ROYAL SOCIETY
OPEN SCIENCE

royalsocietypublishing.org/journal/rsos

[@)er
B
Research Sheck for

Cite this article: Pates S, Ma J, Wu Y, Fu D. 2024
Impact of ontogeny and spines on the
hydrodynamic performance of the Cambrian
arthropod /soxys. R. Soc. Open Sci. 11: 240894.
https://doi.org/10.1098/rs0s.240894

Received: 30 May 2024
Accepted: 1 November 2024

Subject Category:
Earth and environmental science

Subject Areas:
palaeontology

Keywords:

Cambrian explosion, allometric growth,
computational fluid dynamics, zooplankton,
pelagic

Author for correspondence:
Stephen Pates
e-mail: s.pates@exeter.ac.uk

Electronic supplementary material is available
online at https://doi.org/10.6084/
m9.figshare.c.7524689.

THE ROYAL SOCIETY

PUBLISHING

Impact of ontogeny and
spines on the hydrodynamic
performance of the
Cambrian arthropod /soxys

Stephen Pates'?, Jiaxin Ma’, Yu Wu** and Dongjing Fu’

'Department of Zoology, University of Cambridge, Cambridge (B2 3EJ, UK

*(Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR10 9FE,
UK

3Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental
Dynamics, and Department of Geology, Northwest University, Xi'an 710069, People’s Republic
of China

“Institute of Earth Sciences, University of Lausanne, Lausanne, 1015, Switzerland

> SP, 0000-0001-8063-9469; JM, 0000-0003-4479-0991;
YW, 0000-0002-4580-4083; DF, 0000-0001-9488-6989

A metazoan-dominated biological pump was established
early in the Phanerozoic, a time that saw the evolution
of the first pelagic euarthropod zooplankton such as some
species of the Cambrian bivalved euarthropod Isoxys. Pelagic
groups evolved from benthic stock, in many cases through
neoteny and retention of characteristics from planktic larval
stages. However, Isoxys brooded eggs and did not have a
planktic larval stage, precluding this route into the pelagic
realm. Computational fluid dynamics was used to quantify
hydrodynamic performance through the ontogeny of two
hyperbenthic species of Isoxys, Isoxys auritus and Isoxys
minor. Coefficients were used to quantify forces for different
carapace shapes over a range of biologically relevant sizes
and swimming speeds. Streamlining and lift generation
were greater for later growth stages, a consequence of
carapace asymmetry and elongated anterior and posterior
spines. Simulations performed with anterior spines artificially
removed demonstrate the importance of this feature for
lift generation, with a minimal impact on drag. Elongated
spines and faster swimming can also be considered anti-
predatory, and the reduction of drag would have reduced the
detectability of Isoxys to predators. Taken together, it is likely
that pelagic Isoxys species evolved from benthic stock through
the co-option of anti-predatory features.
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1. Introduction

The fossil record documents a rapid increase in organismal diversity, disparity and body size [1-
4] alongside the convergent development of disparate predatory and defensive hard tissues and
skeletons in many metazoan groups [5-8] during the early Palaeozoic. This increase in animal
diversity contributed to nested feedback loops of the Earth system, developmental and ecological
processes, generating cascading effects [9,10], including the establishment of tiered trophic structures
that transformed the biosphere from a microbial world driven by physical processes to one engineered
by metazoans [9,11,12]. Coevolutionary processes drove changes in food web complexity, body size
and behaviour through the early Palaeozoic radiation and beyond, with profound impacts on Earth
systems, ecosystem stability and evolutionary feedback [9,11-20].

Critical for the support of a diverse array of life in Cambrian bottom water communities was the
establishment of complex food webs and a metazoan-dominated biosphere [11,12,21,22]. The establish-
ment of an animal-dominated biological pump revolutionized the transfer of nutrients, energy and
biomass in the oceans, increasing flux from the pelagic to the benthic realm and oxygenated bottom
waters [12,18]. Pelagic macrozooplankton, which can clear surface waters by feeding on primary
producers, contribute larger carcasses and waste products to sinking aggregates and move vertically
in the water column forming an important constituent of this pump in the modern ocean [23]. These
first appear in the fossil record in the Cambrian [24] and may have also driven size increases in
phytoplankton [22,25-27].

