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Abstract 
 

Datasets containing locational information collected by mobile phones are increasingly used in 

social science research and mobility analysis, yet they continue to present a range of technical, 

financial, and ethical challenges. The risk of disclosure of personally identifiable information 

is a foundational concern in this context, and so to alleviate it, datasets are often aggregated to 

pre-defined geographic units and presented as counts of the number of mobile devices within 

them at a given time. The use of grids or units created by statistical agencies for the 

dissemination of traditional datasets - such as censuses - are common choices for this 

aggregation process. However, these can result in large variations in the number of devices 

encapsulated within each geographic unit, resulting in over-generalisation and a loss of 

information in some areas. 

Investigating this issue is the core theme of this work, which will explore different 

regionalisation methodologies and their consequences before alighting on a novel method for 

generating spatial units tailored for mobile phone data. The central aim is to maximise the 

granularity of the data, whilst minimising the risks of disclosing personal information. This 

methodology has applications to widely available datasets and enables bespoke geographical 

units to be created for different contexts and timescales. The generated units are compared to 

established aggregates from the England and Wales Census and Ordnance Survey, and assessed 

through varying temporal granularities. This work seeks to demonstrate that these bespoke 

outputs minimise data omission caused by low counts and preserve underlying data distribution 

better than existing aggregation methods.  

This thesis speaks to the need for data-driven and context-driven regionalisation methodologies 

in enabling the best use new forms of data in research. It endeavours to contribute to a better 

understanding and safer use of mobile phone location data in social science and promotes 

regionalisation as a promising solution to reconcile data granularity with disclosure for 

sensitive location datasets. 
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1. Introduction 
 
Datasets generated by GPS-enabled mobile phones are increasingly used in research as such 

devices have not only become ubiquitous, but also proven their value across a range of 

applications in mobility analysis, such as dynamic population mapping, epidemic modelling 

and computational social sciences (Lazer et al., 2009; Kitchin, 2013; Watts, 2013; Deville et 

al., 2014; Bengtsson et al., 2015; Jeffrey et al., 2020). However, the high spatial and temporal 

precision of the mobile phone GPS location data make it personally disclosive, so to prevent 

the risk of disclosure a geomasking or aggregation process is required. 

Data anonymisation - by removing personally identifiable information (such as names) - is 

often insufficient to prevent the re-identification of individuals when granular location data is 

gathered (de Montjoye et al., 2018). In this context, aggregation assigns the precise coordinate 

pairs to an area-based geography – such as a grid – and counts the instances of these pairs as a 

proxy of activity within each area (Jeffrey et al., 2020; Kishore et al., 2020). A further step 

commonly occurs when the devices generating the location pairs are known and can therefore 

be aggregated to a ‘device count’ per areal unit, with devices treated as analogous to individuals. 

Aggregated products are created for third party access, but unlike more traditional population 

datasets, no specific regionalisation has been made to aggregate and represent these new forms 

of data in a consistent way. This is important because the decisions taken in this process, such 

as the size of the areal units used, will have impacts on the analysis that follows, as it is a classic 

manifestation of the interactions of scaling and zoning detailed by Openshaw (1977, 1981). 

This is better understood in the context of the Modifiable Areal Unit Problem (MAUP) and can 

be further compounded by data redaction procedures that are commonly applied to further limit 

risks of disclosure, for example by filtering out the areas with device counts of less than 10 (a 

common threshold in this context). Small deviations in unit size can therefore amount to large 

variations in the areas that are redacted vs those that remain (Helbich et al., 2021). 

One approach to minimise the impact of the MAUP on aggregate datasets is to consider the 

scale and zone at which the data is aggregated. Regions that are made to closely fit the data and 

promote granularity could help create aggregates that correspond better to the original dataset. 

The England and Wales Census Output Areas (OAs) are one example of regionalisation 

strategies developed for a specific dataset and use case since they were conceived to closely fit 

the underlying spatial distribution of the data (Martin, 2000).  
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The overarching aim of this thesis is to develop and propose regions for an in-app mobile phone 

dataset, a specific subcategory of mobile phone GPS location data. These regions should fit the 

data’s spatial distribution, much like the OAs do for census data, and help aggregate them in 

more consistent ways to reconcile data protection and preservation. Data-driven methodologies 

exist for this type of exercise, and some are presented and assessed throughout this work. 

Nonetheless, another key objective is to propose a more generalisable approach, challenging 

the current restrictions of bespoke regionalisation methods, which tend to be mostly proprietary 

and project specific. Considering the recent increased interest of researching consumer datasets, 

another aim is to maximize the ease of access to this unique dataset. This would help establish 

a framework for future researchers to analyse and interpret similar data, and in turn helps spark 

discussions around data dissemination standard practices. 

The two key purposes of this work are thus to (i) develop a transferable method for the 

regionalisation of sensitive and dynamic mobility datasets and (ii) more specifically regionalise 

and provide a safe aggregated version of the granular dataset utilised for conducting this 

research. These objectives contribute towards increasing wider access and understanding of 

these growing, complex datasets and promote their safe use across the research community. 

 

1.1. Aims 

As explained above, the purpose of this research is to explore questions pertaining to the 

regionalisation of in-app data, provide a methodology for the creation of data-driven bespoke 

regions and give access to an aggregated case study dataset. This works anchors itself inside 

the fields of mobility studies and geographic analysis, which inform and impact the decision-

making throughout the method’s development. One such example is the consideration of time 

scales in a second time, to acknowledge the impact of time granularity on the dataset’s usability 

in mobility studies. Benefitting from a rare access to a consumer in-app mobile phone dataset, 

the research also seeks to provide thorough exploration of the dataset, and, ultimately, an 

aggregate for safe use. On this basis, the thesis has five broad aims: 

(1) To review current practices in mobility analysis, highlighting opportunities for 

progression with new forms of data. This helps justify the need for safe data 

dissemination (Chapter 2). 

(2) To evaluate an individual-level in-app location dataset and investigate the effects of the 

MAUP on its aggregation (Chapter 3 and 4). 
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(3) To regionalise the dataset, preserving privacy, granularity and analytical completeness 

and validity (Chapters 4 and 5).  

(4) To propose a transparent and versatile methodology for regionalising and aggregating 

large point datasets which could be applied to other comparable datasets and urban 

areas (Chapter 5). 

(5) To assess the impact of the Modifiable Temporal Unit Problem (MTUP) on the 

method’s generalisation and propose recommendations for optimal use of the regions 

through changing temporal dimensions. Use the method as an opportunity to 

demonstrate and quantify MTUP (Chapter 6). 

The key outputs from this thesis are reported in Chapters 5 and 6. Indeed, these chapters detail 

the regionalisation methodology and describe its outputs. However, their value and relevance 

are appreciated through the research foundations and crucial contexts comprised in Chapters 2, 

3 and 4. A more complete thesis outline is provided below, outlining each chapter’s key 

contents. 

 

1.2. Thesis Structure 

1.2.1. Chapter 2: Literature review 

This chapter lays the foundational concepts of the thesis, focusing on time geography, and 

explores the evolving landscape of mobility analysis. The purpose of this literature review is 

to make explicit the narrative thread woven throughout the thesis, which follows these  key 

points: (1) mobility analysis is crucial in geographic research and supports many fields ranging 

from social science to urban planning, (2) these analyses rely on complex or limited datasets 

capable of capturing granular information in both space and time (3) new forms of data have 

appeared which can greatly improve mobility research (4) these new forms of data constitute a 

paradigm shift and add in complexity, both technical and ethical. (5) Resolving some of these 

challenges requires extensive data alteration and (6) some of these alterations (here aggregation 

and regionalisation) provide promising solutions to reconcile privacy and accuracy when 

applying these new forms of data, in turn safely harnessing their established research potential. 

To develop these points, the literature review first provides an overview of research conducted 

in mobility analysis, focusing on traditional datasets, to highlight the paradigm shifts resulting 

from the uptake of new forms of data. This is important as the in-app mobile phone dataset 

presented throughout the rest of the work is largely considered as a potential source of novel 



 30 

mobility insights. This is followed by a discussion around the challenges posed by the 

integration of these datasets in social and geographic research, with a particular focus on 

limited access and privacy protection. The discussion in this chapter later shifts to the strategies 

employed to mitigate these privacy risks, primarily through data aggregation. The final key 

section of the literature review describes the aggregation and regionalisation concepts applied 

throughout the thesis. For example, definitions of functional regions are provided, and key 

methodological elements, such as the H3 indexing system, are introduced in anticipation for 

their use in later chapters. The literature review thus seeks to provide ample theoretical 

background, setting the stage for a detailed examination of the dataset in the context of mobility 

research, and regionalisation in the context of data protection. 

 

1.2.2. Chapter 3: Data Presentation and Preliminary Analysis 

Chapter 3 presents the in-app mobile phone dataset provided for this research. Throughout the 

thesis, all tests are run on the dataset detailed there. The attributes of the dataset are provided, 

and descriptive analysis is conducted to familiarise ourselves with key in-app data 

characteristics. This data description is particularly important as the data-driven regionalisation 

methods proposed in future chapters are contingent on the dataset used for the shape of their 

outputs. This chapter then provides the main methodologies used to digest the data for analysis, 

taking the raw data through typical cleaning and aggregation processes. Further analyses are 

conducted using a processed version of the dataset, to assess the data’s representativeness of 

the population. Finally, building on this last representativeness assessment, the chapter 

concludes on a comparison of results obtained from conducting this test with the raw data, 

compared to the standard practice aggregate. The preliminary analysis presented in this chapter 

thus serves two purposes: (1) describing the in-app data utilised throughout the work and (2) 

illustrating the impact of using common aggregates to assess data quality. At the end of Chapter 

3, some concepts discussed in Chapter 2 have been applied in the context of the in-app data, 

providing justification for the research conducted in Chapter 4. 

 

1.2.3. Chapter 4: Regionalisation - Explorations 

Chapter 4 provides a more complete assessment of the MAUP’s impact on aggregated products 

derived from the in-app data. It takes root in the uncertainties highlighted in Chapter 3 and 

compares analysis results using different aggregate scales and zones to quantify the issue. From 

there onwards, the necessity for regions which fit the data more closely is made evident. The 



 31 

chapter then reflects on discussions provided in Chapter 2 around regionalisation 

methodologies and defines the key principles and practices to consider in constructing robust 

functional regions in this context. These criteria are used later in the chapter to assess two 

common data-driven and tractable regionalisation methods. The regionalisation principles 

appear throughout the rest of this work, as the final regions outputted by the thesis are later 

assessed against them. This chapter is exploratory in nature: it describes the various tests 

conducted in the search for a reusable regionalisation methodology, applicable to in-app data. 

These explorations were necessary to inform the making of the bespoke methodology provided 

in Chapter 5, and produced interesting examples to assess the credibility of the core 

regionalisation principles defined here. 

 

1.2.4. Chapter 5: Operationalising H3 – Development of a bespoke 
regionalisation methodology 

Chapter 5 presents the first regionalisation methodology built on H3 units for regionalising in-

app mobile phone datasets. This is predominantly a methodological chapter, with the first half 

describing in detail the regionalisation algorithm devised to account for the criteria and 

discussions set out by previous chapters. This is achieved by creating atomic spatial units at 

which to initially aggregate the dataset, and combining them based on ranked criteria to account 

for size and terrain. The resulting regions are presented, yielding positive results. They preserve 

a significant amount of data when compared to traditional aggregates. Following the 

presentation of the results, a sensitive analysis is conducted to assess the method’s volatility, 

and the chapter closes on a reiteration of the principles and criteria presented in Chapter 4, as 

the proposed bespoke regions are compared with the previous regionalisation attempts. The 

necessity to better account for temporal dynamics is discussed, particularly in the context of 

time granularity and mobility analysis: this pivots towards the temporal research conducted in 

Chapter 6. 

 

1.2.5. Chapter 6: MTUP and times of low data – assessment of the H3-based 
regions 

Following from the conclusions of Chapter 5, Chapter 6 assesses how changes of temporal 

scales and zones impact the regions’ good fit to the in-app data. This chapter is largely 

exploratory and seeks to draw attention to key MTUP effects by using the new regions as a 

helpful analytical tool. This chapter begins by defining MTUP in the context of aggregation. It 

then evaluates the new regions across different temporal dimensions, to determine if the 
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method's benefits observed in Chapter 5 persist across various temporal dimensions. Building 

on this, regions are built for hourly data to assess whether changing the temporal input still 

produces coherent and effective regions for preserving data at times of low activity. These new 

regions are tested using previously developed methods to evaluate region performance. Later, 

points of interest are assigned to each new hourly region set, and the resulting spatial 

compositions are compared, demonstrating that different regions provide varying perspectives 

of the same fixed space. The conclusions highlight the importance of considering MTUP 

alongside MAUP when selecting aggregation and regionalisation scales. This chapter aims to 

offer key recommendations for the optimal use of the Chapter 5 method and showcase the 

potential of the algorithm as a tool for exploring MAUP and MTUP effects in tandem, guiding 

future efforts toward a more comprehensive space-time tessellation. 

 

1.2.6. Chapter 7: Discussion 

The final chapter is a summary discussion of the thesis’ main takeaways. It seeks to reinforce 

the conclusions and insights drawn from this work. Key methodological contributions are 

detailed, and the limitations of the research are discussed, with a focus on data uncertainties 

and access restrictions. Potential applications for the regionalisation methodology, as well as 

the implications of the academic contributions as a whole, are presented. This chapter 

concludes on future avenues of research related to this thesis. 

 
1.3. Notes on Software and Code 
 
Most analyses in this thesis were undertaken in R Software for Statistical Computing (v4.4.0, 

R Core Team, 2024), an open-source program freely downloadable from www.r-project.org. 

Associated codes are available upon request, with the core regionalisation algorithm accessible 

from https://github.com/lousieg/H3BR. Other software utilised included QGIS.  

 
 
1.4. Ethics 

This research was approved by the UCL Research Ethics committee (Project ID: 4763/002) 

  

https://github.com/lousieg/H3BR
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2. Literature review 
This chapter lays the foundational concepts of this thesis, focusing on mobility studies and time 

geography, and introducing the evolving data landscape of mobility analysis. It seeks to clarify 

the necessity to regionalise, aggregate and disseminate mobile phone datasets to harness their 

application potential safely, and does so by chronologically detailing the role these datasets 

could play in improving and developing informative mobility analysis  across fields. Thus, 

after defining the key concepts, this chapter presents the traditional methodologies and types 

of data utilised in conducting mobility research. Subsequently, contemporary large-scale 

location datasets are introduced, examining their impact on the discipline. These new data 

sources, such as the mobile phone in-app location data studied throughout this thesis, enable 

new timely insights but also introduce significant technical and ethical challenges, particularly 

concerning privacy and disclosure control. After detailing these concerns, the chapter 

introduces the strategies employed to mitigate these privacy risks, primarily through data 

aggregation. However, it is shown that spatial aggregation can compromise data integrity, 

prompting a deeper investigation into data-driven regionalisation as a potential technical and 

ethical solution to this hindrance. Regionalisation for aggregation is hence presented as an 

opportunity to create more specific spatial units, which could reconcile the need for privacy 

with the preservation of the data’s granularity and underlying characteristics valuable to 

mobility analysis. This chapter concludes by summarising the research objectives and setting 

the stage for a detailed examination of regionalisation strategies for in-app mobile phone data 

throughout this thesis. 

 

2.1. Conceptual framework – time geography and mobility 
research 

 

2.1.1. Key concepts and definitions 

This thesis’ overarching aim is to consider more closely how sensitive datasets are aggregated, 

to ensure their safe use by many. As the dataset analysed throughout (mobile phone in-app 

dataset) is considered as a novel form of mobility data, we here define what will be understood 

as ‘mobility’ throughout this work. We also lay out key concepts in time geography as these 
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contextualise much of mobility research conducted within the social sciences as a whole (Thrift, 

1977). The importance of such mobility analysis is then demonstrated through the presentation 

of key studies, to justify the necessity to continue providing timely data. These studies also 

provide guidance regarding the ways mobility datasets should be handled to preserve and 

promote the key insights derived from their use. 

 

2.1.1.1. Mobility 

The term mobility is polysemous: it may describe the direction, potential and means behind the 

movement of individuals or groups, define an observed or predicted movement over differing 

timescales, or designate a whole field of study in itself. It is perhaps one of the most shared 

concepts across social science disciplines (geography, sociology, urban studies etc.) (Lassave 

and Haumont, 2001). In geography, mobility studies describe the movement of people (rather 

than goods or information). They are concerned with the underlying mechanisms and 

motivation behind movement along with the social, economic, and environmental impacts it 

has on places (Massey, 2005; Urry, 2007; Cook, 2018). Mobility studies can range from local 

to global - including tourism, migration, commuting etc - but tend to be mostly framed by 

innovation and methods of transport and communication (Lévy, 2000). There is no strict 

consensus as to when mobility started to become a key concern in social sciences. However, 

the emergence of transportation geography and urban planning research in the 1950s arguably 

laid the foundations for analysing daily urban movement of people (Garrison et al., 1959; Berry, 

1965). Within urban studies themselves, mobility is often approached through the lens of daily 

patterns of movements (commuting) at a local scale (Segaud et al.,  2003). This helps filter 

from the multiple definitions of the term mobility to outline a more readily applicable concept 

to frame this project: the travel methods and practices of a population within its regular (daily) 

context. This research adopts this definition to frame the assessment of datasets applied in the 

context of mobility studies: preserving the data features which can inform on these practices at 

their granular scales, and within daily time frames. 

 

2.1.1.2. Time Geography  

Research in mobility, travel patterns and behaviour has existed for decades. By introducing 

Time-geography in the 1960s and 70s, Hägerstrand proposes the idea that time should be 

considered with equal importance to space in geographic analysis and mobility studies 
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(Hägerstrand, 1970; Thrift, 1977). Time-geography is a physicalist and constraint-based 

approach to society which mostly relies on the concept of time-budgets: namely that individuals 

have limited time and spatial resources to perform tasks and goals, and that these constraints 

are the primary reasons behind some of one’s decision-making and time-allocating 

(Hägerstrand, 1974; Miller, 2017). Among some of the main conditions for defining this 

concept, Hägerstrand mentions “the fact that every task has a duration” and that “movement 

between points in space consumes time” (Hägerstrand, 1975a; Thrift, 1977). All one’s goals 

require some amount of time to complete, and must happen somewhere in space; there might 

also be some time allocated in reaching said space, and temporal constraints on its accessibility. 

This is summarised in literature as three main types of constraints: capability constraints (the 

ability to move or operate vehicles, the need to eat and sleep etc.), coupling constraints (certain 

activities requiring different groups and people to intersect, such as work) and authority 

constraints (such as a place’s opening hours or rule of laws) (Hägerstrand, 1970; Thrift, 1977; 

Neutens et al., 2011).  

Within this context, the Space-Time Prism (STP) is defined as “a representation of the 

constraints limiting the time within which the individual can act” (Oxford Reference, 2011). 

With the development of STP, Hägerstrand focuses on measuring person-based accessibility 

as opposed to traditional place-based accessibility (Hägerstrand, 1975). This shift brings about 

new questions in understanding the movement of people and occupancy of spaces, with more 

focus on how to define places based on the times at which they are accessed, and the ways they 

are utilised and occupied. Thus, within mobility analysis, scholars like Hägerstrand drive a 

plural view of accessibility and movement: namely one that couples both space and time, but 

also person-based with place-based geographies. To approach research across these dimensions 

requires data which also contains varied facets, a challenge described in Section 2.1.3.2 of this 

literature review chapter. The complexity of conducting such types of analysis is rewarded by 

the proven merits of mobility analysis. 

 

2.1.2. The value of mobility analysis 

The value of mobility analysis lies in its potential to help inform on a wide variety of behaviours 

and traits. Understanding the flows of movements and mobility habits of large groups informs 

planners and policy makers, and STP concepts appear frequently in mobility research, 

particularly in the context of transport planning (Chai, 2013; Sahebgharani, Mohammadi and 
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Haghshenas, 2019; Qin and Liao, 2021). However, beyond legislative of policy purposes, the 

value of mobility analysis also lies in its potential to reveal telling characteristics of the 

individuals behind the movement patterns described.  

Numerous studies have demonstrated the existence of "temporal rhythms" in human behaviour 

when considering the spatiotemporal factors and constraints on daily life described above by 

Hägerstrand. Lefebvre (2004) introduced the concept of "rhythmanalysis" which examines 

spatiotemporal rhythms across different scales, from individual to global scales. His theory 

suggests that everyday life is shaped by cyclic and predictable habits, schedules, and routines, 

as societal functioning requires the synchronization of practices to achieve goals (Edensor, 

2016). Moreover, rhythmanalysis posits that different routines within spatial contexts are 

interconnected with individual identities. Urban rhythms, such as public transport schedules or 

workplace hours shape unique activity patterns derived from the daily movements of different 

types of people (commuters, working parents, students, seniors etc.), and require social 

synchronisation in organising travel (Grieco and Urry, 2012; Edensor, 2016). Places can thus 

be seen as spatial and temporal intersections for daily tasks. The distinctive characteristics of a 

place can be identified through its "polyrhythmic ensemble" (Crang, 2001).  In recent years, 

these polyrhythmic ensembles have been increasingly applied to the understanding of 

individual socioeconomic dynamics. Studies have demonstrated repetition and predictability 

in individual activities, as well as variations in temporal rhythms among different social 

categories due to their varying space-time constraints (Axhausen, 1995; Kwan, 1999). The 

speed and method of movement of an individual can also be considered in itself as a marker of 

social characteristics. 

French geographer Jean Ollivro further emphasises the value of time in understanding one’s 

mobility choices: reaching a destination quickly (by accessing various means of transport), or 

on the contrary being allowed the choice to “take our time” and go slowly, can both be indicator 

of social class and opportunity of choice (Ollivro, 2005). Furthermore, understanding the ways 

spaces are occupied, and by whom, at what times, can help inform on a variety of commercial 

purposes (Berry et al., 1962; Silva et al., 2017). 

A visit to a certain place at a certain time can be revealing of a person’s characteristics as 

described above, but can also help predict where an individual may go next from there onwards 

based on previous visits and patterns of behaviour (González et al., 2008). This informs 

decision making related to footfall and retail, shop openings and transport providers. Time 
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geography concepts such as STP can not only help identify these socio-economic patterns, but 

also analyse short- and long-term consequences of wider disturbances, such as pandemics (See 

Klapka et al.'s  2020 study on Time-geography approaches to assessing COVID-19 impacts), 

or accessibility to an environment (Miller, 2017). Thus, understanding mobility in both space 

and time, and analysing everyday activities helps reveal the ordered rhythms of both people 

and places, highlighting variations among social groups, and informing on large scopes of 

research and decision making (Lefebvre, 2004; Ollivro, 2005; Lager et al., 2016).   

 

2.1.3. Traditional methods in capturing mobility. 

Mobility research relies on the collection of individual data to understand the movement 

patterns, directions, and motivations described above. Traditionally, geographers and social 

scientists have relied on surveys and censuses to unearth mobility trends. Here, the common 

types of data traditionally used are described. This section covers national censuses and the 

information they can provide for mobility studies, and then delves deeper into the other forms 

of data previously used to complete the missing information between census years. The focus 

is here on the data types which were most commonly used before recent technological 

developments enabled passive data collection and larger datasets. 

 

2.1.3.1. Census 

Traditionally, the most important source of population estimates has been population censuses 

(Office for National Statistics, 2016a). Census data is collected periodically by governments, 

and includes detailed information relating to population counts, household compositions, and 

other demographic characteristics. While it is primarily composed of static characteristics at a 

specific time (residence or age for instance), it is still often used to understand general 

movements of population. This can be done for overarching migration patterns (for example, 

recording the nationality of respondents) but also the diurnal and larger scale1 patterns this 

thesis takes interest in. Commuting and travel patterns can be inferred from census data related 

                                                 
 
1 Note on geographic scale and resolution: In geography, the terms 'smaller scale' and 'larger scale' can be 
misleading. A 'smaller scale' map represents a larger area with less detail (e.g., 1:500,000), whereas a 'larger 
scale' map covers a smaller area but with greater detail (e.g., 1:50,000). This inverse relationship is due to scale 
being a ratio of map distance to actual ground distance. Similarly, 'resolution' in geographic context refers to the 
level of detail a map conveys; lower resolution means less granularity and a broader geographic coverage (akin 
to a smaller scale), while higher resolution provides more detailed features, corresponding to a smaller area 
coverage (similar to a larger scale map). 
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to employment or modes of transport used for daily movement (Office for National Statistics, 

2016a). It can also help validate hypothesises of rhythmanalysis described above by joining 

socioeconomic census data to responses related to commuting.  

As it collects from a large proportion of the population, a national census is one of the most 

reliable sources of data for sociodemographic analysis (Office for National Statistics, 2016a). 

Both the England and Wales and the United States census aim to record the count of resident 

population in their country, and include questionnaires focusing primarily on housing and 

demographic information. Historically, the England and Wales census also includes further 

details pertaining to occupation, health, ethnicity and education. However, it is published once 

every 10 years: this makes it difficult, if not impossible, to capture transient or temporary 

movement such as hourly, daily, weekly, or even monthly and yearly patterns (Lenormand et 

al., 2014). The main US census, collected by the Census Bureau, is also issued once every 10 

years. However, since 2000, the Census Bureau has also started employing a short-form census 

for all households, with a longer, more detailed survey (the American Community Survey) 

conducted annually on a smaller percentage of the population. Other countries such as France 

have adopted a rolling census system: surveying a different sample of the population each year 

(Roux, 2020). This spreads the cost of running the surveys, allows for continuous updates and 

can accommodate changes in the questionnaire more flexibly. However, full results for any 

new questions are delayed until after five years of data collection, although some national and 

regional data can be generated more quickly, and sampling different portions of the population 

each year can lead to inconsistencies and potential errors that wouldn't occur from a full census. 

Mobility patterns can evolve rapidly, and census data cannot capture real-time dynamics or 

emerging mobility trends. Furthermore, the national census is often collected at an 

administrative level, which can result in a loss of information on more granular scale at which 

daily mobility patterns may evolve (Minot and Baulch, 2005; Lenormand et al., 2014). There 

is thus a need to explore avenues for data collection outside of census years and formats. 

 

2.1.3.2. Capturing population information between censuses 

To capture information on human movement outside of census data, researchers have been 

making use of other sources of information such as time-space diaries, archives, transport and 

traffic data, or small-scale surveys conducted directly by researchers seeking to answer to 
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specific data needs (Axhausen, 1995; Bertini and El-Geneidy, 2003; Hubrich and Wittwer, 

2017).  

Time-space diaries, integral to time-geography since the early 20th century, allow individuals 

to record their movements and activities over time (Axhausen, 1995). They provide a window 

into everyday life and can take many forms: paper or digital journals, written or photography 

formats, and in more recent years coordinate locations collection  (Axhausen, 1995). They have 

been pivotal in shifting urban and transport studies from supply-focused to demand-focused 

strategies, aiding in route choice analysis, and understanding social and temporal dynamics in 

cities (Axhausen, 1995; Kwan, 1999; Schwanen, 2009). Another use case of time diaries 

includes health studies, where they help track how mobility patterns relate to physical activity 

and exposure to environments, providing insights necessary for public health interventions and 

lifestyle health assessments (Jiron and Carrasco, 2020). They also aid in understanding 

community dynamics and the impact of spatial configurations on social behaviours (Jiron and 

Carrasco, 2020). 

Beyond time-space diaries, other types of data have been used creatively to analyse mobility 

in more granular ways. One such example includes the tracking of dollar bill journeys across 

the United States as a marker for mobility (Brockmann et al., 2006).  Specific mobility 

behaviours may incur passive data generation (such as purchasing a train ticket), largely in the 

form of archives from transport companies (Bertini and El-Geneidy, 2003). However, these 

specific behaviours may not allow for the breadth of coverage allowed through diaries, which 

can be designed to collect information outside of travel and transactional behaviours (Axhausen, 

1995; Kwan, 1999). 

However, these forms of data collection present salient issues: they require the generalisation 

of small samples of the population (sometimes only a few participants) to draw wider 

conclusions, they can be costly (especially in the case of research-specific surveys), and they 

may be subjected to issues of internal validity, as they rely on individuals accurately recording 

events over sometimes long periods (Miller, 2010; Kitchin, 2013). Though they offer insights 

outside of census years and can be curated for specific research questions, these sources of data 

present little opportunities for scaling up, or guaranteeing reproducibility (Miller, 2010). 
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2.2. The impact of new forms of data on mobility analysis 

Recent history has seen the emergence of new types of data, such as social network data, mobile 

phone GPS locations, or other consumer datasets (collected through internet usage, travel, or 

loyalty card information etc.) (Lazer et al., 2009; Miller, 2010). The rapid uptake of 

technologies such as smart phones supports a transition towards “computational” social 

sciences, reducing the need to rely on the smaller and sparser data described earlier (Kitchin, 

2013). Most of these novel datasets contain both spatial and temporal information and are of 

particular interest to geographic analysis and mobility studies (Goodchild, 2013; Miller and 

Goodchild, 2015). This appearance of large-scale human generated datasets has been discussed 

as a great opportunity, but also a sizeable technical and ethical challenge for social researchers 

(Lazer et al., 2009; Kitchin, 2013). 

This section describes the provenance of these new forms of data before diving into how they 

have shifted the ways geographic research is conducted. It provides a literature review of social 

science and geographic research conducted using mobile phone data in particular, the data type 

this project makes use of later. This section aims to demonstrate the potential of these datasets 

in complementing traditional statistics and data-collection methods, particularly in creating 

opportunities for research at higher temporal and spatial resolutions. 

 

2.2.1. New forms of data: provenance and definitions 

2.2.1.1. New, ‘Big’ data: 

Big data refers to datasets which cannot be analysed using traditional methods due to their 

complexity and volume (Jain et al., 2016). They are often passively generated by day-to-day 

activity, collected through Wi-Fi networks, location-based services, social networking, 

transactions (online purchases and credit card metadata), mobile applications (apps), amongst 

others. Their advantages come mostly from their velocity (frequently and continuously 

collected), their variety (diverse data sources), and their resolution (often more detailed than 

traditional datasets in both temporal and spatial scales) (González-Bailón, 2013; Kitchin, 2013; 

Jain et al., 2016). Rather than their sample sizes in themselves, their value lies in their passive 

collection which reduces the issues pertaining to bias introduced by actively participating in a 

study (Miller, 2010). ‘Big data’, as a term, thus encompasses multiple categories of new forms 

of data. The rest of this work focuses on a subtype of consumer data, mobile phone in-app data. 

