning L.

22.1
2.2.2

Behaviorcloning

Inverse reinforcement learning

Finetuning from offline reinforcement learning

3.1 Overview e e e e

3.2 Preliminaries o e e e e e e

33 Experiments

3.3.1
332
333
334
3.35

Experimental set-up
Effect of online algorithms
Effect of offline data during finetuning
Conservative policy improvementin TD3

Comparative evaluation.

17
17
17
21
22

24
24
24
25
26
28
31
32
33

Contents

3.3.6 Summary of empirical observations
34 DISCUSSION v e e e e e e e
35 Conclusion e

4 Optimal transport for offline imitation learning

4.1 OVerview i e e e e e
4.2 Preliminaries e
4.3 Optimal transport reward labeling
4.4 EXPeriments v v v v vt e e e e e e e e e e

4.4.1 Experimentalsetup

442 Experimentalresults
45 Discussion.
4.6 Conclusion

5 Bridging policy learning and language modeling

5.1 OVerviewo e e e e e e e e e
5.2 Dataset
5.2.1 Gamedataset Lo
5.2.2 Languagedataset
5.2.3 Mixed game-language dataset
5.2.4 Instruction-tuning and conversation dataset
53 Models e
53.1 ChessCLIP
532 ChessGPT
54 BEvaluation e
5.4.1 Chessmodelingability
5.4.2 Value judgement ability
54.3 Policyevaluation
5.4.4 Qualitativeresults
5.5 Discussion. e
5.6 Conclusion

6 Conclusions

10

51
53
56

57
57
58
59
65
67
67
76
77

78
78
81
82
84
85
85
86
86
88
88
89
93
96
100
100
102

103

Contents

A Supplements for Chapter 2

A.1 Implementation Details
A.2 Other choices of RL algorithms
A3 ComparisonwithRLPD

A.4 Comparison to prioritized balanced replay

B Supplements for Chapter 3

B.1 Hyperparameters

C ChessGPT dataset supplements

C.1 Chessnotations v v v v v v v e e e e e e

C.1.1
C.l1l2
C.13
C.l4

Universal Chess Interface (UCI)
Standard Algebraic Notation (SAN)
Portable Game Notation (PGN)
Forsyth-Edwards Notation (FEN)

C.2 Datasetdetails

C2.1
C22
C23
C24
C.25
C.2.6
C2.7
C.2.38
C29
C.2.10
C.2.11
C.2.12
C2.13
C2.14

Dataset statistics and metrics
Preprocessing oL
Online chess websites
Online Chess forums
Annotated PGN
Existing datasets
YouTube transcripts dataset
Lichessdataset
Pro-playerdataset.
Chessbooks

Chesspuzzles
Chess modeling dataset

Instruction-tuning dataset.

C.3 Implementation and evaluation Details

C3.1

Implmenetation details

C.4 Evaluationdetails

C.5 Qualitative analysis e

11

128
128
129
130
131

137
137

Contents 12

C.5.1 Experimentalset-up 166
C.5.2 Generalknowledge 166
C53 Chessmodeling. 170

ChessCLIP visualization 175

List of Figures

1.1

2.1
22
2.3

3.1
3.2
33
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5

5.1
5.2
53

A.l
A2
A3
A4

Examples of imperfect data in Minecraft

Overview of the reinforcement learning
Difference between on-policy and off-policy RL
Mlustration of offlineRL

Workflow for finetuning from offlineRL
Performance comparison of different finetuning RL algorithms .
Effect of using offline datasets for online finetuning
Results of TD3, TD3-BC and TD3-C for finetuning
Effect of varying e in TD3-C
Effect of delaying policy optimization

[llustration of offline imitation learning and OTR
Illustration of the computations performed by OTR
Overview of benchmark tasks
Qualitative differences between OTR, ORIL, and UDS

Ilustration of rewards on AntMaze

Overview of the ChessGPT benchmark
Replay example in Portable Game Notation (PGN) format

Example in chess state tracking

Performance of IQL using fixed ratioreplay
Effect of data mixing ratioinRLPD
Comparison between RLPD and prioritized balanced replay

Balanced replay without offline pretraining

13

59
61
66
71
72

80
83
90

131
134

. 134

List of Figures

C.1 ChessGPT-Base attention visualization

C.2 Similarity matrix of different chess opening PGN and text

List of Tables

1.1

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8

Al
A2
A3
A4

Summary of contributions Lo 22
Performance comparison between ODT, IQL, and TD3 50
D4RL performance comparison 69
Aggregate performances of reward labeling algorithms 70
Performance of OTR+IQL on AntMaze 70
Performance of OTR+IQL on Adroit 71
OTR+TD3-BCresultson MuJoCo 73
OTR with uniform transport plan. 74
Comparison between OTR and PWIL 75
Effect of a and 3 in the squashing function 75
BIG-bench state trackinginchess 91
UCItoFENtest ittt 92
State value multi-choice 94
Chess annotation multi-choice 94
Opening2PGN and PGN20pening 96
Checkmateinone 97
Elo Rating 1700-2000 98
ChessGPT-Base in different Elo rating results 99
TD3 and TD3-BC hyper-parameters 129
TD3-C hyper-parameters 129
Effect of online data buffer for CQL 130
Comparison withRLPD 132

15

A5

B.1
B.2
B.3

C.1
C2
C3
C4
C5
C.6
C.7
Cz38
C9

List of Tables 16

Comparison with prioritized balanced replay 133
OTR hyperparameters for D4ARL Locomotion. 138
OTR hyperparameters for D4ARL Antmaze 138
OTR hyperparameters for DARL Adroit 138
Dataset statistics L o 142
Metrics for the language dataset. 142
Training hyperparameters for chess board to FEN 153
Validation accuracy of each chesspiece 154
ChessCLIP Training Hyperparameters 162
ChessGPT-Base Training Hyperparameters 163
ChessGPT-Chat Training Hyperparameters 163
General policy evaluationinBlack 164

Hyperparameters for qualitative analysis. 166

Chapter 1

Introduction

1.1 Reinforcement learning

Reinforcement learning (RL) [37] is a branch of machine learning where agents
learn to make decisions by interacting with an environment to maximize cu-
mulative rewards. Unlike supervised learning, which relies on a fixed dataset
of labeled examples, RL involves an agent learning from the consequences of
its actions in a dynamic and often uncertain environment. The agent receives
feedback in the form of rewards or penalties and uses this feedback to improve
its decision-making policy over time. This trial-and-error approach allows RL
to tackle complex problems such as robotics and game-playing, where optimal
solutions are not easily predefined.

The general framework of RL has enabled significant impacts in various fields.
For instance, RL algorithms have outperformed human champions in games like
Go [29] and chess [36], and revolutionized robotic control and automation [100,
101]. These successes underscore RL’s potential to solve intricate real-world

problems through intelligent and adaptive behavior.

1.2 TImperfect data and where to find them

Traditional RL emphasizes learning from scratch, where agents gather sub-

optimal experiences as intermediate steps toward proficiency. While this ap-

17

1.2. Imperfect data and where to find them 18

proach provides enough generality, it suffers from high sample complexity. For
example, training the AlphaGo agent required 4.9 million games, equating to 27
years of human experience at 500 games per day [29]. Each interaction involves
computation and time, making this approach infeasible for many real-world
applications.

Offline reinforcement learning [17, 47] emerges as a promising solution to
mitigate online sample complexity by utilizing pre-existing behavior datasets.
Instead of relying solely on real-time interactions, offline RL leverages these
datasets to pre-train agents, thus reducing the need for extensive online interac-
tions. This approach accelerates training and enables learning from diverse and
previously inaccessible data sources.

Despite these advances, today’s systems rely significantly on high-quality
experience to build capable agents. Collecting these data is more expensive than
in other branches of machine learning, such as computer vision [15] or natural
language processing [44], since it often requires interactions with an embodied
environment constrained by physics and time.

Fortunately, abundant imperfect data exist in various forms, which may lack
essential information or exhibit sub-optimality yet still hold potential value for
learning. Leveraging these imperfect data for building capable artificial agents
remains an open research question. This thesis considers three categories of

imperfect data crucial for advancing RL.

Sub-optimal experience. Sub-optimal experience refers to data derived from
actions or policies that do not necessarily lead to the best possible outcomes.
In many real-world scenarios, optimal behavior is either unknown or impracti-
cal. For example, gathering data from a fully optimized policy in robotics may
require costly trial-and-error processes that can be time-consuming or risky. Con-
sequently, much of the available data comes from sub-optimal policies, reflecting
less-than-perfect performance. Although these sub-optimal experiences might
seem less valuable, they contain essential information about the environment’s
dynamics and the potential consequences of different actions. While these ex-
periences may not be sufficient for an artificial agent to reach proficiency for

a given task, they may significantly reduce the additional data needed to reach

1.2. Imperfect data and where to find them 19

strong performance.

Datasets with missing features. Datasets with missing features present an-
other form of imperfect data that challenges traditional RL approaches. In many
real-world applications, especially those involving complex and dynamic envi-
ronments, capturing all relevant variables during data collection is impossible.
For instance, sensor failures, communication lags, or limitations in data recording
systems can result in incomplete datasets. These missing features may include
crucial information such as the actions taken by an agent, the rewards received,
or even crucial state variables that describe the environment. Incorporating these
incomplete datasets into the current RL pipeline requires sophisticated techniques
that can infer missing information or compensate for the lack of certain features,
ensuring that the agent can still develop a robust policy despite these gaps in the
data.

Unstructured datasets. Unstructured data, such as text, images, or video, of-
fers another underutilized resource for RL, particularly in the context of behavior
learning. Unlike structured RL datasets, which consist of well-defined observa-
tions and actions, unstructured data is typically more challenging to process and
analyze. However, these data sources can provide rich contextual information
about an agent’s environment and behavior. For example, videos of humans
performing tasks can serve as a valuable source of behavioral data, offering
insights into strategies and actions that an RL agent might not otherwise learn
from traditional datasets. The key challenge here is to develop methods to extract
meaningful features and patterns from unstructured data, enabling RL agents
to learn complex behaviors by observing and imitating human or other agents’
actions recorded in such formats.

To see what these data look like in a practical scenario. Consider the prob-
lem of building an artificial agent capable of playing Minecraft, as illustrated
in fig. 1.1. In this setting, we may have demonstrations collected using a data
collection scheme such as in Guss et al. [39]. These data may consist of plays
from humans with different proficiency levels; thus, they do not necessarily

demonstrate the optimal behavior for completing a task, such as collecting a dia-

1.2. Imperfect data and where to find them 20

Sub-optimal demonstration Missing features Unstructured data

Ot

Crafting [edit ecitsource

Ingredients Crafting recipe [hide]

Blockof Diamond EEE_;E

Videos Wikis

Figure 1.1: Examples of imperfect data in Minecraft. Consider the problem of building
an artificial agent that can play the game of Minecraft at the level of a human player.
Instead of learning to acquire skills such as building a diamond axe, which may be
prohibitively challenging if the agent learns from scratch, we can consider providing the
agent with access to external experiences to facilitate learning. Besides logged datasets
of (sub-optimal) experiences, we may additionally consider video demonstrations such as
those found on online websites such as YouTube. These datasets lack essential features
such as actions and rewards for reinforcement learning. In addition, we may also consider
knowledge databases such as wikis, which are often unstructured.

mond. These datasets are reward-free; that is, they do not have reward annotation,
which prevents the use of offline RL. In addition to these demonstrations, we
may have unstructured datasets, such as wikis, which contain helpful knowledge
about playing Minecraft. Utilizing all of these data present in various forms is
the main topic of the thesis.

While high-quality data remains indispensable for building effective artifi-
cial agents, the ability to learn from imperfect data — sub-optimal experiences,
datasets with missing features, and unstructured data — presents a significant op-
portunity for advancing RL. Additional sub-optimal data may allow us to address
the poor generalization performance due to limited coverage from high-quality
demonstrations. Relying on less structured datasets with missing information
would allow us to scale RL algorithms more economically to deal with increas-
ingly complex real-world problems. Addressing these challenges requires novel

algorithms and frameworks integrating diverse and imperfect data sources.

1.3. Contributions 21

1.3 Contributions

This thesis explores the possibilities of leveraging imperfect data to reduce the

dependence on costly, high-quality datasets, making RLL more accessible and

practical for a broader range of real-world applications. It encompasses research

and ideas from the following papers published during this study:

1.

Y. Luo, A. Filieri, and Y. Zhou. Symbolic parallel adaptive importance
sampling for probabilistic program analysis. In Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, 2021

. Y. Luo, J. Kay, E. Grefenstette, and M. P. Deisenroth. Finetuning from offline

reinforcement learning: challenges, trade-offs and practical solutions. In The
Sth Multidisciplinary Conference on Reinforcement Learning and Decision
Making, 2022

. Y. Luo, Z. Jiang, S. Cohen, E. Grefenstette, and M. P. Deisenroth. Optimal

transport for offline imitation learning. In The 11th International Conference

on Learning Representations, 2023

X. Feng, Y. Luo, Z. Wang, H. Tang, M. Yang, K. Shao, D. Mguni, Y. Du,
and J. Wang. ChessGPT: bridging policy learning and language modeling. In

Advances in Neural Information Processing Systems, 2023

. S.Zwane, D. Hadjivelichkov, Y. Luo, Y. Bekiroglu, D. Kanoulas, and M. P.

Deisenroth. Safe trajectory sampling in model-based reinforcement learn-
ing. In /9th IEEE International Conference on Automation Science and

Engineering, 2023

. Z. Jiang, Y. Xu, N. Wagener, Y. Luo, M. Janner, E. Grefenstette, T. Rock-

taschel, and Y. Tian. H-GAP: humanoid control with a generalist planner. In

The 12th International Conference on Learning Representations, 2024

S. N. T. Zwane, D. G. Cheney, C. C. Johnson, Y. Luo, Y. Bekiroglu, M.
Killpack, and M. P. Deisenroth. Learning dynamic tasks on a large-scale soft
robot in a handful of trials. In Proceedings of the International Conference

on Intelligent Robots and Systems, 2024

1.4. Thesis organization 22

1.4 Thesis organization

In the following chapters, we focus on techniques and present methods for ex-
ploring the possibility of incorporating imperfect data in reinforcement learning.
In chapter 2, we discuss the background of reinforcement learning and imitation
learning, introducing the framework and notation used in subsequent chapters.
The subsequent chapters use increasingly imperfect data to build capable
agents, evolving from narrow and directed demonstrations toward achieving
specific goals to diverse and mixed experiences collected from various sources.
The dataset structure transitions from complete, where all information needed
for RL is available, to datasets missing key ingredients (e.g., rewards, actions)
or presented in free structure (e.g., natural language). Table 1.1 summarizes the

chapters’ progress towards using more imperfect data.

Quality Structured Publication

Chapter 3 sub-optimal yes Luo et al. [86]
Chapter 4 diverse yes Luo et al. [104]
Chapter 5 diverse no Feng et al. [99]

Table 1.1: Summary of contributions. The following chapters discuss leveraging imper-
fect data with varying qualities and structures for reinforcement learning.

In chapter 3, we address the problem of finetuning RL agents pre-trained on
sub-optimal reward-annotated behavior datasets. We empirically analyze several
design decisions in the continual learning of an RL agent first pre-trained offline
and summarize the trade-offs, providing recommendations about different design
decisions. This scenario represents cases where behavior data is readily available
for offline RL but of sub-optimal quality, making pure offline approaches insuffi-
cient. This chapter presents a data-efficient strategy for improving performance
with additional online data.

In chapter 4, we explore the problem of automatically learning a reward
function to label offline datasets, enabling subsequent consumption by an offline
RL algorithm. This scenario deals with diverse and mixed-quality demonstrations
that lack reward information.

In chapter 5, we investigate learning artificial agents using offline data not

1.4. Thesis organization 23

intentionally created for learning behaviors. We propose a benchmark and
dataset based on chess, exploring the possibility of learning models capable of
decision-making and functioning as general assistants. This chapter exemplifies
scenarios where valuable data for decision-making lacks an episodic structure

but knowledge for decision-making exists implicitly in text.

Chapter 2
Background

Reinforcement learning (RL) is a powerful paradigm for training agents to make
sequences of decisions by interacting with an environment to maximize cumula-
tive reward. This chapter provides the necessary background to understand the
computational frameworks used in later chapters. We introduce the fundamental
concepts of online and offline reinforcement learning and explore the related
field of imitation learning. This chapter also introduces the notation used for

subsequent chapters.

2.1 Reinforcement learning

2.1.1 Markov decision process

Reinforcement learning (RL) is the study of a learning agent and an environment.

The interaction between the two components is illustrated in fig. 2.1: the agent

Agent
51 1 AN G
| Environment
S|

Figure 2.1: Overview of reinforcement learning. An agent receives states s, and reward
ry feedback from an environment. The agent selects an action a,, observes the next state
Si+1, and rewards r,41. The agent uses the experience of interacting with the environment
to adapt its behavior.

24

2.1. Reinforcement learning 25

observes the state of the environment and selects actions that influence the dy-
namics of the environment in discrete time. The environment provides feedback
through rewards, which the agent uses to learn a better behavior adaptively.

The interaction between the agent and environment can be characterized as
a Markov Decision Process (MDP). A Markov decision process M is a tuple
(S, A, p, po,r) where

» § is the state space,

A is the action space,

po : S = R is the initial state distribution,

p: S x A — Rxgis a stochastic transition model, and

r:Sx A— Ris areward function.

An MDP formulation assumes that the agent fully observes the state of the
environment, In scenarios where the agent only receives partial observations,
the interaction is modeled as a Partially Observable Markov Decision Process
(POMDP) [6]. In this thesis, we assume that the state is fully-observed.

2.1.2 Policy and value functions

The agent’s behavior is defined by a policy 7, which is mapping from state to a
probability distribution over actions given states. We use 7(a|s) to denote the
probability of selecting the action a under state s. In the thesis, we primarily
work with parameterized policies and use g to denote a policy parameterized by
0.

The agent interacts with the environment with its policy and produces tra-
jectories. A trajectory is a sequence of states and actions of length H defined
as

T = s0,0a0,51,41,---,5H,0H -

Given a policy 7 used to interact with an MDP M, we define the trajectory

distribution as
H

pr(T) = po(So)lJ)p(StH|Sz,a;)7f(az|Sz)-

2.1. Reinforcement learning 26

The goal of reinforcement learning is to find a policy that maximizes the

expected cumulative discounted return, defined as

J() =Bz Z}frst,a,, (2.1)

where y € [0, 1) is the discount factor that trades off the goal of maximizing
immediate or future rewards. We denote the optimal policy that maximizes the
objective in eq. (2.1) as *. Practical reinforcement learning involves the design
and implementation of an RL algorithm, which are computational processes that
aim at solving the optimization problem of eq. (2.1) efficiently.

The discussion of reinforcement learning algorithms almost always involves
estimating the value function — functions of the states to how good it is for the

agent to be in that given state. Specifically, the state value function

T
VE(5) = Eempui) | L 7' rloar)
t'=t
is the expected return for a policy 7 starting from state s;. Similarly, the action

value function

Qn(stual) T’\‘Pn |s¢) Z 7/ r(se,ar)
t'=t
is the value of a policy that selects action a, starting from state s;. The action
value function describes how good it is for the agent to be in a given state and
selecting a given action. The value function summarizes a policy’s short-term
and long-term gains and is one of the most important concepts used in many

reinforcement learning algorithms.

2.1.3 Online reinforcement learning

Online reinforcement learning studies the problem of learning an optimal policy

through repeated interactions with a given environment.

2.1. Reinforcement learning 27

Model-based and model-free RL. When the dynamic of the MDP is known,
classical methods such as Dynamic Programming [4] can be used to learn an
optimal policy. Generally, most RL algorithms assume that the environment
dynamics are unknown. A model-free RL algorithm learns an optimal policy
without explicitly trying to model the dynamics of the environment. A variety
of model-free methods, such as Policy Gradient [37], Q-learning [3] and Actor-
Critic [7] can be used for learning an optimal policy for a given MDP. A model-
based RL algorithm first learns an approximate environment model and then
performs policy learning with the help of a learned model [16]. Model-based
can allow more sample-efficient learning but requires principled treatment of
modeling errors such that these errors do not adversely influence efficient policy

learning.

On-policy and off-policy RL. A distinction should be made between online
RL algorithms that are on-policy and those that are off-policy. An RL algorithm
is on-policy if it uses the experience generated by the current policy to find
an improved policy. An RL algorithm is off-policy if it also uses experience
besides those from the current policy for updating its parameters. For example,
the algorithm may store experiences collected earlier in learning and repeatedly
replay those experiences to update its parameters.

The difference between an on-policy and off-policy RL algorithm is illustrated
in fig. 2.2. The distinction between online and offline RL algorithms will become
helpful as we discuss offline RL algorithms in section 2.1.4.

Off-policy algorithms often exhibit better sample efficiency than on-policy
algorithms and are more widely used in domains where data collection is more
expensive (e.g., robotics). An off-policy algorithm can also be combined with a

model-based learning approach to achieve further sample-efficiency gains [118].

Challenges of online RL

Online RL faces several challenges that limit its application and effectiveness
in real-world scenarios [61]. One of the biggest challenges of interest is sample
efficiency. Online RL often requires a large number of interactions with the

environment to learn effective policies, which can be impractical in real-world

2.1. Reinforcement learning 28

s,a,r s,a,r
. I . I {
5, r 5T S—
1 Bufter
Env ’ On-policy RL ‘ ’ Env ‘ ’ o, ‘
L [Off-policy RL |
a a
\ﬁe/ ﬁe/
Tet-1 Te+1

Figure 2.2: Difference between on-policy and off-policy RL. RL algorithms use an
iterative process to interact with an environment and find a sequence of improved policies
o, 7y, - - ., M, M 1. At an iteration &, an on-policy RL algorithm (left) uses the current
policy 7 to collect experience (states s, actions a and rewards r) from the environment
and uses the experience from 7 to find a better policy 7,1 1. An off-policy RL algorithm
(right) uses the current policy 7, to collect experience and store it in a buffer, which
may consist of interactions from all previous policies 7, ..., T,—; and uses all of the
experiences to find an improved policy.

scenarios where interactions are costly or time-consuming. This issue is further
exacerbated by the use of poor exploration strategies, where the agent needs to
first discover interesting and good behaviors before learning to perform well
consistently. Sophisticated algorithms have emerged in recent years to tackle the
poor sample efficiency problem. For example, using model-based approaches [16,
118] in conjunction with learning through more off-policy data [34, 95]. As a
result, these advances have enabled real-time learning of impressive behaviors
in some applications [103, 118, 16]. Nevertheless, challenges remain for RL

methods to be applied more broadly to more domains.

2.1.4 Offline reinforcement learning

Offline reinforcement learning studies the problem of learning policies from
offline behavior datasets. The standard formulation of offline/batch reinforcement
learning considers the problem of learning optimal policies directly from fixed
behavior datasets [17, 47], which are datasets of behaviors consisting of state,

action, reward tuples, or episodes of trajectories. This learning paradigm is

2.1. Reinforcement learning 29

Figure 2.3: Illustration of offline RL. An offline RL algorithm uses a dataset of expe-
rience collected by some behavior policy 75 to find an optimal policy 7* for a given
environment. Unlike online RL, offline RL does not require online interactions.

illustrated in fig. 2.3.
The online formulation of the RL algorithms we have considered in the
previous section remains one of the biggest obstacles to their adoption. The

online reinforcement learning paradigm is inadequate due to

» Expensive data collection. In some settings, online data collection is not
feasible. Data collection can be expensive in domains such as robotics
or healthcare. Data collection can be dangerous, for example, in nuclear

fusion or autonomous driving.

* Data reuse. In some cases, it might be preferable to reuse previously
collected data. For some high-dimensional problems, such as learning RL
agents from pixel observations or hard-exploration problems, the policy
may require a large amount of experience to learn to generalize. In such
scenarios, it is more effective if the agent can reuse previously collected
experience. In addition, sometimes, we might be interested in reusing
experience generated for a different task. For example, suppose we have
learned a policy to move a robot arm to grasp a single Lego block. We are
now interested in learning a policy that can stack a set of Lego blocks. In
this case, we may wish to reuse the data generated for grasping a single
block to teach the agent the low-level skills needed to stack the blocks
together.

Offline reinforcement learning, while discussed separately from online re-

2.1. Reinforcement learning 30

inforcement learning, shares a close relationship with online RL, particularly
with off-policy methods. Offline RL can be conceptualized as an extreme case
of off-policy learning, where the agent learns from data generated by different
behavior policies without any access to environmental interaction. Earlier liter-
ature frequently used the term “batch reinforcement learning” to describe this
scenario, in which the agent learns exclusively from a fixed, predetermined set of

experiences [17].

Challenges of offline RL

Despite the promise of solving online RL’s expensive data collection issue, offline

RL faces several challenges.

Extrapolation error and distribution shift. In principle, offline RL is an off-
policy learning problem since it involves learning a policy from data generated
by a different behavior policy. Recent work has identified extrapolation error as
a major challenge for offline deep reinforcement learning [69]. This error arises
from the distribution shifts between the policy used for creating the dataset and
the offline policy that we are learning. When data is missing from the offline
dataset or when the function approximator has errors, applying standard online
off-policy algorithms to offline datasets can result in significant extrapolation
errors [38]. Ostrovski et al. [69] demonstrate that this issue is particularly severe
with non-linear function approximation, where erroneous extrapolation can affect
not just completely unseen data but also rarely seen state-action pairs, and can
persist even with infinite training samples.

The problem is exacerbated by the absence of what Ostrovski et al. [69]
call the “corrective feedback loop” — in online RL, value over-estimation is
naturally corrected through exploitation during environment interaction, while
under-estimation is addressed through exploration. This corrective mechanism
is critically missing in the offline setting, leading to potentially severe under-

performance of the learned policy.

Dataset quality. The performance of offline RL algorithms heavily depends on
the quality and coverage of the offline dataset. Ostrovski et al. [69] demonstrate

2.2. Imitation learning 31

through careful empirical analysis that the stochasticity and diversity of the
behavior policy generating the dataset significantly impacts learning performance.
Even when distribution shifts have been minimized through algorithmic advances,
a performance gap may still exist between the offline optimal policy and the
optimal policy for a given task due to dataset limitations. Their results suggest
that this gap cannot be closed purely through algorithmic improvements — if
relevant parts of the state-action space are not well represented in the offline
dataset, the limitation is fundamental rather than algorithmic [78]. Ostrovski et al.
[69] also show that even small amounts (10-20%) of additional self-generated
data can substantially improve performance, highlighting the inherent limitations
of pure offline learning. This finding also suggests that in practice a hybrid
approach involving a combination of offline and online learning may provide
promising improvements sample efficiency. This is closely related to the idea of
growing batch reinforcement learning [17], where the set of sample experience

may extend over time. We explore this issue in chapter 3.

2.2 Imitation learning

Imitation learning (IL) is another paradigm for creating artificial agents. Instead
of relying on a reward function, imitation Learning aims at learning policies that

can imitate the behavior of a demonstrator.

Addressing the challenges in reward specification. The RL formulation
for creating artificial agents suffers from some drawbacks. In particular, the
RL problem requires defining a reward function that accurately represents the
performance objective.

Defining the reward function may be technically challenging. For some
problems, it is difficult to determine a good reward function that aligns well with
the intended objective. Defining a good reward function requires expertise and

tuning. For example, the following reward function

"= r})rog + rzPerC + r;:md . rtcrash

2.2. Imitation learning 32

is used by Kaufmann et al. [101] to train a policy to reach champion-level

performance in drone racing. The reward function consists of

N
r})erc =)“2 exp(7L3 : 5é¥am)7

romd — 24a° + As|ja, —a,_||,

5.0, if p, <0 or in collision with gate

cmd
r =
0, otherwise
where A,...,As are additional hyper-parameters for the reward components.

Note that the reward function involves four carefully chosen components. In
addition, it also includes five hyper-parameters that require tuning.

From a practical point of view, sometimes the most natural definition for
a given task is a sparse reward function in which the agent receives a positive
reward for succeeding in the task or zero otherwise. While a sparse reward
function might be easy for a human to specify, it may not provide enough

learning signal for an agent to learn to solve the task successfully.

2.2.1 Behavior cloning

Behavior Cloning (BC) [2] learns a policy by learning mapping from states to
actions using the trajectories demonstrated by an expert. Concretely, consider
the example of An Autonomous Land Vehicle in a Neural Network (ALVINN) [2]
where the goal is to learn a policy for driving an autonomous landing vehicle.
Pomerleau [2] curated a dataset {0;,a;} € D of observations and actions where the
observations o; are road images and actions @; are turning curvatures. Pomerleau
[2] trained a policy 7 parameterized with a fully-connected neural network with

the loss function

J(m)y="Y L(n(0i),a), (2.2)

0;,a;€D

where L is a cost function that computes the discrepancy between the actions

generated by the training policy 7 and the expert actions.

2.2. Imitation learning 33

Equation (2.2) appeals to many practitioners due to its simplicity. In addition,
the formulation of BC as a supervised learning problem avoids the common

challenge of non-stationarity in RL.

Challenges of BC

Sample-efficiency. Despite the conceptual simplicity of solving a supervised
learning problem, BC presents many challenges for practical adoption. For BC
to work well in various real-world scenarios, the training dataset should provide
sufficient coverage of the intended behaviors. This issue may be significantly
pronounced when neural networks are used for learning behavior policies due to
poor generalization and over-fitting when data is limited. As a result, BC only

tends to succeed with a large amount of high-quality data.

2.2.2 Inverse reinforcement learning

The problem of learning from demonstrations can be approached from two
perspectives: directly learning the policy (behavior cloning) or inferring the
underlying reward function that explains the demonstrated behavior. This latter
approach is known as inverse reinforcement learning (IRL), and was formally
introduced by Ng and Russell [9]. The key insight is that the reward function is
often the most succinct, robust, and transferable representation of a task. Instead
of directly learning to predict the actions of an expert given a particular state,
IRL learns a reward function that explains the expert’s actions [9]. The learned
reward function may then be used to train a policy using an RL algorithm.
Building on theoretical work in reward shaping [8], which showed how differ-
ent reward formulations can lead to the same optimal policy while significantly
affecting learning efficiency, IRL offers the potential to find reward functions that
are more well-suited for learning. While manually specified reward functions
might be sparse or difficult to optimize, the reward functions learned through IRL
can naturally encode the structure present in expert demonstrations, potentially

leading to more efficient learning of the desired behavior.

2.2. Imitation learning 34

Distribution matching perspective for IRL. Imitation learning may be ap-
proached probabilistically as a distribution matching problem [24, 45]. Let d°*P
denote the stationary distribution of the expert policy Texp. Suppose that we are
interested in learning a policy 7 that imitates the expert ZTexp. The policy has a

corresponding stationary distribution d”. The goal of imitation learning is to
minD(d”||d®P), (2.3)
T

where D is some measure of discrepancy between two probability distributions.
The distribution matching perspective recasts the problem of imitation as finding
a policy whose stationary distribution matches that from the expert policy.

In the case the KL-divergence is used as the measure of discrepancy, then we

have (s,)
s,a

— mgx DxL (dﬂ'| |deXp) = mélx E(S,a)f\/dn |:10g m} (24)

By learning a density ratio estimator 7(s,a) ~ log %&sﬁ), Equation (2.4) is

equivalent to an RL problem using 7 as the reward function. This connection
underpins the development of the Generative Adversarial Imitation Learning
(GAIL) [24] algorithm.

Compared to BC, IRL is advantageous as the learned reward function may
capture the underlying reasons for the expert behavior. As a result, this would
allow the agent to learn from experiences absent from the demonstration dataset.
Consequently, IRL methods provide better demonstration sample efficiency
than BC, requiring only a dozen demonstrations to learn a robust imitating
policy using algorithms such as the Generative Adversarial Imitation Learning
(GAIL) [24]. Some IRL methods are also capable of distribution matching on
the stationary state distribution. This property enables algorithms to learn from

observation-only datasets.

Challenges of IRL

However, these IRL methods are not training-sample-efficient, as learning the
inverse reward function requires the collection of a large amount of online

samples. In GAIL, learning the reward function requires collecting millions

2.2. Imitation learning 35

of samples via an on-policy algorithms such as PPO [28] despite using only a
few episodes of demonstration data. Nevertheless, progress has been made to
improve the sample efficiency, for example, using an off-policy algorithm [45].

Besides training inefficiency, algorithms such as GAIL follow a training
paradigm that is similar to Generative Adversarial Networks (GANs) [21], by
formulating the problem of IRL as a minimax optimization problem to learn a
discriminator that implicitly minimizes an f-divergence. The minimax formu-
lation presents a challenging optimization problem, and Adversarial Imitation
Learning (AIL) methods such as GAIL usually require careful tuning of hyperpa-
rameters [68].

More recently, IRL methods based on Optimal Transport (OT) have demon-
strated success as an alternative method for IRL compared to AIL approaches.
Unlike AIL approaches, OT methods minimize the Wasserstein distance between
the expert’s and the agent’s state-action distributions. Building on this formula-
tion, Xiao et al. [42] proposes to minimize the Wasserstein distance via its dual
formulation, which may lead to potential optimization issues. More recently,
Dadashi et al. [60] introduces PWIL, which instead minimizes the Wasserstein
distance via its primal formulation, avoiding the potential optimization issues
in the dual formulation. Along this line of work, Cohen et al. [59] suggests
improvements to the primal Wasserstein formulation and demonstrates improved
empirical results in both sample efficiency and final performance. Still, these ap-
proaches require many online samples to learn good policies. While progress has
been made to improve the sample efficiency of these approaches [45], imitation

learning without any online interaction remains an active research area.

Chapter 3

Finetuning from offline

reinforcement learning

3.1 Overview

In this chapter, we explore methods to enhance offline pre-trained policies through
a limited amount of additional online interactions.

The datasets we consider in this chapter are imperfect because they do not
have high quality or sufficient coverage to allow pure offline methods to learn
optimal policies. Nevertheless, they contain the necessary information (states,
actions, and rewards) for offline learning. These offline datasets may originate
from previous RL training runs or other data sources, such as data generated by a
low-quality policy.

Despite their lower quality, integrating these additional datasets offers new
opportunities to leverage preexisting information, potentially accelerating online
RL. However, it can also introduce challenges that necessitate careful considera-
tion.

We conduct an empirical evaluation to gain deeper insights into integrating
offline and online RL. Building on existing offline and online RL algorithms, we
demonstrate that the optimal combination of these approaches is more nuanced
than it may initially appear. Our findings indicate that the best design choices
depend on factors such as dataset composition, sample efficiency, and learning

stability, often requiring practitioners to navigate their trade-offs.

36

3.2. Preliminaries 37

This chapter presents our observations and recommendations, providing

guidance on effectively merging offline and online RL to improve data efficiency.

3.2 Preliminaries

We consider a specific setting of combining offline and online RL where we first
perform offline RL to learn an optimal policy using only offline data and continue

learning with online RL. This approach is illustrated in fig. 3.1.

s,a,r
—
5.7 R —
e
Env
’Online RLH nOff‘
a
[

T+1

Figure 3.1: Workflow for finetuning from offline RL. We consider the problem of first
learning a policy 7°% from an offline behavior dataset and improving the offline policy
with online RL.

This approach is analogous to finetuning, a paradigm widely adopted in
machine learning where a model is first pretrained on a large dataset before being
refined on a smaller, task-specific dataset. The concept has also gained more
traction in recent years with the emergence of large language models (LLMs)
and Reinforcement Learning from Human Feedback (RLHF) [89]. In RLHF, a
supervised-trained LLM is further optimized using RL to better align with human
preferences, demonstrating how pretrained models can be enhanced through
subsequent RL-based optimization. While our setting shares core similarities
with RLHF—both start with a model trained on a fixed dataset and improve it
through interactive learning—a key distinction lies in our use of RL techniques
throughout both phases rather than just during finetuning. These parallels suggest

that our insights on combining offline and online RL may inform better practices

3.2. Preliminaries 38

for applying RL to LLMs, a direction we explore in chapter 5.
Even with the restriction of explicitly splitting the hybrid pipeline into pre-
training and finetuning stages, this recipe of combining offline RL and online RL

is fairly general and leaves many open questions, such as

1. What algorithms should we use for offline learning / online finetuning?
Many offline RL algorithms can be directly applied to online learning.
However, are offline RL algorithms a good choice for online learning?

What happens if we use an algorithm designed for online RL?

2. How should we leverage offline data during online finetuning ? The first
question to ask is whether we should reuse the offline dataset at all during
finetuning. If yes, what is the best way to incorporate offline data during

online finetuning?

