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Subclinical Atherosclerosis Risk Can Be 
Predicted in Female Patients With Systemic 
Lupus Erythematosus Using Metabolomic 
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BACKGROUND: Cardiovascular disease (CVD) is a leading cause of death in women with systemic lupus erythematosus (SLE) 
due to accelerated atherosclerosis that is not predicted by established CVD risk scores. This study aimed to develop, validate, 
and test a female-focused predictive atherosclerosis risk signature based on serum metabolites in patients with SLE.

METHODS AND RESULTS: Female patients with SLE were assessed for the presence (SLE-P; n=18) or absence (SLE-NP; n=26) 
of subclinical atherosclerosis using vascular ultrasound for carotid/femoral intima-media thickness. CVD risk was assessed 
using QRISK3 (which includes SLE diagnosis as a risk factor) and Framingham Risk Score. Serum metabolomics (n≥250) 
was performed and analyzed using machine learning pipelines. Despite having subclinical atherosclerosis, 44.8% to 100% of 
patients with SLE-P had low CVD risk according to QRISK3/Framlingham Risk Score scores. Using a lipid-focused metabo-
lomic analysis, an improved atherosclerosis risk predictive signature was developed comprising 35 metabolites/5 clinical traits 
that classified patients with SLE-P and outperformed CVD risk assessment tools, lipid profiles measured in routine care, and 
clinical features alone. This “atherosclerosis risk signature” was validated in a second adult female SLE cohort (n=98) that pre-
dicted plaque status with moderate accuracy (area under the receiver operating characteristic curve, 0.79). The signature was 
then refined into a 5-feature subclinical plaque-predictive score that not only stratified the combined SLE-P/SLE-NP cohorts 
(n=142; area under the receiver operating characteristic curve, 0.84) but also predicted 3-year atherosclerosis progression 
in female postpubertal patients with juvenile-onset SLE (n=36; area under the receiver operating characteristic curve, 0.79). 
Finally, the 5-feature score identified distinct high and low subclinical atherosclerosis risk subgroups in a “real-world” setting 
of unscanned adult patients with SLE (n=38).

CONCLUSIONS: This atherosclerosis risk score could improve CVD risk assessment/management in female patients with SLE 
across age. Validation in non-SLE and healthy cohorts could further substantiate these findings.
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Cardiovascular disease (CVD) is the leading 
cause of death globally and, despite a greater 
prevalence in men than women,1 ischemic heart 

disease (16.13%) and stroke (14.26%) are leading 
causes of death in women (all ages; https://​vizhub.​
healt​hdata.​org/​gbd-​compa​re/​).2 CVD is particularly 
prevalent in autoimmune diseases characterized by 
systemic inflammation and a major cause of death 
in systemic lupus erythematosus (SLE), a chronic 
multisystem autoimmune disease with a 90% female 
prevalence.3 The overall risk of CVD has been shown 
to be increased 50-fold in women with SLE aged 
35 to 44 years,4 and CVD accounts for ≈25% of all 
deaths in SLE, attributed to premature and acceler-
ated atherosclerosis.5

The link between SLE and the heightened CVD 
risk is not completely understood and is complicated 
by the lack of knowledge about CVD risk in women 
because a disproportionate amount of CVD research 
has been conducted in men.6 Asymptomatic athero-
sclerotic plaques appear before the onset of CVD 
symptoms and have been identified in up to 40% of 
patients with SLE.7 Traditional CVD risk factors, such 
as dyslipidemia, diabetes, hypertension, and obesity 
are increased in patients with SLE across age8 and 
are intertwined with SLE-specific factors contributing 
to increased CVD risk, including an association with 
suboptimal disease activity control, antiphospholipid 
antibodies and SLE treatment type, and subclinical 
atherosclerosis and CVD.4,9

However, CVD risk score assessment tools, such 
as the Framingham and American Heart Association 
Atherosclerotic Cardiovascular Disease risk scores, 
significantly underestimate CVD risk in women and 
adults with SLE,10,11 while estimating this risk in chil-
dren and young people with juvenile-onset SLE (JSLE) 
is even more challenging.12 Additional weighting given 
to a diagnosis of SLE has been adopted in attempts 
to improve sensitivity, including the QRISK3,13 which 
improves CVD risk detection in patients with SLE.14 
Notably, not all patients with SLE have dyslipidemia, 
and patients with SLE often have serum lipid lev-
els within currently defined normal ranges, which 
could contribute to poor performance of CVD risk 

CLINICAL PERSPECTIVE

What Is New?
•	 A combined metabolite–clinical trait plaque/ath-

erosclerosis risk signature was developed using 
widely credited machine learning models that 
correctly classified patients with systemic lupus 
erythematosus (SLE) with subclinical plaque with 
high accuracy. This atherosclerosis risk signature 
was validated in a second external cohort of pa-
tients with SLE scanned for subclinical plaque.

•	 The atherosclerosis signature was refined into a 
5-feature panel that correctly stratified patients 
with/without subclinical atherosclerosis and 
identified patients with juvenile-onset SLE with 
high versus low atherosclerosis progression.

•	 In a “real-world” setting, the 5-feature atheroscle-
rosis risk panel identified a group of unscanned 
patients with SLE at potential elevated plaque 
risk, suggesting that this tool could help improve 
stratification of at-risk patients for enhanced car-
diovascular disease risk monitoring/treatment.

What Are the Clinical Implications?
•	 Current routine cardiovascular disease risk as-

sessment does not accurately estimate athero-
sclerosis risk in patients with SLE, meaning that 
patients who could benefit from more regular 
monitoring or intervention are not identified.

•	 Evidence from this study could be used to de-
velop a low-cost metabolite assay to assess 
cardiovascular disease risk for use in clini-
cal practice. We highlight several metabolites 
that can be modulated by diet or lipid-targeting 
therapies. Therefore, information presented here 
could be used to help guide lifestyle and clinical 
management.

Nonstandard Abbreviations and Acronyms

ALSPAC	 Avon Longitudinal Study of Parents 
and Children

APPLE	 Atherosclerosis Prevention in 
Pediatric Lupus Erythematosus

BILAG	 British Isles Lupus Assessment 
Group

CIMT	 carotid intima-media thickness
FA	 fatty acid
JSLE	 juvenile-onset systemic lupus 

erythematosus
LR	 logistic regression
MESA	 Multi-Ethnic Study of Atherosclerosis
ML	 machine learning

SLE-NP	 systemic lupus erythematosus with 
no subclinical atherosclerosis

SLE-P	 systemic lupus erythematosus with 
subclinical atherosclerosis

UCLH	 University College London Hospitals
UCLH-40	 University College London Hospitals 

signature
XGB	 eXtreme gradient boost
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assessment scores. Furthermore, vascular screening 
or other imaging techniques with increased sensitivity 
for subclinical atherosclerosis detection are not reg-
ularly recommended or widely available in SLE care. 
Thus, there is an unmet need to improve CVD risk as-
sessment in patients with SLE.

Our previous work shows that more detailed anal-
ysis of serum metabolite signatures (including com-
plex lipids) can effectively stratify patients with SLE 
with and without subclinical atherosclerosis.15,16 This 
study now aims to develop, validate, and test a pre-
dictive CVD risk signature based on serum metab-
olites that could identify patients who would benefit 
from more frequent lipid monitoring or preventative 
therapies.

