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Adaptive radiation—the evolutionary divergence of members of a single phylogenetic lineage into a 

variety of different adaptive forms (Futuyma, 1998)—is widely considered responsible for generating 

much of Earth's remarkable ecomorphological diversity (Simpson, 1953; Gillespie, 2024). Subsequently, 

adaptive radiation is, and has been, of great interest to evolutionary biologists throughout the history of 

the field.   

 

 This special issue, "A global perspective on adaptive radiation", is intended to bring together new 

insights on the theory, processes, genetic mechanisms, and ecological contexts driving adaptive radiation 

across a wide variety of taxa and geographic regions. Contributions range from novel conceptual insights 

surrounding the evolutionary dynamics of adaptive radiation (Grant & Grant, 2024; Schluter, 2024; Stoy 

et al., 2024; Turner, 2024) to empirical studies and reviews on vertebrates, including fishes (Chan et al., 

2024; Conith et al. 2024; Fenton et al., 2024; Nicholas & López-Fernández, 2024; Peart et al., 2024), 

early tetrapods (Berks et al., 2025), lizards (Singhal, 2025; Salazar et al., 2025), birds (Grant & Grant, 

2024), bats (Santana, Sadier, & Mello, 2024), invertebrates (Layfield et al., 2024; Van Bocxlaer et al., 

2024; Yang et al., 2024), and plants (dos Santos et al., 2024; Zapata et al., 2024). 

 

 Two contributions in this special issue (Grant & Grant, 2024; Schluter, 2024) are from Darwin-

Wallace medal winners; one of the Linnean Society of London’s highest honours and awarded for “major 

advances in evolutionary biology”. Peter and Rosemary Grant (2009 awardees) use insights from their 

career-long study of Darwin’s finches in the Galápagos to highlight the role of hybridization in adaptive 

radiation (Grant & Grant, 2024). Dolph Schluter (2014 awardee) provides similarly valuable conceptual 

insights, discussing issues surrounding a perennial problem in adaptive radiation research: why has there 

been mixed success in linking micro- and macroevolution? 

 

 Across all contributions, we have identified five emerging themes in adaptive radiation research. 

Below we introduce these themes and discuss the roles that each contribution plays in advancing our 

understanding of adaptive radiation. 

 

 

Major emerging themes in this issue 

1. Bridging the process-pattern divide 

 A classic problem in adaptive radiation research has been the extent to which microevolutionary 

processes predict macroevolutionary patterns, and vice versa (Schluter, 2024). Bridging this divide is a 

difficult problem. For the most part, the stages of adaptive radiation in which microevolutionary processes 

drive diversification typically happened in the deep past and so are unobservable (Stroud & Losos, 2020; 

Gillespie et al., 2020). Instead, these historical processes must be inferred from present-day patterns of 

diversity and trait distributions. Schluter (2024) discusses some issues with bridging this process-pattern 

divide between micro- and macroevolution, focussing on three primary issues: (i) the relative roles of 

genetic variation versus natural selection in driving patterns of species divergence, (ii) why the rate of 

evolution of reproductive isolation surprisingly fails to explain species diversification rates, and (iii), the 

extent to which present-day patterns of natural selection among populations can be predicted from the 

distribution of species’ phenotypes in a clade. From this, Schluter proposes that a major bridge linking 

micro- and macroevolution—one that would increase our understanding of adaptive radiation—would be 
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to estimate adaptive landscapes from first principles, allowing us to predict the fitness of phenotypes that 

do not currently exist and so cannot be directly studied (i.e., those that fall in unoccupied regions of the 

adaptive landscape). For example, theoretical performance surfaces predicted from biomechanical 

principles can be estimated for a variety of taxa (Raup, 1966; Tseng, 2013; Stayton, 2019; Olsson, Martin, 

& Holzman, 2020; Holzman et al., 2022; Simon & Moen, 2023). However, while these surfaces can 

reveal whether certain biomechanical interactions constrain macroevolutionary trajectories, they still lack 

the context-dependence of ecological interactions in nature and a connection to microevolutionary 

processes. Extending this approach to also connect empirical fitness data will provide exceptional insights 

into how selection drives the correlated evolution of both form and function.  