Isoxys was an abundant representative in Cambrian ecosystems [28-30] with species filling a range
of important ecological roles across benthic and pelagic realms, including as visual predators and
vertically mobile euarthropod zooplankton [26,29,31-35]. The carapace not only played a hydrody-
namic role [26,31] but also was important for the defence and protection of brooded eggs in at
least some species, with anterior and posterior spines possibly playing a defensive role [30,31]. An
ecological shift from the benthic to pelagic realm could have been induced by abiotic factors (e.g. low
oxygen or anoxia in bottom waters), biotic pull (positive trophic and nutrient incentives) or biotic push
(predator escape) factors. Pelagic zooplankton has evolved numerous times from benthic ancestors
[36], often facilitated through heterochrony, specifically neoteny, with larval characters retained [27,37].
However, as Isoxys brooded eggs and did not have a planktonic larval stage [30], this mechanism was
not possible for the genus.

Here we explore the impact of increased size and allometry on the function of the carapace
in the bivalved stem-group euarthropod Isoxys, specifically two hyperbenthic taxa Isoxys auritus
[38] (Chengjiang) and Isoxys minor [30] (Qingjiang and Guanshan). The detailed descriptions of the
ontogeny in these two species provide the opportunity to assess the changing hydrodynamic perform-
ance of the carapace with size and provide an example of how anti-predatory characteristics might
have been coopted for lift generation during ontogeny, facilitating the evolution of a pelagic life mode
from benthic stock.

2. Methods

Carapace outlines of the smallest, intermediate and largest representatives of two species of Isoxys
with described ontogenetic sequences were constructed using Inkscark 1.0. For I. auritus, these outlines
represent carapaces 5, 25 and 45 mm in length, including both morph A and B in the larger size classes
[39], while for I. minor outlines represent carapaces 10, 15 and 25 mm in length [30]. Outlines were
imported into the R environment, scaled, centred and sampled at 64-point resolution using functions
from the Momocs package [40,41]. Coordinates were then exported into .txt format using a function
(provided in the supplementary information of [26]) suitable for import into ANSYS Workbench 2021
R2 and 2024 R2 for computational fluid dynamics (CFD) simulations.

Two-dimensional simulations of laminar flow around the carapaces were undertaken. A two-
dimensional area 650 mm in length and 300 mm in height was created, with the carapace positioned
175 mm from the inlet and 150 mm from both upper and lower boundaries (figure 1). During the
meshing step, four spheres of influence were created, in order to capture the details of the wake
behind the carapace. A further smaller sphere of influence in the area immediately around the carapace
served to provide high-resolution detail of the disturbance to the flow in this area (figure 1). A further
additional meshing control, a face sizing, was applied to the margin of the carapace itself. A zero-pres-
sure control was applied to the outlet, while the upper and lower boundaries were treated as slip
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Figure 1. Experiment set-up for CFD simulations. Green circles indicate spheres of influence of radius r created during the meshing
phase. Exact parameters can be gathered from archived workbench projects, which are provided in the accompanying OSF project.
Further details for validation and verification of this set-up can be found in the OSF project accompanying a previous study exploring
the hydrodynamics of /soxys [26], https://osf.io/yvenb.

boundaries. The carapace itself was treated as a no-slip boundary. This simulation set-up followed that
of a previous study on the hydrodynamic performance of Isoxys species [26]. As part of this previous
study, simulated results from this set-up were compared to data from NACA 4402, NACA 4404 and
NACA 4702 airfoils, at a Reynolds number of 1000 [42], showing that it performs well at low Reynolds
numbers, particularly for broad airfoil shapes. However, currently, no suitable data are available for
verifying the performance of this simulation set-up at the lowest Reynolds numbers (as low as 13.5) in
this study.

Carapaces were standardized to a dorsal length of 25 mm. This allows the performance of the carapace
shape to be assessed independently of its length. CFD simulations were conducted using the steady-state
laminar solver in ANSYS Fluent (Ansys Academic, Release 2021 R1). This model performed best at low
Reynolds numbers (compared to shear-stress transport and k-epsilon models; see the supplementary
materials 2 of [26]). Simulations were considered converged when residuals were less than 10°.