METHODS
Data Availability Statement
Metabolomic data will be made available on publication 
by request to the corresponding authors.

Study Participants
See Figure 1 for the study design plan.

University College London Hospitals 
Discovery Cohort

In this cross-sectional study, consent was obtained from 
female patients with SLE meeting the American College 
of Rheumatology classification for SLE17 or the Systemic 

Figure 1.  Diagram depicting patient cohorts with SLE and workflow of analysis.16,21,22

APPLE indicates Atherosclerosis Prevention in Pediatric Lupus Erythematosus trial; CVD, cardiovascular 
disease; JSLE, juvenile-onset systemic lupus erythematosus; LASSO, least absolute shrinkage and 
selection operator; LR, logistic regression; NN, neural network; RF, random forest; SLE-NP, systemic 
lupus erythematosus with no subclinical atherosclerosis; SVM, support vector machine; UCLH, University 
College London Hospitals; and XGB, eXtreme gradient boost.

Validation

Cinical health records
CVD risk scores

Serum metabolomics
(Nightingale)

Machine learning
Classification/regression

Athens cohort n=98
Tektonidou et al, 2017

Unscanned UCLH 
cohort n=38

LASSO-LR, RF, NN, SVM, XGB 

UCLH40 CVD risk
 signature

5-feature
CVD risk score

LR forest plot adjusted for:
age, ethnicity, disease activity,

treatment

UCLH discovery cohort: Noninvasive ultrasound scanning of carotid/femoral
 arteries define subclinical plaque (SLE-P, n=18) and no plaque (SLE-NP, n=26) 

groups (100% female, CVD-free) 

APPLE JSLE cohort
n=34. Peng et al, 2023

Combined UCLH/ Athens 
cohort n=142
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Lupus International Collaborating Clinics criteria18 at the 
time of recruitment (2017/2018) and in accordance with 
juvenile cohorts, with no previous history of CVD, from an 
adult rheumatology clinic at University College London 
Hospitals (UCLH; n=44) and underwent carotid and 
femoral ultrasound scans.7 Patients were stratified by the 
presence of ≥1 focal plaques in the carotid or femoral 
arteries (SLE-P; n=18) and those remaining plaque free 
(SLE-NP; n=26). Plaque characteristics assessed by vas-
cular ultrasound are described in Table S1 and in Croca 
et al.7 Clinical and serological measures were recorded at 
the time of the vascular scan and extracted from UCLH 
clinical health records (see Table 1 for clinical and demo-
graphic information). QRISK3, which includes SLE as a 
risk factor,13 and the Framingham Risk Score19 were used 
to assess CVD risk. Disease activity was assessed using 
global British Isles Lupus Assessment Group (BILAG 
2004) global score with active disease calculated as ≥8.20

Athens Validation Cohort

Female patients with SLE (N=98) fulfilling ≥4 of the 
American College of Rheumatology classification crite-
ria for SLE17 and without clinically diagnosed CVD were 
recruited in 2012 from the Rheumatology Unit, First 
Department of Propaedeutic Internal Medicine at Laiko 
Hospital, National and Kapodistrian University of Athens, 
Greece. Patients underwent vascular ultrasound scans 
for subclinical atherosclerotic plaques (described in 
Tektonidou et al21) (SLE-NP, n=77; SLE-P n=21). Further 
information is found in Supplementary Methods.

JSLE Cohort

Female patients with JSLE enrolled in the APPLE 
(Atherosclerosis Prevention in Pediatric Lupus 
Erythematosus) trial between 2006 and 2009 (Clini​
calTr​ials.​gov Identifier NCT00065806; Chief investiga-
tor, Laura E. Schanberg).22 Female patients with JSLE 
(n=34: postpuberty; age: 16.44±2.44 [range, 11–20]; 
100% female patients) in the placebo group were strati-
fied according to carotid intima-media thickness (CIMT) 
progression over 3 years (high progression, n=19; low, 
n=15) described in Peng et al.16

Test Unscanned Cohort (UCLH)

An additional cross-sectional cohort of women with 
SLE (N=38) with no prior CVD history attending UCLH 
Rheumatology Clinic were recruited between 2015 
and 2019. Clinical features were recorded at the time 
of serum sampling.

Study Approvals

All patients provided informed written consent/assent 
according to the Declaration of Helsinki. All patient 

information was anonymized or pseudo-anonymized in 
accordance with relevant data protection legislation (EU 
General Data Protection Regulation [https://​www.​eug-
dpr.​org/​] and UK Data Protection Bill, 2018). This study 
was approved by the London–City and East Research 
Ethics Committee of the National Health Service 15-
LO-2065, London–Harrow Research Ethics Committee 
(REC11/LO/0330) (UCLH cohorts); the Institutional 
Review Board of Laiko Hospital, Athens, Greece (Athens 
cohort), and local institutional review board approval from 
the 21 Childhood Arthritis and Rheumatology Research 
Alliance sites in North America (APPLE cohort).

Metabolomics
Sera from patient cohorts were analyzed using the 
Nightingale Health nuclear magnetic resonance me-
tabolite platform comprising ≥250 metabolites, includ-
ing absolute concentrations, percentages, and ratios 
of lipoprotein composition: apolipoproteins, very-low-
density, intermediate-density (IDL), and high-density 
(HDL) lipoprotein particles of different sizes ranging from 
chylomicrons and extremely large, very large, large, me-
dium, small, and very small; the composition of each 
lipoprotein class, including concentrations of total li-
pids, phospholipids, cholesterol, cholesterol esters, free 
cholesterol, and triglycerides; other metabolites include 
amino acids, glycolysis-related metabolites, and ketone 
bodies (Nightingale Health, https://​resea​rch.​night​ingal​
eheal​th.​com/​). Table S2 provides a metabolite list.

Machine Learning–Derived Metabolomics 
Signature Curation
Classification and regression methods were applied to 
metabolomic data: univariate logistic regression (LR), 
least absolute shrinkage and selection operator LR, 
random forest, neural network, support vector ma-
chine and eXtreme gradient boost (XGB) (described 
in Supplementary Methods). Briefly, models were op-
timized to specific parameters23 and 10-fold cross-
validation was conducted. Model performance was 
assessed using accuracy (area under the receiver 
operator characteristic curve [AUROC]), sensitivity, 
specificity, and an F1 score (derived from recall and 
precision). Classification models that performed with 
an accuracy AUROC >0.7 were included in develop-
ing a CVD risk signature. A UCLH signature (UCLH-
40) was derived from the top variables appearing in 
≥3 top-performing (AUROC >0.7) models discriminat-
ing SLE-P from SLE-NP, which was validated in the 
Athens-Validation cohort using the same pipeline.

