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Abstract 
Understanding the mechanisms of visual recognition memory is fundamental to exploring 
how we perceive and remember complex visual scenes. Traditionally, eye movements are 
viewed as responses to sensory input that enable detailed scene and object representation. 
However, recent studies suggest that some neural mechanisms may guide eye movements 
based on learned spatial relationships in visual recognition memory. This research aimed to 
investigate the role of eye movement patterns as a potential mechanism supporting 
recognition memory. To do this I focussed on sequential encoding-recollection similarity 
(SERS) across shape, direction, length, and position dimensions. Guided by a computational 
model proposing that grid-like coding in entorhinal cortex underlies spatial memory and eye 
movement, I developed a novel foveated vision paradigm, designed to produce distinct, 
measurable sequences of eye movements when looking for the missing object in an encoded 
array of five objects, without distraction from peripheral objects.  
 
I hypothesised that participants would produce similar scan-paths between encoding and 
retrieval phases of the memory task, with these similarities correlating positively with 
memory performance. Using permutation analyses, mixed effects models and correlational 
analyses, we found significant within-trial SERS. This was particularly strong in the position 
dimension, which was most strongly associated with accurate recall, suggesting that precise 
re-fixations on the location of specific object features can enhance recognition and reduce 
error in locating missing objects. Although other dimensions did not consistently show this 
effect on memory performance, great variability in shape similarity across participants 
suggests two distinct individual encoding strategies, emphasising the need for further 
investigation. Despite the limitations due to the small sample size, our findings highlight the 
role of eye movement reinstatements in memory recall, and show that the new paradigm 
offers a robust framework for future exploration into the neural basis of these eye movement 
patterns. 
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Impact Statement  

Visual recognition memory in its essence is the ability by the organism to determine whether 
a visual stimulus is novel or familiar. This type of memory is essential for humans and one 
can hardly imagine their life without recognizing their house or family. In this study, I aimed 
to look at visual recognition memory through a novel experimental paradigm, especially 
focusing on eye movements contributions and their connection to memory performance. 
However, our memory can decline in conditions such as Alzheimer’s disease, which involves 
entorhinal cortical pathology in its early stages which correlates with path integration ability 
– a putative role of grid cells (Howett et al., 2019). The understanding of the computational 
processes underlying visual recognition memory might lead us to convenient ways to monitor 
the progression of, for example, Alzheimer’s disease in those whose recognition memory for 
spatial-relational information is impaired. While this research cannot yet comment on medial 
temporal structures’ involvement in recognition memory and the role of grid cells in 
cognitive function, it contributes valuable insight by linking scanpath similarities to memory 
performance, leading to the future research that will. Results from this study showed that 
precise re-fixations on specific object features in the position similarity dimension were 
strongly associated with accurate recall, suggesting that detailed focus on certain object 
features may enhance recognition memory. Additionally, the observed variability in shape 
similarity across participants pointed to possible individual encoding strategies, highlighting 
the need for further investigation into how these differences impact memory performance.​
The experimental paradigm developed in this study, with special focus on isolating the role of 
eye movements, provides a framework for future exploration, including studies utilising 
neuroimaging techniques like fMRI to investigate neural correlates such as grid-like 
representations in the brain. Beyond its theoretical contributions, the experimental paradigm 
developed in this study holds potential as a tool for assessing visual recognition memory in 
both healthy individuals and populations at risk for cognitive decline. By refining this task 
further, it has the potential to be applied to clinical research to help identify early markers of 
Alzheimer’s disease, offering a non-invasive approach to monitor memory function over 
time. This could ultimately lead to improved methods for diagnosing and tracking memory 
impairments, supporting early intervention strategies in neurodegenerative diseases.  
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1. Introduction 
 
Visual recognition memory relies not only on the content of what we see but also on how we 
explore it through eye movements. This thesis examines the contribution of those eye 
movements to visual recognition memory, guided by the predictions of the computational 
model developed by Bicanski and Burgess (Bicanski & Burgess, 2019). This model suggests 
that grid cells in the medial temporal lobe (MTL) are not only crucial for spatial navigation 
but may also play a role in visual memory by encoding spatial relationships between elements 
of a scene and guiding eye movements back to them during recognition. The primary aim of 
this research is to develop a new experimental paradigm to test to what extent eye movements 
are guided back to scene elements during recognition and to explore how this relates to 
memory performance. A secondary aim is to make this paradigm useful in future studies, 
testing specific predictions about the role of grid cell firing in this process. 

1.1 GRID CELLS​
​
The medial temporal lobe (MTL) has long been recognized as crucial for spatial memory and 
navigation (Scoville & Milner, 1957; O'Keefe & Nadel, 1978; Bird & Burgess, 2008; Burgess 
et al., 2002). Research into the neural mechanisms underlying these cognitive functions has 
identified specific types of neurons, including place cells and grid cells, that exhibit spatially 
modulated firing patterns. These specialised neurons are critical for creating and maintaining 
an internal representation of the environment, often referred to as a "cognitive map" (Hartley 
et al., 2014). Place cells, which are primarily found in the hippocampus, become active when 
an organism is in a specific location, contributing to the encoding of spatial information 
(O’Keefe & Nadel, 1978). Grid cells are neurons that fire at regular, periodic locations as the 
organism navigates through the environment, which form a grid-like pattern of equilateral 
triangles. Discovered first in the medial entorhinal cortex of rodents in 2005 (Hafting et al., 
2005), they provide the brain with a spatial coordinate system. Initially, grid cells were 
believed to function exclusively in spatial navigation, helping animals (including humans) to 
orient themselves and create a mental map of their surroundings. Over time, this spatial map 
allows an organism to recognize familiar environments and navigate more effectively.  

Recent studies using animal electrophysiology and human functional neuroimaging (e.g., 
Killian et al., 2012; Constantinescu et al., 2016) suggests that grid cells can support a wide 
range of tasks beyond spatial navigation. Depending on the origin of their inputs these grid 
cells could support a variety of cognitive functions including spatial navigation, memory and 
planning. While the majority of research on grid cells has been done using electrophysiology 
in rodents, some recent human functional magnetic resonance imaging (fMRI) studies have 
allowed researchers to study neural mechanism for cognitive information processing by grid 
cells, non-invasively in human brain in both spatial and conceptual 2D tasks and in a 3D 
environment. Furthermore, in a groundbreaking study by Doeller, Barry & Burgess in 2010, 
grid-like fMRI activity was shown in humans while performing navigation tasks in a virtual 
environment, providing the first non-invasive evidence for grid cell-like activity in the human 
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memory network. This discovery has led to a new wave of research exploring whether grid 
cells could be involved in more general forms of cognition, including visual recognition 
memory.​
​
1.2 MEMORY 

Memory is a complex cognitive process that relies on several regions within the brain, 
including the hippocampus, parahippocampal cortex, and other areas within the MTL. It is 
important to define for this study that relational memory (Olsen et al., 2015) refers to the 
ability to remember the relationships between various elements, such as objects, places, and 
people, within a particular context. This type of memory is critical for recognizing how 
different components are connected to form the whole picture. And it is believed that the 
hippocampus plays a crucial role in relational memory by binding these elements together 
into a unified representation (Hannula et al. 2007). When relational memory functions 
effectively, it enables individuals to recall how items are linked, such as, important for our 
experiment, remembering the location of a misplaced object. For instance, Olsen et al. (2015) 
demonstrated that individuals with developmental amnesia struggle with tasks requiring 
relational binding, specifically in item memory tasks like face recognition. The hippocampal 
damage in these cases disrupts the ability to bind features of a memory together. Similarly, 
Pertzov et al. (2013) identified binding deficits in patients with MTL damage due to limbic 
encephalitis, highlighting the role of the MTL in linking objects and their spatial relationships 
within memory. The interaction between spatially-modulated cells like grid and place cells 
and these broader memory processes highlights the MTL’s integral role not only in spatial 
cognition but in memory as a whole. Understanding how these specialised cells contribute to 
both spatial and non-spatial memory systems is a key area of ongoing research. 

1.3 EYE MOVEMENTS 

Eye movements are considered to be key players in visual memory processes, and there is a 
lot of evidence supporting this. For example, eye movements are linked to relational memory, 
as the brain often guides saccades based on relational information. For example, research by 
Johansson and Nyström (2022), demonstrates that eye-movement replay plays a crucial role 
in episodic remembering. In their study, participants were first shown images to encode and 
later asked to recall these images while staring at a blank screen. Remarkably, the eye 
movements participants made during recall mirrored the scanpaths they had followed during 
encoding, even in the absence of any visual stimuli, suggesting that participants were 
replaying the same visuospatial sequences to reconstruct the previously stored information. 
This replay mechanism offers direct evidence that eye movements play an active role in 
retrieving spatio-temporal relationships from memory, but it is not yet clear how. Further 
extending this idea, Johansson and Nyström analysed not only the shapes of the paths created 
by eye movements but also positions, lengths, directions and durations, finding overlaps in 
both the spatial locations and the shapes. Their results support the hypothesis that the 
sequential order of eye fixations, or scanpaths, plays an active role in memory retrieval, 
similar to what we want to look at in this study. However, while they provided valuable 
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insights into how eye movements contribute to memory, it did not directly address how grid 
cells might be involved in encoding and recalling these spatial relationships.  

