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ABSTRACT

The aim of the photoacoustic tomography (PAT) inverse problem is to reconstruct the initial pressure distribution
from measured ultrasound waves generated by absorption of externally induced pulse of near-infrared light. Image
reconstruction calls for modelling of these acoustic pressure waves, and thus knowledge of the speed of sound
distribution of the target is required. However, the speed of sound is often unknown in practical situations,
and therefore it would be valuable to reconstruct it together with the initial pressure. In addition, the speed of
sound can provide interesting quantitative information of the imaged target. In this work, joint reconstruction
of the initial pressure and speed of sound in PAT is studied. We propose an approach where photoacoustic
measurements are performed using multiple different initial pressure distributions that are generated to the
target using illuminations from different directions. Methodology for joint reconstruction of these multiple
initial pressure and speed of sound distributions is formulated. The methodogy was evaluated with numerical
simulations. The results show that, utilising data generated by producing multiple initial pressures in the target,
initial pressure distributions can be reconstructed more accurately with less artefacts compared to a reference
approach of utilising a single light illumination.

1. INTRODUCTION

Photoacoustic tomography is an imaging modality where information about the target can be gained utilising
the photoacoustic effect.1,2 In the measurement situation, the imaged target is illuminated with a short pulse
of light. Absorption of light causes pressure increase that propagates as acoustic waves to the boundary of the
target, where it is measured using ultrasound sensors. Then, by performing computational image reconstruction
procedure, the initial pressure in the target can be reconstructed. This reconstructed initial pressure distribution
constitutes a photoacoustic image.

In the PAT computational image reconstruction, propagation of the acoustic waves needs to be modelled. The
accuracy of the modelling, and therefore also the image reconstruction, relies on knowing the acoustic parameters
of the target. However, these parameters are typically not known, and thus their choice, and especially the speed
of sound, can affect on the reconstructed photoacoustic images significantly.3 To reduce the artifacts due to
unknown speed of sound, one can aim to select the most favorable constant speed of sound, for example by
maximising the image sharpness.4,5 Alternatively, ultrasound tomography can be utilised to reconstruct the
speed of sound distribution, and that can be further utilised in PAT,6,7 but this approach requires more complex
measurement systems. Thus, it would be desirable to reconstruct the speed of sound together with the initial
pressure using PAT measurements only. In addition, if the speed of sound could be reliably reconstructed from
PAT data, quantitative information about the acoustic properties of the target could be gained.8 The joint
reconstruction of initial pressure and speed of sound has been shown to be ill-posed and thus difficult to solve in
practise.9,10
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In this work, we study the joint reconstruction of initial pressure and speed of sound in PAT following the
approach described in,11 where utilising multiple initial pressure distributions to ease the ill-posedness of the
problem was proposed. In this work, optical illuminations from different directions are used to create multiple
different initial pressure distributions in the target. Since optical illumination does not affect to the speed of
sound in the target, more information of the unknown speed of sound can be gained.

2. METHODS

2.1 Modeling the acoustic wave propagation

In an acoustically heterogeneous but non-absorbing medium, propagation of acoustic waves can be modelled
with the wave equation as (

1

c2(r)

∂2

∂t2
−∇2

)
p(r, t) = 0, r ∈ Rd, t ∈ (0, T ) (1)

where r is the position, c(r) is the speed of sound, p(r, t) is the acoustic pressure at a time instance t, and d is
the dimension.2 In photoacoustic wave generation, the wave equation can be combined with initial conditions

p(r, t = 0) = p0(r),
∂

∂t
p(r, t = 0) = 0, (2)

where p0(r) is the initial pressure distribution. In this work, solution of the wave equation is approximated using
a k -space pseudo-spectral method that has been implemented with the k-Wave MATLAB toolbox.12

2.2 Joint reconstruction of the initial pressure and speed of sound

In this work, k = 1, ...,K initial pressure distributions pk0 in the target are utilised to generate a photoacoustic
dataset. The PAT observation model can be written as

y = f(x) + e, (3)

where y is the data, e is the additive noise in the measurements, f(x) is the the forward model, and x =(
p10, ..., p

K
0 , c

)
are the unknown parameters of interest, i.e. initial pressure distributions pk0 and a spatially varying

speed of sound c.