SLE Atherosclerosis Risk Score
A weighted score for predicting subclinical 
atherosclerosis-risk was derived from the validated 

D
ow

nloaded from
 http://ahajournals.org by on M

ay 15, 2025

http://clinicaltrials.gov
http://clinicaltrials.gov
https://www.eugdpr.org/
https://www.eugdpr.org/
https://research.nightingalehealth.com/
https://research.nightingalehealth.com/


J Am Heart Assoc. 2025;14:e036507. DOI: 10.1161/JAHA.124.036507� 5

Woodridge et al� Metabolomic Score Predicts SLE Subclinical Plaque

Table 1.  Demographics and Clinical Traits Between Patients With SLE-P and Patients With SLE-NP in UCLH Discovery 
Cohort

SLE-NP SLE-P P value

No. 26 18

Sex, n (% female) 100 100

Age, y, mean±SD 44.62±9.11 57.22±6.08 <0.001

Race or ethnicity, n (%) 0.263

Black 5 (19.2) 5 (27.8)

Asian 2 (7.7) 0 (0.0)

White 16 (61.5) 13 (72.2)

Mixed 3 (11.5) 0 (0.0)

Disease characteristics

Age at diagnosis, y, mean±SD 28.50±8.70 34.67±10.07 0.04

Disease duration, y, mean±SD 16.12±8.59 22.56±10.60 0.03

Global BILAG 2004, median (IQR) 2.00 (1.00–2.75) 1.00 (0.00–1.00) 0.04*

Anti-dsDNA, titers, NR <30.0 IU/mL, median (IQR) 46.00 (10.75–165.25) 11.00 (7.00–52.25) 0.13*

Complement 3, NR 0.88–2.01 g/L, mean±SD 0.84±0.31 1.21±0.28 0.01

ESR, (NR 1–20 mm/h, mean±SD 22.29 (13.39) 12.00 (8.94) 0.08

CRP <3.0 mg/L, median (IQR) 1.50 (0.90–3.05) 2.15 (1.05–5.00) 0.23

Lymphocyte, NR 2.2–3.65×109/L, mean±SD 2.37±3.76 1.76±0.80 0.64

Neutrophils, NR 20–7.5×109/L, mean±SD 3.87±1.79 4.19±1.53 0.65

Monocytes, NR 0.2–1.0×109/L, mean±SD 0.46±0.49 0.57±0.20 0.51

Hemoglobin, 115–155 g/L, mean±SD 125.53±7.16 126.78±10.07 0.72

Platelets, NR 150–400×109/L, mean±SD 243.65±49.44 284.22±54.34 0.07

Albumin, NR 34–54 g/L, mean±SD 42.58±2.57 52.00±14.34 0.04

Urea, NR 5–20 mg/dL, mean±SD 4.85±1.17 15.45±22.48 0.10

Creatinine, NR 53–97.2 mg/dL, median (IQR) 62.00 (51.25–66.75) 69.50 (56.25–76.75) 0.19*

Vitamin D, NR >50 nmol/L, mean±SD 62.33±32.05 62.59±25.78 0.98

Albumin, 34–54 g/L, mean±SD 43.23±3.70 42.28±5.56 0.5

Urine protein–creatinine, NR <0.2 mg/mg, median (IQR) 13.00 (9.00–32.25) 16.50 (9.50–34.50) 0.91*

IgG, NR 6.0–16.0 g/L, median (IQR) 13.16 (10.54–14.98) 10.62 (7.86–13.60) 0.08*

IgM, NR 0.4–2.5 g/L, median, (IQR) 0.76 (0.42–1.23) 1.03 (0.46–1.33) 0.71*

IgA, NR 0.8–3.0 g/L, median, (IQR) 2.71 (1.72–3.70) 2.81 (1.95–4.31) 0.48*

CVD-risk factors at last assessment

Smoker, ever, n (%) 3 (11.5) 3 (16.7) 0.42

Smoker, current, n (%) 3 (11.5) 2 (11.1) 0.94

Diabetes, n (%) 0 (0) 2 (11.1) 0.09

BMI, NR 18.5–24.9, scan, median (IQR) 25.67 (21.47–28.52) 25.61 (224.48–27.40) 0.54*

MAP, NR 70–100 mm Hg, mean±SD 88.65±9.33 100.69±9.52 <0.001

Total cholesterol, NR <5 mmol/L, mean±SD 4.37±1.04 5.28±0.92 0.004

Triglycerides, NR <3 mmol/L, median (IQR) 0.90 (0.70–1.17) 1.20 (0.83–1.30) 0.11*

HDL-C, NR >1.2 mmol/L, mean±SD 1.64±0.50 1.79±0.56 0.35

LDL-C, NR <3 mmol/L, mean±SD 2.29±0.89 2.98±0.88 0.02

Cholesterol-HDL ratio, NR <6, median (IQR) 2.70 (2.32–3.25) 3.20 (2.35–3.58) 0.21*

Treatment (at time of scan)

Hydroxychloroquine use, n (%) 17 (65.4) 9 (50) 0.32

Statin use, n (%) 9 (34.6) 2 (11.1) 0.09

ACE inhibitor use, n (%) 7 (26.9) 7 (38.9) 0.41

Aspirin use, n (%) 3 (11.54) 3 (16.7) 0.64
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UCLH-40 using Youden statistic and Autoscore 
analysis using  the most significant features (see 
Supplementary Methods). Hierarchical clustering of 
metabolite concentrations was used to stratify an in-
dependent cohort of adult patients with SLE (UCLH-
unscanned, N=38, 100% women).

RESULTS
SLE Patients With Subclinical 
Atherosclerotic Plaque Are Classified as 
Low CVD Risk Using Established CVD 
Risk Scores
CVD-free women with SLE (N=44) (UCLH discovery co-
hort) were analyzed for the presence of atherosclerotic 
plaques in their carotid and femoral arteries using vas-
cular ultrasound (Supplementary Methods). Patients 
that had a plaque (SLE-P, N=18/44 [41%]) were com-
pared with patients that remained plaque free (SLE-NP, 
N=26/44 [59%]) (Figure  1 for study plan; Table  1 for 
demographic information). Patients with SLE-P were 
significantly older and had a longer disease duration 
compared with patients with SLE-NP but had a lower 
disease activity at the time of scan, assessed using the 

BILAG 2004 index, and had higher complement 3 and 
albumin levels. No differences were seen with other in-
flammatory disease markers or treatment between the 
groups (Table 1).

CVD risk was also assessed between the patient 
groups. No difference was found in prevalence of dia-
betes, smoking status, or body mass index. However, 
patients with SLE-P had elevated mean arterial pres-
sure (MAP) and higher serum total cholesterol and 
low-density lipoprotein (LDL) levels, although for most 
patients they were within currently established normal 
ranges (Table 1). Of note, only 2 patients with SLE-P 
were treated with statins. Furthermore, many pa-
tients with SLE-P were not flagged as high risk when 
assessed using widely used and validated CVD risk 
scores, the Framingham Risk Score, and QRISK3 
(Table  2). Using the Framingham Risk Score, no pa-
tients with SLE-P were classified as high risk. The 
QRISK3 score, which includes SLE diagnosis as a risk 
factor, identified 44.4% (8/18) of patients with SLE-P 
as low risk, 16.7% (3/18) as intermediate risk, and 
only 33.3% (6/18) as high risk, despite having subclin-
ical atherosclerosis assessed by vascular ultrasound 
scanning (Table 2). These results confirm that currently 
used CVD risk calculators underperform at correctly 

Table 2.  CVD Risk Scores Do Not Predict Subclinical Plaque in Many Patients With SLE

CVD risk scores All patients with SLE (N=44) n (%) SLE-P (N=18) n (%) SLE-NP (N=26) n (%)