Related studies, such as one from the University of Toronto (Wynn, Olsen, Binns, 
Buchsbaum, & Ryan, 2018), have shown that fixation reinstatements can help mitigate 
memory decline, particularly in older adults. This research highlights how the reinstatement 
of specific gaze patterns can compensate for cognitive deficits, further emphasising the link 
between eye movements and memory performance. Eye movements have also been shown to 
play a critical role in scene construction and memory retrieval processes. The other studies 
explore the role of eye-movements in memory even further, on a neural level, according to 
Ladyka-Wojcik et al. (2022), free viewing during memory tasks, where participants can move 
their eyes without restriction, improves the effective connectivity between the hippocampus 
(HPC) and the frontal eye fields (FEF). This enhanced connectivity suggests that the 
coordination between the hippocampus, which is responsible for memory encoding and 
retrieval, and the FEF, which controls eye movements, becomes more efficient as participants 
engage in free-viewing tasks. As a result, individuals are better able to reconstruct scenes 
from memory, further emphasising the interplay between eye movements and hippocampal 
activity in these tasks.  

In the context of visual imagery and memory recall, eye movements have also been linked to 
the richness of the details recalled. Studies by Armson et al. (2020) and Barker & Armson 
(2024) explored memory for a gallery tour and found that individuals who are better at 
generating detailed visual imagery tend to make more eye movements during memory tasks. 
These high-images produced more detailed recollections, and their eye movements often 
preceded the production of those details. This finding suggests that the process of recalling 
details is closely tied to eye movements, which may help individuals retrieve and reconstruct 
visual and spatial information stored in memory. In other words, the more eye movements a 
person makes, the better they reinstate spatiotemporal context. These studies provide a 
foundation for exploring the potential role of grid cells in memory tasks, as they illustrate 
how patterns of eye movements can influence cognitive performance, not just on behavioural, 
but on neural level.  

1.4 BICANSKI AND BURGESS’ MODEL​
​
The suggestions that eye movements can drive grid cell-like firing and recent publications on 
the role of grid cells in vector navigation have helped Bicanski & Burgess (2019) develop a  
computational model of visual recognition memory. As mentioned above, this model suggests 
that grid cells have an important role in recognition of the spatial relationships in visual 
stimuli, drawing a connection between grid cells’ firing patterns and visual recognition 
memory. In "A computational model of visual recognition memory via grid cells", the authors 
propose a computational framework that links the role of grid cells, located in the entorhinal 
cortex, to visual recognition memory. The authors show how grid cells can theoretically 
facilitate memory processes through their spatial firing patterns. The model describes how 
recognition memory for objects is represented through grid cells encoding translation vectors 



10 

between salient stimulus features in eye-movements (saccades). These vectors help map the 
spatial relationships between features, providing a coordinate system that assists in recalling 
the layout of objects or a relative location of the objects in respect to one another. The 
proposed model of recognition involves sequential hypothesis testing for the visual feature to 
be found at the end of each vector from the previous feature. This process integrates both 
spatial and visual information to aid in memory-driven recognition.  

Moreover, as visual perception is closely linked with eye movements, which occur in a 
necessary sequential order, the series of saccades can be interpreted as a complex path on a 
two-dimensional plane. This allows for parallels between spatial navigation in 
two-dimensional space and the movement of the eyes across the visual field. While in the 
previous research grid-like representations have already been linked to eye-movements, they 
hadn’t been linked to behaviour until Bicanski and Burgess' model. In other words, the 
research emphasises the potential function of grid cells in encoding and recalling visual 
memories.  

Both previous research on grid-like activity in visual paradigms as well as the model’s ability 
to produce fine within-category judgments and also accommodate for a broader Bayesian 
interpretation of perception, through cell-tuning, suggest the external validity of the model 
and gives evidence for the grid cells’ activity in visual processing. While the computational 
model of visual recognition memory described above creates a working quantitative theory 
for the role of grid cells in visual recognition, it requires further testing. The hypothesis 
would suggest that visual recognition memory engages grid cells to trace these vectors, aiding 
in recognizing familiar layouts. This theory shifts the focus from spatial memory (usually 
linked to the temporal lobe) to visual memory, proposing the link between visual perception 
and eye movements, suggesting that the brain engages grid cells to direct saccades in a 
top-down manner during visual memory tasks. In this view, rather than passively exploring 
the environment, the brain actively controls eye movements based on previously encoded 
spatial relationships. When recognizing familiar layouts, grid cells guide eye movements 
from one feature to the next, creating a series of vectors that ultimately lead to the recognition 
of the visual scene. If successful, this research could offer new insights into how grid cells 
contribute to both spatial and non-spatial cognitive tasks, further supporting the idea that 
these neurons function as part of a universal representational system in the brain. 
 
1.5 NEW EXPERIMENTAL PARADIGM 

To test the Bicanski & Burgess (2019) model of visual recognition memory, it was first 
important to establish a reliable experimental paradigm. A logical starting point was to adapt 
a similar technique used in the experiment by Johansson and Nyström’s (2022), mentioned 
above, which also focuses on examining sequential reinstatement of eye movements during 
memory tasks, allowing us to refine the paradigm for testing the specific predictions of 
grid-like representations in visual memory. However,  human memory is an exceptionally 
complex system and shaped by numerous factors, including the specific types of memory 
being used for different tasks, as well as the strategies that individuals unconsciously or 
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consciously employ to encode and recall information. Each of the memory types relies on 
different brain structures and mechanisms, often operating simultaneously, making it 
challenging to distinguish which areas of the brain are primarily responsible for the specific 
memory tasks in a given context (Squire, L.R., & Zola, S.M. 1996; Henderson et al. 2005; 
Eichenbaum et al. 2007). This variability makes it extremely hard to pinpoint which 
strategies are being employed by participants in Johansson and Nyström’s (2022) study, 
especially since people may not always be consciously aware of the methods they are using.  

Eye movements, which are crucial for this experiment, can vary significantly depending on 
whether someone is looking at one object at a time or perceiving the overall shape of all 
objects together to remember the spatial relationships. Given these complexities, constructing 
an experiment that controls for as many variables as possible is crucial for gaining clearer 
insights into memory mechanisms. One of the primary challenges in memory research is to 
limit factors that could influence performance, like bottom-up signals, where attention is 
driven by the salient features of the visual stimuli such as contrast or luminance. Or such 
strategies, like peripheral vision — the ability to perceive objects outside of the direct line of 
sight — that can unintentionally aid memory encoding by allowing participants to process 
multiple stimuli simultaneously, thus bypassing the primary focus of the experiment. To 
create more controlled conditions, experimental designs need to exclude such influences, 
ensuring that participants rely solely on the cognitive processes under investigation. This is 
why it was so important to create a completely new experimental paradigm, which would 
force participants to focus only on what is in their direct line of sight.  

By restricting peripheral vision, I could ensure that participants are consciously and actively 
engaging with the task, without relying on extraneous visual cues, helping us to confirm 
whether eye movements directly contribute to encoding and recalling spatial relationships 
between the scene elements themselves. Without such controls, it becomes nearly impossible 
to distinguish between the different strategies participants might be employing, leading to 
ambiguous results. In my experiment, we implement a novel paradigm, calling it: “The 
Object-Location Memory Experiment”, which consists of two core stages: encoding and 
retrieval.  

During the encoding phase, participants will observe a randomly generated arrangement of 
objects and form a visuospatial representation of their locations. In the retrieval phase, they 
will compare the arrangement to the stored visuospatial image and identify the missing 
object, focusing on the location where that object was previously seen. And in order to 
enforce controls, mentioned above, this experiment introduces a unique challenge: foveated 
vision. During both stages, only objects directly fixated on will be visible, thus preventing 
participants from relying on peripheral vision. This constraint forces them to make deliberate 
eye movements, relying on top-down control to navigate their gaze based on the spatial 
configuration of objects that is actively constructed in their memory.​
​
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1.6 RESEARCH AIMS AND HYPOTHESIS 

The aim of this research project is to create a paradigm that can reliably produce measurable 
and distinct sequences of eye movements, investigating how memory performance correlates 
with eye movement behaviour, excluding other memory techniques that can interfere with the 
hypothesis testing. By establishing this foundation, we are building a framework that will be 
essential for future studies, where this paradigm can help investigate the presence and 
involvement of grid-like representations in visual recognition memory as a function of eye 
movements. And, as mentioned above, this study aims to build upon the findings from 
Johansson and Nyström’s (2022) study, replicating their results, using the same MaltiMatch 
analysis algorithm (the description can be found in the Methods section). However, we plan 
to take it a step further by partially obscuring the visual scene to specifically investigate eye 
movements driven by mnemonic processing. Therefore, the rationale behind this particular 
experiment is that if participants exhibit more encoding-recollection similarity (SERS) in 
their scanpaths than would be expected by chance, and if these scores correlate with memory 
performance, it would suggest that memory representations are driving eye movements. In 
essence, this would provide evidence that the brain’s memory systems influence the visual 
exploration patterns seen during retrieval in a top-down manner.​
​
HYPOTHESIS ONE: 
  
We hypothesise that participants performing a memory task will produce similar scanpaths 
between encoding and retrieval, reflecting the presence of a sequence of saccadic 
eye-movement vectors moving from one object to the expected location of the next. ​
​
HYPOTHESIS TWO:​
 
We hypothesise that measures that capture eye-movement similarities — such as position, 
shape, length, and direction — will be positively correlated with memory performance. The 
higher the similarity between encoding and retrieval scanpaths, the better the memory 
performance is expected to be, supporting the theory that memory-driven eye movements are 
an essential component of visual recognition and relational memory.  
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2. Methods 
 
Here, I will be outlining the process involved in designing the study paradigm. It includes 
analysing Luke Emrich-Mills’ preliminary data, a description of the novel task 
implementation using EyeLink and details on how eye-tracking data was processed and 
analysed. 
 