Image reconstruction can be performed by minimising

x̂ = argmin
x

{
1

2
∥Le (y − f(x))∥2 +R(x)

}
, (4)

where Le is a weighting matrix that can be written as Cholesky factorization L⊤
e Le = Γ−1

e , where Γe is the
covariance matrix of the noise in the measurements, and R(x) is the regularising penalty functional. In this
work, functional

R(x) =
1

2
∥Lx (x− ηx)∥2 , (5)

is used, where ηx is the mean of the prior and L⊤
x Lx = Γ−1

x where Γx is the covariance matrix of the prior.

In this work, minimisation problem (4) is solved using a limited memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) method with a backtracking line-search and bound constraints.13 In the algorithm, the parameter
vector x is updated on every iteration i as

xi+1 = P (xi − αiδi) , (6)

where δi is the L-BFGS search direction, αi is a step length calculated with a backtracking line search, and P is
an operator for bound constraints. In this work, gradients of the objective function, needed to define the search
direction, are calculated with an adjoint-state method.14,15
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3. NUMERICAL SIMULATIONS

Numerical simulations were performed in a 10mm×10mm square target. The proposed approach was compared
with different strategies to compensate the unknown speed of sound in the image reconstruction. The first
reference approach was to use a known speed of sound distribution to reconstruct the initial pressure. This
assumption can be seen as an approach that can produce the best possible outcome of the initial pressure
reconstruction, but it is not realistic to do in practice. Further, a reference approach where a single initial
pressure and speed of sound distributions were reconstructed simultaneously was performed. Third, we also
compared the proposed approach to a situation where the speed of sound was assumed to be constant, which
is an assumption that is often done in photoacoustic tomography image reconstruction. Two different values
for the constant speed of sound were used. First, an ”ideal” value was chosen by reconstructing multiple initial
pressure distributions using different values for the speed of sound and choosing the one that maximises the
sharpness of the image, see details in Ref.5 Second, a ”non-ideal” constant speed of sound was chosen arbitrarily
to be within the range of typical values of the speed of sound in a soft tissue.

3.1 Data simulation

In this work, different initial pressure distributions in the target were simulated using the diffusion approxima-
tion16 as a model for light propagation

−∇ · κ(r)∇Φ(r) + µa(r)Φ(r) = 0, r ∈ Ω ⊂ Rd

Φ(r) + 1
2γd

κ(r)∇Φ(r) · n̂ =

{
s(r)
γd

, r ∈ ϵ

0, r ∈ ∂Ω \ ϵ
(7)

where Φ(r) is the photon fluence and κ(r) = (d(µa(r)+µ′
s(r))

−1 is the diffusion coefficient where µa(r) and µ′
s(r)

are absorption and reduced scattering coefficients. Further, s(r) is the light source at a source position ϵ ⊂ ∂Ω,
γd is the dimension dependent parameter (γ2 = 1

π ) and n̂ is an outward unit normal. The initial pressure created
by the photoacoustic effect can be calculated from photon fluence as

p0(r) = G(r)µa(r)Φ(r), (8)

where G(r) is the Grüneisen parameter that is modelled as constant G(r) = 1 in this work. The solution of
the diffusion approximation was numerically approximated using a finite element method where the target was
discretised into a triangular grid consisting of 21402 elements and 10894 nodes. Optical parameters and the
simulated fluence of light were presented in a piece-wise linear basis, and the calculated initial pressure (in
the triangular grid) was linearly interpolated into 239 × 239 pixel grid with a pixel size of 42.0 µm. Then,
photoacoustic data was numerically simulated using the wave equation in the pixel grid. For time discretisation,
1319 time points with a time step of 5.7 ns was used. In all simulations, 236 point-like acoustic detectors were
located evenly on all sides of the target and 1% of noise corresponding the peak-to-peak amplitude was added
to the simulated measurement data.