Framingham Risk Score

Low risk, % <10 44 (100) 18 (100) 26 (100)

Moderate risk, % 10–20 0 0 0

High risk, % >20 0 0 0

Missing 0 0 0

QRISK3 score

Low risk, % <10 28 (63.6) 8 (44.4) 20 (76.9)

Moderate risk, % 10–20 7 (15.9) 3 (16.7) 4 (15.4)

High risk, % >20 8 (18.2) 6 (33.3) 2 (7.7)

Missing 1 (2.3) 1 (5.6) 0

Statistical significance of cardiovascular risk scores between SLE-P and SLE-NP. Cardiovascular risk scores using Framingham Risk Score 10-year 
calculator with lipid laboratory results (lipid labs) and without (simple) and QRISK3. A score could not be calculated if data were missing at the time of recording 
or unknown. Number of patient scores indicated by n; % reflects percentage of patients with score out of total patients with score obtainable. CVD indicates 
cardiovascular disease; SLE, systemic lupus erythematosus; SLE-NP, systemic lupus erythematosus with no subclinical atherosclerosis; and SLE-P, systemic 
lupus erythematosus with subclinical atherosclerosis.

SLE-NP SLE-P P value

Immunosuppressant use, n (%) 12 (46.2) 6 (33.3) 0.41

Prednisolone dose, mg, median (IQR) 5.00 (0.00–5.94) 5.00 (0.00–5.00) 0.86*

B-cell depletion, n (%) 7 (26.9) 7 (38.9) 0.41*

All clinical traits were tested for normality; means±SDs were reported for normally distributed data, and median and IQR reported for nonnormally distributed 
data. Statistical significance assessed by t tests. ACE indicates angiotensin-converting enzyme; BILAG, British Isles Lupus Assessment Group; BMI, body 
mass index; CRP, C-reactive protein; CVD, cardiovascular disease; ESR, erythrocyte sedimentation rate; HDL-C, high-density lipoprotein cholesterol; IQR, 
interquartile range; LDL-C, low-density lipoprotein cholesterol; MAP, mean arterial pressure; NR, normal range; SLE-NP, systemic lupus erythematosus with no 
subclinical atherosclerosis; SLE-P, systemic lupus erythematosus with subclinical atherosclerosis; and UCLH, University College London Hospitals.

*Wilcoxon rank-sum for nonparametric testing.

Table 1.  Continued
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identifying individuals with subclinical atherosclerosis 
in SLE.11,24

Metabolomic Assessment Defined a Novel 
Signature Associated With Subclinical 
Plaque in Female Patients With SLE
Serum metabolomic analysis was conducted using a 
high-throughput nuclear magnetic resonance platform 
(≥250 metabolites, Table  S2) to define metabolomic 
signatures associated with subclinical atherosclerosis 
in the UCLH discovery cohort. Univariate LR identified 
69 statistically significant metabolites distinct between 
patients with SLE-P and patients with SLE-NP (P<0.05) 
after controlling for ethnicity, age, age at diagnosis, dis-
ease duration, body mass index, BILAG, MAP, smoking 
status, diabetes, and current treatments (hydroxychlo-
roquine, statins, angiotensin-converting enzyme inhibi-
tors, immunosuppressants, and prednisolone use and 
dosage [mg]; Figure  S1). Notably, several molecules 
linked to atherosclerosis were significantly different 
between SLE groups, including apolipoprotein B, total 
cholesterol, total cholesteryl esters, free cholesterol, 
and remnant cholesterol, although no difference was 
seen for triglycerides (Figure S1). Several nonstandard 
lipoprotein subclasses were also significantly differen-
tially expressed in patients with SLE-P. These included 
HDL, LDL, IDL, and very-low-density lipoprotein mol-
ecules of varied sizes and with different lipid content, 
as well as sphingomyelins and fatty acids (FAs), includ-
ing total FA, linoleic acid, omega-6, polyunsaturated 
FA, and saturated FA. The nonessential amino acid 
glycine was significantly lower in patients with SLE-P 
compared with patients with SLE-NP (Figure S1).

To further evaluate features associated with plaque 
status, 5 machine learning (ML) models were applied 
to the metabolomic data combined with clinical fea-
tures. Due to the biological relatedness of several 
molecules, homology reduction (≥95%) was applied 
to the metabolite panel to prevent model overfitting. 
In total, 121 metabolites and 14 clinical traits were in-
corporated in the classification and regression mod-
els. The performance of 4 of 5 models achieved high 
accuracy (AUROC >0.7; Table  S3). The XGB model 
showed the highest discrimination accuracy (AUROC, 
0.91; F1 score, 0.73), correctly identifying 89% (16/18) 
of SLE-P cases (Figure 2A). Three other models (LR, 
random forest, neural network) performed with simi-
larly high accuracy (AUROC, 0.9, 0.76, 0.72, respec-
tively; Figure 2B). Top-performing XGB model features 
were ranked by importance (Figure 2C) and showed 
statistically significant differences between patients 
with SLE-P and patients with SLE-NP (P<0.05), in-
cluding reduced glycine and elevated sphingomyelin, 
total free cholesterol, total cholesterol esters, medium-
density LDL cholesterol (M-LDL-C), polyunsaturated 

FAs, and phosphatidylcholine concentrations in SLE-P 
(Figure 2D).

Ranked feature importance was compared across 
all top-performing models (XGB, LR, random forest, 
neural network) revealing 35 metabolites and 5 clinical 
traits associated with subclinical plaque status in SLE 
in ≥3 high performing models (Figure 2E). Several of 
these metabolites were statin responsive in previous 
pharmacological studies,25 including free cholesterol 
(total), total cholesterol esters (esterified cholesterol), 
IDL-C, and choline (Figure 2E). These features and clin-
ical traits were combined to generate an SLE-plaque-
associated signature named UCLH-40, which could 
predict plaque status with high accuracy (AUROC, 
0.92; Figure 2F). Importantly, the predictive power of 
the UCLH-40 was greater than the top individual fea-
tures, including glycine (AUCOC, 0.78), sphingomy-
elin (AUROC, 0.73) and S-HDL-cholesterol esters % 
(AUROC, 0.82), hypertension (MAP: AUROC, 0.81) and 
age (AUROC, 0.75; Figure 2F), as well as clinical serum 
lipids (total cholesterol, LDL, HDL, triglycerides, cho-
lesterol:HDL ratio) (AUROC, 0.69) that are used in stan-
dard clinical practice to assess CVD risk (Figure S2A). 
However, a model comprising only clinical features that 
would be available to most clinicians in a real-world 
outpatient clinical setting (age, smoking, blood pres-
sure, diabetes, and disease activity) was also able to 
stratify patients with SLE-P from patients with SLE-NP 
with high accuracy (AUROC, 0.879; Figure  S2B), al-
though this model did not perform as well as the me-
tabolite model (Figure  2A) and does not provide the 
opportunity to monitor CVD risk interventions since 
most features are nonmodifiable. Finally, the UCLH-40 
was able to distinguish patients with SLE-P from pa-
tients with SLE-NP using sparse partial least squares 
discriminant analysis, confirming the efficacy of this 
novel signature (Figure 2G).