2.1 Luke Emrich-Mills’ data test 
​
At the beginning of my project, I had an opportunity to analyse eye-tracking data from Dr. 
Emrich-Mills’ spatial memory task. The experiment was focused on designing a virtual 
reality task to study spatial memory in healthy ageing and the early stages of Alzheimer’s 
disease. (Emrich-Mills, 2024). It involved a memory task where participants viewed an array 
of objects from a specific viewpoint and then, after a change or no change in viewpoint, were 
required to identify which object had changed position during retrieval. This task tested their 
ability to detect object movement and recall locations efficiently. The trials included 
variations in whether participants stayed in the same location or moved, and whether the table 
remained stationary or rotated.  
 
To practice my analysis techniques and prepare for the creation of my own experimental 
paradigm, I used a subset of Dr. Emrich-Mills’ trials. Specifically, I focused on trials where 
neither the table nor the viewpoint changed, allowing me to directly compare participants' eye 
movements between encoding and retrieval phases. I then analysed whether participants 
produced identical saccades, such as moving their gaze from one object (e.g., an apple) to 
another (e.g., a tomato), across phases. This enabled me to quantify the number of repeated 
vector pairs and test whether these repetitions occurred more frequently than chance would 
predict. To statistically validate this, I performed a sign test to test the hypothesis that 
participants produce more identical vector pairs between encoding and retrieval than would 
be expected randomly. And to find the probability that a specific number of similar vector 
pairs are repeated between the encoding and retrieval the following formula was used, 
derived on the basis of the binomial coefficient formula:​

;  

Where: 

●​ ne​ is the number of pairs fixated during encoding. 
●​ nr​ is the number of pairs fixated during retrieval. 
●​ np​ is the total number of possible pairs (calculated as N(N−1) for N objects). 
●​ R is the specific number of pairs that are repeated between encoding and retrieval.​
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The significant p-value for overall participants in the sign test (p-value = 0.031) indicated that 
eye movement patterns (vector pairs) observed during retrieval are not random but rather 
reflect the reinstatement of the encoding-phase scanpaths. Additionally, I ran the same test 
separating the trials into correct and incorrect, finding significance as well. The significantly 
lower p-value for correct trials (p = 0.008), compared to that of incorrect trials (p = 0.0228), 
highlights the connection between scanpath reinstatement and memory performance. While I 
achieved promising results, such as identifying more repeated vector pairs than expected by 
chance across participants, the small sample size (n=5) and limited trial conditions made it 
difficult to draw any definitive conclusions about my hypothesis. However, this exercise 
proved to be invaluable for two key reasons: it provided me with hands-on experience in 
analysing eye movement data, and it highlighted areas where my own task design could be 
improved to better address my research questions. Furthermore, despite all limitations, the 
data still suggested that eye movements during encoding and retrieval are closely linked, 
supporting the broader literature on the role of saccades in memory tasks. 
 
2.2 Materials and Set-up 

My experiment used the EyeLink 1000 Plus eye-tracking system, chosen for its low noise 
levels and high spatial resolution, which minimises the need for data filtering. The 
manufacturer reported that the system operates at a sampling rate of 1000 Hz, offering high 
temporal resolution with 1-millisecond precision. During each saccade or fixation, data is 
collected on gaze velocity, position, and pupil size. This data is then used to calculate 
starting, ending, and average positions, pupil size, velocity, and peak velocity. Velocity was 
also converted into degrees per second using real-time resolution information, which is 
essential for creating saccade and fixation events that are recorded in an EDF file. 

A velocity threshold of 22 degrees per second is typically employed to detect small saccades 
(as little as 0.3°), which is recommended for “smooth pursuit” experiments. However, for this 
experiment, a conservative threshold of 30°/sec was used, which shortens saccades and 
lengthens fixation durations—parameters suitable for cognitive research. The following 
parameters were employed for data recording, as recommended in prior research for memory 
and related tasks (SR Research, 2018, Parker & Tao, 2023): 

●​ Recording parse type = GAZE 
●​ Saccade velocity threshold = 30 
●​ Saccade acceleration threshold = 8000 
●​ Saccade motion threshold = 0.1 
●​ Saccade pursuit fixup = 60 
●​ Fixation update interval = 0 

Both the participant and the eye tracker are set up via the Camera Setup screen, shown in 
Figure 1. 
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Figure 1: Example Camera Setup Screen. ​
​
The participants were positioned in a setup as shown in Figure 2. The EyeLink 1000 
illuminator was positioned 65 cm in front of the participant to provide the IR illumination 
necessary for accurate eye-tracking. The participant’s gaze was recorded through the EyeLink 
1000 camera, and the chin-and-forehead rest, positioned 87 cm from the computer screen, 
ensured minimal head movement, thus allowing for accurate and stable tracking throughout 
the experiment.   

 

Figure 2: Example Experiment Setup  
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Gaze position data reports the participant's exact (x, y) coordinates on the display, 
adjustmenting for the distance between the participant and the computer screen. The data 
were recorded in pixels, representing the participant’s actual gaze location on the 1920 x 
1080 pixels display. Pupil size data (measured as a percent change relative to a baseline) was 
also collected but was not used in this particular experiment. For this study, gaze data were 
recorded from the dominant eye, which happened to be the right eye for all of the 
participants. The dominant eye was identified using a classic test where participants focused 
on a distant object through a triangular opening made with their hands and closed one eye at a 
time to determine which eye kept the object centred (Heiting, 2020). The calibration 
procedure followed the 9-dot routine as outlined in the EyeLink® 1000 Plus User Manual 
(SR Research, 2018). Calibration was deemed successful if no calibration errors exceeded 1°, 
or if errors were consistent in size and direction and could be corrected by drift correction. 

The raw data output consisted of x, y gaze positions along with corresponding frames. To 
facilitate further analysis, we also recorded different timestamps during the experiment to 
match the frames to the corresponding time and convert it to seconds, so that each frame is 
matched with the relevant experimental block, trial number, and trial type. The final data 
table included the following variables: frame number, time in seconds, x and y position, block 
number, trial number, and trial type. 

2.3 New Object-Location Memory Paradigm Using Eye-Tracking 
 
As described in the Introduction, as well as fixing the limitations of Dr. Emrich-Mills’ 
experiment, we had to come up with a paradigm that would eliminate the distraction of 
peripheral vision and force participants to move from one object to another, viewing only one 
at a time. And even if participants wanted to create a visuospatial map they would have to do 
it inside their head.   

The Object-Location Memory Experiment consists of two primary stages: encoding and 
retrieval. During the encoding phase, participants are presented with a randomly generated 
arrangement of objects and instructed to form a visuospatial map by observing the locations 
of these objects. In the subsequent retrieval phase, participants are shown the arrangement 
again and must compare it to the visuospatial imagery they previously stored in memory, 
identifying any differences. Specifically, one object will be missing in each retrieval trial, and 
participants are tasked with locating where that object was and focusing their attention on the 
corresponding area. 

Each testing block is composed of three encoding-retrieval pairs. This means that each block 
contains three consecutive encoding trials, followed by three retrieval trials. Alternating the 
encoding and retrieval trials directly would have simplified the task too much, so this 
structure was chosen to increase memory load and ensure varying levels of performance. 

To further control the difficulty of the task, participants' vision is constrained to foveated 
vision during both encoding and retrieval stages. Objects are only visible when participants 
directly focus on their location, preventing them from relying on peripheral vision to 
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memorise the arrangement. This ensures that participants must actively foveate on each 
object to encode its location into memory. This was the most challenging part of the setup, as 
coding from scratch in MATLAB was required to achieve this obscured visibility. We adapted 
the alpha mask functionality from commonly used softwares like Photoshop and Polypop, but 
needed custom implementation since MATLAB does not have this feature. The alpha mask 
works by applying a mask layer (in this case, a cutout circle) on the layer containing the 
objects, making only the area inside the circle visible. The mask follows the participant’s 
gaze, feeding from the eyetracker feedback, but smoothing the data by averaging the last 10 
positions, filtering out noise like blinks and microsaccades for a more stable viewing 
experience. This results in a more stable and reliable visual area for the participant, ensuring 
that only meaningful and intentional eye movements adjust the mask position.  

Each encoding or retrieval trial has a 30-second time limit. However, in retrieval trials, if a 
participant focuses on the same area for 5 seconds continuously, indicating they've likely 
identified the missing object’s location, the program automatically moves to the next trial. 
Participants are informed of these time constraints in the instructions provided prior to the 
start of the experiment. Participants are encouraged to take short breaks between blocks and 
are reminded of the task instructions before each set of encoding or retrieval trials. This 
includes an instruction during each encoding trial to locate 5 hidden objects by foveating on 
their positions and remembering those locations for future retrieval. And to focus on 
identifying the missing object in the retrieval phase. A practice session precedes the main 
trials, allowing participants to ask questions if needed and familiarise themselves with the 
task, as well as identify any calibration problems. A step-by-step process is provided in the 
Supplementary materials. 

For this experiment, 90 distinct objects were used, grouped into 18 sets of 5 objects each. The 
objects were theme-based to facilitate the formation of distinct visuospatial maps. For 
example, one set could consist of 5 vegetables, another of 5 animals, and yet another of 5 
stationary items. An example list of the 15 objects used can be seen in Figure 3. To ensure 
that the objects were easily recognizable, they were first pre-tested on a convenience sample 
of UCL students, who were asked to identify each object. Only objects with an identification 
rate of above 95% were selected for use in the experiment.  

Each object was used only once, with no repetitions. The size of each object on the screen 
was standardised at 50 pixels. This size was chosen to ensure that the object would be fully 
visible when foveated upon, but small enough to prevent multiple objects from being viewed 
simultaneously. The locations of the objects were determined by a pseudo-random algorithm 
that generated random positions on the screen while adhering to specific constraints. These 
constraints ensured that objects were spaced at least 100 pixels apart from each other, none of 
the objects shared the same x or y coordinates (within a ±15 pixel range), and no regular 
geometric shapes were formed by the objects.
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​
Figure 3: 15 Objects used in the experiment.  