Carapaces were orientated at angles of attack from -3 to +3 degrees, at one-degree increments, to
find the angle of attack with the lowest drag. A range of flow speeds was then applied to quantify
hydrodynamic performance across Reynolds numbers (tables 1 and 2) reflecting size increases during
growth observed from fossil material [30,38], and swimming speeds (in body lengths per second)
previously reported for swimming euarthropods [43]. When solutions did not converge at a Reynolds
number for an individual outline, this Reynolds number was treated as indicating the transition from
laminar to turbulent flow. No results were reported for that simulation, and no higher Reynolds
number simulations were performed for that carapace shape.

Further analyses were performed on four carapace shapes representing the two I. auritus morphs
at different sizes (25 and 45 mm total length) but with anterior and posterior spines shortened. The
proportions and length between the spines were controlled to be the same for the corresponding
shape with spines, meaning that the total length of these carapace shapes was less than 25 mm. The
same inlet velocities and orientation in the flow were used for the carapaces with spines. Thus, for
these simulations, the Reynolds numbers were slightly lower for each experiment compared to the
corresponding carapace shape with spines. These shapes facilitated exploration of the impact of the
spines on the drag and lift of these carapaces.

Coefficients of drag and lift (Cj, C;) were calculated for each converged simulation. Coefficients of
drag and lift are proportional to the force (either drag or lift, F; and Fj, respectively), inverse square
of swimming speed (1) and the inverse of the reference length (A) (equations (2.1) and (2.2); p is the
density of the fluid):

2F,

C,= —4 2.1
= A (2.1)
C = 25, (2.2)
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Table 1. Calculation of biologically relevant Reynolds numbers for CFD simulations. (BL = body length; Re = Reynolds number.)

valve length (m) velocity (BLs™) velocity (ms™)

0.005 1 0.005 13.59788

Table 2. Calculations for velocity required to simulate that Reynolds number for a carapace length of 25 mm, and values input into
ANSYS Fluent. (Re = Reynolds number.)

valve length (m) Re desired

These dimensionless quantities are specific to individual Reynolds numbers for a given shape. This
means that the drag and lift force of carapaces of different shapes and sizes at a range of swimming
speeds can then be calculated, from a given Reynolds number, using equations (2.1) and (2.2). These
coefficients, and the maximum Reynolds number at which simulations were converged, were used to
calculate the maximum velocity (in ms™ and body lengths s™) of each carapace before transition to
turbulent flow.

Drag coefficients at intermediate Reynolds numbers were used to compare the absolute drag forces
experienced by different carapace shapes, with the length of the carapace between the spines (rather
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Table 3. Calculations of Reynolds number required to compare to /. minor and /. auritus 5 mm morphs, keeping the length of carapace n
between the spines constant, for Reynolds numbers 13.5, 68 and 170, respectively.

morph valve length (m) velocity (ms™) Reynolds number

1. auritus A, 25 mm 0.0056 0.005 15.2
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than the total length including the spines) kept constant. This required comparing shapes at different
Reynolds numbers (tables 2 and 3). In order to calculate the drag and lift forces for Reynolds numbers
intermediate of those simulated, the Im function in R (stats package; [40]) was used to fit a model using

the fOllO W ing formula:
Cd = 0 +1 % e~ (2 3)
Re ’ ’

The coefficient I returned by each model was used to calculate a drag coefficient C; for a given
Reynolds number, Re, for a given carapace shape. Further details of the linear models are provided in
the electronic supplementary material.

3. Results

Drag coefficients were lowest at the highest Reynolds numbers for all shapes and were lower for
shapes representing later stages in development for both species (figure 2). The transition from
laminar to turbulent flow occurred at higher Reynolds numbers for shapes representing later stages
in development for I. auritus (both morphs), but at the same Reynolds number (Re = 170) for 1. minor
(figure 3).