The UCLH-40 Was Validated in a Second 
Cohort of Adult Patients With SLE 
Scanned for Subclinical Plaque
The subclinical plaque-associated signature, UCLH-
40 (Figure 2F), was validated in a separate cohort of 
female CVD-free patients with SLE (Athens validation 
cohort: SLE-P, n=21; SLE-NP, n=77; Table  S4).21 
Subgroups were matched clinically, except the SLE-P 
group was older and had a longer disease duration, 
consistent with the UCLH cohort (Table 1). Using the 
top-performing XGB model, patients with SLE-P were 
classified from patients with SLE-NP with a moderate 
accuracy (AUROC, 0.79) correctly identifying 71.4% 
(70/98) of patients (Figure  3A, Table  S5). Two other 
models also performed with good discrimination 
accuracy (LR, AUROC, 0.78; neural network, AUROC, 
0.72; Figure 3B and 3C, Table S5), validating the use 
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Figure 2.  Subclinical plaque can be predicted using a combined serum metabolite/clinical trait signature identified 
using machine learning models.
A, AUROC and confusion matrix for predicted group membership (true=green, false=red) for XGB model in SLE-P vs SLE-NP. B, 
AUROC and confusion matrices for LR, RF, and NN models. C, Metabolite feature importance for XGB model ranked by importance. 
*=responsive to statin-treatment.25 D, Violin plots for top features in XGB model (from A) with statistical significance from LR forest 
plot indicated (Figure S1). E, UCLH-40 signature curated from features predicting plaque status with high importance across 
all high performing (ROC>0.7) models (A and B), ranked by importance in XGB model. Black rectangle indicates prevalence 
of feature in model. *=responsive to statin-treatment.25 F, AUROC curves for UCLH-40 signature and top individual features 
from XGB model (A) predicting SLE-P vs SLE-NP classification. G, sparse partial least squares discriminant analysis model 
using UCLH-40 signature to classify SLE-P from SLE-NP. ApoA1 indicates apolipoprotein A1; ApoB, apolipoprotein B; AUROC, 
area under the receiver operating characteristic curve; CE, cholesterol ester; FC, free cholesterol; IDL-C, intermediate-density 
lipoprotein cholesterol; LDL-FC, low-density lipoprotein free cholesterol; L-HDL-PL, large high-density lipoprotein phospholipid; 
LR, logistic regression; MAP, mean arterial pressure; M-HDL-C, medium high-density lipoprotein; M-HDL-FC, medium high-
density lipoprotein free cholesterol; M-LDL-C, medium low-density lipoprotein; M-LDL-TG, medium low-density triglyceride; NN, 
neural network; PUFA, polyunsaturated fatty acid; RF, random forest; ROC, receiver operating characteristic; S-LDL-CE, small 
low-density lipoprotein cholesterol ester; S-HDL-CE, small high-density lipoprotein cholesterol ester; SLE-NP, systemic lupus 
erythematosus with no subclinical atherosclerosis; SLE-P, systemic lupus erythematosus with subclinical atherosclerosis; S-
VLDL-C, small very-low-density lipoprotein cholesterol; UCLH-40, University College London Hospitals signature; XGB, eXtreme 
gradient boost; and XS-VLDL-C, extremely small very-low-density lipoprotein cholesterol.
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of the UCLH-40 in a globally independent group of 
patients.

To improve the signature for potential future clinical 
application, features in the UCLH-40 were ranked by 
importance (Figure S2C), and cutoff thresholds were 
calculated using the Youden statistic (Supplementary 
Methods). Metabolites with an AUROC value ≥0.90 
were selected, creating a simplified 5-feature panel 
that was more clinically translatable comprising age, 
glycine, M-LDL-C, IDL-C, and omega-6/omega-3 ratio 
(Figure 3D and Table S6). A points-based system was 
derived to account for the weighted contribution of 
each feature in the panel (n=4 metabolites, 1 clinical 

trait) across a points-based scale (Table  S7). To as-
sess the accuracy of this score to identify patients with 
plaques (assumed to have a higher CVD risk metabolic 
profile), the 5-panel score was applied to the com-
bined adult scanned cohorts (UCLH Discovery and 
Athens Validation). Plaque status was predicted with 
84% (34/39) accuracy (Figure 3E), and 90% (n=93/103) 
of patients with SLE-NP were stratified into the low-
CVD-risk group (Table S8). The 5-panel score was also 
applied to historic serum metabolomic data obtained 
from the UCLH discovery patient cohort collected 
5 years before this study using an older version of the 
metabolomic platform (reported in Coelewij et al15) and 

Figure 3.  Validation of UCLH-40 signature and development of CVD risk prediction tool for SLE.
A through C, AUROC and confusion matrix (true predictions=green, false predictions=red) of UCLH-40 signature in Athens validation 
cohort (n=98) for SLE-P (n=21) vs SLE-NP (n=77) using (A) XGB model, (B) LR model, and (C) NN model. D, Parsimony plot showing top 
features in UCLH-40 signature that predict SLE-P using RF analysis ranked by importance. Red dotted line indicates 0.9 AUROC cutoff. 
E, Using 5-panel score (≥7, high risk) to predict plaque status in combined UCLH Discovery and Athens Validation cohorts. AUROC 
and confusion matrix. F, Heat map showing unsupervised hierarchical clustering in unscanned UCLH cohort grouped by 5-panel 
score: High CVD risk, ≥7/low CVD risk, <7. Arms represent correlations between features (row) and samples (column) using correlation 
clustering. Tightest cluster plotted first. G, AUROC indicating accuracy of 5-panel score in female JSLE cohort16 to predict high vs low 
CIMT progression using XGB models with and without age. AUROC indicates area under the receiver operating characteristic curve; 
CIMT, carotid intima-media thickness; CVD, cardiovascular disease; JSLE, juvenile-onset systemic lupus erythematosus; LR, logistic 
regression; NN, neural network; RF, random forest; SLE-NP, systemic lupus erythematosus with no subclinical atherosclerosis; SLE-P, 
systemic lupus erythematosus with subclinical atherosclerosis; UCLH-40, University College London Hospitals signature; and XGB, 
eXtreme gradient boost.
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was able to stratify patients into high- and low-CVD-risk 
groups corresponding to plaque status: 71% (15/21) of 
patients in the high-CVD-risk group had subclinical 
plaque by vascular ultrasound,15 and 88% (44/50) in 
the low-CVD-risk group were plaque free (Figure S2D), 
thus confirming the stability of the signature over time.