This is defined in more detail below. 
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2.2.1.2. Consumer data definition 

According to the UK government's Competition and Markets Authority (CMA), consumer data 

is defined as “any information firms might collect from and about consumers that is used, or 

intended to be used, to support commercial activities” (CMA, 2015). This includes passively 

generated data and third-party data such as mobile phone data in its various forms (call detail 

records, in-app information etc.), or data generated as part of travel, leisure activities, 

communication etc. Typically, one principal challenge of using consumer datasets is their 

accessibility. Most often collected by commercial organisations, these datasets are not open 

source, often expensive, and rarely offered to researchers (Lansley and Cheshire, 2018). 

However, as a result of the COVID-19 pandemic, access to these big mobile phone datasets 

was facilitated, with the aim of informing policy and timely health responses, and determining 

the effectiveness of lockdown measures. Programs such as Google Mobility reports promoted 

the use of aggregated mobile phone locations for research purposes (Google, COVID-19 

Community Mobility Reports, 2020). This recontextualised the accessibility of consumer 

datasets in research, encouraging their wider use. 

 

2.2.1.3. Mobile phone data  

Mobile phone data is becoming increasingly ubiquitous, as more than 95% of the UK 

population now uses mobile phones (Ofcom, 2020; Raento et al., 2009). As mobile device data 

collection increases, it has the potential to reveal detailed information on the everyday spaces 

and lives of individuals (Cheshire, 2020). 

Mobile phone datasets usually fall under one of two categories: call detail records (CDR) data 

and in-app Global Positioning System (GPS) data (Kishore et al., 2020). CDR data is gathered 

by mobile operators and offers an approximate location collected by the cell towers when a 

phone connects to the mobile network. In-app location data is obtained from GPS sensors in 

smartphones. It can be collected for specific services (such as Google Maps routing), or 

collected by apps and sent to third party location data aggregation companies. These two types 

of mobile phone data are examples of location data: namely data which carry specific 

geographical coordinates and situate events and devices in space. Throughout the thesis, we 

use the term in-app data to refer to mobile phone in-app GPS data. The specific dataset is 

presented in Chapter 3. 
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In-app data is significantly less representative of the wider population than CDR data, as it 

relies on the use of specific apps to collect locations. However, while CDR datasets are much 

more comprehensive in terms of their coverage, their locational precision is dependent on the 

density of cell towers in the vicinity and never attains the levels of accuracy and precision 

provided by a GPS dataset, considered more appropriate for granular mobility analysis 

(Kishore et al., 2020). Furthermore, CDR data is often only distributed by mobile operators, 

whereas the GPS data market is composed of more diverse actors (such as data brokers or social 

media platforms), making them more accessible (See Keegan and Ng, 2021 for a list of data 

providers). In 2022, the global location data intelligence market was estimated at over USD 16 

billion and is forecast to grow at a rate of 15.6% over the next 7 years, mainly driven by the 

growing penetration of smart devices in the population and the increased availability of in-app 

data (GVR, 2022).  

 

2.2.2. How these new datasets reshape geographic research. 
 

2.2.2.1. Paradigm shift - new forms of knowledge 

These datasets present opportunities for researchers, but also impact research practices. The 

appearance of large location datasets (such as the in-app data described above) constitutes a 

paradigm shift in computational social science, from scarce to big data, and from sample 

selection of data for answering specific questions to the reconversion of pre-existing datasets 

into research-ready content (Goodchild, 2007). This can be considered a move away from 

idiographic towards nomothetic approaches to conducting research: from mass data to 

conclusion rather than from hypothesis to data collection. This data-driven approach has been 

coined the ‘Fourth Paradigm of Science’ (Kitchin, 2014a). Subsequently, data-driven 

geographies have emerged, with the potential to answer questions previously not conceivable 

in the data-scare landscape, especially at granular scales, or in analysing daily and ‘mundane’ 

occurrences thanks to passive and frequent collection (Cook, 2018; Wang and Chen, 2018).  

New forms of data and software have also created new spaces of virtual engagement, called 

“code spaces”, as well as new avenues to collect information on the individuals in these spaces 

(Kitchin and Dodge, 2011). Code spaces range from workplaces reliant on web apps, to travel 

systems requiring digital forms of payment, to mobile apps that facilitate everyday movement 

and interactions (Kitchin and Dodge, 2011; Cheshire, 2020). For example, using a running app 

to record physical activity turns the city into a code space, adding another dimension of 
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interactions between individuals mediated by the increasing interconnection between people 

and software (Cheshire, 2020). This also adds another dimension in the way research can be 

conducted with these datasets: they create new spaces and fields of study which would be 

inexistant without the presence of the software, or the behaviours formed around it. In this 

sense, data becomes a form of feedback-loop, being both the research tool and the research 

topic at the same time. 

 

2.2.2.2. Mobile phone data use cases in social sciences 

Mobile phone datasets (CDR and in-app GPS data) have provided insights across various fields, 

as concisely summarised by the Office for National Statistics (ONS) in a working paper series 

on statistical uses for mobile phone data (Office for National Statistics, 2020). Amongst 

multiple statistical applications, they propose a list of international papers attesting to the 

usability of mobile phone data on the topics of population estimates, mobility, land use and 

epidemiology.  

In a study conducted on Belgian population, De Meersman et al. demonstrated that aggregated 

mobile phone data can provide accurate population estimates complementing traditional 

statistics (De Meersman et al., 2016). Deville et al. created estimates of population densities at 

national scales using CDR from Portugal and France. Salat, et al. (2020) produced similar 

outputs in Senegal to compensate for missing, or incomplete census data. They show that 

comparing population densities with average phone activities return low correlations, but 

propose a method using daily, weekly, and annual activity curves, providing much more 

accurate estimates (Salat et al., 2020). These papers demonstrate how mobile phone data can 

serve as a proxy for evaluating populations outside of census years, at more granular temporal 

scales, and even to support the census with more detailed information (Oyabu et al., 2013; 

Bwambale et al., 2020). 

Mobility analysis often requires timely, granular data. Countless papers in the field have thus 

used mobile phone data specifically to trace movement (Birenboim and Shoval, 2016). These 

datasets have shown that human mobility patterns can be predictable and dependant on 

previous movements, supporting the rhythmanalysis theories discussed in Section 2.1.2 

(Lefebvre, 2004; González et al., 2008; Alessandretti et al., 2020). To name a few examples, 

Silva et al. (2017) use mobility data from mobile apps to predict patterns in new-venue 

visitations. Becker et al. (2013) use mobile phone datasets to map daily commuting patterns, 
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and a paper by Willberg et al. (2021) traces the escape from Finnish cities over the COVID-19 

pandemic. 

Building from the need of population statistics to inform the built environment, Tooru and 

Kawakami (2013) use mobile phone data in urban planning, advising on where best to 

implement new bus networks based on needs, or analysing how the land use of a city shifts 

over the course of a day as residents move out of residential areas and into the dynamic centre 

for work. Reades et al. (2007) use these datasets to construct a different vision of the city as a 

dynamic system, particularly in letting researchers represent real-time dynamism changes in 

city centres. They apply clustering methodologies to analyse the neighbourhoods and venues 

of Rome most active at various times of the day and week, building a good conception of tourist 

flows. Similarly, Sevtsuk and Ratti (2010) use mobile phone data to infer on the periodicity of 

cities, echoing themes of space time prisms evoked earlier (see Section 2.1.1.2), and 

highlighting the potential of these datasets for novel temporal mobility analysis. The Alan 

Turing Institute is currently conducting research on the development of digital twin cities, using 

various data sources including mobile phone location dataset. Such a digital twin would allow 

researchers and planners to model the transport, health, and supply chain of cities (Alan Turing 

Institute, 2021)  

Over the COVID-19 pandemic, mobile phone data helped produce insights on the spread of 

disease and the efficiency of lockdown measures (Basellini et al., 2020; Iacus et al., 2021). 

Some research coupled mobile phone data with models of virus transmission to predict the rate 

of virus penetration within the population and propose measures in accordance (Gibbs et al., 

2021; Iacus et al., 2021). Oliver et al. (2020) used mobile phone data to inform public health 

action over the pandemic. Chang et al. (2021) paired similar datasets with mobility metrics to 

inform reopenings in the United States. Several other papers used mobile phone data applied 

to mobility analysis to estimate the level of compliance with lockdown rules (Jeffrey et al., 

2020; Kang et al., 2020). Similar studies were conducted in China, testifying for the 

reproducibility of the methods (Zhou et al., 2020). In such unprecedented times, the timeliness 

and granular information provided by mobile phone data was a strong tool to visualise 

unpredictable patterns in real-time, and at various scales (global, national, city or 

neighbourhood). In the UK, the last census having been in 2011, new types of data were a 

necessity to make up for a gap in statistical data over the 2019-2020 period of COVID-19 

measures (Iacus et al., 2021). Notably, mobile phone data had been used to support 
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epidemiological research well before COVID- 19 (Wesolowski et al., 2015). Bengtsson et al. 

used similar data to predict the spread of cholera in 2015 in Haiti (Bengtsson et al., 2015). 

Beyond epidemiology, mobile phone datasets have been used in healthcare to estimate one’s 

exposure to behaviour-based health factors, such as obesity in a 2022 study by Zhou et al. 

relating it to physical activity measurements (Zhou et al., 2020). 

To summarise, there is a plethora of studies which make use of mobile phone data, across 

disciplines. These datasets not only provide complementary information between census years 

and support traditional statistics: they also allow for novel analysis at more granular temporal 

and spatial scales, particularly in the context of urban studies, mobility and geodemographics. 

Their usage has drastically increased over the past 3 years with their timely epidemiological 

applications, particularly in the context of the COVID-19 pandemic. 

 

2.3. The technical and ethical challenges of mobile phone 
data 

These datasets present opportunities as detailed above, but their sensitive nature means that 

they are accompanied by additional challenges around coping with increased uncertainty and 

the ethical concerns that come with using data that has been generated as a by-product of other 

activities (González-Bailón, 2013; Kitchin, 2014a). Table 1 describes mobile phone data’s 

strengths and weaknesses as laid out by the ONS, (Office for National Statistics, 2020). 

Table 1. Strengths and weaknesses of mobile phone location data for use in research (as 
described by the ONS). 

Strengths  Weaknesses  

Timeliness and frequency of collection  
Passive data collection  
High coverage  
Higher accuracy of collection than surveys  
Small geographies (OA and lower)  
Widely applicable  
Consistent over time  

Complexity of access (commercial 
sensitivities, cost, infrastructure etc.)  
Concerns around data protection, security, 
ethics.  
Inference (needing to presume the nature of a 
movement, for example)  
Bias and Sample Bias  
Uncertain quality of estimates  

The weaknesses are thus separated into two categories to further discuss below:  

(1) Issues surrounding accessibility, transparency, and technical challenges. 

(2) Concerns around data privacy and ethics. 
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This section seeks to address these challenges, and provide a background on the ethical 

discussions surrounding privacy and disclosure control. Firstly, the issues surrounding the 

difficult accessibility of the data, the reduced transparency behind its collection and 

dissemination and the technical challenges faced by researchers seeking to utilise them are 

introduced. In a second part, the privacy and ethical concerns brought about by their use are 

treated, with a more specific dive into disclosure control and regulations. 

 

2.3.1. Accessibility, transparency, and technical challenges  

“The challenge of analysing Big Data is coping with abundance, exhaustivity and variety, 

timeliness and dynamism, messiness and uncertainty, high relationality, and the fact that much of 

what is generated has no specific question in mind or is a by-product of another activity.” 

 (Kitchin, 2014, p.2) 

Consumer datasets are proprietary by nature (CMA, 2015; Lansley and Cheshire, 2018). 

Collected, cleaned, and processed by third parties, a lot of mobile phone data aggregates thus 

vary in quality and transparency. As articulated by Willberg et al.: “data products with 

undisclosed methodologies create new challenges, such as what exactly data represents as well 

as the compatibility of the terminology” (Willberg et al., 2021, p.4). Brunsdon and Comber 

describe the consequences of this lack of transparency. All aspects of an “answer” generated 

through research should be able to be tested – by remaining in a “black box” third party 

collection and aggregation methods do not follow this principle and make the research less 

reproducible and verifiable (Brunsdon and Comber, 2020). Handling big data critically implies 

understanding all aspects of the data’s journey, from generation to digestion and cleaning all 

the way to final analysis results.  

This lack of understanding of, or sometimes access to, metadata results in the potentially 

inconsistent quality of the data provided. Data quality issues can originate from data collection 

methods, whether technical or human-induced errors (Lansley and Cheshire, 2018). Consumer 

data stemming from new technologies has not always been subjected to rigorous quality 

controls suitable to meet research standards, often prioritising volume of data over quality 

(Dalton and Thatcher, 2015).  

Another complication of using mobile phone datasets or other large datasets for research is the 

technical knowledge required to process them (Oyabu et al., 2013). Social scientists and 
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geographers are not traditionally trained in handling computationally intensive databases. 

Understanding, treating, and communicating these datasets requires a technical numeracy, 

creating more resistance for their wider uptake in social science research. They also require a 

knowledge of the technology collecting the data – what sensors are being detected and how, 

are they GPS or cell tower generated etc. (Raento et al, 2009). It is often not sustainable to 

have a large majority of researchers work with sensitive data as both purchasing the datasets 

from the providers and training the research staff incur a cost, making these datasets expensive 

in both financial and human resources. 

 

2.3.2. Concerns around privacy and ethics  

2.3.2.1. Bias 

Big datasets, like any human generated data, are subject to bias. More data does not necessarily 

equate to a decrease in data bias (Crawford, 2013; Kitchin, 2014a). As stated by Crawford et 

al.: “data may seek to be exhaustive and capture everything, but it will always be subject to the 

technology and collection techniques used”. Consumer datasets are especially prone to these 

issues. It is not uncommon for a minority of the population to be contributing to a majority of 

consumer data (Lansley and Cheshire, 2018). Mobile phone datasets may be biased towards 

the populations which use the devices the most and underrepresent certain age groups and 

demographics.  

Bias may also appear from data interpretations and choices made when aggregating, cleaning, 

and processing. Data does not arise from nowhere and does not speak for itself; a theoretically 

perfect dataset may still be interpretated with bias stemming from the researcher’s personal 

experience (positionality) (Kitchin, 2014b). It is important to systematically recontextualise 

results, and not treat big data as all-encompassing (Crampton et al., 2013; Kitchin, 2014a, 

2014b). Brunsdon and Comber view robust data science as a practice which promotes 

transparency and reproducibility (Brunsdon and Comber, 2020). Transparency helps limit the 

impact of the researcher’s positionality on the interpretation of data (Sutherland et al., 2012). 

Reproducibility is ensured in turn by transparency – by providing methods, one ensures all 

aspects of an analysis can be tested and verified, and the research can be reproduced (McNutt, 

2014; Brunsdon and Comber, 2020). This can help limit the impact of researcher positionality 

and potential biases and uncertainties of the data on final analysis. They also support future 

decision-making, informing research conducted with these datasets. 
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Charters have been drafted to outline new standards of practice to protect individuals and public 

interest alike when conducting research using location data such as in-app data. The Locus 

charter, provided by EthicalGeo, is one such initiative, proposing a better understanding of the 

risks brought about by location-based analysis in geography (EthicalGeo, 2021). One of its 

founding principles is understanding impacts, highlighting users’ responsibility in 

understanding social context and knowing who might be affected by the use of the data. 

Numerous studies have highlighted the ways in which data collection biases may leave whole 

populations unaccounted for in analysis relying on big data (Taylor, 2015; D’Ignazio and Klein, 

2020; Williams, 2020). 

 

2.3.2.2. Consent 

Since its coming into effect in May 2018 in the UK, the General Data Protection Regulation 

(GDPR) has been regulating data protection and privacy. The GDPR specifies that consent 

must be “freely given, specific, informed, and unambiguous”. It adds “consent cannot be 

assumed from inaction” (Art 7, GDPR, 2018). In the case of research-specific datasets, consent 

is usually collected once at the start of the study by the researchers, and participants are made 

aware of their right to withdraw. For passively generated data, what constitutes as “consent” is 

hard to define, particularly if the data is subsequently used by other parties than the ones 

collecting it (Degirmenci, 2020). Mobile apps must comply with GDPR and request user’s 

consent (often in the form of a notification) to collect their locations. However, the user is not 

necessarily informed of future usage of this data – they may not be explicitly notified that the 

locations are being use for a statistical study, for instance (Georgiadou et al., 2019). About 

“transversal consent”, van Dijck says: “the notion of trust becomes more problematic because 

people’s faith is extended to other public institutions (e.g., academic research and law 

enforcement) that handle their (meta)data.” (van Dijck, 2014, p. 1).  

This uncertainty around informed consent raises legitimate concerns around data usage, 

information, and control over one’s data. An article from MIT displays how outrage was 

sparked in Singapore after COVID-19-specific tracking data was used for criminal 

investigations by the local government (Han, 2021). These concerns explain the complications 

in accessing certain big consumer datasets which are protected by commercial agreements, but 

also consent restrictions. Raento et al. (2009) suggest that mobile phone data research 



 49 

paradoxically benefits from the unobtrusiveness of mobile phones – by forgetting they are a 

part of a study, users behave in a more natural way. However, this unawareness conflicts with 

the concept of informed consent. A middle ground must thus be met – researchers either deem 

it acceptable and ethical to use data where permission to record has been given once, such as 

for in-app datasets, or choose to implement more recurrent, and potentially obtrusive consent 

requests. This second option may be preferable when dealing with especially sensitive topics 

or vulnerable users (Raento et al., 2009; Han, 2021).  

Contextualising bias and consent in this work helps us grasp what is at stake when using in-

app data. This research focuses mostly on privacy and disclosure control, which we define 

more in depth below. However, it is important to note that ethical use of location data does not 

solely equate to a non-disclosive use. There is a responsibility to ensure that the data has been 

collected appropriately, and that biases inherent to that data, its collection, and its processing 

must be considered at every stage.  

 

2.3.2.3. Privacy, confidentiality, and disclosure 

Privacy is “the thorniest challenge” of location data usage (Lazer et al., 2009, p.4). The use of 

any granular location dataset is subjected to disclosure risk mitigation strategies and privacy 

legislations. Eurostat defines the ‘disclosure problem’ as ‘the possibility of identifying 

individuals through released statistical information’ (Helmpecht and Schackis, 1996). The UK 

Information Commissioner’s Office (ICO) also considers personal data as data that can identify 

an individual either as is or in combination with other information. The ICO highlights that 

pseudonymised data, though reducing risk, is still personal and thus still subject to the GDPR 

(ICO, 2022). Tracking individuals, and releasing resulting information in any form, carries 

ethical and legal implications and must be done with knowledge of and control over the 

technologies and information involved (Kitchin, 2013; Song et al., 2014). Privacy encompasses 

the ability to share information selectively, not publicly. Maintaining subject’s confidentiality 

is paramount to ethical research, and a widely debated topic in the wake of the uptake of big 

location datasets (Jain et al., 2016)  

Previously, anonymisation was deemed an adequate method to protect user’s confidentiality 

and privacy. However, evaluations of varied anonymisation and encryption methods revealed 

that it is often possible to reverse-engineer carefully anonymised data. Only 4 locations of an 

anonymised user will suffice to retrace the individual’s identity in a mobile phone dataset (Zang 
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and Bolot, 2011; de Montjoye et al., 2018).  For in-app data more specifically, a study by 

Sekara et al. (2021) sampled 3.5 million app users across 33 countries and demonstrated that 

91.2% of individuals could be re-identified using other public information, if the data was only 

anonymised rather than coarsened (see also Achara et al., 2015). Mobile in-app data, though 

pseudonymised, thus falls under ICO and Eurostat definitions of personal data and are most 

often only accessed by third parties (including researchers) through restricted access. (ICO, 

2022). Beyond this, the public have generally expressed concerns regarding a lack of 

understanding and control over the data collected about them (Almuhimedi et al., 2015; Zhang 

and McKenzie, 2022). 

Governmental regulations provide actionable steps data users must take to protect individual 

privacy. However, these sometimes do not account for issues of re-identification described 

above. In practice, a variety of methodologies beyond anonymisation are used to guarantee 

privacy protection and minimise the harms of sensitive information disclosure. Four main 

models of secured access are listed below (de Montjoye et al., 2018):  

1. Limited release: only transformed data, containing no sensitive information, is provided. 

2. Pre-computed indicators: researchers obtain indicators aggregated across individuals 

rather than individual data.  

3. Remote access: analysis happens within a controlled environment, and only aggregated 

results are outputted after a disclosure check.  

4. Question-and-answer: researchers access aggregated data through specific queries and 

do not have access to the original, sensitive points.  

For individual-level data, the primary approach to preventing the disclosure of sensitive 

information is to strictly restrict the access to the dataset, specifying the types of analysis that 

can be conducted, and requiring that outputs and visualisations be checked for disclosure risks 

prior to release. Following this limited release model, in the Consumer Data Research Centre 

(CDRC), in-app data is stored on secured servers and is only available to trained researchers, 

with data outputted only after disclosure checks. These disclosure checks rely on data 

manipulations to guarantee compliance with disclosure controls so that only data transformed 

to prevent disclosure can be removed from the controlled environment to be shared with third 

parties (Griffiths et al., 2019). More detail is provided on the types of checks performed for 

this research in the data presentation chapter (Chapter 3). 
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Failing to properly protect sensitive location information carries personal, social, and legal 

consequences: individuals in these datasets must be protected, and their right to privacy 

remains a priority. This explains why individual-level datasets are strictly regulated, despite 

this creating friction against aims of accessibility, reproducibility and transparency listed 

previously in Section 2.3.1. The next section presents the data-alteration techniques which can 

allow for safe access to these datasets outside secure environments. Aggregation is introduced 

as a common way to reconcile some of the challenges listed above: a data-alteration method 

which provides non-disclosive insights into mobility data.  

 

2.4. Data aggregation: regionalisation to reconcile disclosure 
control and granularity.  

As explained above, issues pertaining to disclosure control make mobile phone location data 

particularly sensitive and difficult to access by the wider research community. In this section, 

two traditional ways of creating safe-for-use data products out of sensitive data are presented: 

geomasking and aggregation. However, these processes impact data quality along with 

analytical validity and completeness. This section provides contextual literature on spatial scale 

problems and highlights how aggregation processes bring about inconsistencies of scale and 

zone impacting both data and analysis. In a final part, existing efforts are highlighted in 

developing geostatistical and regionalisation methodologies for the creation of bespoke units 

to preserve data quality during the aggregation process, particularly for mobility data.  

 

2.4.1. Aggregation and geomasking as disclosure control 

The UK Government and Office for National Statistics (ONS) both recommend restricted or 

controlled access to sensitive or potentially disclosive datasets (Office for National Statistics, 

2017; ICO, 2022). Beyond controlled access, data can be shared if the disclosive elements are 

removed. Often, for location data, this process takes the form of spatially aggregating data 

products to a coarser scale, removing individual points and instead providing a count of events 

for an area. This type of aggregation is a common and proven method for preventing spatial 

data disclosure (Skinner et al., 1994; Domingo-Ferrer and Mateo-Sanz, 2002; Office for 

National Statistics, 2017; de Montjoye et al., 2018; Forgó et al., 2021). Other ways of masking 

locations (geomasking) are also used for disclosure control, often consisting of randomising 

the data or ‘jittering’ the locations to mask the original points (Young et al., 2009; Hut et al., 



 52 

2020; Wang et al., 2022). Figure 1 thus summarises the three main processes for transforming 

data to prevent disclosure: aggregation, geomasking, and modelling. The three techniques 

presented may be used independently, but may also build upon one another, for instance, a 

model could be trained with aggregated rather than individual data 

 

 

Figure 1. Flowchart of data manipulations for removing disclosive information from in-app 
datasets. The original location points are stored within a secure environment, and only the 
outputs are removed. For aggregation, counts below a threshold (typically, 10 individuals) are 
suppressed from the outputs. 

 

2.4.1.1. Geomasking and modelling 

Geomasking describes a variety of processes aiming to mask the original coordinates 

comprised in location data whilst preserving the spatial relationship between the original points 

(Zandbergen, 2014). This can be done by changing scale, rotating coordinates, or adding 

random noise to the original coordinates, each method presenting various advantages 

depending on aims (Zandbergen, 2014; Wang et al., 2022). Geomasking is preferable when 

studying the relationship between spatial locations rather than the count of occurrences and is 

often used for health data analysis (Allshouse et al., 2010).  

In a modelling process, an algorithm is trained using in-app location data to produce predictions 

about a system. Only the model’s results are outputted, thereby obscuring the individual-level 
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data used to inform the model. In the context of sensitive in-app data, a model can be trained 

inside a secure environment and these data do not need to be aggregated or otherwise altered 

in order to inform the model. This is a preferred method for real-time analysis but requires 

regularly updated datasets (Lange and Perez, 2020).  

However, for data dissemination, aggregation (the first process in Figure 1) has traditionally 

been the preferred candidate: it is a more straightforward and reproducible data transformation 

method, and allows for the creation of reusable data products for further use (de Montjoye et 

al., 2018; Wang et al., 2022). For many applications, geomasking and modelling techniques 

can prevent independent verification of results and reproducibility (McNutt, 2014; Phillips and 

Knoppers, 2019). For instance, the United States Census bureau has recently adopted 

differential privacy methodologies for protecting individual information in census results, a 

decision which has been criticised for its potentially negative impacts on data quality and 

usability (Garfinkel, 2022; Ruggles and Van Riper, 2022). The rest of this work focuses on 

spatial aggregation: generating counts of points per given area 

 

2.4.1.2. Aggregation 

Spatial aggregation, in the context of in-app data, consists of scaling up the information from 

device level to group level: individual-level location points within spatial units are summarised 

to describe the number of devices or the level of activity within each area. A minimum number 

of points (typically 10) are required to fall within each spatial unit. If this threshold is not met 

larger units are required, or the points are redacted from any output to prevent disclosure (the 

technical details of this process are provided in Chapter 3). Although aggregation masks 

individual information, it also increases the level of uncertainty in a dataset in exchange for 

increased privacy. Figure 2 is an illustrative example of a typical spatial aggregation process: 

counting the number of points per area and turning the unidimensional data (list of coordinates) 

into a 2-dimensional (areal) dataset, coarsening its resolution. 
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Figure 2. Synthetic data example of the spatial aggregation process. 
 

Such aggregation can be performed at different scales using different types of units. World 

population density is traditionally calculated and delivered in “number of inhabitants per square 

kilometre” in this manner (Brunet et al., 1993). Square grids rely on grid reference systems, 

which represent the earth on a planar surface following certain projections, with each system 

defining specific locations on earth as points of reference. In the United Kingdom (UK), 

the Ordnance Survey National Grid reference system (OSGB) is the most common grid 

reference system independent from latitude and longitude. It is based on Eastings and 

Northings, coordinates which correspond to the relative north and east position of a location 

from the most south-western point of the grid. The Ordnance Survey ‘Guide to Coordinate 

Systems in Great Britain’ provides more details on the genesis and use of OSGB cells, with 

comparison to other grid reference systems. The OSGB cells can be divided into smaller 

squares, with each being given a specific grid digit. Figure 3 demonstrates these subdivisions 

and the OSGB Eastings and Northings system (Ordnance Survey, 2020). 
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Figure 3. OSGB coordinate system – illustration of subdivisions (Ordnance Survey, 2020). 
 

Square grids are not the only option for aggregating data. UK and Wales census data is 

aggregated to Output Areas created for this purpose (their delineation methodology will be 

described in more detail in Section 2.4.3.2.2). Another option is hexagonal tiling, considered 

more appropriate for aggregating flows of data (including mobility data) (De Sousa et al., 2006; 

Sahr, 2011; Brodsky and Uber Technologies Inc., 2015) Hexagons tiles have two main 

advantages over square ones:  

(1) They can achieve a higher spatial resolution with the same number of tiles and 

reduce edge effect, as stated by Hales’ Honeycomb conjecture (“any partition of the 

plane into regions of equal area has perimeter at least that of the regular hexagonal 

honeycomb tiling”) (Hales, 2001, p. 1; De Sousa et al., 2006). 

(2) A hexagon’s neighbours are all identical and equidistant, with the distance between 

cell centroids being identical. Squares, however, have two types of neighbours: 

adjacent (sharing an edge) and diagonal neighbours (sharing a vertex) (Figure 4). 
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Figure 4. Comparison of the distance between neighbour centroid for square grids and 
hexagonal tiles. The distance between neighbours is always the same for hexagons, whereas 
diagonal neighbours are ~1.4 (√2) units away for square (given a distance of 1 for their 
adjacent neighbours) 
 

Hexagonal tiles also fit curved surfaces better, making them more appropriate for tiling the 

globe (Snyder, 1992; Sahr, 2011). They have comparable shapes and sizes across all cities, 

where different cities might otherwise use different grid reference systems for adapting square 

tiles (Brodsky and Uber Technologies Inc., 2015; Bondaruk et al., 2019).  

These advantages make hexagons particularly appropriate for aggregating datasets with 

movement (vehicles, individuals, transport flows), which justifies the taxi service Uber’s 

development of a global hexagonal indexing system (named H3) to aggregate their datasets 

(Brodsky and Uber Technologies Inc., 2015).  H3 combines the advantages of a hexagonal 

global grid system with a hierarchical indexing system, to provide different resolutions of tiles 

to choose from to perform aggregation (Brodsky, 2018). A user guide and detailed blogpost 

provide more technical information on the creation of the H3 indexing system, and 

demonstrates the use of hexagonal tiling for data-aggregation (Brodsky and Uber Technologies 

Inc., 2015; Brodsky, 2018; Bondaruk et al., 2019). 

 

2.4.2. Impact of aggregation on analytical validity and completeness 

Spatial aggregation implies a change of scale from one dimensional (point) data to two-

dimensional (areal) data (see Figure 2). Any such shift of scale brings about spatial scale 

problems related to the integration of data obtained at various scales, fundamental to data-

driven geography (Atkinson and Tate, 2000). Atkinson and Tate (2000) highlight that the term 

scale is often interchangeable for a wide variety of meanings. In the following, it refers to both 

‘amount of detail’ (granularity) and spatial extent of a geography (see also Goodchild and 

Proctor, 1997 for precisions on this dual definition of scale). Furthermore, Scales of 
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measurement refers to the scale at which the data is collected (sometimes referred to as 

resolution), and scales of spatial variation refers to changes of scales of any kind. The scale of 

measurement may not be stable across the whole dataset: some data can be collected at larger 

or smaller scales, at different resolutions, or in the case of the in-app data, at different accuracy 

levels. However, the core problem of spatial scale in geo-statistics comes from changes in scale 

from the original dataset (Openshaw, 1979; Mennis, 2019). In itself, a dataset represents an 

observation of a physical phenomenon: it relies on a ‘support’ or a tool (a chosen output spatial 

scale) to represent the dataset. Changes in that scale create more uncertainty when it comes to 

determining how much of analytical conclusions are a result of the actual phenomena or a result 

of the ‘support’ and subsequent data treatments that come with changing said support (Mennis, 

2019). 