Each object was used only once, with no repetitions. The size of each object on the screen 
was standardised at 50 pixels. This size was chosen to ensure that the object would be fully 
visible when foveated upon, but small enough to prevent multiple objects from being viewed 
simultaneously. The locations of the objects were determined by a pseudo-random algorithm 
that generated random positions on the screen while adhering to specific constraints. These 
constraints ensured that objects were spaced at least 100 pixels apart from each other, none of 
the objects shared the same x or y coordinates (within a ±15 pixel range), and no regular 
geometric shapes were formed by the objects.  

This process initially produced 30 random arrangements, of which the most similar ones were 
discarded. Ultimately, 23 unique arrangements were selected, and 18 of these were used in 
the actual experiment. Additionally, the object positions file contained the normalised 
coordinates of the objects presented during each trial. This was done, so that positions could 
be converted into any screen coordinates based on the resolution of the testing screen 
(1920x1080 pixels in our case), ensuring accurate representation of object locations during 
the task. 

2.4 Participants and Procedure 

Seventeen healthy participants (10 female, 7 male) aged between 23 and 35 years (M = 
27.70, SD = 3.60) were recruited for this study. Informed consent was obtained from all 
participants prior to their involvement in the experiment. Participants were required to have 
no visual impairments, as even corrected vision (e.g., glasses) could interfere with the 
experiment. Specifically, the lenses of glasses could reflect the infrared (IR) illumination used 
by the eye-tracker, creating glare in the camera (Roux, Passerieux, Ramus, et al., 2014). One 
participant was excluded from the study due to excessive head movement, which affected the 
calibration and prevented completion of the experiment. Additionally, one participant had to 
reschedule due to calibration issues caused by wearing eyeliner, which interfered with 
accurate tracking. 
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After consenting, participants filled out a standard demographic questionnaire and underwent 
an eye-tracker calibration procedure. The calibration followed a 9-dot routine as outlined in 
the EyeLink® 1000 Plus User Manual (SR Research, 2018). The apparatus, detailed in the 
Materials and Setup section, was adjusted for each participant as needed. Only after 
achieving a successful calibration, as determined by the eye-tracker software, were 
participants allowed to proceed. Participants then engaged in a practice session, which 
consisted of a block (3 encoding and 3 retrieval trials) identical in structure to the main 
experiment, ensuring they were familiar with the task requirements. Upon confirming 
verbally that they understood the assignment, participants began the experimental trials, 
which included 15 encoding and retrieval trials as previously outlined in Section 2.3. The 
entire procedure, including practice and experimental trials, took an average of 45 minutes to 
complete. At the conclusion of the experiment, participants were debriefed and asked to 
provide feedback on any memory techniques they had used during the trials. This feedback 
was collected and further addressed in the thesis' discussion section. 

2.5 Data Processing 
 
In this experiment, the data processing was conducted using a custom script to filter and 
visualise the eye-tracking data, alongside object position data during the encoding and 
retrieval phases of the task. The primary goal of this processing was to prepare the data for 
the analysis to compare participants' scanpaths during both phases and link these to memory 
performance, specifically focusing on the differences between encoding and retrieval phases 
in terms of visual exploration. 

The data processing began by converting the resulting EDF files from the EyeLink 1000 Plus 
eye-tracking system for each participant into Matlab. There the data was organised to contain 
key variables such as frame number, time in seconds, x and y gaze positions, trial number, 
block number, and type of task (either encoding or retrieval). The table was then cleaned by 
removing any missing values and ensuring that it contained the correct number of columns. A 
smaller table for each block and trial combination was generated for each participant, 
allowing the data to be divided into subsets for detailed analysis. This process enabled the 
comparison of eye movement data within specific trials and blocks to evaluate individual 
scanpaths during encoding and retrieval. The raw data was then visualised, and random trials 
were checked as demonstrated in Figure 4. This visualisation allowed for the comparison of 
the scanpaths during retrieval to the original object positions, highlighting the areas where 
participants focused their attention. This served as a check, ensuring that participants paid 
attention and actually performed what was asked of them in the task. 

Next I focused on filtering the data, by applying different algorithms to filter out the noise 
and detect fixations from eye-tracking data, using a spatial and temporal threshold to identify 
periods when the participant's gaze remained relatively stable. All of the algorithms used 
according to the previously documented procedures (Das et al. 1996; Raju et al., 2023).  
Fixations were identified by comparing the current gaze position with the centre of the 
ongoing fixation. If the spatial distance between consecutive gaze points remained below a 
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defined threshold (50 pixels) and the temporal gap between them was under 0.1 seconds, the 
gaze points were considered part of the same fixation. If the distance exceeded these 
thresholds, the current fixation was saved, and a new fixation began. This process was 
repeated for all gaze data points, resulting in a sequence of fixations with associated start and 
end times used to construct fixation durations, and can be viewed in Figure 5.  

After identifying and segmenting fixations, the data was further transformed into data sets for 
each trial and each participant. These sets contained only the x, y coordinates of each fixation 
and the corresponding fixation duration. This format was essential for running the data 
through the MultiMatch algorithm (Dewhurst, Nyström, Jarodzka, et al., 2012), described in 
the next section, comparing encoding-retrieval scanpaths by calculating similarity scores 
across five dimensions: fixation position, fixation duration, saccade shape (vectors), saccade 
direction, and saccade length. For each trial, a table was generated containing the MultiMatch 
similarity scores as in Figure 6.  

 

Figure 4: Raw Data Encoding and Retrieval Block 2, Trial 6. The encoding phase is 
visualised by plotting the participants' eye movements as a scatter plot overlaid with the 
object positions. A colour gradient was applied to visualise the sequence of eye movements 
over time, and the positions of the objects were marked with bold red circles. For the 
retrieval phase, additionally, the missing object was indicated by a blue circle. 
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Figure 5: Fixations Data Encoding and Retrieval Participant 5, trial 13 . The encoding 
phase is visualised by plotting the participants' eye movements as a scatter plot overlaid with 
the object positions. A colour gradient was applied to visualise the sequence of eye 
movements  

 

Figure 6: Similarity table for the first 5 trials for participant 12. ​
​
Additionally, another important metric was computed to quantify memory performance: the 
error distances from the missing object. This metric measured the spatial difference between 
where participants thought the missing object was and its actual location in the original 
encoding phase.  

2.6 MultiMatch algorithm  
 
The MultiMatch (MM) algorithm, introduced by Dewhurst et al. (2012), is a method for 
comparing eye movement scanpaths across multiple spatio-temporal dimensions. It was 
designed to provide a quantitative understanding of how sequential eye movements unfold, 
capturing both the temporal and spatial properties, unlike previous methods like, for example, 
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ScanMatch (Christino, et al. 2010). The MM algorithm simplifies two scanpaths, converting 
them into ordered sequences of connected saccadic vectors. These vectors represent eye 
movements between fixations, and the algorithm uses them to compare two scanpaths across 
several dimensions. The goal is to retain the essential structure of the scanpath while 
removing unnecessary noise from small saccades or closely grouped fixations. This ensures 
that the final comparison reflects the meaningful elements of the eye movements without 
being affected by minor, local deviations.  
 
The MultiMatch algorithm was chosen as a primary analysis for my research because, unlike 
other simple methods that focus solely on fixation points or static eye movement patterns, 
MultiMatch provides a vector-based comparison that accounts for both spatial and temporal 
dimensions of eye movements, which is essential for understanding the nature of visual 
exploration. Moreover, by comparing sequential eye movement patterns across encoding and 
retrieval phases, MultiMatch allows us to detect these vector-based relationships and directly 
check the prediction of Bicanski & Burgess’ (2019) computational model. In the nutshell, 
MultiMatch uses Dijkstra’s algorithm (1959) to find the shortest path through a matrix that 
represents all possible vector pairings between the two scanpaths. This technique minimises 
the overall difference between the scanpaths by accounting for all potential pairings of 
saccadic vectors. The final comparison is based on five dimensions: 

1.​ Fixation Position: The exact spatial locations of fixations. 
2.​ Fixation Duration: Measuring how long each fixation lasted. 
3.​ Saccade Shape: Geometric shape of the saccadic vector paths. 
4.​ Saccade Direction: Direction of eye movements between fixations. 
5.​ Saccade Length: Measuring the distance between consecutive fixations. 

 
This approach allows us to capture the subtle variations in how participants’ eyes move 
across stimuli. Furthermore, its capacity to simplify and align scanpaths ensures that small, 
irrelevant movements, or overfixations on some objects do not bias the results. The algorithm 
was chosen to explore how encoding-recollection similarity (SERS) manifests and how 
specific scanpath properties correlate to memory performance, potentially providing a deeper 
understanding of the connection between eye movements and memory. 
  
2.7 Data Analysis 

To investigate whether and how scanpaths from encoding are reinstated during recall, I first 
calculated the MultiMatch similarity scores across all five dimensions—position, duration, 
shape, direction, and length—for each participant and each trial. These scores quantified how 
closely participants’ eye movements during the encoding phase resembled their scanpaths 
during retrieval, specifically focusing on how sequential reinstatement of saccades occurred.  

To establish the significance of the similarity scores for the scanpaths and determine whether 
scanpaths are more similar within trials than between trials, I conducted a permutation 
analysis. This involved comparing the scanpaths produced by each participant during the 
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encoding of one trial with those produced during the recall phase of other trials of the same 
type. The method involved creating a distribution of means from the similarity scores of these 
non-matching encoding-retrieval pairs across all trials. To achieve this, I performed a random 
permutation analysis, where for each permutation, encoding data from a specific trial was 
paired with retrieval data from a different, randomly selected trial of the same participant, and 
calculated the MultiMatch similarity score for each pair. After obtaining the mean score for 
this permuted set, the retrieval trials were randomly shuffled again, repeating the process 
until a smooth distribution of means was generated (with the total number of means equaling 
2000). By averaging the similarity scores from these non-matching pairs, I calculated 
distributions of sequential similarity scores for each participant, representing the expected 
level of similarity by chance across different trials. This provided a reference point to 
compare with the actual within-trial similarity scores for each participant.  