To mimic a real-world clinical experience, a third in-
dependent cohort of patients with SLE, who had not 

undergone vascular scans for the presence of sub-
clinical plaques (UCLH test unscanned cohort), was 
assessed using the 5-panel score. Applying the op-
timal atherosclerosis risk threshold score (≥7) in this 
unscanned cohort identified distinct groups of pa-
tients at potential high and low CVD risk (Figure 3F). 
Interestingly, there were few clinical and demographic 
differences between patients in the 2 groups, except 

Table 3.  High Versus Low Risk in Unscanned UCLH Cohort

Low High P value

n 28 10

Metabolite risk score (high risk ≥7), mean±SD 4.21±1.45 7.90±0.74 <0.001

Age, mean±SD 43.89±14.00 54.30±11.56 0.04

Disease duration, y, mean±SD 18.60±12.32 19.40±10.41 0.86

Race or ethnicity, n (%) 0.44

Asian 7 (25) 4 (40)

White 9 (32.14) 3 (30)

Black 9 (32.14) 2 (20)

Mixed 3 (10.71) 1 (10)

Disease activity at the time of sampling

BILAG 2004, mean±SD 4.46±5.82 3.30±4.74 0.57

SLEDAI, mean±SD 3.32±4.17 2.80±1.99 0.71

Active (SLEDAI ≥6 or BILAG ≥8), n (%) 9 (31.14) 3 (30) 0.9

LLDAS, n (%) 14 (50) 4 (40) 0.6

Anti-dsDNA, titers, NR <30.0 IU/mL, median (IQR) 52.00 (10.25–97.25) 124.50 (7.50–174.50) 0.73

Complement 3, NR 0.88–2.01 g/L, mean±SD 1.03±0.24 1.11±0.25 0.4

Lymphocyte count, mean±SD 1.14±0.67 1.36±0.59 0.37

ESR, NR 1–20 mm/h, median (IQR) 16.00 (7.50–30.50) 8.00 (7.50–16.00) 0.4

CRP, NR <10 mg/L, median (IQR) 1.65 (0.88– 2.10) 2.40 (1.00–5.20) 0.48

Treatment

Rituximab, n (%) 7 (25) 3 (30) 0.76*

Hydroxychloroquine, n (%) 16 (57.14) 5 (50) 0.71

Hydroxychloroquine dose, mg, median (IQR) 0.00 (0.00–50.00) 0.00 (0.00–0.00) 0.89*

Prednisolone, n (%) 20 (71.43) 7 (70) 0.93

Prednisolone dose, mg, mean±SD 6.10±3.15 5.67±4.04 0.84

MMF, n (%) 4 (14.29) 3 (30) 0.28

Azathioprine, n (%) 5 (17.86) 2 (20) 0.88*

Methotrexate, n (%) 2 (7.14) 0 (0) 0.39*

CVD risk factors

Smoking, ever, n (%) 1 (3.57) 0 (0) 0.56

Smoking, current, n (%) 1 (3.57) 1 (10) 0.45

Diabetes, n (%) 0 (0) 0 (0)

Total cholesterol, mean±SD 4.03±1.85 5.33±1.96 0.07

Clinical LDL-C, mean±SD 2.13±1.13 3.09±1.46 0.04

HDL-C, mean±SD 1.30±0.75 1.62±0.51 0.22

Total triglyceride, mean±SD 1.03±0.72 1.02±0.42 0.98

Clinical features in unscanned UCLH cohort split by metabolite risk groups (high vs low). All clinical traits were tested for normality; means±SDs were reported 
for normally distributed data, and median and IQR reported for nonnormally distributed data. Statistical significance assessed by t tests. Hypertension (abnormal, 
yes or no), systolic/diastolic. BILAG indicates British Isles Lupus Assessment Group; BMI, body mass index; CRP, C-reactive protein; CVD, cardiovascular 
disease; ESR, erythrocyte sedimentation rate; HDL-C, high-density lipoprotein cholesterol; IQR, interquartile range; LDL-C, low-density lipoprotein cholesterol; 
LLDAS, low lupus disease activity state; MMF, mycophenolate mofetil; NLR, neutrophil lymphocyte ratio; SLEDAI, Systemic Lupus Erythematosus Disease 
Activity Index; and UCLH, University College London Hospitals.

*Wilcoxon rank-sum for nonparametric testing.
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the high-risk group was older (as expected from our 
analyses) and had significantly elevated LDL-C choles-
terol, a clinical CVD risk marker (Table 3). These results 
suggest that the 5-panel score could identify potential 
high-risk groups which, once confirmed in a clinical 
study, support its possible application in a clinical set-
ting, where patients identified as high atherosclerosis 
risk could benefit from a follow-up ultrasound scan or 
targeted management for elevated CVD risk.

Atherosclerosis Risk Signatures 
Developed in Adult SLE Can Also Predict 
Atherosclerosis Progression in Young 
Patients With JSLE
The 5-panel score associated with subclinical plaque 
was also assessed in a cohort of younger patients 
with JSLE, who typically have greater disease severity 
and treatment burden, and an even greater relative 
CVD risk compared with adults.26 The 5-panel score 
was applied to serum metabolomic profiles assessed 
in a subgroup of female patients with JSLE from the 
placebo arm of the APPLE trial (assessing the efficacy 
of atorvastatin on 3-year atherosclerosis progression 
in JSLE based on CIMT assessment; n=34; 100% 
female patients; postpuberty; average age, 16 years).16 
The top-performing model in adult patients with SLE 
(XGB) performed less well in identifying patients with 
JSLE with high versus low CIMT progression over 
3 years (AUROC, 0.69). However, as age is a significant 
driver of CVD risk in adult SLE cohorts and the 
JSLE cohort were much younger, this could explain 
why the score was less sensitive in predicting CIMT 
progression. Removing age improved the performance 
accuracy (AUROC, 0.79; Figure  3G), suggesting that 
concentrations of glycine, omega-3/6 ratio, M-LDL-C, 
and IDL-C were strong metabolite features associated 
with CVD risk (plaque status or CIMT progression) in 
both adult and juvenile SLE.

Finally, to explore whether metabolites in the 5-
panel score could potentially be associated with CVD 
outcomes, metabolomic and incidence data from the 
UK Biobank were examined in the general popula-
tion (non-SLE).27 Concentrations of the 4 metabolites, 
omega-6/omega-3, glycine, IDL-C, and M-LDL-C, had 
various effect sizes associated with the incidence of 
myocardial infarction, stroke, and peripheral vascu-
lar disease (all populations considered; Figure  S3A 
through S3C), suggesting potential utility of this ap-
proach in non-SLE/healthy populations.

DISCUSSION
Patients with SLE have an elevated CVD risk through ac-
celerated atherosclerosis, and CVD is one of the leading 
causes of death in SLE,1 yet assessment of CVD risk and 

evidence indicating an appropriate treatment for CVD in 
SLE is lacking. The need for improved CVD risk monitor-
ing is supported by the observation that, across a 5-year 
follow-up, 5 of 36 (13.8%) patients with baseline plaque 
developed coronary disease in the wider UCLH SLE 
cohort.28 This study focused on trying to identify female 
patients with SLE who are at elevated CVD risk associ-
ated with subclinical atherosclerosis, which is not recog-
nized by existing established CVD risk scores.10,11,13 We 
developed an integrated serum metabolite signature that 
accurately predicted subclinical atherosclerosis status in 
patients with SLE using serum metabolomics and clini-
cal traits that was validated across several patient co-
horts with SLE across age to determine atherosclerosis 
risk in SLE. The signature better stratified patients with 
subclinical atherosclerosis compared with existing CVD 
risk assessment tools and individual biomarkers (such 
as routinely measured serum lipids). A clinically translat-
able  5-panel atherosclerosis risk signature comprising 
low glycine concentration and omega-3/omega-6 ratio, 
elevated M-LDL-C and IDL-C, and older age was used 
to determine novel SLE subgroups associated with el-
evated CVD risk. This signature could be used either 
with or without age to identify patients with JSLE with an 
elevated CIMT progression and thus elevated CVD risk. 
Therefore, this study showed that CVD risk assessment 
could be improved using nonstandard serum lipids and 
other metabolites combined with readily available clinical 
information. However, this study was limited by the small 
sample size of the discovery cohort, and while the sub-
sequent validation cohort was larger and supported the 
original findings with moderate accuracy, these findings 
would benefit from further validation in other cohorts to 
ensure their validity and minimize risk of model overfit-
ting, including non-SLE cohorts.