When carapace shapes were scaled to their length during development, the maximum velocity
(in both ms™ and body lengths s) was highest for the earliest stages in development, with the
exception of morph A, where the 25 mm representative was outperformed by the 45 mm shape in
ms™ (figure 3). However, when scaled to the same length, the drag forces experienced by carapace
shapes representing earlier stages of development were much higher than those representing later
stages (electronic supplementary material, tables S1 and S2) and those of I. auritus were generally lower
than I. minor with the exception of the earliest development stage of the former (figure 3). If I. auritus
grew isometrically (no change in shape with growth), then the highest velocity it would have reached
before the onset of turbulent flow would have been less than half achieved by morph B at 25 mm and
around one-quarter of morph B at 45 mm (figure 3b).

Drag forces for Isoxys are over an order of magnitude higher for a 5 mm long carapace travelling at
5 body lengths s™ than a 5 mm carapace travelling at 1 body length s™ (Re = 70 and 13.5, respectively;
figure 3; see full details in the electronic supplementary material, table S1), and greater for I. minor
than L. auritus (figure 3; see full details in the electronic supplementary material, table S1). Carapaces
representing a later stage in development led to lower drag forces than those at earlier stages for I.
auritus morph A and I. minor, with very similar performance for I. auritus morph B at 25 and 45 mm
shapes (figure 3). All I. auritus carapace shapes outperformed the juvenile 5 mm carapace substantially
(figure 3).



625 Species
° ® [ auritus

o -.- Morph A

. --- Morph B,

) A [ minor

Reynolds
number

170 > 13.5
@® 27
40
70
110
135
170
255
340
425
510
550
625

0.4 4 .

0.3 4

0.2

Lift coefficient

0.1+
A
10 mm

& -
25 mm ®
5 mm

e R MIS mm
4 . = |
0 e 25mm 25 mm

@ -.
45mm @
45 mm

0.5 1.0 1.5 2.0
Drag coefficient

Figure 2. Plot of drag coefficients against lift coefficients for each carapace shape and Reynolds number. Lines join results from a
single carapace shape at multiple Reynolds numbers. Grey labels on right-hand side indicate size of carapace of the fossil from which
the shape was created. Maximum Reynolds number is given in red in the top left.

Lift coefficients were highest for the largest Reynolds numbers for all shapes. Carapaces repre-
senting adult morphologies of I. auritus display higher, more favourable lift/drag ratios than those
representing earlier stages in ontogeny, though the higher drag-induced lift forces (probably resulting
from the higher drag coefficients) mean that for a given Reynolds number, the earliest stages in
development generated the highest lift coefficient. The maximum lift coefficient and absolute values
of lift were generated by the largest specimens representing I. auritus morph B. The drag forces were
lowest for later stages in ontogeny, but very little separated I. auritus morph B 25 and 45 mm shapes
(figure 3).

For the experiments isolating the impact of the spines, the lift coefficient for a given drag coeffi-
cient was higher for carapace shapes with the spines present rather than spines shortened, with the
exception of the 25 mm long I. auritus morph A, where the removal of a very short anterior spine
slightly decreased the drag coefficient for a given lift coefficient (figure 4). Both drag and lift forces
were lower for carapaces with no spines when compared to their spined counterparts (when they were
scaled so that the length of the carapaces between the spines was the same); however, the relative
differences were much lower (within a few per cent) for drag forces than lift forces (5% for L. auritus
morph B, 25 mm, >20% for all other carapace shapes; table 4).
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Figure 3. Relationship between size, shape, drag force and hypothesized swimming speed in /soxys. (a) Drag forces for carapaces
calculated from drag coefficients using equation (2.1) for three representative lengths and swimming speeds for /soxys: carapaces of
5 mm length travelling at one and five body lengths per second, and carapaces of 25 mm length travelling at half a body length per
second. Percentage value at the end of the bar indicates the drag reduction compared to the carapace shape of the same species with
the highest drag force. Note: forces for /. auritus morphs A and B, both 25 and 45 mm valves calculated using coefficients of drag
and lift recovered for Reynolds numbers (Re) relating to a carapace length that gives a distance between the spines of 5 or 25 mm,
respectively. Details of the model fit to simulated data given in the electronic supplementary material. Full results are provided in the
electronic supplementary material, tables S1 and S2. (b) Maximum speeds for each carapace, calculated from the highest Reynolds
number before flow transitioned to the turbulent regime, and the length of the fossil from which the carapace shape was collected,
presented in carapace lengths per second and absolute values (mms™).