The mean similarity score from the true encoding-recall pairs was then plotted on the 
distribution to observe where it fell. If the scores were to exceed the 98.75th percentile (this is 
due to the Bonferroni correction of a 95th percentile threshold, as explained below), it 
indicated that the within-trial scanpath similarity was significantly higher than could be 
expected by chance, supporting the hypothesis about the sequential reinstatement of eye 
movements during recognition memory. 

Given the hypothesis that better reinstatement of scanpaths leads to better memory 
performance, after obtaining similarity scores for each trial, to account for individual 
participant variability and trial-specific effects, I employed a linear mixed-effects model. 
Using MATLAB’s fitlme function, I specified a model with Shape, Direction, Length, and 
Position Similarities as fixed effects. The duration dimension was not examined in the 
correlation analysis because the similarity scores for this dimension were consistently high, 
often approaching 1. This lack of variability in the duration scores was due to the time 
constraints in the experiment, which limited the differences in fixation durations between 
encoding and retrieval phases. As a result, the duration scores provided little meaningful 
variation to explore in relation to memory performance. Random intercepts were included for 
both Participant and Trial, allowing the model to account for inherent differences across 
participants and the variability associated with each trial. The model was structured as 
follows: ​
DistanceError ~ Similarity1 + Similarity2 + Similarity3 + Similarity4 + (1 | Participant) + (1 | 
Trial).​
​
The model’s fixed-effect coefficients are used to interpret the direction and strength of each 
similarity measure's relationship with the distance error, and, therefore, the memory 
performance — a negative coefficient would indicate that higher similarity predicts better 
memory performance, while a positive one would suggest the opposite. Additionally, the 
random intercepts for Participant and Trial could reveal variability in error distances 
attributable to individual differences and trial-specific factors, helping to control for baseline 
performance. 
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Additionally, I conducted a correlational analysis between the error distances (i.e., how far 
participants' gaze deviated from the correct location of the missing object during retrieval) 
and four of the MultiMatch dimensions—vector, direction, length, and position—from the 
similarity table. To further test the hypothesis that better reinstatement of scanpaths leads to 
better memory performance, I performed a one-tailed test, focusing on the negative 
correlation between error distances (the distance between a participant’s gaze and the correct 
location of the missing object) and the similarity scores across the four MultiMatch 
dimensions (vector, direction, length, and position). Therefore, for each participant, I 
computed four r-values and p-values corresponding to the correlation between their errors 
and the similarity scores in each dimension. Since each participant had four separate 
correlations, one for each dimension, the risk of committing a Type I error increases. To 
control for this risk, I applied a Bonferroni correction for adjusting the significance threshold 
when performing multiple comparisons. The correction ensures that the probability of 
obtaining a false positive remains controlled across all the tests. As the Bonferroni correction 
works by dividing the original alpha level (in this case, 0.05) by the number of comparisons 
being made, and since I conducted four comparisons per participant, the corrected 
significance threshold was calculated as follows: 

 

Thus, after applying the Bonferroni correction, only p-values below 0.0125 were considered 
statistically significant. ​
​
To evaluate participants' overall performance and determine whether there was a significant 
relationship between scanpath similarity and memory performance, I plotted each 
participant’s correlation scores (r) between the error distances and similarity scores across 
four dimensions. This allowed me to visually assess the distribution of correlation values 
across participants. Next, I calculated the mean correlation score for all participants in each 
dimension and compared this mean to 0, which represents the expected correlation due to 
chance. Therefore, I performed a one-sample t-test. This test was used to determine whether 
the mean correlation score across all participants was significantly different from 0, which 
represents the null hypothesis of no relationship between scanpath similarity and memory 
performance. By conducting the t-test, I was able to assess whether the observed correlations 
were significantly below 0, indicating a significant relationship between scanpath 
reinstatement and memory performance, or whether the observed correlations could be 
attributed to random chance. A significant result from the t-test would provide evidence that 
higher scanpath similarity is indeed predictive of better memory performance, supporting the 
idea that eye movements during encoding and retrieval play a crucial role in recognition 
memory. ​
​
To further investigate the sequential encoding-recollection similarity (SERS), I compared 
each participant’s encoding scanpaths with those produced by all other participants during the 
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retrieval phase of the same image. This across-participant comparison helped assess whether 
the scanpath reinstatements were truly individual-specific or if participants tended to follow 
similar scanpaths when recalling the same images. The rationale behind this comparison was 
to understand whether within-participant scanpath similarities (between their encoding and 
recall phases) were significantly different from the between-participant similarities. If all 
participants were to generate highly similar scanpaths for the same image, it could suggest 
that the task itself leads to universal visual exploration patterns, which would require 
reinterpreting the results. On the other hand, if the within-participant SERS scores are higher 
than those from between-participants, this would provide stronger evidence for 
individual-specific scanpath reinstatement supporting memory recall.  

The way this was done is similar to the permutation test described above, however, now it 
involved between participants comparisons. Each trial was assessed separately, comparing the 
scanpaths produced by each participant during the encoding of one trial with the retrieval 
scanpaths of other participants for the same trial. The method involved generating a 
distribution of means from the similarity scores of these non-matching encoding-retrieval 
pairs across all participants. Specifically, for a given trial, I randomly paired encoding data 
from a specific participant with retrieval data from a different participant, continuing this 
process through all participants. After obtaining the mean similarity score for this shuffled set 
of 16 pairings, I repeated this process 2000 times until a smooth distribution of means was 
generated. By averaging the similarity scores from these non-matching encoding-retrieval 
pairs, I calculated a distribution of sequential similarity scores for each trial, representing the 
expected level of similarity by chance across participants. And again the true means of the 
correct encoding-retrieval pairs were plotted, and if the true score exceeded the 98.75th 
percentile of the distribution, it indicated that the within-participant scanpath similarity was 
significantly higher than expected by chance. 
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3. RESULTS 
3.1 Are Scanpaths More Similar Within Than Between Trials?​
​
Participants' within-trial scanpath similarity scores across all five dimensions (position, 
duration, shape, direction, and length) were calculated using the MultiMatch method. The 
similarity scores for each participant and each dimension are displayed in the Supplementary 
Table 1. ​
​
To assess the significance of scanpath similarity within participants, I conducted a 
permutation analysis across four dimensions: Shape, Direction, Length, and Position. This 
analysis revealed 31 significant within-trial similarity scores across participants (p-values 
below 0.0125), indicating that observed scanpath patterns were unlikely to result from chance 
alone: 

●​ Shape Similarity was significant for Participants 1, 2, 5, 7, 9, 10, 11, and 13. 
●​ Direction Similarity was significant for Participants 1, 5, 6, 7, 9, 10, and 11. 
●​ Length Similarity was significant for Participants 1, 5, 9, 10, 11, and 13. 
●​ Position Similarity was significant for Participants 1, 3, 4, 5, 6, 7, 8, 9, 10, and 11. 

To evaluate whether this number exceeded what could be expected by chance, a binomial 
distribution analysis was conducted. With the Bonferroni-corrected chance threshold of 
1.25% per metric, the expected number of significant results by chance was calculated to be 
0.80. As illustrated in Figure 7, which depicts the binomial distribution, the actual observed 
number of significant results substantially exceeded this expectation  (p-value of 1.2 × 
10^-41). This outcome indicates that the observed within-participant scanpath similarities are 
highly significant. 

 
Figure 7: Binomial Distribution and Observed Significant Results. This figure illustrates 
the binomial distribution of expected significant results by chance (grey bars) compared to 
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the actual observed significant results (red line) across four similarity metrics and multiple 
participants. 
 
3.2 Relationship Between Scanpath Reinstatement and Memory Performance​
​
3.2.1 The Mixed-Effects Model​
The mixed-effects model revealed that only Position similarity had a statistically significant 
effect on Distance Error (F(1, 235) = 9.87, p = 0.0019), suggesting that better positional 
similarity between encoding and retrieval scanpaths was associated with lower error 
distances, as shown in the Figure 8. The random effects covariance parameters showed the 
variability in error distances attributable to participants, but not trial. The random intercept 
standard deviation for participants is estimated at 15.92, suggesting that there are individual 
differences in memory performance or visual encoding strategies between participants. 
The standard deviation for trial variable is very close to zero (8.171e-07), indicating minimal 
trial-to-trial variability beyond what is explained by the fixed effects and participant-level 
random intercepts. 

  
Figure 8: Fixed Effects Coefficients and Confidence Intervals for Similarity Measures in 
Predicting DistanceError.The figure displays coefficient estimates and 95% confidence 
intervals for four similarity measures — Shape, Direction, Length, and Position Similarity — 
from a linear mixed-effects model predicting Error Distances. 
​
3.2.2. Across-Participant Correlation Analysis​
For each participant, a correlation analysis was conducted between their error distances (the 
deviation between the participant’s gaze and the correct location of the missing object) and 
their scanpath similarity scores across four dimensions: shape, direction, length, and position. 
This resulted in four correlation coefficients (r-values) and associated p-values for each 
participant, shown in Figure 9.  
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​
Figure 9: Participants' p-values. The table presents the p-values for each participant's 
correlation scores between error distances and similarity scores across four dimensions: 
ShapeSimilarity, DirectionSimilarity, LengthSimilarity, and PositionSimilarity. Each row 
represents a participant, and each column corresponds to one of the four dimensions. 
P-values that are significant after Bonferroni correction (p < 0.0125) are highlighted in red, 
while p-values that are significant at the standard 0.05 level are highlighted in green. 