These issues of scale and zoning can be caused by multiple data-manipulation processes, but 

one arises especially from the spatial aggregation process: the Modifiable Areal Unit Problem 

(MAUP). The MAUP was coined by Stan Openshaw in 1979, and states that changes of scale 

and zone when aggregating point datasets impacts analysis (Openshaw, 1979), particularly 

through aggregation (Openshaw, 1981, 1984). The MAUP is composed of two distinct 

effects: the scale effect, and the zoning effect, illustrated by 

  

Figure 5. The scale effect describes the variation in results caused by changing the scale of the 

dataset (making the units of measurement larger or smaller). The zoning effect describes a 

variation in results which occurs when the scale remains the same (stable number of units), but 

the boundaries of the units change. In the case of sensitive data, this can happen when the data 

is first aggregated for disclosure control, but also when it is subsequently reshaped to link with 

other datasets and geographies. In fact, Atkinson and Tate (2000) highlight that researchers are 

increasingly required to change the scale of measurement from one to another to allow for 

comparisons across datasets. They are no clear or direct solutions to these ‘issues of support’, 
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where changing the tool of the research impacts analysis (Atkinson and Tate, 2000; Mennis, 

2019). 

  

Figure 5. Diagrammatic representation of the impact on aggregating a set of points to area 
counts, highlighting the scale (left and middle panels) and zoning effects (right panel). 
Numbers and grayscale indicate the number of points within each spatial unit for that 
partitioning scheme (darker shade of grey indicating a higher number of points). (Source: 
Mennis, 2019) 

 
This product of aggregation is not only spatial, but also temporal, where a change of temporal 

scale (for instance aggregating the data hourly, or monthly) impacts results (Modifiable 

Temporal Unit Problem, MTUP) (Cöltekin et al., 2011). The MAUP and MTUP’ s impact on 

descriptive statistics has been demonstrated over the years for multiple types of location data 

and is an outstanding challenge for geographers (Openshaw, 1977; Fotheringham et al., 1995; 

Qi and Wu, 1996; Dusek, 2004; Minot and Baulch, 2005). When trying to conduct mobility 

analysis, for which the specificities of granular traces and behaviours happening over space 

and time are valuable, such alterations of the data are especially consequential (Openshaw, 

1979; Viegas et al., 2009; Haley, 2017; Biehl et al., 2018).  

More precisely, these (often arbitrary) changes of scale and/or zone impact the data’s analytical 

completeness and analytical validity. Purdam and Elliot (2007) define these two concepts in 

the context of disclosure control on data utility: 

(1)  A reduction of analytical completeness signifies that ‘analyses that might have 

been conducted with un-recoded data cannot be [conducted with the aggregated 

data]’ (Purdam and Elliot, 2007, p. 1102).  For instance, a change of geographic 

scale resulting in the loss of granularity is a reduction of analytical completeness, 

as one can no longer conduct analysis at the finer scale.  
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(2) Analytical validity, on the other hand, is lost if the disclosure control method 

‘changes a dataset to the point at which a user reaches a different conclusion from 

the same analysis’ (Purdam and Elliot, 2007, p. 1102).   

 

They find that disclosure control measures such as aggregating data have a significant impact 

on both analytical completeness and validity, echoing Openshaw’s emphasis on point data 

aggregation’s vulnerabilities to MAUP (Openshaw, 1979). The aggregation process not only 

involves a change of scale, which can impact the outcome of research conducted with the 

aggregated dataset, but also often relies on scales and zones not properly fitted to the data they 

seek to represent (Dusek, 2004; Minot and Baulch, 2005).  

The MAUP is generally accepted as an unavoidable challenge in geography, rather than 

something which can be wholly resolved. Nevertheless, advancements in GIS technology and 

statistical methods may help reduce its impact on spatial disclosure methods. The increasing 

availability of in-app data generated by mobile phones contributes to a broader trend in 

geographical research: digital cartography and GIS technologies have transformed the way 

geographers study and map populations, by enabling more complex spatial statistical analysis 

and data exploration (Goodchild, 2018). However, few tools exist with which to consider issues 

of rescaling and zoning when it comes to the safe aggregation of new, large, human-generated 

location datasets (Lagonigro et al., 2020). One method for reducing this impact consists in 

finding the units and scales which fit the data most closely, hoping to reduce the impact of the 

aggregation process on analytical completeness and validity. This can be done through the 

delineation of specific aggregation units: regionalisation. 

 

 

2.4.3. Regionalisation 

“We need a geography today which helps us to see ourselves, our fellow passengers, and our 

total environment in a more coherent way than we are presently capable of doing. To me the 

answer seems to lie in the study of the interwoven distribution of states and events in coherent 

blocks of space-time – in other words a regional synthesis with a time-depth” 

 (Hägerstrand, 1975b, p. 27) 
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2.4.3.1. Defining regionalisation 

2.4.3.1.1. Regions: formal or functional? 

The term ‘region’ can be broadly categorised into two groups: formal or functional regions. 

Formal regions are areas which share the same attribute, often representative of a certain culture, 

administration of political boundary. Countries and States are often an example of formal 

regions. Functional regions, however, are defined as “areas organised by the horizontal 

functional relations (flows, interactions) that are maximised within a region and minimised 

across its borders so that the principles of internal cohesiveness and external separation 

regarding spatial interactions are met” (Farmer and Fotheringham, 2011, p. 2732). In this sense, 

functional regions serve a specific (often analytical) purpose, and reflect selected spatial 

behaviours in a geographic space (Smart, 1974; Hales, 2001). An example of functional regions 

often put forward in regionalisation literature are the labour-market areas (LLMAs), designed 

to analyse daily travel-to-work flows (Smart, 1974; Casado Díaz and Coombes, 2011). The 

methodology and principles behind the delineation of the LLMAs will be further explored in 

Chapter 4, where they are applied to the in-app data. The rest of this work thus focuses on 

functional regions, as it aims to explore the benefits of bespoke functional regions for 

efficiently aggregating location data. 

 

2.4.3.1.2. Regionalisation definition 

Regionalisation describes the process of drawing region boundaries. In the case of functional 

regions, the delineation of regions is often informed by the phenomenon the regions seek to 

represent, such as in the case of the LLMAs. However, administrative boundaries can also be 

made with data in mind, such as the French Régions, built by combining départements together 

based on shared characteristics (Brennetot and Ruffray, 2015). Serge Antoine, the geographer 

tasked to generate these regions in the 1960s used a wide variety of criteria, including telephone 

communications between départments to determine which ones were to be combined based on 

their connectivity and similarities (Antoine and Weill, 1968; Piastra, 2015).  

Regionalisation was also proposed as a way to prevent disclosure control in the context of the 

differencing problem (Duke-Williams and Rees, 1998). The differencing problem identified 

that releasing a dataset at different geographies may reveal sensitive information by subtraction, 

even if the original two geographies were deemed safe. Duke-Williams and Rees (1998) 

demonstrated that publishing census statistics for different zones close in size both impact the 
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data and the safety of the output unless the zones are carefully designed to minimise both issues. 

They also corroborated earlier discussions concerning changes of scale and zones for linkage 

purposes and comparative analysis, stating that this should also be considered in the zone 

design. Regionalising datasets thus could not only help highlight the data’s behaviour or 

preserve analytical completeness and validity of the outputs created, but also minimise 

potential disclosure risks from the ‘differencing problem’.  

2.4.3.2. Hierarchical or rules-based methodologies 

The making of data-driven functional regions can be broadly classified into two main 

approaches: hierarchical methods or rules-based methods, both of which consist in applying 

one or multiple rules to the dataset or geography to help unearth underlying patterns. 

Hierarchical methods work with the same rule ‘from start to finish’, whereas rules-based 

methods apply different rules at different stages (Casado Díaz and Coombes, 2011). Usually, 

hierarchical methods group areas step-by-step, aiming to increase the area’s statistics, such as 

population size. A hierarchical algorithm will start with a set number of regions, and either 

combine or subdivide them to follow the initial rule. Casado Díaz and Coombes (2011) provide 

a detailed review of international attempts at both rules-based and hierarchical examples 

applied to the creation of LLMAs across different countries. Similarly to the administrative 

Régions, an example of a hierarchical method are the French zones d’emplois (equivalent to 

LLMAs), which were made by combining together communes (the smallest French 

administrative territorial division) until the total resident population reached a count of 25,000 

inhabitants (Eurostat and Coombes, 1992; INSEE, 2020). The first case study below details a 

hierarchical method, the quadtree algorithm. 

With rules-based methods, the number of regions is not set at the beginning of the analysis: the 

algorithms tend to re-balance the overall regions based on their interactions with other regions, 

and some rules need to be weighted to control for their impact on the final result. In this sense, 

rules-based methods rely on more decision making and potentially arbitrarily-set thresholds 

than hierarchical methods typically do. However, Casado Díaz and Coombes (2011) 

established in their review that despite this, rules-based methods performed better than 

hierarchical methods in delineating the unique details of LLMAS in both space and time. The 

second case study details the rules-based method behind the making of the England and Wales 

Output Areas. 
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2.4.3.2.1. Case-study of hierarchical approach: Quadtree algorithms 

A recent example of a hierarchical approach to region delineation is the silo regionalisation 

algorithm developed by Molloy and Moeckel (2017). Their work stems from adapted 

rasterization methods used in transport planning, and is based on iteratively dividing square 

grids which respect juridical boundaries and topology. They used an adapted quadtree 

algorithm, which subdivides units until a threshold limit is reached (technical descriptions of 

quadtree algorithms will be further explored in Chapter 4, Section 4.3.). This creates smaller 

units where there is enough data to subdivide without risking disclosure. Figure 6 illustrates an 

output of this methodology.  

 
Figure 6. Snapshot of Molloy and Moeckel’s 2017 silo regionalisation method. 
 

However, despite the flexibility of the method, multiple papers on zoning strategies have found 

rasterization-based regionalisation to be lacking. Molloy and Moeckel note four main 

drawbacks of this zoning method. (1) raster cells may overlap multiple jurisdictions, adding 

complexity by creating another non-nested set of zones. This complicates linkage with 

socioeconomic data. (2) Populations are distributed by the area percentage of overlapping 

zones, assuming that socioeconomic data is distributed equally throughout zones. (3) Choosing 

the resolution of cells to find the desired one for an analysis relies on trial and error. (4) When 

zones exceed threshold values, they are split into rasters of equal sizes, not considering the 

possibility that most of the population resides in one of those cells rather than equally split 

between them. These shortcomings are further assessed in Chapter 4 (Section 4.3.1), where a 

quadtree hierarchical algorithm will be applied to a sample of in-app data. 
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2.4.3.2.2. Case-study of rules-based approach: Output Areas 

Rules-based methods, though more complex to develop, have proven to be more fitting for 

functional regionalisation (Casado Díaz and Coombes, 2011). The England and Wales census 

Output Areas (OA) created by the ONS are an example of rules-based spatial units optimised 

for aggregating and disseminating a specific dataset. OAs provide a basis for understanding the 

rules-based process of creating bespoke regions for aggregation purposes, and highlight the 

decision making required in the definition of regionalisation rules. Where hierarchical methods 

may help quickly distinguish clusters, rules-based methods can accommodate for various future 

use of the regions by optimising for additional factors (Halás et al., 2015). 

OAs were designed to be functional geographic units of roughly similar population sizes 

(minimum 100 residents) and compact in shape (Martin, 2010; Office for National Statistics, 

2016b). Traditionally, census geographies were drawn around enumeration districts (ED), 

which were delineated by the collection areas of census workers: they did not describe 

underlying residential population, but rather the zone each enumerator was responsible for 

(Morphet, 1993; Martin, 2010). With the shift to OAs, the aim was to create regions with 

internal social homogeneity, maximising heterogeneity between regions (intra-unit 

homogeneity and extra-unit heterogeneity), and utilise the geographical components in the data 

to make outputs more representative of underlying populations. This was achieved with a 

methodology that combines small atomic units (postcode building blocks) together based on 

specific conditions and rules (Martin, 2000; Cockings et al., 2013): shape compactness, 

population size, but also underlying terrain in an aim to respect environmental borders such as 

rivers and roads (Martin, 2010). Later, the regions created were further grouped following 

similar conditions of homogeneity to create larger regions, first Lower Super Output Areas 

(LSOAs) (between 1,000 and 3,000 residents), and larger Middle Super Output Areas (MSOAs) 

(average populations of 7,800) (Office for National Statistics, 2016b). This allowed for more 

linkage opportunities to other scales and versatility in their analytical uses (Cockings et al., 

2011; Walford and Hayles, 2012).  

As touched upon earlier, rules-based methods can create different outputs depending on the 

order of priority of each rule. According to David Martin, one such conflict for census 

geographies was trying to keep the OAs compact and achieve the best results for population 

size or homogeneity criteria. The OAs are not the same shapes or sizes depending on whether 

or not the priority is set on the OA population count or the homogeneity of that population 



 64 

(Martin, 2000). However, these changes have also allowed for OAs to be updated between the 

2001 and 2011 census, and again for the 2021 census release.  

OAs, LSOAs and MSOAs are some of the most used geographies for UK spatial analysis, 

thanks to their versality, and best fit to census data (Martin, 2010). However, aggregating in-

app data to OAs might not help preserve the data’s granularity or address the issues pertaining 

to MAUP discussed above, as the OAs were designed to fit an entirely different dataset. Thus, 

in-app data could benefit from a similar regionalisation method: a rules-based approach which 

would consider data disclosure practices, underlying terrain, and homogeneity metrics, and 

would allow for bespoke, granular, and timely analysis using a spatial aggregate.  

 

2.4.3.3. Regionalisation of in-app mobile phone data: what to consider 

2.4.3.3.1. Summary: issues with in-app data 

The issues brought about by MAUP, and loss of analytical validity and completeness cannot 

be completely removed so long as aggregation is necessary for disclosure control. However, 

their effects on analysis can be accounted for and minimised: aggregation scales and zoning 

processes must be well understood and specifically developed to best fit the datasets studied 

(Martin, 2000, 2010; Cockings and Martin, 2005; Kishore et al., 2020). This would help the 

research’s reproducibility, on condition that the aggregation process is transparent, and 

aggregated products available for independent verification. However, in-app location datasets 

remain difficult to access, and are often aggregated by the organisations generating them. This 

process regularly happens in a black box, and to scales and zones not decided upon by the 

researchers requesting access to the data, making it hard to control for the MAUP’s impact. 

Most in-app datasets provided to researchers are aggregated to arbitrary grids. Meta Inc 

location data, for example, is aggregated to standard tiles rather than bespoke regions or 

administrative boundaries (Maas et al., 2019). The widespread use of arbitrary grid also makes 

it unlikely that the output products are linkable to existing geographies or made to closely fit 

the original datasets, which often result in data loss. This in turn makes them unlikely to be 

informative for mobility analysis. 

However, the access to the original disclosive datasets is subject to barriers, both financial and 

technical. Secure remote access is often mandatory, with researchers having to use the datasets 

within secure environments, receive specific training and depend on control checks. This all 

adds to the (often high) initial cost of purchasing the data. It is thus usually not sustainable for 
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researchers to request or consider using the original datapoints where an aggregated product 

might reduce these costs.  

One could propose an aggregated product at the scale of the UK’s most used geographies, the 

OAs. This would likely be of interest to researchers working with geodemographic information 

provided at the OA scale. However, as highlighted by Helbich et al. (2021), using residential 

regions like OAs for non-residential data, such as in-app data, may prove irrelevant in a variety 

of studies interested in non-residential interactions outside homes (Helbich, et al., 2021). To 

address this Coombes et al. developed daily urban systems (the ancestor of LLMAs) as early 

as 1982, highlighting the importance of creating a geography which best represent daily activity 

as opposed to residential information (Coombes et al., 1982). They argue that, when it comes 

to non-residential information, OAs are not made with varying population sizes in mind, losing 

their trademark homogeneity and stable populations. In-app mobile phone datasets would 

benefit from statistically neutral regions, especially in an aim to reduce MAUP impacts and 

provide accurate activity spaces regardless of geodemographic characteristics (Kishore et al., 

2020). 

Finally, mobile phone datasets are often considered as mobility datasets. The key studies 

making use of these datasets (a number of them presented above in Section 2.2.2.2), are those 

which rely the most on new forms of data for granular and timely insights, often related in 

some way to time geography (investigating where people go, when and why, and the 

consequences, whether social or epidemiological etc.). Outputs made from these datasets may 

be in the form of static units, but they must still capture some of this dynamic aspect of the 

underlying dataset they seek to regionalise. 

 

2.4.3.3.2. Opportunities in regionalisation 

By benefiting from an access to an original individual-level in-app dataset, this project presents 

multiple opportunities. Firstly, by retracing the aggregation process from the location points to 

the output product, it is possible to assess the impact of the scale and zoning effects on these 

new types of data. Secondly, there are two main outputs possible from this regionalisation 

exercise: (1) An appropriate aggregated product for dissemination and wider use of in-app data 

in research and (2) a flexible and reusable methodology for regionalising and aggregating other 

sensitive point datasets.  
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Regionalisation has traditionally been a manual process, with new zones created very rarely 

due to the involvement required. It remains an often proprietary process for individual projects. 

In their literature review on the topic of zone system designs, Molloy and Moeckel highlight 

that the “significant variety of approaches is a tribute to the complexity and importance of the 

process” (Molloy and Moeckel, 2017).  

Nevertheless, recent technological improvements have provided new opportunities for the 

development of regionalisation processes and zone designs. Multiple studies, especially in the 

field of transport and mobility, have investigated MAUP in spatial analysis and spatial 

modelling (Viegas et al., 2009; Lovelace et al., 2014). Regionalisation has thus evolved to 

become more project-specific in order to reduce the case-to-case impact of MAUP on analysis, 

especially when using new forms of big data (Molloy and Moeckel, 2017). Examples of recent 

regionalisation algorithms include ordnance survey grids, dasymetric mapping, areal weighting, 

or polygon-based regionalisation (see Sahr et al., 2003; Tiede and Strobl, 2006; Hallisey et al., 

2017; Järv et al., 2017; Bustos et al., 2020).  

Data-driven regionalisation solutions are thus put forward as a viable way to mitigate MAUP, 

especially as the technology evolves to make these techniques more accessible. However, a 

commonly shared and reproducible system of zone creation would benefit researchers in 

facilitating the technical aspects of regionalisation. There is an opportunity in developing a 

regionalisation methodology which remains data-driven and project specific (thus flexible and 

malleable to the analysis conducted), but relies on one same transparent algorithm. As 

described by Halás et al. (2015), methods which do not require complex mathematical 

adjustments allow researchers to decide, according to their field knowledge, which parameters 

and zoning approaches to apply. By developing a regionalisation method for in-app mobile 

phone data, this project also aims to propose transferable methods which could be applied to 

other sensitive mobility datasets.   
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Research Objectives 
 

(1) Assess an individual-level in-app dataset and explore the impact of MAUP on its 

aggregation. (Chapters 3 and 4) 

a. Describe the data’s characteristics, with mobility studies in mind. 

b. Assess the data quality. 

c. Assess industry standard aggregates against the individual-level data. 

d. Visualise the effect of MAUP by comparing different zonings and scales. 

 

(2) Regionalise the dataset to preserve privacy, granularity and analytical completeness 

and validity. Propose a transparent, tractable and versatile methodology for 

aggregating large location datasets which could be applied to other comparable 

datasets and urban areas. (Chapters 4 and 5) 

a. Define the essential criteria that an appropriate functional region should meet 

for this data and purpose. 

b. Test existing reproducible hierarchical methodologies and assess them.  

c. Develop a rules-based method following the above-defined criteria. 

d. Assess bespoke regionalisation method against traditional aggregation scales 

and zones. 

 

(3) Assess the impact of MTUP on the regionalisation method’s volatility, confirming 

whether it remains relevant through temporal changes and for times of low data. 

Demonstrate the use of the regionalisation method as a research tool to inform on 

and visualise key MTUP effects in the context of aggregation (Chap 6).  
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3. Data and Preliminary Analysis 
This chapter presents the in-app mobile phone dataset that underpins the substantive analysis 

conducted throughout this thesis. The metadata description of the raw in-app dataset, along 

with key terminology, is outlined before detailing the initial evaluation and exploration 

(distributions, trends and coverage) of the data. Secondly, the data cleaning process is presented, 

composed of the data digestion stage followed by data aggregation. As this in-app dataset is 

sensitive, a key objective of the data processing is to create safe aggregates for dissemination 

outside of secure environments. These notions are introduced in more detail and the cleaning 

and aggregation processes are applied to the making of an industry standard aggregated data 

subproduct published on the CDRC datastore. Finally, using the resulting data subproduct, the 

last section further investigates the data’s representativeness and bias within Greater London 

and assesses the subproduct’s quality when conducting analysis. At the end of this chapter, a 

clear understanding of the in-app dataset and the making of its aggregated subproduct should 

be attained, with details on their benefits and shortcomings. The final assessment compares the 

sensitive raw data with the more accessible and non-disclosive aggregated subproduct: it 

highlights the ways in which common aggregation techniques negatively impact analysis to 

motivate this thesis’ search for bespoke data aggregation techniques.  

 

3.1. Data overview 
3.1.1. Metadata and data description 

Table 1. Metadata table - Initial summary of descriptive statistics of the in-app dataset. 

Field Value 
Provider: Huq Industries 
File format: .json.gz (newline delimited json) 
Size: 778 GB 
Number of variables: 35 
Number of items: 1704 (1554 unique files) 
Period covered: 05-07-2016 to 05-10-2020 
Scale: National (Great Britain) 
Number of records: 6925977175 
Average number of records: 4456871 
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The dataset, supplied by Huq Industries, comprises mobile phone GPS (Global Positioning 

System) locations collected by third party applications (apps) installed on the users’ devices 

(See Figure 1 for full glossary). When an app requiring a location feature is being used, location, 

timestamp, phone ID and app ID are stored in a database. The apps seek the users’ consent to 

store this information. The original dataset is composed of 35 variables ranging from phone 

service provider to reverse geotagged location characteristics and more. This was provided in 

1554 daily files of zipped newline delimited json format (. json.gz). The research conducted in 

this thesis focuses on the impact of aggregation on the dataset’s analytical completeness and 

validity, thus a list and description of the variables relevant to this study are available in Table 

2. Other variables were filtered out to respect the data minimisation principle (personal data 

shall be limited to what is necessary for the purpose of a stated analysis, Article 5(1)(c)[GDPR, 

2018]). The 778 GB of data include entries for each record registered in Great Britain (GB) 

from 2016-07-05 to 2020-10-05, with irregular time series. The data samples provided 

comprise almost 7 billion records (6,925, 977,000). The timestamps are stored in two columns 

with the date in “YYYY-MM-DD” format and the time in “HH:MM:SS UTC”. Location is 

divided into two columns of latitude and longitude respectively.  

 

Table 2. List and description of variables in the raw in-app dataset (alphabetical order). 
Variables in bold are the key ones filtered for the making of data aggregates in Section 3.2.3. 
Other variables presented here are used for assessing the dataset’s quality and accuracy, and 
provide overall descriptive statistics presented throughout this chapter. 

Name Data type Note(s) 
app_id_hash string A hashed id that is consistent for events created 

from any given app 
device_iid_hash string An anonymous, consistent, hashed identifier for the 

user device 
human_readable_os string The converted human readable version of the 

device operating system 
impression_acc float Device GPS accuracy at the time of measurement 
impression_lat float The latitude of location as provided by the device at 

the time of event creation 
impression_lng float The longitude of location as provided by the device 

at the time of event creation 
timestamp timestamp The local datetime of the event, calculated from the 

reported event time, the location, and the server time.  
 

https://huq.io/
https://gdpr-info.eu/art-5-gdpr/
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Thanks to the device id and app id variables, we can see how many impressions are collected 

by apps on average and how active specific devices may be compared to others. Figure 1 

provides a glossary of the key terms used throughout the thesis to describe the different 

components of the dataset, along with a mock data frame relating each term to their role in the 

data samples provided. 

 
Term Definition 

Record, Impression, Event A single location point recorded in the dataset. 

App Mobile application which, when used, generates and 
collects the impressions.  

User  Individual in the dataset (person using an app on a mobile 
device) 

Unique devices Mobile devices uniquely identified by the hash ids. Used 
as a proxy for users. 

Activity Throughout the work, ‘activity’ refers to the count of 
unique devices over a specific time and place (see Section 
3.2.3.2). 

Raw data The in-app location data prior to any processing: the 
records, unfiltered, as they were provided by the data 
provider, within a secure environment (see Section 3.2.1) 

Processed data, Subproduct  Aggregated output dataset derived from the raw data, 
post cleaning and processing.  

 
Figure 1. Glossary of terms and example dataset illustrating each component’s role in the data 
collection 
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Each line of the raw dataset is a record (impression), with the columns containing its descriptive 

information (location of the record, time, app and device which generated it etc.). A single 

device may generate multiple impressions, especially if different apps are used on the same 

phone. Throughout the thesis, we consider the devices as proxies for users, assuming one 

device per user. There is, on average, around 74k unique devices registered each day, though 

this number varies greatly throughout the 4-year period (this is described further in Section 

3.1.3). 

 

3.1.2. Filtering out low accuracy impressions 

Investigating the impressions’ accuracies allows us to understand and describe the collection 

process and technologies involved in the creation of the dataset. It also aids in filtering out low 

accuracy impressions, which would provide imprecise information (Diggelen, 2009; Wang et 

al., 2019). For this dataset, the impression_acc variable describes the recorded GPS location’s 

accuracy in metres. For example, an impression_acc of 200 metres indicates that the specific 

location recorded is within a 200m radius of the latitude and longitude recorded. The smaller 

the impression_acc, the more accurate the location recorded is. Negative accuracies (<0) were 

filtered out of the dataset as they indicate a device’s hardware malfunction, given that accuracy 

values are supposed to only be positive (Diggelen, 2009). The sum of impressions per accuracy 

recorded is calculated, to obtain a distribution of data accuracies as plotted in Figure 2. The red 

line highlights 150 metres. 
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Figure 2. Location accuracy measurements of the in-app data impressions (sum of impressions 
recorded at each accuracy). Approximately 90% of all impressions in the raw dataset have an 
accuracy of 150m or less (red line) 
 

The regularly spaced peaks on the x axis seen in Figure 2, from roughly 500m onwards, show 

that this dataset is generated through both GPS and network positioning system (NPS) 

technologies. NPS makes use of cell tower network and other surrounding transmitters (e.g. 

Wi-Fi) to triangulate the device’s location (See Diggelen, 2009 and Vallina-Rodriguez et al., 

2013, for more thorough descriptions and assessments of both GPS and NPS systems). 

Typically, NPS-collected locations have lower precision and accuracy than GPS, which 

explains the bins visible on Figure 2 (Diggelen, 2009; Wang et al., 2019). 87% of the dataset’s 

locations are accurate by 100 metres or less, and 89.6% of points are equal to or below 150m 

accuracies, left of the red line marker of Figure 2. This number only increases by 0.4% between 

150 and 200m (90% of the data points equal to or below 200m). These figures correspond to 

typical accuracy measures of in-app data: Wang et al. (2019) performed a similar assessment 

of their app-based data, finding that ‘about 15% of the observations have location accuracy 

larger than 100 meters’, and plotting similar peaks highlighting the presence of both GPS and 

NPS sensors (See Figure 3, extracted from their analysis, presenting similar results to Figure 2 

above). 
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Figure 3. Location accuracy measurements from another in-app dataset (proportion of 
observation per accuracy)(Wang et al., 2019). 

 
Following this assessment, the dataset is filtered to retain only the impressions with accuracy 

measurements of 150m or below. There is no specific cut off recommended, but other app-

based studies filter location points with a maximum accuracy ranging between 100 and 200m 

for studying individual mobility patterns (which require high accuracy)(Wang et al., 2019). 

Accuracy filtering should typically be informed by both the data and the analysis conducted 

with it. For this in-app dataset, 150m is the point at which the cumulative sum stabilises, with 

almost 90% of the data having accuracies below this value. The analysis in this chapter is thus 

conducted on the filtered dataset containing the large majority of impressions with accuracy 

levels of 150m or less.  

 

 

 

 

 

 

 

 

 

 

3.1.3. Temporal distribution 
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Figure 4. Sum of daily impressions across the in-app dataset. 

 
 

 
Figure 5. Distribution of unique devices recorded daily across the original in-app dataset. A 
large number of devices are onboarded before 2018, with an equally steep drop mid-2018, and 
a steady increase of devices through until late 2020.  
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Between 2016 and 2020, the number of impressions recorded each day in the dataset steadily 

increased, going from a couple hundred impressions at the start to 20 million by the end of the 

data period (Figure 4). However, the number of unique devices is not proportional to the 

number of impressions throughout the 4 years (Figure 5). This indicates that the number of 

records generated by each device is not stable throughout the data period (Figure 6). Comparing 

Figure 4 and Figure 5, we notice that, although the number of devices peaks in 2018, the 

number of impressions increases throughout the data period and does not have a specific peak 

in 2018. In fact, the number of impressions per device increases significantly after 2018 (Figure 

6) – this indicates that fewer users became, over time,  responsible for more impressions in the 

dataset (fewer devices but more impression per device).  

 

 
Figure 6. Average number of impressions per device across the in-app dataset. This number 
increases from less than 10 in 2016-2018, to close to 200 impressions per device in 2020. 
 
These distributions imply that the increasing count of impressions is neither due to an uptake 

of additional devices generating a similar number of records, nor due to a steady increase of 

impressions per device: rather the number of impressions per devices varies greatly over the 

data period. This could be explained by operating systems regulations or app onboardings 

impacting the impression counts. Mobile phone operating systems (iOS and Android) are 
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sampled unevenly throughout the data period: the drop in record visible in mid 2018 could be 

attributed to a change in Apple’s privacy regulations on third party data resulting in the removal 

of almost all iOS devices from the dataset from this date onwards (Apple, 2022). Data is also 

collected from a varying sample of apps, the identities of which are commercially sensitive. 

Apps may be added to or deleted from the dataset over the sample period (which is discussed 

further in Section 3.1.4). This, along with disparate coverage and mobile phone uptake, results 

in general inconsistencies in impression counts per devices over the period covered.  

Impression counts in the dataset also vary monthly and hourly. The following results break 

down these temporal distributions. Figure 7 plots the mean impression per month across the 4-

year period, and Figure 8 displays the mean per hour. The resulting values are consistent with 

usual population periodicity within urban centres (peaks at rush hours for instance), towards 

which the dataset is biased (See 3.3.2.1) (Sevtsuk and Ratti, 2010; Silva et al., 2017; Transport 

For London, 2020). 