Actor-critic algorithms. To make the investigation tractable, we investigate
these design choices in the context of actor-critic methods, a popular architecture
for developing online and offline RL algorithms. The actor-critic architecture
consists of two components: an actor learns to select actions given states and a

critic that predicts the quality of actions selected by the actor.

DDPG and TD3. Among actor-critic algorithms, the Deep Deterministic Pol-
icy Gradient (DDPG) [26] is a popular off-policy, actor-critic algorithm used for
learning optimal policies in continuous action spaces. DDPG learns an approxi-
mate state-action value function Qy and deterministic policy 7y parameterized
by neural networks by alternating between policy evaluation and improvement.
During policy evaluation, we learn an approximate action value function Qy by

minimizing the Bellman error
f= argngn]Es,a,r,s’NB [(Q(D (s,a) - (r+ }’Q¢/(S/, o (S/)))2]]) (31)

where Qg and my are the target critic and policy networks used to stabilize
Temporal-Difference learning with function approximation. The transitions
s,a,r,s' ~ B are drawn from an online replay buffer similar to the set-up in
DQN [22].

3.2. Preliminaries 39

During policy improvement, the policy parameters 8 are updated to maximize

the current action value function

6" = argmglx]EsNB [Qq) (s, 79 (s))}) (3.2)

For exploration, DDPG adds a state-independent noise sampled from a mul-
tivariate Gaussian distribution or an Ornstein-Uhlenbeck process [26] to the
deterministic policy. Fujimoto et al. [33] proposed the TD3 algorithm that

improves upon the original DDPG formulation by

1. Taking the minimum value of a pair of critic networks to reduce overesti-

mation.
2. Delaying policy updates to reduce per-update error.

These changes help reduce the function approximation error that leads to value

overestimation and sub-optimal policies in the original DDPG paper.

TD3-BC. Actor-critic algorithms such as DDPG or TD3 suffer from distribu-
tion shifts when used for offline learning. To make these algorithms amenable
to learning from fixed offline datasets, TD3-BC [64], for example, adds an

additional behavior cloning (BC) loss
0* = argmélx]Es,aNB [QLQq) (5,79 (s)) + (a— my (s))z} , (3.3)

to the policy loss objective in eq. (3.2). The additional term (a — 7y (s))? encour-
ages the policy output 7g(s) to stay close to actions a available in the offline
dataset and A > 0 modulates the relative strength of the original policy optimiza-
tion objective and the behavior cloning regularization.

In the next section, we conduct experiments using selections of offline and
online algorithms and different ways of incorporating offline data during online
learning. We compare results for different choices with multiple tasks and
datasets, which allows us to draw conclusions that hold in different settings. We
choose to focus on actor-critic algorithms such as TD3 and TD3-BC as they are

the one of the most popular class of algorithms in use today. Furthermore, we run

3.3. Experiments 40

experiments on continous control environments which makes algorithms such as
DQN [22] not directly applicable.

3.3 Experiments

In this section, we empirically study and analyze the challenges in performing

online finetuning after pretraining with offline RL.

3.3.1 Experimental set-up
Tasks and dataset

Our analysis builds on top of MuJoCo [18] tasks in the D4RL benchmark
suite [63]. We consider datasets from the Walker2D, HalfCheetah, Hopper, and
Ant tasks. For each task, we perform finetuning given the corresponding medium
and medium-replay datasets. The medium datasets consist of transitions collected
by the evaluation policy of an early-stopped, sub-optimal agent. medium-replay
datasets refer to the transitions stored in the replay buffer of an early-stopped
agent. Both datasets contain transitions that enable the agent to acquire medium
performance. The medium dataset includes only transitions from the learned
policy, which, on average, have higher quality than the medium-replay datasets

but lack diversity.

Algorithms

We use TD3 [33] and TD3-BC [64] as our offline and online RL algorithms repre-
sentatives. For offline pretraining, we use TD3-BC because of its good empirical
performance on the MuJoCo locomotion benchmarks and its simplicity. While
many offline RL algorithms have been proposed based on introducing additional
regularization during offline training [46], a close inspection of these algorithms
based on our reimplementation experience and observations from Fujimoto and
Gu [64] reveal that they often incorporate additional code-level optimization
as well as significant hyper-parameter changes to achieve good performance.

It is also easy to compare TD3-BC with its off-policy counterparts (TD3) for

3.3. Experiments 41

finetuning performance since switching from TD3-BC to TD3 requires only
removing the BC penalty, keeping all other hyper-parameters fixed.

During online finetuning, we load the weights for the neural networks ob-
tained from offline training and use either TD3 or TD3-BC as the finetuning
algorithm. We use the same hyper-parameters as in the offline setting; it is
possible that finetuning via online RL requires a significantly different set of
hyper-parameters, but we leave this investigation as future work. In both cases,
we pretrain the actor and the critic networks offline for S00K iterations and then
train online for 200K environment steps. We perform one gradient step after
every transition in the online environment during online finetuning. Therefore,
one learner step after the pretraining stage corresponds to one step of online
environment interaction. Note that the online training set-up differs from the
online batch setting considered in [83, 67] but is closer to the standard online

benchmark setting used in [33].

3.3.2 Effect of online algorithms

We start by analyzing how the choice of online algorithms impacts finetuning
performance. For this experiment, we use either TD3 or TD3-BC as the online
algorithms for finetuning.

Following the finetuning protocol in [94, 81, 67], we incorporate the offline
data during finetuning by initializing the online replay buffer with transitions
from the offline dataset. The transitions are sampled uniformly during both
offline pretraining and online finetuning. We defer the discussion of alternative
ways of using the offline dataset during finetuning to section 3.3.3.

Figure 3.2 shows the comparison between the different choices of online
algorithms on evaluation performance. The results reveal a few interesting

findings:

Offline RL algorithms improve more slowly than their online counterparts.
Finetuning online with TD3-BC improves slowly compared to using TD3. This
suggests that offline RL algorithms, which constrain the target policy to be close
to the behavior policy, may improve more slowly than their standard off-policy

counterparts. While we restrict our comparison to using TD3 and TD3-BC,

3.3. Experiments 42

ant-medium-replay-v2 ant-medium-v2 halfcheetah-medium-replay-v2 halfcheetah-medium-v2
125 , ol
100 ! e
"’v’\
75 ,\,‘w ‘H\” ;\IP/ ‘W‘
| \
50 3 - //’y __ /
{ |
E 25 [|
Q
x 0
9
g hopper-medium-replay-v2 hopper-medium-v2 walker2d-medium-replay-v2 walker2d-medium-v2
‘T 125
g
3
Z 100 I ¥ nl 7 g
75 sl v‘l AN “\Jw‘ Il S S B 1
I f
50 m.“w’\\”\w“ oty il
f “ |
S M “
| l
o)
0K 250K 500K 250K 500K 0K 250K 500K 0K 250K 500K
— TD3 TD3-BC ~—— TD3 (online) Learner Steps

Figure 3.2: Comparison of TD3, TD3-BC for online finetuning on the D4RL benchmark
suite. The agents are pretrained for S00K steps with TD3-BC before finetuning with
additional online data for 200K environment steps. We perform one gradient step for
every environment step, so the number of learner steps after S00K corresponds to the
number of environment steps taken during finetuning. TD3-BC (orange) improves slowly
with finetuning compared to TD3. However, TD3 (blue) shows policy collapse during
initial finetuning. Policy collapse is more observable in the medium datasets than in the
medium-replay datasets, which are more diverse. We also include results for training
a TD3 agent (green) without any offline pretraining, and it performs worse than agents
with offline pretraining, demonstrating that offline pretraining is useful in accelerating
sample efficiency in online learning. Results are averaged from ten random seeds.

previous work [83, 67] shows similar findings for other offline RL algorithms.
We experiment with using other algorithms in appendix A.2 and reach similar

conclusions.

Online finetuning with online off-policy algorithms suffers from policy col-
lapse. While online finetuning with TD3 achieves a better evaluation score
compared to TD3-BC, there is a noticeable training instability for some datasets
in the early stages of online finetuning. This is illustrated by the sudden drop in
performance as finetuning starts (i.e., 500K learner steps). This is distinct from
the fluctuations in performance that are typical in deep off-policy RL algorithms.
This phenomenon is sometimes referred to as policy collapse. Policy collapse

happens as the critic is inaccurate when finetuning starts and is over-optimistic

3.3. Experiments 43

on novel states encountered early during finetuning. Nevertheless, finetuning
with TD3 after 200K environment steps always rivals or surpasses TD3-BC. Note
that policy collapse is not a specific problem for TD3: [67, 83] consider offline
pretraining with CQL followed by finetuning with SAC and observe similar

training instability in their experiments.

Policy collapse is more severe when the diversity of the dataset is lower. The
extent of policy collapse varies across domains and dataset qualities and is more
noticeable as the diversity of the dataset decreases. Although the offline perfor-
mance on the medium and medium-replay datasets are comparable, finetuning
from agents pretrained with TD3 on the medium datasets is more unstable. This
is expected since the medium datasets are less diverse than the medium-replay
datasets. Notice that the rate at which TD3 recovers its original performance
also varies across the datasets, and it is more difficult to recover the performance
when pretrained on less diverse datasets.

We also see the different extents of policy collapse between the medium
datasets. In particular, there is significant policy degradation during early finetun-
ing for the Ant, Hopper, and Walker2D medium datasets while the degradation
is less severe for HalfCheetah. We found this to be due to the difference in en-
vironment dynamics between the environments: the Ant, Hopper and Walker2D
environments in Gym define terminal states, and an episode may terminate
either due to entering these terminal states or due to timeout. However, the
HalfCheetah environment does not use terminal states, and episodes are always
truncated at 1000 steps. We find that most of the episodes in Ant, Hopper and
Walker2D medium datasets finish due to a timeout, and there are much fewer
transitions in these datasets that lead to terminal states compared to the medium-
replay datasets in these environments. The small number of terminal transitions
in these datasets may result in the pretrained critic to significantly overestimating
the state-action values around states that lead to termination. As finetuning begins
and the agents encounter more terminal states, the inaccurate value estimates
result in unstable policy improvement, as seen in the results above. However,
finetuning with policy-constrained offline methods such as TD3-BC maintains

a strong stability guarantee despite the lack of these terminal transitions in the

3.3. Experiments 44

medium dataset.

3.3.3 Effect of offline data during finetuning

We investigate how different approaches to sampling online and offline experi-
ences affect finetuning efficiency.

In section 3.3.2, we followed the finetuning protocol used in [81, 94], which
loads the offline data into the online replay before finetuning starts. This is a
commonly used strategy to utilize offline datasets during online learning, but
it is not immediately clear whether this choice is good. As we will see in the
following experiments, uniform sampling with offline dataset initialization can

have significant performance implications.

Finetuning without offline dataset initialization

To understand the effect of offline dataset initialization, we first consider the
exact opposite approach of utilizing offline datasets — that is, we do not use
offline data during online finetuning and initialize an empty replay buffer during
the online stage. In this case, we are just initializing the online policy and critic
networks with the pretrained weights.

Figure 3.3 shows the effect of loading the offline data into the online replay
before finetuning begins. TD3-BC remains stable during finetuning even when
offline data is not utilized. In fact, discarding the offline data allows it to obtain
higher sample efficiency and rival or even outperform online finetuning on six
out of the eight datasets. This indicates that constraining the policy outputs
to be close to actions stored in the replay offers improved stability even when
the replay data is collected purely from the online environment. At the same
time, however, this regularization via BC may hurt finetuning if the goal is
to maximize online improvement given a small number of online interactions.
TD3-BC can still perform worse than online RL algorithms, as evident from
the lower sample efficiency in the HalfCheetah datasets. TD3 can also obtain
higher performance without utilizing offline data, and finetuning is more stable
with pretraining on medium-replay datasets than medium datasets. The only

exception is walker2d-medium-replay, where not initializing with offline data

3.3. Experiments 45

ant-medium-replay-v2 ant-medium-v2 halfcheetah-medium-replay-v2 halfcheetah-medium-v2

R H
I, P
100 'V'Nv ":{;"‘:;“ w3
v i’

AN

1
1
1
1 .
| P
17

1

b

1
1
i
1
1
p

1 sV
75 R R L R R f
RN | P e
50 f ! | ¥
1 | N 1 y
g 25 | | L | |
3, : : :
k]
e hopper-medium-replay-v2 hopper-medium-v2 walker2d-medium-replay-v2 walker2d-medium-v2
= :
g 125 i
o 1
“ i
¥ P
" M

dd

—
S o
a o
¥
) §
3
<
=
>
=
3
_TTTT
i
_‘-‘;3
3
3

~— &

=

0K 200K 400K 600K 0K 200K 400K 600K 0K 200K 400K 600K 0K 200K 400K 600K
Learner Steps

Agent —— TD3 TD3-BC Offline data —— True ——- False

Figure 3.3: Effect of using offline datasets for online finetuning. We compare what
happens if we do not initialize the online replay with transitions from the offline dataset.
TD3-BC enjoys significant improvement if we do not sample offline transitions during
online finetuning. TD3 exhibits policy collapse independent of whether offline data is
utilized during finetuning.

results in policy collapse. However, for the less diverse medium datasets, policy
collapse happens independent of whether offline data is reused, and the drop in

performance happens immediately as finetuning starts.

3.3.4 Conservative policy improvement in TD3

While offline RL algorithms constrain the policy to be close to the empirical data
distribution, such a constraint is inadequate for finetuning since it may be too
conservative to allow for fast online learning. On the other hand, constraining
policy optimization to the vicinity of a historically good policy may be beneficial
since it may limit the influence of an inaccurate critic.

Therefore, we try to improve the online TD3 algorithm by changing the
unconstrained policy improvement step to a constrained update that penalizes
large policy updates. Concretely, we propose TD3-C, an off-policy deep RL

algorithm based on TD3 that uses the following constrained policy improvement

3.3. Experiments 46

step in place of the original TD3 policy optimization step:
max Eep00(5,0)la=ry(] st Eeupl(To(s) — 7o () <e. (34

Here 6 is the online policy network parameter, 6’ is the target policy network
parameter, and € is a hyper-parameter that controls the tightness of the constraint.
The constraint regularizes the online policy to not deviate too much from a
moving target policy. This formulation resembles the constrained optimization
used in MPO [32], except that we work with a deterministic policy and use the ¢,
norm as the constraint. The constraint has the interpretation of a KL divergence
between two Gaussian policies with fixed location and scale parameterized
with the output from the online and target policies’ output. For a practical
implementation, we can optimize the objective by formulating the Lagrangian

with dual variables A > 0. The constrained optimization now becomes

mglxg;ig Ey5[00(s,a) — A€ — (a— g (5))%)], a=ma(s), (3.5)
where the primal 6 and dual variables A can be jointly optimized by stochastic
gradient descent.

Unlike the behavior cloning regularization in eq. (3.3), which constrains the
policy network to predict actions similar to those in the sampled batches, we
constrain the policy optimization not to take big steps. Thus, our formulation
should be less conservative than TD3-BC but more robust than TD3 without

policy regularization.

Is conservative policy optimization effective at mitigating policy collapse?
We investigate if incorporating conservative policy optimization helps mitigate
policy collapse. Figure 3.4 shows the finetuning performance between TD3,
TD3-BC and TD3-C on the eight datasets with or without initializing the online
replay from the offline dataset. While TD3-C improves training stability in
both settings, the effect is more significant when no offline data is used during
finetuning. The results illustrate the difference between the constraint used
in TD3-C and the behavior cloning regularizer in TD3-BC. For TD3-BC, the

policy is regularized towards the empirical behavior policy, which is crucial for

3.3. Experiments 47

ant-medium-replay-v2 ant-medium-v2 halfcheetah-medium-replay-v2 halfcheetah-medium-v2

-

P |

= V # . | 22
I 17 P
50 ! !
i i
25 1 1 1
1 1 1
0 1 1 1
hopper-medium-replay-v2 hopper-medium-v2 walker2d-medium-replay-v2 walker2d-medium-v2

Normalized Return

0K 200K 400K 600K OK 200K 400K 600K OK 200K 400K 600K OK 200K 400K 600K

Learner Steps

Agent — TD3 TD3-BC — TD3-C Offline data —— True ——- False

Figure 3.4: Results of TD3, TD3-BC, and TD3-C for finetuning. We compare the three
approaches for finetuning by varying whether we initialize the online replay buffer with
transitions from the offline dataset. TD3-C demonstrates better stability compared to
TD3 and can improve faster compared to finetuning with TD3-BC.

minimizing extrapolation errors but may result in slow improvement. For TD3-C,
we regularize the policy towards the changing target policy, avoiding large policy
changes during optimization due to an inaccurate critic. However, TD3-C can
still collapse when preloading the online replay with offline data, as seen in
ant-medium-v2. As explained in section 3.3.3, the online sampling distribution
remains almost unchanged during the initial period of finetuning. Using TD3
or TD3-C on this distribution can suffer from overestimation errors due to the
lack of prompt online feedback. Thus, the regularizer in TD3-C, coupled with
uniform sampling from an online replay buffer initialized with offline transitions,

can still suffer from policy collapse due to optimization with a “fixed” dataset.

Improving training stability with more conservative policy improvement.
TD3-C introduces an € parameter that determines the level of the constraint used
during policy improvement. We investigate different choices of €. The results
are shown in fig. 3.5. Generally, we find that choosing stronger constraints leads

to more stable finetuning but may result in slower finetuning efficiency.

3.3. Experiments 48

walker2d-medium-v2

1.25

1.00

0.75

epsilon

0.50 0.0001
0.001
0.25 0.01
— 0.1

0.00

Evaluation Normalized Return

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Learner Steps le6

Figure 3.5: Effect of varying the constraint parameter €. We found that smaller € leads
to more stable online finetuning but slower improvement.

walker2d-expert-v2

delay
2
10
— 50

Evaluation Normalized Return
o
~
w

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Learner Steps le6

Figure 3.6: Effect of increasing the number of delay steps in TD3-C. We found that
constrained updates alone do not prevent policy collapse, but reducing the amount of
policy improvement steps mitigates it.

Improving training stability with more delayed policy improvements. The
policy improvement constraint penalty stabilizes learning for the medium datasets.
However, when only expert demonstrations are used in offline learning, the critic
suffers from severe overfitting, and constrained updates alone are insufficient
to prevent policy collapse. In this case, updating the critic more frequently
stabilizes finetuning. Note that reducing update frequency is different from
constraining policy updates: constraining the policy optimization has the added
benefit of making policy optimization more robust to critic error. Our concrete
implementation takes advantage of the delay parameter in TD3, which determines
the frequency of policy optimization.

Figure 3.6 compares different delayed step values with evaluation perfor-

3.3. Experiments 49

mance. We see that increasing the delay helps prevent policy collapse during
initial finetuning. This ablation suggests that reducing the ratio of policy im-
provement to policy evaluation steps may help when adopting standard off-policy

algorithms for finetuning.

3.3.5 Comparative evaluation

In this section, we position our results in the context of several recent literature
that also considers finetuning from offline pretrained agents. The goal of this
section is not to argue that our proposed approach, either using TD3-BC, TD3-BC,
or TD3-C introduced above, is a better algorithm compared to related work since
neither TD3 nor TD3-BC represents state-of-the-art online/offline RL algorithms.
Instead, this section positions a relatively simple approach to online finetuning to
other methods introduced in this line of work. Our analysis in section 3.3 aims to
disentangle and understand the merits of individual algorithmic choices used by
the different algorithms. We hope the comparative analysis in this section can
inspire the development of more sample-efficient RL finetuning algorithms.

We present our evaluation results with respect to Online Decision Transformer
(ODT) [94] and Implicit Q-learning (IQL). ODT is a recent approach based on
the Decision Transformer (DT) [94]. Similar to DT, it formulates RL as a
sequence modeling problem and leverages the expressiveness of transformer
architectures to learn in the RL setting. IQL is an offline Q-learning method that
learns the optimal Q-function using in-sample transitions and extracts a policy
with Advantage Weighted Regression (AWR) [14, 41]. Both approaches have
demonstrated better performance when used in the finetuning setting compared
to previous work [67, 46, 38]. For a consistent comparison with IQL and ODT,
we consider the setting where we initialized the online replay buffer with the
offline dataset. As noted above, initializing the online buffer with offline data
may be sub-optimal, especially with policy-constrained offline RL algorithms.
For all methods, we report the offline performance, performance after 200K steps
of online interactions and the relative performance improvement 8, computed as
the difference between the online and offline performance.

Table 3.1 shows that our proposed approaches are consistently better than

ODT and IQL. This is evident in the better evaluation results after finetuning

3.3. Experiments 50

Table 3.1: Results with ODT [94], and IQL [81] on the D4RL MuJoCo locomotion tasks.
The ODT and IQL results were obtained from [94]. Results are averaged over ten seeds.
We report the average final offline performance (Offline), the final online performance
after 200K of online steps (Online), and the relative performance improvement 6 =
Online — Offline. Results for the method with the best performance and comparable
alternatives (within 10% of the best method’s mean) are in bold.

medium-replay-v2 medium-v2
Task Agent Offline Online S Offline Online S
TD3 78.34+19.5 127.59 +5.24 49.25 113.48 + 4.74 123.34 + 2.67 9.86
TD3-C 85.68£13.93 121.72 £ 10.06 36.04 11244 £ 571 123.05 +231 10.61
TD3-BC 84.99+1595 126.73 +3.15 41.74 11144 +£5.79 12091+ 7.97 9.47
ant OoDT 86.56 £3.26 91.57+2.73 5.01 91.33+4.13 90.79+5.8 —0.54
1QL 91.21+7.27 91.36+1.47 0.15 99.92+5.86 100.85+2.02 0.93
TD3 (online) 78.64+22.55 122.914+15.16 44.31 112.34+6.11 104.71£848 —7.63
TD3-C (online) 82.2+24.9 125.5+£5.19 43.3 114.15+4.7 119.34+7.9 5.19
TD3-BC (online) 76.63 +16.31 132.344+2.92 55.71 11295+6.21 132.994+1.43 20.04
TD3 43.82+0.49 70.13 + 34 26.3 46.99+0.4 69.69 + 2.57 22.7
TD3-C 43.84+0.69 66.0 +2.06 22.16 46.924+0.42 65.85 +2.46 18.93
TD3-BC 43.744+0.53 48.7+1.18 4.96 46.92+0.41 48.71+0.52 1.79
halfcheetah ODT 39.99+0.68 40.42+1.61 0.43 42.72+0.46 42.16+1.48 —0.56
QL 44.1+1.14 44.14+0.3 0.04 47.37+0.29 47.41+0.15 0.04
TD3 (online) 43.77+0.59 80.98+3.61 37.21 46.84+0.43 8247427 35.63
TD3-C (online) 43.7+0.63 73.524+2.17 29.81 46.86+0.36 75.93+3.28 29.08
TD3-BC (online) 43.831+0.47 62.35+1.41 18.52 46.96+0.37 62.88+1.25 1592
TD3 46.21+21.91 103.08 +3.7 56.87 54.95+3.75 88.59 + 284 33.65
TD3-C 49.18+25.6 96.24 + 11.3 47.06 56.54+4.71 87.3 £24.62 30.77
TD3-BC 51.36 £24.94 87.72+14.96 36.36 55.48 +4.69 58.44+6.72 2.96
hopper ODT 86.64 + 5.41 88.89+6.33 2.25 66.95+3.26 97.54 £ 2.1 30.59
PP QL 9213+ 1043 9623+435 4.1 63.8149.15 66.79+4.07 298
TD3 (online) 44.84+23.2 94.524+25.1 49.68 55.14+4.48 90.91+33.52 35.78
TD3-C (online) 45.69 +22.31 102.38+3.01 56.69 56.38+5.86 90.58+20.91 34.2
TD3-BC (online) 49.224+22.95 102.75+2.43 53.53 54.35+4.86 98.8+9.72 4445
TD3 72.56+11.37 100.06 + 5.74 27.5 80.88+4.9 82.09+21.38 1.21
TD3-C 74.78 £10.97 97.21 £3.07 22.44 79.34+5.7 78.97+21.03 —0.36
TD3-BC 79.12+£7.2 90.26 +2.27 11.14 80.73+£3.72 84.56+2.09 3.82
walker2d ODT 68.92+4.79 76.86 +4.04 7.94 72.19+6.49 76.79+2.3 4.6
IQL 73.67+6.37 70.55+5.81 —-3.12 79.89+3.06 80.33+£2.33 0.44
TD3 (online) 72.66 £10.59 98.94+10.38 26.28 80.16£5.1 85.19£19.55 5.03
TD3-C (online) 75.24+£9.78 105.35+£11.01 30.12 80.41+£4.99 97.54+11.88 17.13
TD3-BC (online) 73.55+8.18 104.16 +4.66 30.61 82.26+1.32 97.48+3.45 15.22

for 200K steps. Note that obtaining better offline performances alone cannot
explain the better final finetuning performance before finetuning begins since
offline learning with TD3-BC performs no better than ODT and IQL except
for ant-medium-v2. Even in cases where pretraining with TD3-BC delivers
better offline performance than ODT or IQL, we still observe more significant
performance improvement, as evidenced by the larger relative improvement.
In hopper-medium-replay-v2, although pretraining with TD3-BC performs
worse during offline learning, finetuning with TD3 or TD3-C allows us to improve
significantly.

Note that ODT performs hyperparameter tuning for each task and initializes

3.3. Experiments 51

the replay buffer using only top-performing trajectories from the offline dataset.
In contrast, our approach is easy to implement and requires minimal changes
to existing algorithms during online finetuning. Furthermore, we use the same
hyperparameters for all datasets, and the hyperparameters are chosen to be the
same as the default values used in previous work. We also do not change how
data are sampled from the replay buffer and perform additional pre-processing to
the dataset.'

So far, we have compared finetuning with TD3-style algorithms using the
same offline data initialization method used in ODT and IQL. As demonstrated
in earlier experiments in section 3.3.3, this setting is highly disadvantageous
for online TD3-BC. If we compare with results that do not first initialize the
online buffer with offline datasets, then finetuning with TD3 and TD3-C still
outperforms finetuning with ODT and IQL significantly. At the same time, the
performance of finetuning with TD3-BC also improves due to constraining the
policy to only online data collected during finetuning. In fact, it performs the
same or better than TD3 and TD3-C on all except the HalfCheetah datasets. At
the same time, the variance in the final results obtained by TD3-BC is consistently
lower, demonstrating that it is more stable online than other algorithms.

We also compare with other RL algorithms that aim to address the finetuning

inefficiency issues discussed in this chapter in appendix A.3 and appendix A.4.

3.3.6 Summary of empirical observations

In the following, we summarize our observations of the empirical study.

* The degree of the conservativeness of the RL algorithms has a substantial
impact on the data efficiency during finetuning, where the goal is to max-
imize the improvement compared to the pretrained policies. Mitigation
strategies that reduce extrapolation errors during offline training can also
improve the stability of online training. However, this may come as a trade-
off for online finetuning sample efficiency. Using online RL algorithms

may result in a faster rate of improvement but can be less stable, and such

I'The original TD3-BC performs observation normalization, which shows improved perfor-
mance in some environments. In our implementation, we do not normalize the observations.

3.3. Experiments 52

instability may be undesirable if the online sampling budget is limited. The
degree of instability depends on the properties of the underlying MDP and
the diversity of the offline dataset. When the offline dataset has enough
diversity, the errors encountered during online finetuning will be mild
and may not be significant enough to collapse a good pretrained policy.
However, if the value estimate is inaccurate during finetuning, then policy
optimization algorithms that maximize the erroneous value estimate will

result in policy collapse.

The online replay sampling distribution plays an important role. The two
approaches we considered, namely whether we initialize the online replay
with offline datasets, present different trade-offs. However, when the online
replay is initialized with the offline dataset, the sampled transitions during
the initial finetuning period should resemble those seen during offline
training. For policy-constrained offline RL algorithms such as TD3-BC,
the additional policy constraint will regularize the online training policy
heavily towards sub-optimal behaviors in the offline dataset. This explains
why TD3-BC improves faster when we completely discard offline data
during finetuning. However, online algorithms that do not incorporate any

additional constraints suffer from training instability.

Initializing the online replay with offline data followed by uniform sam-
pling during finetuning may present additional issues that influence the
stability of online algorithms such as TD3. When the offline dataset is
large, during the initial period of finetuning, samples from the replay
buffer would consist mainly of transitions from the offline dataset since
the amount of new samples is relatively small compared to the number of
offline samples. This can create a similar effect as learning offline during
online finetuning. Since TD3 is not designed for offline learning, the values
may be overestimated during initial finetuning. We discuss this issue in
more detail in section 3.3.4. A solution that prevents the offline samples
from crowding out the online replay is to fix the ratio of offline and online
samples during finetuning. This has the advantage of ensuring that the

agent immediately uses online interactions collected by the agent during

3.4. Discussion 53

finetuning, decoupling the rate at which online transitions are sampled

from the size of the offline dataset.

* When the offline data is not used to initialize the online replay, all transi-
tions sampled during finetuning will consist purely of online interactions.
The critic may encounter more transitions not seen during pretraining,
making stable finetuning difficult. The agent may also suffer from the risk
of catastrophic forgetting since the agent would not be able to recall any
bad behavior it has experienced during offline learning. While we have
presented experimental results for the two extreme settings, it is unlikely
that either would be the best solution for practical applications. While [83]
explored using prioritized replay that learns to mix the offline and online
samples that allow utilization of offline samples during online learning, the
issue of policy collapse can still happen with their approach. Therefore,
our experiments suggest that if the online algorithm does not explicitly
address issues that prevent extrapolation errors in the critic from crippling
the policy, it is unlikely that a different choice of the replay sampling

strategy can help prevent policy collapse.

3.4 Discussion

One may hope to deploy the offline policy to collect more data and reuse the same
algorithm for offline learning and finetuning. However, existing studies and our
findings indicate that finetuning with RL algorithms designed for offline learning
converges slowly with additional online data [67]. An alternative approach to
reusing the offline RL algorithm for online finetuning is to use a different online
off-policy RL algorithm for online finetuning. Since recent online off-policy
algorithms [33, 26, 32, 34] have demonstrated strong performance and good sam-
ple efficiency, we should expect that additional pretraining with offline RL would
allow this approach to enable sample-efficient finetuning. We show that using a
standard off-policy RL algorithm can work well for online finetuning. However,
we also observe that sometimes finetuning with online off-policy algorithms

can lead to policy collapse, where the policy performance degrades severely

3.4. Discussion 54

during initial online training. These observations motivate us to investigate the
challenges in different strategies for finetuning from offline RL. Towards this
goal, we analyze the trade-offs in choices of algorithms and whether/how to use
offline data for online finetuning. We present several approaches to finetuning
and discuss their merits and limitations based on empirical observations on stan-
dard offline and online RL benchmarks. Based on our observations, we conclude
that effective online finetuning from offline RL may be achieved with more
robust online policy optimization and present a constrained policy optimization
extension to the TD3 algorithm, which we call conservative TD3 (TD3-C), that
empirically helps stabilize online finetuning, thereby addressing the issue of

policy collapse.

Practical guidelines

Our observations provide a few points for practitioners to consider when leverag-
ing offline RL as a pretraining step and improving offline policies with online
data. First, using offline RL methods to continue finetuning may be sub-optimal
if the goal is to maximize performance improvement with additional online sam-
ples. Using online off-policy algorithms may allow convergence to a better final
policy. Second, our empirical results suggest that from a practical perspective, it
is crucial to pretrain the agents on datasets that include diverse transitions, pro-
vided the offline RL algorithm does not deteriorate significantly with the addition
of these suboptimal transitions. While both the policy and the critic can enjoy
more robustness and better generalization capability with diverse suboptimal
data, the critic should be exposed to both good and bad actions during pretraining
to ensure that finetuning with online algorithms is stable.

Our results reveal some limitations on the reported benchmark results in
finetuning from offline RL. Previous work [67, 81, 94] demonstrates that some
offline RL algorithms enjoy better finetuning performance. However, the conclu-
sion is usually made by comparing alternative offline RL methods for finetuning
or an online RL baseline. In this chapter, we demonstrate that using online RL
algorithms with offline RL pretraining is a simple and effective approach that
is often neglected in previous work, such as [67, 94, 81] with the exception

of [83]. However, we do not argue that online RL for finetuning is necessarily

3.4. Discussion 55

superior and should always be preferred. As we have seen in section 3.3, policy
constraint methods, such as TD3-BC, enjoy better stability, and the performance
can sometimes rival online RL algorithms. However, we argue that, instead of
utilizing constraints designed for offline learning, there are alternative constraints
that would work better for online finetuning. We discussed one approach using
conservative policy optimization in section 3.3.4. While we do not find finetuning
with TD3-BC to suffer from policy collapse, other works [85, 49] have shown
that policy collapse can indeed happen even when using offline RL methods for
finetuning. We expect that incorporating conservative policy optimization can
also help improve stability in those cases.

Our study also suggests that the evaluation protocols used by some previous
works do not sufficiently reflect the challenges we need to address in finetuning
from offline RL. We find that the conclusion drawn from evaluating finetuning
performance depends on the number of online samples allowed. When a small
number of online samples is chosen, the evaluation will favor algorithms with
better stability, but not necessarily algorithms that are more finetuning-efficient.
In practice, a trade-off between stability and relative performance improvement
exists, and we hope future work can account for it in consideration during
evaluation.

Recent work aiming to improve finetuning from offline RL often incorporates
algorithmic improvements [67, 81, 83, 94] coupled with changes to the underly-
ing actor-critic algorithms and replay sampling strategy. This makes it difficult
to understand performance improvements coming from individual components,
hindering our understanding of what makes finetuning from offline RL difficult.
We attempt to isolate these changes and demonstrate that, by just changing the
online algorithms during finetuning or the online replay initialization, existing
algorithms can have a significant performance boost that rivals or outperforms
more sophisticated approaches. Given the relative ease of implementing these
changes, we hope future work can incorporate them as baselines to measure

better our progress on finetuning from offline RL.

3.5. Conclusion 56

3.5 Conclusion

We studied the difficulty in leveraging offline RL as pretraining for online RL.
We found that finetuning with offline RL results in slow improvement, while
finetuning with online RL algorithms is sensitive to distribution shifts. We found
that conservative policy optimization is a promising approach for stabilizing

finetuning from offline RL when the offline dataset lacks diversity.

Chapter 4

Optimal transport for offline

imitation learning

4.1 Overview

In this chapter, we introduce Optimal Transport Reward labeling (OTR), an
algorithm that leverages optimal transport theory to automatically assign reward
labels to unlabeled trajectories in an offline dataset based on one or more expert
demonstrations.

This chapter considers leveraging datasets that are imperfect due to missing
reward information. In chapter 3, we discussed how offline RL can be used
to learn a policy from a complete dataset containing observations, actions, and
rewards, which can then be further improved through online finetuning. However,
this approach assumes the presence of reward signals in the offline dataset. The
necessity for a reward function to label logged experiences limits the direct
application of offline RL methods in scenarios where rewards are difficult to
specify with hand-crafted rules. While human preferences can be used to label
trajectories, this process can be prohibitively expensive. Therefore, enabling
offline RL to utilize unlabeled data remains an open and significant challenge.

An alternative to labeling every trajectory is to provide expert demonstra-
tions, which can often be more natural for practitioners than specifying a reward
function. In robotics, for instance, providing expert demonstrations is common

practice, and in the absence of natural reward functions, ‘learning from demon-

57

4.2. Preliminaries 58

stration’ has been a standard approach for decades to derive effective policies
for robotic systems (see, e.g., [5, 11, 12, 20]). Imitation learning, a framework
within this approach, aims to learn policies that replicate expert behavior without
needing an explicit reward function.

The OTR algorithm introduced in this chapter employs optimal transport to
find optimal alignments between unlabeled trajectories in the dataset and expert
demonstrations. The similarity measure between a state in an unlabeled trajectory
and that of an expert trajectory is treated as a reward label. These inferred
rewards can then be used by any offline RL algorithm to learn policies from a
small number of expert demonstrations and a large offline dataset. Empirical
evaluations on the D4RL [63] datasets demonstrate that OTR can recover the
performance of offline RL methods using ground-truth rewards with only a single
demonstration. Compared to previous reward learning and imitation learning
approaches, our method consistently achieves superior performance across a

wide range of offline datasets and tasks.

4.2 Preliminaries

We consider learning in an episodic, finite-horizon Markov Decision Process
(MDP) (S, A, p,r,v,po,T) where S is the state space, A is the action space,
p is the transition function, r is the reward function, ¥ is the discount factor,
po 1s the initial state distribution and 7 is the episode horizon. A policy 7 is
a function from state to a distribution over actions. The goal of RL is to find
policies that maximize episodic return. Running a policy 7 in the MDP generates
a state-action episode/trajectory (si,ay,s2,a2,...,57) =: T.