Out of the 16 participants, several showed significant negative correlations at the p < 0.05 
level across different dimensions, with a smaller number remaining significant after applying 
the stricter Bonferroni correction (p < 0.0125). Position Similarity demonstrated the strongest 
effect, with several participants retaining significance even after correction. Fewer 
participants showed significant correlations in Shape, Direction, and Length dimensions. 
Notably, some participants showed significant correlations in multiple dimensions 
simultaneously, like, participant number 2. The results across participants showed 
considerable variability, making it difficult to decisively reject the null hypothesis based 
solely on individual participant correlations. While some participants demonstrated 
significant correlations in multiple dimensions, the overall inconsistency—both before and 
after the Bonferroni correction—suggests that the relationship between scanpath similarity 
and memory performance may not be that uniform across individuals. However, the 
Across-Participant Mean Correlation Analysis might shed more light on the general trend. 

To assess the overall relationship between scanpath similarity and memory performance, the 
mean correlation scores (mean r-values) were calculated for each of the four dimensions by 
averaging the individual r-values from all participants. The mean r-values per participant 
were then compared to 0 (the null hypothesis of no relationship between scanpath similarity 
and memory performance), using one-sample t-tests.  
 
As shown in Figure 11, the Across-Participant Mean Correlation Analysis provided strong 
evidence supporting the hypothesis that greater scanpath similarity between encoding and 
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retrieval phases is associated with better memory performance. All three 
dimensions—ShapeSimilarity (p = 0.0034), DirectionSimilarity (p = 0.0011), and 
PositionSimilarity (p = 0.0001)—demonstrated significant negative correlations with memory 
performance, with PositionSimilarity showing the strongest effect. However, 
LengthSimilarity (p = 0.0228) did not reach statistical significance after the correction, 
indicating that saccade length may be less relevant to memory performance in this task. 
Notably, ShapeSimilarity appears to exhibit two distinct groups of participants, as visualised 
in the data, suggesting that different participants may have employed varying visual encoding 
strategies, highlighting the potential importance of individual differences. 
 
3.3 Are Scanpaths More Similar Within Than Between Participants? 

To assess whether the scanpath reinstatements were participant-specific or whether all 
participants followed similar visual exploration patterns during recall, each participant’s 
encoding scanpaths was compared with the retrieval scanpaths produced by other participants 
for the same object locations. This analysis revealed a total of 29 significant results across the 
trials, far exceeding the expected 0.75 results by chance (p < 5.07 × 10^(-39)), indicating that 
the observed scanpath patterns across participants were unlikely to be random, as in the 
Figure 10. 

●​ Shape Similarity was significant for Trials 1, 2, 4, 6, 8, 9, 10, 11, 12, 13, 15. 
●​ Direction Similarity was significant for Trials 3, 5, 6, 7, 11, 12, 13, 15. 
●​ Length Similarity was significant for Trials 1, 5, 9, 10, 11, 13. 
●​ Position Similarity was significant for Trials 2, 6, 7, 8, 10, 11, 12, 13, 15. 

 
Figure 10: Binomial Distribution for Across Participants Analysis and Observed Results. 
This figure illustrates the binomial distribution of expected significant results by chance (grey 
bars) compared to the actual observed significant results (red line) across four similarity 
metrics, multiple participants and trials. 
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Figure 11: Participants' Correlation Scores. The figure shows four scatter plots with 
participants' correlations between error distances and similarity scores across four 
dimensions: Shape, Direction, Length, and Position. Each dot represents a participant, 
coloured uniquely. A solid black vertical line marks r = 0, representing chance-level 
correlation, while a dashed red vertical line shows the mean correlation for each dimension. ​
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4. DISCUSSION​
 
In this project I designed a novel memory task that required participants to identify the 
missing object from an array, aiming to compare eye movements during encoding and 
retrieval. The main hypothesis was that scanpaths during these two phases would exhibit 
similarity, and that this similarity would correlate with memory performance. This hypothesis 
comes from a model of visual recognition memory in which the relative locations of visual 
features are encoded as a series of movements between them, and retrieval consists of testing 
for the presence of predicted features at the end of eye  movements from other features.    
 
4.1 Are Scanpaths More Similar Within Than Between Trials?​
The results of this study provide strong evidence that support the hypothesis that eye 
movements are reinstated during recognition memory, revealing a sequential 
encoding-recollection similarity across multiple dimensions (Shape, Direction, Length, and 
Position). The permutation analysis of within-participants scanpath similarities found 
significant within-trial similarity scores, suggesting that these patterns reflect intentional gaze 
behaviour rather than random eye movements. It also implies that the similarity scores 
obtained reflected memory-driven behaviour rather than individual visual tendencies. These 
findings were expected, as they fully support previous research on SERS (Wynn, Shen, & 
Ryan, 2019; Johansson & Nyström, 2022). ​
​
4.2 Are Scanpaths More Similar Within Than Between Participants? 
The results from the between-participant analysis further clarify the extent to which 
individual-specific scanpath patterns support memory recall. The significant scanpath 
similarities across multiple trials and dimensions suggest that, while certain visual 
exploration patterns are consistently caused by specific stimuli, the participant's memory 
recall process remains unique. These results highlight the role of individual-specific SERS 
and support the hypothesis that, despite some universal exploration tendencies, participants 
rely heavily on personalised visual strategies, which are often reinstated between encoding 
and recall.  
 ​
4.3 Relationship Between Scanpath Reinstatement and Memory Performance 
As for the relationship between SERS and memory performance, the linear mixed-effects 
model and the across-participant mean correlation analysis offer complementary but 
somewhat differing perspectives on the relationship between scanpath similarity and memory 
performance. ​
​
The linear mixed-effects model analysis provided the first insight into the relationship 
between scanpath similarity and memory performance. This model indicated that only 
Position Similarity was significantly associated with reduced error distances, suggesting that 
alignment in positional eye movements between encoding and retrieval was the primary 
factor linked to improved memory performance.  It is important to note also that the 
coefficient estimate interval for Shape similarity was substantially larger than those of the 



32 

other dimensions. This high variability, as well as the significance of the random intercept for 
participants, suggested that it is possible that some subjects were indeed aligning their 
scanpath shapes with memory performance, but others were not, prompting further 
investigation. Given the potential importance of Shape similarity, it seemed necessary to 
examine the relationship between memory performance and SERS through a more detailed 
analysis to capture the nuance of individual differences, leading to a correlation analysis of 
these dimensions. 
 
The across-participant mean correlation analysis provides strong evidence that scanpath 
similarity across several dimensions, specifically shape, direction, and position, is 
significantly associated with memory performance in a visual recognition task. Participants 
who demonstrated greater similarity in their eye movements between the encoding and 
retrieval phases tended to perform better, as indicated by lower error distances in locating the 
missing objects. The fact that shape, direction, and position dimensions all showed significant 
relationships with memory performance suggests that participants are not only revisiting the 
same locations during retrieval but are also replicating the spatial path and movement 
patterns from encoding. This pattern of reinstatement aligns with the previous theories on the 
relationship between SERS and memory performance (Johansson & Nyström, 2022; Bone, 
Ritchie, Millin, & O’Connor, 2022; Foulsham, Barton, & Kingstone, 2018), including the 
possible involvement of grid cells in guiding eye movements (Bicanski & Burgess, 2019). By 
replicating the saccadic paths from encoding, participants may be utilising a cognitive 
mechanism similar to how the brain processes spatial relationships during navigation, further 
indicating that eye movements serve as a spatial mapping tool for memory retrieval. ​
​
It is important to note also that in individual correlation scores for the Shape dimension, there 
appears to be a clustering pattern, with participants forming two distinct groups: one with 
negative correlations between distance error and similarity score and the other closer to zero, 
but also negative, as shown in the Figure 11. This clustering suggests that participants may be 
using different visual encoding and memory strategies, which aligns with the findings from 
the linear mixed-effects model, further indicating variability and less consistency in how 
participants engage with this aspect of scanpath similarity. This variability may imply that, 
while some participants display strong alignment in Shape similarity with improved memory 
performance, others do not. This variability could explain why, despite previous finding, the 
Shape similarity did not reach significance in the mixed-effects model in our experiment. To 
explore this further, the correlation scores between Shape and Direction similarity were 
analysed, yielding a significant result (R = 0.6874, p = 0.0033). Notably, this was the only 
significant correlation observed among the different dimension pairs, indicating that Shape 
and Direction may share a unique relationship in how they support memory performance, and 
that there might indeed be two distinct groups of participants. These findings for the Shape 
dimension can be explained also by the small sample size in this study, and, therefore, 
increasing the number of participants could help clarify these trends and provide a more 
robust assessment of the Shape dimension’s role in memory performance.​
​
The strongest correlation with memory performance in the current study was found in the 
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position similarity dimension. This result is surprising, given that during the retrieval phase, 
participants could still view the objects (except for the missing one) on the screen, unlike in 
the Johansson and Nyström’s (2022) study, where participants were required to recall the 
scene while staring at a blank screen. The presence of the objects likely made it easier for 
participants to match their eye movements with previously encoded positions, which should 
have resulted in consistently high (if not uniform) similarity scores for the position 
dimension, but it did not. Therefore, it is interesting to see the stronger correlations for the 
position similarities, and it requires closer examination in future research to fully understand 
its implications. One possible explanation is that the large size of the objects on the screen 
allowed participants who focused on and revisited precise details of each object, rather than 
only approximate positions, to achieve better memory performance. This suggests that 
focused attention on specific object features, rather than general positional revisits, may 
enhance memory recall by supporting more detailed visual encoding.​
​
It is also important to note that, similar to the Johansson and Nyström (2022) study’s 
findings, SERS in length and duration were insignificant in our study. They argued that these 
properties are typically dependent on visual features from the image, which are absent or 
obscured, when participants recall from a blank screen. This likely applies to our study as 
well, and that would explain why the length of saccades was not found to play a significant 
role in aiding memory performance. 
 