Two numerical phantoms were used. First numerical phantom consisted of a vessel-like structure mimicking
soft-tissue, and the second one consisted of a same vessel-like structure partly surrounded by a bone-mimicking
arc with a higher speed of sound. The speed of sound of sound values of 1430m/s and 1584m/s for background
and vessel, and 2200m/s for the bone were used. The true speed of sound parameter distributions are presented
in Fig. 1 for the soft-tissue like phantom and in Fig. 2 for the phantom including a bone-like structure. Values
of the optical parameters were chosen to mimic values typical of soft tissue consisting of fat and blood. Thus,
the optical absorption and reduced scattering were chosen as µa = 0.002 mm−1 and µa = 0.02 mm−1, and
µ′
s = 1.8 mm−1 and µ′

s = 2.2 mm−1 for background (fat) and vessel (blood), respectively. Four different initial
pressure distributions were simulated by illuminating the target from each side of the target by using a planar
illumination pattern. That is, initial pressure distributions p10, p

2
0, p

3
0 and p40 were simulated by illuminating the

target from top, left, bottom and right sides of the target domain, respectively. The simulated (true) initial
pressure distributions are presented in the first rows of Figs. 1 and 2. When calculating the solutions using the
reference methods, where the data was simulated using only one initial pressure distribution, the initial pressure
distribution p10 was used.

Proc. of SPIE Vol. 13319  133191A-3



3.2 Image reconstruction

In the image reconstruction, a different discretisation, compared to data simulation, was used to avoid the inverse
crime. Furthermore, a multigrid approach was utilised, where a total of 4 different discretisations were used to
avoid getting stuck into a local minimum in the iterative image reconstruction process.11 This was carried
out by reconstructing the parameters of interest in a coarse discretisation and then linearly interpolating the
parameter distributions into a finer discretisation where the parameters were reconstructed. The final (finest)
discretisation, where the parameters of interest were reconstructed, consisted of a 129 × 129 pixel grid with a
pixel size of 78.1 µm. In time discretisation, 975 time points with a time step of 10.6 ns was used.

In this work, an Ornstein-Uhlenbeck prior model17 was used as a regulariser in the solution of the minimisation
problem (4). The covariance matrix of the prior can be written as Γx = σ2

xΞ, where σx is the standard deviation

of every distinct parameter distribution of x, and Ξij = exp
(
− ||ri−rj ||

τ

)
is the unit covariance matrix. In the

unit covariance matrix, ri and rj are the pixel locations and τ defines the length of correlation between adjacent
pixels. The prior parameters for each parameter were chosen so that 95% of the parameter values were expected
to lie within the values of the true parameter range with mean ηx as the median of the range of the true parameter
distribution. In all reconstructions, value τ = 0.5 mm was used as a characteristic length scale. In addition,
the noise was modelled as Γe ∼ N (0, σeI), where the standard deviation of the noise σe corresponds to the true
noise level of the simulated data.

When the image reconstruction was performed using a constant speed of sound, values c = 1460 m/s and
c = 1500 m/s were used with the case of vessel-like target for ”ideal” and ”non-ideal” speed of sound values,
respectively. In the case of bone-like target, values c = 1500m/s and c = 1600m/s were used for for ”ideal” and
”non-ideal” speed of sound values, respectively.

4. RESULTS

The true initial pressure and speed of sound distributions and the reconstructions are presented in Fig. 1 for the
soft-tissue mimicking target. When the speed of sound is known, the reconstructed initial pressure distribution
is highly accurate, as the shape of the inclusion and values of the initial pressure are close to the true parameter.
With the proposed methodology, i.e. when multiple initial pressure distributions are utilised, the reconstructed
initial pressure distribution resembles closely to the true parameter distributions. The reconstructed speed of
sound is distorted, but the shape of the inclusion is well recognizable. In a situation, where a single initial
pressure and speed of sound distributions are reconstructed simultaneously, the reconstructed initial pressure
resembles the true parameter, and only small amount of artifacts are visible in the background. However, the
reconstructed speed of sound is highly distorted, and the shape of the inclusion can be detected only on the
bottom side of the target domain. In the case of a constant ”ideal” speed of sound, the reconstructed initial
pressure resembles the true parameter well. However, the reconstructed image suffers from aberrations on the
background where small vessel-like artefacts are visible. If a constant, but ”non-ideal” speed of sound value is
used, the reconstructed initial pressure suffers highly from aberrations. In this situation, the vessel structures of
the target are blurry and wider than in the true parameter.