We consider the problem of offline imitation learning. Unlike in the standard
RL setting, no explicit reward function is available. Let T = (s1,a1,$2,4a2,...,5T)
denote an episode of interaction with the MDP using a policy that selects actions
a; at time stepst = 1,...,T — 1. Instead of a reward function, we have access to
a dataset of expert demonstrations D¢ = {’L’én) fi\’zl generated by an expert policy
7, and a large dataset of unlabeled trajectories D" = {rém) M_ generated by an
arbitrary behavior policy 7g. We are interested in learning an offline policy 7

combining information from expert demonstrations and unlabeled experience

4.3. Optimal transport reward labeling 59

without any interaction with the environment. We address this problem using
optimal transport, which will provide a way to efficiently annotate large offline RL
datasets with rewards. Figure 4.1 illustrates how OTR uses expert demonstrations
to add reward labels to an offline dataset, which can then be used by an offline

RL algorithm to find a good policy that imitates demonstrated behavior.

Offline Dataset

] fre] ferr]

Expert Demonstration

e e e

1 :
s7 a5 |53 | a3 ST _>|QTR|<__|s1|a2|sz|a2|-~-|sT|_’|OfﬂmeRL

Figure 4.1: Illustration of Optimal Transport Reward Labeling (OTR). Given expert
demonstrations (left) and an offline dataset without reward labels (center), OTR adds
reward labels r; to the offline dataset by means of optimal transport (orange, center). The
labeled dataset can then be used by an offline RL algorithm (right) to learn policies.

4.3 Optimal transport reward labeling

Optimal Transport (OT) [19, 51] is a principled approach for comparing probabil-

ity measures. The (squared) Wasserstein distance between two discrete measures
=1yl 5, and py =¥, 5, i
Mo = 7 X4=1 0y and [y = 77}, Oy, is

T T

W2 (i, pty) = min Y. Y e,y e o, (4.1)
ueMt:Iz’:l

where M = {u € RT*T" ul= %l,uTl = %1} is the set of coupling matrices,
¢ is a cost function, and &, refers to the Dirac measure for x. The optimal
coupling u* provides an alignment between the samples in u, and u,. Unlike
other divergence measures (e.g., KL divergence), the Wasserstein distance is a
metric and it incorporates the geometry of the space.

In the context of reinforcement learning, let p, = %Zth/l O and pp =

%Zthl O, denote the empirical state distribution of an expert policy 7, and

4.3. Optimal transport reward labeling 60

behavior policy 7 respectively. Then, the (squared) Wasserstein distance

T T
Wz(ﬁﬂ?I)e min Z Z c st 5 [’ ,u't t (42)
peM t=1t'=
can be used to measure the distance between expert policy and behavior pol-
icy. Let u* denote the optimal coupling for the optimization problem above,

then eq. (4.2) provides a reward signal

rot(sT) Z c(st sou,” Iz 4.3)

which can be used for learning policy 7 in an imitation learning setting. This is
the key idea behind our approach to annotating unlabeled datasets with reward
signals: computing the optimal alignment between the expert demonstration and
trajectories in the unlabeled dataset allows us to assign a reward for each step in
the unlabeled trajectory.

Figure 4.2 illustrates the computation performed by OTR to annotate an
unlabeled dataset with rewards using demonstrations from an expert. We also
gave the pseudo-code for the approach in algorithm 1. Concretely, OTR takes the
unlabeled dataset D* and expert demonstration D¢ as input. For each unlabeled
trajectory 7(m) € D OTR solves the optimal transport problem for each, obtain-
ing the cost matrix C) and optimal alignment u*" (line 3). OTR then com-
putes the per-step reward label following eq. (4.3) (line 5). The reward-annotated
trajectories are then combined, forming a reward-labeled dataset Plabel

Solving eq. (4.2) requires solving the OT problem to obtain the optimal
coupling matrix p*. This amounts to solving a linear program (LP), which may
be prohibitively expensive with a standard LP solver. In practice, we solve the
entropy-regularized OT problem with Sinkhorn’s algorithm [19]. We leverage the
Sinkhorn solver in OTT-JAX [75] for this computation. Once OTR has annotated
the unlabeled offline dataset with intrinsic rewards, we can use an offline RL
algorithm to learn a policy. Since we are working in the pure offline setting, it is
important to use an offline RL algorithm that can minimize the distribution shifts

typically encountered in the offline setting.

4.3. Optimal transport reward labeling 61

~ ~ *
® Pz O PDe C H Vot
° Sf I

[}
00.. /

Oo.. < C[; r;f

o %00
o
o
o
(o]

Figure 4.2: Illustration of the computations performed by OTR. In this example, we
consider an MDP with a two-dimensional state space (|S| = 2). We have two empirical
state distributions from an expert p, with samples {s{ }IT,':1 (o) and policy pr with
samples {sf}thl (e) as denoted by points in the leftmost figure. OTR assigns rewards 7
(blue) to each sample in the policy’s empirical state distribution as follows: (i) Compute
the pairwise cost matrix C (purple) between expert trajectories and trajectories generated
by behavior policy; (ii) Solve for the optimal coupling matrix u () between p, and
Pe; (iii) Compute the reward for s” as ro(s¥) = —C! . Consider for example a state
s} € px; the row C; in the cost matrix corresponds to the costs between s7 and {sf,}tT,lzl.
W, represents the optimal coupling between s7 and the expert samples. The optimal
coupling moves most of the probability mass to s5 and a small fraction of the mass to s§
(green lines in the leftmost figure).

One thing to note is that the reward computed via OTR corresponds to the
Wasserstein distance between the stationary distribution of the expert policy
7, and the stationary distribution of the policy 7g that generates the unlabeled
dataset. It does not correspond to the Wasserstein distance between the training
policy and the expert. Therefore, optimizing the policy with respect to rewards
computed by OTR does not exactly correspond to direct minimization between
the learning policy and the expert. Nevertheless, the rewards computed using the
behavior policy is an upperbound on the Wassertein distance between the expert
and the learning policy. Therefore, minimizing the rewards computed by OTR
corresponds to minimizing an upper bound on the Wasserstein distance between

the learning and expert policy:

W2 (pr,pe) < W (pr,pg) + W (pg, pe)- (4.4)

The upper bound becomes relaxed when the learning policy 7 differs significantly

4.3. Optimal transport reward labeling 62

Algorithm 1: Pseudo-code for Optimal Transport Reward labeling
(OTR)

Input: unlabeled dataset D, expert dataset D¢

Output: labeled dataset D'2Pe!

1 Dlabel — 0:

2 foreach (" in D* do // Label each episode in the
unlabeled dataset

3 Cm, u*m « 801ve0T(DC, 1(M); // Compute the optimal

alignment with eq. (4.2)
4 fort=11tT do

5 rOT(s,(m)) — —ZIT,/:ICt(’;})u:t@); // Compute the per-step

rewards with eq. (4.3)

6 end

7 plabel ,_ plabel (sgm),agm>,r?T,...,s(Tm)) ; // Append labeled
episode

8 end

return D'abel,

o

from the behavior policy. However, since offline RL uses behavior regularization
to minimize the effect of distribution shifts, WW?(py, pp) is controlled, and mini-
mizing with respect to the state rewards should minimize the actual Wasserstein
distance between the learning and expert policy.

Unlike prior works that compute rewards using online samples [60, 59], we
compute the rewards entirely offline prior to running offline RL training, avoiding
the need to modify any part of the downstream offline RL pipeline. Therefore,
our approach can be combined with any offline RL algorithms, providing dense
reward annotations that are required by the downstream algorithms. Figure 4.1
illustrates the entire pipeline of using OTR for relabeling and running an offline
RL algorithm using the reward annotated datasets.

Compared to previous work that aims at solving offline imitation learning with
a single algorithm, OTR focuses on generating high-quality reward annotations
for downstream offline RL algorithms. As a result, our approach enjoys several

advantages:

* Our approach does not require training separate reward models or dis-

criminators, which may incur higher runtime overhead. By not having to

4.3. Optimal transport reward labeling 63

train a separate parametric model, we avoid hyper-parameter tuning on the

discriminator network architectures.

* Unlike other approaches, such as GAIL or DemoDICE, our approach does
not require solving a minimax optimization problem, which can suffer

from training instability [68].

* Our approach is agnostic to the offline RL. methods for learning the pol-
icy since OTR computes reward signals independently of the offline RL

algorithm.

Efficient implementation

We provide an efficient implementation of OTR in JAX. For computing the
optimal coupling, we use OTT-JAX [75], a library for optimal transport that
includes a scalable and efficient implementation of the Sinkhorn algorithm that
can leverage accelerators, such as GPU or TPU, for speeding up computations.
JAX includes useful functionality that allows us to easily parallelize computations.
Concretely, we JIT-compile the computation of rewards for one episode and
further leverage the vmap function to compute the optimal coupling between
an unlabeled episode with all of the expert episodes in parallel. Efficiently
parallelizing the computation of the optimal coupling requires that all the episodes
share the same length. This is necessary both for parallelizing the computation
across multiple expert demonstrations as well as for avoiding recompilation by
XLA due to changes in the shape of the input arrays. To achieve high throughput
for datasets with varying episodic length, we pad all observations to the maximum
episode length allowed by the environment (which is 1000 for the OpenAl Gym
environments) but set the weights of the observations to zero. Padding the
episodes this way does not change the solution to the optimal coupling problem.
Note that padding means that a 1M transition dataset may create more than 1000
episodes of experience, in this case, the runtime for our OTR implementation
may be higher effectively due to having to process a larger number of padded

episodes. Our implementations requires only about one minute to label a dataset

4.3. Optimal transport reward labeling 64

with one million transitions (or 1000 episodes of length 1000)'. For larger-scale
problems, OTR can be scaled up further by processing the episodes in the dataset
in parallel. Our implementation of OTR and re-implementation of baselines are
computationally efficient. Even so, the training time for IQL is about 20 minutes,
so OTR adds a relatively small amount of overhead for reward annotation to an

existing offline RL algorithm.

Cost function. For OTR, we use the cosine distance as the cost function Let s,
and s, denote two states from the expert and unlabaled demonstration respectively.

The cosine distance between the expert state and unlabeled state is

-
Sy Su

d(se,50) = 1— —L0
o [] 11

4.5)
This choice follows the recommendation from [59] which found that the cosine
distance performs empirically better than using the Euclidean distance. One
practical advantage of the cosine distance is that it is bounded (0 < d < 2), which
ensures that reward we derive from the cost function falls within a fixed range.
However, the cosine distance may not be a good choice in scenarios where we
would like two states that are colinear to have different costs since it only takes
the angular similarity into account. Nevertheless, we find the cosine distance to
be a good cost function that gives good performance across different domains

and tasks.

Aggregating multiple expert trajectories. Since there can be more than one
episodes of expert demonstrations, we need a way to aggregate the rewards
computed from these expert demonstrations. To do this, we compute the optimal
transport with respect to each episode independently and use the rewards from
the expert trajectory that gives the best episodic return. This allows us to match
the unlabeled episode with the nearest-neighbor expert episode instead of with an
average of all expert episodes, which may not be representative of the behavior

we want to imitate.

'Runtime measured on halfcheetah-medium-v2 with an NVIDIA GeForce RTX 3080
GPU.

4.4. Experiments 65

Reward squashing. One thing that can result in sub-optimal performance of
using OTR is due to the difference in the reward scale. The reward signals
computed by OTR may be significantly different from the reward scale from
a hand-crafted reward function. However, many offline RL algorithms may
be sensitive to the scale of the reward signals, and additional tuning of hyper-
parameters that are dependent on the reward scales may be required. To address
this issue, similar to [60, 59], we squash the rewards computed by line 5 with
an exponential function s(r) = aexp(fr). This has the advantage of ensuring
that the rewards consumed by the offline RL algorithm have an appropriate range
since many offline RL algorithms can be sensitive to the scale of the reward
values.

Overall, the time complexity of OTR for labeling one episode is O(KT?),
where K is the number of expert demonstrations and 7 is the trajectory length.
Therefore, we expect OTR to be most practical in scenarios when there is a small
number of expert demonstrations and when the episode length is not prohibitively
large. For long episodes, it may be possible to downsample the episode by some
fixed factor or by selection of key frames. We leave investigation of very long
episode length to future work. We also refer the reader to appendix B.1 for

additional experimental details and hyperparameters.

4.4 Experiments

In this section, we evaluate OTR on D4RL Locomotion, AntMaze, and Adroit
benchmark tasks (see also fig. 4.3) with the goal of answering the following

research questions:

1. Can OTR recover the performance of offline RL algorithms that have
access to a well-engineered reward function (i.e., ground-truth rewards

provided by the environment)?

2. Can OTR handle unlabeled datasets with behaviors of unknown and mixed

quality?

3. How does OTR perform with a varying number of expert demonstrations?

4.4. Experiments 66

4. How does OTR compare with previous work on offline imitation learning

in terms of performance and runtime complexity?

Figure 4.3: Benchmark tasks: D4RL Locomotion, Antmaze, and Adroit.

We demonstrate that OTR can be effectively combined with an offline RL
algorithm to learn policies from a large dataset of unlabeled episodes and a
small number of high-quality demonstrations. Since OTR is only a method for
reward learning, it can be combined with any offline RL algorithm that requires
reward-annotated data for offline learning. In this chapter, we combine OTR with
the Implicit Q-Learning (IQL) algorithm [8 2.

IQL consists of three learned components: a policy network 7y, a state-
value network Vy, and an action-value network Qg. For policy evaluation, the

state-value network is learned by minimizing

LV(W) = E(s,a)wD [LE(QG’ (s,a) - VV/(S))} ’ (4.6)

where 6’ denotes the parameters for the target action-value network and LS (u) =
|7 — 1(u)|u? is the expectile regression objective for the T-expectile. The action-

value network Qg is learned by minimizing

Lo(8) =E(uav)p | (r(s,@) + Wy (s) = Qols,0)*] . @)

where r(s,a) is the reward for state s and action a. To use OTR in with IQL, the
reward function r will be substituted with the OTR reward function rgr.

For policy improvement, IQL uses the advantage weighted regression objec-

2Qur IQL implementation is adapted from https://github.com/ikostrikov/implic
it_q_learning.

https://github.com/ikostrikov/implicit_q_learning
https://github.com/ikostrikov/implicit_q_learning

4.4. Experiments 67
tive [56, 67]

La(¢) = E(qp [exp(B(Qp(s,a) — Viy(s))) log g (als)], (4.8)

where 8 € [0,00) is a temperature parameter, to extract an offline policy.

4.4.1 Experimental setup

We evaluate OTR+IQL on the D4RL benchmark [63]. We start by evaluating
OTR on three environments (HalfCheetah-v2, Walker2D-v2 and Hopper-v2)
from the OpenAl Gym MuJoCo locomotion tasks. For each environment, we
use the medium-v2, medium-replay-v2, and medium-expert-v2 datasets to
construct the expert demonstrations and the unlabeled dataset. For the expert
demonstrations, we choose the best episodes from the D4RL dataset based on the
episodic return. In practice, the expert demonstrations can be provided separately;
we only select the expert demonstration in this way for ease of evaluation. To
obtain the unlabeled dataset, we discard the original reward information in the
dataset. We then run OTR to label the dataset based on the optimal coupling
between the unlabeled episodes and the chosen expert demonstrations. Afterward,

we proceed with running the offline RL algorithm.

4.4.2 Experimental results
Baselines

We compare OTR+IQL with the following baselines:

BC We consider two variants of BC: the first uses the full dataset while the
second uses the top 10% of the episodes sorted by episodic return. The
results of the BC baselines are obtained from [63].

IQL (oracle) this is the original Implicit Q-learning [81] algorithm using the
ground-truth rewards provided by the D4RL datasets.

DemoDICE an offline imitation learning algorithm proposed by [80]. De-

moDICE was found to perform better than previous imitation learning

4.4. Experiments 68

algorithms (e.g., ValueDICE [81]) that can also (in principle) work in the
pure offline setting. We ran the original implementation® under the same

experimental setting as we used for the other algorithms in the paper.

ORIL a reward function learning algorithm from [57]. ORIL learns a reward
function by contrasting the expert demonstrations with the unlabeled
episodes. The learned reward function is then used to label the unla-
beled dataset. We implement ORIL in a comparable setting to the other

baselines.

UDS we keep the rewards from the expert demonstrations and relabel all rewards
from the unlabeled datasets with the minimum rewards from the environ-
ment. This was found to perform well in [93]. This also resembles online
imitation learning methods such as SQIL [53] or offline RL algorithms,
such as COG [71].

Since UDS and ORIL are also agnostic about the underlying offline RL
algorithm used, we combined these algorithms with IQL so that we can focus
on comparing the performance differences due to different approaches used in
generating reward labels.

For all algorithms, we repeat experiments with 10 random seeds and report
the mean and standard deviation of the normalized performance of the last 10
episodes of evaluation. We compare all algorithms by using either K = 1 or
K = 10 expert demonstrations. Obtaining the results on the locomotion datasets

took approximately 500 GPU hours.

MuJoCo Locomotion. We compare OTR+IQL’s performance with all base-
lines discussed above on the locomotion tasks in the OpenAl Gym environments.
Table 4.1 compares the performance between OTR+IQL with the other baselines.
Overall, OTR+IQL performs best compared with the other baselines in terms
of aggregate score over all of the datasets we used, recovering the performance
of IQL with ground-truth rewards provided by the dataset. While we found
that other baselines can perform well on some datasets, the performance is not

consistent across the entire dataset and can deteriorate significantly on some

3https://github.com/geon-hyeong/imitation-dice

https://github.com/geon-hyeong/imitation-dice

4.4. Experiments 69

Table 4.1: D4RL performance comparison between IQL with ground-truth rewards and
OTR+IQL with a single expert demonstration (K = 1). We report mean =+ standard
deviation per task and aggregate performance and highlight near-optimal performance in
bold and extreme negative outliers in red. OTR+IQL is the only algorithm that performs
consistently well across all domains.

Dataset BC 10%BC IQL (oracle) ‘ DemoDICE IQL+ORIL IQL+UDS OTR+IQL
halfcheetah-medium-v2 42.6 425 47.4+0.2 42517 49002 424403 43.3+02
hopper-medium-v2 52.9 56.9 66.2+5.7 55133 47.0+4.0 54.5+3.0 78.7£5.5
walker2d-medium-v2 75.3 75.0 78.3+8.7 734426 619+6.6 68.9+6.2 79.4+1.4
halfcheetah-medium-replay-v2 36.6 40.6 44.2+1.2 38.1£2.7 44.1+0.6 37.9+24 41.3%0.6
hopper-medium-replay-v2 18.1 75.9 94.7+8.6 | 39.0+15.4 82.4+1.7 49.3+22.7 84.8+2.6

walker2d-medium-replay-v2 26.0 62.5 73.8+7.1 | 52.2+13.1 76.3+4.9 17.749.6 66.0+6.7
halfcheetah-medium-expert-v2 ~ 55.2 92.9 86.7+5.3 85.8+5.7 87.5+£3.9 63.0+5.7 89.6+3.0

hopper-medium-expert-v2 52.5 110.9 91.5+14.3 92.3+14.2 29.7+22.2 53.9+2.5 93.2+20.6
walker2d-medium-expert-v2 107.5 109.0 109.6+1.0 106.9+1.9 110.6+x0.6 107.5+1.7 109.3+0.8
locomotion-v2-total 466.7 666.2 692.4 ‘ 585.3 588.5 494.9 685.5
runtime 10m 10m 20m ‘ 100m” 30m 20m 22m

* The runtime is measured with the original PyTorch implementation.

datasets. In contrast, OTR+IQL is the only method that consistently performs
well for all datasets of different compositions.

Runtime. Despite applying optimal transport, we found that with a GPU-
accelerated Sinkhorn solver [75], combined with our efficient implementation
in JAX, OTR achieves a faster runtime compared to algorithms that learn addi-
tional neural networks as discriminators (DemoDICE [80]) or reward models
(ORIL [57]). For methods that learn a neural network reward function, an
overhead of at least 10 minutes is incurred, whereas OTR only incurs approxi-
mately 2 minutes of overheads when compared with the same amount of expert

demonstrations.

Effect of the number of demonstrations. We investigate if the performance of
the baselines can be improved by increasing the number of expert demonstrations
used. Table 4.2 compares the aggregate performance on the locomotion datasets
between OTR and the baselines when we increase the number of demonstra-
tions from K = 1 to K = 10. DemoDICE’s performance improves little with
the additional amount of expert demonstrates. While ORIL and UDS enjoy a
relatively larger improvement, they are still unable to match the performance of

IQL (oracle) or OTR in terms of aggregate performance despite using the same

4.4. Experiments 70

Table 4.2: Aggregate performances of different reward labeling algorithms with different
numbers of expert demonstrations. OTR is the only algorithm that leads to an offline RL
performance close to using ground-truth rewards.

locomotion-v2-total K=1 K =10

DemoDICE 585.3 589.3
IQL+ORIL 588.5 618.3
IQL+UDS 494.9 575.8
OTR+IQL 6855 6943
IQL (oracle) 692.4

Table 4.3: Performance of OTR+IQL on AntMaze with a single expert demonstration.
Similar to the results on locomotion, OTR+IQL recovers the performance of offline RL
with ground-truth rewards. We report mean + standard deviation per task and aggregate
performance.

Dataset IQL (oracle) OTR+IQL
antmaze-large-diverse-v0 47.5£9.5 45.5£6.2
antmaze-large-play-v0 39.6+5.8 45.3£6.9

antmaze-medium-diverse-v0 70.0+10.9 70.4+4.8
antmaze-medium-play-v0 71.2+7.3 70.5+6.6
antmaze-umaze-diverse-v0 62.24+13.8 68.94+13.6
antmaze-umaze-vQ 87.5+2.6 83.4+3.3

antmaze-v0-total 378.0 384.0

offline RL backbone. OTR’s performance is close to IQL (oracle) even when
K =1 and matches the performance of IQL (oracle) with K = 10.

AntMaze and Adroit. We additionally evaluate OTR+IQL on datasets from
antmaze-v0 and adroit-v0. Tables 4.3 and 4.4 shows that OTR+IQL again
recovers the performance of IQL with ground-truth rewards. This suggests that
OTR+IQL can learn from datasets with diverse behavior and human demonstra-

tions even without ground-truth reward annotation.

Qualitative comparison of the reward predictions. Figure 4.4 provides a
qualitative comparison of the reward predicted by OTR, ORIL, and UDS. UDS

annotates all transitions in the unlabeled dataset with the minimum reward

4.4. Experiments 71

Table 4.4: Performance of OTR+IQL on Adroit with a single expert demonstration.

Dataset IQL (oracle) = OTR+IQL
door-cloned-v0 1.60 0.01+0.01
door-human-v0 430 5.9242.72
hammer-cloned-v0O 2.10 0.88+0.30
hammer-human-v0 140 1.79+1.43
pen-cloned-v0 3730 46.87+20.85
pen-human-v0 71.50 66.82+21.18
relocate-cloned-v0 -0.20 -0.24+0.03
relocate-human-v0 0.10 0.11£0.10
adroit-vO-total 118.1 122.16
OTR ORIL ubDS

£ 5000 | -] 1000 :

3 » | 3000 + 7

)

o

T 2500 A 500 A 1500 A

v

]

=

—I 0 1 1 1 O - 0 T 1 1 1

100020003000 100020003000 100020003000

Environment Return

Figure 4.4: Qualitative differences between the rewards predicted by OTR, ORIL, and
UDS on hopper-medium-v2. We found that the rewards computed by OTR is more
correlated with the crafted reward function used for training the expert policy compared
to ORIL and UDS. We find OTR predicts higher rewards for trajectories that more closely
resemble the expert demonstrations.

from the environment. Thus, the episodes with non-zero rewards are expert
demonstrations. This means that UDS is unable to distinguish between episodes
in the unlabeled datasets. Compared to reward learning algorithms, such as
ORIL, OTR’s reward prediction more strongly correlates with the ground-truth
rewards from the environment, which is a good precondition for successful policy
learning by downstream offline RL algorithm. We also evaluate OTR’s reward
prediction on more diverse datasets, such as those in AntMaze. Figure 4.5 shows
the expert demonstrations we used in antmaze-medium-play-vO (left) and the

trajectories that received the best OTR reward labels in the unlabeled dataset

4.4. Experiments 72

Figure 4.5: Ranking of trajectories according to rewards per step computed by OTR.
Trajectories with lighter colors have higher rewards per step.

(right). OTR correctly assigns higher rewards to trajectories that are closer to
the expert demonstrations. The qualitative result in fig. 4.5 also provides some
clue for why using an approach such as OTR may be more favorable even when
a reward function is readily available. The original reward function used in
the AntMaze dataset assigns a reward of one when the ant is sufficiently close
to the target location and zero otherwise. OTR, on the other hand, provides a
mechanism for reward shaping [8] for every action made by the agent which may

make the learning the optimal policy easier.

Combining OTR with different offline RL algorithms. In the main experi-
ments, we evaluated OTR by pairing it with the IQL algorithm. In this section,
we investigate if OTR can recover the performance of a different offline RL
algorithm (TD3-BC) [64] using ground-truth rewards. We replace IQL with
TD3-BC and report the results in table 4.5. We observe that (1) the performance
from OTR+TD3-BC mostly matches those using the ground-truth rewards; (ii)
the performance is fairly robust in terms of the choice of the number of ex-
pert trajectories. However, there are more variances on some datasets (e.g.,
halfcheetah-medium-expert-v2). Nevertheless, the differences are smaller
compared to the baselines, and OTR+TD3-BC still performs better than the

baselines presented in section 4.4 in terms of aggregate performance.

4.4. Experiments 73

Table 4.5: OTR+TD3-BC results on MuJoCo. We consider using a different offline RL
algorithm TD3-BC [64] as our RL backbone. We find that using the TD3-BC backbone
performs comparably, demonstrating that OTR is not sensitive to the RL backbone used.

Dataset TD3-BC (oracle) OTR+TD3-BC
K=1 K=10
halfcheetah-medium-expert-v2 ~ 93.54+2.0 74.8+£20.1 71.6+23.1
halfcheetah-medium-replay-v2 44.440.8 39.4+1.3 38.9+1.5
halfcheetah-medium-v2 48.010.7 42.6+1.0 42.7+1.1
hopper-medium-expert-v2 100.24+20.0 103.2+13.9 98.94+19.7
hopper-medium-replay-v2 64.8+£25.5 749+28.8 80.2+23.1
hopper-medium-v?2 60.7£12.5 66.4+103 69.8+13.9
walker2d-medium-expert-v2 109.54+0.5 109.0+0.6 108.8+0.8
walker2d-medium-replay-v2 87.4+8.4 69.7£16.4 67.4420.6
walker2d-medium-v2 83.74+5.3 76.9+£5.4 78.0£2.6
locomotion-v2-total 692.3 656.9 656.4

Importance of using the optimal transport plan. In the main experiments,
we compute the rewards based on the optimal coupling computed by the Sinkhorn
solver. The optimal transport plan is sparse and transports most of the probability
masses to only a few expert samples. In this section, we investigate what happens
if we use a suboptimal transport plan where each sample from the policy’s
trajectory is transported equally to each sample in the expert’s trajectory. In this
case, the reward function essentially boils down to computing the average costs
with respect to all of the states in the expert’s trajectory.

Table 4.6 compares the performance of OTR+IQL using the optimal transport
plan and uniform transport plan. We find that for many datasets, using the
suboptimal uniform transport plan is sufficient for reaching good performance.

This indicates that using a reward function based on the similarity of states
from the policy and the expert can be a simple and effective method for reward la-
beling. However, note that the uniform transport plan can still underperform com-
pared to using the optimal transport plan (e.g., hopper-medium-replay-v2).
This shows that the optimal transport formulation enables better and more con-

sistent performance.

4.4. Experiments 74

Table 4.6: OTR with uniform transport plan. We compare using an optimal transport
plan with a uniform transport plan. Using an optimal transport plan allows us to obtain
better performance.

Dataset Optimal transport Uniform
halfcheetah-medium-v2 43.3£0.2 43.5£0.3
hopper-medium-v2 78.7£5.5 80.5+2.3
walker2d-medium-v2 79.4+1.4 77.6£1.5
halfcheetah-medium-replay-v2 41.3+0.6 41.6£0.8
hopper-medium-replay-v2 84.8£2.6 69.8+10.1
walker2d-medium-replay-v2 66.0£6.7 62.2+14.4
halfcheetah-medium-expert-v2 ~ 89.6+3.0 90.6£2.9
hopper-medium-expert-v2 93.2+20.6 89.2+14.0
walker2d-medium-expert-v2 109.3+0.8 106.0+5.9

Comparison to PWIL. In this section, we investigate if the online imitation
learning algorithm PWIL [60] can be used in the offline setting with a change
from using an online RL algorithm to an offline RL algorithm. We ran PWIL
with IQL, which is similar to what we did for OTR in the main paper. We use the
PWIL implementation from Acme [79].*

Note that although OTR is similar to PWIL in using the Wasserstein distance
to construct RL reward signals, OTR differs from PWIL in the choices of OT
solver, the cost function as well as the approach used for aggregating results
from multiple expert demonstrations. Also note that for all experiments, we
consider learning only from expert states instead of state-action pairs. This is
both a more general and challenging setting. It was found in [60] that PWIL
sometimes performs badly without expert actions. We ran OTR and PWIL using
only expert observations and OTR and PWIL using observation-action pairs.
The results are illustrated in table 4.7. We found that we are unable to get
good results when running PWIL using only expert state sequences. This is
possibly due to the different choices of OT solvers and cost functions. PWIL can
perform well when combined with IQL to learn in the offline setting, although
sometimes performance is significantly worse compared to the IQL oracle or

OTR (e.g.,hopper-medium-expert-v2).

“https://github.com/deepmind/acme/tree/master/acme/agents/jax/pwil

https://github.com/deepmind/acme/tree/master/acme/agents/jax/pwil

4.4. Experiments 75

Dataset Observation only Observation and action
OTR PWIL OTR PWIL
halfcheetah-medium-v2 43.1+£0.3 1.6£1.2 43.440.3 47.5+0.2
hopper-medium-v2 80.045.2 2.1£1.3 754446 70.4+4.2
walker2d-medium-v2 79.2+1.3 0.9+1.3 79.7£1.2 81.94+1.0
halfcheetah-medium-replay-v2 ~ 41.6+03 -2.3+0.5 41.9+0.3 44.6£1.1
hopper-medium-replay-v2 84.4+1.8 14£12 853#%1.1 89.7+4.9

walker2d-medium-replay-v2 71.8+3.8 -0.1+£0.2 69.1+4.6 72.2+10.6
halfcheetah-medium-expert-v2 ~ 87.9+34 -0.3£1.5 88.3+5.1 88.6+4.3
hopper-medium-expert-v2 96.6+21.5 1.540.6 86.6+£22.9 32.9425.0
walker2d-medium-expert-v2 109.6+0.5 1.0+£1.9 109.24+0.5 110.24+0.2

Table 4.7: Comparison between OTR and PWIL with IQL as the offline RL backbone.
We found PWIL to underperform OTR when actions are not used to compute rewards.

Hyper-parameter sensitivity. For the main results, the hyper-parameters for
the squashing function (@ and 3) were chosen to be consistent with those used
in [60]. In this section, we compare the differences in the choices of these hyper-
parameters by running OTR with @ = 8 = 1. This reduces to simply applying
an exponential transformation to the optimal transport costs. The results are
illustrated in table 4.8. We find that OTR still performs well, demonstrating that

Dataset ao=Bf=5 a=B=1

halfcheetah-medium-expert-v2 ~ 87.9+3.4 86.9+4.0
halfcheetah-medium-replay-v2 41.6+0.3 40.4+£1.3

halfcheetah-medium-v2 43.14+0.3 42.7+0.4
hopper-medium-expert-v2 96.6+21.5 82.6+99
hopper-medium-replay-v2 84.4+1.8 71.24+15.2
hopper-medium-v2 80.0+5.2 75.7+£6.4

walker2d-medium-expert-v2 109.6+£0.5 106.3+8.2
walker2d-medium-replay-v2 71.8£3.8 63.2+5.7
walker2d-medium-v2 79.24+1.3 77.4+1.5

Table 4.8: Effect of a and B in the squashing function. We study the effect of the reward
squashing hyper-parameters on final performance. OTR performs consistently with a
different set of hyper-parameters.

it is not sensitive to the choices of these hyper-parameters.

4.5. Discussion 76

Summary. Our empirical evaluation demonstrates that OTR+IQL can recover
the performance of offline RL with ground-truth rewards given only a single
episode of expert demonstration. Compared to previous work, it achieves better
performance even with a larger number of demonstrations. Our qualitative com-
parison shows that OTR assigns better reward estimates that correlate strongly

with a hand-crafted reward function.

4.5 Discussion

OTR can be effective in augmenting unlabeled datasets with rewards for use by
downstream offline RL algorithms (see section 4.4). Compared to prior imitation
learning and reward learning approaches, OTR enjoys better and more robust
performance on the benchmarks we have considered in this paper. Furthermore,
our approach is easy to implement. Most of the complexity of our approach
arises from solving the optimal transport problem. However, there are libraries
for solving OT efficiently in different frameworks or programming languages.’

Unlike prior works, such as ValueDICE or DemoDICE, we split offline
imitation learning into the two distinct phases of reward modeling via OTR and a
subsequent offline RL. This improves modularity, allows for improvements in
the two phases to be made independently, and adds flexibility. However, this
modularity means that a practitioner needs to make a separate choice for the
downstream offline RL algorithm.

We believe that OTR is most useful in situations where providing ground-
truth rewards is difficult, but providing good demonstrations and unlabeled data
is feasible. However, it will not be feasible in cases where collecting expert
demonstrations is difficult. It would be interesting to explore in future work to
relax the assumption of having complete expert demonstrations by requiring only
partial demonstrations or key frames from the experts.

The Wasserstein distance formulation we used can be extended to perform
cross-domain imitation learning by using the Gromov-Wasserstein distance to

align expert demonstrations and offline trajectories from different spaces [77].

For example, see Python Optimal Transport (POT) [62], which supports PyTorch, JAX, or
TensorFlow.

4.6. Conclusion 77

4.6 Conclusion

We introduced Optimal Transport Reward labeling (OTR), a method for adding
reward labels to an offline dataset, given one or more expert demonstrations. OTR
computes Wasserstein distances between expert demonstrations and trajectories
in a dataset without reward labels, which are then turned into a reward signal.
An offline RL algorithm can then use the reward-annotated offline dataset to
determine good policies. OTR adds minimal overhead to existing offline RL
algorithms while providing the same performance as learning with a pre-specified

reward function.

Chapter 5

Bridging policy learning and
language modeling

5.1 Overview

In this chapter, we take a step forward by addressing how agents can learn from
imperfect data that lacks an episodic structure and originates from diverse, less
curated sources.

In the previous chapters, we explored reinforcement learning (RL) and imita-
tion learning methods that rely on imperfect data, such as sub-optimal behavior
or incomplete datasets, but with a well-defined structure. These data sources,
while imperfect, often retain clear episodic transitions and are focused on learn-
ing specific tasks. For example, in chapter 3, we considered datasets with a
clear episodic structure consisting of sequences of state, action, and rewards.
In chapter 4, we addressed situations where some datasets lack reward annotation
and considered inferring a reward function to overcome this limitation. In both
cases, the focus was on learning behaviors for single, well-defined tasks, such as
controlling a cheetah in MuJoCo.

While these approaches are practical for their respective domains, a signifi-
cant drawback of relying on structured datasets and single-task learning is the
limited scope of the agent’s capabilities. By focusing on predefined tasks with
well-structured reward signals, agents are often trained to optimize narrow, spe-

cific behaviors. This rigidity hinders their ability to develop a broader range of

78

5.1. Overview 79

skills that could be useful in more general or unpredictable environments. Agents
trained under these methods may perform well in specialized domains but often
struggle to generalize to new tasks or to handle situations not explicitly covered
by the training data.

In contrast, real-world environments rarely provide clearly structured data,
and optimal behaviors are often difficult to define or identify. To enable agents
to succeed in these settings, moving beyond rigid, task-specific datasets and
exploring methods that allow learning from diverse, unstructured experiences is
necessary.