Overall, these results provide robust support for the hypothesis that certain dimensions of eye 
movement patterns, particularly shape, direction, and position are reinstated during memory 
recall. Position similarity, in particular, was also found to play a crucial role in memory 
performance. However, the observed insignificant result and variability within the shape 
dimension asks for closer examination in future studies to understand the nuances in 
individual encoding and retrieval strategies that might influence this relationship.​
​
4.4 Directions for Future Research 

One of the most promising directions for future research is to extend the current paradigm to 
face recognition. Similar to navigating between objects, it would be valuable to explore how 
participants navigate between salient facial features during encoding and retrieval phases, 
also following the theoretical framework suggested by Bicanski & Burgess’ (2019) model. 
Future studies could replicate the current experiment using faces as stimuli, allowing us to 
see if participants’ eye movements during face recognition also exhibit sequential 
reinstatement similar to that observed with object recognition. It is important to note that the 
large body of literature already exists identifying specific brain regions—such as the fusiform 
face area (FFA)—that are activated during face recognition (Freiwald, 2020). These regions 
are thought to be specialised for holistic face processing, which differs from the way 
relational memory is typically studied with object locations. Therefore, the new experimental 
paradigm would be crucial in ensuring that the face is not perceived as a whole, but rather as 
a set of individual salient features, such as eyes, nose, and mouth. ​
​
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Furthermore, given that current research does not yet investigate the direct role of grid cells 
in memory-guided eye movements. A logical next step would be to combine the 
Object-Location Memory Test paradigm developed here with neuroimaging techniques, such 
as fMRI, to directly observe whether grid-like representations in the entorhinal cortex are 
activated during visual recognition tasks. This could provide further evidence connecting grid 
cell activity with visual memory in humans. The same can be done with the face recognition 
experiment. In a study that came out in September 2024, called "Entorhinal grid-like codes 
for visual space during memory formation", researchers did a similar experiment investigated 
the role of saccade-based grid-like codes in the human entorhinal cortex during memory 
formation (Graichen et al., 2024). Similarly to what Bicanski & Burgess (2019) predicted 
they found that these grid-like codes were consistently present as participants studied visual 
scenes. However, it remains unclear whether the signals encode relational information 
between scene elements or simply respond to eye movements. Interestingly the researchers 
found that stronger grid signals were associated with worse individual recognition memory. 
The way researchers explained this result was that participants with better recognition 
memory may have used a different strategy, integrating prior knowledge or schemas to 
enhance memory performance, rather than relying solely on visuospatial encoding. Our new 
paradigm is well-suited to explore this possibility, as it controls for such external influences 
by restricting peripheral vision and forcing participants to rely primarily on eye 
movement-based encoding, allowing for a clearer future assessment of grid-cell involvement 
in memory. ​
​
Additionally, it would be fascinating to explore the role of grid cells in memory recognition 
in mental illnesses. For example, recent research has indicated that grid-like theta modulation 
is reduced in patients with schizophrenia (Convertino et al., 2023). And if grid-like 
representations are confirmed to aid memory performance, this could suggest that grid cell 
dysfunction may not be limited to spatial processing but could also affect cognitive functions, 
in psychiatric conditions. A logical extension of this research would be to apply the current 
paradigm to populations with mental illnesses, particularly schizophrenia, to see if there are 
deficits in the reinstatement of scanpaths and whether these deficits are associated with 
altered grid-like neural activity. 

Another intriguing area for future investigation is whether grid cells play a role in other 
cognitive functions, besides navigation and memory. Theoretical research by Chen et al. 
(2022) such as “Are Grid-Like Representations a Component of All Perception and 
Cognition?” suggests that these neural mechanisms, grid cells, may be supporting varied 
perceptual and cognitive functions across different sensory inputs. Exploring this possibility 
would provide a more comprehensive understanding of whether grid cells are truly a 
universal representation system.​
​
Lastly, studies like Schroeger et al (2020) and Hwang et al. (2012) on spatial and temporal 
eye–hand coordination emphasises the role of the parietal reach region (PRR) in coordinating 
eye and hand movements. This region could also be explored in future research in relation to 
grid cell activity, combining eye and hand tracking with neuroimaging to determine if the 
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entorhinal cortex and PRR work together to guide coordinated eye-hand movements during 
spatial memory tasks and exhibit grid-like representations. 
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SUPPLEMENTARY MATERIALS​
Table 1. The similarity scores for each participant and each dimension.​
 

 

Trial

1 
Trial

2 
Trial

3 
Trial

4 
Trial 

5 
Trial

6 
Trial

7 
Trial

8 
Trial

9 
Trial

10 
Trial

11 
Trial 

12 
Trial

13 
Trial

14 
Trial

15  

P1 0,808 0,837 0,826 0,846 0,847 0,874 0,852 0,955 0,870 0,932 0,918 0,854 0,823 0,849 0,930 Shape 

P1 0,578 0,546 0,772 0,714 0,742 0,870 0,690 0,891 0,829 0,857 0,913 0,698 0,685 0,752 0,872 Direction 

P1 0,815 0,927 0,821 0,845 0,870 0,894 0,884 0,956 0,826 0,942 0,958 0,877 0,822 0,916 0,952 Length  

P1 0,739 0,814 0,790 0,819 0,746 0,829 0,793 0,920 0,849 0,824 0,921 0,833 0,725 0,800 0,934 Position 

P1  1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 Duration 

P2 0,898 0,920 0,863 0,863 0,904 0,833 0,856 0,791 0,890 0,939 0,871 0,837 0,925 0,926 0,843 Shape 

P2 0,857 0,827 0,623 0,855 0,772 0,592 0,606 0,711 0,835 0,921 0,764 0,770 0,937 0,857 0,821 Direction 

P2 0,884 0,937 0,864 0,879 0,893 0,888 0,908 0,913 0,893 0,934 0,878 0,856 0,916 0,931 0,760 Length  

P2 0,814 0,884 0,734 0,746 0,740 0,732 0,731 0,612 0,781 0,925 0,818 0,688 0,850 0,897 0,738 Position 

P2 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,633 1,000 1,000 1,000 Duration 

P3 0,858 0,883 0,886 0,828 0,744 0,727 0,879 0,723 0,914 0,942 0,918 0,810 0,846 0,841 0,956 Shape 

P3 0,624 0,786 0,918 0,657 0,714 0,798 0,682 0,594 0,859 0,928 0,833 0,893 0,607 0,857 0,870 Direction 

P3 0,853 0,906 0,893 0,869 0,828 0,595 0,910 0,628 0,932 0,887 0,943 0,752 0,950 0,937 0,976 Length  

P3 0,822 0,839 0,922 0,826 0,687 0,728 0,787 0,732 0,728 0,944 0,902 0,767 0,811 0,890 0,938 Position 

P3 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 Duration 

P4 0,829 0,905 0,619 0,915 0,869 0,896 0,883 0,846 0,843 0,911 0,862 0,900 0,931 0,855 0,952 Shape 

P4 0,755 0,818 0,515 0,582 0,726 0,785 0,648 0,876 0,745 0,909 0,661 0,762 0,864 0,915 0,877 Direction 

P4 0,884 0,953 0,493 0,923 0,932 0,933 0,918 0,931 0,849 0,944 0,948 0,902 0,926 0,882 0,941 Length  

P4 0,759 0,919 0,602 0,939 0,850 0,901 0,774 0,790 0,601 0,932 0,918 0,914 0,908 0,743 0,927 Position 

P4 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,550 1,000 1,000 1,000 1,000 1,000 1,000 Duration 

P5 0,946 0,894 0,974 0,739 0,690 0,933 0,891 0,787 0,887 0,894 0,840 0,871 0,953 0,888 0,953 Shape 

P5 0,937 0,815 0,897 0,872 0,756 0,941 0,964 0,546 0,833 0,696 0,362 0,704 0,953 0,700 0,874 Direction 

P5 0,930 0,883 0,972 0,643 0,517 0,935 0,955 0,923 0,934 0,935 0,888 0,929 0,911 0,904 0,951 Length  

P5 0,941 0,808 0,948 0,759 0,782 0,928 0,935 0,856 0,690 0,928 0,795 0,897 0,935 0,913 0,957 Position 

P5 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 Duration 

P6 0,909 0,949 0,637 0,961 0,961 0,885 0,860 0,938 0,925 0,888 0,960 0,829 0,853 0,961 0,938 Shape 
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P6 0,942 0,939 0,774 0,974 0,936 0,936 0,618 0,915 0,813 0,674 0,970 0,884 0,744 0,908 0,911 Direction 

P6 0,924 0,899 0,475 0,941 0,937 0,865 0,911 0,927 0,900 0,937 0,951 0,927 0,927 0,957 0,901 Length  

P6 0,869 0,957 0,923 0,920 0,940 0,914 0,821 0,822 0,855 0,838 0,954 0,965 0,839 0,959 0,915 Position 

P6 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 Duration 

P7 0,928 0,935 0,950 0,925 0,884 0,871 0,941 0,751 0,922 0,983 0,819 0,845 0,976 0,915 0,814 Shape 

P7 0,964 0,873 0,749 0,900 0,473 0,700 0,893 0,617 0,809 0,976 0,315 0,882 0,971 0,826 0,657 Direction 