 

 Alternatively, another fruitful approach to bridge this process-pattern divide in adaptive radiation 

research is to identify young groups that may still be in the process of radiating (Stroud & Losos, 2020; 

Gillespie et al., 2020). Such groups provide an exceptional opportunity to study diversification dynamics 

in real-time. The long-term evolutionary field study of Darwin’s finch radiation in the Galápagos is a 

classic example of this approach (Grant & Grant, 2014). Drawing from 40 years of research and 

combining detailed field observations with genomic data, Peter and Rosemary Grant’s contribution to this 

special issue formalises their newest perspective on adaptive radiation: the “competition-selection-

hybridization” model (Grant & Grant, 2024). In this new framework, the Grant’s suggest that 

hybridization between sympatric taxa can be a powerful generator of species diversity, re-casting the 

traditional “allopatry-then-sympatry” model whereby taxa differentiate first in allopatry and then natural 

selection drives further divergence upon secondary contact in sympatry (Schluter, 2000). Of course, the 

recognition of hybridization playing an important role in in adaptive radiations is not new (e.g., 

Seehausen, 2004, 2013; Mallet, 2009; Schenk, 2021), and widespread hybridization has been uncovered 

in wide range of taxa using genomics techniques (Brawand et al., 2014; Meier et al., 2017, 2023; Kozak 

et al., 2021; Patton et al., 2022; De-Kayne et al., 2022; DeBaun et al., 2023; Wogan et al., 2023). While 

many of these groups are considered ‘young’ and so gene flow may be expected, recent studies have 

begun to uncover evidence for similar ancestral patterns in comparatively older radiations (DeBaun et al., 

2023; Wogan et al., 2023).  

 

 Clearly, understanding the role of hybridization represents a major objective for adaptive 

radiation research. Is it more common in some taxa than others? Are hybrid events equally likely across 

all lineages within a radiation? Do groups with high levels of hybridization exhibit greater adaptive 

diversity than those in which hybridization appears rare? While many of the mechanistic questions will 

likely be answered by applying increasingly sophisticated genetics techniques to well-studied groups, 

understudied radiations—many of which are highlighted in this special issue—are a valuable, if not 

necessary, opportunity to test the ubiquity of the hybridization model more broadly. 

 

 

2. Drivers of adaptive radiation 

 Access to ecological opportunity is widely considered an important trigger to adaptive radiation 

(Schluter, 2000; Wellborn & Langerhans, 2015; Stroud & Losos, 2016; Fenton et al., 2024). A classic 

example is the geographic colonization of new environments, such as islands or lakes, that may provide 

many new or unoccupied niches that a lineage can radiate to fill (Simpson, 1953; Gillespie, 2004; 

Seehausen, 2006; Stroud & Losos, 2016). For example, in this issue, Fenton et al. (2024) find that larger 
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lake ecosystems are associated with higher genetic and phenotypic diversity and a higher probability of 

trophic specialization in Arctic charr (Salvelinus alpinus) in Scotland. Similarly, Berks et al. (2025) 

demonstrate that the ecological transition of early tetrapods to herbivory triggered adaptive radiation in 

the group. Despite these tetrapods transitioning from aquatic to terrestrial environments, it was only after 

herbivory evolved that the group extensively adaptively radiated into a variety of feeding specialists 

exhibiting a range of jaw morphologies. 

 

 Mountains can also provide similar environmental opportunities for adaptive diversification. The 

emergence of the Andean mountains, for example, provided a suite of new cool, high-elevation habitats 

that many South American tropical low-elevation taxa could radiate into (Monasterio & Sarmiento, 1991; 

Hughes & Eastwood, 2006; Ceccarelli et al., 2016; Pouchon et al., 2018, 2021; Esquerré et al., 2019; 

Guevara-Andino et al., 2024). In this issue, Salazar et al. (2025) demonstrate that the Andes are also an 

integral environmental feature driving the adaptive radiation of Anolis lizards (anoles). Across the Andes, 

different anole species that occupy similar elevational bands have evolved similar thermal physiologies. 