In addition, although the identified atherosclero-
sis risk signature was able to predict the presence of 
subclinical atherosclerosis with moderate accuracy 
across different cohorts, our study was not designed 
to provide information about the likelihood and type of 
CVD event a patient may have in the future. Rather, 
we wanted to find potential new biomarkers to detect 
increased CVD risk, which warrants improved clinical 
monitoring (such as referral for vascular ultrasound 
scanning) and management (lifestyle modification/
lipid-lowering therapy) in a population that is currently 
not monitored closely for this risk despite its high prev-
alence. Our approach, to assess both carotid and fem-
oral arteries for atherosclerotic plaques, is supported 
by the observation that plaques can be detected in 
the absence of intima-media thickening in patients 
with SLE29; therefore, a comprehensive assessment of 
different vascular sites is advantageous. Furthermore, 
higher intima-media thickness or presence of plaque 
can predict future coronary artery disease or stroke in 
SLE.30 Peripheral artery disease is less studied in SLE, 
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although patients are at increased risk,31 and future 
studies need to address the efficacy of serum metab-
olites for these patients.

The pathogenesis underlying SLE means that SLE 
itself is an independent risk factor for premature ath-
erosclerosis in the absence of traditional risk factors.32 
Therefore, it is unsurprising that existing CVD risk as-
sessments that rely on measures developed in the 
general population using traditional CVD risk factors 
and scores have been criticized for underestimating 
risk in SLE.11 The limited application of existing scores 
may be explained by a male bias in CVD research, 
whereas SLE has a female predominance (female:male 
ratio, 9:1). Traditional risk factors, age, and hyperten-
sion1 were associated with subclinical atherosclerosis 
in SLE, whereas diabetes, smoking status, and obe-
sity status were less important. Clinical serum choles-
terol level measurements classified many patients with 
plaque as having a low-CVD-risk profile, thus illustrating 
the poor performance of these measures in the con-
text of SLE. Various attempts to improve the sensitivity 
of CVD risk assessment have included SLE adaptation 
using disease-specific weighting,14 but the European 
League Against Rheumatism recommendations for 
CVD risk management in rheumatic diseases, includ-
ing SLE and antiphospholipid syndrome, have not 
endorsed any specific tool due to limited evidence.33 
Interestingly, we also identified that a model including 
only clinical features normally available to most clini-
cians in the clinic, including age, smoking, MAP, dia-
betes, and disease activity, could also identify patients 
with subclinical atherosclerosis. Since both the com-
posite clinical score and the combined metabolomic/
clinical score have similar improved performance com-
pared with currently available tools,10,11 both signatures 
could be explored interchangeably in clinical practice 
for patient stratification. The added benefit of the com-
bined clinical and metabolomic score is that it provides 
more information about modifiable and druggable 
targets, including more complex lipids, going beyond 
current serum lipid assessments. Comparatively, the 
clinical score alone has few modifiable factors where 
aging and diabetes are nonmodifiable, and lupus dis-
ease will be treated in the same way for all patients. 
Thus, while the clinical score predicts CVD risk in SLE, 
it has less value as a routine measure of CVD risk man-
agement, as it is limited to identifying changes in only 
hypertension and disease activity, which are already 
regularly monitored in routine practice.

Recent advances in the resolution of metabolom-
ics and nuclear magnetic resonance technology have 
increased understanding of how lipoprotein molecular 
weight and composition contribute to atherosclerosis. 
Lipid networks are complex and interdependent, which 
requires use of advanced statistical approaches that 
can compensate for biological relatedness, including 

homology reduction and ML. ML has proven effective 
in several clinical settings, including atherosclerosis 
detection and progression,34 as well as CVD event 
prediction.35 Importantly, in this study (MESA [Multi-
Ethnic Study of Atherosclerosis] cohort; 52.6% female 
participants),35 classification of patients with subclini-
cal plaque from those without was improved using a 
multicohort validated signature developed using sev-
eral widely adopted ML models, suggesting a panel 
of markers would be more accurate for clinical use 
compared with individual biomarkers alone. This study 
established that the 2013 American Heart Association/
American College of Cardiology CVD Pooled Cohort 
Equations risk calculator, used in the general popula-
tion to assess 10-year risk of atherosclerotic cardio-
vascular disease (defined as heart attack, CHD death, 
or stroke), achieved an area under the curve of 0.68 
for the female group, increasing to an area under the 
curve of 0.76 during validation. Using an ML model im-
proved the accuracy of the predictions (based on stan-
dard risk factors) with an area under the curve of 0.92 
for the female subgroup. Of note, in this study only 1 
type of ML model was used (support vector machine) 
rather than the several models used in our study.

Better patient stratification using more sensitive 
lipid/metabolite analysis established here could help 
improve the efficacy of clinical trials targeting CVD in 
SLE whereby incorrect assessment of atherosclerosis 
severity at baseline could affect the overall outcome 
of the trial.16 Statin trials in SLE have shown mixed 
outcomes whereby atorvastatin use failed to improve 
coronary artery calcium deposition, CIMT, or carotid 
plaque36 or CIMT progression in children with SLE.22 
However, any improvement in some patients may have 
been diluted by lack of effect in others who would not 
benefit from statin treatment due to having a low CVD 
risk before treatment initiation. Enrichment trials in 
which initial recruitment is informed by choosing pa-
tients at higher CVD risk may be more informative in the 
future, but currently, the rationale for statin use in SLE 
remains uncertain. Not all patients with SLE have dys-
lipidemia, and patients with SLE often have serum lipid 
levels within currently defined normal ranges; therefore, 
statins are not routinely prescribed.37 Furthermore, 
there is a reluctance to use statins in women of child-
bearing age due to concerns about pregnancy. Few 
patients in the UCLH cohort were treated with lipid-
lowering statins, yet several metabolites identified in 
this analysis are responsive to statin treatment25 and 
were shown to be important predictors of plaque sta-
tus, supporting that some patients could benefit from 
statin therapy. Retrospective analysis of statin trial out-
comes using the 5-panel score stratification (developed 
in adult and juvenile cohorts) at baseline could provide 
additional validation and a more sensitive evaluation of 
statin use for CVD progression across all age groups, 
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an approach used to assess baseline lipid profiles and 
atherosclerosis progression in JSLE previously.25

The CVD profile in patients with JSLE compared 
with patients with SLE is distinct and often associated 
with worse outcomes,12 so the observed differences 
between juvenile and adult cohorts in prediction accu-
racy using the 5-panel score are somewhat expected. 
In addition, the JSLE cohort was stratified by CIMT 
progression over the course of the trial, rather than the 
presence of atherosclerotic plaques as in the adult co-
horts. Follow-up studies could include vascular ultra-
sound scanning of patients with JSLE to confirm the 
compatibility of these groupings. Of note, other ath-
erosclerotic plaque measures were obtained during 
vascular ultrasound scan of the adult UCLH cohort, 
including total plaque area and number of plaques. 
These measures provide further information on plaque 
burden and atherosclerosis severity and have been 
shown to be strongly associated with greater CVD risk 
in the wider UCLH cohort7,28 and therefore could be 
used to interrogate markers of atherosclerosis pro-
gression in JSLE.