P7 0,869 0,945 0,944 0,950 0,959 0,880 0,894 0,761 0,954 0,970 0,855 0,839 0,975 0,888 0,789 Length  

P7 0,903 0,924 0,885 0,906 0,666 0,795 0,927 0,700 0,908 0,980 0,936 0,955 0,967 0,796 0,828 Position 

P7 1,000 1,000 1,000 1,000 0,022 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 Duration 

P8 0,821 0,785 0,869 0,774 0,806 0,864 0,788 0,967 0,908 0,784 0,848 0,970 0,884 0,808 0,934 Shape 

P8 0,688 0,580 0,846 0,581 0,450 0,746 0,834 0,969 0,874 0,505 0,606 0,977 0,868 0,430 0,947 Direction 

P8 0,839 0,791 0,819 0,823 0,896 0,867 0,769 0,944 0,829 0,824 0,865 0,942 0,952 0,919 0,976 Length  

P8 0,832 0,757 0,728 0,579 0,635 0,812 0,811 0,968 0,828 0,889 0,740 0,973 0,867 0,520 0,948 Position 

P8 1,000 1,000 0,906 1,000 0,856 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 Duration 

P9 0,966 0,821 0,858 0,915 0,923 0,860 0,861 0,835 0,861 0,887 0,952 0,947 0,973 0,807 0,926 Shape 

P9 0,942 0,233 0,726 0,962 0,834 0,751 0,743 0,616 0,705 0,770 0,937 0,955 0,979 0,508 0,876 Direction 

P9 0,974 0,934 0,893 0,909 0,926 0,903 0,936 0,945 0,929 0,929 0,973 0,936 0,967 0,920 0,931 Length  

P9 0,955 0,754 0,761 0,907 0,916 0,708 0,958 0,731 0,739 0,854 0,929 0,911 0,938 0,787 0,940 Position 

P9 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 Duration 

P10 0,961 0,938 0,919 0,850 0,839 0,940 0,934 0,873 0,830 0,943 0,906 0,903 0,969 0,870 0,948 Shape 

P10 0,948 0,903 0,706 0,666 0,898 0,851 0,934 0,731 0,837 0,955 0,845 0,898 0,941 0,783 0,906 Direction 

P10 0,950 0,932 0,918 0,833 0,876 0,951 0,898 0,930 0,819 0,959 0,916 0,909 0,974 0,950 0,949 Length  

P10 0,938 0,929 0,844 0,739 0,647 0,940 0,922 0,844 0,791 0,943 0,962 0,906 0,964 0,894 0,961 Position 

P10 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 Duration 

P11 0,935 0,855 0,947 0,971 0,975 0,899 0,969 0,944 0,835 0,799 0,913 0,855 0,793 0,932 0,908 Shape 

P11 0,857 0,770 0,973 0,947 0,973 0,976 0,984 0,916 0,499 0,409 0,843 0,534 0,506 0,823 0,886 Direction 

P11 0,920 0,941 0,938 0,958 0,961 0,934 0,948 0,908 0,883 0,646 0,874 0,834 0,898 0,941 0,910 Length  

P11 0,850 0,714 0,945 0,952 0,961 0,915 0,932 0,893 0,631 0,792 0,923 0,722 0,703 0,830 0,842 Position 

P11 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,011 1,000 1,000 1,000 Duration 

P12 0,858 0,898 0,897 0,891 0,891 0,890 0,849 0,799 0,825 0,899 0,833 0,866 0,864 0,807 0,888 Shape 

P12 0,612 0,736 0,703 0,735 0,663 0,801 0,781 0,636 0,686 0,830 0,674 0,801 0,753 0,643 0,925 Direction 
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P12 0,849 0,916 0,948 0,892 0,958 0,895 0,774 0,684 0,769 0,886 0,907 0,859 0,847 0,733 0,870 Length  

P12 0,815 0,725 0,782 0,672 0,736 0,775 0,803 0,619 0,781 0,770 0,748 0,721 0,796 0,781 0,829 Position 

P12 1,000 1,000 0,822 1,000 0,481 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 Duration 

P13 0,858 0,875 0,895 0,834 0,866 0,840 0,843 0,835 0,833 0,902 0,889 0,874 0,832 0,816 0,856 Shape 

P13 0,522 0,616 0,722 0,564 0,605 0,792 0,780 0,635 0,725 0,836 0,807 0,808 0,499 0,649 0,808 Direction 

P13 0,848 0,891 0,908 0,874 0,882 0,807 0,771 0,857 0,780 0,906 0,856 0,849 0,926 0,746 0,915 Length  

P13 0,754 0,777 0,725 0,663 0,708 0,772 0,767 0,648 0,763 0,764 0,706 0,738 0,772 0,779 0,827 Position 

P13 0,430 0,668 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,718 Duration 

P14 0,840 0,888 0,896 0,896 0,852 0,879 0,913 0,899 0,916 0,885 0,852 0,878 0,921 0,887 0,888 Shape 

P14 0,753 0,618 0,803 0,815 0,783 0,721 0,860 0,786 0,919 0,646 0,602 0,688 0,793 0,686 0,759 Direction 

P14 0,904 0,912 0,937 0,922 0,902 0,943 0,902 0,886 0,913 0,904 0,958 0,920 0,951 0,951 0,903 Length  

P14 0,793 0,740 0,708 0,762 0,661 0,765 0,853 0,733 0,802 0,813 0,563 0,706 0,869 0,560 0,769 Position 

P14 0,988 1,000 0,950 1,000 1,000 1,000 0,888 1,000 1,000 1,000 0,030 0,432 1,000 0,997 0,833 Duration 

P15 0,865 0,882 0,909 0,916 0,902 0,902 0,876 0,828 0,917 0,915 0,861 0,913 0,874 0,868 0,818 Shape 

P15 0,766 0,843 0,754 0,841 0,799 0,792 0,736 0,630 0,795 0,731 0,757 0,773 0,709 0,791 0,754 Direction 

P15 0,840 0,883 0,903 0,936 0,907 0,919 0,910 0,864 0,920 0,956 0,924 0,937 0,935 0,900 0,828 Length  

P15 0,574 0,794 0,783 0,796 0,762 0,834 0,763 0,653 0,726 0,860 0,598 0,792 0,725 0,806 0,753 Position 

P15 1,000 1,000 1,000 1,000 1,000 1,000 0,982 0,897 1,000 1,000 0,917 0,987 0,840 0,503 0,935 Duration 

P16 0,828 0,871 0,877 0,874 0,819 0,889 0,874 0,848 0,872 0,865 0,891 0,860 0,868 0,817 0,902 Shape 

P16 0,642 0,756 0,831 0,555 0,780 0,653 0,774 0,704 0,681 0,630 0,879 0,782 0,536 0,592 0,851 Direction 

P16 0,777 0,857 0,859 0,930 0,884 0,912 0,932 0,870 0,943 0,918 0,856 0,847 0,940 0,905 0,924 Length  

P16 0,604 0,717 0,797 0,628 0,724 0,764 0,694 0,756 0,747 0,786 0,829 0,855 0,811 0,814 0,818 Position 

P16 1,000 1,000 1,000 1,000 0,636 1,000 1,000 1,000 1,000 0,777 1,000 1,000 1,000 1,000 1,000 Duration 
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Object-Location Memory Experiment Procedure. ​
Step-by-Step Process: 

1.​ Pre-Experiment Setup: 
○​ Participants are informed about the task and time constraints in the 

instructions before the experiment begins. 

○​ A calibration session takes place.  

○​ An untimed practice session is conducted to allow participants to familiarize 
themselves with the task, ask questions, and identify any calibration issues 
with the equipment. 

2.​ Start of the Experiment: 
○​ The main experiment consists of 5 testing blocks, each containing three 

encoding-retrieval pairs (3 encoding trials followed by 3 retrieval trials). 
3.​ Encoding Phase (3 trials): 

○​ In the encoding phase, as demonstrated in Figure S1, participants are looking 
at the dark screen where a randomly generated arrangement of objects is 
hidden. Their vision is constrained to a small circular area of focus, so only the 
objects in the area of focus are visible, meaning participants can only see 
objects when they look at them directly. 

○​ Participants are instructed to locate all 5 hidden objects and remember their 
location.  

4.​ Retrieval Phase (3 trials): 
○​ In each block, after 3 encoding trials, participants are shown the same object 

arrangements in the 3 trials of the retrieval phase. 

○​ In this phase, one object is missing, and participants need to identify where the 
missing object was located in the original arrangement and focus on its 
location. 

○​ The foveated vision constraint is still active, requiring participants to focus on 
specific areas of the screen to find the missing object. 

○​ If a participant focuses on the same area for 5 seconds continuously, the 
program automatically proceeds to the next trial, indicating they have likely 
located the missing object. 

5.​ Trial Completion: 
○​ Each encoding or retrieval trial has a 30-second time limit. 

○​ If the participant has not identified the missing object by the end of the 30 
seconds, the trial will automatically move to the next one. 

6.​ Block Completion: 
○​ Each testing block consists of three encoding-retrieval pairs. Once the three 

encoding and three retrieval trials are completed, participants can take a short 
break. 

○​ Before starting a new block, participants are reminded of the task instructions. 
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7.​ Completion of the Experiment: 
○​ After completing all blocks, the experiment ends. 

○​ Participants are given a final opportunity to ask questions and receive 
debriefing. 

​
Figure S1: Visual Setup of the Experimental Trial. The figure shows a screenshot of the 
Object-Location Memory Experiment during the encoding or retrieval phase. The image 
illustrates an object within a circular area of focus, simulating the foveated vision condition. 
Only the object within this area is visible, while the surrounding space is obscured. This 
demonstrates how the participant's gaze is tracked, with the circle following eye movements 
to reveal the objects in focus.  
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