For example, high-elevation species have independently evolved greater cold tolerance compared to their 

lowland counterparts. Local physiological adaptation to discrete elevational bands in tropical maintains 

likely contributes to species diversification by minimizing the extent to which species can disperse, 

therefore limiting gene flow across elevational gradients (Janzen, 1967; Polato et al., 2018; Linck, 

Freeman, & Dumbacher, 2020; Linck et al., 2021). 

 

 Similar to the emergence of new environments, phenotypic innovations—often called ‘key’ 

innovations in adaptive radiation research (Schluter, 2000; Miller, Stroud, & Losos, 2023)—can also 

promote diversification. Here, Stoy et al. (2024) discuss the evolution of complex multicellularity as a key 

innovation driving adaptive radiations across major taxonomic groups including animals, plants, fungi, 

red algae, and brown algae. By analysing three key mechanisms - the evolution of multicellularity and 

novel functional innovations, the population genetic context of evolution, and evolutionary priority effects 

- Stoy et al. argue that while broad-scale evolutionary processes may be predictable, specific 

diversification pathways remain unpredictable.  

 

 Two studies of cichlid fishes in this issue also investigate the role of innovations in adaptive 

radiation. Conith et al. (2024) examine the genetic basis of a functionally critical skull bone, the 

parasphenoid, in Lake Malawi cichlids and demonstrate how small genetic changes in critical 

morphological traits can have large impacts on ecological function, facilitating adaptive radiation through 

shifts in trophic specialization. The second set of jaws of cichlids (pharyngeal jaws) are suggested to be a 

‘key innovation’ in their evolution. In this issue, Nicholas & López-Fernández (2024) examine 

macroevolutionary trends of this entire trait complex in Neotropical cichlids by harnessing µCT scanning. 

In contrast to some lacustrine cichlid radiations (e.g., Ronco et al., 2021), they do not find an early burst 

‘adaptive’ signature in this continental radiation, highlighting the nuances of examining multiple trait 

dimensions across lineages.  

 The interplay between extrinsic factors, like the environment, and intrinsic factors, such as 

morphology and development, can also drive adaptive radiation. Santana et al. (2024) discuss this 

perspective in Neotropical leaf-nosed bats (Phyllostomatidae), in which habitat diversity, roost types, and 

dietary opportunities (extrinsic factors) likely combined with developmental processes like heterochrony 

and modified growth rates (intrinsic factors) to enable rapid diversification of skull shapes and sensory 
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structures to exploit varied dietary niches.  

 

 The order of arrival might also play an important role in driving adaptive radiation through 

priority effects (Rosenzweig & McCord, 1991; Reijenga, Murrell, & Pigot, 2021; Foley et al., 2023; 

Stroud et al., 2024). However, as mentioned earlier in Section 1, such phenomena are often difficult to 

study in most adaptive radiations as these episodes would have occurred deep in the past (but see Ngoepe 

et al., 2023). Powell et al. (2024) provide an exception: in the radiation of cucujoid beetles lineages that 

colonize a new resource first, thus avoiding competition, tend to be the most diverse, thus providing 

indirect evidence for priority effects in this group. 

 

 

3. Genomic insights into adaptive radiation 

Advances in genomic techniques are continuing to provide key insights into the genetic mechanisms 

contributing to adaptive radiation (Xiong et al., 2021; Richards et al., 2021; Rubin et al., 2022; Richards 

& Martin, 2022; Patton et al., 2022; Marques et al., 2022; Meier et al., 2023; Cerca et al., 2023; Wogan et 

al., 2023; Cicconardi et al., 2023; Combrink et al., 2025). The increasing ease and cost of generating 

genomic data means non-model groups can be interrogated as outlined by papers in this special issue 

(e.g., Conith et al., 2024; Fenton et al., 2024; Layfield et al., 2024; Yang et al., 2024; Zapata et al., 2024).  