 

 
Figure 7. Mean impressions per month, coloured by season (blue winter, green spring, summer 
yellow and fall orange). September records the most impressions, with April being the least 
active month on average. 



 77 

 
Figure 8. Mean number of impressions per hour throughout the in-app dataset. 5pm (17) is the 
hour that records the most activity, with a dip between 1-5am. 8am is the first abrupt peak of 
activity of the day on average. 

 
3.1.4. App statistics 

Some apps record user locations to propose location-based services, perform geo-tagging or 

provide targeted marketing (Vallina-Rodriguez et al., 2013; Silva et al., 2017). This in-app 

dataset is dependent on the partnered mobile apps which collect the impressions and share them 

with the data provider. There are 2376 apps in total across the 4-year period of the dataset. 

However, this number is inconsistent, with apps being introduced and removed from the dataset 

frequently. Figure 9 plots the sum of apps present in the dataset per year. There are on average 

1240 apps per year, though Figure 9 shows this number varies greatly year by year.  

 
Figure 9. Sum of apps in the dataset per year  
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Only a minority of apps produce a majority of the dataset. Figure 10 displays the cumulative 

sum of the largest apps’ contributions to the dataset, illustrating that the top 20 apps account 

for over 95% of the dataset. More specifically, the top 5 apps alone account for 65% of all 

impressions, and the top 10 generate 84%. Thus, despite a portfolio of over 2000 apps, a large 

majority of the in-app data is generated by the 10 to 20 most productive apps. By plotting a 

couple of device trajectories from these large apps, it can be inferred that these are the types of 

apps which collect data passively and record impressions at regular time intervals (such as 

traffic apps) (Wang and Chen, 2018). 300 apps record less than 10 impressions across the full 

4 years, amongst which 91 only record a single impression. Keeping the top 20 apps thus allows 

to filter out the unique and sporadic impressions whose behaviours are difficult to explain 

without knowledge of the specific apps collecting them. This also helps ensure the dataset is 

composed of only regularly updated locations for a more stable number of individuals. 

 
Figure 10. Cumulative sum of app contribution to the dataset. The 10 largest apps contribute 
towards 85% of the dataset, and the 20 largest apps 95%. 
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3.2. Data digestion processes  

To conduct and present further analysis using the in-app dataset, the raw data must be processed 

to prevent commercial and individual disclosure. Typically, this involves data reformatting and 

filtering steps to facilitate further work with large volumes of data, and some form of spatial 

aggregation for disclosure control and data presentation. In this section, the methodology 

employed in cleaning and aggregating the in-app dataset is presented. It is first contextualised 

within the secure laboratory from which the data is safely accessed prior to aggregation. Then, 

the aggregation process followed for creating counts of events per geographic area is described 

step by step. The cleaning and aggregation methodologies proposed here are later applied to 

the creation of a typical data aggregate which aligns with the best-practice standards of the 

CDRC, to further describe the dataset and assess its representativeness at varying scales. These 

data cleaning and aggregation steps are repeated throughout the thesis to create aggregates of 

the dataset at various stages, and support the core methods of this research.  

 

3.2.1. Secure access to sensitive data: UCL Data Safe Haven 

Due to the disclosure risks carried (both individual and commercial), this sensitive in-app data 

was accessed through the secure services of the Consumer Data Research Centre (CDRC), 

specifically via the UCL Data Safe Haven (DSH) secure facility. The DSH is a remote secure 

service, certified to the ISO27001 information security standard. Initial access to sensitive data 

in the DSH involves thorough screenings and training to ensure that only qualified researchers 

can access the dataset, as outlined in the CDRC User Guide (Version 7.0) (Appendix 1). After 

having been granted access to the secure environment, researchers must get approval for their 

proposed data uses, and all analyses must be conducted within the confines of the secure 

laboratory. To extract data from the DSH portal, it must first meet several statistical disclosure 

controls, such as aggregating data to larger geographical areas, suppressing sensitive areas, 

ensuring percentages do not reveal sensitive units, and adhering to a minimum count threshold 

of no less than 10 for data involving counts, as detailed in the user guide. The statistical 

disclosure controls performed are verified by two appointed CDRC data scientists, who carry 

output checks to ensure the processed datasets are non-disclosive and adhere to the principle 

of data minimisation. If the data output is to be published in any form (including presentations), 

it must also be approved by the data provider. Figure 11 provides an overview of these 

https://data.cdrc.ac.uk/sites/default/files/D11%20CDRC%20Data%20User%20Guide.pdf
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processes, from data access to approved data output, as described by Lloyd in their UCL CDRC 

thesis which also followed similar disclosure control procedures (Lloyd, 2018). 

 
Figure 11. CDRC procedures to access, analyse, output and present controlled datasets, such 
as the in-app dataset. (Lloyd, 2018) 
 
Certain processing choices made throughout the thesis are also explained by the necessity to 

process the data through the DSH. Data is stored, processed and managed within the security 

of the remote system, which restricts the software or programming packages available for data 

processing. All coding packages used for this project were approved before installation on the 

DSH, and are listed in Appendix 2. The computational resources are also shared across DSH 

users, limiting the size and length of running computations. With a dataset comprising billions 

of records and 1554 individual files, a significant hurdle of using the in-app data was 

overcoming size restrictions and creating filtered data samples to avoid running analysis on the 

entirety of the dataset within the DSH. An increase in the allocated RAM within the DSH was 

requested for this project (doubling from 32 to 64GB of RAM, and adding 4 CPUs) to allow 

for the cleaning and aggregation processes described below. 

Due to the data access and output procedures, any data presented as part of this thesis has been 

restricted to comply with both statistical and commercial disclosure controls outlined above. 

The following sections describe the industry standard methodology for spatially aggregating a 
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sensitive dataset such as the in-app dataset to adhere to these controls. Creating safe aggregates 

of such datasets allow for dissemination outside of the secure laboratories, thus allowing both 

presentation of results and granting access to samples of the data to a larger number of 

researchers. Aggregated subproducts are a way to offer glimpses of data otherwise only 

accessible through limited release models (de Montjoye et al., 2018). 

 

3.2.2. Cleaning 

The primary aim of the cleaning process was to remove duplicated data and convert the dataset 

into a more exploitable format, namely comma separated value (csv) files containing the 

relevant information slimmed down to reduce processing times. Only keeping the variables 

relevant for the intended analysis and aggregation (those listed in Table 2) made the dataset 7.5 

times lighter than the unzipped files provided, from an average file size of 1.5GB to 0.2 GB. 

The following description details the processes illustrated in Figure 12, more specifically the 

first column (cleaning).
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Figure 12. Flowchart overview of the data digestion process, with the data digestions steps (comprising cleaning and aggregating) in green and 
data geodemographic linkage in orange when necessary (secondary step for conducting analysis and data explorations.



The first step was to convert the daily datafiles from zipped json.gz to csv files. Due to the size 

of the original dataset, this was achieved in the bash command line within the DSH’s Linux 

machine, and by parallelizing the file conversion task to be processed and divided between 

various nodes. More precisely, rather than a “format conversion”, this step consisted in 

extracting the relevant columns directly from the json files without fully loading them in, and 

concatenating them into daily csv files. The columns kept in the cleaned csv files were initially 

device ID, latitude, longitude, and timestamp, as highlighted in Table 2. Each of the 1554 

individual files averaged at 1.5 GB zipped which made the reformatting of the data 

computationally demanding, despite using parallelisation methods. The format of the original 

data files also presented technical issues. Ndjson (newline delimited json) files require different 

functions and packages compared to traditional json files, which needed to be approved by the 

DSH (Aubin, 2020).  

All data-exploration steps previously discussed (temporal distributions and app statistics) 

necessitated the completion of these cleaning steps to access and assess the data. This 

intermediary dataset (Table 3) follows the principle of clean data as described by Hadley 

Wickham, where each row is a new observation, each variable is in a separate column, and each 

cell contain a single value (Wickham, 2014). Keeping latitude and longitude separated in two 

columns later facilitates geographic linkage in R. Any entry for which either latitude or 

longitude were missing were removed, as these would be unexploitable geographically. After 

this step, the dataset comprised 1554 individual csv files (one per day in the dataset), averaging 

0.2 GB per file. 

Table 3. Example tibble of the data at this stage. 

device_iid_hash impression_lat impression_long timestamp 
ABCD1234== 12.34567 -123.4567 2021-01-01 24:00:00 UTC 

 

Though other attributes (such as the location accuracy, app ID, etc.) were used for exploratory 

analysis, device ID, location and timestamp were the most important features for the creation 

of aggregated products of the dataset. Keeping only what is necessary not only complies to 

GDRP recommendations, but also follows best practice in ethical location data usage (GDPR, 

2018a; EthicalGeo, 2021). Device IDs are kept at this stage as a necessity in the making of 

aggregates: they serve to determine whether a given cluster is the result of a crowd or generated 

from a single device registering multiple activities. Anonymisation of the dataset for third party 

use (or retrieval from the DSH) requires the removal of these device IDs from any data 
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outputted from the DSH. The following section describes how those IDs are used to create 

activity counts before being removed.  

 

3.2.3. Typical aggregation process 

This section describes the second half of the data digestion process as illustrated by the 

flowchart in Figure 12: how to spatially aggregate the clean in-app dataset to create non-

disclosive data products. This process follows discussions from Section 2.4.1 of the literature 

review (Chapter 2), which emphasises the importance of not only removing identifiable 

information, but also coarsening the data where granularity could be disclosive. The 

methodology described here follows the principles of spatial aggregation (from unidimensional 

point data to areal counts) described in Section 2.4.1. It is generally applicable for generating 

point-in-polygon aggregates using various geographies, and is the core methodology used 

throughout this thesis when testing various aggregation scales (in Section 3.4.3 of this chapter 

and throughout Chapter 4) and when making a bespoke regionalisation methodology (Chapters 

4 and 5).  

3.2.3.1. Spatial join to chosen scale. 

Aggregating the dataset involves removing any identifiable components, such as device IDs 

and individual locations. Traditionally, the main aim of the aggregation process is to attain a 

level of privacy protection. Practically speaking, other central purposes of aggregation are to 

facilitate the dataset’s usage outside the secure environment and produce subsets which do not 

require extensive technical knowledge for analysis. Predefined activity counts are an easier 

metric to apply in wider research than uncleaned, standalone GPS locations (Kishore et al., 

2020). 

Prior to aggregating, further processing of the cleaned data was needed. Aggregation-specific 

cleaning included separating the timestamp into date and time attributes, in a POSIXct format 

(See lubridate package in Appendix 2), facilitating hourly grouping and avoiding 

inconsistencies across the files’ date formats. The second stage to the aggregation process was 

to link the clean dataset to shapefiles of chosen geographies, namely performing point in 

polygon operations. The term “point in polygon operation” is borrowed from computational 

geometry: it describes the operation of determining whether a given point is contained within 

the boundaries of a given polygon (Hormann and Agathos, 2001). There is extensive literature 
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assessing various point in polygon algorithms and their relative computational costs and 

efficiencies (Huang and Shih, 1997). For this project, st_join from the sf R package is used to 

perform the point in polygon operation: it assigns a polygon’s ID and geometry to each recorded 

activity based on its coordinates (See Appendix 2 for sf documentation). Table 4 illustrates the 

data after this step. 

 
Table 4. Assigned polygon IDs (Unit ID) and geometry to device ID hash, replacing individual 
impressions’ latitude and longitude. 

Unit ID device_id_hash Date (POSIXct 
format) 

Hour  Geometry (of unit) 

AA0000 ABCD1234== 01/01/2020  24:00:00 (-12.34567, …) 
 

Then, using the data.table package (Appendix 2), the counts of impressions corresponding to 

each polygon are summed to create a count of points per polygon, finally removing individual 

impressions’ latitudes and longitudes. 

 

3.2.3.2. Creating activity counts 

There are three main ways to count the numbers of points per polygon (Figure 13):  

(1) Impressions (total counts): sum of the total number of records, regardless of device. 

(2) Unique devices (activity counts): the number of devices. This records only one 

impression per device per polygon, and corresponds to an “activity count” 

throughout this research. Here, one activity is considered to be representative of the 

presence of one individual, and duplicates of records each person may produce in 

one same place and time are ignored. Individuals are counted each time they cross 

through to other polygons (once per polygon travelled). 

(3) Modal locations per device: the most frequent location (unit ID) of a device. With 

modal location, each device is attributed the polygon it spends most time in, the rest 

is discarded, ensuring to only record an individual once over the time-period 

selected. This significantly slims down the dataset. 

Figure 13 helps visualise these different types of counts. The three ways represent different 

levels of precision and data representation and are suitable for different purposes. This project 

mostly makes use of unique device counts (activity counts) as it seeks to filter out the noise 

generated by the most active users, and modal locations prevent the examination of hourly or 
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daily patterns due to the significant reduction of records kept. Unique device counts also 

considers devices as they travel through regions, which presents benefits for aggregating 

datasets for mobility analysis (Tizzoni et al., 2014; Wang et al., 2019). 

 

 

Figure 13. Different methods to count the data when aggregating the dataset. Each point type 
(circle, triangle, diamond) describes a different unique device, with each device creating 
multiple impressions. 
 
Thus, the overarching purpose of selecting activity counts (unique device counts) as the 

measure of population in a polygon is to preserve the majority of data points while filtering out 

large amounts of noise. However, this also captures a specific definition of what is understood 

as ‘activity’ or ‘population’ throughout the thesis. At the polygon level, the activity count 

captures the population in each polygon during a specific time period. This means that, if over 

this time period the same user travels from polygon to polygon, it is considered in the population 

of both polygons. This helps estimate a sense of movement throughout the city, but might inflate 

the activities of the most dynamic populations and does not capture population overall, but 

population relative to individual polygons. Some behaviours cannot be measured or inferred by 

the activity count, such as the time a point remained within a polygon over the selected time 

period (no measure of dwell, or differentiation of users only ‘passing through’), or whether 

there was movement within the polygon over this time. Thus, the selection of the time period 

becomes crucial in defining what is captured; this is further explored throughout Chapters 5 and 

6.  
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To count the number of unique device ids per polygon per hour, for example, an aggregation 

function was written which loops through each daily file, uses point-in-polygon techniques 

(st_join) to assign each impression with a polygon unit ID (for example, a grid cell ID such as 

OSGBs presented in Chapter 2), counts the number of unique device IDs per geographic unit 

per hour and returns this count directly into a new data frame. Table 5 provides an example 

output of this function, which corresponds to the end of the data digestion process in Figure 12. 

Table 5. Activity counts (sum of unique device IDs) per geographic unit per day per hour. The 
geometry can be kept for mapping purposes. 

Geo unit ID Date Hour n_activities Geometry (of unit) 
AA0000 01/01/2020  24:00:00 10 (-12.34567, …) 
AA0001 01/01/2020 24:00:00 23 (-12.34567, …) 

This aggregated dataset can then be removed from the DSH, or other secured environments if 

counts below 10 are hidden or removed. This allows for the safer and easier use of initially 

sensitive and technically demanding datasets. The impacts of aggregation, and the importance 

of scale and zone selection for this dataset are discussed in depth in a dedicated analysis 

(Chapter 4).  

 

3.3. Making of a standard practice CDRC aggregate for further 
data descriptions   

To further describe the in-app data and retrieve initial explorations from the DSH, an aggregated 

subproduct was created using the cleaning and aggregation methodologies described above. 

This subproduct was created in accordance with standard CDRC practices to facilitate access 

to a dataset sample for CDRC data users during the initial phases of this research (CDRC, 2022). 

CDRC safeguarded datasets can be accessed via remote services with registration to the CDRC 

data portal and after approval of the target project. These types of datasets do not contain 

personally sensitive or disclosive data, but are restricted due to commercial sensitivities or 

license conditions (CDRC, 2022). This specific subproduct was made using the aggregation 

steps and function described above, and provides activity counts per km² daily, at the GB scale. 

The OSGB 1km x 1km shapefile was used to aggregate the in-app data into the resulting activity 

count. The aggregated data sample comprises three variables: grid cell ID, timestamp, and 

aggregated activity count.  
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The following sections describe this aggregated subproduct and use it to produce and present 

further exploratory analysis of the data, which could not be proposed here before aggregation 

steps due to the sensitive nature of the raw dataset. However, using an aggregated dataset to 

illustrate the in-app data and its coverage raises concerns pertaining to potential loss of 

information from the original dataset occurring during aggregation. This is further explored in 

the final part of this chapter, Section 3.4.3, and throughout future chapters. 

 

3.3.1. Method and metadata 

The data subproduct was created by scaling up the cleaning and aggregation processes to create 

activity count files from the entire in-app dataset file by file. For this, a function in R runs 

through all data files using multi-core processing. The function divides the task across n-1 nodes 

available on the DSH, retrieves the 4 attributes needed for the creation of activity counts from 

each csv file, joins them to the chosen shape file (for this subproduct, square kilometre, using 

OSGB grid cells as a standard unit [Brunet et al., 1993]) and counts individual phones per grid 

square per day (see Figure 12). This parallelized process ran over the course of 30 hours within 

the DSH (on 7 nodes equipped with Intel 64 processors), to create aggregated 1km by 1km 

OSGB grid activity count dataset for each day of data. The daily files were then concatenated 

using the bash command line to create one csv file containing daily activity counts across GB 

for the full data period (2016-07-05 to 2020-10-05). This subproduct’s metadata is listed in 

Table 6. Square kilometres are chosen as they are the worldwide traditional standard for 

representing population densities for countries (See Brunet et al.’s definition of population 

density [1992, p.148]). 

Table 6. Metadata table for the aggregated subproduct. 

Field Value 
Data Provider Huq ltd / CDRC 
Analytical Units Mobile Phone GPS locations per square kilometre 
Data Format Character Separated Values (csv) 
Temporal Extent 05-07-2016 to 05-10-2020 
Geographical Extent Great Britain 

Variables 3 variables across one database 
Observations +64 million records 
Grid units (OSGB) 246021 
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3.3.2. Data exploration using the subproduct: spatial coverage 

3.3.2.1. Spatial coverage and insufficient data events (IDEs) 

The data’s spatial extent covers Great Britain. A large majority of the data is recorded within 

metropolitan areas, Greater London in particular. For example, in 2019, 54% of all impressions 

are recorded in Greater London, whereas the ONS population estimates records 12.4% of GB 

population living in the capital for the same year. Other areas, mostly outside of metropolitan 

areas, register data and cell coverage, but in very low numbers compared to urban centres, often 

resulting in insufficient data events (IDE, below 10) preventing conclusive analysis. 

Furthermore, some areas, particularly in North Scotland, may not record any data throughout 

the entire four years due to low cell coverage. This points towards a significant bias of the 

dataset towards metropolitan areas (particularly Greater London). The map in Figure 14 

displays the data coverage in total records over the data period, aggregated to the OSGB 1km².  
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Figure 14. Spatial distribution of the data nationally – The highest counts of impressions are 
recorded in Greater London. Other big metropolitan areas are visible with denser city centres. 
This helps in part justify why this report focuses on metropolitan areas, specifically London.  
 
Using the aggregated subproduct (activity counts per km² per day), we can display the 

proportion of units which fall under the 10-device threshold throughout this version of the 

dataset, to identify areas which have significant counts for analysis. In themselves, IDEs are a 

result of the aggregation method (the number of devices counted is directly dependent on the 

aggregation unit), but they give an indication of relative areas of low or high data across the 
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UK. Some regions do not have any records at all, particularly Northern Scotland and remote 

locations in Wales, as explained above. Figure 15 highlights the disparities in the representation 

of rural and urban areas in this dataset by mapping IDEs throughout the data period.  

  
Figure 15. Coverage map, GB scale. Grey-blue grid cells represent activities being consistently 
below a count of 10 for each day in the dataset (IDEs). Red grid cells are above a count of 10 
devices for at least one day of the data period. Missing grid cells show missing data throughout 
the entire data period (if a grid cell recorded one activity over even a single day over the four 
years, it would appear blue rather than white). Central Wales and Northern Scotland display 
large proportions of missing data. The data shows low significance on the national scale, with 
85% of grid cells consistently recording counts of 10 or lower 
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Spatial coverage is also temporally affected, due to inconsistencies in the data distribution over 

time. As discussed in Section 3.1.3, activities increased from a couple hundred impressions to 

20 million throughout the data period, doubling over 2020 alone. Following this general trend 

in uptake, earlier data have the highest percentage of IDEs (particularly 2016), and data 

suppression (having to obscure activity counts of less than 10) generally decreases over time, 

particularly in metropolitan areas. Data suppression levels in metropolitan areas generally fall 

below 50% by 2020. Table 7 lays out the percentage of IDEs in the full data subproduct each 

year, comparing it to their proportion in metropolitan areas alone. This shows that, overall, 

metropolitan area data is more significant, as smaller percentages of the activities need to be 

removed from the subproduct dataset due to IDEs. These coverage issues and overall low data 

counts might reduce the value of the dataset in some areas, particularly rural areas in earlier 

years, where well above 80% of the data needed to be omitted due to IDEs. This calls for a 

focus on metropolitan and urban areas and often later years (2019-2020) for analysis throughout 

this thesis.  

 
Table 7. Percentage of data omitted each year due to IDEs in the aggregated subproduct 
dataset. Comparison of GB extent and metropolitan areas. 

Year % IDEs in full dataset % IDEs in Met Areas 
2016 94.45 82.39 
2017 94.57 82.14 
2018 92.49 72.51 
2019 89.74 66.36 
2020 81.80 41.97 

 

3.3.2.2. Impact of using an aggregated product for data coverage 

exploration 

Using the 1km² grid scale subproduct, IDEs concern more than 80% of the overall UK’s area. 

This indicates unequal data distribution in the raw data, but may also be exacerbated by the 

aggregation process. When making this subproduct, activity counts were aggregated per day. 

Thus, the resulting low activity counts in less active or populated areas may also be affected by 

the temporal scale chosen. Unique devices could also be counted per hour and summed per day, 

but his creates potential repetitions of the same devices over the day. Such choices must be 

informed: counts per day remove duplicates, but provide lower counts, resulting in data loss in 
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less densely active areas. Counts per hour summed per day provide more data counts but do not 

treat duplicates – this means that a minority of users could be generating a majority of events. 

Repetitions of the same device over a day could be thus interpreted as a cluster of activity, as it 

would become indistinguishable from multiple devices emitting activity. These issues of 

duplication are hard to control for and remain a common issue in aggregation strategies of these 

types of datasets (Slivinskas et al., 2001). For daily or hourly analysis, one would want to have 

the counts per hour present in the dataset, and risk duplication (Sevtsuk and Ratti, 2010; Kim, 

2020). However, for a yearly summary of the data, summing the devices per hour generates 

more problems than it would solve (adding uncertainty, potentially inflating certain areas where 

a very active app may appear and disappear throughout the data etc.). These issues pertaining 

to duplicate counts from the same device remind of the earlier descriptions of the three different 

ways to count activity when aggregating the data (Section 3.2.3.2), but here over a temporal 

rather than spatial dimension. 

Regardless, the subproduct dataset is non-disclosive, tractable and publicly available: all traits 

not shared by the raw dataset. However, the necessary aggregation limits the type of analysis 

which may be conducted using the in-app dataset in this current state. It helped provide an 

exploratory analysis of the in-app data spatial coverage, but may fall short for analysing the 

data bias and representativeness, which may require more detailed aggregates than daily counts 

over 1km² grids. 

 

3.4. Data representation, bias and aggregation impact 

The spatial distribution disparities of the data, explored through the data subproduct in the 

previous section, show the dataset is biased towards urban populations, with most of the data 

being recorded in Greater London and other metropolitan areas. This section seeks to assess the 

data representativeness beyond urban vs rural, and investigate which populations may be over 

or under-represented within the in-app data sample. Firstly, we assess the proportion of overall 

population represented in the dataset by focusing on Greater London, where a high density of 

impressions allows for a more representative analysis. Then, the data’s population bias is 

investigated by linking the raw data points to census geographies using the aggregation 

methodology previously detailed, and comparing the proportions of different population 

categories between census estimates and the in-app dataset.  
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To assess the data bias as accurately as possible, the raw dataset is used. This is only possible 

thanks to this project’s access to the original data, and the facilities and services provided 

through the DSH and the CDRC. As the aggregated subproduct was the first publicly available 

version of this dataset, we demonstrate how the same data representation and bias analysis 

would be conducted using this data subproduct. This comparison demonstrates the impact of 

aggregation on exploratory analysis: the population biases underlying the dataset are not the 

same when using the raw data or the subproduct. This final section aims to raise concrete 

concerns about the ways sensitive datasets are commonly accessed. Where only the subproduct 

is available, researchers have incomplete and altered insights into the data they are using.  

 

3.4.1. Population estimates  

To assess the proportion of the population represented by the in-app data, activity counts were 

compared to geodemographic counts in established geographies. Census data records 

residential statistics, thus night-time (between 11pm and 5am) impressions counts were 

retrieved to compare with ONS data from the 2011 census, as night-time data is the most suited 

for comparison with residential data (Tooru and Kawakami, 2013; Vanhoof et al., 2018). Night-

time location is a commonly used heuristics for attributing residential information to location 

data (particularly mobile phone data) (see Phithakkitnukoon et al., 2012; Calabrese et al., 2013; 

Kung et al., 2014). This is based on the assumption that “home is the location that has the most 

activity between x p.m. and y a.m.” and relates a night activity’s location to the home location 

(Vanhoof et al., 2018). Thus, the hours of 11pm and 5am were selected from the raw dataset to 

tighten this criterion and avoid capturing commuters, and night-time impressions between these 

times are considered as being emitted from residential locations.  

The in-app data for this assessment consisted of a year’s worth of night-time impressions, 

further aggregated to contain only individual devices (no repeated impressions for the same 

device throughout the year) and spatially aggregated to OA to create annual night-time activity 

counts per OA. 2018 is selected: the year with the highest count of unique devices in the dataset 

(see Section 3.1.3) and no significantly disruptive unanticipated displacements such as the 

Covid-19 pandemic.  

The night-time activity counts per OA were created following the cleaning and aggregation 

methodologies presented throughout Section 3.2: the data was spatially joined to London OA 

census data using point-in-polygon techniques, to obtain the number of unique night-time 
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devices per OA. The resulting activity count was compared to the usual resident population 

(USUALRES) for each OA, collected from the 2011 census. Apart from two OAs in London 

which had 10-20% of their USUALRES matching the data’s activity counts, the large majority 

of OAs fall in the 0.1-1% range of activity representation. Error! Reference source not found. 

shows the distribution of OAs according to the percentage of USUALRES represented by the 

in-app data activity count.  

 
Figure 16. Count of London OAs distributed by the percentage of their population represented 
by the night-time in-app data activity counts. For instance, the data seems to capture about 0.6% 
of the population in 6835 OAs. 
 
This analysis concludes that, on average, the dataset accounts for less than 1% of the London 

population (mostly 0.6%). Overall, despite mobile phones being ubiquitous, individual datasets 

are not necessarily representative of most of the population, as they still represent a restricted 

sample (filtered by app types, device types, operating systems, night activity filtering etc.) 

(Raento,  et al., 2009; Lenormand et al., 2014). Furthermore, to compare the activity counts to 

residential information, a lot of data counts were omitted when filtering for the residential, 

“night-time” statistics. This is a persistent issue in the literature surrounding the topic of 

attributing residence location to datasets such as this one (Kung et al., 2014). Not only is the 

data filtered for night-time (only a small percentage of the whole dataset is eligible to be 

attributed residence), but the night is most often the period when the least data is generated, 

reducing the counts further (Vanhoof et al., 2018).  

Regardless, in this scenario where the night-time counts reduce the activity recorded greatly, it 

appears that in-app dataset captures roughly 0.6% of the Greater London population. In 2019, 
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this would constitute a non-negligible sample of 53,500 people. This number can be expected 

to be larger as the dataset is biased towards day-time activities as explained above.  

 

3.4.2. Population representation 
3.4.2.1. Methodology 

If about 1% of the London daytime population is recorded by the in-app dataset, questions 

pertain as to who is represented in this sample. A proportional and representative sample of 1% 

of the population could be highly significant for a number of mobility studies, and represent a 

rich data sample compared to traditional datasets (Kitchin, 2014a; Lenormand et al., 2014; 

Wang and Chen, 2018). 

The same subset of data as with the population estimate analysis was compared to the London 

Output Area Classification (LOAC) (Longley and Singleton, 2018). The LOAC is a hierarchical 

structure which uses over 60 census variables to classify London’s OAs. It is a useful tool to 

obtain an overview of the various populations towards which the dataset may be biased, without 

the need to filter individual geodemographic characteristics. The LOAC was chosen for its 

open-source nature and versatility which allowed to make up a profile of the night-time in-app 

data activities by joining them to London OAs as previously described and assigning them the 

LOAC group associated to the OA. The groups used for this analysis are detailed in Table 8 

(Longley and Singleton, 2018). The geodemographic characteristics underlying each group are 

discussed in the following results section. Further detail on the LOAC classification and the 

methodology behind its development are available on the London datastore (UCL and GLA, 

2015; Longley and Singleton, 2018). 

 

Table 8. LOAC supergroups and associated groups with their colour code, as found in the 
LOAC documentation (Longley and Singleton, 2018).  

Supergroup Group 
A: Intermediate Lifestyles A1: Struggling suburbs 

A2: Suburban localities 
B: High Density and High-Rise Flats B1: Disadvantaged diaspora 

B2: Bangladeshi enclaves 
B3: Students and minority mix 

C: Settled Asians C1: Asian owner occupiers 
C2: Transport service workers 
C3: East End Asians 
C4: Elderly Asians 
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D: Urban Elites D1: Educational advantage 
D2: City central 

E: City Vibe E1: City and student fringe 
E2: Graduation occupation 

F: London Life-Cycle F1: City enclaves 
F2: Affluent suburbs 

G: Multi-Ethnic Suburbs G1: Affordable transitions 
G2: Public sector and service employees 

H: Ageing City Fringe H1: Detached retirement 
H2: Not quite Home Counties 

 

3.4.2.2. Results 

The usual resident population (USUALRES) of each OA was aggregated, provided with the 

LOAC data, to obtain the total count of USUALRES per group. The proportion of census 

resident population in each group are compared with the proportion of in-app data activity per 

group for the night-time subset to obtain the following results.  