4. Discussion

4.1. Relationship between ontogeny, size and hydrodynamic performance in /soxys

The gradual change in shape coupled with the hydrodynamic improvement in carapaces representing
later stages in development support an increasing role for streamlining and drag minimization for
the carapace of I. auritus through ontogeny, in particular from the smallest size class of I. auritus to
both morphs at 25 mm. This streamlining would have moderated the challenges of swimming at
higher Reynolds numbers for larger Isoxys life stages [44]. Absolute drag forces were around 15%
lower than if I. auritus had grown isometrically up to 25 mm in length rather than allometrically
increasing asymmetry and spine length (figure 3), facilitating lower energy expenditure and faster
swimming speeds. Notably, the performance of morph A and morph B for I. auritus indicate that the
latter was able to swim faster before the onset of turbulent flow; however, the two morphs perform
similarly in terms of absolute drag forces (figure 3). These differences may relate to the robustness of
the morph A carapace. Morph A carapaces appear thicker than those of morph B, with compressed
specimens showing no wrinkles and wide doublure and preserved in high relief [38]. Isoxys minor also

Végovzuéumipguad.(.)"'.J.b;'y sou/wumof/ﬁm6U|qS||qnd/(J,a|305|e:(01 H



A25 A45

0.4 1

0.3 -

e®

>

. \.

0.2 A g N

0.1 4

No spines

Cl

B25 B45 Spines

0.4 4
0.3 1
0.2 A ..

0.1 1

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
Cd

Figure 4. Plot of drag (Cd) and lift (Cl) coefficients for /. auritus morphs A and B, 25 and 45 mm carapace shapes, with spines and
spines artificially removed. Outline used in the ANSYS simulations is indicated in the top right of each plot, with spines removed for ‘no
spines’ analyses displayed in teal.

shows a slight improvement in hydrodynamic performance through ontogeny, though this effect is
smaller than for I. auritus. The small differences in the carapace outline and spine orientation of this
species from the two deposits (Guanshan and Qingjiang) are not expected to lead to large differences
in streamlining. This supports the previous interpretation that the carapace played a primary role in
brooding eggs and protection and that streamlining was less important for I. minor [30]. In studies of
extant isopods, differences in swimming speeds were greater than could be explained by differences
in drag alone, indicating that body drag reduction correlates with other morphological attributes
important for swimming efficiency such as muscle performance [45]. Indeed, swimming efficiency
improves with body size in extant mysids [46]. While knowledge of the relative muscle power and
swimming efficiency of Isoxys species is lacking, these comparisons to modern marine euarthropods
suggest that I. auritus may have been a more powerful and more efficient swimmer than I. minor and
that differences in the hydrodynamic performance of these two taxa might have been augmented by
correlating differences in muscle power and swimming efficiency.

The increased streamlining of the carapace and elongation of the spines of I auritus through
ontogeny facilitated more efficient (lower drag) and faster (larger overall size, operation at a higher
Reynolds number) swimming for this species compared to I. minor, or compared to the hypothetical
of isometric rather than allometric growth for the species (figure 2). This suggests that allometry,
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Table 4. Drag (Cd) and lift (Cl) coefficients for simulations at Re = 170 and Re = 425, used to calculate drag and lift forces for [ 9 |
carapaces with and without spines, scaled to be the same length when spines were removed. (Length of valve, including spines for
relevant shapes, and swimming speed (velocity) used to calculate forces for each table row indicated.)