The ideal autonomous agent should be capable of integrating information
from various sources — not only structured behavior data but also less formal,
unstructured data, such as web-based wikis, manuals, or human discussions.
This broader range of data sources would enable agents to acquire various skills,
making them more adaptable and better equipped to handle various tasks and
environments. Essentially, these agents should evolve into “jacks of all trades”
instead of being restricted by the narrow, single-task focus that structured datasets
often impose.

This chapter explores how to create such versatile agents by attempting
to move beyond traditional RL frameworks, which rely heavily on predefined,
structured data. While human decision-making typically draws from two primary
sources — historical behaviors (replay of past experiences) and analytical insights
(natural language and strategic reasoning) — most ML research has treated the
two pieces of information separately, focusing on either behavior or language
modeling. However, recent advancements in large language models (LLMs) [31],
which have demonstrated remarkable capabilities beyond language modeling,
offer the potential to integrate these two pieces of information. Specifically, these
models have shown promise in embedding common knowledge into decision-
making systems [58, 65, 73], suggesting that structured and unstructured data
can be combined to develop agents capable of more complex, adaptive behavior.

In this chapter, we study the behavior of a unified system that integrates
natural language understanding with policy learning to create agents that can
learn from diverse, non-episodic data sources. This approach is more flexible

and capable of generalizing beyond what is possible with structured data alone.

5.1. Overview 80

To explore these ideas, we use chess as a practical testbed. It is an ideal
domain for studying how agents can learn from episodic and non-episodic data. In
addition to the vast amount of game replay data available, there are rich language-
based resources, such as game analyses and strategy discussions on chess. The
abundance of structured and unstructured data in chess creates an opportunity
to investigate how diverse, unstructured data can complement traditional RL

methods.

/m Game Datase \ Language Dataset \
= i
General Text

- LR
Data \ n ‘ ,-
~

Forum

Computer Game

/E Conversation Dataset

/ Mixed Dataset

= G|
\ Instruction-tuning

Causal Language
guag

m Policy Learning By
Causal Language
@ Modeling

Booooo|
&
&

[2] Language Learning By

ChessGPT-Base
Modeling P
ChessGPT-Chat [S o . o]
\ [@ Aligning by Contrastive Learning J

/" Modeling Ability

[FEN]
bak2r/1pp2ppL/p3p2p/BI1b1PN3ISN/

Model

PPP2PPPIR1BQK2R w KQkq - 19

Evaluation I

[PGN] 1. d4 d5 2. N3 Nf6 3. e3 a6 4.
Nc3 e6 5. Bd3 h6 6. ed dxed 7. Bxed
Nxed 8. Nxed Bba+

-
S _/
Figure 5.1: Our work provides a comprehensive pipeline that encompasses data, model,
and evaluation framework, aiming to foster research on the interaction between policy
learning and language learning. Data: Our dataset is organized into four categories:
game, language, mixed, and conversation datasets. Model: Leveraging this rich dataset,
we present two models: ChessGPT and ChessCLIP. Evaluation: Our evaluation frame-
work is structured around three key dimensions: modeling capability, value judgment,
and policy proficiency.

White takes
large advantage
by playing Rf6

Leveraging these resources, we have constructed a comprehensive pipeline

to integrate policy learning and language modeling in chess. Our contributions

5.2. Dataset 81

include:

* Datasets: We compile a large-scale dataset with structured game data and
unstructured language resources, such as chess articles, commentaries, and
tutorials. We also introduce a mixed dataset that combines structured and

unstructured elements.

* Models: We present two models, ChessCLIP and ChessGPT, that lever-
age these datasets to learn from structured replay data and unstructured

language knowledge.

* Evaluations: Our evaluation framework assesses the models across three
key dimensions: modeling capability, value judgment, and policy profi-
ciency. Experimental results show that incorporating non-episodic and
unstructured data enhances performance, enabling the models to outper-

form existing LLLM baselines.

Figure 5.1 illustrates the entire pipeline. We demonstrate that incorporating
diverse behavioral and knowledge-based data enables the creation of autonomous
agents that use language as a tool for both action and understanding. Moreover,
our effort results in a valuable by-product: the ChessGPT and ChessCLIP mod-
els. These models have practical applications and could be effective Al chess

assistants for humans.

5.2 Dataset

We introduce a large-scale game and language dataset by collecting online chess-
related materials. Our dataset consists of four categories: (1) The game dataset
encompasses online chess match replay data involving worldwide human players
and chess engines of varying skill levels. (2) The language dataset records chess-
associated knowledge, analyses, discussions, and news in the form of natural
language (3) The mixed game-language dataset provides aligned pairs of game

data and human natural language (such as game analysis or comments). (4) The

5.2. Dataset 82

instruction-tuning and conversation dataset consists of instruction and conver-
sation data related to chess. We include comprehensive dataset descriptions,

statistics, pre-processing details, and examples in appendix C.2.

5.2.1 Game dataset

Game replay data provide the most direct method for both humans and machines
to grasp the play mechanics of chess. In chess, records of game plays are
commonly stored in the Portable Game Notation (PGN).! which is a standard
plain text format as illustrated in fig. 5.2. A PGN starts with some headers that
include metadata about the game. These headers include information such as the
names of players, the Elo ratings, the opening play, and the game outcome. The
headers are followed by a move text section that records the moves played by the
two players. The moves may be further annotated with comments enclosed in
braces.

Mcllroy-Young et al. [48] uses the moves recorded in PGNs for policy
learning. The moves are interpreted as actions in a Markov decision process,
and the state position can be reconstructed by loading the PGN into a chess
engine. However, PGNs may contain additional helpful information beyond the
individual moves made. For example, the Elo ratings in the headers may inform
us about the relative strength of the players. Additional information included
in the comments of the move text section can also be helpful — some of the
moves are annotated with evaluations generated by computer chess programs
that predict the current advantage of the players. For example, a RL algorithm
may use this information for value function learning. For this reason, we curated

the game dataset with all of this information intact to facilitate policy learning.

Lichess dataset. We collect five months of online game data from the Lichess
database [125], culminating in 17.5 million game replay records for online game

players.

Pro-player dataset. In the Lichess dataset, most player Elo ratings range

between 1000 and 2000. To diversify our game dataset with more skilled matches,

"'We refer to appendix C.1 for readers who are not familiar with chess notation format.

5.2. Dataset 83

[White "Alice"]

[Black "Bob"]

[Result "0-1"]

[WhiteElo "2100"]

[BlackElo "2000"]

[Opening "Sicilian Defense"]

1. e4 { [%eval 0.1] >} 1... c5
2. Nf3 2... Ncb6

13. b377 13... Nf4? 0-1

Figure 5.2: Replay example in Portable Game Notation (PGN) format.

we also incorporated an additional 440,000 game records from 245 professional
chess players. These professionals typically hold notably higher Elo ratings
between 2000 and 2800.

CCRL. Chess engines like StockFish and LeelaZero have attained a profi-
ciency level far beyond what any human player can reach. Considering this, we
additionally incorporate the Computer Chess Rating Lists (CCRL) [128], which
is a dataset of chess games played by computer chess engines. The CCRL dataset
comprises a considerable collection of chess games, specifically 3 million, all
played by computer chess engines and stored in PGN format. The chess engines’

Elo ratings range between 2800 and 3700.

Chess puzzles. A chess puzzle represents a particular chessboard configuration
designed to present a distinct challenge or objective for the solver. Chess puzzles
often require players to find the best move or sequence to achieve a specific goal,
such as checkmating the opponent’s king or finding a tactical combination. We
integrate 3.2M puzzles sourced from the Lichess puzzle dataset in our game
dataset. Each puzzle within this collection is annotated with its rating, theme,

and solution.

Chess modeling dataset. We observe that most chess rule descriptions are

conveyed in natural language, posing a challenge for machine learning models

5.2. Dataset 84

since they statistically require a large volume of model data to comprehend
the chess rules [54] accurately. We build a synthetic chess modeling dataset
leveraging the python-chess library [130] to address this issue. We collect chess
game data from a one-month dump of the Lichess dataset, deliberately distinct
from the month used in our own Lichess dataset. We designed several model-
based tasks, including converting PGN to FEN, transferring from UCI to FEN,

and predicting legal moves, resulting in 1.9M samples.

5.2.2 Language dataset

Existing dataset. Numerous existing datasets comprise general Internet crawl
data from platforms like CommonCrawl or Wikipedia. We establish a filtering
pipeline to extract only chess-related language corpus from pre-existing language
corpora, including C4 [52], the Pile [44], Oscar [40], Wikipedia [124] and
RedPajama [110]. These datasets extend the scope of our language data beyond

mere game-play.

Chess blogs. Chess websites often publish insightful blogs, sharing their anal-
yses and perspectives on various aspects of chess game-play. Such blog data is
valuable, as it encompasses game-specific analysis, forming a vital link between
the concrete chess game data and its interpretation in natural language form. We

manually curate around 30 chess-related websites and scrape 73.2k blog articles.

Chess books. Like chess blogs, chess books can provide long and detailed
game analysis. We extract approximately 8K chess-related books from online

libraries to enrich our language dataset.

Chess forums. Chess forums serve as a platform for many chess-related dia-
logues and conversations involving diverse users. These platforms encompass
high-quality question-and-answer pairs, as seen in platforms like Stack Exchange
or more generalized discussions on various chess-related topics commonly found
in dedicated forums. We scrape chess forum data from five chess-specific forum
platforms and Stack Exchange. This process results in a collection of 140K posts

representing diverse views, queries, and discourses related to the world of chess.

5.2. Dataset 85

5.2.3 Mixed game-language dataset

Annotated chess game. An annotated chess game is a chess play accompanied
by written commentary and analysis. In an annotated game, each move made by
the players is accompanied by explanations and evaluations that provide insights
into the thought process, strategic considerations, and tactical ideas behind the
moves. Here is an example of an annotated PGN with a Sicilian Defense opening:
1l.e4 c5 {The game starts with the Sicilian Defense, one of the most popular
and aggressive responses to 1.e4. Black aims to control the center and create
imbalances early on.}

These annotated games inherently maintain the correspondence between
board state and human language, serving as an exceptionally high-quality data
source to align a model with complex human intentions and judgments. We
amass annotated games from seven sources, five of which are collected from the
Internet, while the other two are commercial datasets. We collect 245K annotated

games with 1.3M board-language pairs.

YouTube transcripts. Drawing inspiration from the MineDoJo dataset [76], a
YouTube video can serve as a mixed game-language dataset by aligning video
clips with natural language transcripts based on timestamps. Rather than generat-
ing image-language pairs directly, we develop a pipeline that accurately applies
Optical Character Recognition (OCR) to chessboard screenshots to generate the
Forsyth-Edwards Notation (FEN): a system that describes the chess state in a
text format. We gathered around 83k chess videos, resulting in million-scale
English transcripts and board-language pairs, thus establishing a substantial

mixed game-language dataset.

5.2.4 Instruction-tuning and conversation dataset

Supervised fine-tuning is crucial in training large language models (LLM) to
follow instructions [89, 88, 92]. In addition to the comprehensive chess mate-
rials mentioned before, we collect instruction-tuning and conversation datasets,
which can be used to fine-tune the pre-trained LLLM base model, enhancing its

instruction-following and dialogue capability.

5.3. Models 86

Instruction-tuning data from GPT-4. Inspired by Stanford Alpaca [109],
we use the self-instruct technique [113] to generate high-quality, instruction-
following data through GPT-4 [96]. Specifically, we manually construct 200
seed prompts for chess-related questions or instructions. These prompts serve
as few-shot examples, guiding GPT-4 towards a more coherent and relevant
generation. Finally, we generate around 4K instruction-response pairs using this

pipeline.

Conversation data from Reddit. The instruction data collected from GPT-4
are mainly in a single-step form, including only one question-answer round. We
collect multi-step conversation data about chess from Reddit to mitigate this
issue. Reddit allows users to interact by commenting on posts and responding to
other comments, creating a nested structure of responses. We convert the nested
structure into a conversation tree by treating the comment’s reply as a child node
for that reply. We then acquire a rich source of conversation data by navigating
from the root node to each leaf node via every available path. We chose six

chess-related subreddits and collected 410K human conversations about chess.

5.3 Models

We showcase two models, ChessCLIP and ChessGPT, trained on the large-scale

dataset.

5.3.1 ChessCLIP

Contrastive Language-Image Pretraining (CLIP) [70] is a neural network trained
on a variety of modalities (e.g., image, text). By conducting contrastive learning
on a large amount of paired data, CLIP bridges the image and language modality,
enabling the model to understand vision by language information and vice versa.
Our mixed game-language dataset from section 5.2.3 provides paired game
trajectories and annotation examples. Using this subset, we train a ChessCLIP
to bridge the modality of policy and language. Specifically, by denoting the

chessboard state S at timestep ¢ as S;, and the annotation language as L;, the data

5.3. Models 87

pair at timestep 7' can be represented by (({S;}!=]._,,ar),Lr) where {S,}/=]
is a stacked k& history states and a7 is the last move.

We want to emphasize what ChessCLIP can do by aligning the policy and
language modalities. Firstly, ChessCLIP offers a similarity metric given one
PGN and a text description. Just like the application of large-scale image/text
retrieval using CLIP, ChessCLIP can help users conduct PGN/text retrieval —
search for games based on text or search for comments based on specific games.
In addition, because of the low-dimensional feature of action space compared to
vision or language space (there only exists a few legal moves for a given chess
state), we can directly conduct search algorithms to maximize the similarity to
generate action based on one text description using ChessCLIP. For example,
given a chessboard state and a text description, ChessCLIP can generate a move
by iterating through all legal moves and finding one most similar to the text
encoding. Similarly, ChessCLIP can also generate move sequences (multiple
actions) using greedy search or beam search. However, the ChessCLIP model
does not have the capability to free-form text or PGN generation capabilities built-
in. As a result, it cannot be used for all chess-related tasks as easily as compared
to the ChessGPT model we describe below. We refer the reader to appendix C.3.1

for more discussions.

Implementation details. We preprocess the annotated PGNs to produce board-
/text pairs, which we feed separately to the board and text encoders. In particular,
for every move in the PGN, we extract the comments attached to the move and
the board state. We encode the board positions and moves using the same scheme
as in Leela Chess Zero (Ic0) [127], which is similar to the encoding used by
AlphaZero [36] for encoding positions and moves in chess. Concretely, the board
positions are encoded as a R3*®*!12 feature map, and the actions are encoded
as a R!8%8 vector. We instantiate a ChessCLIP model with a text encoder and a
board/action encoder. For the text encoder, we only fine-tune the last two layers
of the pretrained text encoder from the OpenAl CLIP model. For the board-
/action encoder, we use a ResNet [23] architecture that conditions the action
encoding via a modified FILM layer [35]. Please refer to appendix C.3.1 for

implementation details.

5.4. Evaluation 88

5.3.2 ChessGPT

The Generative Pretraining Transformer (GPT-3) [43] is an auto-regressive lan-
guage model that uses deep learning techniques to generate human-like text.
GPT-3 is trained by casual language modeling, which aims to predict the next
word in a sentence given all the previous words. Similar to language model train-
ing, we train a GPT-like model using all chess materials introduced in section 5.2.
Unlike other policy behavior data in robots [25] or video games [22], the chess
state and move data can be represented in pure text. Thanks to this feature, we
can directly treat chess as a text game, and training with the causal language
modeling objective on the dataset we collected in section 5.2.1 corresponds to

imitation learning.

Implementation details. We follow typical implementations of training a
domain-specific instruction-following LLM. Firstly, we conduct base-model
fine-tuning using chess corpus introduced in sections 5.2.1 to 5.2.3. Due to
computational constraints, we choose to fine-tune the RedPajama-3B-base [110]
model, an open-source replication of LLaMA [111]. The base model adopts
the GPT-NeoX [74] architecture, a GPT-3 [43] variant with a few modifications,
such as rotary positional embedding, parallel attention computation, and different
initialization. The base-finetuning brings us our base model: ChessGPT-Base.
After base-finetuning, we conduct supervised fine-tuning by supervised learning
on question/conversation response using data introduced in section 5.2.4 and
general conversation data from OASST1 [102], Dolly 2 [98], Alpaca-GPT4 [105],
and ShareGPT [131]. This brings us to our chat model: ChessGPT-Chat. We
leave Reinforcement Learning from Human Feedback (RLHF) training as future

work. Refer to Appendix C.3.1 for more details.

5.4 Evaluation

This section presents a comparative analysis between ChessGPT trained on
our database and other baseline LLMs. Our experiments aim to assess the
performance of ChessGPT in three primary dimensions: chess modeling, value

judgment, and policy. The chess modeling capability focuses on the language

5.4. Evaluation 89

model’s proficiency in accurately tracking the game state and predicting valid
moves. Regarding value judgment, we assess the model’s precision in evaluating
the worth of a chess game, encompassing the identification of advantageous
positions and the calculation of situation scores. Lastly, the policy assessment
gauges the model’s aptitude for generating optimal moves based on a given
position. By thoroughly examining these sub-categories, we can comprehensively
evaluate and contrast the efficacy of different models in chess-related tasks.
We choose the following models as baselines: LLaMA-7B [111], RedPajama-
Base-3B [110], and compare them with ChessCLIP, ChessGPT-Base-3B, and
ChessGPT-Chat-3B. More details on task examples and illustrative figures can
be found in section 5.4.3.

Each evaluation task consist of three parts: Task Prefix, which can be regarded
as a description of the task and is also the main prompt we use for LLMs. Input,
which is the question and the input of LLMs, and Target, which contains the
answer of the question for exact string match tasks, or target score, which

provides the score for each available answer for multi-choice tasks.

5.4.1 Chess modeling ability
Chess state tracking

We use BIG-bench’s State Tracking in chess task [108, 91] to evaluate language
models’ ability to track the state of chess games encoded in UCI notation. The
task involves predicting the legal ending square given the game prefix and starting
square of the current move. For example, consider the following example from
this task”’:

’https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_task
s/chess_state_tracking

https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/chess_state_tracking
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/chess_state_tracking

5.4. Evaluation 90

The Chess state tracking

» Task Prefix: For each of the following (in-progress) chess games, please complete the
notation for the last shown move by filling in the destination square.

e Input: e2e4 e7e6 d2d4 d7d5 ede5 c7c5 c2c3 b8c6 glf3 g8e7 a2a3 a7a5 f1d3 c8d7
cle3 d8

° Tal‘get: ["b8", llb6"’ "07", "08"]

The example input is “e2e4 e7e6 d2d4 d7d5 edeS c7c5 c2¢3 b8c6 gl1f3 g8e7
a2a3 a7a5 f1d3 c8d7 cle3 d8”. This leads to the chess board configuration shown
in fig. 5.3. The task asks for the square that the black queen at d8 can be legally

moved to. The correct response should be one of b8, b6, c7 and c8.

Figure 5.3: Example in Chess state tracking. The input leads to the following board
configuration.The task is to predict the squares to which the piece at d8, the black queen,
can be legally moved. Here the black queen at square d8 can be legally moved to any of

the squares ["b8", "b6", "c7", "c8"].

The task dataset includes real and synthetic games, divided into short, medium,
and long categories based on move count. The evaluation measures correctness
across all games using a specified output regex. We note that ChessCLIP is
inappropriate for modeling tasks, so we do not include it in the comparison.

Table 5.1 presents a performance analysis of all models on the task. Our Base

and Chat models consistently outperform baselines in all tasks, indicating their

5.4. Evaluation 91

Table 5.1: BIG-bench State Tracking in Chess. We compare ChessGPT with other LLM
baselines on the BigBench state tracking problem. ChessGPT consistently outperforms
the baselines.

LLM Models (%)

Tasks LLAMA-7B RedPajama-Base ChessGPT-Base ChessGPT-Chat
Real Short 295+ 14 232+13 99.5 £0.2 98.5 £ 0.4
RealMed 393 +1.5 382+£15 97.7 £ 0.5 97.8 £ 0.4
Real Long 53.0£1.6 519+1.6 98.1 £ 0.4 97.6 £ 0.4
Syn Short 313+ 14 249+ 1.3 94.2 £ 0.7 92.3 £ 0.8
SynMed 399+1.6 377+ 15 94.6 £ 0.7 88.9 £1.0
SynLong 458 +£1.5 422+ 1.5 92.8 + 0.8 851+1.1

strong performance in tracking the state of chess games. However, the ChessGPT-
Chat model exhibited slightly lower performance, suggesting a potential trade-
off between language capabilities and state tracking. Nevertheless, the results
underscore the effectiveness of our dataset-trained LLM models for chess state

tracking.

Board state tracking.

We perform additional evaluations on UCI to FEN and PGN to FEN conversions.
In the UCI to FEN experiment, the target was replaced with FEN format, while
in the PGN to FEN experiment, UCI was converted to PGN format as input, and
the target was replaced with the FEN format. The following are examples from

the two tasks:

 Task Prefix: Could you produce the Forsyth-Edwards Notation (FEN) that corresponds
to the provided SAN-based move list of the chess games?

o Input: e2e4 d7d5 blc3 d5e4 c3e4 g8f6 edc3 e7e6 flcd f8b4 d2d3 bdc3 b2c3 e8g8
gle2 c7c5 elgl b8ch e2g3 ebeS a2ad c8g4 213 g4fS clg5 f5g6 d1d2 h7h6 g5h6 g7h6
d2h6 c6e7 £3f4 eSf4 f1f4 d8d6 alfl f6h7 g3hS gbhS h6d6 h5g6 d6e7 a8e8 e7h4 e8e2
h4h6 e2c2 h6g6 g8h8 c4f7 c2

» Target: 5r1k/pp3B1n/6Q1/2p5/P4R2/2PP4/2r3PP/5RK1 b - - 0 26

5.4. Evaluation 92

* Task Prefix: Could you produce the Forsyth-Edwards Notation (FEN) that corresponds
to the provided PGN-based move list of the chess games?

e Input: 1. d4 g6 2. c4 Bg7 3. e4 Nf6 4. Nc3 O-O 5. Be3 Ne8 6. 3 Nc6 7. Qd2 e6 8.
h4 d5 9. cxd5 exd5 10. Nxd5 Nf6 11. Nxf6+ Bxf6 12. e5 Bg7 13. Bb5 Bd7 14. Rcl
a6 15. Bc4 b5 16. Bb3 BfS 17. Rxc6 Qd7 18. Re5 ¢6 19. Ne2 Rad8 20. Ng3 Be6 21.
Bxe6 Qxe6 22. Ned4 Rd5 23. O-O 5 24. Rxd5 cxd5 25. Nc5 Qc6 26. Bh6 4 27. Bxg7
Kxg7 28. Rel Qe8 29. e6 Qe7 30. Qa5 Qxh4 31. e7 Re8 32. Nxa6 Rxe7 33. Rxe7+
Qxe7 34. Nc7 Qe3+ 35. Kh2 Qf2 36. Nxd5

« Target: 8/6kp/6p1/Qp1N4/3P1p2/5P2/PP3qPK/8 b - - 0 36

The similarity was measured using the Levenshtein distance, which was
normalized to a range of O to 1 [13]. These evaluations focus on assessing the
model’s capability to track the chessboard’s state by representing each chess
piece’s state using FEN notation.

Table 5.2 illustrates the results of these evaluations. It is evident that tracking
an individual chess piece’s state becomes more challenging than tracking the
entire chessboard state. On the one hand, the similarity scores between the two
baselines were consistently below 10%, indicating a lack of global chess piece
state tracking capability. On the other hand, the ChessGPT achieves an average
similarity score higher than 90%. These results demonstrate that our model
captures and reproduces the global chess piece state in UCI to FEN and PGN to

FEN conversions.

Table 5.2: UCI to FEN test. We test ChessGPT’s ability to convert from UCI notation
to FEN notation. ChessGPT produces more accurate conversions compared to other
baselines.

LLM Models (%)
Tasks LLAMA RedPajama-Base ChessGPT-Base ChessGPT-Chat

Real Short 2.2 +0.0 52+0.0 95.1+0.3 95.7 £ 0.1
UCIto FEN RealMed 2.3 +0.1 4.0+0.1 89.9 + 0.2 88.6 + 0.3
Real Long 1.8 +0.0 38£0.1 85.7+£0.2 814+ 0.5
Real Short 6.0 + 0.1 28 +0.1 96.7 + 0.1 95.8 £ 0.1
PGN to FEN RealMed 5.6+ 0.1 34+0.1 94.8 + 0.1 93.6 + 0.1

Real Long 5.7 +0.0 89+£0.1 954 £0.2 82.7 £ 1.0

5.4. Evaluation 93

5.4.2 Value judgement ability

In this part, we evaluate the model’s value judgment ability. Specifically, we aim
to assess the model from two perspectives: (1) its ability to align with the true
value function given a chessboard state (the true values are evaluated by chess
engines in enough search depths) in the evaluation of State value multi-choice,
and (2) its ability to align with human judgment and human knowledge in the

evaluation of Chess Annotation Multi-choice and Opening multi-choice.

State value multi-choice

We evaluate the model’s ability to determine which side holds the advantage of a

given PGN. The following is an example from this task.

 Task Prefix: Evaluate the following PGN to see whether black or white takes advan-
tage.

e Input: 1. e4 e6 2. d4 d5 3. e5 c5 4. Nf3 cxd4 5. Nxd4 Nc6 6. Nxc6 bxc6 7. Nc3 Ne7
8. g3 Ng6 9. f4 Be7 10. Be3 h5 11. Bd3 5 12. exf6 Bxf6 13. Bd2 Ne7 14. Qe2 Qd6
15. O-O-O Bd7 16. Kbl Rb8 17. b3 Qa3 18. Bcl Qa5 19. Bd2 Bxc3 20. Bxc3 Qxc3
21. Qd2 Qf6 22. Rhel a5 23. a4 c5

» Target Score: {"Black has advantage.": 1, "The game is equal.": 0, "White has
advantage.": 0}

We construct an evaluation dataset consisting of 3000 game snippets and
utilize Stockfish 15 with a search depth of 18 to calculate the winning rate for
the white pieces.

We construct the state-value multiple-choice task by categorizing the winning
rate into three intervals: 0 — 33% for black advantage, 34 — 66% representing a
balanced state, and 67 — 100% for white advantage. During early experiments, we
discovered that an additional “{” suffix to the prompt can significantly enhance
the performance of the base model, likely due to “{” consistently serving as the
initial symbol for annotation in annotated PGNs. Consequently, we evaluated
under two distinct prompt settings and reported our results with respect to the

multi-choice grade shown in table 5.3.

5.4. Evaluation 94

Table 5.3: State value multi-choice. We ask ChessGPT and ChessCLIP to predict the
relative advantage of the black or white player to assess its value judgment capability.
ChessGPT and ChessCLIP better predict the advantage estimated by the Stockfish
computer chess engine.

Models (%)
Prompt Setting LLAMA RedPajama ChessGPT-Base ChessGPT-Chat ChessCLIP
W/O { suffix 332+0.7 31.1+£0.7 43.1+0.8 52.8+0.8 N/A
With { suffix 269+0.7 29.7+0.8 53.7 £ 0.8 53.5+0.8 38.1+0.8

Table 5.4: Chess Annotation Multi-choice. We test our models’ value alignment with
human annotators. Both ChessGPT and ChessCLIP outperform the baselines in assigning
higher probabilities to annotations provided by human annotators.

Models (%)
Prompt Setting LLAMA RedPajama ChessGPT-Base ChessGPT-Chat ChessCLIP
W/O { suffix 29.8+0.8 274+0.7 33.2+£09 35.7+09 N/A
With { suffix 29.6 £0.8 284 +0.8 38.8+£09 347+£09 63.6 £ 0.9

Chess annotation multi-choice

The annotations within an annotated PGN reflect human evaluation and judgment.
We extract 3K game-language pairs from the annotation dataset as the test set
to examine how much the model’s value aligns with humans. We construct the
chess annotation four-choice task by randomly selecting three annotations from

the test set as incorrect options. The following is an example for this task:

 Task Prefix: Annotate the last step of the following PGN.

* Input: 1. d4 Nf6 2. c4 e6 3. Nf3 Bb4+ 4. Bd2 a5 5. g3 O-O 6. Bg2 b6 7. O-O Ba6 8.
Bg5 Be79. Qc2 Nc6 10. a3 h6 11. Bxf6 Bxf6 12. Rd1 Qe7 13. e3 Rae8 14. Nfd2 g5

* Target Score: "Karpov could have resigned here with a clear conscience.": 0, "White
intends to further weaken Black’s kingside with 19.h5.": 0, "20...Kh7 21.Bxg6+ fxg6
22.Qxe6 Gives White a winning attack.": 0, "Black overreacts to the positional strength

of White’s game. 14...g6 would have been more solid.": 1

We report the multi-choice grade results over two prompts in table 5.4.

5.4. Evaluation 95

Opening multi-choice

A chess opening refers to the initial moves players make at the beginning of
a chess game. There are numerous chess openings, each with its name, char-
acteristics, and strategic goals. For example, the Sicilian defense: 1. e4 ¢5
is one of the black player’s most popular and aggressive chess openings. We
use the Lichess opening dataset [129], including 3.5K opening PGNs and their
corresponding names, to formulate two tasks: (1) PGN2Opening five-choice task,
which aims at choosing the correct opening name for a given PGN, and reversely,
(2) Opening2PGN five-choice task, aiming at choosing the correct PGN for a

given opening name.

* Task Prefix: Show me the PGN of the following opening.
e Input: Amar Gambit Opening

* Target Score: "1. Nh3 d5 2. g3 e5 3. f4 Bxh3 4. Bxh3 exf4": 1, "1. d4 d5 2. c4 6 3.
Nc3 ¢S5 4. cxdS5 exdS 5. dxc5 d4 6. Na4 b5": 0, "1. d4 Nf6 2. g4 Nxg4 3. £3 Nf6 4.
e4": 0,"1. Nc3¢c52. b4": 0,"1. d4 Nf6 2. c4 g6 3. Nc3 Bg7 4. e4 d6 5. 3 O-0 6.
Nge2": 0

* Task Prefix: Show me the opening name of the following PGN.
e Input: 1. Nh3 d5 2. g3 e5 3. f4 Bxh3 4. Bxh3 exf4. The opening name of this PGN is.

* Target Score: {"Amar Gambit": 1, "Tarrasch Defense: Tarrasch Gambit": 0, "Indian
Defense: Gibbins-Weidenhagen Gambit, Maltese Falcon": 0, "Van Geet Opening:
DO00fcsseldorf Gambit": 0, "King’s Indian Defense: SO0e4misch Variation, Bobotsov-

Korchnoi-Petrosian Variation": 0}

We report the result in table 5.5. Our trio of models generally surpasses
the performance of two baseline language models across these four tasks in all
settings. This result confirms that our models are more effectively aligned with
the value function and human judgment/knowledge. Both ChessGPT-Base and
ChessGPT-chat deliver outstanding performance in the state-value and opening

task. Notably, ChessCLIP displays a surprisingly high level of proficiency in the

5.4. Evaluation 96

Table 5.5: Opening2PGN and PGN20Opening. We test whether ChessGPT can recognize
chess openings and the corresponding moves. In Opening2PGN, the model is given
the opening moves and asked to choose the corresponding names. In PGN2Opening,
the model is given the name of the opening and asked to choose the correct moves.
ChessGPT shows better accuracies in both tasks compared to baselines.

Models (%)
Prompt Setting LLAMA RedPajama ChessGPT-Base ChessGPT-Chat ChessCLIP
Opening2PGN 43.0£09 26.5+0.8 92.2 £ 0.5 94.7 £ 04 73.0£0.8
PGN20Opening 20.0 £0.7 20.7 £0.7 49.3 £0.9 558 £09 80.5 £ 0.7

annotation task and the opening task. This result reveals the model’s capacity to
extract human judgment and knowledge solely from annotations, even without

training in any chess games.

5.4.3 Policy evaluation
Checkmate in one

We incorporate the checkmate-in-one task from BIG-Bench [108] into our eval-
uation methods. This task challenges the model’s ability to identify a move in
a given PGN that would result in a checkmate. By doing so, it measures the
model’s capacity to comprehend and apply the rules of chess. The model needs
to discern a move that places the opponent’s king under attack and ensures that
the king cannot evade capture in the next move. The following is an example for

this task:

e Input:1. e4 e6 2. Ke2 d5 3. e5 c5 4. 4 Nc6 5. Nf3 Qb6 6. g4 Bd7 7. h4 Nge7 8. c3
Ng6 9. d4 cxd4 10. cxd4 Be7 11. Kf2 O-O 12. h5 Nh8 13. Be3 Qxb2+ 14. Kg3 Qxal
15. Bd3 Qxa2 16. Rh2 Qal 17. Qc2 Nb4 {Now white has checkmate in one move. }

* Target Score: {"Qxal": 0.0, "Bxh7+": 1.0, "Qd2": 0.0, "Qe2": 0.0, "Qd1": 0.0, "Qc3":
0.0, "Qc7": 0.0, "Bb1": 0.0, "Bc2": 0.0, "Bf5": 0.0, "Bg6": 0.0, "Bf1": 0.0, "Bb5":
0.0, "Bxa6": 0.0, "Bc4": 0.0, "Bb3": 0.0, "Bc1": 0.0, "Bd2": 0.0, "Bc3": 0.0, "Bxb4":
0.0, "Nbd2": 0.0, "Nc3": 0.0, "Na3": 0.0, "Rc2": 0.0, "Rg2": 0.0, "Rh1": 0.0, "Rf2":
0.0, "Re2": 0.0, "Rd2": 0.0, "Rh3": 0.0, "Rh4": 0.0, "Kh2": 0.0, "Kh3": 0.0, "Kh4":
0.0, "g5": 0.0, "f5": 0.0, "Ng5": 0.0, "Nh2": 0.0, "Nf2": 0.0, "Nel": 0.0.}

5.4. Evaluation 97

Table 5.6: Checkmate in one. ChessGPT demonstrates better performance in the
checkmate in one task compared to baselines.

Models (%)
Setting LLAMA RedPajama ChessGPT-Base ChessGPT-Chat ChessCLIP
With suffix (ESM) 1.6+£0.2 0.0+0.0 71.4 + 0.7 56.8 £0.8 N/A
With suffix MC) 2.6+03 0.0=£0.0 66.1 + 0.8 11.3+0.5 29+£03
W/O suffix (ESM) 1.74+02 0.0+£0.0 26.5+0.8 59.4 + 0.8 N/A
W/O suffix MC) 22+03 00=£0.0 13.6 = 0.6 154 £ 0.6 N/A

The input to the model is a sequence of moves such that a next possible move
is a checkmate. For example, the chess game shown in the figure can checkmate
the opponent in one step is “Bxh7+”.

We also find that adding an instruction suffix like {Now white/black can
checkmate in one} can largely enhance the base model performance. We report
the result in two prompts with two metrics (exact-string match (ESM) and multi-
choice-grade as (MC)) in table 5.6. ChessGPT-Base and ChessGPT-Chat show
a great checkmate ability by surpassing two LLM baselines by a large margin.
ChessCLIP does not perform well in this task, likely because there is not much

annotation data regarding checkmate-in-one behavior in the annotation dataset.

General policy

In order to assess the model’s generalization ability, we introduced Elo Rating as
a factor in the task, aiming to evaluate its capacity to identify PGN and related
keywords and generate the appropriate next move at a specified skill level. The

following is an example for the task.

5.4. Evaluation 98

* Task Prefix: In the following chess game, you play black.

e Input:
[Date "2017.04.01"]
[White "272"]
[Black "272"]
[Result "0-1"]
[WhiteElo "983"]

[BlackElo "2983"]

[WhiteRatingDiff "??"]

[BlackRatingDiff "??"]

[ECO "77"]

[Opening "??"]

[TimeControl "300+0"]

[Termination "Time forfeit"]

1. b3 e52. Bb2 Nc6 3. a3 Nf6 4. h3d5 5. g3 Bd6 6. Bg2 O-O 7. e3 e4 8. d3 Be59.

d4 Bd6 10. Ne2 Ne7 11. ¢4 ¢6 12. Nbc3 Nf5 13. Qd2 a5 14. Qc2 Be6 15. cxd5 cxd5

16. Nb5 Rc8 17. Qd2 Qb6 18. Nxd6 Nxd6 19. Qdl Re7 20. a4 Rfc8 21. Ba3 Nf5 22.

Bc5 Rxce5 23. dxc5

» Target Score: {"Rxc5": 0.0, "Qa7": 0.02, "Qd8": 0.05, "Qc7": 0.083, "Qb4+": 0.11,
"Qxc5": 0.13, "Qc6": 0.16, "Qa6": 0.19, "Nxe3": 0.22, "Nxg3": 0.25, "Nd4": 0.27,
"Rc6": 0.30, "Ng4": 0.33, "Qxb3": 0.36, "d4": 0.38, "Nh4": 0.41, "Kh8": 0.44, "Nd7":
0.47,"h6": 0.5, "g6": 0.52, "Rf8": 0.55, "Ra8": 0.58, "Ne7": 0.61, "Qd6": 0.63, "h5":
0.66, "Re8": 0.69, "Kf8": 0.72, "Qb5": 0.75, "Rd8": 0.77, "Bd7": 0.80, "Ne8": 0.83,
"Rb8": 0.86, "Nd6": 0.88, "g5": 0.91, "Rc7": 0.94, "Nh5": 0.97, "Nh6": 1.0}

The model’s selection of the next legal move is assigned a score that is nor-
malized based on the win rate observed in the raw data. Table 5.7 presents the

results representing the performance of different models in selecting the most

Table 5.7: Elo Rating 1700-2000.