 
Figure 17. Comparison of population proportion by group (outline) and proportion of activities 
recorded by group (fill). Below each category, the percentage difference between in-app data 
activities and resident population. An under-filled bar (and negative difference) shows an 
under-representation of that group in the in-app data sample, and positive an over-
representation 
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Figure 17 gives an overview of which populations are over-represented in the dataset. At first 

glance, the B groups activity (high density and high-rise flats) deviates the least from the census 

USUALRES for this group. D groups are significantly over-represented by the dataset (urban 

elites) and the ageing city fringe significantly under-represented (H). Diving more precisely 

into those categories, the most over-represented population (D1) is characterised by 

overcrowding and student lifestyles (Longley and Singleton, 2018). This supports the idea that 

consumer generated dataset such as this one may have the majority of their events generated by 

a minority of the population characterised by specific consumer dynamics (Lansley and 

Cheshire, 2018). Similarly, B3 is 36% more recorded by the in-app data activity than its census 

residential population, and is characterised by ethnically diverse, often student populations. The 

G supergroup, also overcounted in the dataset, is composed of young, diverse populations. H 

and A, under-represented by 100% and 30% respectively, are generally groups of older 

populations and families living on the fringe of London. The most underrepresented group is 

the mostly UK-white and retired population of group H1 (-110% less than USUALRES). In a 

few lines, older, often white populations living in city edge neighbourhoods are 

underrepresented by the mobile in-app dataset, which is more biased towards central, young, 

and often ethnically diverse student populations. This reflects an expected use of the technology 

and apps collecting the impressions by more dynamic, younger groups (Lansley and Cheshire, 

2018; Rosales et al., 2023). 

Many assumptions had to be made in the making of the in-app data subset for this analysis. 

Night-time activities do not reflect residential populations alone, but may also pick up activities 

from night workers and social outings. The impressions collected between midnight and 5am 

were processed regardless of what activity could have generated them, and thus may impact the 

results presented. However, running a correlation test between the residential variable and the 

in-app data variable returns ~0.63, indicating an encouraging moderately positive relationship. 

This analysis still provides an overview of the dataset’s biases within the better covered urban 

centres. It confirmed the hypothesis that older, often suburban population are under-represented 

by these data types, privileging younger, and more centrally situated populations (Rosales et 

al., 2023). It also reiterated the dataset’s bias towards urban populations. 
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3.4.3. Comparison of population assessments differences between the raw 

dataset and the 1km² data subproduct  

The analysis conducted above to assess the data’s population bias was done using a direct 

linkage of the raw in-app data to OAs and their respective LOAC. This was made possible by 

the access to the raw data within the DSH. We here assess the result of an identical analysis if 

it was conducted outside a lab by a researcher using the 1km² aggregated subproduct of this 

data, provided and described in Section 3.3.1. This represents a more typical experience of 

using such datasets, not requiring specific training or remote access (de Montjoye et al., 2018). 

To do so, the analysis above was recreated using the 1km² grid aggregated subproduct. The 

resulting London population profiles are compared against the ones obtained by the previous 

analysis using the raw in-app dataset directly aggregated to OAs. This aims to illustrate the 

impact aggregated products have on research results, and motivates the necessity to reassess 

the way mobility datasets are typically disseminated. 

 

3.4.3.1. Linking the aggregated subproduct to OAs  

 

The final steps in the Figure 12 flowchart are concerned with geodemographic linkage. 

Conducting analysis using the subproduct requires linkage to geodemographic statistics and 

classifications. Keeping the OSGB geometries, or at least providing a list of coordinates for 

each grid unit in the creation of the subproduct, facilitates potential linkage to geodemographic 

characteristics. Thus, joining geodemographic information to the grid squares by matching their 

coordinates suffices, not requiring further point-in-polygon operations. We use st_join in R to 

attribute LOAC classifications to each grid cell. Where multiple classifications overlap a given 

grid cell, weighted centroids were used to attribute the most significant LOAC based on 

population counts (Trasberg and Cheshire, 2020). Table 9 is an example of linked data at this 

stage. To assess the population bias, a subset of the 1km² grid dataset is sampled and linked: 

one week of data in 2018 in London. This data subproduct no longer has a timestamp as it 

provides aggregated activity count per grid cell per day. 

Table 9. Activity counts per grid cell, with the grid cell’s corresponding LOAC (synthetic 
example). Summing n_activities per LOAC returns the number of activities for each group. 

Grid cell ID LOAC Date n_activities Geometry (of cell) 
AA0000 City Vibe 01/01/2020  10 (-12.34567, …) 
AA0001 Urban Elites 01/01/2020 23 (-12.34567, …) 
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In general, such linkage is imperfect, with approximate containment of geographies, or data 

being lost through the imperfectly overlapping units. This echoes earlier discussions around 

MAUP and spatial scale problems, especially thorny when integrating data at different scales 

(Atkinson and Tate, 2000). This added step of integrating data from square grid cells to 

administrative boundaries adds another layer of uncertainty and multiplies arbitrary decisions. 

It further reduces analytical completeness and validity (Purdam and Elliot, 2007; Casado Díaz 

and Coombes, 2011). Where possible, directly conducting the aggregation to the scale at which 

any other required data is collected minimises such issues (for instance, creating activity counts 

per output area if the study requires comparison with census data at OA levels, as done 

previously). However, this is often impossible as only specific data aggregates are made 

available, often at pre-determined scales and zones requiring further geographic linkage, such 

as the aggregated subproduct tested here. 

  

3.4.3.2. Comparison results  

 

The resulting activity counts per LOAC group obtained through the aggregated subproduct are 

compared with the activity counts per group obtained by direct linkage (OA) for the same week. 

Figure 18 maps the groups assigned to OAs and 1km² grid respectively, and Figure 19 shows 

the activity count per 1km² grid square. 
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Figure 18. Maps of London with coloured LOAC groups. Top: OAs with their corresponding 
LOAC group. Bottom: groups assigned to 1km² grid cells through areal overlap and population 
weighted centroids. 
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Figure 19. 1km² OSGB grid map of London, showing the total activity level per unit over the 
analysis period 

 

Though both profiles compared were obtained from the same data (in-app data) and period, the 

resulting population profiles are different. The first graph (Figure 20) summarises these 

population profiles. It shows that the subgroups are not equally represented if the analysis was 

conducted through direct linkage, or through the intermediary of a pre-aggregated dataset. 

Group B3, for example, accounts for around 4% of overall activity according to the 1km² grid 

analysis, but close to 7% for the direct join. Figure 21 displays the proportion of each 

subgroup’s population for the OSGB grid as a function of those of the direct OA linkage. Some 

subgroups’ activity counts (B2, C3 and F1 for instance) are between 70 and 100% higher in the 

population profile generated by the aggregated subproduct results.  
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Figure 20. Bar plot – proportions of each subgroup’s contribution towards the total activity 
count for the data period. Blue represents ratios obtained by direct join, and red obtained by 
the 1 km² grid aggregate analysis. 

 

 
Figure 21. Line Graph – population profiles for the 1km² grid analysis (red) displayed as a 
function of the direct join to OA profiles (green). Each OA activity count was assigned the value 
of 100, and each 1km² grid cell activity expressed a percentage of OA activity. 

1km grid 

OA from raw data 
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This concludes that aggregation scale and methods have an impact on analysis conducted using 

the data, but does not precisely highlight the ways in which this can be accounted for, nor inform 

which aggregation scale to privilege to prevent these differences. Where possible, using the raw 

data reduces the issues pertaining to geographical linkage and integrating data at different scales. 

However, this chapter discussed the difficulties in accessing such raw datasets, both in terms of 

their disclosure control restrictions, and their technical challenges. MAUP is made more 

problematic by the accessibility issues surrounding these types of sensitive consumer datasets 

(Brunsdon and Comber, 2020). Without access to the raw data, researchers cannot clearly 

account for issues highlighted by this comparative analysis, or decide on a more appropriate 

aggregation scale or zone.  

3.5.  Chapter summary 

This chapter presented the in-app dataset used throughout the rest of the thesis. It explored the 

data’s temporal and spatial coverage, described the app and device statistics and presented the 

cleaning and aggregation methodologies used to process the dataset. Part of the data exploration 

required the making of an aggregated subproduct to safely publish samples of the data, 

particularly to illustrate national coverage. A subproduct was thus developed following 

standard practice. However, a key outcome of this chapter was the demonstration of a necessity 

to further consider the way these aggregates are made. The final analysis showed that results 

obtained with an aggregated dataset are different from those obtained from raw data, sparking 

concerns surrounding choices of scale and zone in aggregation. 

This research recognises the importance of aggregated data products for dissemination. They 

save great amounts of resources (human, financial and computational) and democratise the 

access to novel forms of data. However, general aggregates tend to be arbitrary: we have shown 

how this impacts subsequent analysis for those who can only use the aggregates. This highlights 

a pragmatic issue in the ways sensitive in-app dataset are accessed. The high hurdles to raw 

data access are non-negotiable: they safeguard the datasets from misuse and protect individual 

and commercial interests. However, more could be proposed to reduce the impact of MAUP on 

the aggregated subproducts made for more general use outside secure environments. The 

dataset’s accuracies being largely below 150m, it is unfortunate to lose such a high granularity 

by aggregating the raw points to areal units of 1km². Better aggregates could seek to preserve 

the dataset’s presented attributes, and mitigate MAUP effects, especially in the context of novel 

mobility data. 
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4. Regionalisation – Explorations 
The strength of new forms of data, including in-app data, lies in their potential to study new 

patterns and behaviours. However, the data’s patterns and timeliness are not necessarily 

preserved through the aggregation process, with existing regions having been built on 

previously known data distributions and behaviours instead. As covered in Chapter 2, the UK 

and Wales census OAs were drawn to best represent the underlying distribution and traits of 

residential populations. In-app data, with its daytime movements and long-tailed distribution, 

clusters in different places than census data and is used to answer different questions, at 

different temporal and spatial scales to the census, as demonstrated in Chapter 3 (Reades et al., 

2007). Thus, using the census bespoke regions carries with it further risks of loss of analytical 

validity and completeness, and makes it difficult to control for MAUP effects on analysis. 

Regionalisation presents opportunities to better aggregate new forms of data for dissemination 

in research, by creating bespoke regions which allow for granular analysis representative of the 

original data, whilst accounting for the disclosure risks presented earlier. 

This chapter serves as a steppingstone between the demonstration of the impact of MAUP on 

the dataset and the synthesis of a new regionalisation methodology for in-app data. It first 

demonstrates why existing regions and aggregation methods are not fit for aggregating in-app 

data, namely due to their unique distributions and patterns. To do this, multiple aggregated 

products of the in-app dataset are generated at different zones and comparable scales, to 

highlight the changes in results between aggregates. In a second time, this chapter provides a 

list of identified requirements and principles necessary in the making of useful bespoke regions 

for this dataset. It then explores existing reproducible regionalisation methods, mostly built on 

tessellation techniques from transport research and physical geography, and reveals the ways 

in which they do not fulfil the listed target requirements for the making of reusable and 

comprehensible regions for the in-app dataset. It is revealed that these tessellation 

methodologies mainly present issues when it comes to region stability over time and linkage to 

other geographies. This progression leads the chapter to conclude on the necessity of creating 

a new regionalisation methodology which can account for both time and space concerns and be 

reusable by future users. 
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4.1. Assessment of MAUP impacts on in-app data aggregation 

This section demonstrates the impact of MAUP on the in-app data when creating safe 

aggregates for research. As discussed in Chapters 2 and 3, the effects of MAUP are expected 

to impact data when it is aggregated from point to areal data. This is a well-researched and 

thoroughly documented phenomenon in geography, however there are few assessments of its 

impact on in-app data at the scale of the present dataset (Fotheringham et al., 1995; Qi and Wu, 

1996; Minot and Baulch, 2005). This analysis demonstrates that different aggregated products 

will generate different results, despite the original data and research topic being otherwise 

identical. This raises a key question regarding which of these results is to be considered as the 

closest representation of the studied behaviour. This subsection seeks to explore both the scale 

and zoning effects of MAUP. It does so by comparing analysis conducted with direct joins to 

geodemographic information from the original raw in-app data with aggregated subproducts 

joined in a second time to the targeted statistics. Aggregates at varying scales are created and 

compared, using a subset of the dataset. Following the findings from Chapter’s 3 descriptive 

analysis (Section 3.3.2) regarding the dataset’s bias towards urban centres, this analysis focused 

on a London Borough. The choice of a smaller sample (a single borough instead of Greater 

London) helps in demonstrating the dataset’s granular potential and illustrates the effects of the 

MAUP at smaller scales than traditionally documented. 

 

4.1.1. Methodology 
 

4.1.1.1. Creation of multiple aggregates of varying scales and zones 

This analysis was conducted on a subset of the original dataset. The subset chosen was the City 

of Westminster, in London, over the working days of  02-09-2019 to 08-09-2019 during rush 

hours (7-10am)(Transport For London, 2020). Westminster is picked as it displays clusters of 

high-density workplace populations, making it especially relevant for weekday rush hour 

analysis (Berry et al., 2016). The original point dataset is filtered down to only include these 

dates and times using the data cleaning methodology described in Chapter 3 (Section 3.2.2).  

Spatial aggregates of this dataset were made for OSGB grids and census geographies (OA, 

LSOA, MSOA) for comparison. Using the aggregation methodology detailed in Chapter 3 

(Section 3.2.3), activity counts (number of unique devices per area) per hour are created and 

summed per day, producing higher activity counts, and reducing the chance of having to omit 
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large amounts of data when aggregating at the smallest scales. This choice was also more 

consistent with the aim of conducting analysis over three hours of each weekday (daily counts 

being less significant to analyse rush hour than summed hourly counts). The different scales 

used, for OSGB and census geographies respectively, are presented in Table 1, and an example 

aggregated activity count map (at the OSGB 250 m² scale) is illustrated by Figure 1.  

Table 1. Scales of aggregation studied 

OSGB GRIDS Census geography output areas 

250 m² grids Output area (OA) 

500 m² Lower layer super output area (LSOA) 

1 km² Middle layer super output area (MSOA) 

 

 
Figure 1. Example of aggregated activity counts at the subset period and scale. The aggregation 
unit here is the 250m² OSGB grid. 
 
The 1km² grid, the same used for the aggregated subproduct of Chapter 3, was downloaded 

from Charles Roper’s work on OSGB geographies (Roper, 2015). The 500 by 500 and 250 by 

250 grids were created in QGIS as divisions of Roper’s 1km grid, by dividing the 1km² grid 

into four 500m² sections, and further dividing these into 250m² units. All three scales follow 

the British National Grid projection. The OA, LSOA and MSOA political boundaries were 

downloaded from the London Datastore (UCL and GLA, 2015).  
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The initial purpose of using OSGB and census geographies in parallel and at various scales was 

to evaluate them against one another to help establish which of the geographies would be most 

suited for day-time statistics (as opposed to residential census statistic). The hypothesis for this 

test was that smaller scales would be a closer fit to a direct linkage using the point data without 

aggregation, and OSGB cells would perform better than census geographies, as the latter were 

generated to best fit residential (night-time) statistics.  

4.1.1.2. Linkage with WPZ geographies 

To test the aggregates’ fit to the data, each aggregate is used to conduct the same 

geodemographic analysis and the outcome of each is compared to results obtained from a 

control. The control is a direct join of the pre-aggregation raw in-app data points to the 

geography of the studied characteristic (workplace zone classifications, presented below), 

whereas the aggregated datasets must be linked to said geography with an extra step. This is 

similar to the assessment conducted in Chapter 3 Section 3.4.3 which compared the 1km² 

aggregate to a straight linkage to LOACs. The difference between control linkage and aggregate 

linkage to the studies statistic is illustrated by Figure 2.  

 

Figure 2. Difference between the control and aggregate tests. In both cases, aiming to obtain 
the number of activities per studied areas (areas A and B), but in the case of an aggregated 
dataset (right) this requires overlapping the aggregate zones to the studied areas and assigning 
the overlap, whereas direct counts can be assigned to the studied geography from the control. 

For this analysis, the workplace zone classification (WPZ) is chosen as the studied characteristic. 

The WPZ is a geodemographic classification used to describe London’s working populations 

and workplace geographies (Singleton et al., 2017). The different groups identified by this 
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classification are listed in Table 4. WPZ geographies were downloaded from the London 

Datastore (UCL and GLA, 2017).  Each grid cell (and census geographic unit) was assigned the 

WPZ subgroup which best overlapped the unit. Population weighted centroids linked to 

workplace counts were used to assign the subgroups, as linking a subgroup to a cell by area 

overlap alone may not be representative of the underlying demographics and population clusters. 

Thus, where multiple WPZ subgroup overlapped a given cell, the one with the highest weight 

(highest population count) was assigned to that cell, ensuring the matching was done by 

population size rather than by surface area. The centroids were downloaded from the UK 

government’s statistics portal and combined with workplace and worker counts as found in the 

2011 census.  

Table 2. WPZ classification subgroups used for this study, as categorised and described in the 
WPZ technical report (Singleton et al., 2017). 

Group – A: Residential Services  

 

A1: Predominantly older, local education and 
health workers  

A2: Lowly qualified workers in construction and 
allied local trades   

Group – B: City Focus   B1: Dynamic financial centres with extended 
operating hours  

B2: Professional, retail and leisure Services in 
dynamic central locations  

Group – C: Infrastructure Support C1: Younger customer service workers in 
wholesale or retail occupations  

C2: Blue collar, manufacturing, and transport 
services 

Group – D: Integrating and Independent 
Service Providers  

 

D1: Health care support staff and routine service 
occupations  

D2: Locally sourced, home helps and domestic or 
manual workers.  

D3: Travelling or home‐based general service 
providers  

Group – E: Metropolitan Destinations E1: High street destinations and domestic 
employers  

E2: Accessible retail, leisure, and tourist services 
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From these linkages, activity counts per WPZ subgroup were computed (number of unique 

devices registered by WPZ subgroup over the study period in the City of Westminster). This 

provided information about the differences in activity between working subgroups over rush 

hour. An example tibble of this data for the 500m² aggregate is showed in Table 3. Figure 3 

shows the WPZ subgroup attribution for each aggregate scale and zone tested. 

Table 3. Synthetic example of the activity count per WPZ subgroup, obtained for the aggregate 
made with the 500m² grid (id500m). 

id500m Subgroup Date n_activities 

3676 High street retail 17/09/2019 10 

3678 Health care staff 16/09/2019 23 

 

OSGB GRIDS 

 

Census geography output areas 

 
250m² OSGB 

 

 
OA 

 
500m² OSGB 

 
LSOA 
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1km² OSGB 

 
MSOA 

 
Figure 3. Miniatures for each scale showing the distribution of WPZ subgroup assigned to grid 
cells or output areas through weighted spatial joins. 
 

4.1.2. Results 

Comparing the activities per subgroup over the study period across all aggregated products, the 

counts vary significantly depending on the aggregate used. This means that, provided with 

different aggregated subproducts, an analysis on the WPZ subgroup activity of Westminster at 

rush hours would return different results and population profiles. Figure 4 shows the activity 

means for the study period per aggregate per subgroup (left). As expected, aggregates present 

less overall activity than the control, as aggregating activity counts removes repeating data 

points. Figure 4 (right) shows the percentage of aggregated activities allocated to each subgroup: 

the 250m² grid cell seems to be closest to the direct WPZ join for their resulting population 

profiles.  
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Figure 4. Activity means (left) and subgroup proportion (right). 
 

Importantly, activities proportions per subgroup (right) vary significantly between aggregation 

types: analysis using the 1km² grids returns a very different impression of Westminster 

compared to 250m² grids (not the same number, or even distribution of subgroups are visible 

between the two results). 

Lower scales are more granular, but data is omitted due to low counts. However, running a 

correlation test between the control activity counts per subgroup and the aggregated ones 

revealed that, despite the data omission resulting from insufficient data events (IDEs) at the low 

scales (OA and 250m² grid), these smaller scales still present the highest correlation with the 

control (respectively R=0.96 and 0.98). OAs do not appear to perform better than arbitrary grids 

cells for day-time analysis concerning WPZs.  

In  

Figure 5,  the 250m² grid WPZ subgroup proportions are compared against the control’s, 

visualising which populations are over-estimated or under-estimated by the  aggregated product. 

Where the colour overfills the bar outline, the subgroup is over-estimated by the aggregate 

compared to the control, when white remains, it is under-estimated. The ‘Professional, retail & 

leisure in dynamic central locations’ group is over-estimated by approximately 10%. 

Discrepancies could be explained by population densities and dynamism varying between 

groups. This also shows how the aggregation choices may impact final analysis unequally 

across space and the dataset. 
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Figure 5. Ratio comparisons between control and 250m². 

Though aggregating points to 250m² or OA, for instance, seemed to preserve part of the 

population profiles obtained by the control, discrepancies in results cannot be neglected, 

especially as these may deepen when applied to larger scales, or larger amounts of data.  

This exploration indicates that scale choice alone changes the distribution of activities and the 

geodemographic information that may be ascribed to them. It also highlights that the zoning 

effect also has significant impact on the final analysis, especially when looking at 

geodemographic classifications which do not necessarily stem from census residential data, 

such as the WPZ. Here, the grid cells seem to perform better for this “daytime statistic” 

compared to OA, LSOA and MSOAs at comparable scales. Census geographies were made to 

be a best fit for residential statistics and thus correlate better with nighttime patterns. Using 

administrative boundaries such as the OAs may introduce biases to the aggregation process and 

‘force’ the dataset into spatial patterns it does not automatically relates to. 

This analysis sheds light on this project’s key challenge of using in-app data, identified in 

Chapters 2 and 3: choosing (or creating) a spatial unit (region) which best represents the data 

for safe and efficient aggregation. This constitutes a hurdle in the creation of robust, reliable, 

reproducible, and transparent data subproducts for wider use in research. This assessment was 

a pivotal point in reframing this thesis’ objective from geodemographic analysis using in-app 

data towards questions of regionalisation and assessment of MAUP applied to new consumer 

point datasets. 
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4.2. Defining the principles and practices for robust 
regionalisation  

 

Following the results from the previous section, and the discussion sparked, this work proposes 

the regionalisation of the in-app dataset as a method to mitigate issues of disclosure control and 

MAUP on analysis. The aim is to create spatial units which would maximise granularity whilst 

minimising disclosure risk, creating ready-to-use, safe and high-resolution aggregates of the in-

app dataset. For this, the principles and important criteria central to the creation of appropriate 

regions are here introduced and detailed, to direct the regionalisation efforts proposed 

throughout this work. Then, two established methods of data-driven spatial partitioning are 

presented, one using quadtree hierarchical algorithms and the second Voronoi tessellations (as 

touched upon previously in Chapter 2, Section 2.4.3). It is important to note that the resulting 

regions, (and indeed the need for the approach) are contingent on the data used, and another 

source of data would yield different results or require different regionalisation adjustments.  

To create robust units, a regionalisation methodology must abide to guiding principles (Casado 

Díaz and Coombes, 2011). These principles inform a set of practices, aiming to obtain units 

that have specific traits and behaviours answering to stated objectives and requirements. These 

requirements can be technical, data-led, or informed by the usage intended from the making of 

the regions. Coombes’ work with Eurostat in 1992 defined nine principles which Local Labour 

Market Areas (LLMA), a form of functional regions, were to meet (Eurostat and Coombes, 

1992). They first established the clear definitions of what makes a set of boundaries fit for 

purpose. These concepts were more recently applied by Casado-Díaz and Coombes (2011) in a 

critical review of multiple LLMA delineation methods. Borrowing from their structure and 

vocabulary, the ten in-app data regionalisation principles are separated into 4 main categories: 

objective, constraints, criteria, and usability. Regionalisation tests stemming from this project 

are later assessed against these principles and practices, with the preferred method abiding to 

as many of the ten principles as possible. The reproducibility practice (under the usability 

category) was added for this project, building from the discussions in Chapter 2 (Section 2.3.1) 

regarding transparency of methods and accessibility of tools used in aggregation. Table 4 lists 

these principles and practices, further detailed under their respective categories below.  
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Table 4. Principles to guide the definition of in-app data bespoke regions. Adapted from 
(Casado Díaz and Coombes, 2011). 

Principle Practice 

OBJECTIVE 

1. Purpose 

 

 

2. Relevance 

 

To be statistically defined areas appropriate for identifying clusters of 

activity from in-app data whilst protecting privacy 

 

Be temporally relevant, making them relevant for analysis related to  

temporal data patterns as well as spatial 

CONSTRAINTS 

3. Partition 

 

 

4. Contiguity 

 

Every point is in only one area, aiming for >10 devices per area. Each 

region is to not cross a pre-determined administrative boundary. 

  

Each region is to be a contiguous unit.  

CRITERIA 

5. Homogenous 

6. Autonomous 

 

7. Coherence 

 

Terrain homogeneity should be sought after. 

Underlying terrain is to be accounted for, making the resulting areas 

recognizable as regions.  

Outputs aimed to be stable over time for comparative analysis 

Size range minimised. 

USABILITY 

8. Conformity  

 

9. Flexibility 

 

10. Reproducibility 

 

Aligned with administrative boundaries (nested within other existing 

geographies relevant to future analysis). 

Must perform well for different regions (either cities, or different 

nested constraints) and comparable point datasets.  

Must not require specific software or training for use (minimise 

technical and financial barriers to access). 
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4.2.1. Objectives 

The objectives guide the purpose and relevance behind the regionalisation strategy (Casado 

Díaz and Coombes, 2011). They seek to justify why one should create new units; what purpose 

do they serve, and how are they relevant for the research community (what gap in the research 

toolkit are they filling). As listed in Table 4, this project’s objective with regionalisation is to 

create statistically defined areas which are appropriate for identifying clusters of activity from 

in-app data, whilst protecting privacy. This is the objective defined throughout this work, both 

through the literature review (Chapter 2) and the data’s exploratory analysis (Chapter 3). The 

relevance principle aims for the regions to be relevant to previous discussions relating to the 

time-space prism. Concerns of aggregation impacts on analysis are not only spatial, but also 

temporal. To fulfil the aim of having the regions be relevant to the data, as well as purposeful 

of a specific usage, a temporal dimension should be included, making the regions relevant for 

analysis related to temporal data patterns as well as spatial units. 

 

4.2.2. Constraints 

The constraints principle lists the strict limitations the regionalisation process must abide by. 

The practices under this category tackle questions of what the regionalisation should represent. 

These are restrictions without which the final units could be unusable or not interpretable as 

regions. These include partition, or the idea that every point of data used for defining the region 

must be present in only one area: no two regions should overlap, and no single data impression 

should be counted twice as a result of the delineation. Another constraint under the partition 

principle is to aim for more than 10 devices per area. This stems from the aim to control for 

disclosure risks: without this rule, the regions do not fulfil their key objective. Additionally, 

each region is to not cross a pre-determined boundary (e.g. administrative), so the future 

regionalisation methodology can be contextualised geographically within specific study areas.  

The contiguity constraint is also key, and in practice means each region is to be its own 

contiguous unit, and not be interrupted or divided by another region. As explained by Casado-

Díaz and Coombes (2011), the contiguity constraint also ensures city centres remain 

recognizable as such, and distant clusters are not combined into a final region without a 

geographical relationship. 
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4.2.3. Criteria 

The criteria listed in Table 4 (bullet points 5 to 7) describe desired characteristics for the regions. 

Criteria have lower priority compared to the objectives and constraints described before. It is 

difficult to have all nine principles be of equal importance without some overriding the others 

(Casado Díaz and Coombes, 2011). Criteria thus help differentiate between two methods by 

privileging whichever method complies with more criteria than the other, as these are selected 

to make the final units more coherent and practical. Homogeneity, as with the census OAs, 

seeks to maximise similarity within regions and clear separation and heterogeneity between 

different regions. For instance, homogeneity could be defined as terrain being homogenous 

within a unit, or as population geodemographic characteristics within a unit to be as similar as 

possible (Martin, 2010). 

Ideally, the regions should also be autonomous, insofar as their activity patterns are self-

contained. Finally, the units are to be made coherent by being stabilised over time (little 

volatility resulting from the method itself). Coherence describes a region’s necessity to be 

reasonably recognisable (Casado Díaz and Coombes, 2011). A region which drastically changes 

when comparing different dates of data can lack temporal coherence. Coherence is also 

addressed spatially in part with the practice of seeking to minimise size range, and obtain 

regions with comparable sizes, either of terrain or population (Martin, 2010).  

 

4.2.4. Usability  

The usability principle encompasses the practices which both ensure that the region 

methodology is reproducible and flexible, but also guarantee that the output regions are 

applicable to similar datasets. These are the lowest priority guidelines, but are desirable where 

they do not negatively affect the objective, constraints, or criteria. Conformity requires the 

output units to be recognisable to users and conform to the known environment. This can be 

done in multiple ways, such as by nesting the regions within a set of know geographical 

boundaries (such as MSOAs or boroughs) to ensure the outputs conform to known geographies. 

In this sense, the conformity principle also assists the coherence criteria, helping the regions be 

recognisable, and the partition constraint earlier defined to keep the regions constrained 

spatially. Flexibility is also a concern of usability. Ideally, the units created must perform well 

in different environments (e.g. different cities or countries) and with comparable point datasets. 

Applying the chosen method to similar in-app data and coordinates should obtain comparable 
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results. Lastly, reproducibility has been added as a usability principle, to promote an accessible 

and transparent method, both financially and technically. One of the stakes of aggregating these 

types of new consumer datasets is to ensure access to a larger number of researchers. Following 

these goals, the regionalisation methodology should remain transparent and accessible to a 

larger group. For this, the ideal regionalisation methodology would not require too specific a 

software, and not rely on high level technical skills to apply and interpret. 

 

4.3. Explorations of existing statistical methods 

In Section 2.4.3 of the literature review, two main regionalisation types were discussed: 

hierarchical and rules-based methods. In the rest of the chapter, two data-driven hierarchical 

methods are investigated, both of which were applied to point location datasets in the 

regionalisation literature, whether in the fields of urban studies or physical geography (Dong, 

2008; Sevtsuk and Ratti, 2010; Lagonigro et al., 2020; Gu and Shen, 2022). The strategies 

developed for the LLMAs were robust and bespoke regionalisation examples for urban daytime 

statistics, but relied on crucial census information not present in the in-app data provided, or 

mostly granular origin-destination travel to work data. Thus, we instead explored data-driven 

regionalisation methods which allow to identify and represent clusters of static data points 

rather than flows: quadtree algorithms, and Voronoi-based regions (Cowpertwait, 2011; Molloy 

and Moeckel, 2017; Gu and Shen, 2022). Both methods are described and tested using a sample 

of the in-app dataset, and assessed against the key principles listed in Table 4 to identify how 

they could be improved upon to fulfil the data’s regionalisation requirements. 