valve length  velocity drag force (N) dragforce % lift force (N) lift force %

(m) (ms™) change change

1. auritus morph A 25 mm carapace

sosy/jewnol/Bio Burysigndigaposiedos
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specifically allometry improving hydrodynamic performance, was important for the evolution of larger
sizes in Isoxys. The impact of the spines on drag was minimal (at most a few percentage points)
compared to the changing shape of the carapace (figure 3 and table 4), but longer anterior spines did
have a large impact on the lift forces—impacting it by 20-30% for adult carapaces (table 4). Thus,
streamlining of the carapace outline between the spines, facilitated by allometric growth, impacted
the drag coefficient more than the spines. This does not preclude the spines from also acting as an
anti-predatory morphological feature; however, the increased length in later growth stages would
imply that, for an anti-predatory feature, the function was more important for larger members of the
species than smaller ones. Allometric growth of Isoxys communis, another relatively large Isoxys species,
suggests that improvement of hydrodynamic performance was also important for larger sizes achieved
by this species, as the valve length : height ratio and anterior spine length, both important properties
impacting drag and lift [26], increased during growth [33].

Notably, the absolute speed (and speed in carapaces per second) before the onset of turbulent
flow was highest for the earliest stages in development (with the smallest carapace sizes; figure 3b).
This indicates that, for these early life stages, carapace shape did not provide a limit on swimming
speed, and other aspects of the biology of the organisms such as muscle strength or appendage
morphology were more important. Modern copepods and ostracods, which generally operate at
Reynolds numbers from 1 to 50 (for animals up to 3 mm long), only swim rapidly (and at high
Reynolds numbers) during escape reactions that last around 1 s [47], using setiose appendages as
paddles to provide thrust [48] during normal swimming. At these lower Reynolds numbers, the
(very minimal) possible hydrodynamic benefits of streamlined carapaces are outweighed by other
considerations such as protection, while greater swimming speeds and endurance can be gained from
setiose appendages providing greater thrust at these low Reynolds numbers. The smallest I. auritus
reported from the Chengjiang display elongate appendages; however, these bear simple spines rather
than setiose outgrowths [38], indicating that they were not the main source of thrust for these animals.
Instead, Isoxys is thought to have swam using metachronal beating of appendages. This swimming
mode uses cyclic, rather than synchronous, movement of appendages in a wave along the body to
propel the animal forward [49]. Support for Isoxys using metachronal swimming comes from compar-
isons to swimming modes of extant crustaceans and the limited specialization of appendages along
the body in Isoxys [31,32,35,39,50,51]. Further support comes from the ratio of the length of Isoxys



appendage spacing to their length (the B:1 ratio of [52]). This is close to 0.2 (as inferred from figures [ 10 |
presented in [35]) and is at the lowest end for which metachronal swimming has been observed in
modern marine animals [49,52]. In trilobites, for which metachronal swimming has also been inferred
[53,54], favourable feeding currents have been suggested to occur during metachronal swimming [54].
However, it is unlikely that similar currents were used by Isoxys during feeding, as it probably fed in a
raptorial fashion using anterior appendages [32,39,51].

At later life stages with larger carapace sizes and higher Reynolds numbers, streamlining of
carapace shape became important for Isoxys species. In extant mysids, larger animals have either
comparable or faster routine swimming speeds when compared to smaller ones [43,46], and this may
have also been the case for Isoxys in the Cambrian oceans.

4.2. Predation, selection and a biotic push into the pelagic realm?

sosy/jewnol/Bio Burysigndigaposiedos

The focal taxa for this study, I. auritus and I. minor, most likely lived close to the seafloor and were not
pelagic [26,30,38]. However, some Isoxys species were among the euarthropod pioneers in the pelagic
realm, as demonstrated by the hydrodynamics and visual performance of a subset of species within the
genus [26,31,34]. Comparison of Isoxys with closely related stem-group euarthropods (see phylogenies
in [35]), including most probable sister taxa Surusicaris [55] and Erratus [56] indicates that the earliest
diverging species within genus Isoxys probably had a symmetric carapace with short spines and that
those pelagic taxa bearing streamlined carapaces with longer spines are derived. Thus, just as for many
other groups, pelagic Isoxys species emerged from benthic stock [27,36].