 

 Transposable elements (TEs) have been recognised as playing an important role in the generation 

of genetic diversity, but their contribution in adaptive radiation has been limited. Yang et al. (2024) 

investigated how TEs accumulate in the Hawaiian Tetragnatha spiny-leg spider adaptive radiation. Yang 

et al. find that these mobile genetic elements do not appear to be a key mechanism explaining their 

diversification. As most studies report positive roles for TEs in adaptive radiation, Yang et al.’s results 

may provide important evidence for a ‘file drawer’ bias (Rosenthal, 1979) surrounding this topic (i.e., a 

publication bias towards positive results). Clearly, more radiations and non-radiations need to be 

investigated to determine whether TEs are a major factor triggering adaptive radiations. On a different 

oceanic island system, the Galápagos, Zapata et al. (2024) investigate the prickly pear cactus (Opuntia 

sp.) radiation using SNPs, finding that despite extensive morphological diversity, genetic differentiation is 

limited, suggesting this radiation is in its early stages. The finding of high morphological diversity 

coupled with shallow genomic differentiation and ongoing gene flow adds to the growing literature on 

young, isolated radiations, but which has typically been documented in fish systems (e.g. Ford et al. 2016, 

Martin et al. 2014). 

 

 

 

 Increasingly in studies on adaptive radiation, diverse datasets (e.g., Grant & Grant, 2024; Peart et 

al., 2024) are necessary in order to tease apart the mechanisms shaping adaptive radiations. Studies that 

combine genomic, phenotypic, and ecological data to investigate adaptive radiation are particularly 

powerful. By integrating environmental data in their study of Arctic charr (Salvelinus alpinus), a widely 

distributed fish species with sympatric ecotype populations, Fenton et al. (2024) demonstrate that the size 

of different lake ecosystems predict the potential for trophic specialization and the occurrence of 
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sympatric divergent ecotypes, highlighting the role of ecological context in adaptive diversification. 

 

 

4. Understudied groups 

 While much of our understanding of eco-morphological diversification in adaptive radiations 

comes from well-studied vertebrate systems like cichlid fishes (Fryer & Iles, 1972) and Anolis lizards 

(Losos, 2009), several studies in this special issue highlight important insights gained from traditionally 

understudied groups.  

 The African rift lakes, synonymous with the aforementioned cichlid radiations, also contain many 

other groups that provide fruitful avenues for understanding shared evolutionary processes and are 

brought into further focus in this issue. Peart et al. (2024) focus on two sympatric radiations of Lake 

Tanganyika catfishes (Synodontis sp. and Claroteinae), which diversify over a similar time frame, but 

show differing degrees of ecological and morphological divergence. Peart et al. find evidence for eco-

morphological diversification and trophic niche partitioning in Claroteinae catfishes, but more conserved 

patterns in the Synodontis group, suggesting different selective forces may have driven their 

diversification. Similarly, van Bocxlaer et al. (2024) investigated the adaptive significance of shell 

morphology in two morphospecies of Lake Malawi gastropods (Lanistes sp.). Using a common garden 

experiment, van Bocxlaer et al. showed that differences in shell morphology linked to environmental 

variation across habitats were associated with differential fitness in the two taxa, suggesting shell 

characteristics may confer adaptive advantages in specific ecological contexts. The findings highlight 

how natural selection may shape phenotypic variation in gastropod populations, potentially driving 

speciation and ecological specialization. Further exploring the Lake Malawi system, Layfield et al. (2024) 

examine ecological speciation in freshwater crabs (Potamonatinae) across a lake–river boundary within 

the Lake Malawi catchment using genomic data. They show that divergent ecological pressures between 

lacustrine and riverine environments have led to the differentiation of populations, with distinct 

morphological and genetic traits emerging in response to habitat-specific factors, thereby driving 

speciation within this lineage.  

 In the radiation of San Salvador island pupfishes (Cyprinodon sp.) from the Bahamas, Chan et al. 