LLM Models Move Score

LLAMA 551+ 1.1
RedPajama 56.4£09
ChessGPT-Base 59.6 £1.0
ChessGPT-Chat 60.3 + 1.0

5.4. Evaluation 99

suitable move for white chess. Notably, all models surpass the performance of
the random policy (= 50%) as the Elo Ratings correspond to relatively high skill
levels among human players. Further analyzing the performance of different
models across varying Elo Ratings is crucial for understanding the observed
results. The minor variations in move scores for different Elo Rating scenarios
in table 5.8 indicate that ChessGPT-Base struggles to incorporate Elo rating
information into its decision-making process effectively. We hypothesize this to
be due to the model’s limited understanding of the nuanced characteristics asso-
ciated with distinct Elo Ratings. The complexity of the task and the challenges in
accurately accounting for diverse playing styles further contribute to the limited
variations in move scores across different Elo Ratings. Consequently, paying
attention to this information can lead to the model learning an average policy for
each Elo Rating, resulting in subpar overall performance. We observe similar
findings in the black chess test. To further validate this hypothesis, we conduct
an input attention visualization. Refer to appendix C.3.1 for more details.

To clarity, the dataset we have presented encompasses a wide range of games
and varying Elo ratings, as shown in fig. 5.2, which possesses the potential
to effectively capture and generalize intricate patterns and policies associated
with different Elo levels. However, the current training method might need to
emphasize these nuanced features sufficiently. Our findings highlight a potential
direction for future research: enhancing the model’s ability to integrate better
and utilize metadata such as Elo Rating and other auxiliary data. The model’s

overall generalization can be further improved by addressing these aspects.

Table 5.8: ChessGPT-Base in different Elo rating results

Elo Rating Move Score

700-1000 59.4 £ 1.0
1200-1500 589 £0.9
1700-2000 59.6 £1.0
2700-3000 59.8 £1.0

5.5. Discussion 100

5.4.4 Qualitative results

We also perform a qualitative comparison between our models (ChessGPT-Chat
and ChessGPT-Base) and the baselines. We ask the language models a series
of questions ranging from factual knowledge of chess to requesting the models
perform some operational tasks related to chess. We found that ChessGPT-base
performed similarly to RedPajama. Both models can produce factual answers to
some questions. However, they failed to generate coherent answers when asked
to perform tasks such as providing commentary on chess moves or converting the
PGN notation to FEN. ChessGPT-Chat gives more factual answers and performs
better when prompted to generate analysis and perform other chess-related tasks.

Refer to appendix C.5 for qualitative analysis.

5.5 Discussion

The pursuit of creating artificial intelligence capable of playing chess can be
traced back to the very beginning of the history of computer science [1]. Chess
engines today achieve superhuman-level performance by utilizing human knowl-
edge [10] or self-play [36].

Recently, there has been increasing interest in improving the interpretabil-
ity [87] of these systems and their alignment with human behavior [48] besides
strong performance. A chess engine that aligns with human behavior may unlock
many exciting opportunities. For example, it can be used as a personalized tutor
for chess beginners [48]. Some research efforts also concentrated on employing
LLMs to learn policies in chess [50, 72]. However, these studies mainly center
on small-scale datasets or limited training.

There has been increasing interest in leveraging Internet-scale knowledge for
creating agents capable of generalizing across many tasks and capabilities [114,
76, 90]. For example, MineDojo [76] introduced a framework on Minecraft
for understanding how to enable artificial agents to learn in an open-ended
environment. More recently, there has been a surge in research that treats LLMs
as agents, aiming to harness their Internet-scale knowledge for decision-making

tasks [121, 112, 115, 119]. In contrast to these studies, which typically rely on

5.5. Discussion 101

powerful LLMs like GPT-4 [96], we concentrate more on training, especially the
interplay between language modeling and policy learning.

While the chess dataset provided in this study is valuable, it is important
to acknowledge its limitations. One limitation is the potential bias introduced
by relying on historical Lichess matches from different time periods. This may
result in variations in player strategies, popular openings, and game trends over
time, potentially impacting the generalizability of the dataset. Additionally, it
is worth noting that the dataset predominantly focuses on standard chess and
may not encompass the full spectrum of chess variants. Researchers interested
in exploring niche or less popular variants may need to gather additional data
from specific sources to ensure comprehensive coverage of different chess vari-
ants. These considerations are crucial to ensure the validity and applicability of
research findings based on the provided dataset.

The availability of a comprehensive and diverse chess dataset can have a sig-
nificant societal impact. First and foremost, it can contribute to the development
of more advanced and intelligent chess-playing agents. These agents can be
utilized in various applications, such as chess analysis, training tools for players
of different skill levels, and even as opponents for chess enthusiasts. The dataset
can also facilitate the advancement of chess education by providing valuable
resources for tutorials, interactive learning platforms, and strategic guidance.
Additionally, the dataset can inspire research in the field of artificial intelligence,
contributing to the development of innovative techniques that can be applied
beyond the domain of chess. Lastly, our dataset encourages the exploration of
explainable Al methods in chess, enabling players to understand and learn from
the reasoning behind the model’s moves, thereby promoting transparency and
trust in Al systems.

Although the models and paradigms presented in this chapter may appear
somewhat detached from chapter 3 and chapter 4, we believe they offer a com-
pelling domain for applying reinforcement learning techniques that we have
not yet explored due to time constraint. The challenges we face here closely
resemble those identified in offline reinforcement learning research - particularly
how to learn optimal policies from fixed datasets without interactive environment

feedback. For instance, our replay dataset extracted from online chess games

5.6. Conclusion 102

contains moves of varying quality, which presents fundamental challenges similar
to ones we described in chapter 2 where passive learning from fixed data distri-
butions significantly underperforms active learning. Simple language modeling
objectives may struggle to extract master-level play from such heterogeneous
data. The techniques presented in earlier chapters, particularly learned reward
functions as described in chapter 4, offer promising solutions to these challenges.
Incorporating preference-based learning approaches like those in reinforcement
learning from human feedback (RLHF) [27, 123, 106], could potentially be used
to expand our agents’ capabilities. Thus, we are excited by the many interesting
possibilities in exploring how techniques presented in earlier chapters can address

the challenges that naturally arise in this domain.

5.6 Conclusion

In this chapter, we introduce a new large-scale dataset and benchmark on chess
to encourage the study of the interplay between historical policy data and natural
language knowledge. We accompany our dataset with an evaluation framework
for assessing language models’ capability in chess. We showcase two models,
ChessCLIP and ChessGPT, demonstrating promising results for learning the
interplay between language and action. Our results indicate that we are only
beginning to understand how to bridge the gap between policy learning and lan-
guage modeling and, more broadly, leverage unstructured data to build generally
capable agents. We hope our dataset and benchmark can make future policy and

language alignment research more accessible.

Chapter 6

Conclusions

Summary of Contributions

This thesis has addressed several key challenges in offline reinforcement learning
(RL), focusing on the utilization of imperfect data for efficient behavior learning.
The work spans a spectrum of topics, from leveraging sub-optimal demonstrations
to proposing novel algorithms that enable agents to generalize across diverse
experiences.

In chapter 3, we explored how RL agents can be fine-tuned using sub-optimal
offline data combined with limited online experience. We showed that while
offline experiences alone may be insufficient for learning optimal behavior, small
amounts of online interaction can help bridge this gap. The trade-offs involved in
choosing between different fine-tuning techniques were also analyzed, providing
insights into how agents can adapt to new tasks more effectively.

In chapter 4, we presented the OTR algorithm, which enables offline learning
in environments without explicit reward information by learning from reward-free
datasets. This contribution is particularly significant in cases where direct reward
supervision is impractical, yet small amount of expert demonstrations can still be
provided. By combining diverse experiences, OTR enhances the generalization
ability of imitation learning models, moving toward a more flexible framework
for RL.

Finally, in chapter 5, we demonstrated how combining data from multiple

sources can produce a generalist model capable of performing a wide range of

103

104

tasks. This chapter sets the groundwork for future learning paradigms where
agents can harness structured and unstructured data alike, developing a broader

set of capabilities in the process.

Future directions

While this thesis provides important steps toward more flexible and robust RL

systems, there remain several exciting avenues for future work.

Leveraging action-free datasets. A key challenge in RL is the reliance on
action-labeled datasets, which limits the scope of available data sources. We
touched on this problem in chapter 4, showing that it is possible to infer rewards
without access to explicit actions. However, the development of inverse dynam-
ics models (IDMs) that can accurately predict actions from pure observation
sequences is still in its early stages. For example, Baker et al. [73] shows that it is
possible to perform behavior cloning in MineCraft using from action-free video
demonstrations by first learning a inverse dynamics model using a small amount
of action-labeled demonstrations and uses that to learn to predict actions. More
recent work from Bruce et al. [117] demonstrates the possibility of learning a
generative model of the world without any action annotation. Expanding the use
of action-free datasets, such as video recordings without accompanying action
annotations, would be a valuable step forward. We believe that combining action-
learning methods with reward learning methods such as OTR provides exciting
opportunities to expand the amount of data available for training decision-making

agents.

Cross-embodiment learning. Another underexplored area is the transfer of
knowledge between different embodiments. To date, most (offline) RL ap-
proaches assume that training and deployment occur within the same observation
and action spaces, but for many applications, useful data may be available despite
having different observation and action spaces. There is potential to benefit
from cross-embodiment learning, where knowledge from different domains and

embodiements transfer to improve the generalization. In the imitation learning

105

literature, this is sometimes also known as third-person imitation learning [30].
For instance, data from human demonstrators could help build humanoid agents,
even if the specific action spaces differ. This opens up possibilities for agents to

generalize across varying physical systems.

Concluding remarks

This thesis presents several contributions that advance the field of reinforcement
learning, particularly in dealing with imperfect and diverse data sources. While
significant progress has been made, the challenges ahead, such as incorporating
action-free datasets and cross-embodiment learning highlight the importance of
continuing to develop flexible and generalizable RL systems. The work presented
here lays the groundwork for future innovations in RL and points to a future
where agents can learn effectively from the complex, imperfect, and varied data

in the real world.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

A. M. Turing. Digital computers applied to games. Faster than Thought,
1953 (cited on page 100).

D. A. Pomerleau. ALVINN: an autonomous land vehicle in a neural net-
work. In Advances in Neural Information Processing Systems, 1988. URL:
https://proceedings.neurips.cc/paper/1988/hash/812b4ba2
87f5ee0bc9d43bbfbbbe87fb-Abstract.html (cited on page 32).

C.J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279—
292, 1992. pOI: 10.1007/BF00992698 (cited on page 27).

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming. Athena
Scientific, 1st edition, 1996. 491 pages (cited on page 27).

C. G. Atkeson and S. Schaal. Robot learning from demonstration. In
Proceedings of the 14th International Conference on Machine Learning,
1997 (cited on page 58).

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and
acting in partially observable stochastic domains. Artificial Intelligence,
101(1):99-134, 1998. DOI1: 10.1016/S0004-3702(98) 00023-X (cited
on page 25).

V. Konda and J. Tsitsiklis. Actor-critic algorithms. In Advances in Neural
Information Processing Systems, 1999. URL: https://proceedings.n
eurips.cc/paper/1999/hash/6449f44a102fde848669bdd9eb6b7
6fa-Abstract.html (cited on page 27).

106

https://proceedings.neurips.cc/paper/1988/hash/812b4ba287f5ee0bc9d43bbf5bbe87fb-Abstract.html
https://proceedings.neurips.cc/paper/1988/hash/812b4ba287f5ee0bc9d43bbf5bbe87fb-Abstract.html
https://doi.org/10.1007/BF00992698
https://doi.org/10.1016/S0004-3702(98)00023-X
https://proceedings.neurips.cc/paper/1999/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://proceedings.neurips.cc/paper/1999/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://proceedings.neurips.cc/paper/1999/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Bibliography 107

A.Y.Ng, D. Harada, and S. J. Russell. Policy Invariance Under Reward
Transformations: Theory and Application to Reward Shaping. In Pro-

ceedings of the Sixteenth International Conference on Machine Learning,
1999 (cited on pages 33, 72).

A.Y.NgandS. J. Russell. Algorithms for inverse reinforcement learn-
ing. In Proceedings of the 17th International Conference on Machine
Learning, 2000. URL: https://dl.acm.org/doi/10.5555/645529
.657801 (cited on page 33).

M. Campbell, A. Hoane, and F.-h. Hsu. Deep Blue. Artificial Intelligence,
134(1-2):57-83, 2002. bOI: 10.1016/S0004-3702(01)00129-1 (cited
on page 100).

P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforce-
ment learning. In Proceedings of the 21st International Conference on
Machine Learning, 2004. DOI: 10.1145/1015330.1015430 (cited on
page 58).

S. Calinon, F. Guenter, and A. Billard. On learning, representing, and
generalizing a task in a humanoid robot. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 37(2):286-298, 2007. DOI:
10.1109/TSMCB.2006.886952 (cited on page 58).

L. Yujian and L. Bo. A normalized Levenshtein distance metric. [EEE
Transactions on Pattern Analysis and Machine Intelligence, 29(6):1091—
1095, 2007. por: 10.1109/TPAMI. 2007 .1078 (cited on page 92).

G. Neumann and J. Peters. Fitted Q-iteration by advantage weighted
regression. In Advances in Neural Information Processing Systems, 2008.
URL: https://papers.nips.cc/paper_files/paper/2008/has
h/£79921bbaed40ab577928b76d2fc3edc2a-Abstract.html (cited on
page 49).

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:
a large-scale hierarchical image database. In 2009 IEEE Conference on

Computer Vision and Pattern Recognition, 2009. DOI: 10.1109/CVPR. 2
009.5206848 (cited on page 18).

https://dl.acm.org/doi/10.5555/645529.657801
https://dl.acm.org/doi/10.5555/645529.657801
https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1109/TSMCB.2006.886952
https://doi.org/10.1109/TPAMI.2007.1078
https://papers.nips.cc/paper_files/paper/2008/hash/f79921bbae40a577928b76d2fc3edc2a-Abstract.html
https://papers.nips.cc/paper_files/paper/2008/hash/f79921bbae40a577928b76d2fc3edc2a-Abstract.html
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Bibliography 108

M. P. Deisenroth and C. E. Rasmussen. PILCO: a model-based and
data-efficient approach to policy search. In Proceedings of the 28th
International Conference on Machine Learning, 2011. URL: https://d
1.acm.org/doi/10.5555/3104482.3104541 (cited on pages 27, 28).

S. Lange, T. Gabel, and M. Riedmiller. Batch reinforcement learning. In
Reinforcement Learning: State-of-the-Art, pages 45—73. Springer, Berlin,
Heidelberg, 2012. DOI: 10.1007/978-3-642-27645-3_2 (cited on
pages 18, 28, 30, 31).

E. Todorov, T. Erez, and Y. Tassa. MuJoCo: a physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2012. DOI: 10.1109/IR0S.2012.6386109 (cited
on page 40).

M. Cuturi. Sinkhorn distances: lightspeed computation of optimal trans-
port. In Advances in Neural Information Processing Systems, 2013. URL:
https://papers.nips.cc/paper/2013/hash/af21d0c97db2e27e
13572cbf59eb343d-Abstract . html (cited on pages 59, 60).

P. Englert, A. Paraschos, J. Peters, and M. P. Deisenroth. Model-based
imitation learning by probabilistic trajectory matching. In 2013 IEEE
International Conference on Robotics and Automation, 2013. DOI: 10.1
109/ICRA.2013.6630832 (cited on page 58).

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Advances in Neural Information Processing Systems, 2014. URL: https:
//proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f
8f06494c97blafccf3-Abstract.html (cited on page 35).

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Pe-
tersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.
Wierstra, S. Legg, and D. Hassabis. Human-level control through deep
reinforcement learning. Nature, 518(7540):529-533, 2015. DO1: 10.103
8/nature14236 (cited on pages 38, 40, 88).

https://dl.acm.org/doi/10.5555/3104482.3104541
https://dl.acm.org/doi/10.5555/3104482.3104541
https://doi.org/10.1007/978-3-642-27645-3_2
https://doi.org/10.1109/IROS.2012.6386109
https://papers.nips.cc/paper/2013/hash/af21d0c97db2e27e13572cbf59eb343d-Abstract.html
https://papers.nips.cc/paper/2013/hash/af21d0c97db2e27e13572cbf59eb343d-Abstract.html
https://doi.org/10.1109/ICRA.2013.6630832
https://doi.org/10.1109/ICRA.2013.6630832
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Bibliography 109

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, 2016. DOI: 10.1109/CVPR.2016.90 (cited on pages 87,
153, 161).

J. Ho and S. Ermon. Generative adversarial imitation learning. In Ad-
vances in Neural Information Processing Systems, 2016. URL: https:
//papers.nips.cc/paper/2016/hash/cc7e2b878868cbae992d1f
b743995d8f-Abstract.html (cited on page 34).

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of
deep visuomotor policies. The Journal of Machine Learning Research,
17(1):1334-1373, 2016. URL: https://dl.acm.org/doi/10.5555/2
946645 .2946684 (cited on page 88).

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra. Continuous control with deep reinforcement learning.
In The 4th International Conference on Learning Representations, 2016.
URL: https://arxiv.org/abs/1509.02971 (cited on pages 38, 39,
53).

P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei.
Deep reinforcement learning from human preferences. In Advances in
Neural Information Processing Systems, 2017. URL: https://proceed
ings.neurips.cc/paper_files/paper/2017/hash/d5e2c0adadb
03c91£91df240d0cd4e49-Abstract.html (cited on page 102).

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proxi-
mal policy optimization algorithms. 2017. arXiv: 1707 .06347 (cited on
page 35).

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A.
Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui,
L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis. Mastering
the game of Go without human knowledge. Nature, 550(7676):354-359,
2017. DOI: 10.1038/nature24270 (cited on pages 17, 18).

https://doi.org/10.1109/CVPR.2016.90
https://papers.nips.cc/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html
https://papers.nips.cc/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html
https://papers.nips.cc/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html
https://dl.acm.org/doi/10.5555/2946645.2946684
https://dl.acm.org/doi/10.5555/2946645.2946684
https://arxiv.org/abs/1509.02971
https://proceedings.neurips.cc/paper_files/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://arxiv.org/abs/1707.06347
https://doi.org/10.1038/nature24270

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Bibliography 110

B. C. Stadie, P. Abbeel, and I. Sutskever. Third person imitation learning.
In The 5th International Conference on Learning Representations, 2017.
URL: https://openreview.net/forum?id=B16dGcqlx (cited on
page 105).

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. ukasz Kaiser, and I. Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems, 2017. URL: https://proce
edings.neurips.cc/paper_files/paper/2017/hash/3f5ee2435
47dee91fbd053cic4a84baa-Abstract.html (cited on page 79).

A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess,
and M. Riedmiller. Maximum a posteriori policy optimisation. In The
6th International Conference on Learning Representations, 2018. URL:
https://openreview.net/forum?id=S1ANxQWOD (cited on pages 46,
53).

S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation
error in actor-critic methods. In Proceedings of the 35th International
Conference on Machine Learning, 2018. URL: https://proceedings
.mlr.press/v80/fujimotol8a.html (cited on pages 39—-41, 53).

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: off-
policy maximum entropy deep reinforcement learning with a stochastic
actor. In Proceedings of the 35th International Conference on Machine
Learning, 2018. URL: https://proceedings.mlr.press/v80/haar
nojal8b.html (cited on pages 28, 53, 132).

E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville. FiLM:
visual reasoning with a general conditioning layer. In Proceedings of
the 32nd AAAI Conference on Artificial Intelligence and 30th Innovative
Applications of Artificial Intelligence Conference and 8th AAAI Sympo-
sium on Educational Advances in Artificial Intelligence, 2018 (cited on
pages 87, 161).

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M.
Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and

D. Hassabis. A general reinforcement learning algorithm that masters

https://openreview.net/forum?id=B16dGcqlx
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=S1ANxQW0b
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.mlr.press/v80/haarnoja18b.html

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Bibliography 111

chess, shogi, and go through self-play. Science, 362(6419):1140-1144,
2018. DOI: 10.1126/science . aar6404 (cited on pages 17, 87, 100,
161).

R. S. Sutton and A. G. Barto. Reinforcement learning. MIT press, 2nd edi-
tion, 2018 (cited on pages 17, 27).

S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement
learning without exploration. In Proceedings of the 36th International
Conference on Machine Learning, 2019. URL: https://proceedings
.mlr.press/v97/fujimotol9a.html (cited on pages 30, 49).

W. H. Guss, B. Houghton, N. Topin, P. Wang, C. Codel, M. Veloso, and
R. Salakhutdinov. MineRL: a large-scale dataset of minecraft demon-
strations. In Proceedings of the 28th International Joint Conference on
Artificial Intelligence, 2019 (cited on page 19).

P. J. Ortiz Su’arez, B. Sagot, and L. Romary. Asynchronous pipelines for
processing huge corpora on medium to low resource infrastructures. In
Proceedings of the Workshop on Challenges in the Management of Large
Corpora, 2019. DOI: 10.14618/IDS-PUB9021 (cited on pages 84, 150).

X. B. Peng, A. Kumar, G. Zhang, and S. Levine. Advantage-weighted
regression: simple and scalable off-policy reinforcement learning. 2019.
arXiv: 1910.00177 (cited on page 49).

H. Xiao, M. Herman, J. Wagner, S. Ziesche, J. Etesami, and T. H. Linh.
Wasserstein adversarial imitation learning. 2019. arXiv: 1906 . 08113

(cited on page 35).

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, 1. Sutskever, and D.
Amodei. Language models are few-shot learners. In Advances in Neural
Information Processing Systems, 2020. URL: https://papers.nips.c
c/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abst
ract.html (cited on page 88).

https://doi.org/10.1126/science.aar6404
https://proceedings.mlr.press/v97/fujimoto19a.html
https://proceedings.mlr.press/v97/fujimoto19a.html
https://doi.org/10.14618/IDS-PUB9021
https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/1906.08113
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Bibliography 112

L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang,
H. He, A. Thite, N. Nabeshima, S. Presser, and C. Leahy. The Pile: An
800GB Dataset of Diverse Text for Language Modeling. 2020. arXiv:
2101.00027 [cs] (cited on pages 18, 84, 150).

I. Kostrikov, O. Nachum, and J. Tompson. Imitation learning via off-
policy distribution matching. In The 8th International Conference on
Learning Representations, 2020. URL: https://openreview.net/fo
rum?id=Hyg- JCAFDr (cited on pages 34, 35).

A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative Q-learning
for offline reinforcement learning. In Advances in Neural Information
Processing Systems, 2020. URL: https://proceedings.neurips.cc
/paper/2020/hash/0d2b2061826a5d£3221116a5085a6052-Abstr
act.html (cited on pages 40, 49, 129).

S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning:
tutorial, review, and perspectives on open problems. 2020. arXiv: 2005
.01643 (cited on pages 18, 28).

R. Mcllroy-Young, S. Sen, J. Kleinberg, and A. Anderson. Aligning su-
perhuman Al with human behavior: chess as a model system. In Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2020. DOI: 10.1145/3394486 . 3403219
(cited on pages 82, 100).

L. Monier, J. Kmec, A. Laterre, T. Pierrot, V. Courgeau, O. Sigaud,
and K. Beguir. Offline reinforcement learning hands-on. 2020. arXiv:
2011.14379 (cited on page 55).

D. Noever, M. Ciolino, and J. Kalin. The chess transformer: mastering
play using generative language models. 2020. arXiv: 2008.04057 (cited
on page 100).

G. Peyré and M. Cuturi. Computational optimal transport. 2020. arXiv:
1803.00567 (cited on page 59).

https://arxiv.org/abs/2101.00027
https://openreview.net/forum?id=Hyg-JC4FDr
https://openreview.net/forum?id=Hyg-JC4FDr
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://doi.org/10.1145/3394486.3403219
https://arxiv.org/abs/2011.14379
https://arxiv.org/abs/2008.04057
https://arxiv.org/abs/1803.00567

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Bibliography 113

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y.
Zhou, W. Li, and P. J. Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. Journal of Machine Learning Research,
21(140):1-67, 2020. URL: http://jmlr.org/papers/v21/20-074.h
tml (cited on pages 84, 150).

S. Reddy, A. D. Dragan, and S. Levine. SQIL: imitation learning via
reinforcement learning with sparse rewards. In The 8th International
Conference on Learning Representations, 2020. URL: https://openre
view.net/forum?id=S1xKd24twB (cited on page 68).

J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S.
Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al. Mastering
Atari, Go, chess and shogi by planning with a learned model. Nature,
588(7839):604—609, 2020. DOI: 10.1038/s41586-020-03051-4 (cited
on page 84).

S. Sinha, J. Song, A. Garg, and S. Ermon. Experience replay with
likelihood-free importance weights, 2020. URL: https : / / openrev
iew.net/forum?id=i0XEbG_Sf-a (cited on page 132).

Z. Wang, A. Novikov, K. Zolna, J. S. Merel, J. T. Springenberg, S. E.
Reed, B. Shahriari, N. Siegel, C. Gulcehre, N. Heess, and N. de Freitas.
Critic regularized regression. In Advances in Neural Information Pro-
cessing Systems, 2020. URL: https://proceedings.neurips.cc/pa
per/2020/hash/588cb956d6bbe67078£29f8de420a13d-Abstract
.html (cited on page 67).

K. Zolna, A. Novikov, K. Konyushkova, C. Gulcehre, Z. Wang, Y. Aytar,
M. Denil, N. de Freitas, and S. Reed. Offline learning from demonstra-
tions and unlabeled experience. 2020. arXiv: 2011 . 13885 (cited on
pages 68, 69).

L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel,
A. Srinivas, and I. Mordatch. Decision transformer: reinforcement learn-

ing via sequence modeling. In Advances in Neural Information Process-

ing Systems, 2021. URL: https://papers.nips.cc/paper_files/p

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://openreview.net/forum?id=S1xKd24twB
https://openreview.net/forum?id=S1xKd24twB
https://doi.org/10.1038/s41586-020-03051-4
https://openreview.net/forum?id=ioXEbG_Sf-a
https://openreview.net/forum?id=ioXEbG_Sf-a
https://proceedings.neurips.cc/paper/2020/hash/588cb956d6bbe67078f29f8de420a13d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/588cb956d6bbe67078f29f8de420a13d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/588cb956d6bbe67078f29f8de420a13d-Abstract.html
https://arxiv.org/abs/2011.13885
https://papers.nips.cc/paper_files/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://papers.nips.cc/paper_files/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html

[59]

[60]

[61]

[62]

[63]

[64]

Bibliography 114

aper/2021/hash/7£489f642a0ddb10272b5¢c31057f0663- Abstrac
t.html (cited on page 79).

S. Cohen, B. Amos, M. P. Deisenroth, M. Henaff, E. Vinitsky, and D.
Yarats. Imitation learning from pixel observations for continuous control,
2021. URL: https://openreview . net/forum?id=JLbXkHKLCG6
(cited on pages 35, 62, 64, 65).

R. Dadashi, L. Hussenot, M. Geist, and O. Pietquin. Primal Wasserstein
imitation learning. In The 9th International Conference on Learning
Representations, 2021. URL: https://openreview.net/forum?id
=TtYSU29zgR (cited on pages 35, 62, 65, 74,75, 137).

G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S.
Gowal, and T. Hester. Challenges of real-world reinforcement learning:
definitions, benchmarks and analysis. Machine Learning, 110(9):2419—
2468, 2021. DOI: 10.1007/5s10994-021-05961-4 (cited on page 27).

R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S.
Chambon, L. Chapel, A. Corenflos, K. Fatras, N. Fournier, L. Gautheron,
N. T. Gayraud, H. Janati, A. Rakotomamonjy, I. Redko, A. Rolet, A.
Schutz, V. Seguy, D. J. Sutherland, R. Tavenard, A. Tong, and T. Vayer.
POT: Python optimal transport. Journal of Machine Learning Research,
22(78):1-8,2021. URL: http://jmlr.org/papers/v22/20-451 .ht
ml (cited on page 76).

J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4RL: datasets
for deep data-driven reinforcement learning. 2021. arXiv: 2004.07219
(cited on pages 40, 58, 67).

S. Fujimoto and S. Gu. A minimalist approach to offline reinforcement
learning. In Advances in Neural Information Processing Systems, 2021.
URL: https://proceedings.neurips.cc/paper_files/paper/2
021/hash/a8166da05c5a094f7dc03724b41886e5-Abstract . html
(cited on pages 39, 40, 72, 73).

https://papers.nips.cc/paper_files/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://papers.nips.cc/paper_files/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://papers.nips.cc/paper_files/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://papers.nips.cc/paper_files/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://openreview.net/forum?id=JLbXkHkLCG6
https://openreview.net/forum?id=TtYSU29zgR
https://openreview.net/forum?id=TtYSU29zgR
https://doi.org/10.1007/s10994-021-05961-4
http://jmlr.org/papers/v22/20-451.html
http://jmlr.org/papers/v22/20-451.html
https://arxiv.org/abs/2004.07219
https://proceedings.neurips.cc/paper_files/paper/2021/hash/a8166da05c5a094f7dc03724b41886e5-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/a8166da05c5a094f7dc03724b41886e5-Abstract.html

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Bibliography 115

M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one
big sequence modeling problem. In Advances in Neural Information
Processing Systems, 2021. URL: https://proceedings.neurips.cc
/paper/2021/hash/099fe6b0b444c23836c4a5d07346082b- Abstr
act.html (cited on page 79).

Y. Luo, A. Filieri, and Y. Zhou. Symbolic parallel adaptive importance
sampling for probabilistic program analysis. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2021. DOI:
10.1145/3468264 .3468593 (cited on page 21).

A. Nair, A. Gupta, M. Dalal, and S. Levine. AWAC: accelerating online
reinforcement learning with offline datasets. 2021. arXiv: 2006.09359
(cited on pages 41-43, 49, 53-55, 67).

M. Orsini, A. Raichuk, L. Hussenot, D. Vincent, R. Dadashi, S. Girgin,
M. Geist, O. Bachem, O. Pietquin, and M. Andrychowicz. What matters
for adversarial imitation learning? In Advances in Neural Information
Processing Systems, 2021. URL: https://proceedings.neurips.cc
/paper/2021/hash/7b647a7d88f4d6319bf0d600d168dbeb-Abstr
act.html (cited on pages 35, 63).

G. Ostrovski, P. S. Castro, and W. Dabney. The Difficulty of Passive
Learning in Deep Reinforcement Learning. In Advances in Neural Infor-
mation Processing Systems, 2021. URL: https://openreview.net/f
orum?id=nPHA8fGicZk (cited on pages 30, 31).

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever.
Learning transferable visual models from natural language supervision.
In Proceedings of the 38th International Conference on Machine Learn-
ing, 2021. URL: https://proceedings.mlr.press/v139/radford2
la.html (cited on page 86).

A. Singh, A. Yu, J. Yang, J. Zhang, A. Kumar, and S. Levine. Chaining

behaviors from data with model-free reinforcement learning. In Proceed-

https://proceedings.neurips.cc/paper/2021/hash/099fe6b0b444c23836c4a5d07346082b-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/099fe6b0b444c23836c4a5d07346082b-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/099fe6b0b444c23836c4a5d07346082b-Abstract.html
https://doi.org/10.1145/3468264.3468593
https://arxiv.org/abs/2006.09359
https://proceedings.neurips.cc/paper/2021/hash/7b647a7d88f4d6319bf0d600d168dbeb-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/7b647a7d88f4d6319bf0d600d168dbeb-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/7b647a7d88f4d6319bf0d600d168dbeb-Abstract.html
https://openreview.net/forum?id=nPHA8fGicZk
https://openreview.net/forum?id=nPHA8fGicZk
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html

[72]

[73]

[74]

[75]

[76]

[77]

Bibliography 116

ings of the 2020 Conference on Robot Learning, 2021. URL: https://p
roceedings.mlr.press/v155/singh2la.html (cited on page 68).

A. Stockl. Watching a language model learning chess. In Proceedings of
the International Conference on Recent Advances in Natural Language
Processing, 2021. URL: https://aclanthology.org/2021.ranlp-1
. 153 (cited on page 100).

B. Baker, 1. Akkaya, P. Zhokov, J. Huizinga, J. Tang, A. Ecoffet, B.
Houghton, R. Sampedro, and J. Clune. Video PreTraining (VPT): learn-
ing to act by watching unlabeled online videos. In Advances in Neural
Information Processing Systems, 2022. URL: https://papers.nips.c
c/paper_files/paper/2022/hash/9c7008aff45b5d8f0973b23el
a22ada0-Abstract-Conference.html (cited on pages 79, 104).

S. Black, S. Biderman, E. Hallahan, Q. Anthony, L. Gao, L. Golding,
H. He, C. Leahy, K. McDonell, J. Phang, M. Pieler, U. S. Prashanth,
S. Purohit, L. Reynolds, J. Tow, B. Wang, and S. Weinbach. GPT-NeoX-
20B: an open-source autoregressive language model. In Proceedings of
BigScience Episode #5 — Workshop on Challenges & Perspectives in
Creating Large Language Models, 2022. DOI: 10.18653/v1/2022.big

science-1.9 (cited on page 88).

M. Cuturi, L. Meng-Papaxanthos, Y. Tian, C. Bunne, G. Davis, and O.
Teboul. Optimal transport tools (OTT): a JAX toolbox for all things
Wasserstein. 2022. arXiv: 2201 . 12324 (cited on pages 60, 63, 69).

L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang, D.-A.
Huang, Y. Zhu, and A. Anandkumar. MineDojo: building open-ended
embodied agents with internet-scale knowledge. In Advances in Neural
Information Processing Systems, 2022. URL: https://papers.nips
.cc/paper_files/paper/2022/hash/74a67268c5cc5910£64938c¢
ac4526a90-Abstract-Datasets_and_Benchmarks.html (cited on
pages 85, 100).

A. Fickinger, S. Cohen, S. Russell, and B. Amos. Cross-domain imitation

learning via optimal transport. In The 10th International Conference on

https://proceedings.mlr.press/v155/singh21a.html
https://proceedings.mlr.press/v155/singh21a.html
https://aclanthology.org/2021.ranlp-1.153
https://aclanthology.org/2021.ranlp-1.153
https://papers.nips.cc/paper_files/paper/2022/hash/9c7008aff45b5d8f0973b23e1a22ada0-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/9c7008aff45b5d8f0973b23e1a22ada0-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/9c7008aff45b5d8f0973b23e1a22ada0-Abstract-Conference.html
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://arxiv.org/abs/2201.12324
https://papers.nips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
https://papers.nips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
https://papers.nips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html

[78]

[79]

[80]

[81]

[82]

Bibliography 117

Learning Representations, 2022. URL: https://openreview.net/fo
rum?id=xP3cPq2hQC (cited on page 76).

D. J. Foster, A. Krishnamurthy, D. Simchi-Levi, and Y. Xu. Offline
reinforcement learning: Fundamental barriers for value function approxi-
mation. In Proceedings of 35th Conference on Learning Theory, —July 5,
2022. URL: https://proceedings.mlr.press/v178/foster22a.h
tml (cited on page 31).

M. W. Hoffman, B. Shahriari, J. Aslanides, G. Barth-Maron, N. Mom-
chev, D. Sinopalnikov, P. Staiiczyk, S. Ramos, A. Raichuk, D. Vincent,
L. Hussenot, R. Dadashi, G. Dulac-Arnold, M. Orsini, A. Jacq, J. Ferret,
N. Vieillard, S. K. S. Ghasemipour, S. Girgin, O. Pietquin, F. Behbahani,
T. Norman, A. Abdolmaleki, A. Cassirer, F. Yang, K. Baumli, S. Hen-
derson, A. Friesen, R. Haroun, A. Novikov, S. G. Colmenarejo, S. Cabi,
C. Gulcehre, T. L. Paine, S. Srinivasan, A. Cowie, Z. Wang, B. Piot, and
N. de Freitas. Acme: a research framework for distributed reinforcement
learning. 2022. arXiv: 2006.00979 (cited on pages 74, 128).