Similar observations can be seen from the calculated relative errors that are shown in Table. 1. As expected,
the calculated relative error of initial pressure p10 has the smallest value when the speed of sound was known.
With the proposed approach, the relative errors of p10 and c are higher than with the known speed of sound, but
lower than with other approaches. This confirms the visual observations that the proposed approach can provide
more accurate reconstructions than the reference approaches.

The true initial pressure and speed of sound distributions and the reconstructions are presented in Fig. 2
for the target with a bone-mimicking speed of sound structure. As it could be expected, the reconstructed
initial pressure, when the speed of sound was known, resembles the true parameter well. With the proposed
methodology, the reconstructed initial pressure distributions resemble the true parameters: the vessel structure
can be clearly distinguished and the reconstructed initial pressure values match with the true values. However,
some artifacts are visible in the background. In the reconstructed speed of sound distribution, the vessel and
bone structures can be distinguished but the values are notably higher in the vessel structure compared to the
true parameters values. When data from a single initial pressure distribution is utilised, the reconstructed initial
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Figure 1. Reconstructed speed of sound c and initial pressure p10, p
2
0, p

3
0, and p40 distributions. Rows from top to bottom:

simulated (true) parameters, reconstructions with a known speed of sound, reconstructions when multiple initial pressures
were utilised, reconstructions when a single initial pressure was utilised, reconstructions with a constant ”ideal” speed of
sound, and reconstructions with a constant ”non-ideal” speed of sound.
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Figure 2. Reconstructed speed of sound c and initial pressure p10, p
2
0, p

3
0, and p40 distributions. Rows from top to bottom:

simulated (true) parameters, reconstructions with a known speed of sound, reconstructions when multiple initial pressures
were utilised, reconstructions when a single initial pressure was utilised, reconstructions with a constant ”ideal” speed of
sound, and reconstructions with a constant ”non-ideal” speed of sound
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Table 1. Relative errors of the reconstructed speed of sound Ec and initial pressures Ep10
, Ep20

, Ep30
and Ep40

distributions
in different imaging scenarios.

Vessel Vessel and bone
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c
=
16
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Ec(%) 0.0 2.9 3.3 3.1 4.7 0.0 7.2 9.2 9.8 10.2

Ep1
0
(%) 10.2 11.7 20.4 20.0 55.4 15.6 29.4 39.3 49.4 92.4

Ep2
0
(%) 12.8 21.1

Ep3
0
(%) 10.8 20.0

Ep4
0
(%) 10.6 26.1

pressure resembles the true parameter distribution, but suffers from artefacts throughout the target domain.
In addition, the reconstructed speed of sound is distorted and the shape of the vessel is not clear. On the
other hand, the curved bone-like structure can be distinguished. The reconstructed initial pressure in the case
of a constant ”ideal” speed of sound resembles the true distribution, but suffers from aberrations especially in
the background where the vessel-like artefacts are visible. In the case of a constant but ”non-ideal” speed of
sound, the reconstructed initial pressure suffers highly from aberrations and the vessel structure can not be
distinguished.

From the calculated relative errors (Table. 1) we can see that the relative error for the initial pressure is lowest
when the speed of sound was known, as could be expected. With the proposed approach, the relative errors of
p10 and c are lower compared to other approaches. The relative errors of the speed of sound and initial pressure
are lower when a single initial pressure and speed of sound are reconstructed jointly, compared of assuming the
speed of sound as a constant. These relative error values, together with the visual observations, indicate that
the image reconstruction accuracy can be enhanced when the speed of sound is reconstructed with the initial
pressure compared to using a constant speed of sound value to reconstruct the initial pressure. Further, the
accuracy can be even further improved by utilising the proposed approach of using multiple initial pressures.

5. CONCLUSIONS

In this work, a joint reconstruction of initial pressure and the speed of sound in PAT was studied. We proposed
a methodology that utilised a dataset of multiple initial pressure distributions generated by illuminations from
different directions. Then, these different initial pressure distributions were reconstructed together with the speed
of sound distribution. The results show that the approach can lead to an enhanced image quality when compared
to an approach of reconstructing a single initial pressure and speed of sound distributions simultaneously, or to
an approach where the initial pressure distribution is reconstructed by assuming a constant speed of sound in
the target.
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