 

4.3.1. Quadtree based regionalisation.  

4.3.1.1. Definition 

A quadtree describes a hierarchical subdivision of a plane. It starts with a square containing 

input data (in this case, in-app data impressions), which is divided into 4 equal squares, each of 

those 4 subdivided recursively until it satisfies a stopping condition, for instance a threshold 

number of points is met. Figure 6 demonstrate this process. 
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Figure 6. Taken from the Lagonigro et al., AQuadtree R package description (See Appendix 2), 
shows three level quadtree splitting cells. The initial cell is on the left, at the centre is the first 
subdivision and the second quadtree subdivision is on the right (Lagonigro et al., 2020a). 
 
Quadtrees can be built from various datatypes, including polygons, images, and points. They 

are used to refine images (pixel levels), but are mostly key in agent-based modelling to identify, 

aggregate and track agents for model clarifications (D’Angelo, 2016). In GIS, they aim to 

decompose space into adaptable and easily treatable cells, and have been an established way to 

optimise spatial searches (Gahegan, 1989; Ebdon, 1992). Transport planning has made use of 

quadtrees to aggregate mobility data, as demonstrated by Molloy and Moeckel in their 2020 

paper (See Chapter 2, Section 2.4.3).  

Calling out the “lack of specific methods in R to anonymise spatial data”, Lagonigro et al. 

(2020a) created an R package which uses a quadtree algorithm to aggregate sensitive point data, 

such as the in-app data, using a potentially standardised and lightweight method. This echoes 

this project’s aim of creating transparent strategies for the protection and dissemination of 

human-generated point data aggregation, using cross-disciplinary tractable methods. The 

Lagonigro et al. (2020a) R-based quadtree algorithm package was thus tested to assess 

quadtrees’ performance in aggregating in-app data. 

 

4.3.1.2. Methodology 

The open source AQuadtree CRAN package contains multiple functions and downloadable test 

datasets (See AQuadtree, Appendix 2). However, the following tests mostly make use of the 

AQuadtree and plot functions. The AQuadtree function uses a grid coding system following the 

European Forum for Geography and Statistics (EFGS)’s guidelines for grid datasets (Lagonigro 

et al., 2020). The function builds an initial grid of a given size, each grid identified and 

referenced under the EFGS’s coding system. It then recursively subdivides the cells into 

quadrants, as illustrated by Figure 6 above, if the number of points in each quadrant is above 

the set anonymity threshold. Not meeting this threshold means the cell is not further divided. 

In certain cases, disaggregation requires the removal of very low point counts, for which the 
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algorithm weights the loss rate (how many points must be suppressed) against the lost 

granularity of the grid that would result from not supressing (having to keep a bigger cell, and 

not subdivide where the neighbouring cells would still be above threshold and allow for more 

division). To minimise the information loss, points that are supressed are added together, and 

if this group exceed the anonymity threshold when the divisions are over, they are aggregated 

into an initial cell and marked as a residual cell. Lagonigro et al., have a more detailed 

description of this balance work, as well as visualisations of the residual cell process in their 

package documentation (Lagonigro et al., 2020a) (Appendix 2).  

The AQuadtree function takes a point dataset of ‘spatial points data’ format (sp package in R, 

see sp in Appendix 2) and turns it into a quadtree object, which can be plotted by the package’s 

plot function, colouring the residuals accordingly. AQuadtree has many optional parameters, 

such as settings for the size of the original grid, the anonymity threshold, the number of 

subdivisions desired etc. The quadtree objects can be converted as sp or sf objects and saved as 

such, making them portable and usable in other software (e.g. ArcGIS or QGIS).  

To retrieve quadtree objects from the DSH, a conversion to a human-readable format (geojson) 

is necessary for output check verification processes. After they are retrieved from the secure 

lab, the products are reconverted to a quadtree object, in order to be able to discern and separate 

the residual cells, not identified in sf or geojson formats. The AQuadtree package is here applied 

to the in-app data points to create the maps displayed in the upcoming Results section (Section 

4.3.1.3). 

Understanding the parameters of the AQuadtree function, as well as their impact on the final 

output, was important to the creation of robust outputs using this method. The residual cells are 

a key parameter to set when choosing a threshold level value for the creation of quadtree objects. 

Different thresholds were tested on a day of data in the City of Westminster to better illustrate 

the impact of the threshold value on the number of residual cells created. Figure 7 displays three 

different thresholds (th) for unique devices in Westminster over a week of rush hour in 

September. The three thresholds compared are 10, 25 and 50 counts.  
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Figure 7. Three quadtree objects created using different thresholds, over the same dataset and 
period. Th=10 (left), th=25 (centre) and th=50 (right). Black cells are residual cells. 
 

Though threshold 50 only returns one residual cell, its geometries are much less granular than 

the other values with more residuals. The white square at the centre of the th=25 map (centre), 

is replaced with a residual cell in th=10 (left). Expectedly, it is seen that lower threshold values 

return quadtree objects with more residuals than higher thresholds. This is in part owed to lower 

thresholds (smaller numbers) creating more subdivision of the quadtree, resulting in more 

potential areas which might leave ‘leftover’ data to fit in a residual cell. Furthermore, a low 

threshold is easier to reach: it is more likely that the remaining data caused by low counts will 

be regrouped and accounted for into a residual as their sum is more likely to reach a lower 

threshold when the process is over. When the remaining data is insufficient, and still below the 

set threshold, it is discarded rather than turned into a residual cell at the end of the quadtree 

making process. Higher threshold values thus create quadtrees with more omitted cells which 

could not be regrouped as a residual. This means higher thresholds not only create less granular 

geographies, but also omit more of the data than lower, more granular thresholds which create 

residual cells in place of omitting. In Figure 7, while th=50 creates only one residual, it also 

removes data altogether in areas that are considered populated with lower threshold values. 

th=25 and th=10 continue to disaggregate and gives more precision to cells surrounding empty 

residual space. An increase in the number of residuals is thus not a marker of loss of data or 

quality in the quadtree outputs: they provide insight that simply omitting counts and treating 

them as an absence of data would not allow. 

For the rest of the methodology, thresholds were thus selected both based on anonymity 

requirements (<10 devices) and this balance work. A threshold of 100 points was picked to 

generate the quadtrees made using all device impressions, and quadtrees built from activity 

counts of unique devices were made with a threshold of 10 devices.  
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4.3.1.3. Results 

The first 2 maps (Figure 8) were made using a subset of the data at the London scale: (left) one 

day in March 2018 (Monday, 26-03-18) and (right) March 2020 (Monday, 30-03-20). Both 

days are a Monday, but the 30th of March 2020 contains data collected after the implementation 

of lockdown rules in the UK (Cabinet Office, 2020). These quadtree objects were made using 

total counts of events (impressions) with a threshold of 100, rather than unique devices, to 

display the full activity registered by the unfiltered in-app data on those dates. Black cells 

represent residual cells and white cells low data coverage. For example, the white patch in 

southwest London corresponds to Richmond Park, where the data coverage is low. 

 

 
 
 

 

The 2020 Quadtree (Figure 8, right) presents a larger proportion of residual cells, which are 

results of low counts or IDEs. By creating and plotting Quadtree objects, we can obtain a quick 

and non-disclosive glimpse of the data distribution, allowing for rapid comparison between 

different days and times. Threshold values can also be set to specific variables within a dataset, 

allowing researchers to efficiently assess the spatial distribution of specific data characteristics 

(for instance by making quadtrees based on age groups, gender etc. where available). 

The next two maps (Figure 9) were made from unique devices activity counts (no repeated 

impressions per user), at a threshold of minimum 10 devices per square cell. The same dates as 

Figure 8 are chosen for quick comparison. On March 30th, 2020, London citizens were required 

to stay home as per COVID-19 regulations, certain businesses were closed and gatherings of 

Figure 8. Left - in-app impressions collected across London on the 26th of March 2018.  
Right - in-app impressions, London, 30th of March 2020. Both maps are plotted using the 
quadtree hierarchical method with a threshold of 100 impressions per cell minimum. 
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more than two individuals were forbidden (Cabinet Office, 2020). This contextualises the 

drastic difference between both quadtree outputs, with the 2020 unique devices quadtree 

(Figure 9, right) being especially sparse. Whether this decreased activity is explained by 

lockdown measures, or by underlying data-collection processes (changes in devices and apps 

in the in-app dataset between 2018 and 2020 overall, for instance), the quadtrees provide an 

overview of a day of data, not requiring other arbitrary decision making than setting the 

threshold, consistent across the two dates to provide quick comparison. 

 

 
 
 
 

 

Finally, this quadtree methodology was tested using the same subset of data used in the 

aggregation analysis of Section 4.1: the week of rush hour data in Westminster (Figure 10). The 

resulting quadtree regions produce a much more granular level of analysis than seen when using 

the smallest scale of 250m² grids from the previous assessment. Though inconsistent in size and 

over time, the cells created with the quadtree algorithm can be much smaller spatially and 

provide finer detail at the borough scale.  

 

Figure 9. Left - unique devices recorded in London, 26th of March 2018. Right - unique 
devices,30th of March 2020. Both maps were plotted using the quadtree hierarchical 
method, with a threshold of 10 unique devices minimum per cell. 
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Figure 10. Left - unique devices recorded in Westminster over rush hours (8-10am) over the 
course of a week in September, aggregated and plotted using the quadtree hierarchical method, 
with a threshold of 10 devices minimum per cell. Right - activity aggregated to 250m² grid cells 
over the same data period (Sieg and Cheshire, 2021). 
 

Figure 10 (left) shows how quadtrees help spatially disaggregate high activity hubs differently 

to traditional grids. Though stylistic choices such as colouring can help distinguish hotspots 

when using traditional grids, it does not allow for more detail as to where exactly this activity 

splits within a grid cell itself. This detail is present within the quadtree boundaries themselves. 

Furthermore, the quadtree object requires less steps than the 250 m² aggregate to make. With 

pairs of coordinates and the AQuadtree  function, a few simple lines of code generate the map, 

whereas the map from Figure 10 (right) required spatial joins to an ordnance survey grid and 

coordinate system reconversions where required, and the creation of activity counts per area for 

colouring. This makes the AQuadtree algorithm a light and efficient regionalisation method for 

quick spatial inspection of datasets. 

 

4.3.1.4. Discussion 

Quadtree algorithms, such as the one provided by Lagonigro et. al (2020) provide an innovative 

and automated method for anonymising and representing large sensitive datasets. They allow 

for data-driven spatial aggregation and help inform researchers of the range of scales at which 

their data can be significant. They have been used extensively for spatial indexing and 

performing quick operations in GIS and spatial analysis, making them a reasonable candidate 

for developing rapid data-driven regionalisation methods (Gahegan, 1989; Ebdon, 1992). By 

creating quadtree maps of London at different dates, we can quickly compare activity levels on 
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a typical Monday in 2018 with a Monday during the first lockdown of 2020. Removing the 

need to choose a specific aggregation scale allows the researcher to avoid making assumptions 

based on previous expectations of the data’s behaviour, which is particularly helpful in the 

context of unforeseen events such as the COVID-19 pandemic. This may also reduce the impact 

of mislead or arbitrary decision-making in the aggregation process. 

However, the quadtree methodology does not answer to all the criteria defined earlier to 

delineate usable and pertinent regions for in-app data aggregation. To structure this assessment 

of the quadtree method in answering this project’s research aims, we refer back to the principles 

from Section 4.2,  Table 4 point by point: 

(1) Objectives. Quadtrees respond appropriately to the objective of identifying clusters 

of activity from in-app data whilst protecting privacy. They disaggregate the data 

further than traditional grids can, and allow researchers to display small, granular 

information alongside areas of lower coverage, without sacrificing privacy. 

However, their temporal relevance is limited, as they are volatile over time and do 

not allow for consistent temporal analysis, insofar as the entire regions delineation 

changes when data is inputted.  

 

(2) Constraints. The partition and contiguity constraints are respected, with the notable 

exception of the residual cells. The residual cells may not be contiguous: a smaller 

quadtree cell could be contained inside a residual. As it concerns the residuals, this 

would disproportionately impact areas of low coverage, making the quality and 

reliability of the regions’ contiguity inconsistent over the spatial distribution of the 

data.  

 

(3) Criteria. This section of the principles is where most of the issues with the quadtree 

method appears. None of these criteria are respected by this methodology. The 

terrain is non-homogenous and the final regions are not easily recognizable as 

logical divisions of familiar spaces. Molloy and Moeckel (2017) proposed a solution 

to this by having the quadtree regionalisation process be nested inside administrative 

boundaries, which would also help respect the partition constraint. However, this 

does not account for terrain, nor does it make the final areas recognizable as such, 

since squares cannot be perfectly nested inside irregular shapes. The outputs are also 
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not stable for comparative analysis. Comparing two different days of data with this 

method essentially consists of comparing two separate sets of regions altogether, 

which is much more difficult to calculate and interpret than the comparison of counts 

aggregated to identical regions. The size range is also not minimised: something that 

is a perk of the quadtree (having high and low coverage areas be both represented 

thanks to variance in region size) is here a drawback for region coherence.  

 

(4) Usability. Finally, the quadtrees are usable. They perform well at different scales 

with varying activities (London-scale or borough-scale as demonstrated above), but 

also for different types of data, with examples from literature applying them to 

transport planning and data visualisation (Gahegan, 1989; D’Angelo, 2016; 

Lagonigro et al., 2020b). The AQuadtree package does not require specific software 

or training, minimising the barriers to usage and remaining accessible to researchers 

with rudimentary R knowledge. However, it remains difficult to quantify the impact 

of the algorithmic processes on results: the nature of the method being hierarchical, 

the initial groupings of the data into the starting cells also impact all subsequent 

processes and subdivisions, something difficult to account for in a final output. 

Overall, the AQuadtree package is straightforward, lightweight, and open source. It allows for 

quick insights into large human generated datasets, whilst promoting a more standardised 

aggregation method. Their use can thus be recommended in preliminary and exploratory 

analysis, as they are an efficient and simple tool to help inform project-specific choices on scale 

and regionalisation. However, they may not be a viable solution for disseminating data sample 

or outputting and communicating results, as they are complex to interpret. They are also not 

suited for use in geodemographic and mobility analysis, as the quadtree products are dynamic 

and highly changeable with new data inputs or when created from different temporal scales.  

 

4.3.2. Voronoi 

After testing the quadtree methodology, Voronoi tessellation were assessed, as they have been 

a common method for packaging CDR data, but also a proposed regionalisation method in 

physical geography and mobile computing (Megerian et al., 2005; Dong, 2008; Sevtsuk and 

Ratti, 2010; Cowpertwait, 2011; Jiang et al., 2019). This method is here assessed as in-app data 

is often described as complementary to CDR, and the consideration in disseminating and 
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aggregating these datasets might have useful overlaps (Bwambale et al., 2020; Kishore et al., 

2020). This section describes Voronoi diagrams, and how they may be used to create data-

driven regions with the in-app data. The assessment follows the same structure as the quadtree 

assessment: describing the methodology, providing example regions generated from the in-app 

data, and assessing these results against the principles defined in Section 4.2. 

 

4.3.2.1. Definition 

A Voronoi diagram, also called Thiessen polygons or Dirichlet tessellation, is a partition of a 

plane into segments close to each of a given set of an object (such as a point). Mathematically 

a Voronoi cell corresponds to all the points of the plane closest to that object than to any other 

(Voronoï, 1908; Aurenhammer et al., 2013).  Figure 11 shows an example Voronoi diagram 

made with 8 points. 

 
Figure 11. Example Voronoi diagram. 
 
Voronoi diagrams, often observed in natural phenomena, have a wide range of applications: in 

meteorology they are used to estimate rainfall, in natural sciences they can help predict forest 

fires, biological tissue development etc. (Longley, 2005; Bock et al., 2010). In spatial 

computation, they help speed up searches for nearest neighbours, or generalise vector databases 

(Longley, 2005).  

In geography, they have often been used by physical geographers to estimate areas around 

points of interest, and have recently been applied to estimate the trade areas around retail stores 

or centres (Longley et al., 2015).  Over the past two decades, Voronoi diagrams were also the 

typical solution for partitioning mobile phone coverage from cell towers (Megerian et al., 2005; 

Jiang et al., 2019). Regions can be created by grouping points into contiguous and non-

overlapping regions defined by these Voronoi tessellations (Cowpertwait, 2011). Building from 

other research which applied this computational geometry technique to mobile phone data, the 
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following section assess its potential in generating comprehensive regions for in-app data 

(Hagen, et al., 2022). 

 

4.3.2.2. Methodology 

Before creating the Voronoi regions, the dataset must be clustered to obtain cluster centroids: 

these centroids become the object around which the Voronoi are constructed (Hagen, et al., 

2022). This is both due to large amounts of data making it impossible to tesselate around 

individual points, and because creating regions with one device per region would be both 

impractical and highly disclosive, and miss the mark of the regionalisation purpose. For this, 

sensitivity analysis of the different parameters concerned by the clustering procedure 

(DBSCAN) is conducted to choose the most appropriate settings for the dataset. From the 

cluster centroid, Voronoi regions are then generated to aggregate the data to. The resulting 

Voronoi regions are then compared to 250m² OSGB grid and OA, assessing the counts of data 

preserved by each aggregate. 

 
Figure 12.“Procedure for generating Voronoi polygons using HDBSCAN for POI” extracted 
from Hagen et al., 2022, p.7. 
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4.3.2.2.1. Clustering the dataset 

As the original dataset contains close to 7 billion points, the regions generated for this study are 

made using a smaller sample of the data. A subset of the points is thus collected in the London 

Borough of Camden over the month of September 2019.  To assess the stability of the outputs 

over time, one day of data is tested (2nd of September 2019) as well as a stabilised combined 

week of points (2nd of September to the 8th, Monday to Monday) to compare the resulting 

changes in regions.  

The subset dataset is clustered using the DBSCAN clustering algorithm (Figure 12, step 2). 

DBSCAN was demonstrated to be a more appropriate clustering technique to detect clusters of 

atypical shapes, such as along roads for traffic, or islands of data within other clusters (Diker 

and Nasibov, 2012; Mai et al., 2019). As the in-app data tends to be concentrated along streets, 

its capacity to distinguish rectilinear clusters makes DBSCAN a field-appropriate choice. 

Additionally, Schubert et al. offer valuable analysis demonstrating the competitive performance 

of DBSCAN for use in geographic datasets, emphasizing the importance of parameter choice 

in ensuring the good use of the algorithm (Schubert et al., 2017). 

The data is clustered using the dbscan function (see dbscan, Appendix 2), varying the two main 

parameters identified by Schubert et al., (2017) in a sensitivity analysis (Hahsler and 

Piekenbrock, 2022).  

(1) Epsilon (e) sets the maximum distance for two points to be considered neighbours.  

(2) MinPts describes the minimum number of points necessary to make a cluster.  

Though both parameters can be informed by field knowledge (for example, MinPts =10, 

corresponding to 10 devices to cross the anonymity threshold), it is still best practice to conduct 

a sensitivity analysis to inform the parameter choice (Schubert et al., 2017; Hahsler and 

Piekenbrock, 2022). 10 would be the most appropriate MinPts value if we were clustering 

unique devices. However, the dataset contains all events (impressions) for the chosen period at 

this stage of the process, and one device may be generating multiple points and creating a cluster 

of its own. e values ranging from 5 to 100 and MinPts value from 10 to 100 are thus tested. The 

resulting numbers of clusters and noise points (points which are not considered part of a cluster 

and thus discarded later) are listed in Table 5 of the results section (Section 4.3.2.3.1). The 

example clusters of the dataset cannot be displayed at this stage due to their disclosive nature, 

but step 2 of Figure 12 illustrates an example from Hagen et al.’s comparable work (2022). 
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4.3.2.2.2. Obtaining cluster centroids 

The cluster centroids are obtained by calculating the mean longitude and latitude for all points 

of a same cluster. These centroids are used later as the basis for the Voronoi regions (Figure 12, 

step 3). However, summarising a cluster with a single centroid point means losing some of the 

cluster’s interesting features and shapes, and results in some of the cluster’s points not 

necessarily being considered in the centroid’s Voronoi polygon. Having one point to base the 

tessellation on is crucial for the generation of Voronoi regions, but is a notable disadvantage of 

this methodology, which is discussed further in the coming assessment (Section 4.3.2.4). 

 

4.3.2.2.3. Voronoi regions 

The Voronoi region boundaries are based on the distance between the cluster centroids. They 

are generated using the R terra package (see Appendix 2), and the resulting tessellation is 

clipped using the Camden borough boundary. This final clipping step can be done in QGIS or 

in R, and ensures the regions are nested at the borough level. Applying this method iteratively 

for each borough, or LSOA could create data-specific regions which are nested within existing 

geographies. 

 

 

 

 

 

Figure 13. Voronoi boundaries made with cluster centroid. Left - Clustering parameters are 
e = 10 MinPts = 10. Right - parameters: e = 50, MinPts = 10. A smaller value of e when 
clustering the dataset results in more compact Voronoi regions. 
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4.3.2.3. Results 

4.3.2.3.1. Sensitivity analysis 

The number of clusters and noise points generated for varying epsilon and MinPts (mpts) value 

are compared, both with one day of data (68,270 points) and one week of summed data (864, 

470 points). The aim was to maximise the number of clusters created (to obtain a maximum of 

centroid resulting in more compact Voronoi regions), but minimise the loss of data resulting 

from the discarded noise points. For the day of data, e10mpts10 had the most clusters and 

e50mpts10 the least noise. e20mpts10, displayed the best cluster to noise point ratio (see Figure 

14). This makes e20mpts10 pertinent for the rest of the analysis consisting in assessing the 

amount of data omitted when aggregating points using these regions. For the week of data, 

e5mpts10, e10mpts10 and e10mpts20 are selected based on similar reasoning (see Figure 15). 

Table 5. Sensitivity analysis results. *(e=epsilon, MinPts = minimum points). Shaded in yellow, 
the parameters kept for testing day of data Voronoi, blue those selected for the week of data, 
green is shared by both. 

*PARAMETERS  1 day of data (68,270 points) 1 week of data (864,470 points) 
e 5 mPts 10  657 clusters, 45844 noise points 4803 cl, 162696 npts 
e 5 mPts 20 249 cl, 53215 npts 3001 cl, 278510 npts 
e 5 mPts 100 23 cl, 63477 npts 684 cl, 628542 npts 
e 10 mPts 10 720 cl, 28855 npts 2053 cl, 53237 npts 
e 10 mPts 20 345 cl, 41979 npts 1461 cl, 101621 npts 
e 20 mPts 10 399 cl, 11498 npts 465 cl, 10341 npts 
e 50 mPts 10 91 cl, 1662 npts 12 cl, 319 npts 
e 50 mPts 20 83 cl, 4393 npts  24 cl, 1088 npts 
e 100 mPts 100 26 cl, 6198 npts 6 cl, 1228 npts 
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Figure 14. Parameter impacts for the day of data. e20mPts10 is where the line of noise points 
drops below the number of clusters generated. The aim is to have a maximum number of clusters 
for a minimum amount of noise points. 

 
 

 
Figure 15.Parameter impacts for the week of data. e5mPts100 presents surprising results with 
large amounts of discarded noise points and few final clusters. e5mPts10 is the most attractive 
option, with close to 5000 clusters (which would result in a similar number of regions), and 
less noise points than the following two options. e10mPts10 and e10mPts20 are still tested for 
their lower number of noise points. 

 
 
 
 
 

Day of data 

Week of data 
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4.3.2.3.2. Comparison with OSGB 250m² and OAs 

From the results of the sensitivity analysis, the clustering parameters which maximise the 

number of clusters for more compact regionalisation, and minimises the number of discarded 

noise points are kept (to reduce arbitrary data loss). Out of the 18 parameter combination tested, 

6 were retained (3 for the day of data and 3 for the week), for the making of Voronoi regions 

(coloured in Table 5). The resulting Voronoi regions are used in a comparative analysis against 

Camden OAs and OSGB 250m² grids. For this, a day of data was aggregated using the 3 types 

of zones (Voronoi, OSGB, OA). Activity counts per cell were generated, counting the number 

of unique devices per cell for that day of data. To assess the granularity retained by each spatial 

unit, the remaining data for each is calculated. This number is obtained by adding all activity 

from the cells which fall under the anonymity threshold of 10 devices per cell and constitute an 

IDE (omitted counts), and subtracting them to the total counts for each aggregation scale. 

Remaining data = total counts – omitted counts 
 
This helps assess which regionalisation method preserves a maximum of points post 

aggregation (a trade-off between the smallest possible scale whilst preventing too many omitted 

points resulting from IDEs). These notions of remaining data and omitted counts are reused in 

Chapter 5, and here serve as a metric to track the Voronoi’s performance. The e10mpts10(day) 

Voronoi regions performed the best in preserving the largest amount of data. Of the 13918 

activities, 1028 were omitted, resulting in 12,890 significant counts. e5mpts10(week) comes 

second. OA aggregation is 5th, with 30% less data than e10mpts10(day), and OSGB 250m² 

comes 7th, with a 40% data loss compared to the first ranked Voronoi. This means that OSGB 

250m² grid preserves less data than the least suited Voronoi made with imperfect parameters. 

 
Table 6. Comparing the granularity and omission counts for the Voronoi regions, OSGB250 
and OA. 
 Total points 

(Granularity) (T) 
Omitted counts (all 
counts <10) (O) 

 
Remaining data (T-O) 

e 10 mPts 10 day  13918 1028 12,890 
e 20 mPts 10 day 4556 91 4,466 
e 50 mPts 10 day 9160 643 8,517 
e 5 mPts 10 week 21330 9882 11,448 
e 10 mPts 10 week 14285 4354 9,940 
e 10 mPts 20 week 13629 3485 10,144 
OSGB250 8677 732 7,945 
OA 10513 1585 8,928 
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The area sizes of e10mpts10(day) are compared with the OSGB 250m² grids. One OSGB 250m² 

cell has an area of 62500 m², whereas e10mpts10(day)’s smallest cell is 855 m², with a mean 

cell area of 30218 m² overall. This means that, on average, the Voronoi regions for these 

parameters are 30% smaller than the OSGB 250m² grid, and preserves 40% more points. This 

makes the e10mPts10day Voronoi region the most performant of the zones tested based on 

granularity criteria (point preservation and small areas). However, the large differences in size 

between the Voronoi cells come into the way of one of the previously mentioned principles 

aiming for comparable sizes in outputted regions. This is further discussed below. 

 

4.3.2.4. Discussion 

As showed by the sensitivity analysis, DBSCAN parameters greatly influence the output of the 

Voronoi regions. As such, this methodology is not as data driven as it is driven by parametric 

choices and good understanding of the clustering methodologies at play. DBSCAN is also one 

of many options when it comes to finding cluster centroids for the making of Voronoi regions. 

This adds more complexity and uncertainty to the final results, as they can be heavily influenced 

by the decision of which clustering method to use. The clip of the Voronoi required to make 

them fit inside administrative boundaries also creates uncertainty. The boundary effect resulting 

from the clip means that certain points which should have been part of a larger cross-boundary 

Voronoi end up being segmented after the creation of regions in ways that are difficult to control 

for (Fotheringham and Rogerson, 1993; ESRI, 2020). 

Clustering the dataset before creating Voronoi is also arguably a form of aggregation. This thus 

means that this method relies on two or three data-altering steps, something data-driven bespoke 

regions should be hoping to reduce. Conceptually, data is also lost when it is filtered down to a 

cluster centroid. As such, though the Voronoi provide a useful context for the creation of 

regions, especially as the resulting regions performed better than traditional grids in preserving 

data counts, they do not provide an innovative approach to reducing the MAUP issues described 

in the literature review and through previous assessments earlier in this chapter.    

Going back to the adapted Casado-Díaz and Coombes (2011) principles, we here list the ways 

in which Voronoi regions do not address many of the important features and specific research 

needs: 
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(1) Objectives. The Voronoi do produce statistically defined areas, and help identify 

clusters. However, their relevance is limited: they are hardly comparable to their 

surroundings, and do not have a defined temporal dimension. However, the Voronoi can 

be made with an average of a week of data, for instance, an advantage over the quadtree 

methodology. This means Voronoi regions could be made stable over time if made with 

an average sample. 

 

(2) Constraints. Every point is in only one area, respecting the partition constraint. However, 

it is possible that not every point is in the Voronoi belonging to its cluster's centroid 

post-aggregation, as that depends on the compactness of clusters and their spread from 

centroid. The Voronoi regions cross pre-existing administrative boundaries. There is a 

possibility to clip Voronoi to respect specific boundaries, but this happens after the 

creation of the regions, not as a parameter in the making, which exacerbates the 

boundary effect, and makes it hard to control for region size after clipping occurs 

(Fotheringham and Rogerson, 1993). Voronoi regions are contiguous. 

 

(3) Criteria. The Voronoi regions do not have an inputted metric of homogeneity and do 

not correspond to underlying terrain. This thus does not fulfil the criteria of creating 

regions which are recognizable as part of their surroundings. In Figure 13, Finchley 

Road was composed of multiple horizontal Voronoi polygons going along the road: this 

does not correspond to what one may generally recognises as a road, geographically (a 

single long object, in this case vertical, rather than a series of stacked horizontal objects.). 

Outputs are more stable over time than they were with the quadtree method, which 

constitutes an improvement in that regard, especially as they can be made from an 

average count, unlike quadtrees. 

 

(4) Usability. As they are not aligned with administrative boundaries, they are hard to link 

to existing geographies for analysis. The method is reproducible thanks to readily 

available packages for clustering. However, many steps are difficult to make transparent 

and review externally, due to the sensitive nature of the dataset. The method is 

translatable to other types of point datasets, though the sensitivity analysis and 

parameter choice will differ from study to study.  
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4.4. Summary  

The quadtree and Voronoi case studies proposed two ways of segmenting point data into areal 

regions. They proved more performant than OA and OSGB in preserving data counts, or in 

displaying hotspots of activity at a glimpse. That said, based on the set principles of 

regionalisation, the statistical solutions provided by either quadtrees or Voronoi do not address 

some larger issues identified with current regionalisation efforts seeking to address MAUP 

issues. This is due to their instability over time and the difficulties of using them in parallel to 

existing boundaries.  The temporal dimension, present in both the region objectives and criteria 

(see Table 4), is also largely unanswered by these methods. Stability over time relies on the 

creation of 'baseline' regions, where aggregated products could be compared to one another 

over the same set of regions. Thus, data-driven methods which cannot be generated from a 

baseline of the data create region too volatile to be stable over time.  