Key features associated with plaque status in SLE in 
several analyses and in a previous study15 included gly-
cine deficiency, which could lead to diminished capacity 
for triglyceride-rich very-low-density lipoprotein uptake 
by macrophages resulting in elevated triglyceride con-
tent.38 Glycine is used in the synthesis of several bio-
logically important compounds, including purines and 
glucose.39 It exerts anti-inflammatory and antioxidative 
effects40,41 and has been inversely associated with tra-
ditional cardiovascular risk factors, including obesity, 
hypertension, and diabetes.42–44 Plasma glycine was 
inversely associated with risk of acute myocardial in-
farction and higher plasma glycine was associated 
with a more favorable baseline lipid profile and lower 
prevalence of obesity, hypertension, and diabetes.45 
Interestingly, large-scale epidemiological analyses 
found that glycine is genetically associated with lower 
CHD risk, which may be partly driven by changes in 
blood pressure.46 Metabolism of glycine and its pre-
cursor amino acid, serine, are central to many aspects 
of cell metabolism, including lipid metabolism and the 
de novo production of sphingolipids.47,48 Interestingly, 
glycine and serine are reduced in patients with met-
abolic syndrome, and aberrant serine homeostasis 
causes glycine and serine deficiency. Furthermore, 
dietary serine supplementation mitigates dyslipidemia 
in diabetic mice, supporting a link with metabolism of 
sphingolipids.49 Sphingomyelins were also identified as 
a top discriminating feature in UCLH-40 and were in-
creased in SLE-P. However, other sphingolipids, such 
as ceramide, were not present in the metabolomic 
panel. A more detailed analysis of the glycine, serine, 
and sphingolipid metabolism pathways, including anal-
ysis of ceramides involved in regulating apoptosis and 

sphingomyelin synthesis50 and other processes impli-
cated in CVD, could further elucidate a role of sphingo-
lipid dysregulation in CVD risk in SLE.

High-plaque classification accuracy was also as-
sociated with lower omega-3/omega-6 ratio, whereby 
the imbalance between polyunsaturated FAs (including 
omega-3) and saturated fats (eg, omega-6) leads to 
dysregulated metabolic homeostasis, hyperlipidemia, 
and inflammation.51 In the wider population, this me-
tabolite was considered a strong predictor of acute 
myocardial infarction. These components are modu-
lated by diet, which differs geographically. Although 
these markers were validated in global cohorts (United 
Kingdom, Athens, and United States), additional in-
vestigation in non-Western populations would pro-
vide additional confirmation for their diagnostic value. 
IDL-C and M-LDL-C were important predictors of 
plaque stratification in this study, which are established 
proatherogenic drivers of atherosclerosis due to their 
lower density compared with atheroprotective HDL 
molecules.

This study had some limitations. First, it was initiated 
as a clinical study between 2011 and 2013 when the 
scans were first performed (reported in Croca et al7) with 
no formal power calculation implemented. The data pre-
sented here are based on an analysis of patients who 
consented to a second scan and who also agreed to 
providing a blood sample. Therefore, this analysis is 
based on a pragmatic approach, in a real-world outpa-
tient clinic setting and resulted in a relatively small sam-
ple size and imbalance between SLE subgroups, which 
is, unfortunately, common when investigating patients 
with rare conditions.52 Although this study used multiple 
independent cohorts to identify and validate a female-
focused CVD risk signature, patients with plaque typi-
cally represented around 30% to 40% of patients,7 which 
meant that SLE subgroups were naturally imbalanced. 
In this case, although the number of independent sam-
ples is relatively low, the high quality and the high dimen-
sionality of the data (250 metabolites, demographic and 
clinical information) does favor an ML approach.53 An 
additional benefit of using both ML and statistical analy-
sis in this data set is that ML models mostly use a non-
parametric approach by not making assumptions about 
the distribution of the data and can capture nonlinear 
patterns/relationships more effectively compared with 
linear statistical models. To overcome small sample size 
in this study, we used several widely used ML models 
including random forest, neural network, support vector 
machine, XGB, and LR with least absolute shrinkage and 
selection operator penalization, and to reduce potential 
bias and overfitting (associated with small sample size) 
we used 10-fold cross-validation.54 Finally, by combin-
ing the data from multiple ML models, we identified the 
metabolites/features that were most important for strat-
ifying patients with SLE-P from patients with SLE-NP in 
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>1 model. Importantly, we show that we were able to 
validate and refine the CVD risk signature in multiple dif-
ferent cohorts, which adds confidence to our findings. 
In addition, this study focused on female patients with 
SLE. A cohort of male patients with SLE was not avail-
able for this study, and it is possible that male patients 
with increased CVD-risk may not be identified using this 
female-focused signature. Unfortunately, due to the na-
ture of the international cohorts analyzed in this study, 
different validated clinical assessment tools were used 
to assess disease activity of the patients (BILAG 2004 
and SLE Disease Activity Index 2000), although these 
scores have been shown to be comparable in clinical 
practice to assess disease activity.55 When the clinical 
data for SLE-P and SLE-NP were compared in both 
the discovery (assessed by BILAG 2004) and validation 
(assessed by SLE Disease Activity Index 2000) cohorts, 
most patients had low disease activity, and disease ac-
tivity was not highlighted as a discriminatory feature in 
the ML models between patients with SLE-P versus pa-
tients with SLE-NP.

Future studies testing the 5-panel atherosclerosis-
risk score developed here to assess CVD risk in pa-
tients without SLE and healthy controls should be 
considered. Several large cohorts including the UK 
Biobank, which has CIMT data on a subset of pa-
tients,56 and historical cohorts such as the CheckPoint 
and ALSPAC (Avon Longitudinal Study of Parents and 
Children; United Kingdom) studies57 have metabolomic 
data available using the same nuclear magnetic reso-
nance platform (Nightingale Health). Interestingly, data 
from the UK BioBank Nightingale Health Atlas27 did 
provide some evidence that the atherosclerosis risk–
associated metabolites in the 5-panel score could also 
be associated with incidence of cardiovascular and 
peripheral vascular events in the general population, 
although more granular examination of a female-only 
and age-matched cohort is needed for more accurate 
conclusions to be drawn.

In conclusion, this study has illustrated the need 
for more effective patient stratification to identify fe-
male patients with SLE with heightened atheroscle-
rosis risk who could benefit from targeted strategies 
to address this risk, including aspirin, statins, or other 
lipid-lowering therapies earlier in their life. Lipid dys-
regulation characterized SLE and subclinical athero-
sclerosis in this study, reflecting a key subclinical stage 
of atherosclerosis development that could be targeted 
as a preventative strategy in at-risk patients. In the ab-
sence of routine vascular ultrasound or CIMT monitor-
ing, these results suggest that this atherosclerosis risk 
signature could be applied in clinical practice to assess 
CVD risk in patients with SLE across age. Identified pa-
tients could be prioritized for monitoring and preventa-
tive treatment where standard clinical assessment has 
failed.
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