Two species of Isoxys, Isoxys longissimus and Isoxys paradoxus, show comparable hydrodynamic
performance to carapaces of the pelagic Gnathophausia zoea. Isoxys paradoxus are known from as early
as Cambrian Age 3, a time that saw the appearance of large swimming predators [57-59] and a step
change in trophic complexity compared to the Ediacaran and Terreneuvian. Broken carapaces found
in coprolites and guts from this time [58,60,61] demonstrate that Isoxys were being predated upon.
Predation pressure may have provided the biotic push for these pelagic Isoxys species to enter the
water column. Predation pressure is expected to lead to an escalatory response by prey animals, and/or
coevolutionary arms races [62,63], such as skeletonization or strengthening and elaboration of existing
skeletons [7,64-66], growth to a size refuge [67-69] or behaviours such as burrowing [21]. In the
case of Isoxys, the recognition that drag reduction facilitates larger size, but that larger size, in turn,
facilitates lift generation (through both more favourable lift : drag ratios but also additional swimming
power provided by larger limbs and muscles), provides a link between large size, anti-predatory
morphological features (elongate spines) and expansion of some Isoxys species into the water column.
Support for this comes from the recognition that large size can in itself be a response to predation
pressure, with animals reaching a size refuge where they are less likely to be targets for predators. In
addition, for a mobile animal such as Isoxys, it would facilitate more efficient swimming, augmented
with the improved hydrodynamic performance and swimming efficiency of larger growth stages
[43,46]. Reduced drag would have provided an additional benefit beyond efficient swimming and
faster swimming speeds, as it would have reduced the disruption to the flow around the animal and
hence the ‘noise” and detectability by predators [70].

Elongate spines and more slender, hydrodynamic, carapaces are expressed later in the development
of early diverging species such as I. auritus, allowing ecological and eventually genetic isolation from
ancestral species [35,38,71-73]. As these features are probably derived (rather than ancestral) for the
genus, current evidence suggests that the larger, more hydrodynamic Isoxys species arose through
peramorphosis. Conclusive demonstration that the more hydrodynamic carapaces and elongate spines
are the result of heterochrony requires detailed descriptions of the ontogeny of both ancestral and
descendant forms [72]. For Isoxys, this would require knowledge of the ontogeny of taxa such as I
longissimus, which is currently known from very few specimens [39], and well-resolved phylogenetic
analyses including more Isoxys taxa in order to confirm the hypothesized ancestral and descendant
forms discussed above. A phylogenetic analysis including more Isoxys taxa and achieving finer
resolution than achieved thus far [35] is limited by our lack of knowledge on soft part anatomy
for most species. However, it is notable that peramorphosis has been considered a prime factor in
generating increases in body size, as peramorphic forms tend to be larger than their ancestors [73].
This raises the possibility that for Isoxys, peramorphosis might have facilitated not just large body size
but also elongation of spines and a more streamlined carapace, allowing expansion into the hyper-
benthic and then pelagic realm, adding a developmental pathway alongside the ecological forcing from
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predation pressure. This peramorphic route into the plankton complements another heterochronic [ 11|
shift, neoteny, that has been a long-established pathway to evolve a planktic mode of life [27,37].

Once established within the pelagic realm, these Isoxys species would still have had to contend with
predators, and selection for anti-predatory features such as reduced drag, larger size and elongated
spines would have continued. Furthermore, increased demands of swimming at higher Reynolds
numbers [44] and possibly higher metabolic demands of a pelagic mode of life [74] provide additional
benefits for streamlined, low-drag carapaces. Thus the extreme forms of I. longissimus and I. paradoxus,
with elongate spines and asymmetric carapaces found on the margins of Isoxys morphospace [26],
probably reflect further selection pressure within the pelagic realm.

In summary, hydrodynamic performance improved during ontogeny for two species of Isoxys,
I. auritus and 1. minor. Larger Isoxys of both species have more hydrodynamic carapaces and more
elongate spines. Based on our current understanding of the phylogenetic relationships within the
genus, these hydrodynamic features represent derived traits, indicating that this could be a peramor-
phic trend. These traits can also be interpreted as anti-predatory, indicating that pelagic species of
Isoxys arose from benthic stock at least partly as a result of predation pressure in the early Cambrian.
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