Simply segmenting space efficiently does not suffice in making what has been defined as 

“usable and useful” regions. Segmenting space in ways that maximise homogeneity within each 

unit, allows for stability over time, and respects underlying terrain and known features, would 

provide better outputs for aggregation and data dissemination. The tests performed in this 

chapter allowed useful exploration of some of the key technical challenges. Both quadtree and 

Voronoi displayed some of the desired characteristics of usable and efficient bespoke 

regionalisation methodologies. Their main perk resides in their easy access and reproducibility, 

largely due to portable R packages and straightforward functions. Moving forward from those 

tests, the aim is thus to create a new methodology which would emulate much of what quadtree 

and Voronoi functions did well, but find a way to stabilise the output over time, and make it 

much more representative of underlying terrain, as well as linkable to other geographies. The 

OA methodology detailed in the literature review (Chapter 2), a rules-based method, answers a 

lot of these concerns. They start from atomic units (building blocks) that are repackaged based 

on sets of considerations (Cockings et al., 2013). The making of a similar initial atomic unit for 

in-app data could also help create average counts of activity per small-scaled unit, helping in 

making stable outputs over chosen periods of time. The delineation of OAs was also developed 

with a specific dataset in mind: where the hierarchical methods demonstrated in this chapter are 

data-driven, the specific methodologies were designed to be general, and thus not in-app data 

specific. To create bespoke regions, a bespoke rules-based methodology should be considered.  
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5. Operationalising H3: 

development of a bespoke 

regionalisation methodology 
The previous chapter outlined guiding principles for the making of useful bespoke regions. It 

tested some existing tractable data-driven methods and assessed their good fit to these key 

principles. Drawing from the results of the quadtree and Voronoi regionalisation tests, this 

chapter seeks to propose a rules-based method, inspired from the OA delineation methodologies, 

which better answers to the objectives, constraints and criteria outlined. The regionalisation 

developed and tested in this chapter seeks to emulate the positive traits of the previous methods 

proposed: both quadtree and Voronoi were easy to implement thanks to reusable functions and 

packages, were data driven, and statistically relevant. Additionally, the issues highlighted by 

both methods are here addressed, by proposing an output which is stable over time, is linkable 

to other geographies without clipping constraints, and is more representative of underlying 

geographical features.  

Thus, this chapter first outlines the methodology for the making of these bespoke regions, 

starting at the choice of an appropriate atomic unit (comparable to the building blocks for the 

OA delineation method) (Cockings et al., 2013). After detailing the regionalisation algorithm, 

the regions are compared against common geographies used for aggregating data, to assess their 

capacity to preserve data counts and geographic granularity. A sensitivity analysis is then 

conducted to evaluate the methodology’s volatility and the impacts of parameters and data 

inputs on the final outlines. Finally, going back to the adapted Casado Díaz and Coombes (2011) 

principles, we address the important criteria aimed to be met by this methodology, beyond count 

preservation alone. 

 

 

 

 

5.1.    Methodology 
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Figure 1. Flowchart of the regionalisation algorithm. PNMx signifies Preferred Neighbour 
Matrix. The divided parts (dotted lines) correspond to the methodology sections of the same 
number for further detail. This process is repeated for groups of hexagons within pre-selected 
merge boundaries (MSOAs) to obtain outputs nested in existing geometries. 
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The methodology consists of first creating atomic units containing in-app data, attributing 

contextual information to each unit, and combining areas of low (disclosive) counts into larger 

homogenous regions. Figure 1 provides an overview of this process, with each step detailed 

further throughout this whole methodology section. 

 

5.1.1. Making of the atomic units 

To meaningfully aggregate location data, it is useful to have an atomic unit which becomes the 

building block for larger regions (Cockings et al., 2013). This is the strategy used in the making 

of the OA. To reproduce this using in-app data, we seek to aggregate the data points to a small-

scale unit to later further recombine. All tests in this methodology are made on a subset of the 

in-app data, only including events recorded in the Greater London area over the month of 

September 2019. The Greater London study area was selected due to data availability and 

consistent coverage throughout the data period (See Chapter 3), and for consistency with the 

analysis conducted in previous chapters, which also focused on Greater London. 

For the making of atomic unit, the H3 hierarchical spatial index is chosen (first introduced in 

Chapter 2). H3 tiles the globe into hexagonal areas at a range of resolutions (Brodsky and Uber 

Technologies Inc., 2015; Bondaruk et al., 2019). The highest resolution (15) provides hexagons 

of an area of 0.895m² (~0.58 metres edge length), with the lowest resolution hexagons (0) being 

larger than 4 million km² (~1281 km edge length). H3 was here chosen for its versality and 

speed in indexing large amounts of geometries, and for its flexibility in the choice of scale. 

Hexagons also allow for easy radius approximation. Uber technologies motivate using 

hexagons to “bucket” their app events by highlighting that polygonal zones around areas, such 

as postal codes are subject to change in way unrelated to their own data (Brodsky and Uber 

Technologies Inc., 2015; Stevens, 2006). Bespoke zones similar to postcodes and street blocks 

might require frequent updating as cities change rapidly. They also present most advantages 

when aggregating census data (Cockings et al., 2013).  Grid systems such as the H3 do not align 

to streets or neighbourhoods by default like postcode do, but they can efficiently represent 

neighbourhoods when clustered (Brodsky and Uber Technologies). The h3 R package that 

supports the geometry also provides documented functions for working with the hexagons’ 

indexes, which for instance enables the rapid extraction of a list of each hexagon’s neighbours 

or the calculation of ring distances to other hexagons (Appendix 2).  
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5.1.1.1. Assessing H3 resolutions 

For the making of the atomic units, we first determine which scale of H3 hexagons to aggregate 

the in-app data to. Every pair of coordinates from the in-app data can be assigned the H3 index 

corresponding to the location, making for a rapid attribution of the many location points to 

hexagons. This is done using the geo_to_h3 function of the h3 package presented above (see 

h3, Appendix 2). Table 1 provides the H3 resolutions and the average areas and edge lengths 

of their hexagons, from largest (0) to smallest (15) , as extracted from Uber’s H3 documentation 

(Brodsky, 2018).  

Table 1. H3 resolution statistics: average area and edge length of hexagons per resolution. 
Source: Brodsky, 2018. 

H3 Resolution Average Hexagon Area (km²) Average Hexagon Edge Length (km) 

0 4,250,546.8477000 1,107.712591000 
1 607,220.9782429 418.676005500 
2 86,745.8540347 158.244655800 
3 12,392.2648621 59.810857940 
4 1,770.3235517 22.606379400 
5 252.9033645 8.544408276 
6 36.1290521 3.229482772 
7 5.1611923 1.220629759 
8 0.7373276 0.461354684 
9 0.1053325 0.174375668 
10 0.0150478 0.065907807 
11 0.0021496 0.024910561 
12 0.0003071 0.009415526 
13 0.0000439 0.00359893 
14 0.0000063 0.001348575 
15 0.0000009 0.000509713 

 

To compare the performance of each H3 resolution and determine the appropriate atomic unit 

for the regionalisation methodology, we first define what we understand by “data preservation” 

to quantify the comparison. The definitions of total counts, remaining counts and omitted 

counts, earlier introduced in Chapter 4 (Section 4.3.2.3.2), are thus further detailed and 

developed into a comprehensive metric below. 

Smaller units collect more data overall, as unique counts may be registered in more areas as 

users cross over boundaries: over a day of data, one device would be registered only once if we 

aggregated the activities at the London scale. However, splitting space in more areas results in 

more total counts as the same device may travel through different regions over the period and 
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be counted as a “unique” device more times. As a static device does not cross region borders, 

it is counted only once regardless of spatial splitting, resulting in the increasing number of total 

counts being used as a potential proxy for recording movement through the city.  

We progressively divided the study period of London with increasing H3 resolutions, and 

counted the unique devices registered, assessing the increase of total counts based on areal 

subdivisions. Figure 2 illustrates this at the London scale for H35 (hexagon size ~252.9 km²) 

through to H311(~2.1 km²). The in-app data not being accurate at the metre level (see Chapter 

3, Section 3.1.2), we could not pretend to operate at the precision level of resolutions 12 or 

below (9 metre edges). Resolution 5 (8km+ edge) is the highest resolution acceptable for a 

significant assessment. Anything above H3 size 5 would not qualify as aggregating the data, as 

one resolution 5 tile can already be roughly the size of an entire county (Norfolk, for instance, 

is smaller than a single H3 5 cell) and only divides London in a handful of hexagons (see Figure 

2) 

 

Figure 2. Increase of unique devices (total counts) by scale, with examples of spatial divisions 
of London for H35 and H37. 

To pair with the assessment of total counts, we assessed the number of counts which would be 

omitted at each resolution, due to IDE. This helps make a trade-off between having the smallest 

size possible, which would maximise the number of points but have very few points per cell, 
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and make sense of the atomic unit by having fewer counts but more counts acceptable at the 

atomic unit. Using higher resolutions also implies more computational overhead, something 

which can be assessed by performing this comparative exercise against resolutions.  

In order to assess resolutions 5 to 11 throughout the dataset for all points, function was written 

which, for each point of data, assigns it the corresponding resolution 11 index, counts the 

number of activities per H3 cell (number of unique devices in the tile) and returns a data frame 

with the activity per cell and the H3 resolution number. The function then uses the parent_to_h3 

function from the h3 package to find the corresponding resolution 12 tiles for each line and 

counts the activity for this resolution. This goes on until activity is counted at resolution 5. At 

each iteration, a file with the activity levels for the given H3 resolution is written, before moving 

onto the next resolution. 

The second step of the H3 resolution assessment process loops through the intermediate files, 

sums the total activity for that day of data across all H3 of the same resolution, and adds all the 

counts of units below an activity count of 10. Any hexagon which contains a count below 10 

would thus need to be censored, and its content would be considered as omitted data. However, 

the bigger the tiles, the less unique devices are registered in total, reducing the final count 

(remaining counts post omission). Figure 3 shows the resulting counts for resolutions 5 to 14. 

Here, the total unique counts are expressed as a percentage of the maximum number of 

aggregated counts (considered as the total counts at resolution 14), and the remaining counts 

are a percentage of the resolution’s total count. For example, resolution 6 keeps almost all its 

counts (very few are omitted due to IDE), but it only picks up on 5% of the counts registered 

by resolution 14. The intercept is between resolution 10 and 11, implying a shift between 

keeping a large number of points, with low granularity, and having high granularity but a 

significant amount of points omitted due to low counts. 
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Figure 3. Proportion of total counts (pre-omission) for each H3 resolution compared to 
resolution 14 total counts, plotted with the proportion of counts remaining post omission (due 
to IDE) at each resolution. 
 
It is notable that the increase of total counts with higher resolutions is likely the result of the 

same device being duplicated, as it travels through different areas and is considered unique by 

each. The duplication of the same device may or may not be desirable depending on the aim of 

each analysis, and there is no consensus about the number of “desirable” duplicates. However, 

as stated in the regionalisation aims, the hope is to maximise the number of points detected to 

get a sense of movement over the course of the day and to demonstrate the aggregation 

methodology’s potential in provided aggregates as close as possible to the original data. Thus, 

resolutions 10 and 11 appear to be good candidates, both due to their relatively small sizes 

making them acceptable atomic units (such as building blocks were for postcodes and OAs), 

and due to the statistical assessments demonstrated (Figure 3).  

Resolutions 11 and 10 were then assessed for computational performance. At the London scale 

tiling 116,555 hexagons to cover the region with H310 takes seconds. This takes 10 minutes 

for 699,330 H311 hexagons (on a single threaded Intel 64 processor). H310 is thus selected, 

partly due to computational performance (processing at higher resolutions being very costly, 

with an exponential increase in cells) (Brodsky, 2018). With an edge of roughly 76 metres and 

an average area of 15,047m2, resolution H310 remains very granular and outperforms the others 

at the trade-off of efficiency and granularity. 



 
 

144 

5.1.1.2. Aggregating data to the atomic unit 

After having selected the atomic unit scale and filtered a sample of the dataset, we package our 

data points in H310 hexagons to create the atomic units. For this, we consider a device as 

analogous to an individual and count the number of unique devices per H310 cell for each day 

in September 2019. This returns an activity count per H310 cell per day in September 2019. 

September 2019 was picked as it was the busiest month for the year, with the least internal skew 

(the median activity and mean activity throughout September were the closest than for any other 

month, with only a 1% difference). 2019, as discussed in Chapter 3, was also the most stable 

year for the specific in-app dataset used: after the disruptive changes visible in 2018, and before 

any potential 2020 COVID19 events.  

We calculate the mean activity count for all days, obtaining the average activity per H310 

hexagon per day in September 2019, across Greater London. The activity count thus represents 

the total number of unique devices counted in each area for a typical day, removing duplicates: 

a person who may visit the same area twice over the studied time-period (here, a day) only 

features once in the activity count for this area and this time. Activity count is then not a proxy 

for dwell time, but a count of individual visits to an area over a day. These steps correspond to 

the very first stage of the methodology flowchart (Figure 1). Figure 4 depicts the distribution 

of the data subset at the atomic unit level, at the Greater London scale. Its uneven distribution 

emphasises the need for bespoke regions, and highlights areas of low counts which would 

benefit from further aggregation. Roads are heavily represented in Figure 4, as many individuals 

may pass through H310 cells over roads and add up to their activity count as dwell time is not 

accounted for.  The metric of activity count seems thus to be more of a proxy for movement 

throughout the city throughout the day rather than representative of specific hotspots. 
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Figure 4. In-app data distribution at the London scale, September 2019. The Activity count per 
H310 per day corresponds to the number of unique devices per area. The Thames is white as 
the H310 are nested inside London MSOAs which are typically clipped alongside the river. 
Other white hexagons correspond to H310 which never contained in-app data throughout the 
sample period. 
 

5.1.1.3. Assigning contextual information to the atomic units 

At this stage, we have successfully created specific atomic units to further combine into bespoke 

regions. We now need to assign contextual information to each unit to inform their combination 

into larger homogenous regions. Where census regionalisation methods include inputs such as 

demographic and economic layers to inform a homogeneity metric, the focus of this work is to 

propose a flexible approach, which later can be adapted to include more input layers depending 

on the nature of the data used and aims for the regions. We thus propose land-use as a case 

example for rule-based homogeneity, and demonstrate how to nest the regions into 

administrative boundaries to promote linkage. The following preliminary steps are thus needed 

to inform the regionalisation: 

(1) Assigning administrative information to ensure the regions are nested within 

existing geographies (MSOAs) (Section 5.1.1.3.1). 

(2) Assigning terrain information to homogenise the final regions (Section 5.1.1.3.2). 

per day, London 
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These steps help inform the rest of the process to create regions that account for terrain and are 

nested into existing geographies. Using this contextual information, we later assign each cell to 

a preferred neighbour based on these characteristics: sharing the same terrain and 

administrative profiles, and those with the highest population. Hexagons with low data (counts 

below 10) are then merged with their preferred neighbour to create regions of higher, non-

disclosive counts, an iterative process further detailed in Section 5.1.2 (Preferred Neighbour 

Assignment).  

 

5.1.1.3.1. Assigning administrative boundary information 

5.1.1.3.1.1. LSOA and MSOA scale comparison 

As discussed earlier, new regions are most useful if they can be linked to existing geographies 

for analysis (Walford and Hayles, 2012). To generate regions that can be nested within census 

geographies, we select zoning merge boundaries that ensure only H310 cells within the same 

census geography are combined.  MSOAs and LSOAs are census geographies frequently used 

for sharing census data in England and Wales, and their widespread use make them valuable 

regions for nesting. They could, for example, allow the aggregated data to be compared to 

demographic statistics or used in policy analysis, amongst others (Martin, 2010). To choose the 

most appropriate scale, we compare the in-app data distribution within MSOAs and LSOAs. If 

the final regions are to be constrained to specific geographies, the question is asked of whether 

there is enough data per LSOA or MSOA to repackage data within them. We thus use the same 

methodology as described in the selection of the atomic units (Section 5.1.1.1) to aggregate our 

data to LSOAs and MSOAs and generate activity counts for each, counting the average number 

of unique devices over our study period (September 2019). Table 2 summarises the statistics of 

this preliminary analysis, and Figure 5 shows the densities of average counts per L/MSOA 

across the study period.  

Table 2. Summary statistics of LSOA and MSOA activity counts 

 LSOA MSOA 
Number of areas in London 4835 985 
Number of Areas with count < 10 57 0 
Mean count per area 75 197 
Mean number of H310 hexes per area 17.5 118.6 
Median count 59 132 
Count range across areas 3 - 1225 30 - 1432 
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In London, 57 LSOAs display activity counts below 10, which would not allow opportunity for 

non-disclosive subdivision, as is it best practice to omit counts below 10 to prevent risks of re-

identification and disclosure. Furthermore, all MSOAs are above a count of 10, and the 

minimum activity counts is of 30 unique devices, meaning even the least active MSOA could 

theoretically be divided into three sub-regions. We thus select MSOAs as the merge boundaries. 

 

 
Figure 5. Densities of average unique counts per LSOA (blue) and MSOA (yellow), across 
London. 
 

5.1.1.3.1.2. Linkage and assignment 

Each H310 is assigned the code of the MSOA it falls within. We find the list of hexagons 

contained in each MSOA polygon using the polyfill function of the h3 R package. Where a 

hexagon overlaps more than one MSOA, it is fully assigned to the one with the majority area 

overlap. Figure 6 illustrates this assignment process. 
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Figure 6. Diagrammatic illustration of the MSOA code assignment, with a synthetic sample of 
the data after this step. 

 

5.1.1.3.2. Land use assignment 

5.1.1.3.2.1. Creating the land-use and terrain profile (topo_code) 

The aim is to inform the grouping of the units by weighting them based on data characteristics 

where available, and contextual information to make homogenous regions. One such piece of 

contextual information can be underlying terrain. We decide to homogenise our regions based 

on the terrain to promote regions which respect underlying land features unlike arbitrary tiles 

which cut them indiscriminately (Brunsdon and Comber, 2020).  

We thus use a raster-based dataset describing land-use and terrain in London, provided for 

free and updated weekly by Geofabrik (Geofabrik, 2022). We download rasters for each of 

the following features: water, road, greenspace, residential area, commerce and retail area, 

and “others” (industrial and military areas). As some of these areas overlap (e.g. water in 

greenspace, road in residential area) we add the layers in a raster mosaic, creating different 

codes for overlapping areas. Figure 7 shows this raster data and corresponding codes for 

Greater London. The raster codes are designed to reflect the different layers that compose the 

mosaic.   

Table 3 describes the resulting topo_codes assigned to each type of land use. 
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Figure 7. Raster mosaic of terrain information, Greater London. 

 

Table 3. topo_code assignment to their corresponding land use. The red entries illustrate the 
purpose of having decomposable numbers where layers overlap for ease of interpretation. 

Land use    Topo_code assigned 
Road 1 
Water 100 
Greenspace 10 
Commerce and retail  20 
Residential 30 
Other 40 
Road in residential area  31 (30+1) 
Water in greenspace 110 (100+10) 
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5.1.1.3.2.2. Linkage and assignment 

 
Figure 8. Illustration of the topo_code assignment process with codes designed for land use 
overlaps. 
 

We then attribute topo_codes to the hexagons, assigning the one that overlaps each hexagon in 

majority. This is performed using zonal statistics between raster and vector layers: the code that 

is present in majority is calculated across the rasters cells within the zone defined by each 

hexagon vector object (Mearns, 2015, p.54). Figure 8 illustrates this assignment process. Table 

4 displays a synthetic sample of the dataset after all contextual information has been assigned. 

Table 4. Synthetic sample of processed dataset at atomic unit level to be used for regionalisation. 
H310 index MSOA code Activity count Topo_code 
8a195da4d50ffff E02000001 140 31 

 

5.1.2. Preferred neighbour assignment (Making of the PNMx) 

Having successfully created units and attributed characteristics to each, we now combine 

hexagons containing insufficient counts into larger non-disclosive regions. We want each unit 

with low activity counts (below 10 unique devices) to combine with a neighbouring cell with 

similar characteristics to surpass the disclosure threshold where possible. We thus use the cell’s 

topo_code, MSOA code, and activity count to determine which of its neighbours it should 

combine with. This step of the process goes as follows: 

(1) Filtering and assigning neighbours: filter all the cells under a count of 10, retrieve 

each cell’s 6 adjacent neighbours and rank each neighbour based on their 

characteristics. Retrieve the preferred (most similar) neighbour (Section 5.1.2 in 

Figure 1). 
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(2) Group membership and merging: identify all cells with a common preferred 

neighbour and assign them a group membership, then combine and merge all the 

cells belonging to the same group into larger homogenous regions (Section 5.1.3 in 

Figure 1). 

(3) Calculate the new groups’ count and repeat the process for the hexagons in groups 

below the threshold. 

The ordering of the filtering and assigning of cells is crucial to the regionalisation method. The 

key is to combine regions to surpass a count of 10, so the very first step is filtering hexagons 

below this count, highlighting this as the first priority. By iterating until the threshold is reached, 

we ensure this key condition is met. The whole process is performed for each MSOA separately, 

ensuring no resulting regions cross MSOA boundaries (nesting the output regions inside 

MSOAs). Topo_code homogeneity is thus the third factor, used to inform the combination of 

the hexes to reach the threshold, rather than a strict condition. The following parts describe 

these steps in more detail, explaining the preferred neighbour’s assignment process and the 

identification and merging of the groups.  

 

5.1.2.1. Filtering IDE units and ranking their neighbours 

We first filter the H310 cells with an activity count of less than 10. For each cell filtered (i), we 

apply the k_ring function from h3 R to retrieve its 6 direct neighbours (n). The neighbours are 

then written in a data frame with the original cell and their respective topo_codes (topo_i and 

topo_n) as well as their activity counts. The neighbours are assigned a 1 if their topo_code is 

the same as i’s, and 0 if not. They are then ranked, privileging neighbours with the same 

topo_code (topo_n =1), and highest activity count as a second ordering factor. This means that 

when there is more than one (or zero) neighbours with the same topo_code, the highest ranked 

neighbour will be the one with the highest activity instead. The top-ranking neighbours for each 

cell below 10 are listed next to it in the PNMx. This is illustrated in Figure 9. Merging with the 

neighbour with highest counts both increases the potential of reaching the threshold in the first 

iteration (and with the smallest area), and reduces the likelihood that the total activity of the 

combined group is reduced to a number below 10 by duplicates (the same device being in cell 

A and cell B, resulting in a count reduction when A and B combine, as that device will only be 

counted once). 
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Figure 9. Example process of assignment of preferred neighbour. 
 

5.1.2.2. Graph theory: finding connected nodes 

Once we have all the low-count hexagons’ preferred neighbours written in the PNMx, we want 

to combine them into larger regions. However, the merges are often interconnected, with 

multiple hexagons merging with linked neighbours. If this process is done iteratively, there is 

an added complexity to determine where the process starts and ends. This would also require 

that a “merged object” is still recognised as being a cell’s potential preferred neighbour, and 

risks outputting different regions based on the start location of the process. To prevent these 

issues, we first find all interconnected cells and merge all the final groups at once, rather than 

merge iteratively.  

For this, we borrow algorithms and concepts from the discipline of graph theory in mathematics, 

by converting the database into a graphical object for community detection (Holmes and 

Haggett, 1977; Fortunato, 2010; Liang et al., 2022). Graph theory has been employed to model 

a wide variety of relationships and processes, in fields ranging from linguistic and computer 

science to biology and social science (Diestel, 2000). Though it has been applied to detect flows 

of mobility as well, we here use it in a simpler way to efficiently detect all connected H310 

cells without needing to convert the almost 1 billion H310 cells into computationally costly 

polygonal spatial objects, and detect their neighbours geographically. Graphical objects can 

conveniently represent matrices with nodes and edges, making the computation of the 

relationships much more efficient (Holmes and Haggett, 1977; Gibbons, 1985; Fortunato, 

2010). In our case, nodes are the H310 cells, and edges the relationship between them (where 

they are each other’s preferred neighbour, or their neighbour’s neighbour). 

Using the PNMx, we convert all cells into nodes with their connections being directional edges 

(pointing towards their preferred neighbour). We use the igraph package in R to convert the 
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PNMx into a directed graphical object (igraph Core Team, 2022) (Appendix 2). The 

components function of this package retrieves all the linked components of the graph by listing 

their membership to a group. The directed graph is then converted to an undirected graph, to 

identify linked hexagons regardless of distance: those that are neighbours, or neighbours of 

neighbours. We then list all cells which would be part of the same final region and attribute a 

group membership or group ID to each. For instance, if A’s preferred neighbour is F, and B’s 

is also F, A-B-F would have the same group membership and merge into the same polygon. 

This is described visually in Figure 10 and corresponds to step 5.1.3 in Figure 1. 

 
Figure 10. Example of membership detection through graphing method and group generation. 
 

Once group memberships have been identified, cells that belong to groups with activities below 

the threshold go through a new iteration of the PNMx process, with slight variation. Their 

neighbours are relisted, but this time ranked based on their new group’s activity, after 

topo_code. The low-count hexagon will seek to regroup with a neighbour that belongs to a 

group already above threshold, to maximise the chances of reaching the threshold with this new 

iteration. Thus, the groups under the threshold are broken down, and the cells that make them 

up are reassigned to neighbouring groups to meet the threshold. If the loop cannot reassign a 

group, it stops after 5 iterations with no changes, and keeps exceptional below threshold groups 

(for instance, if the whole MSOA were under a count of 10 and there are no more neighbours 

to combine with as the process does not cross MSOA borders). Group IDs are assigned at the 

end of all iterations, built on the group membership and MSOA codes. 

 

5.1.3. Merging 

Finally, the cells are merged based on their group ID, creating regions of combined H310 

hexagons. The entire process of assigning neighbours and merging takes approximately 15 
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minutes on a single threaded Intel 64 processor, for the Greater London area, with 116,555 

hexagons, requiring few spatial operations outside of the final conversion and merge, and 

refraining from recalculating each neighbourhood as it iterates (only the ones below 10). This 

is a clear advantage of sorting and attributing preferred neighbours using h3 functions and graph 

methods, as they greatly reduces costly spatial operations. In the resulting regions, cells with 

above-threshold counts that are not attributed a neighbourhood through the PNMx remain 

unmerged and thus at the H310 scale (edge length 75.8 metres).  

 

5.2. Outputs 
5.2.1. Region shapefile 

The output of the algorithm is a shapefile with region codes and their polygon geometries. These 

regions are called the H310-based regions, or H3BRs, throughout the rest of this thesis. Figure 

11 is a map of the resulting H3BRs, coloured by MSOA to demonstrate the successful nest 

within census boundaries. The MSOA code is retraceable from the region codes, as they are 

made following the format [MSOA_code]_[group membership number] (for example, 

E02000017_14). If certain MSOAs had total counts of fewer than 10, it follows that the hex-

based regions within them will also have counts fewer than 10 as the regionalisation process 

prioritises nesting within the boundaries of the chosen larger spatial unit. This is an important 

feature of the algorithm: though it seeks to maximise the number of regions surpassing counts 

of 10, it will not do so to the detriment of other important regionalisation factors, such as the 

spatial unit constraints deemed essential for linkage to contextual data.  

Using another source of data, with different activity counts and distributions for instance, would 

yield different region outlines. This is at the core of data-driven methodologies and helps fit the 

results to the original dataset and analytical intentions. These variations, and their contingency 

on the dataset, are discussed in more detail in Section 5.3 of this chapter (sensitivity analysis) 

as well as throughout Chapter 6.  
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Figure 11. H3BRs at resolution 10, nested in and coloured by MSOA. The map shows areas of 
varying density of activities, with cells remaining unmerged next to other region made of bigger 
merged groups. The tidal stretch of the River Thames is excluded from the output regions as 
census units, such as MSOAs, are conventionally excluded from it. 

 

5.2.2. Functions  

One aim of this regionalisation methodology was to propose a tractable and reproducible 

algorithm. We thus detail the code behind the key functions developed for the workflow. This 

is provided here in the form of pseudocode describing the core processes (Figure 13 and Figure 

14), contextualised within a summary chart of the loop (Figure 12). Throughout all code 

examples, i refers to the hexagons which is being assigned neighbours, n represents the 

neighbours. The final output of the process is a table of H310 IDs with their final group id, 

maximising groupings over 10. The functions and latest versions of the algorithm can be 

accessed on GitHub (https://github.com/lousieg/H3BR).  

 



 
 

156 

 
Figure 12. Process contextualising the use of the functions provided for the regionalisation.  
* = functions. 
 
The first and most central function is the one which reads in activity data per H310 and returns 

each H310 index with their region group number and group activity. It is the function which 

generates the Preferred Neighbour Matrix for one iteration (create_PNMx).  

FUNCTION create_PNMx(M): 
 
    list10 = FILTER(h310 id WHERE activity < 10) 
 
    FOR EACH i IN list10: 
        neighbours(n) = k_ring(i, radius=1)#gets the neighbours 
        n = REMOVE(i FROM n)#removes I from its own list of 
neighbours 
        df = SET COLUMN i TO i, COLUMN n TO n 
        df = CONVERT TO DATAFRAME(df) 
         
    END FOR 
 
    SET COLUMN NAMES(df, ["h3_10_char", "neighbours"]) 
    data = LEFT JOIN(df, M)#join with original data to retrieve 
contextual information 
    SET COLUMN NAMES(data, ["i", "n", "topo_i", "activity_i", 
"topo_n", "activity_n"]) 
    data = REMOVE ROWS WITH NA VALUES FROM data 
 

data = ADD COLUMN same_topo 
IF topo_i == topo_n THEN same_topo == 1 ELSE same_topo == 0 

        SORT BY i, same_topo DESC, activity_n DESC 
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    PNMx = REMOVE DUPLICATE ROWS FROM data BASED ON i 
    PNMx = SELECT COLUMNS [1, 2] FROM PNMx 
 
    PNG = CREATE GRAPH FROM DATAFRAME(PNMx, DIRECTED=TRUE) 
    Groups.membership = FIND CONNECTED COMPONENTS IN GRAPH(PNG) 
 
    group = CONVERT TO DATAFRAME(Groups.membership) 
    group = ADD ROW NAMES AS COLUMN "i" TO group 
    SET COLUMN NAMES(group, ["i", "group"]) 
    group.group = CONVERT TO CHARACTER(group.group) 
 
    RETURN group 
END FUNCTION 

Figure 13. Pseudocode snippet for the create_PNMx function. 
 