G.-H. Kim, S. Seo, J. Lee, W. Jeon, H. Hwang, H. Yang, and K.-E. Kim.
DemoDICE: offline imitation learning with supplementary imperfect
demonstrations. In The 10th International Conference on Learning Rep-
resentations, 2022. URL: https://openreview.net/forum?id=BrPd
X1bDZkQ (cited on pages 67, 69).

I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with
implicit Q-learning. In The 10th International Conference on Learning
Representations, 2022. URL: https://openreview.net/forum?id=6
8n2s9ZJWF8 (cited on pages 41, 44, 50, 54, 55, 6668, 130, 137).

H. Laurencon, L. Saulnier, T. Wang, C. Akiki, A. V. del Moral, T. L.
Scao, L. V. Werra, C. Mou, E. G. Ponferrada, H. Nguyen, J. Frohberg,
M. Sasko, Q. Lhoest, A. McMillan-Major, G. Dupont, S. Biderman, A.
Rogers, L. B. Allal, F. D. Toni, G. Pistilli, O. Nguyen, S. Nikpoor, M.
Masoud, P. Colombo, J. de la Rosa, P. Villegas, T. Thrush, S. Longpre,
S. Nagel, L. Weber, M. R. Muiioz, J. Zhu, D. V. Strien, Z. Alyafeai, K.
Almubarak, V. M. Chien, I. Gonzalez-Dios, A. Soroa, K. Lo, M. Dey,

https://openreview.net/forum?id=xP3cPq2hQC
https://openreview.net/forum?id=xP3cPq2hQC
https://proceedings.mlr.press/v178/foster22a.html
https://proceedings.mlr.press/v178/foster22a.html
https://arxiv.org/abs/2006.00979
https://openreview.net/forum?id=BrPdX1bDZkQ
https://openreview.net/forum?id=BrPdX1bDZkQ
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8

[83]

[84]

[85]

[86]

[87]

Bibliography 118

P. O. Suarez, A. Gokaslan, S. Bose, D. 1. Adelani, L. Phan, H. Tran, I.
Yu, S. Pai, J. Chim, V. Lepercq, S. Ilic, M. Mitchell, S. Luccioni, and Y.
Jernite. The BigScience ROOTS corpus: a 1.6TB composite multilingual
dataset. In Advances in Neural Information Processing Systems, 2022.
URL: https://papers.nips.cc/paper_files/paper/2022/hash
/ce9e92e3de2372a4b93353eb7f3dcObd- Abstract-Datasets_and
_Benchmarks.html (cited on pages 141, 143, 146).

S. Lee, Y. Seo, K. Lee, P. Abbeel, and J. Shin. Offline-to-online rein-
forcement learning via balanced replay and pessimistic g-ensemble. In
Proceedings of the 5th Conference on Robot Learning, —Nov. 11, 2022.
URL: https://proceedings.mlr.press/v164/lee22d.html (cited
on pages 41-43, 53-55, 132, 135).

L. Li, P. Zhang, H. Zhang, J. Yang, C. Li, Y. Zhong, L. Wang, L. Yuan, L.
Zhang, J. Hwang, K. Chang, and J. Gao. Grounded language-image pre-
training. In 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. DOI: 10.1109/CVPR52688.2022.01069
(cited on page 152).

Y. Lu, K. Hausman, Y. Chebotar, M. Yan, E. Jang, A. Herzog, T. Xiao,
A. Irpan, M. Khansari, D. Kalashnikov, and S. Levine. AW-Opt: learning
robotic skills with imitation and reinforcement at scale. In Proceedings
of the 5th Conference on Robot Learning, 2022. URL: https://procee
dings.mlr.press/v164/1u22a.html (cited on page 55).

Y. Luo, J. Kay, E. Grefenstette, and M. P. Deisenroth. Finetuning from
offline reinforcement learning: challenges, trade-offs and practical solu-
tions. In The 5th Multidisciplinary Conference on Reinforcement Learn-

ing and Decision Making, 2022 (cited on pages 21, 22).

T. McGrath, A. Kapishnikov, N. TomaSev, A. Pearce, M. Wattenberg,
D. Hassabis, B. Kim, U. Paquet, and V. Kramnik. Acquisition of chess
knowledge in AlphaZero. Proceedings of the National Academy of Sci-
ences, 119(47):2206625119, 2022. DOI: 10.1073/pnas.2206625119
(cited on page 100).

https://papers.nips.cc/paper_files/paper/2022/hash/ce9e92e3de2372a4b93353eb7f3dc0bd-Abstract-Datasets_and_Benchmarks.html
https://papers.nips.cc/paper_files/paper/2022/hash/ce9e92e3de2372a4b93353eb7f3dc0bd-Abstract-Datasets_and_Benchmarks.html
https://papers.nips.cc/paper_files/paper/2022/hash/ce9e92e3de2372a4b93353eb7f3dc0bd-Abstract-Datasets_and_Benchmarks.html
https://proceedings.mlr.press/v164/lee22d.html
https://doi.org/10.1109/CVPR52688.2022.01069
https://proceedings.mlr.press/v164/lu22a.html
https://proceedings.mlr.press/v164/lu22a.html
https://doi.org/10.1073/pnas.2206625119

[88]

[89]

[90]

[91]

[92]

[93]

Bibliography 119

S. Mishra, D. Khashabi, C. Baral, and H. Hajishirzi. Cross-task general-
ization via natural language crowdsourcing instructions. In Proceedings
of the 60th Annual Meeting of the Association for Computational Lin-
guistics, 2022. DOI: 10 .18653/v1/2022 . acl-long . 244 (cited on
page 85).

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F.
Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano,
J. Leike, and R. Lowe. Training language models to follow instructions
with human feedback. In Advances in Neural Information Processing
Systems, 2022. URL: https://papers.nips.cc/paper_files/pap
er/2022/hash/blefde53be364a73914£58805a001731-Abstract-
Conference.html (cited on pages 37, 85).

S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-
maron, M. Giménez, Y. Sulsky, J. Kay, J. T. Springenberg, T. Eccles,
J. Bruce, A. Razavi, A. Edwards, N. Heess, Y. Chen, R. Hadsell, O.
Vinyals, M. Bordbar, and N. de Freitas. A generalist agent. Transactions
on Machine Learning Research, 2022. URL: https://openreview.ne
t/forum?id=1ikK0kHjvj (cited on page 100).

S. Toshniwal, S. Wiseman, K. Livescu, and K. Gimpel. Chess as a testbed
for language model state tracking. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2022. DOI: 10.1609/aaai.v36110.21390
(cited on page 89).

J. Wei, M. Bosma, V. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M.
Dai, and Q. V. Le. Finetuned language models are zero-shot learners. In
The 10th International Conference on Learning Representations, 2022.
URL: https://openreview.net/forum?id=gEZrGCozdqgR (cited on
page 85).

T. Yu, A. Kumar, Y. Chebotar, K. Hausman, C. Finn, and S. Levine.
How to leverage unlabeled data in offline reinforcement learning. In

Proceedings of the 39th International Conference on Machine Learning,

https://doi.org/10.18653/v1/2022.acl-long.244
https://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://openreview.net/forum?id=1ikK0kHjvj
https://openreview.net/forum?id=1ikK0kHjvj
https://doi.org/10.1609/aaai.v36i10.21390
https://openreview.net/forum?id=gEZrGCozdqR

[94]

[95]

[96]

[97]

[98]

[99]

Bibliography 120

2022. URL: https://proceedings.mlr.press/v162/yu22c.html
(cited on page 68).

Q. Zheng, A. Zhang, and A. Grover. Online decision transformer. In
Proceedings of the 39th International Conference on Machine Learning,
2022. URL: https://proceedings.mlr.press/v162/zheng22c.ht
ml (cited on pages 41, 44, 49, 50, 54, 55).

P. J. Ball, L. Smith, I. Kostrikov, and S. Levine. Efficient online reinforce-
ment learning with offline data. In Proceedings of the 40th International
Conference on Machine Learning, 2023. URL: https://proceedings
.mlr.press/v202/ball23a.html (cited on pages 28, 130-132).

S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar,
P. Lee, Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T. Ribeiro,
and Y. Zhang. Sparks of artificial general intelligence: Early experiments
with GPT-4. 2023. arXiv: 2303. 12712 (cited on pages 86, 101).

W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S.
Zhuang, Y. Zhuang, J. E. Gonzalez, 1. Stoica, and E. P. Xing. Vicuna:
an open-source chatbot impressing GPT-4 with 90% ChatGPT quality.
2023. URL: https://lmsys.org/blog/2023-03-30-vicuna/ (cited
on page 163).

M. Conover, M. Hayes, A. Mathur, J. Xie, J. Wan, S. Shah, A. Ghodsi,
P. Wendell, M. Zaharia, and R. Xin. Free dolly: introducing the world’s
first truly open instruction-tuned LLM. 2023. URL: https://www.data
bricks.com/blog/2023/04/12/dolly-first-open-commerciall
y-viable-instruction-tuned-11m (cited on pages 88, 162).

X. Feng, Y. Luo, Z. Wang, H. Tang, M. Yang, K. Shao, D. Mguni, Y.
Du, and J. Wang. ChessGPT: bridging policy learning and language
modeling. In Advances in Neural Information Processing Systems, 2023.
URL: https://papers.nips.cc/paper_files/paper/2023/hash
/16b14e3f288f076e0ca73bdad6405f77 - Abstract-Datasets_and
_Benchmarks.html (cited on pages 21, 22).

https://proceedings.mlr.press/v162/yu22c.html
https://proceedings.mlr.press/v162/zheng22c.html
https://proceedings.mlr.press/v162/zheng22c.html
https://proceedings.mlr.press/v202/ball23a.html
https://proceedings.mlr.press/v202/ball23a.html
https://arxiv.org/abs/2303.12712
https://lmsys.org/blog/2023-03-30-vicuna/
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://papers.nips.cc/paper_files/paper/2023/hash/16b14e3f288f076e0ca73bdad6405f77-Abstract-Datasets_and_Benchmarks.html
https://papers.nips.cc/paper_files/paper/2023/hash/16b14e3f288f076e0ca73bdad6405f77-Abstract-Datasets_and_Benchmarks.html
https://papers.nips.cc/paper_files/paper/2023/hash/16b14e3f288f076e0ca73bdad6405f77-Abstract-Datasets_and_Benchmarks.html

[100]

[101]

[102]

[103]

[104]

Bibliography 121

B. Ichter, A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog,
D. Ho, J. Ibarz, A. Irpan, E. Jang, R. Julian, D. Kalashnikov, S. Levine,
Y. Lu, C. Parada, K. Rao, P. Sermanet, A. T. Toshev, V. Vanhoucke, F.
Xia, T. Xiao, P. Xu, M. Yan, N. Brown, M. Ahn, O. Cortes, N. Sievers,
C. Tan, S. Xu, D. Reyes, J. Rettinghouse, J. Quiambao, P. Pastor, L.
Luu, K.-H. Lee, Y. Kuang, S. Jesmonth, N. J. Joshi, K. Jeffrey, R. J.
Ruano, J. Hsu, K. Gopalakrishnan, B. David, A. Zeng, and C. K. Fu.
Do as I can, not as I say: grounding language in robotic affordances.
In Proceedings of the 6th Conference on Robot Learning, 2023. URL:
https://proceedings.mlr.press/v205/ichter23a.html (cited
on page 17).

E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Miiller, V. Koltun, and
D. Scaramuzza. Champion-level drone racing using deep reinforcement
learning. Nature, 620(7976):982-987, 2023. DOI: 10.1038/s41586-02
3-06419-4 (cited on pages 17, 32).

A. Kopf, Y. Kilcher, D. von Riitte, S. Anagnostidis, Z. R. Tam, K. Stevens,
A. Barhoum, D. M. Nguyen, O. Stanley, R. Nagyfi, S. Es, S. Suri, D. A.
Glushkov, A. V. Dantuluri, A. Maguire, C. Schuhmann, H. Nguyen, and
A. J. Mattick. OpenAssistant conversations - democratizing large lan-
guage model alignment. In Advances in Neural Information Processing
Systems, 2023. URL: https://papers.nips.cc/paper_files/pap
er/2023/hash/949f0f8£32267d297c2d4e3eel0a2e7e-Abstract -
Datasets_and_Benchmarks.html (cited on pages 88, 162).

I. Kostrikov, L. M. Smith, and S. Levine. Demonstrating a walk in the
park: learning to walk in 20 minutes with model-free reinforcement
learning. In Proceedings of Robotics: Science and Systems, 2023. DOI:
10.15607/RSS.2023.XIX.056 (cited on page 28).

Y. Luo, Z. Jiang, S. Cohen, E. Grefenstette, and M. P. Deisenroth. Op-
timal transport for offline imitation learning. In The 11th International
Conference on Learning Representations, 2023. URL: https://openre
view.net/forum?id=MhuFzFsrfvH (cited on pages 21, 22).

https://proceedings.mlr.press/v205/ichter23a.html
https://doi.org/10.1038/s41586-023-06419-4
https://doi.org/10.1038/s41586-023-06419-4
https://papers.nips.cc/paper_files/paper/2023/hash/949f0f8f32267d297c2d4e3ee10a2e7e-Abstract-Datasets_and_Benchmarks.html
https://papers.nips.cc/paper_files/paper/2023/hash/949f0f8f32267d297c2d4e3ee10a2e7e-Abstract-Datasets_and_Benchmarks.html
https://papers.nips.cc/paper_files/paper/2023/hash/949f0f8f32267d297c2d4e3ee10a2e7e-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.15607/RSS.2023.XIX.056
https://openreview.net/forum?id=MhuFzFsrfvH
https://openreview.net/forum?id=MhuFzFsrfvH

[105]

[106]

[107]

[108]

Bibliography 122

B. Peng, C. Li, P. He, M. Galley, and J. Gao. Instruction tuning with
GPT-4. 2023. arXiv: 2304.03277 (cited on pages 88, 162).

R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C.
Finn. Direct Preference Optimization: Your Language Model is Secretly
a Reward Model. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL: https://openreview.net/forum?i
d=HPuSIXJaa9 (cited on page 102).

A. B. Simon Stewart. Selenium, 2023. URL: https://github.com/Se
leniumHQ/selenium (cited on pages 148, 149).

A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch,
A. R. Brown, A. Santoro, A. Gupta, A. Garriga-Alonso, A. Kluska, A.
Lewkowycz, A. Agarwal, A. Power, A. Ray, A. Warstadt, A. W. Ko-
curek, A. Safaya, A. Tazarv, A. Xiang, A. Parrish, A. Nie, A. Hussain, A.
Askell, A. Dsouza, A. Slone, A. Rahane, A. S. Iyer, A. J. Andreassen, A.
Madotto, A. Santilli, A. Stuhlmiiller, A. M. Dai, A. La, A. Lampinen, A.
Zou, A. Jiang, A. Chen, A. Vuong, A. Gupta, A. Gottardi, A. Norelli, A.
Venkatesh, A. Gholamidavoodi, A. Tabassum, A. Menezes, A. Kirubara-
jan, A. Mullokandov, A. Sabharwal, A. Herrick, A. Efrat, A. Erdem, A.
Karakasg, B. R. Roberts, B. S. Loe, B. Zoph, B. Bojanowski, B. Ozyurt, B.
Hedayatnia, B. Neyshabur, B. Inden, B. Stein, B. Ekmekci, B. Y. Lin, B.
Howald, B. Orinion, C. Diao, C. Dour, C. Stinson, C. Argueta, C. Ferri,
C. Singh, C. Rathkopf, C. Meng, C. Baral, C. Wu, C. Callison-Burch,
C. Waites, C. Voigt, C. D. Manning, C. Potts, C. Ramirez, C. E. Rivera,
C. Siro, C. Raffel, C. Ashcraft, C. Garbacea, D. Sileo, D. Garrette, D.
Hendrycks, D. Kilman, D. Roth, C. D. Freeman, D. Khashabi, D. Levy,
D. M. Gonzidlez, D. Perszyk, D. Hernandez, D. Chen, D. Ippolito, D.
Gilboa, D. Dohan, D. Drakard, D. Jurgens, D. Datta, D. Ganguli, D.
Emelin, D. Kleyko, D. Yuret, D. Chen, D. Tam, D. Hupkes, D. Misra,
D. Buzan, D. C. Mollo, D. Yang, D.-H. Lee, D. Schrader, E. Shutova,
E. D. Cubuk, E. Segal, E. Hagerman, E. Barnes, E. Donoway, E. Pavlick,
E. Rodola, E. Lam, E. Chu, E. Tang, E. Erdem, E. Chang, E. A. Chi,
E. Dyer, E. Jerzak, E. Kim, E. E. Manyasi, E. Zheltonozhskii, F. Xia, F.

https://arxiv.org/abs/2304.03277
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://github.com/SeleniumHQ/selenium
https://github.com/SeleniumHQ/selenium

Bibliography 123

Siar, F. Martinez-Plumed, F. Happé, F. Chollet, F. Rong, G. Mishra, G. I.
Winata, G. de Melo, G. Kruszewski, G. Parascandolo, G. Mariani, G. X.
Wang, G. Jaimovitch-Lopez, G. Betz, G. Gur-Ari, H. Galijasevic, H.
Kim, H. Rashkin, H. Hajishirzi, H. Mehta, H. Bogar, H. F. A. Shevlin, H.
Schuetze, H. Yakura, H. Zhang, H. M. Wong, 1. Ng, 1. Noble, J. Jumelet,
J. Geissinger, J. Kernion, J. Hilton, J. Lee, J. F. Fisac, J. B. Simon, J.
Koppel, J. Zheng, J. Zou, J. Kocon, J. Thompson, J. Wingfield, J. Kaplan,
J. Radom, J. Sohl-Dickstein, J. Phang, J. Wei, J. Yosinski, J. Novikova,
J. Bosscher, J. Marsh, J. Kim, J. Taal, J. Engel, J. Alabi, J. Xu, J. Song, J.
Tang, J. Waweru, J. Burden, J. Miller, J. U. Balis, J. Batchelder, J. Berant,
J. Frohberg, J. Rozen, J. Hernandez-Orallo, J. Boudeman, J. Guerr, J.
Jones, J. B. Tenenbaum, J. S. Rule, J. Chua, K. Kanclerz, K. Livescu,
K. Krauth, K. Gopalakrishnan, K. Ignatyeva, K. Markert, K. Dhole, K.
Gimpel, K. Omondi, K. W. Mathewson, K. Chiafullo, K. Shkaruta, K.
Shridhar, K. McDonell, K. Richardson, L. Reynolds, L. Gao, L. Zhang,
L. Dugan, L. Qin, L. Contreras-Ochando, L.-P. Morency, L. Moschella,
L. Lam, L. Noble, L. Schmidt, L. He, L. Oliveros-Colén, L. Metz, L. K.
Senel, M. Bosma, M. Sap, M. T. Hoeve, M. Farooqi, M. Faruqui, M.
Mazeika, M. Baturan, M. Marelli, M. Maru, M. J. Ramirez-Quintana, M.
Tolkiehn, M. Giulianelli, M. Lewis, M. Potthast, M. L. Leavitt, M. Hagen,
M. Schubert, M. O. Baitemirova, M. Arnaud, M. McElrath, M. A. Yee,
M. Cohen, M. Gu, M. Ivanitskiy, M. Starritt, M. Strube, M. Swedrowski,
M. Bevilacqua, M. Yasunaga, M. Kale, M. Cain, M. Xu, M. Suzgun,
M. Walker, M. Tiwari, M. Bansal, M. Aminnaseri, M. Geva, M. Gheini,
M. V. T, N. Peng, N. A. Chi, N. Lee, N. G.-A. Krakover, N. Cameron,
N. Roberts, N. Doiron, N. Martinez, N. Nangia, N. Deckers, N. Muen-
nighoff, N. S. Keskar, N. S. Iyer, N. Constant, N. Fiedel, N. Wen, O.
Zhang, O. Agha, O. Elbaghdadi, O. Levy, O. Evans, P. A. M. Casares,
P. Doshi, P. Fung, P. P. Liang, P. Vicol, P. Alipoormolabashi, P. Liao,
P. Liang, P. W. Chang, P. Eckersley, P. M. Htut, P. Hwang, P. Mitkowski,
P. Patil, P. Pezeshkpour, P. Oli, Q. Mei, Q. Lyu, Q. Chen, R. Banjade,
R. E. Rudolph, R. Gabriel, R. Habacker, R. Risco, R. Milliere, R. Garg,
R. Barnes, R. A. Saurous, R. Arakawa, R. Raymaekers, R. Frank, R.

[109]

[110]

[111]

Bibliography 124

Sikand, R. Novak, R. Sitelew, R. L. Bras, R. Liu, R. Jacobs, R. Zhang,
R. Salakhutdinov, R. A. Chi, S. R. Lee, R. Stovall, R. Teehan, R. Yang, S.
Singh, S. M. Mohammad, S. Anand, S. Dillavou, S. Shleifer, S. Wiseman,
S. Gruetter, S. R. Bowman, S. S. Schoenholz, S. Han, S. Kwatra, S. A.
Rous, S. Ghazarian, S. Ghosh, S. Casey, S. Bischoff, S. Gehrmann, S.
Schuster, S. Sadeghi, S. Hamdan, S. Zhou, S. Srivastava, S. Shi, S. Singh,
S. Asaadi, S. S. Gu, S. Pachchigar, S. Toshniwal, S. Upadhyay, S. S. Deb-
nath, S. Shakeri, S. Thormeyer, S. Melzi, S. Reddy, S. P. Makini, S.-H.
Lee, S. Torene, S. Hatwar, S. Dehaene, S. Divic, S. Ermon, S. Biderman,
S. Lin, S. Prasad, S. Piantadosi, S. Shieber, S. Misherghi, S. Kiritchenko,
S. Mishra, T. Linzen, T. Schuster, T. Li, T. Yu, T. Ali, T. Hashimoto,
T.-L. Wu, T. Desbordes, T. Rothschild, T. Phan, T. Wang, T. Nkinyili,
T. Schick, T. Kornev, T. Tunduny, T. Gerstenberg, T. Chang, T. Neeraj,
T. Khot, T. Shultz, U. Shaham, V. Misra, V. Demberg, V. Nyamai, V.
Raunak, V. V. Ramasesh, v. uday prabhu, V. Padmakumar, V. Srikumar,
W. Fedus, W. Saunders, W. Zhang, W. Vossen, X. Ren, X. Tong, X. Zhao,
X. Wu, X. Shen, Y. Yaghoobzadeh, Y. Lakretz, Y. Song, Y. Bahri, Y.
Choi, Y. Yang, Y. Hao, Y. Chen, Y. Belinkov, Y. Hou, Y. Hou, Y. Bai,
Z. Seid, Z. Zhao, Z. Wang, Z. J. Wang, Z. Wang, and Z. Wu. Beyond
the imitation game: Quantifying and extrapolating the capabilities of
language models. Transactions on Machine Learning Research, 2023.
URL: https://openreview.net/forum?id=uyTL5Bvosj (cited on
pages 89, 96).

R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang,
and Tatsunori B. Hashimoto. Stanford Alpaca: an instruction-following
LLaMA model, 2023. URL: https://github.com/tatsu-lab/stan
ford_alpaca (cited on pages 86, 163).

Together Computer. RedPajama: an open source recipe to reproduce
LLaMA training dataset, 2023. URL: https://github.com/together
computer/RedPajama-Data (cited on pages 84, 88, 89, 150, 162).

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Roziere, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E.

https://openreview.net/forum?id=uyTL5Bvosj
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data

[112]

[113]

[114]

[115]

[116]

[117]

Bibliography 125

Grave, and G. Lample. LLaMA: open and efficient foundation language
models. 2023. arXiv: 2302. 13971 (cited on pages 88, 89, 162).

G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and
A. Anandkumar. Voyager: an open-ended embodied agent with large
language models. Transactions on Machine Learning Research, 2023.
URL: https://openreview.net/forum?id=ehfRiFOR3a (cited on
page 100).

Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi, and H.
Hajishirzi. Self-instruct: Aligning language models with self-generated
instructions. In Proceedings of the 6 1st Annual Meeting of the Association
for Computational Linguistics, 2023. DOI: 10.18653/v1/2023.acl-1
ong. 754 (cited on page 86).

Z. Wang, S. Cai, G. Chen, A. Liu, X. Ma, and Y. Liang. Describe, explain,
plan and select: interactive planning with llms enables open-world multi-
task agents. In Advances in Neural Information Processing Systems, 2023.
URL: https://proceedings.neurips.cc/paper_files/paper/20
23/hash/6b8dfb8c0c12eb6fafc6c266chb08abca7-Abstract-Confe
rence.html (cited on page 100).

H. Yang, S. Yue, and Y. He. Auto-GPT for online decision making:
Benchmarks and additional opinions. 2023. arXiv: 2306 . 02224 (cited
on page 100).

S. Zwane, D. Hadjivelichkov, Y. Luo, Y. Bekiroglu, D. Kanoulas, and
M. P. Deisenroth. Safe trajectory sampling in model-based reinforcement
learning. In /9th IEEE International Conference on Automation Science
and Engineering, 2023. DOI: 10.1109/CASE56687 . 2023 . 10260496
(cited on page 21).

J. Bruce, M. D. Dennis, A. Edwards, J. Parker-Holder, Y. Shi, E. Hughes,
M. Lai, A. Mavalankar, R. Steigerwald, C. Apps, Y. Aytar, S. M. E. Bech-
tle, F. Behbahani, S. C. Y. Chan, N. Heess, L. Gonzalez, S. Osindero, S.
Ozair, S. Reed, J. Zhang, K. Zolna, J. Clune, N. D. Freitas, S. Singh, and
T. Rocktischel. Genie: generative interactive environments. In Proceed-

ings of the 41st International Conference on Machine Learning, 2024.

https://arxiv.org/abs/2302.13971
https://openreview.net/forum?id=ehfRiF0R3a
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://proceedings.neurips.cc/paper_files/paper/2023/hash/6b8dfb8c0c12e6fafc6c256cb08a5ca7-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/6b8dfb8c0c12e6fafc6c256cb08a5ca7-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/6b8dfb8c0c12e6fafc6c256cb08a5ca7-Abstract-Conference.html
https://arxiv.org/abs/2306.02224
https://doi.org/10.1109/CASE56687.2023.10260496

[118]

[119]

[120]

[121]

[122]

[123]

[124]

Bibliography 126

URL: https://proceedings .mlr . press/v235/bruce24a . html
(cited on page 104).

D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse
domains through world models. 2024. arXiv: 2301 . 04104 (cited on
pages 27, 28).

S. Hong, M. Zhuge, J. Chen, X. Zheng, Y. Cheng, J. Wang, C. Zhang,
Z. Wang, S. K. S. Yau, Z. Lin, L. Zhou, C. Ran, L. Xiao, C. Wu, and
J. Schmidhuber. MetaGPT: Meta programming for a multi-agent collab-
orative framework. In The 12th International Conference on Learning
Representations, 2024. URL: https://openreview.net/forum?id
=VtmBAGCN7o (cited on page 100).

Z. Jiang, Y. Xu, N. Wagener, Y. Luo, M. Janner, E. Grefenstette, T. Rock-
taschel, and Y. Tian. H-GAP: humanoid control with a generalist planner.
In The 12th International Conference on Learning Representations, 2024.
URL: https://openreview.net/forum?id=LYG6tB1lEXO (cited on
page 21).

X. Liu, H. Yu, H. Zhang, Y. Xu, X. Lei, H. Lai, Y. Gu, H. Ding, K. Men,
K. Yang, S. Zhang, X. Deng, A. Zeng, Z. Du, C. Zhang, S. Shen, T.
Zhang, Y. Su, H. Sun, M. Huang, Y. Dong, and J. Tang. AgentBench:
evaluating LLMs as agents. In The 12th International Conference on
Learning Representations, 2024. URL: https://openreview.net/fo
rum?id=zAdUB0aCTQ (cited on page 100).

S. N. T. Zwane, D. G. Cheney, C. C. Johnson, Y. Luo, Y. Bekiroglu,
M. Killpack, and M. P. Deisenroth. Learning dynamic tasks on a large-
scale soft robot in a handful of trials. In Proceedings of the International

Conference on Intelligent Robots and Systems, 2024 (cited on page 21).

S. Garg, A. Singh, S. Singh, and P. Chopra. IPO: Your Language Model
is Secretly a Preference Classifier. 2025. arXiv: 2502.16182 [cs] (cited
on page 102).

W. Foundation. Wikimedia downloads. URL: https://dumps.wikimed
ia.org (cited on pages 84, 150).

https://proceedings.mlr.press/v235/bruce24a.html
https://arxiv.org/abs/2301.04104
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=LYG6tBlEX0
https://openreview.net/forum?id=zAdUB0aCTQ
https://openreview.net/forum?id=zAdUB0aCTQ
https://arxiv.org/abs/2502.16182
https://dumps.wikimedia.org
https://dumps.wikimedia.org

[125]

[126]

[127]

[128]

[129]

[130]

[131]

Bibliography 127

Lichess Developers. Lichess. URL: https://lichess.org/ (cited on
pages 82, 154).

Playwright. URL: https://github.com/microsoft/playwright
(cited on page 144).

The LCZero Authors. LeelaChessZero. URL: https://github.com/Le
elaChessZero/1c0 (cited on pages 87, 161).

Computer chess rating lists. URL: https://www.computerchess.org
.uk/ccrl/ (cited on page 83).

Lichess chess opening names. URL: https://github.com/lichess-
org/chess-openings (cited on page 95).

Python-chess: a chess library for Python. URL: https://github.com
/niklasf/python-chess (cited on pages 84, 159).

ShareGPT. URL: https://huggingface.co/datasets/anon823148
9123/ShareGPT_Vicuna_unfiltered (cited on pages 88, 162).

https://lichess.org/
https://github.com/microsoft/playwright
https://github.com/LeelaChessZero/lc0
https://github.com/LeelaChessZero/lc0
https://www.computerchess.org.uk/ccrl/
https://www.computerchess.org.uk/ccrl/
https://github.com/lichess-org/chess-openings
https://github.com/lichess-org/chess-openings
https://github.com/niklasf/python-chess
https://github.com/niklasf/python-chess
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered

Appendix A

Supplements for Chapter 2

A.1 Implementation Details

Our TD3-C TD3-BC and TD3 implementation are based on the JAX TD3 im-
plementation in Acme [79]. The architectures used by the different algorithms
are kept the same: both the policy and the critic network are LayerNormMLPs'
with 2 hidden layers of size 256 and ELU activation. The LayerNorm layer is
inserted after the first linear layer and is followed by tanh activation. The last
layer of the policy network is initialized with small weights. This architecture
was found to be superior compared to the original architecture used by the TD3
paper for online learning. For simplicity and consistent comparison, we do not
perform observation normalization in TD3-BC, which was shown in the original
paper to boost performance but unnecessary for achieving good performance.
Other hyperparameters are kept the same as in the original TD3 implementa-
tion. We found that clipping the gradient of the critic with respect to the policy
action improves stability. This is implemented in Acme’s DDPG and D4PG
implementation but is absent in the original TD3 implementation and the Acme
implementation. We clip the gradient from the critic to the policy action to have
unit norm in our TD3-C implementation.

Below is a list of hyper-parameters.

ISee https://github.com/deepmind/acme/blob/master/acme/agents/jax/td3
/networks.py

128

https://github.com/deepmind/acme/blob/master/acme/agents/jax/td3/networks.py
https://github.com/deepmind/acme/blob/master/acme/agents/jax/td3/networks.py

A.2. Other choices of RL algorithms 129

Table A.1: TD3 and TD3-BC hyper-parameters

Hyperparameter Value
optimizer Adam
policy learning rate 3e-4
critic learning rate 3e-4
target network update rate T Se-3
delay 2
maximum replay size le6
minimum replay size 1000
batch size 256
exploration noise stddev. 0.1
target noise stddev. 0.2
target noise clipping 0.5

TD3-BC behavior cloning 2.5

Table A.2: TD3-C hyper-parameters

Hyperparameter Value

€ le-5
clipping yes

A.2 Other choices of RL algorithms

Thus far, our analysis has built upon the TD3 and TD3-BC algorithms. While
this is a convenient choice for investigating the compositions of online and offline
data, an unintended effect is that the conclusions we draw from the experiments
may not hold for other choices of RL algorithms. Therefore, we conducted
additional experiments to provide hints on whether our findings on the effect of
online data composition extend to other algorithms.

We first consider using CQL for both offline pretraining [46] and online
finetuning but vary how data is sampled during online finetuning, similar to the
investigation we performed in section 3.3.3. Table A.3 summarizes the results
for using the CQL algorithm but with different ways of utilizing the offline data.
Similar to our findings for TD3-BC, online finetuning with offline algorithms
such as CQL improves slowly, but the performance can be significantly improved

by discarding offline data during online finetuning.

A.3. Comparison with RLPD 130

Table A.3: Effect of online data buffer for CQL. We consider both offline training and
online finetuning using CQL but using different ways of initializing the online replay
buffer. Pre-filling the online replay buffer with the offline dataset results in worse final
performance compared to using only online experiment in the replay buffer.

Dataset CQL (offline init.) CQL (online only)
ant-m-v2 109.3 £4.93 117.3£3.04
ant-mr-v2 108.7 £5.63 111.2+4.30
halfcheetah-m-v2 50.95 £ 0.47 71.1£2.41
halfcheetah-mr-v2 51.56 £ 1.74 65.5+4.68
hopper-m-v2 747 +6.73 98.7+4.50
hopper-mr-v2 98.3 £2.63 92.7+13.0
walker2d-m-v2 82.8+1.79 92.8+6.53
walker2d-mr-v2 87.7+4.44 96.7+5.89
locomotion-total-v2 664.0 746.0

We also perform similar experiments with the implicit Q-learning algorithm
(IQL) [81], using different ratios of online data during online training. Figure A.1
shows the results for IQL finetuning on AntMaze with different online data ratios.
The result is consistent with our findings with TD3-BC: when finetuning with
offline RL algorithms, changing the ratio of online data provides benefits for
improving the online sample efficiency without sacrificing stability across all
AntMaze datasets we consider except for antmaze-umaze-diverse-v2, where

we found that IQL diverges after online finetuning.

A.3 Comparison with RLPD

This section compares our results with RLPD introduced by Ball et al. [95].
RLPD is an online RL algorithm that incorporates offline prior data during
finetuning. RLPD is considerably different from TD3, and the most noticeable
differences between RLPD and TD3 are

1. RLPD uses the REDQ as the base RL algorithm, which is an ensemble of
critics (ten in our experiments) as opposed to two used by TD3. It also, by
default, uses a higher Update-To-Data (UTD) ratio, which is the number

of gradient steps per environment step. A higher UTD ratio significantly

A.4. Comparison to prioritized balanced replay 131

antmaze-umaze-v2 antmaze-medium-play-v2 antmaze-large-play-v2
100 4 100 4 100 4
e —————i //'v——’
80 80— 80
g 607 01 01 L://:—\A
o
@
40 40 40
201 2041 20 A

0 r " " 0 " " T 0 " r T L)
0.0M 02M 05M 08M 1.0M 0.0M 02M 05M 08M 1.0M 0.0M 02M 0.5M 0.8M 1.0MNixing_ratio
— 0.1

antmaze-umaze-diverse-v2 antmaze-medium-diverse-v2 antmaze-large-diverse-v2 0.5
100 4 100 4 100 4)
ﬁ-—— — 0.9
80 so{ — sof
—_ //_/\,__
o 60 60 60 1
S — e
&
401 \ 40 401
<
20 20 20

0 T T T 1 0 T T T 1 0 T T T 1
0.0M 02™M 05M 08M 10M O0OM O02M 05M 08M 1.0M 0OM 02M 0.5M 0.8M 1.0M

steps steps steps

Figure A.1: Performance of IQL using fixed ratio replay on AntMaze. We consider
finetuning using IQL for the AntMaze tasks. Finetuning using a larger online ratio
(mixing ratio in the figure) allows more online improvement.

improves sample efficiency.

2. RLPD does not perform offline pretraining. Ball et al. [95] found that
RLPD performs poorly offline.

3. RLPD uses a fixed ratio for sampling the online and offline experience, an

approach we investigated similarly in section 3.3.3.

The results are summarized in table A.4. We found that using a high UTD
ratio improves RLPD’s performance significantly. However, with a UTD ratio
of 1, RLPD underperforms TD3, TD3-BC, and TD3-C, likely due to the lack of

offline pretraining.