(2024) explore the relationship between phenotypic integration and morphological diversification by 

examining skull modularity across species and lab-reared hybrids. Despite extensive trophic 

specialization across species (Martin & Wainwright, 2011), Chan et al. unexpectedly find a conserved 

modularity pattern, suggesting that the flexible trait associations within these modules, rather than among 

modules, likely underlie their rapid diversification.  

 

 Additional studies on understudied plant radiations reveal similar insights: Zapata et al. (2024) 

show extensive ecophenotypic variation in Galápagos prickly pear cacti (Opuntia sp.) despite evidence of 

limited genomic differentiation and high gene flow. Dos Santos (2024) explores niche evolution of 

Canary Island tree houseleek plants (Aeonium sp., Crassulaceae), showing distinct ecological niches have 

emerged in different island habitats driven by both allopatric and sympatric processes. By comparing 

species in isolated and overlapping environments, dos Santos et al. reveal how adaptive traits linked to 

resource availability, climate, and competition have shaped the evolutionary trajectories of this plant 

radiation.  
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 These contributions from understudied groups or regions expand our understanding of the diverse 

ways in which eco-morphological diversification can unfold in adaptive radiations. In order to establish 

general principles of adaptive radiation, it will be critical to continue studying obscure or overlooked 

groups. The reasons are twofold: both to broaden taxonomic sampling, and to potentially uncover novel 

mechanisms and patterns that may remain hidden if research is constrained to historically popular groups. 

 

 

5. The important role of taxonomy and systematics 

 The importance of taxonomy and systematics in understanding adaptive radiations is critically 

examined in two complementary papers that challenge current practices and assumptions. Singhal et al. 

(2025) introduce a new concept of "taxon murk" - the multiple sources of uncertainty that affect species-

level units used in phylogenetic analyses. The authors demonstrate this concept through extensive 

sampling of Australian lizards (sphenomorphine skinks), showing that diversification patterns can be 

robust despite taxonomic uncertainties. Specifically, an early burst pattern persists across different 

taxonomic frameworks (morphological, operational, incipient, and threshold), providing compelling 

evidence that some macroevolutionary signals transcend taxonomic ambiguity.  

 

 Turner (2024) addresses a different but related challenge, arguing that the rigid application of 

cladistic principles requiring species monophyly can lead to systematic underrepresentation of 

biodiversity in adaptive radiations. Using examples like the Omani blind cavefish (Garra barreimiae) and 

Mexican cave tetras (Astyanax mexicanus), Turner (2024) demonstrates how current taxonomic practices 

often fail to recognize distinctive endemic forms because they would render widespread species 

paraphyletic.  

 

 Together, these papers suggest that while taxonomic uncertainty and practices can significantly 

impact our understanding of adaptive radiations, careful methodological approaches (as demonstrated by 

Singhal, 2025) and more flexible taxonomic frameworks (as advocated by Turner, 2024) can help resolve 

these challenges. Their work emphasizes that taxonomy should serve to illuminate rather than obscure 

evolutionary patterns, particularly in the context of adaptive radiations where novel phenotypes may 

evolve rapidly in geographically restricted populations. 

 

 

Conclusion 

 Our Editorial highlights two major takeaways. First, as also highlighted in another Editorial in 

this journal (Butlin, 2024), making the connection between micro-scale process and macro-scale patterns 

remains a fundamental yet still challenging objective of evolutionary biology. This is especially true for 

increasing our understanding of the causes of adaptive radiation. One promising approach is the 

integration of ecology-morphology-performance-fitness data on adaptive landscapes and comparisons of 

these empirical distributions to theoretical adaptive landscapes; this integrative approach promises the 

best opportunity to understand how and why the observed form and function relationships evolved in a 

given adaptive radiation. Second, this special issue demonstrates the incredible value of combining 

diverse datasets and methods across diverse and sometimes obscure taxa. In bringing together broad 
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perspectives spanning a range of organisms across the Tree of Life, the contributions in this issue not only 

advance our theoretical understanding of how biodiversity is generated and maintained but also point to 

promising emerging directions in the field. 
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