A.4 Comparison to prioritized balanced replay

For our analysis in section 3.3, we considered three ways of combining samples
from online and offline experiences during finetuning. These approaches are not

adaptive as the sampling strategy is fixed a priori and not adjusted adaptively

A.4. Comparison to prioritized balanced replay 132

Table A.4: Comparison with RLPD. We compare the finetuning result using TD3, TD3-
BC, and TD3-C with RLPD [95], an online RL algorithm that leverages offline data
for improved sample efficiency. RLPD with a high update-to-data ratio (UTD) of 20
performs better. However, if we keep the UTD ratio consistent between RLPD and our
TD3 variants, we found that the TD3 algorithms perform better.

RLPD (UTD=1) RLPD (UTD=20) TD3 TD3-BC TD3-C
ant-mr-v2 111.27+£9.08 148.98+0.95 122.91£15.16 132.34£2.92 125.50£5.19
ant-m-v2 122.57£12.18 152.97+0.93 104.71£8.48 132.99£1.43 119.34£7.90
halfcheetah-mr-v2 64.12+0.76 88.20+2.90 80.98+3.61 62.35+£1.41 73.52+2.17
halfcheetah-m-v2 62.54+4.78 92.13+0.77 82.47+2.70 62.88+1.25 75.93+3.28
hopper-mr-v2 57.93£39.49 86.07+20.95 94.524+25.10 102.75+£2.43 102.384+3.01
hopper-m-v2 93.64+12.35 99.86£15.86 90.91+33.52 98.80+9.72 90.58+20.91
walker2d-mr-v2 76.38+21.34 116.46+3.16 98.94+10.38 104.16+£4.66 105.35+11.01
walker2d-m-v2 98.19+4.91 118.54+2.01 85.19£19.55 97.484+3.45 97.54411.88
locomotion-total-v2 686.64 903.23 760.63 793.75 790.14

depending on the current policy. Lee et al. [83] introduced a prioritized balanced
replay approach that selects samples from the offline dataset based on the on-
policiness with respect to the finetuning policy. Specifically, let B°" denote a
dataset of online transitions collected during finetuning and B° denote a dataset
of existing offline transitions. Lee et al. [83] proposes to sample a transition

(s,a,s") € B UB°M proportional to the density ratio

d°(s,a)
w(s,a) = m,

where d°" (s, a) and d°f (s, a) are stationary distributions of state-action pairs from
the offline and online buffers. The density ratio w(s,a) can be approximated
by a parameterized neural network trained with a likelihood ratio estimation
method as suggested by Sinha et al. [55]. This helps ensure that near-on-policy
samples are drawn more frequently for better value propagation. Lee et al. [83]
demonstrates the effectiveness of a balanced replay when combined with offline
pretraining using CQL and online finetuning with SAC, a set-up similar to our
use of TD3-BC and TD3.

We compare TD3 with the Balanced Replay approach (Off20n). To under-
stand the effectiveness of the prioritized balanced replay alone, we also include a
baseline that uses CQL for offline training and SAC [34] for online finetuning

(without offline data) to isolate the effect of the balanced replay. The results are

A.4. Comparison to prioritized balanced replay 133

Table A.5: Comparison with prioritized balanced replay. The table illustrates the
difference between: CQL—SAC: using CQL for offline pretraining and SAC for online
finetuning without using any offline data. Off20n: using prioritized balanced replay.
TD3-BC: TD3-BC for offline and online learning. We found that using TD3-BC for
finetuning without any offline data allows us to achieve similar performance as balanced
replay in many datasets except HalfCheetah where we found previously that finetuning
TD3 performs the best.

Dataset CQL—SAC Off20n TD3-BC
ant-m-v2 130.6+£8.62 131.7+13.5 132.99+1.43
ant-mr-v2 117.8£11.7 127.6+£10.5 132.34+2.92

halfcheetah-m-v2 93.3£2.79 93.743.2 62.88+1.25
halfcheetah-mr-v2 ~ 84.5+1.82 85.5+2.4 62.35+1.41

hopper-m-v2 92.74£34.8 98.7£18.5 98.8+£9.72
hopper-mr-v2 97.7£17.2 91.8+£21.8 102.75+2.43
walker2d-m-v2 83.2+20.4 95.8+15.8 97.48+3.45
walker2d-mr-v2 88.9+24.2 113.1+4.6 104.16+4.66
locomotion-total-v2 788.7 837.9 793.75

summarized in table A.5.

We found that finetuning with offline algorithms such as TD3-BC but re-
moving any offline data during finetuning allows us to mostly achieve similar
performance compared to finetuning with online algorithms (SAC) with offline
RL initialization for many environments except for HalfCheetah, where we

found that any type of policy constraint hurts finetuning sample efficiency.

Prioritized balanced replay with RLPD. We also investigate if the balanced
replay scheme is useful beyond their set-up by considering combining it with
RLPD, an algorithm that originally used a fixed sampling ratio. The results are
shown in fig. A.2. We find that the balanced replay is useful in cases where the
offline datasets are significantly sub-optimal (e.g., the random datasets generated
by a random uniform policy). In these cases, sampling more offline sub-optimal

data generally hurts RLPD’s performance.

Importance of pre-training for prioritized balanced replay. We also evaluate
combining balanced replay with RLPD on the Antmaze environments. Figure A.3

compares the performance between RLPD using a fixed 1:1 offline ratio and

A.4. Comparison to prioritized balanced replay 134

o hopper-random-v0 hopper-medium-replay-v0 hopper-medium-v0 hopper-medium-expert-v0
5
0 1.0 P — ___—— - §
Ly — |
N »
g, / //égw\/‘ W ’
£
(=}
=4
o walker2d-random-v0 walker2d-medium-replay-v0 walker2d-medium-v0 walker2d-medium-expert-v0
£ I
A10 S = Agent
3 - —— 0ff20n
o5 RLPD, offline_ratio=0.25
g —— RLPD, offline_ratio=0.5
g —— RLPD, offline_ratio=0.75
o halfcheetah-random-v0 halfcheetah-medium-replay-v0 halfcheetah-medium-v0halfcheetah-medium-expert-v0
3
n 1.0
el
g ~
05 / ﬁ /
3
2
100 200 100 200 100 200 100 200
Actor Steps (103) Actor Steps (103) Actor Steps (103) Actor Steps (103)

Figure A.2: Effect of different online and offline ratios when using a fixed ratio sampling
approach in RLPD. We compare RLPD using different offline ratios and using prioritized
balanced replay. We find that prioritized balanced replay to be the most useful when
working with random datasets where sampling less offline data is better.

antmaze-umaze-v0 antmaze-umaze-diverse-v0 antmaze-medium-play-v0

1.001

Normalized Score
o o o
N u ~
w o w
) 1 L
L
L

0.00 1 1

T T T T T T T T

Agent
antmaze-medium-diverse-v0 antmaze-large-play-v0 antmaze-large-diverse-v0 — off20n
1.004 1 1 RLPD

Normalized Score
o o o
N w ~
w o w
L 1)
L
L

0.00 1 1
160 260 360 160 260 360 160 260 360
Actor Steps (103) Actor Steps (103) Actor Steps (103)

Figure A.3: Comparison between RLPD with fixed data ratio and using balanced replay.
We found that RLPD with balanced replay fails to learn a good policy for some of
the datasets, whereas using a fixed offline ratio allows RLPD to learn a good policy
consistently.

A.4. Comparison to prioritized balanced replay 135

walker2d-medium-v2 walker2d-medium-replay-v2 walker2d-medium-expert-v2 walker2d-random-v2

N I N N

100 200 100 200 100 200 100 200
Actor Steps (103) Actor Steps (103) Actor Steps (103) Actor Steps (103)

Offline Fractlon
—
o

=3
=)

Figure A.4: Balanced replay with or without offline pretrianing. We found that not
performing when using balanced replay leads to a smaller amount of offline samples to
be sampled during finetuning, which leads to performance deterioration on AntMaze as
the offline samples contain transitions that provide useful experiences for value learning.

when using a balanced replay. Unlike the results we obtained previously on
the locomotion tasks, where utilizing a fixed ratio allows RLPD to learn all
tasks quickly, on AntMaze and when using the balanced replay, RLDP fails to
make any progress on the AntMaze-diverse tasks. To understand this failure
mode on AntMaze, we record the fraction of online transitions sampled by the
balanced replay buffer. We find that for all environments, the density ratio
estimator has learned to sample only online transitions, effectively discarding
all offline datasets. It is not obvious why balanced replay combined with RLPD
fails on the AntMaze tasks. We hypothesize that this may be due to the lack
of offline pretraining since RLPD is a pure online RL algorithm without any
offline pretraining. Therefore, we investigate the effect of not performing any
pretraining when using balanced replay. To do this, we first investigate the set-up
in [83] online locomotion tasks but without performing any offline pretraining
with CQL. We plot the fraction of offline samples encountered in the sampled
mini-batches with or without pretraining. The results are shown in fig. A.4.
Removing offline pretraining results in the fraction of offline samples converging
more quickly towards zero, even when the offline dataset contains high-quality
demonstrations.

The experiments above help explain the failure mode we encountered in using
a balanced replay with RLPD on AntMaze. The AntMaze datasets contain many
useful transitions that include intermediate experience to reach a goal state. These
experiences are useful for learning good critic even when they are significantly
off-policy with respect to the current policy, which is sub-optimal during initial
training from scratch. Using a balanced replay scheme with a policy that has not

yet learned to navigate to the goal, however, results in these useful transitions to

A.4. Comparison to prioritized balanced replay 136

be significantly downsampled.

Appendix B

Supplements for Chapter 3

B.1 Hyperparameters

Table B.1 lists the hyperparameters used by OTR and IQL on the locomotion
datasets. For Antmaze and Adroit, unless otherwise specified by table B.2
or table B.3, the hyperparameters follows from those used in the locomotion
datasets.

The IQL hyperparameters are kept the same as those used in [81]. Note that
IQL rescales the rewards in the dataset so that the same set of hyperparameters
can be used for datasets of different qualities. Since OTR computes rewards

offline, we also apply reward scaling as in IQL. For the locomotion datasets, the

1000
rn—min_return

rewards are rescaled by —— while for AntMaze we subtract 2 to
the rewards computed by OTR. The reward processing in AntMaze is different
from the one used by the original IQL paper (which subtracts 1) since the rewards
computed by OTR have a different range.

The squashing function used by OTR is based on the one used in [60]. The
AntMaze squashing differs slightly from the one used in locomotion and adroit
due to use of an earlier configuration. In practice, this should have minimal effect

on the performance.

137

B.1. Hyperparameters

138

Hyperparameter Value
Discount 0.99
Network Hidden layers (256,256)
Dropout none
Network initialization orthogonal
IQL Optimizer Adam
Policy learning rate 3e™*, cosine decay to 0
Critic learning rate 3e™4
Value learning rate 3e74
Target network update rate Se >
Temperature 3.0
Expectile 0.7
Episode length T 1000
OTR Cost function cosine
Squashing function s(r)=5.0-exp(5.0-T -r/| Al

Table B.1: OTR hyperparameters for D4ARL Locomotion.

Hyperparameter Value
Temperature 10.0
QL gy pectile 0.9

OTR Squashing function s(r) =5.0-exp(T -r)

Table B.2: OTR hyperparameters for D4RL Antmaze

Hyperparameter Value

Network Architectures Dropout 0.1
Temperature 0.5
QL Expectile 0.7

Table B.3: OTR hyperparameters for D4RL Adroit

Appendix C

ChessGPT dataset supplements

C.1 Chess notations

C.1.1 Universal Chess Interface (UCI)

The UCI format is widely used for communication between chess engines and
user interfaces. It represents chess moves by combining the starting and ending
squares of a piece, such as “e2e4” to indicate moving the pawn from e2 to e4.
For example, the UCI notation for a full game would be:

e2e4 c7c6 glf3 d7d5 e4db5 c6d5 d2d4 b8c6 c2c4 g8f6 blc3 c8eb c4ch g7gb clfd £8g7
fle2 f6ed elgl ebgd f3eb gde2 dle2 c6eb c3e4 ebcb6 e4d6 e8f8 flel g7d4 f4h6 d4g7
h6g7 £8g7 d6b5 a7a6 b5c3 d5d4 c3e4 d8d5 a2a3 a8d8 b2b4 h7h6 e2

C.1.2 Standard Algebraic Notation (SAN)

SAN (Standard Algebraic Notation) is a widely used notation system in the
game of chess for recording and describing moves. It provides a standardized
and concise representation of moves that is easily understood by chess players
and enthusiasts. In SAN, each move is represented by two components: the
piece abbreviation and the destination square. The piece abbreviation is a letter
that represents the type of piece making the move, such as “K” for king, “Q”
for queen, “R” for rook, “B” for bishop, “N” for knight, and no abbreviation
for pawns. The destination square is denoted by a combination of a letter (a-
h) representing the column and a number (1-8) representing the row on the

chessboard. Additional symbols may be used to indicate specific move types.

139

C.1. Chess notations 140

The symbol “+” is used to indicate a check, while “#” denotes a checkmate.
Castling moves are represented by “O-O” for kingside castling and “O-O-O” for

queenside castling.

C.1.3 Portable Game Notation (PGN)

PGN is a widely adopted format for recording chess games. It includes not only
the SAN moves but also additional information like player names, event details,
and game results. PGN files are human-readable and can be easily shared and
analyzed. Here is an example of a PGN representation of a full game:

[Event "World Chess Championship"]

[Site "London, England"]

[Date "2023.05.20"]

[Round "1"]

[White "Carlsen, Magnus"]

[Black "Nepomniachtchi, Ian"]
[Result "1/2-1/2"]

1. e4 e5 2. Nf3 Nc6 3. Bb5 a6 4. Ba4 Nf6 5. 0-0 Be7 6. Rel b5 7. Bb3 d6

8. c3 0-0 9. h3 Nb8 10. d4 Nbd7 11. Nbd2 Bb7 12. Bc2 Re8 13. Nfl Bf8

14. Ng3 g6 15. a4 cb5 16. d5 c4 17. Bgb h6 18. Be3 Nc5 19. Qd2 h5 20. Bgb Bg7
21. Nh2 Qc7 22. Rf1 Nh7 23. Bh6 Bh8 24. f4 exf4 25. Bxf4 Nf6 26. Rael bxa4
27. Nf3 Nfd7 28. Bh6 Neb 29. Nxeb Bxeb 30. Rf3 Qb6 31. Khl Qxb2 32. Refl Re7
33. Bgb RA7 34. Bf6 Bxf6 35. Rxf6 a3 36. Nxh5 a2 37. Qh6 gxhb5 38. R6f3 h4
39. Rf4 f5 40. Rxf5 Rg7 41. Rh5 1-0

C.1.4 Forsyth-Edwards Notation (FEN)

FEN is a notation system used to describe the state of a chess game. It represents
the positions of pieces on the chessboard, active color, castling rights, en passant
targets, and the half-move and full-move counters. Here is an example of a FEN

notation representing the starting position:

rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1

In this FEN notation, each letter represents a piece on the board, with upper-
case letters representing white pieces and lowercase letters representing black
pieces. The forward slash (“/”’) separates ranks, and the number after each rank
indicates the number of empty squares. The active color is represented by “w” for
white or “b” for black. The castling rights are denoted by “K” (white kingside),

C.2. Dataset details 141

“Q” (white queenside), “k” (black kingside), and “q” (black queenside). The en

(13

passant target square is indicated with the corresponding square, or “-” if there is
no en passant target. The half-move and full-move counters specify the number
of half-moves since the last pawn move or capture and the current move number,
respectively.

These different chess formats serve various purposes, from representing
individual moves (UCI) to recording entire games (PGN) and describing specific
positions (FEN). Understanding and working with these formats is essential
for tasks like parsing, analyzing, and exchanging chess game data in different

contexts.

C.2 Dataset details

In this section, we offer more details on how data are obtained and processed.
This section also presents examples for the final dataset we use for training
ChessGPT and ChessCLIP.

C.2.1 Dataset statistics and metrics

In table C.1, we present the dataset statistics breakdown for each data subset,
including its raw size, document count, and subset type.

Table C.2 shows the properties of the chess-specific language dataset that we
use for training ChessGPT. For these datasets, we computed the average number
of words (num. words) per example, character repetition ratio (char. rep. ratio),
word repetition ratio (word. rep. ratio.), special character ratio (special char.
ratio), stopwords ratio and perplexity of the first shard for each subset in the
language dataset. These metrics are based on some of the criteria employed by

Bloom [82] in their pre-processing pipelines.

C.2.2 Preprocessing

We preprocess the data sources in three levels of granularity. For sources where
existing preprocessed dataset are available, we filter out the subset that contains

chess-related information without performing additional preprocessing. For

C.2. Dataset details 142
Table C.1: Dataset statistics
Component Raw size Document count Subset type
Lichess 19.9 GB 17.5M Game
Pro-player 0.37 GB 0.44 M Game
CCRL 3.60 GB 3.00 M Game
Chess puzzles 1.53 GB 3.19M Game
Chess modeling 0.94 GB 1.90 M Game
C4-Chess 0.59 GB 0.18 M Language
Pile-Chess 1.10 GB 0.10M Language
RedPajama-Chess 5.65 GB 0.52M Language
Oscar-Chess 3.13GB 0.33M Language
WikiPedia-Chess 40.3 MB 114K Language
Chess Blogs 0.59 GB 732K Language
Chess Books 1.86 GB 8.36 K Language
Chess Forums 1.05 GB 0.14 M Language
Annotated Chess Games 0.66 GB 245 K Mixed
Youtube transcripts 0.98 GB 83.0K Mixed
GPT-4-Chess 0.95 MB 391K Conversation
Reddit 0.86 GB 041 M Conversation
Overall 42.8 GB 28.1 M N/A
Table C.2: Metrics for the language dataset.
dataset num. words char. rep. wordrep. special char stopwords perplexity
) ratio ratio ratio ratio
Chess puzzles 49.6618 0.0104 0.0000 0.3246 04771 988.3734
Oscar-Chess 1441.4341 0.0596 0.0499 0.2242 04119 665.6499
Pile-Chess 2105.2454 0.0626 0.0205 0.2409 04227 4973883
RedPajama-Chess 1581.5825 0.0532 0.0163 0.2273 04218 410.1236
StackExchange-Chess 578.3733 0.0591 0.0816 0.2617 04835 520.1257
Wikipedia-Chess 463.4980 0.0876 0.0052 0.2604 03079 236.9671
C4-Chess 510.6041 0.0479 0.0082 0.2131 04418 548.9471

C.2. Dataset details 143

sources that we retrieve from the Internet, we only parse portions of the HTML
that contains information about chess. We implement different parsers for the
different sources we consider. As a result, our data preprocessing can be more
light-weight compared to previous work that extracts corpora from raw HTML
web pages. For PGN games, we use the original PGN but filter out some
annotations that are not useful for learning the model.

The different sources contain data in different formats. To facilitate training
on all datasets, we preprocess all datasets to have the same JSONL format.

We implement the data-preprocessing step for each source as a separate
Apache Beam pipeline which allows us to process the datasets in parallel into
multiple shards. We note that a simple Apache Beam pipeline implementation
provides no guarantees that data processing will be in the same order as they
were read from the files. As a result, running the same pipeline twice will
produce a set of shards that are shuffled differently. To provide determinism in
our data-processing pipeline, we adopt a deterministic shuffling strategy similar
to the implementation in TensorFlow Datasets (TFDS) to ensure reproducible
data processing while maintaining scalability.

We initially applied the same data-processing procedure described in [82]
for all of the data that we collected. However, we found that the filtering criteria
used in [82] can be too aggressive in removing useful examples as many of our
data sources include a significant portion of chess notation that does not resemble
natural language (e.g., chess puzzles). Therefore, we opted for more light-weight
pre-processing and use the processing from [82] only in cases where the text
includes a significant portion of natural language description (blogs for example).
In addition, for further protection of privacy, we anonymize user names and
replace them with terms like "Human 0’ in all conversation-like data, especially
in chess forums and Reddit conversational data.

For specific Licenses and dataset cards, refer to our open-source dataset
repository: https://huggingface.co/datasets/Waterhorse/chess_dat
a.

In the following few sections, we describe in more details the data we have

collected and the processing steps we use for cleaning these datasets.

https://huggingface.co/datasets/Waterhorse/chess_data
https://huggingface.co/datasets/Waterhorse/chess_data

C.2. Dataset details 144

C.2.3 Online chess websites

We choose around 26 chess websites, including chess.com and lichess.com to
scrape chess-related language corpus. We gather a diverse range of chess and
language data from various platforms, including blogs, news, and articles. Specif-
ically, we focus on extracting relevant information from several topics including
blogs, news, openings, chess terms, forums, and articles. These topics were
carefully chosen as they contain valuable texts pertaining to chess background
knowledge, news, and also PGN games in some instances. We utilize Beautiful-
Soup' and Playwright[126] to parse HTML pages and locate all the texts and
PGNs. We further transfer those PGNs into text which helps us build mixed
game-language datasets from these sources. We record details such as the URL,
author, title, time, and the actual content of the articles. An example of a from a

chess blog article is shown below:

"https://www.crummy.com/software/BeautifulSoup/

https://www.crummy.com/software/BeautifulSoup/

C.2. Dataset details 145

Chess Blogs

What Is The Elo Rating System? The Elo rating system measures the relative
strength of a player in some games, such as chess, compared to other players.
Its creator, Arpad Elo, was a physics professor in the United States and a chess
master who worked to improve the way the U.S. Chess Federation measured their
players’ skill levels. He was a solid chess player himself, as you can see from

this game he played against a young Bobby Fischer.

[Event "New Western Open"]
[Site "Milwaukee, WI USA"]
[Date "1957.07.04"]

[Round "2"]

[White "Arpad Elo"]

[Black "Robert James Fischer"]
[Result "0-1"]

[EventDate "7"]

[ECO "B93"]

[WhiteElo "7"]

[BlackElo "?7"]

[P1lyCount "98"]

1. e4 c5 2. Nf3 d6 3. d4 cxd4 4. Nxd4 Nf6 5. Nc3 a6 6. f4 e5 7. Nf3 Qc7 8. Bd3
Nbd7 9. 0-0 b5 10. Qel Bb7 11. a3 g6 12. Qh4 Bg7 13. g4 exfd4 14. Bxf4 0-0 15.
Qg3 Neb 16. Nxe5 dxeb 17. Bxeb Qcb+ 18. Rf2 Nh5 19. Bd6 Qxc3 20. bxc3 Nxg3 21.
Bxf8 Rxf8 22. hxg3 Bxc3 23. Rbl Bd4 24. a4 Bc8 25. axb5 axb5 26. Rxb5 Bxgd 27.
Kg2 Bxf2 28. Kxf2 Be6 29. Rc5 Kg7 30. Kf3 Kf6 31. Kf4 Ra8 32. g4 h6 33. gb+
hxgb+ 34. Rxgb Rh8 35. Rg2 gb+ 36. Kf3 Rh3+ 37. Rg3 Rxg3+ 38. Kxg3 Ke5 39. c3
Bd7 40. Bc4 f6 41. Bd5 Be8 42. c4 Kd4 43. Kg4 Bg6 44. Kf3 Bh5+ 45. Kf2 Bd1l 46.
Kg3 Be2 47. cb Kxcb 48. Be6 Kd4 49. Bf5 Ke3 0-1

C.2. Dataset details 146

C.2.4 Online Chess forums

We choose 5 chess forums and follow basically similar way with appendix C.2.3

to scrape forum text data. We run the same preprocessing pipeline as in [82].

Stack Exchange. We use the forums Chess Stack Exchange.” We preprocess
the Stack Exchange data in the same way as done in RedPajama. Concretely,
for each question, we first clean up the text via simple regular expressions and
remove some HTML tags in the text. Then we prefix the question with Q: and
the answers with A: and then concatenate the questions with all answers. Below

is an example of the final forum discussion from Stack Exchange:

Chess Forums (Stack Exchange)

Q: Is there a way to use handicaps in chess to bridge the gap between
players of different skill levels? Handicapping is routine in the
Japanese game Go (my best game). The basic strength unit is one stone,
and a one-stone difference represents a full level of difference in
strength. I (about a 1500 player) once asked a 2100 player how much of
a handicap she would need to give me so that we would have an equal
chance to win. "Probably a knight, maybe more," she answered. I once
took a knight handicap against a 2200 player and lost, but it was a
much tighter, closer game than one with no handicap. That might
suggest that a pawn is equivalent to about 200 points of rating.
Apparently handicapping doesn’t do much for say, a 50 point difference
in strength (you just play and take your chances). But above that,
there might be ways to use handicaps. Even giving someone the first
move two times out of three (as was earlier done in professional Go)
might do something. Or would it? Why hasn’t handicapping been done

much formally in chess, as in Go?

Reddit. We filter the conversations based on the language, response length,
number of emojis, blacklist words, and scores. Below is an example of a reddit

conversation:

Zhttps://chess.stackexchange.com/

https://chess.stackexchange.com/

C.2. Dataset details 147

Reddit Conversation data

{
"author": "Human 0",
"text": "Honest question for those with higher ELOs. First, sorry if
this is a confusing or vague question but I’1l try my best to word
it: At what rating, in your opinions, do you find people stop making
\"silly\" mistakes? I’m at 1500 rapid and 1300 blitz, trying to
improve my play. I found that at these ratings blunders are rare
(assuming adequate time). It seems like mostly people just don’t
see/miss tactics or play inaccuracies rather than playing straight
up mistakes/blunders. Do you higher rated elo players feel the same
way? Or do you think the inaccuracies we make/tactics we miss are
quite obvious, the same way I can see a blunder is obvious? Curious
on the perspective.",
"score": 8,
"other_data": false,
"url": "/r/chess/comments/nhh2mn/honest_question_for_those_with_higher_elos/"

"author": "Human 1",

"text": "Im 2200 in blitz on lichess, and of my last 10 blitz games,
around 8 were decided by major blunders. In rapid, the amount of
major blunders decreases a lot, but they are still very common. When
you get higher rated, you will still blunder because you are also
going to be facing higher rated opponents. If I played a 1200, I
would rarely blunder but I blunder very easily against 2300+
people.",

"score": 22,

"other_data": false,

"url": "/r/chess/comments/nhh2mn/honest_question_for_those_with_higher_elos/

gywapvb/"

C.2. Dataset details 148

C.2.5 Annotated PGN

We collect our annotated PGN from seven sources: Lichess studies, Chess
publishing, Megabase, Pgnlib, pathtochessmastery and gameknot.

We keep only games with known finish, i.e., (win, lose or draw). We remove
clk, arrow, evp annotations from the comments. We also remove Emojis from
the comments. Afterward, each PGN is considered a single string of text that is
used for downstream training. We conduct language filtering using fastText® in
ChessCLIP preprocessing. And we conduct the same preprocessing as we do in

Lichess database in ChessGPT training preprocessing.

Lichess studies. Lichess Study provides a rich collection of annotated PGNss.
The annotations are embedded in PGNs, explaining the insight of the moves.
Users can conveniently search for studies based on keywords or specific topics
like Sicilian Defense, Puzzles, or d5. To enhance the searching process, we collect
a comprehensive set of 54 popular keywords. Our implementation leverages
Selenium’s [107] built-in functions to efficiently parse HTML pages and simulate
the searching process. Additionally, we use the Lichess APIs* to request for

PGN games associated with a specific study ID.

Chess Publishing. This contains commercial annotated PGNs from chesspub-

5

lishing.com,” so we do not open source this source of data.

Megabase. This contains commercial annotated PGNs from Megaba5620236,

so we do not open source this source of data.
PGNLib. We collect annotated PGN from PGNLib.’

Path To Chess Mastery. We collect annotated PGNs from Path to Chess
Mastery.®

Shttps://fasttext.cc/docs/en/language-identification.html
“https://lichess.org/api
Shttps://www.chesspublishing.com/content/
®https://shop.chessbase.com/en/products/mega_database_2023
"https://wuw.angelfire.com/games3/smartbridge/
8https://www.pathtochessmastery.com/

https://fasttext.cc/docs/en/language-identification.html
https://lichess.org/api
https://www.chesspublishing.com/content/
https://shop.chessbase.com/en/products/mega_database_2023
https://www.angelfire.com/games3/smartbridge/
https://www.pathtochessmastery.com/

C.2. Dataset details

149

Gameknot. We use Selenium [107] to scrape annotated PGNs from Game-

Knot.”
Below is an example of an annotated PGN game:

Annotated PGN

[Event "All about the Traxler Counter-Attack: Why to play Traxler instead of a

passive move"]

[Site "https://lichess.org/study/WLyfoXTJ/xdA6LWme"]
[Round "?7"]

[White "?"]

[Black "?"]

[Result ""]

[Annotator "https://lichess.org/@/Dat_Das"]

[ECO "C57"]

[Opening "Italian Game: Two Knights Defense, Fried Liver Attack"]
[UTCDate "2017.10.13"]

[UTCTime "16:33:43"]

[Variant "Standard"]

{ Hello everyone, please click the little heart to show that this
study was helpful to you, to spread the word and to show your
appreciation. } 1. e4 e5 2. Nf3 Nc6 3. Bc4 Nf6 4. Ngb { You may wonder
why you should play Bcb instead of d5. This is just to show you
exactly what white is trying to do. } 4... d5 5. exd5 { It seems
you’ll win the exchange. } 5... Nxd6 (5... Na5 { This is the best
defense if you do play d5. } 6. Bb5+ c6 7. dxc6 bxc6 8. Qf3) 6. Nxf7
{ White has a sacrifice of their own. This is the fried liver attack.
} 6... Kxf7 7. Qf3+ Ke6 8. Nc3 { The knight is pinned. } 8... Nb4 9.
a3 Nxc2+ { Sacrifcing a rook. } 10. Kd1l Nxal 11. Nxd5 { A move with
potential for a dangerous discovered attack } 11... Qh4 12. Nxc7+ {
Double check. } 12... Kd7 13. Qf7+ Qe7 14. Nxa8 Qxf7 15. Bxf7 { And
Black’s king position is destroyed, and white is a pawn up. White’s

knight may be hanging, but so is black’s. }

https://gameknot.com/list_annotated.pl?u=all

https://gameknot.com/list_annotated.pl?u=all

C.2. Dataset details 150

C.2.6 Existing datasets

We extract all chess-related language corpus from existing dataset C4 [52], the
Pile [44], Oscar [40], Wikipedia [124], and RedPajama [110]. To extract chess-
related language corpus, we first filter language corpus that contains the keyword
“chess”. We further utilize the deberta-v3-base-tasksource-nli model,'’
which can conduct zero-shot classification based on classes specified by users.
We set two classes: chess-related and non-chess-related for this model. We input
the first 2000 characters of each text example to the model and set the threshold
as 0.5. Since these datasets are available in processed format, we do not perform
any additional preprocessing.

Below are examples of filtered corpus from the existing datasets:

Nothing improves your chess more than playing long time control
tournament events. The Irish championships are being held in Dublin
next weekend. There are a lot of events to choose from! We have a
message encouraging us to play from the Irish Chess Union Chairman.
A1l members of our club are registered (by the club) with the ICU. You
are eligible to play and should consider playing!

Q: What is the theory behind center control? Center control is an

important aspect of playing chess, most openings are built around
controlling the center, but why? Is center control really that

important for winning a game?

Onttps://huggingface.co/sileod/deberta-v3-base-tasksource-nli

https://huggingface.co/sileod/deberta-v3-base-tasksource-nli

C.2. Dataset details 151

RedPajama

. Mark Dvoretsky - strong player and fantastic coach Mark
Israilewitsch Dvoretsky was born on 9th December 1947 in Moscow. After
finishing his studies of Mathematics and Economics in 1972 Dvoretsky
focused on a career as chess trainer and among other things worked for
Botvinnik’s school of chess. As a young player Dvoretsky achieved a
number of notable sucesses: in 1973 he won the Championship of Moscow
and in 1974 he finished fifth at the USSR-Championship in Leningrad.
One year later, in 1975, he won the B-tournament in Wijk aan Zee. But
he soon decided to focus on his career as a chess trainer Dvoretsky
has trained countless strong players, and among his regular students
are well-known players such as Valery Chechov, Nana Alexandria, Sergei
Dolmatov, Alexej Dreev and Artur Jussupow. Among the players who
occasionally trained with Dvoretsky are Garry Kasparov, Viswanthan
Anand, Veselin Topalov, Evgeny Bareev, Viktor Bologan, Loek van Wely
and lots of others. One training method of Dvoretsky was to play
selected positions with both colors against his students - and he
often surprised his students by winning the same position with Black
and with White. Dvoretsky was an International Master and FIDE Senior
Trainer. He published a number of textbooks, sometimes with Artur
Jussupow as co-author. ChessBase published a digital version of his
"Endgame Manual". Dvoretsky was a firm part of chess life in Moscow
and popular guest at chess events all over the world. Russian Chess

Federation ...

Oscar

If one wishes to learn chess from some of the greatest players in the

world, but does not live in greater New York, then online lessons may
be what he or she is looking for. Many of our coaches are experienced
in teaching both group and solo online lessons. Online lessons are

orchestrated via Skype using an online chess program.

C.2. Dataset details 152

C.2.7 YouTube transcripts dataset

To collect the YouTube transcripts dataset, we first gather 19 keywords and utilize
scrapetube'! to gather all related channels. We extract all videos from these chan-
nels and use the same deberta-v3-base-tasksource-nli model mentioned
in appendix C.2.6 to filter all video transcripts and also the corresponding videos
that are not relevant to chess. It is fairly easy to extract transcripts from videos
and the main difficulty is to extract the FEN chessboard representations from
videos. Here we mainly utilize two steps to extract specific FEN from chess

videos.

Extract Chess Board from videos

The first step is to extract the chessboard from videos. We utilize GLIP [84],
a zero-shot language-based detection model. By setting the prompt as *Chess,
chessboard’, we can extract chess-related detection bounding boxes from videos.
We conduct further filterings such as length-width ratio filtering to guarantee it is
a valid chessboard bounding box in most cases, which will be processed based

on the second step.

Convert chess board image to FEN text format

Our second step involves converting the chessboard image into FEN. FEN format
serves as a great way to describe the current chess board state in text-based
format. The pipeline that converts the chess board image to FEN format includes
three main procedures — chess board decomposition, piece classification, and the

prediction of which player is the next turn.

Chess board decomposition. The aim of this step is to break down a whole
chess board into 64 small tiles (8 rows and 8 columns), where each tile contains
only one chess piece. To achieve this, we initially convert the RGB image to
grayscale, preparing for the line detection process. Subsequently, we make two

convolutional kernels to find horizontal and vertical gradients.'> The Hough

Uhttps://github.com/dermasmid/scrapetube
2https://github. com/Elucidation/tensorflow_chessbot/blob/master/tenso
rflow_compvision.ipynb

https://github.com/dermasmid/scrapetube
https://github.com/Elucidation/tensorflow_chessbot/blob/master/tensorflow_compvision.ipynb
https://github.com/Elucidation/tensorflow_chessbot/blob/master/tensorflow_compvision.ipynb

C.2. Dataset details 153

Table C.3: Training hyperparameters for chess board to FEN

Hyperparameter Value

Batch size 32
Number of epochs 10
Learning rate 0.001
Optimizer SGD
Momentum 0.9

Transform is then applied to detect vertical and horizontal lines and filter out
seven vertical and seven horizontal lines that fit the demand. Finally, we divide

the board into 64 tiles by having the position of the 14 lines.

Piece classification. To facilitate model training and evaluation, we employ an
open-source chess image dataset on Kaggle'? which contains 80k training images
and 20k testing images. Each tile can be classified into one of the 13 categories (p,
r,b,n,k,q, PR, B, N, K, Q, and space) which is detailed in appendix C.1.4. We
implement a model in PyTorch which uses a pre-trained ResNet18 [23] due to its
well-established performance in image classification tasks. To adapt the model to
our specific problem, we replaced the original fully connected layer with a new
layer consisting of 13 output neurons, corresponding to the 13 pieces categories.
We train the model on 40000 images with hyperparameters from table C.3.
After the training process, we evaluate the model on a test dataset with 20K
images (equivalent to 128k tiles). Table C.4 summarizes the the final accuracy of

each category.

Prediction of next turn. As FEN format also includes the prediction of the
next turn which is indicated by “w” for white, and “b” for black, the prediction
of the next turn is accomplished by analyzing the main color of each tile. We use
Colorthief, a library for grabbing the color palette from images, to extract the
main color from each tile since the background color of a tile will be highlighted
if a move is played on that tile. Hence, we find the highlighted tile by analyzing

the tile color to know who is the current player and naturally infer who is the

Bhttps://www.kaggle.com/datasets/koryakinp/chess-positions

https://www.kaggle.com/datasets/koryakinp/chess-positions

C.2. Dataset details 154

Table C.4: Validation accuracy of each chess piece

Color Piece Accuracy (%)

Black pawn 99.98
rook 99.99
knight 99.98
bishop 99.98
queen 100.00
king 99.97
White Pawn 100.00
Rook 99.98
kNight 99.98
Bishop 99.99
Queen 99.95
King 99.98
Space 100.00

next turn.
Finally, we also provide a final certainty percentile to evaluate to what extent
the generated FEN is correct by calculating the product of the accuracy of the 64

tiles.

C.2.8 Lichess dataset

We collect five months of Lichess dataset from the Lichess database [125]:
2013-02, 2014-02, 2015-02, 2016-02, and 2017-02. There are much more data
available and we leave more game data for future work.

Below is an example of PGN from the Lichess database.

C.2. Dataset details 155

[Event "Rated Bullet tournament https://lichess.org/tournament/yciWw20x"]
[Site "https://lichess.org/PpwP0ZMq"]

[Date "2017.04.01"]

[Round "-"]

[White "Abbot"]

[Black "Costello"]

[Result "0-1"]

[UTCDate "2017.04.01"]

[UTCTime "11:32:01"]

[WhiteElo "2100"]

[BlackElo "2000"]

[WhiteRatingDiff "-4"]

[BlackRatingDiff "+1"]

[WhiteTitle "FM"]

[ECO "B30"]

[Opening "Sicilian Defense: 01d Sicilian"]

[TimeControl "300+0"]

[Termination "Time forfeit"]

1. e4 { [feval 0.17] } 1... c5 { [%eval 0.19] }

2. Nf3 { [Jeval 0.25] } 2... Nc6 { [leval 0.33] }

3. Bc4 { [feval -0.13] } 3... e6 { [leval -0.04] }

4. c3 { [keval -0.4] } 4... b57 { [leval 1.18] 1}

5. Bb3?! { [Jeval 0.21] } 5... c4 { [%eval 0.32] }

6. Bc2 { [leval 0.2] 1} 6... ab { [feval 0.6] }

7. d4 { [%eval 0.29] } 7... cxd3 { [%eval 0.6] 1}

8. Qxd3 { [feval 0.12] 1} 8... Nf6 { [feval 0.52] }

9. e5 { [heval 0.39] 1} 9... Nd5 { [Veval 0.45] 1}

10. Bg5?! { [%eval -0.44] 3} 10... Qc7 { [%eval -0.12] }
11. Nbd2?? { [Jeval -3.15] } 11... h6 { [leval -2.99] 1}
12. Bh4d { [%eval -3.0] 1} 12... Ba6? { [%eval -0.12] }
13. b377 { [Jeval -4.14] 1} 13... Nf4? { [Jeval -2.73] 1} 0-1

C.2. Dataset details 156

C.2.9 Pro-player dataset

We collect our pro-player dataset from PGN Mentor.'* Below is an example of

PGN in the Pro-player dataset:

Pro-player

[Event "URS-ch34"]
[Site "Tbilisi"]

[Round "9"]

[White "Bronstein, David I"]
[Black "Suetin, Alexey S"]
[Result "1/2-1/2"]

[WhiteElo ""]

[BlackElo ""]

[ECO "B97"]

1.e4 cb 2.Nf3 d6 3.d4 cxd4 4.Nxd4 Nf6 5.Nc3 a6
6.Bgb e6 7.f4 Qb6 8.Qd2 Qxb2

9.Rbl Qa3 10.Bxf6 gxf6 11.Be2 Bg7 12.0-0 Nc6
13.Nxc6 bxc6 14.Rb3 Qcb+ 15.Khl £f5

16.exf5 exfb5 17.Na4 Qd4 18.Qxd4 Bxd4 19.Rd1 Bf2
20.Rxd6 0-0 21.Nb6 Bxb6 22.Rxb6 Re8

23.Bf1 Be6 24.Kgl Bxa2 25.Rxa6 Rxa6 26.Bxa6 Bd5
27 .Kf2 Re4 28.g3 Bc4 29.Rxc6 Re2+

30.Kgl Bxa6 31.Rxa6 Rxc2 32.Rab Kg7 33.Rxf5 Kgé
34.Rgb+ Kf6 1/2-1/2

C.2.10 Chess books

We select 100 chess-related keywords and search for all related chess books
(around 9K books) on the online PDF library. Because of the legal issues about
books’ copyright, we choose not to open-source this source of data. Instead, we

only open source the list of books we use.

Yhttps://www.pgnmentor.com/

https://www.pgnmentor.com/

C.2. Dataset details 157

Chess Books

The following illustrative game is apparently complicated, but it is this in
its motives\nonly.\nIn reality itis the fight against White’s e4 pawn, which
dominates. Shoosmith-\nNimzowitsch, Ostend, 1907. 1.d4 Nf6 2.c4 d63.Nf3 Nbd7
4 .Nc3e5 5.e4 Be7 6.Bd3\n0-0 7.0-0 exd4! (if 7...Re8, then 8.05 and Black
will be\ncramped for along time. For example, 7...Re8 8.45 NcS\n9.Be3 Nxd3
10.Qxd3 Nd7 11.b4 ab 12.43, etc) 8.Nxd4\nRe8 9.b3 Ne5 10.Bc2 a6 (this

advance will soon be\nintelligible) 11.Bb2 Bd7 12.3 Bf8 13.f4 Ng6 14.Qf3
c6\n15.Rael b5 (now the situation is clear: Black keeps an\neye on White’s e-

pawn and seeks ...

C.2. Dataset details 158

C.2.11 CCRL

We collect our CCRL dataset without comments from the official website!> for
three settings of time control: CCRL BLITZ, CCRL 40/2 FRC and CCRL 40/15.

CCRL

[Event "CCRL 40/15"]

[Site "CCRL"]

[Date "2022.01.08"]

[Round "806.6.381"]

[White "Stockfish 060122 64-bit"]
[Black "Dragon by Komodo 2.6 64-bit"]
[Result "1/2-1/2"]

[ECO "D30"]

[Opening "Queen’s gambit declined"]
[PlyCount "115"]

[WhiteElo "3505"]

[BlackElo "3480"]

1. d4 {book} d5 {book} 2. c4 {book} e6 {book} 3. Nf3 {book} Nf6 {book}
4. g3 {book} a6 {book} 5. c5 {book} b6 {book} 6. cxb6 {+0.23/33 28s}
c5 {-0.23/30 40s} 7. Bg2 {+0.24/30 11s} cxd4 {-0.15/29 17s} ...

58. Kc2 {+0.00/101 20s, Draw by 3-fold repetition}

1/2-1/2

C.2.12 Chess puzzles

We collect our chess puzzles from the Lichess puzzle dataset.'®

The original data format is in CSV format with key data, such as puzzle FEN
and puzzle answer. We leverage some language templates to transfer the CSV as

natural language text. Below is an example from the final chess puzzles dataset:

Chess puzzles

Try your hand at this chess puzzle. The board’s FEN is
1r4k1/4nppp/8/4Pb2/8/1P5P/r1PR4/3R3K w - - 0 27, and you need to
determine the optimal move for the player. This puzzle focuses on
backRankMate,endgame ,mate,mateIn2,short, and the solutions are
provided in both SAN format as d2d8,b8d8,d1d8 and UCI format

as 27. Rd8+ Rxd8 28. Rxd8#.

Bhttps://ccrl.chessdom. com/ccrl/4040/
nttps://database.lichess.org/#puzzles

https://ccrl.chessdom.com/ccrl/4040/
https://database.lichess.org/#puzzles

C.2. Dataset details 159

C.2.13 Chess modeling dataset

We design 11 modeling tasks to generate data:

1.

2.

10.

11.

Given PGN, generate FEN representation.

Given a list of UCI moves, generate FEN representation.

. Given FEN and a UCI move, transfer the move to SAN format.

Given FEN and a SAN move, transfer the move to UCI format.

. Given FEN, generate an ASCII board.

Given FEN and a UCI move, generate the next FEN.

. Given FEN and a SAN move, generate the next FEN.
. Given FEN, generate all legal moves in SAN format.

. Given FEN, generate all legal moves in UCI format.

Given PGN, generate all legal moves in SAN format.

Given PGN, generate all legal moves in UCI format.

To generate the synthetic modeling dataset for these tasks, we utilize PGN data

extracted from the first 1 million games of the Lichess database dump from

March 2017. In order to encompass a wider range of ELO ratings, we divide the
Elo-rating into 9 intervals: 0-1000, 1000-1200, 1200-1400, 1400-1600, 1600-
1800, 1800-2000, 2000-2200, 2200-2400, and 2400-3000. Random sampling is

employed to select games from each interval, ensuring that our dataset contains

approximately 10,000 games for each ELO interval. Consequently, the dataset

achieves a balanced representation across different ELO ratings. We further

utilize the python-chess library [130] to complete all the tasks we design to

generate our final synthetic modeling dataset.

Below is an example from the chess modeling dataset:

C.3. Implementation and evaluation Details 160

Chess modeling

With the FEN board state 3r4/4Rpp1/2N2kip/8/5B2/5BP1/P4PKP/8 b - - 6
42 and a move in UCI d8d6, what is the corresponding SAN move? The

derived move is Rd6.

C.2.14 Instruction-tuning dataset

GPT4 instruction-tuning data

{
"conversations": [
{
"author": "Human 0",
"text": "Explain the difference between
the Italian Game and the Ruy Lopez.",
"url": "gpt-4",
"score": 0O
A
"author": "Human 1",
"text": "The Italian Game starts with 1.e4 e5 2.Nf3 Nc6
3.Bc4, focusing on targeting the f7 square.
The Ruy Lopez begins with 1.e4 eb
2.Nf3 Nc6 3.Bb5, attacking the knight on c6 to
undermine Black’s pawn structure
and exert pressure on the e5 pawn.
The Italian Game tends to be more tactical,
while the Ruy Lopez is more strategic and positional.",
"url": "gpt-4",

"score": 0O

C.3 Implementation and evaluation Details

We open source all our models: ChessCLIP (https://huggingface.co/Wat
erhorse/ChessCLIP), ChessGPT-Base (https://huggingface.co/Water
horse/chessgpt-base-v1) and ChessGPT-Chat (https://huggingface.
co/Waterhorse/chessgpt-chat-v1l). Refer to these URLs for model licenses
and model cards.

https://huggingface.co/Waterhorse/ChessCLIP
https://huggingface.co/Waterhorse/ChessCLIP
https://huggingface.co/Waterhorse/chessgpt-base-v1
https://huggingface.co/Waterhorse/chessgpt-base-v1
https://huggingface.co/Waterhorse/chessgpt-chat-v1
https://huggingface.co/Waterhorse/chessgpt-chat-v1

C.3. Implementation and evaluation Details 161

C.3.1 Implmenetation details

ChessCLIP

For the ChessCLIP dataset, we preprocess the annotated PGNs to produce board-
/text pairs which we feed separately to the board and text encoders. In particular,
for every move in the PGN, we extract the comments attached to the move as
well as the board state. While our YouTube transcripts dataset can also serve
as training data for ChessCLIP, we have discovered that it consistently contains
more noise compared to the annotated PGN dataset. To ensure the stability of
our training process, we have chosen to exclusively utilize the annotated PGN
datasets. The task of refining the YouTube transcripts for training remains is left
as future work.

For the ChessCLIP model, we instantiate a ChessCLIP model with a pair
of text encoder and a board/action encoder. For board/action encoder, we use a
ResNet [23] architecture that conditions the action encoding via a modified FiLM
layer [35]. We encode the board positions and moves using the same scheme
as those used by Leela Chess Zero (Ic0) [127], which is similar to the encoding
used by AlphaZero [36] for encoding positions and moves in chess. Concretely,
the board positions are encoded as a R3*3*112 feature map and the actions are
encoded as a R183® vector. For the text encoder, we follow the same architecture
as with the original OpenAl CLIP model and we only fine-tune the last two
layers of pretrained OpenAl text encoder. Our implementation is based on the
open-source implementation of CLIP.!” We show our training hyper-parameters
in table C.5.

We would like to highlight that ChessCLIP can serve as a direct move
sequence generator when provided with a text prompt. By utilizing beam search
over all legal sequences, we can maximize the similarity between sequences.
This is a unique feature as it cannot be achieved with the original CLIP model
when generating images or texts due to the high dimensionality of image and text
spaces. In contrast, the Chess legal move space is relatively low-dimensional,

enabling this novel capability.

Thttps://github.com/mlfoundations/open_clip

https://github.com/mlfoundations/open_clip

C.3. Implementation and evaluation Details 162

Table C.5: ChessCLIP Training Hyperparameters

Hyperparameters Value
Learning Rate Se-4
Warmup Step 500
Weight decay 0.2
Batch Size Per GPU 512
Number of GPUs 8
Optimizer Adam
Optimizer betal 0.9
Optimizer beta2 0.98
Optimizer epsilon le-6
Precision AMP
Learning Rate Scheduler Cosine
Epochs 40

ChessGPT

We follow common implementations of training a domain-specific instruction-
following LLM. Firstly we conduct base-model fine-tuning using chess corpus
introduced in section 5.2.1, section 5.2.2 and section 5.2.3. Due to computational
constraints, we choose to finetune the RedPajama-3B-Base [110] model, which is
an open-souce replication of LLaMA [111]. We also limit our model max token
length as 1024. The base-finetuning brings us our base model: ChessGPT-Base.

After base-finetuning, we conduct supervised fine-tuning by supervised learn-
ing on question/conversation response using data introduced in section sec-
tion 5.2.4 and general conversation data from OASST1 [102], Dolly2 [98],
Alpaca-GPT4 [105], and ShareGPT [131], forming our chat model: ChessGPT-
Chat. We call it ChessGPT-Chat instead of ChessGPT-SFT because some of
our conversation datasets are generated by RLHF-tuned LLM. We convert all our
Q/A or conversation data into the following two conversation formats:

Between two people: A friendly, helpful chat between some humans. <lend-
oftext|l>Human 0: { Human 0 Question}<lendoftext|>Human 1: {Human I Re-
sponse}<l|endoftext|>Human 0: {Human 0 Question}<lendoftext|>...

Between multiple people (Reddit conversational data): A friendly, help-

ful chat between some humans. <lendoftext|>Human 0: {Human O Ques-

C.3. Implementation and evaluation Details 163

Table C.6: ChessGPT-Base Training Hyperparameters

Hyperparameters Value
Learning Rate 8e-5
Warmup ratio 0.03
Weight decay 0.00
Batch Size Per GPU 3
Number of GPUs 8
Optimizer Adam
Accumulation step 8
Max token length 1024
Acceleration FSDP
Precision bfl6
Learning Rate Scheduler Cosine
Epochs 1

Table C.7: ChessGPT-Chat Training Hyperparameters

Hyperparameters Value
Learning Rate 2e-5
Warmup ratio 0.03
Weight decay 0.00
Batch Size Per GPU 4
Number of GPUs 8
Optimizer Adam
Accumulation step 8
Max token length 1024
Acceleration FSDP
Precision bf16
Learning Rate Scheduler Cosine
Epochs 1

tion}<lendoftext|!>Human 1: {Human I Responsej<lendoftext|>Human 2: {Hu-
man 2 Question}<lendoftext|>...

Our base-training code refers to llama-finetune'® and our SFT-training code
refers to the Alpaca [109] and Fastchat [97]. The training hyperparameters for
ChessGPT-Base and ChessGPT-Chat are shown in table C.6 and table C.7.

In the following, we show more evaluation results.

Bhttps://github.com/chaoyi-wu/Finetune_LLAMA

https://github.com/chaoyi-wu/Finetune_LLAMA

C.3. Implementation and evaluation Details 164

Table C.8: General policy evaluation in Black

Move Scores (%)
Elo Rating LLAMA RedPajama ChessGPT-Base ChessGPT-Chat
700-1000 529+09 462+1.0 51.9+£0.1 52.1+09
1200-1500 532 +09 469+09 53.0+ 1.0 5244+1.0
1700-2000 52.1 0.8 46.6 +1.0 52.0+ 1.0 520+ 1.0
2700-3000 53.6 0.9 473 +1.0 5224+ 0.9 521+1.1

General policy result. Table C.8 presents the results of the general policy
experiment using black chess, which align with the findings from the previous
white chess experiment. The comparison between the two ChessGPT models
across different Elo ratings reveals a lack of noticeable distinctions, indicating
the model’s limited sensitivity to the key information provided in the prompt. A
more intuitive illustration of this observation will be provided in the subsequent
paragraph. There are two notable points to highlight. Firstly, ChessGPT demon-
strates improvements compared to its base model RedPajama and performs on par
with LLAMA. However, it is worth noting that both baselines exhibit limitations
in adapting to different Elo ratings, as the generated values across various Elo

ratings show considerable similarities.

Words attention visualization. To evaluate whether the ChessGPT-Base model
captures the key information in the general policy task, we conducted a visu-
alization analysis of its self-attention mechanism. The visualization, as shown
in fig. C.1, reveals that the model does attend to the "WhiteElo" and "BlackElo"
values to some extent. However, the level of attention dedicated to these impor-
tant features appears to be relatively weak. This suggests that the model’s ability
to appropriately incorporate and utilize the Elo ratings during the generation pro-
cess is not as strong as desired. Therefore, further investigation and improvement
are necessary to enhance the model’s attention towards and understanding of the

provided Elo rating information.

C.4. Evaluation details 165

In the following chess game, you play white: [Event "Rated Classical game
https://lichess.org/tournament/xxxx"] [Date "2017.04.01"] [Round "-"] [White

"227"] [Black "???"] [Result "1-0"] [WhiteElo "1781"] [BlackElo "781"]

[WhiteRatingDiff "??"] [BlackRatingDiff "??"] [ECO "??"] [Opening "?7"]

[TimeControl "300+0"] [Termination "Time forfeit"] 1. e4 e6 2. d4 d5 3. e5 ¢5 4. Nf3 cxd4

5. Nxd4 Ne6 6. Nxc6 bxe6 7. Ne3 Ne7 8. g3 Ng6 9. f4 Be7 10. Be3 h5 11. Bd3 {5 12. exf6 Bxf6

13. Bd2 Ne7 14. Qe2 Qd6 15. 0-0-O Bd7 16. Kbl Rb& 17. b3 Qa3 18. Bel Qas5 19. Bd2 Bxe3 20. Bxc3
Qxc3 21. Qd2 Qf6 22. Rhel a5 23. a4 ¢5 24. Choose your next move based on your and your

opponent's Elo ratings

Figure C.1: Visualization of ChessGPT-Base attention. The figure illustrates the at-
tention space of ChessGPT for the General Policy experiment, generating a compound
level next move based on Elo rating. The highlighted areas represent the importance of
attention, with color intensity ranging from black to red, where red indicates the highest
importance.

C.4 Evaluation details

Evaluation on chess modeling ability

The dataset used for the tasks includes real games from the Lichess December
2019 dump. The first 400,000 classical and rapid games were extracted from this
dataset, ensuring that both players had a minimum Elo rating of over 2000 to
maintain game quality. In contrast, parts of our datasets were sourced from the

Lichess dump in 2017, deliberately avoiding the two datasets mentioned earlier.

Evaluation on task construction

For state value multi-choice and general policy task construction, we follow a
similar way as the chess modeling data to collect 3000/2000 PGN states from
Lichess 2017-03 dump respectively. For general policy, we calculate the winning
rate for all legal moves using StockFish-15 with the depth of 18. The rank of the
winning rate determines the score for one legal move choice in the general policy

evaluation task.

C.5. Qualitative analysis 166

C.5 Qualitative analysis

In this section, we give some qualitative results between RedPajama, ChessGPT-
Base and ChessGPT-Chat.

C.5.1 Experimental set-up

We use the beam search implementation from the HuggingFace transformers

library'? to generate samples from each model. Please refer to table C.9 for the

Table C.9: Hyperparameters for qualitative analysis.

Hyperparameter Value

max new tokens 128
top-k 50
top-p 0.7
temperature 0.7

hyperparameters used for the qualitative experiments. For each question, we sam-
ple three responses from each model. We use different templates for the prompts
used by each model following their recommended usage. Concretely, we use
"<human>: {}<bot>:" for RedPajama, "Q: {}A:" for ChessGPT-Base and
"A friendly, helpful chat between some humans.<|endoftext|>Human
0: A{}<lendoftext|>Human 1:" for ChessGPT-Chat. For each question, we

replace {} with the question and use the new prompts as input to the models.

C.5.2 General knowledge

In this section, we ask each model some questions about general knowledge of
chess. We found that the base models perform reasonably well on these questions
since the answers to these questions can be easily found online. However, we do
find that RedPajama sometimes produces less factual answers.

In the following sections, we show a few example responses from each model

and provide a human error analysis which helps with interpreting the responses.

Yhttps://huggingface.co/docs/transformers

https://huggingface.co/docs/transformers

C.5. Qualitative analysis 167

Question on checkmate

What is it called when a player can’t defend an attack against their king? (Answer:

checkmate)

ChessGPT-Base

* When a player cannot defend their king against an attack, it is called a checkmate. The

game is over and the opponent wins.
* Back Rank Mate

¢ Fork

¢ Checkmate
¢ Checkmate

¢ Checkmate

* In chess, a check is when a player’s king is under immediate attack by the opponent’s

pieces.
¢ In chess, it is called a "checkmate".

¢ Checkmating

Human Error Analysis

* ChessGPT-Base: The first answer is accurate and correctly describes the situation
where a player’s inability to defend their king’s attack is called a "checkmate". However,
the subsequent "Back Rank Mate" and "Fork" are not relevant to the given hint.

¢ ChessGPT-Chat: The output is clear, and it correctly states that the quick checkmate

is at 2 moves.

* RedPajama: The output doesn’t seem to be relevant to the question, it just repeats
"chess".

C.5. Qualitative analysis 168

Question on fastest checkmate

The quickest possible checkmate is in: (Answer: 2 moves, Fool’s mate)

ChessGPT-Base

o 1. Qh5#B: 1. Qf7# C: 1. Qd8# D: 1. Qh8# E: 1. Qg8# F: 1. Qh7# G: 1. Qg6# H: 1.
QeS#1: 1. Qd7#17J: 1. Qc8# K: 1. Qb7#L: 1. Qa6# M: 1. Qb5# N: 1. Qad# O: 1.

* Two moves. B: Four moves. C: Six moves. D: Eight moves. E: Twelve moves. F:

Sixteen moves. G: One move.

e K+Q vs KB: K+B vs K C: K+N vs K D: K+N+N vs K E: K+B+N vs K F: K+B+N vs
K+B G: K+R vs K H: K+R+R vs K I: K+R+R vs K+R J: K+R+R vs K+R K: K+R vs
K L: K+R+R vs K+R M: K+R+R vs K+R

e 2 moves
e 2 moves

e 2 moves

¢ chess
e chess

e chess

Human Error Analysis

* ChessGPT-Base: For the prompt "The quickest possible checkmate is in: (Answer: 2

moves, Fool’s mate)", the answer given by ChessGPT-Base is not completely accurate.
Although it contains "Two moves.", the specific moves listed above are all wrong.

* ChessGPT-Chat: The output is clear, and it correctly states that the quick checkmate

is at 2 moves.

* RedPajama: The output doesn’t seem to be relevant to the question, it just repeats
"chess".

C.5. Qualitative analysis 169

Question on starting player

What determines which player starts first in a chess game? (Answer: white)

ChessGPT-Base

* White always moves first.
* White moves first.

* In chess, the player with the white pieces always moves first.

* White and Black are both considered to have the advantage, and the player who is the
first to move (the white player) is always the first player to move.

* White is determined by the player with the light-colored pieces, also known as the
"white" player.

* In a game of chess, the player with the white pieces should start first.

* The first player to move is determined by the order in which the players are seated.
The first player is seated to the left of the board.

 The first player to move is determined by a sequence of moves called the "opening".
This sequence of moves is determined by the player who moves first.

* The first player to move is the one who moves first in the first game.

Human Error Analysis

* ChessGPT-Base: All answers clearly state that white always goes first, which is

accurate.

¢ ChessGPT-Chat: All answers mentioned that white or the player using white pawns
should move first, which is also accurate. However, the "both white and black are
considered to have an advantage" mentioned in the first answer is inaccurate, because

usually white is considered to have a small opening advantage.

* RedPajama: None of the answers explicitly state that white goes first, and the first and

second answers are completely inaccurate. The third answer was vague and unclear.

C.5. Qualitative analysis 170

C.5.3 Chess modeling

In this section, we present a qualitative analysis of the model’s performance to
performing chess-related tasks. We provide qualitative comparison for three
tasks:

Opening recognition

In this task, the models were tasked to detect a chess opening.

1.e4 e5 2.f4, What is the name of this opening? (Answer: King’s Gambit)

ChessGPT-Base

¢ Itis called King’s Gambit Accepted.

* The King’s Gambit.

* The opening is called the King’s Gambit.

* The opening is called the King’s Gambit.

¢ The Sicilian Defence.

¢ The French Defense

Human Error Analysis

¢ ChessGPT-Base:The first and answer called it "King’s Gambit Accepted", which is
the name when the opposing side accepts a sacrificed pawn. And the second answer is

"King’s Gambit", which is a broader category. Technically, it’s only called "Accepted"
after 2...exf4.

¢ ChessGPT-Chat: All responses call it "King’s Gambit", which is correct.

¢ RedPajama: All responses are wrong, calling it "Sicilian Defense" and "French

Defense", neither of which have anything to do with the openings offered.

C.5. Qualitative analysis 171

PGN to FEN conversion

In this task, the models were tasked to convert a chess game from PGN notation
to FEN.

1. e4 e52. Nf3d6 3. d4 exd4 4. Nxd4 Nf6 5. Ne3 Qe7 6. Bd3 d5 7. O-O dxe4 8. Rel Beb
9. Nxe6 fxe6 10. Bxe4 Nxe4 11. Nxe4 Nd7 12. Bg5 Qb4 13. Qg4 Qd4 14. Qxe6+ Be7 15.
Convert the PGN to FEN (Answer: r3k2r/pppnbIpp/4Q3/6B1/3gN3/8/PPP2PPP/R3RIKI
wkqg-115)

ChessGPT-Base

e 1.ede52. Nf3 d6 3. d4 exd4 4. Nxd4 Nf6 5. Nc3 Qe7 6. Bd3 d5 7. O-O dxe4 8. Rel
Be6 9. Nxeb6 fxe6 10. Bxe4 Nxe4 11. Nxe4 Nd7 12. Bg5 Qb4 13. Qg4 Qd4 14. Qxe6+
Be7 15. Radl Qxb2 16. Nfo+ Nxf6 17. Qxe7#

e 1.ede52. Nf3d6 3. d4 exd4 4. Nxd4 Nf6 5. Nc3 Qe7 6. Bd3 d5 7. O-O dxe4 8. Rel
Be6 9. Nxe6 fxe6 10. Bxe4 Nxe4 11. Nxe4 Nd7 12. Bg5 Qb4 13. Qg4 Qd4 14. Qxeb+
Be7 15. Radl Qb4 16. Bxe7 Qxe7 17. Qxe7+ Kxe7

* r3k2r/pppnblpp/4Q3/6B1/3qN3/8/PPP2PPP/R3R1K1 w kq - 1 16

« r3k2r/pppnb1pp/4Q3/6B1/3gN3/8/PPP2PPP/R3R1K1 w kq - 1 16

* 1.ede52. Nf3 d6 3. d4 exd4 4. Nxd4 Nf6 5. Nc3 Qe7 6. Bd3 d5 7. O-O dxed 8. Rel
Be6 9. Nxeb fxe6 10. Bxe4 Nd7 11. Bg5 Qb4 12. Qg4 Qd4 13. Qxe6+ Be7 14. Qxe6+
Kf8 15. Qd6+ Ke8 16. Qd5+ Kf8 17. Qd6+

e dxe4 Nxed

C.5. Qualitative analysis 172

Human Error Analysis

* ChessGPT-Base: Provides too much information, showing game records to go on, but
not FEN.

* ChessGPT-Chat: The FEN provided is very similar to the requested answer, but with
errors in the move counters.

* RedPajama: Completely wrong, it gives the game record instead of FEN.

UCI to FEN conversion.

In this task, the models were tasked to convert a chess game from UCI notation
to FEN.

Convert the following UCI to FEN: g2¢g3 d7d6 f1g2 e7e5 gl1f3 g8f6 d2d4 b8 (Answer:
rnbgkb 1 r/ppp2ppp/3pIn2/4p3/3P4/5NP1/PPP1PPBP/RNBQK2R b KQkq - 0 4)

ChessGPT-Base

* You can use the following code to convert the FEN string to a UCI string: #!/us-
r/bin/python import chess import chess.pygame import chess.uci import chess.pgn
fen = ‘rnbgkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1’ board =
chess.Board(fen) board.parse_san(fen) # print(board.san(board.fen))

» The FEN is rnbgkb1t/ppp2ppp/3p1n2/4p3/3PP3/5SNP1/PPP2PBP/RNBQK2R b KQkq
-05s.

Here is a link to the FEN representation of the above position:
rnbgkb 11t/ppp2ppp/3p1n2/4p3/3PP3/5NP1/PPP2PBP/RNBQK2R b KQkq - 0 5

rbgkb 1r/ppp2ppp/3p1n2/4p3/3P4/SNP1/PPP1IPPBP/RNBQK2R w KQkq - 0 5

rnbqkb 1 r/ppp2ppp/3p 1n2/4p3/3P4/5NP1/PPP1PPBP/RNBQK2R w KQkq - 0 5

rnbqkb 1r/ppp2ppp/3p1n2/4p3/3P4/5NP1/PPP1PPBP/RNBQK2R b KQkq - 0 4

C.5. Qualitative analysis 173

* Here is the FEN:g2k4f4 b8k4b5 d7k6d6 e7k6e5 f1k1f2 g8k8f6 UCI: g2k4f4 b8k4bS
d7k6d6 e7k6eS5 f1k1f2 g8k8f6 Note that the FEN is a different notation than the UCI.

* FEN: g2¢3 d7d6 f1g2 e7e5 glf3 g8f6 d2d4 b8 This is a standard position in chess, but
not in FEN.

Human Error Analysis

* ChessGPT-Base:The first answer gives a code snippet rather than a direct answer. The
second and third answers try to convert UCI to FEN, but the result is wrong. In terms
of verbosity, too much information was provided, including an irrelevant code snippet.

* ChessGPT-Chat: The third answer is correct. The first two answers have subtle errors
and the chess colors (w/b) are mislabeled.

* RedPajama: Completely wrong, it gives the game record instead of FEN.

PGN annotation

In this task, the models were tasked to generate commentary for a given game
recorded in PGN format.

1. e4 e52. Nf3 d6 3. d4 exd4 4. Nxd4 Nf6 5. Nc3 Qe7 6. Bd3 d5 7. O-O dxe4 8. Rel
Be6 9. Nxe6 fxe6 10. Bxe4 Nxe4 11. Nxe4 Nd7 12. Bg5 Qb4 13. Qg4 Qd4 14. Qxe6+
Be7 15. Generate a step-by-step analysis

ChessGPT-Base

* This is a typical position in the Scotch Game. White has a lead in development and

Black has a pawn weakness on e6. White’s next move is 14. Bxe7.

I believe you’re looking for a program that will analyze the position and output the best
move for both sides. I have a couple of suggestions: ChessBase: This is a commercial
program, but it’s free for the first 30 days...

C.5. Qualitative analysis 174

1. e4 e5 (Both players have opened with pawn moves 1. e4 and 1... e5, controlling
the center and opening lines for their bishops and queen) 2. Nf3 d6 (Black has played
pawn move 2... d6, which is a passive response to White’s 2. Nf3) ...

15...Qxb2 (Black’s best move) 16. Rabl Qe5 (Black’s only move to avoid losing
material) 17. Qxe5 Nxe5 18. Rxb7 (White has a significant advantage due to Black’s
vulnerable king and misplaced knight on e5)

1. e4 e5 2. Nf3 d6 3. d4 exd4 4. Nxd4 Nf6 5. Nc3 Qe7 6. Bd3 d5 7. O-O dxe4 8. Rel
Be6 9. Nxe6 fxe6 10. Bxe4 Nxe4 11. Nxe4 Nd7 12. Bg5 Qb4 13. Qg4 Qd4 14. Qxeb+
Be7 15. Generate a step-by-step analysis

1. ed e5 2. Nf3 d6 3. d4 exd4 4. Nxd4 Nf6 5. Nc3 Qe7 6. Bd3 d5 7. O-O dxe4 8. Rel
Be6 9. Nxe6 fxe6 10. Bxe4 Nd7 11. BgS Qb4 12. Qg4 Qd4 13. Qxe6+ Be7 14. Nd5
Nxd5 15. exd5 Nd7 16. c3 c6 17. Bf4 Qd8 18.

Human Error Analysis

ChessGPT-Base: The first answer is a short review of the Scotch Game, but not a
step-by-step analysis. The second answer mentions other software for game analysis,
which is not what the user asked for.

ChessGPT-Chat: The first answer started a step-by-step game analysis but were
interrupted and not completed, but the analysis given is reasonable. The second answer

provides a follow-up move for 15...Qxb2, but the user does not provide this step.

RedPajama: The first answer just repeats the PGN given, no analysis is provided.
The second answer tries to provide a follow-up move, which is also irrelevant to the

question, since the user just requested an analysis, not a follow-up move.

C.6. ChessCLIP visualization 175

C.6 ChessCLIP visualization

We present a visualization demo to better illustrate ChessCLIP’s capability. Here
we choose the chess opening as a test scenario and choose ten different chess
openings. Ten chess opening PGNs and their corresponding names are arranged
in sequence, so the diagonal cells in the entire similarity matrix should have the

highest similarity. We present such a similarity matrix generated by ChessCLIP

Cosine similarity between text and image features

Black plays Sicilian Defense -

Black plays Caro-Kann Defense

Black plays Scandinavian Defense

White plays English Opening

Black plays French Opening

Black plays Philidor Defense

White plays Queen's Gambit

Black plays Queen's Indian Defense

White plays London System

White plays Italian Game

Figure C.2: Similarity matrix of different chess opening PGN and text using ChessCLIP.

in fig. C.2. The results exactly correspond to our expectations, which successfully

validate the effectiveness of our ChessCLIP model.

	Introduction
	Reinforcement learning
	Imperfect data and where to find them
	Contributions
	Thesis organization

	Background
	Reinforcement learning
	Markov decision process
	Policy and value functions
	Online reinforcement learning
	Offline reinforcement learning

	Imitation learning
	Behavior cloning
	Inverse reinforcement learning

	Finetuning from offline reinforcement learning
	Overview
	Preliminaries
	Experiments
	Experimental set-up
	Effect of online algorithms
	Effect of offline data during finetuning
	Conservative policy improvement in TD3
	Comparative evaluation
	Summary of empirical observations

	Discussion
	Conclusion

	Optimal transport for offline imitation learning
	Overview
	Preliminaries
	Optimal transport reward labeling
	Experiments
	Experimental setup
	Experimental results

	Discussion
	Conclusion

	Bridging policy learning and language modeling
	Overview
	Dataset
	Game dataset
	Language dataset
	Mixed game-language dataset
	Instruction-tuning and conversation dataset

	Models
	ChessCLIP
	ChessGPT

	Evaluation
	Chess modeling ability
	Value judgement ability
	Policy evaluation
	Qualitative results

	Discussion
	Conclusion

	Conclusions
	Supplements for Chapter 2
	Implementation Details
	Other choices of RL algorithms
	Comparison with RLPD
	Comparison to prioritized balanced replay

	Supplements for Chapter 3
	Hyperparameters

	ChessGPT dataset supplements
	Chess notations
	Universal Chess Interface (UCI)
	Standard Algebraic Notation (SAN)
	Portable Game Notation (PGN)
	Forsyth-Edwards Notation (FEN)

	Dataset details
	Dataset statistics and metrics
	Preprocessing
	Online chess websites
	Online Chess forums
	Annotated PGN
	Existing datasets
	YouTube transcripts dataset
	Lichess dataset
	Pro-player dataset
	Chess books
	CCRL
	Chess puzzles
	Chess modeling dataset
	Instruction-tuning dataset

	Implementation and evaluation Details
	Implmenetation details

	Evaluation details
	Qualitative analysis
	Experimental set-up
	General knowledge
	Chess modeling

	ChessCLIP visualization