This function takes data which has been split, in our case by MSOAs, and returns their PNMx 

ID with group activity count. Then, we use these groups and their counts to identify the groups 

which may need to be recombined in a second iteration (group activity < 10). At this step, we 

initialise variables to track iterations and changes to ensure the cells are being reattributed to a 

new group. At the start of the loop, we identify cells with group activity below 10 and recombine 

them using the following functions (Figure 14) 

Figure 14. Pseudocode snippet for functions "select_best_group" and "update_groups" with 
"get_n_details" being an important element of the first: the one which extracts the 
characteristics of i's neighbours once more 

FUNCTION select_best_group(hex_id, df): 
    current_hex = FILTER(df WHERE i == hex_id) 
    n_details = get_n_details(hex_id, df)* 
    new_groups = FILTER(n_details WHERE group != 
current_hex.group)#find neighbouring hexes in different groups 
    IF COUNT(new_groups) == 0 THEN 
        RETURN NULL 
    ELSE 
    best_group = new_groups 
        ADD COLUMN same_topo = (topo_code == current_hex.topo_code) 
        ADD COLUMN priority = IF same_topo THEN 1 ELSE 1 
        SORT BY priority DESC, group_activity DESC 
        SELECT FIRST ROW 
        RETURN group id from new_group 
 
FUNCTION update_groups(df): 
    df = GROUP BY group id 
    df = MUTATE(group_activity = SUM(activity)) 

RETURN df 
 

 
* FUNCTION get_n_details(hex_id, df): 
    neighbours(n) = k_ring(hex_id, radius=1) 
    neighbours = EXTRACT(hex_id FROM neighbours) 
    n_details = FILTER(df WHERE i IN neighbors) 
    RETURN n_details 



 
 

158 

Select_best_group identifies each hexagon’s neighbour’s and its group information (with 

get_n_details) to recombine the hexagons from groups <10 into neighbouring groups, ranking 

these new groups again based on topo_code and highest count. It excludes the neighbours which 

are in the same group as i to ensure the hexagons are redistributed and not reassigned to the 

same initial low count region. Group activities are recounted to see if further reassignments are 

required. 

If no hexagons’ group counts are below 10, we exit the loop and keep the PNMx at this stage. 

If the count of groups under 10 does not change at all over 10 iterations, we exit the loop (this 

can happen if the entire MSOA is under a count of 10, though this is rare as shows in the LSOA 

vs MSOA assessment above). If the count of groups under 10 changes from the last iteration 

whilst remaining above zero, the iteration count is reset and the loop goes for another iteration, 

until there are no groups under 10. The final step after exiting the loop consists in turning the 

H310 IDs into polygons using the h3_to_polygon function (from the h3 package) and merge all 

shapes with the same ID with the sf R package (Appendix 2). 

These functions are detailed here as an output of the methodology, as a major focus of these 

explorations was not only to provide regions for this specific dataset, but also propose the 

reusable functions to future users.  
 
 

5.3. Validation and Sensitivity Analysis 
5.3.1. Validation: comparison with traditional aggregation methods 

To determine how much data is preserved by using our methodology and to compare the 

differences in areas omitted between aggregation methods, we assess our regions against 

common ways of aggregating these types of datasets: grids and administrative boundaries. To 

conduct this comparison, we use the notion of remaining counts used previously in Chapter 4 

and Section 5.1.1.1 of this chapter. As discussed earlier, this methodology seeks to preserve a 

maximum number of counts and keep the data as close to the original as possible. Thus, the 

following comparison assesses the total counts and the omitted counts. The hope is to produce 

areas for which the remaining counts, obtained by subtracting the omitted counts from the total 

count, are as high as possible. 

We use one day of raw in-app data from September (Monday the 2nd) across London and 

aggregate it separately using the H3BRs, OAs, LSOAs and OSGB250. For this, we use the 
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H3BRs created earlier from the average month of data per H310, rather than remake specific 

September 2nd regions, to reflect a realistic usage of the regions and compare their performance 

with other pre-existing shapes. This is why certain regions may be under a count of 10 for the 

H3BRs in the following examples, as the results were made from aggregating a different data 

sample from a shorter time period. This aims to demonstrate how the use of a stabilised H3BR 

(made from an average of the dataset over a longer duration) fares compared to other methods, 

rather than making new regions specifically for this daily sample. 

We assess the data registered and the level of granularity (remaining counts, described above) 

achieved by each aggregation method. We thus calculate the omission count by adding all 

activities contained in areas of IDEs. We subtract these lost counts from the total count, which 

returns the remaining counts (non-omitted data). The aim is thus to find a balance between 

generating the smallest possible areas whilst preventing too many cells to fall under the 

omission threshold of 10 devices. Table 5 lists the comparison between H3BRs, OAs and 

LSOAs. LSOAs see less data omission due to their larger size (only 4,835 LSOAs across 

London against more than 25,000 for both OAs and H3BRs) but display less counts overall due 

to low granularity.  

Table 5. Comparing data omission when aggregating to H3BRs against OA and LSOA 
aggregation. 

 

Table 6 lists the percentage of data and cells omitted for H3BRs, H310 (pre-regionalisation),  

OA and OSGB250 aggregates at the London scale. The four geographies compared here have 

similar area averages (OSGB250 average size of 61,0682 m2, OAs 62,830 and H3BRs 51,205). 

Here, we show that making bespoke regions has advantages over simply aggregating to a 

smaller scale, as H310s pre-regionalisation have an average area of 15,047 m² but results in 

                                                 
 
2 less than 62500 m2, which is 250 metres x 250, because some squares are cut to the outline of Greater London. 

  H3BR  OA  LSOA 

 Total geographical areas 30,730 25,053 4835 

 Total activity counts 764,326 557,231 329,776 

 Omitted activity counts 30,896 
 

46,381 740 

 Remaining activity 
counts 

733,430 510,850 329,036 

Comparing with H3BR: 30% less remaining counts 55% less remaining counts 
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large spatial and data omissions (23% of data omitted, and 78.8% of hexagons omitted). The 

H3BRs provide close to double the counts compared to OAs and OSGB250s. This exemplifies 

both the multiplicity of the data thanks to smaller areas, and the reduced concern of large 

omissions made possible through specifically packaged areas. Despite the areas being larger in 

size than H310 alone, we notice here the importance of zoning, with the H3BRs preserving 

more data than its more granular counterpart. Zoning is also highlighted by the H310 based 

regions omitting fewer low counts than the larger OAs and OSGB250: the larger regions, 

usually containing more counts per region due to their size (and thus more regions above 10), 

should theoretically have lower percentages of omitted data, but in fact have higher omissions 

as their zoning does not fit this data. 

Table 6. Remaining data points post omission of low counts for aggregates of similar scale but 
different zoning. 

 % Of counts omitted 
due to low counts 

 
% Of cells omitted 

 
Remaining counts (T-O) 

OSGB250 8% 42% 474,499 
OA 8% 51% 510,850 
H310  23% 78.8% 675, 188 
H3BR 4% 6.9% 733,430 

 

Where the OA aggregation incurs a loss of more than half its areas, the H3BRs only omit 6.9% 

of their areas, particularly in places of low device coverage, rather than arbitrarily across 

London. This is shown by the maps in Figure 15, where the data omission for H3BRs is 

concentrated in areas with typically low data, such as the very outskirts of London or zones of 

low mobile and internet coverage (Richmond Park), whereas OA omission is scattered with a 

more random pattern not underlined by the data’s distribution. OSGB250 cells resemble the 

H3BRs more closely than OAs, being more neutral in nature, and see less omitted cells than the 

OA aggregate. However, they do not consider land use or data distribution, resulting in twice 

as many counts being omitted than for the H3BRs, and making them difficult to merge with 

other geographies. 
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Figure 15. Maps plotting the cells omitted due to low count for OSGB250, OAs, H310 and 
H3BRs. 
 
Road networks are also particularly noticeable for gridded aggregates (OSGB and H310). This 

can be both due to there being the most datapoints alongside road networks, and due to the 

movement of devices counting as “unique devices” as they move through the grids which make 

up the road. By regionalising the data, the roads remain largely unchanged compared to the 

H310, as their high activity counts often makes them exempt from having to recombine. Rather, 

regionalising enables the inclusion of the adjacent lower-activity areas as their own distinct 

units. For example, in the borough of Camden shown in Figure 16, H310 hexagons are not 

recombined in the South of the region where there is the most activity and busy intersections 

(Such as Kings Cross and St Pancras Stations), whereas the North of Camden recombines to 

allow a better use of its lower data counts. 

Figure 16 also compares the OA and H3BR for the London Borough of Camden, along with 

the percentage of omitted cells for each. Our dataset has good coverage for Camden, a busy 

leisure and retail area. These maps demonstrate that despite good coverage for this borough, 

the OAs still incur significant data loss. Furthermore, omissions observed in the H3BR example 
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more logically concentrate around parks and low coverage zones (Hampstead Heath, situated 

to the North). This makes a case for the use of bespoke regions, regardless of data availability 

or data scarcity, when trying to promote granular analysis. 

 
Figure 16. OA census geographies omitted due to low data counts (left) compared to area 
omitted from the H3BRs (right), when aggregating the same day of data points to each. 
 

5.3.2. Sensitivity analysis using the Jaccard index  

Comparing the H3BR as done above makes a compelling argument for the method, and seems 

to validate the techniques proposed. However, attesting for the stability and reproducibility of 

the method is necessary. A sensitivity analysis of the regionalisation method was thus 

conducted, with the aim of identifying the impact of both data and parametric changes (such as 

changing thresholds) on the final regional outcomes. The changes are compared by calculating 

the Jaccard coefficient of various outputted regions (Jaccard, 1912).  

 

5.3.2.1. Definition 

The Jaccard coefficient (or Jaccard index) is a measure of similarity and overlap between two 

features. It is summarised by the size of the area of intersection between two objects divided by 

the size of their union, and returns a value between 0 and 1 (with 1 describing two identical 

object) (Jaccard, 1912). 

𝐽𝐽(𝐴𝐴,𝐵𝐵) =
|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴 ∪ 𝐵𝐵| 

(With J describing the Jaccard coefficient, A as object 1 and B as object 2.) 
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It was originally developed by Paul Jaccard, a botanist who sought to compare the distribution 

of alpine flora in three different districts. It was thus originally a spatial concept, as Jaccard 

measured the similarity in areas of spread (Jaccard, 1912). Since then, it has been used 

extensively, notably in comparing datasets (Fletcher and Islam, 2018; Costa, 2021). 

 

 

Figure 17. Diagrammatic explanation of Jaccard similarity calculations.  
Source: https://www.geeksforgeeks.org/ 
 
Since its development, the Jaccard index has been commonly applied to spatial research, 

particularly in the fields of ecology and biodiversity, thanks to its ease of use for comparing 

different ecosystems. It is often employed to represent the proportion of total species pool that 

are shared by communities compared (Lapin and Barnes, 1995; Giraudel and Lek, 2001; Azaele 

et al., 2009). In the case of the H3BR methodology, it can help assess how different two regions 

would be if they were made with varying thresholds and criteria in mind. In short, we are 

interested in the proportion of total regional units that are shared by the output regions 

compared. 

 

 

 

 

https://www.geeksforgeeks.org/
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5.3.2.2. Applying Jaccard to assess volatility 

Comparing the Jaccard index of the regions constructed by changing one parameter at a time, 

we can see how they alter the outcome regions, which can help quantify the method's volatility. 

Here, we look for the stability of the outcome based on relatively small differences at the 

starting point. If large changes in the data bring about large differences, this says little about 

the volatility of the methodology and more about data instability. However, if small changes, 

whether in the data or the model's parameters, bring large differences in outcome, a measure of 

stability could be introduced to improve the prototype and reduce its volatility. 

 

5.3.2.2.1. Changes in data 

Using the H3BR making algorithm, we generate sets of regions from each of 7 consecutive 

days in London (Monday 02-09-2019 to Sunday 08-09-2019 of September) and compare the 

Jaccard relationship of the outputted shapefiles. Figure 18 provides an example of what the 

Jaccard index represents in this context: the coloured regions are those that remain the same for 

both region sets compared. 
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Figure 18. Intersect of the regions generated for Monday and Sunday. The areas in white are 
those that differ between the two regions generated for each day. Everything else remains 
identical between both. Monday and Sunday have Jaccard coefficient of ~0.25. 
 

We also compare each day to the “average day”, the average count of activity for each cell 

across the week. We use activity counts and a disclosure threshold of 10 for all the tests. Figure 

19 displays the resulting Jaccard indexes between all days’ regions. We notice that the weekend 

(especially Sunday 8th) is the most dissimilar to other days, with Jaccard indexes of less than 

0.28 between it and other days. Most days are closer to the week’s “average day” than to any 

other day (Jaccard indexes of above 0.32). Furthermore, comparing regions created from 

weekly averages returns Jaccard indexes values of around 0.8, with variations in indexes not 

straying further than 0.05 points, indicating a stability of the method from week to week. This 

suggests that selecting a larger timeframe than the one to be studied and averaging the counts 

generates a more stable region overtime. The similarity in results for weekdays in contrast to 

weekends follow predictable patterns of activity, reflected by the outputted regions. This 

highlights the regions’ potential in relating to and being representative of the data inputted in 

their making.  
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Figure 19. Comparison of Jaccard index between regions made with data from different days 
of the week (‘Avg’ corresponding to the ‘average day’ across September – mean of all days). 
Higher values on the y axis correspond to a greater overlap with the regions on the x axis. 
 

5.3.2.2.2. Changes in thresholds 

The threshold determines the number below which a cell must find a neighbour to merge with. 

Changes in threshold will impact the number and necessity of merges in the region-making 

process. We perform all threshold tests on the same dataset: the average day count for the month 

of September in London, and generate multiple regions with incremental changes in thresholds. 

After testing thresholds between 10 and 100 with increments of 10,  Figure 20 displays the 

results of varying thresholds either side of 20 and 50 with much smaller increments, showing 

that small changes in thresholds have a minimal impact on the outcome regions. 
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Figure 20. Comparison of Jaccard index between regions made with varying thresholds. 
Higher values are more similar to other regions than lower values (for example 45 is has less 
overlap with other regions than 51) 
 

Small changes in threshold (steps of 1 to 3) seem to have little impact on the final regions, with 

Jaccard similarity indexes being of 0.8 and above (80% of the regions are unchanged with a 

small change of threshold). However, the change is not the same when happening at higher or 

lower values. Comparing regions outputted with threshold 50 and 100 creates regions with a 

0.6 Jaccard index, whereas 50 and 20 (a smaller step, but towards a smaller threshold), creates 

regions with no relationship. Figure 20 also shows that smaller threshold values (15-30) are 

more volatile, with larger variations overall than between 45-55. This can be explained by the 

data amounts and distribution. There are few cells with activities above 50 in this test data, 

whereas in comparison there are triple the amount above 20 and 6 times more above 10 than 
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above 50. This signifies that increasing the threshold above 50 incurs less change in output 

regions than changes in lower threshold values. Lowering the threshold results in fewer cells 

being required to merge overall, changing the outputted regions much more.  

However, these differences tend to be geographically consistent, with busier areas (thus smaller 

cells) being more impacted by changes in threshold. At the London scale, this change is most 

visible along road networks. On the one hand, this signifies that busier areas with more data are 

the most prone to repackaging due to parametric changes, indicating inconsistent volatility in 

the region-making strategy. Yet, this can also be mitigated by a set of considerations when 

selecting a threshold for regionalisation, most likely based on field knowledge and 

understanding of the research question. In this case, despite potential volatility in lower 

thresholds, a threshold of 10 devices is appropriated, informed by disclosure control guidelines 

rather than the data’s central tendencies. The option of making regions with a more stable 

sample of data (here average counts over a longer period rather than a single day of data) also 

helps mitigate these effects.  

 

5.3.2.3. Discussion 

The H310-based regionalisation method thus proves to preserve counts significantly when 

compared to other geographies. Additionally, the space is also preserved, with only 7% of the 

area omitted, the bespoke regions provide insight into entire spatial areas which would 

otherwise be lost to the aggregation process. Indeed, it is both data and geography which are 

preserved by best fitting delineation. The addition of land use and MSOA to the process 

promotes the combination of H310s to be more representative of land features and 

administrative boundaries than otherwise arbitrary grids. 

A sensitivity analysis was also conducted to assess the volatility of the method. Changes in 

outputted regions were observed when the threshold condition for merging changed. However, 

the changes observed from a change of data input is encouraging, as they confirmed predictable 

patterns of mobility (namely, that weekdays are more similar to one another than weekends). 

This means the data driven methodology captures the underlying data movements, reflected in 

the output regions. 

This regionalisation methodology is also particular in its blend of rules-based and hierarchical 

methods. Overall, it leans more towards a rules-based approach compared to fully hierarchical 
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data-driven solutions like Quadtrees or Voronoi regionalisation. While techniques like 

Quadtrees and Voronoi diagrams dynamically adapt regions based on data distribution (creating 

flexible, data-driven boundaries that reflect proximity or density) the H3BR incorporates 

predefined rules in its initial stages. These rules, such as filtering cells with fewer than 10 points 

and segmenting regions based on land-use, guide the regionalisation process before any further 

aggregation occurs. While H3BRs allow for data-driven adjustments, particularly in the 

hierarchical aggregation step, it is more structured and rule-bound in its approach, contrasting 

with the previously assessed methods (Chapter 4). Thus, the H3BR methodology could be 

considered as hybrid, but its reliance on initial rules places it closer to a rules-based approach. 

As the quadtree methodology is hierarchical, and the Voronoi delineation method required 

HDBSCAN prior to regionalisation, they are difficult to compare quantitatively with the H3BR. 

We demonstrated previously that these two options performed better against OSGB and 

administrative boundaries, when only considering count preservation, though this assessment 

itself was flawed as it is difficult to address the significant amount of data alterations implied 

by the clustering steps necessary to these methods. However, as the H3BRs are also performant 

in preserving counts, our interest lies more towards their qualitative assessment against Voronoi 

and quadtree. Namely, can this new method outperform them in creating more logical, reusable 

and interpretable regions? This is discussed in more detail below, with an assessment of the 

H3BRs against the regionalisation principles used to evaluate the quadtree and Voronoi tests in 

Chapter 4. 

 

5.4. Assessment against regionalisation principles and aims 

This section goes back to each principle outlined in Section 4.2 of Chapter 4 to determine the 

fit of this methodology to the specific objectives set out. Objective and Constraints are key 

elements which should be prioritised, whereas Criteria and Usability describe desired traits 

which will help differentiate otherwise equivalent outputs. 

5.4.1. Objectives 

The objective principle is composed of the purpose (1) of the regionalisation, and its relevance 

(2) (referring to Table 4, Chapter 4): 
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(1) The H3BRs respond appropriately to the objective of defining statistical areas 

appropriate for identifying clusters of activity whilst protecting privacy. This has 

been particularly demonstrated with the comparison to other geographies. The 

regions also allow for densely active areas to remain at the very granular level of 

H310s, and be displayed alongside areas of lower activities and lower granularity, 

highlighting the data hotspots rather than redistributing them. 

(2) The temporal dimension is still missing; there were no specific time constraints 

proposed for this regionalisation. However, they were made with a stable sample of 

the data in an attempt to make the output regions stable over time for wider use. 

 
5.4.2. Constraints 

Constraints include the strict limitations of partition (3) of the region and contiguity (4) of the 

units: 

(3) Every point is part of a single final H3BR. Contrarily to Voronoi, there are no cluster 

centres which could be outside of the final delineation, as such, every point is 

guaranteed to be inside the region it has been assigned to. The regions are assigned 

MSOA labels, and the algorithm proceeds independently for each MSOA, ensuring 

no region crosses the pre-determined administrative boundary. The choice of MSOA 

could be easily changed for other study-appropriate administrative boundaries. 

(4) The H3BRs are contiguous, and none are divided by another region with the 

proposed solution. Distant clusters cannot be combined into a same final region, as 

only units that have a relationship of adjacency, at the very least through neighbour 

relationship, can be assigned the same group ID. 

 

5.4.3. Criteria 

The desired characteristics listed by the criteria principle list that the regions should be 

homogenous (5), autonomous (6) and coherent (7).  

(5) Terrain homogeneity is included in this regionalisation methodology. The final 

outputs show this through the distinction of parks and roads in the region shapes, 

and the fact that no regions cross the River Thames or other key boundaries. This is 

a significant improvement from quadtree and Voronoi, which had no land use or 
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terrain input. However, this homogeneity trait is only a secondary requirement, after 

the condition of reaching disclosure-appropriate counts. 

(6) The homogeneity criteria mentioned above goes hand in hand with the autonomous 

character of the regions. The H3BRs are hard to recognise as regions as such to the 

naked eye (particularly the denser areas, which remained at the H310 level). 

However, MSOAs are recognisable thanks to the nesting process, and the most 

significant land features (see River Thames, parks etc. above) are noticeable. Thus, 

there is a notion of the regions being recognisable as regions which partition familiar 

space. 

(7) The output is coherent insofar as it is stable over time. The sensitivity analysis 

showed that most days were closer in resemblance to an average day than any other 

day, meaning it was an appropriate decision to make the regions from a stable 

sample’s average. However, they were no size constraints, meaning the size range 

of the regions were not minimised. Apart from the guarantee they could not be larger 

than MSOAs, nor smaller than H310s, regions size can range in a non-negligible 

way for this criterion. 

 

5.4.4. Usability 

Finally, the usability principles, introduced as part of this research, include conformity (8) 

flexibility (9) and reproducibility (10): 

(8)  As mentioned, the regions are aligned with a predetermined administrative 

boundary, to promote linkage and usability 

(9) They perform appropriately at different scales, for Greater London or selected 

boroughs. They were not tested on different point datasets, but on different samples 

of the in-app data provided, and the results were consistent as presented in the 

sensitivity analysis. However, more should be done to assess their flexibility with 

data points of different nature, and in perhaps sparser, less activity-dense areas than 

London to see if the outputs remain consistent and interesting for such analysis. 

(10) The algorithm is free, and its functions detailed in this chapter. Though it was 

here implemented in R, it is translatable to other programming languages and does 

not require further software or training. The workflow has been detailed and 

documented to ensure it could be reproducible by interested parties. 
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 Table 7 lists these criteria and whether they have been addressed by the three data-driven 

methodologies discussed over the last two chapters of this work. 

 Table 7. Comparison matrix assessing if the principles are met by the regionalisation methods 

Principle H3BR Voronoi Quadtree 

Purpose √ √ √ 

Relevance ± ⊗ ⊗ 

Partition √ ± √ 

Contiguity √ √ ± 

Homogenous ± ⊗ ⊗ 

Autonomous √ ⊗ ⊗ 

Coherence ± ⊗ ⊗ 

Conformity √ ⊗ ⊗ 

Flexibility √ √ √ 

Reproducibility √ ± ± 

 

5.4.5. Summary 

This chapter has demonstrated that using bespoke regions when aggregating in-app data 

performs better than using existing geographies at the same scale when the aim is the balance 

disclosure control and data preservation. An iterative regionalisation method was developed 

and tested based on the classification and merging of H3 hexagons. Various H3 resolutions 

were assessed for the selection of H310 as the atomic unit, and LSOA and MSOAs were 

compared to settle on MSOAs as the nesting boundary. The algorithm uses a sample of the in-

app data (average counts per H310 over the month of September 2019) to identify H310 cells 

of low counts and merges them with a neighbour with similar land use characteristics where 

possible. The outputted geographies thus respect underlying land use and are nested into a set 

of existing geographies (MSOAs for the prototype presented here). The outcome regions were 

tested against OAs and OSGB250 grids at similar scale, demonstrating that the H3BRs preserve 

more analytical completeness, both thanks to higher granularity and a reduced amount of IDEs. 

The resulting maps illustrated the geographic differences between omitted cells, highlighting 

the regionalisation method’s capacity to better represent the data patterns than its OA, 

√ Criteria met 
± Partial  
⊗ Not met 
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OSGB250 and H310 counterparts. This closer fit to the data can help prevent a loss of analytical 

validity, reducing the impact of aggregation on subsequent analysis. 

 

Unlike census data, in-app datasets are not always internally comparable: some points may be 

generated by routing apps alongside roads, while others may record a single moment in time (a 

purchase for instance). The nature of the actions, and the frequency of data they generate, may 

be different within the dataset. Without zoning, activities appear mostly concentrated alongside 

roads, and suppression due to low counts may remove valuable information these datasets could 

offer.  The zoning strategy developed here seeks to maximise a use of all types of data proposed 

by in-app datasets by reducing suppression as much as possible, regardless of the activity type. 

It could however be applied to a filtered dataset, where home locations can be extracted for 

example, or a specific type of behaviour highlighted. Furthermore, making the regions from an 

average, and counting data activities rather than unique devices during the H310 combination 

process may result in some regions remaining below a count of 10 when aggregating other days 

of data to the resulting regions. As previously discussed, disclosure control might not be the 

only consideration when developing regionalisation methods: nesting the regions inside 

geographies, keeping duplicates as a proxy for movement, or creating stable regions over time 

by using data averages may be desirable features of the regions which might result in imperfect 

counts of 10. Users could use the algorithm, thanks to the functions provided, with stricter 

conditions on the disclosure control threshold to ensure it is met every time, but this might result 

in larger, less precise regions. This choice can be made by users based on their region’s intended 

usage.  

A potential shortcoming of this methodology could be its oversimplicity, as the merge 

algorithm only considers three conditions in its decision making (activity count, land use and 

MSOA). Land use information was selected as the homogeneity metric,  more conditions could 

therefore be added to the merging algorithm, perhaps in line with specific research question or 

future insights into the data’s geodemographic characteristics. Using land use in parts was 

motivated by the hopes it could help factor into a metric for the creation of more compact 

regions, or further emphasise intra-unit homogeneity and extra-unit heterogeneity. 

Previous work in this field has developed solutions to representing aggregated data distribution 

by using Voronoi polygons or spatial clustering methods (Sevtsuk and Ratti, 2010; Jiang et al., 

2019; Wang et al., 2022). Both quadtree and Voronoi, previously assessed, meet fewer key 
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criteria than the H310 based regions.  These regionalisation strategies do not encompass the 

representation of underlying land use and the possibility to link to pre-existing geographies. 

This new method sought to address these considerations, by not only focusing on a trade-off 

between granularity and disclosure. However, improvements are required during the merging 

process to generate more compact and more homogenous zones. Further work could also 

investigate how varying H3 scales and atomic unit types impacts resulting data counts and 

consider the value of having more data duplicates as a result of spatial subdivision (Cockings 

et al., 2013). Additionally, this works focuses on the Greater London region due to data 

availability. It would be valuable to assess whether the concepts discussed are applicable to 

areas of lower coverage than Greater London, especially as this method aims to preserve areas 

of traditionally low counts.  

A key missing component of these regions is the time dimension. The regionalisation principles 

set out to create regions which would have a temporal component, which would both be novel 

and acknowledge the importance of temporal aggregation. The regions would be different if 

made from data corresponding to a week of activity or an hour of activity. There are risks that 

aggregating shorter time periods using the current proposed regions would mean counts are still 

significantly omitted. This can be addressed by making regions with different data time frames, 

similarly to making regions with other datasets or for other, potentially less dense areas. The 

next part of this work will delve into this question of temporal impact, by aiming to quantify 

MTUP effects on the H3BR-making methodology. Proposing this assessment, as well as 

creating H3BRs for varying timescales, could help address this lack of temporal dimension in 

the current version of the H3BRs.  

Nonetheless, the approach here creates output regions that minimise the impact of aggregation 

on analytical completeness and validity and provides non-disclosive, consistent counts that 

account for the context of the built environment and are linkable to other pre-established 

geographic units. The methodology is tractable and flexible, and removes some of the 

computational challenges of working with large spatial datasets. It thus offers further 

opportunities for accessing sensitive datasets for research purposes. 
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6. MTUP and times low data: 

assessment of the H3-based 

regions 
So far, the research conducted throughout this thesis has been fundamentally spatial. However, 

over the past 40 years of geographic research, more and more data has also become temporal, 

this trend only accelerating with the increasing amount of passively generated location data 

(Peuquet, 1994; Kraak, 2000; Kitchin, 2013). For that reason, time coherence was added to the 

list of principles driving this thesis’ regionalisation efforts (Chapter 4). Though the H3BRs do 

not currently have a temporal consideration built into their algorithm, this chapter seeks to 

address the all too important questions of temporal granularity, and MTUP effects, on 

regionalisation and aggregation.  

This chapter thus has two key aims. The first aim is to assess whether H3BRs remain stable and 

usable with temporal changes. This hopes to find that times of low data can be preserved 

alongside places of low data through the use of bespoke regionalisation. The second aim is to 

harness the strengths of the H3BR reusable algorithm to provide key explorative attempts at 

visualising and quantifying some core MTUP effects, through incremental changes of temporal 

dimensions.  

To do so, the chapter first presents MTUP and its effects, transposing them to the MAUP effects 

of scale and zone for ease of use throughout the subsequent analysis. Then, the current H3BRs 

are assessed at varying temporal scales and zones and compared to OSGB250, to investigate 

whether the advantages of the method seen previously for a day of data (Chapter 5) are 

maintained regardless of temporal dimension. Building from this, sets of H3BRs are created for 

specific hours of data (including typical nighttime hourly activity and daytime activity), to see 

if varying the temporal input still creates coherent and useful regions for aggregating hourly 

data. These new regions are tested, reusing methods employed and developed throughout 

previous chapters for gauging region performance. Namely, they are assessed using the Jaccard 

similarity index, comparison of data omission, and through assessing the differences in results 

obtained from conducting spatial analysis with different regions sets. For this final comparison, 
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points of interest (POI) data is assigned to each new hourly region set, and the resulting 

compositions of the space are compared, showing that different hourly regions present different 

pictures of otherwise identical, fixed space. Finally, the summary and discussion section of this 

chapter rounds up these findings, emphasising the stakes of considering MTUP with equal 

measure to MAUP when selecting aggregation and regionalisation scales. The hope is that this 

chapter both provides crucial recommendation for best practice usage of the H3BRs, and 

demonstrates the potential of this algorithm to be used as a tool to explore questions of MAUP 

and MTUP, informing future efforts in the making of a more complete space-time tessellation. 

 

6.1. MTUP: definitions and implications for the H3BRs 
6.1.1. Defining MTUP 

So far, this work has focused on mitigating the effect of MAUP on the aggregation process 

through regionalisation. However, considering and preserving time granularity is a key element 

of data preservation in the case of in-app data and mobility analysis. Research in geographic 

information science has considered time as a fundamental element even before time geography 

defined it as such (Hägerstrand, 1970; Thrift, 1977; Peuquet, 1994). As discussed in Chapter 2, 

places are considered in time geography as a spatial and temporal intersection for daily tasks, 

and the cyclic habits and routines of those who use those spaces are informative of individual 

behaviours and characteristics (Axhausen, 1995; Kwan, 1999; Crang, 2001). Each process, each 

activity has its own temporal range and resolution (e.g. some cycles spanning hours, days or 

months) (Meentemeyer, 1989). When studying human activities in space, the temporal 

dimension is thus critical to consider (Kraak, 2000). In fact, it has been demonstrated that some 

behaviours can only be observed at certain resolutions of time (Harrower et al., 2000). 

Changing the temporal scale of analysis can thus result in a significant loss of analytical 

completeness, as a whole range of behaviours occurring at these resolutions are lost to the 

researcher (Purdam and Elliot, 2007). Thus, we understand that, when it comes to data with a 

temporal element, such as in-app data, or studies with a temporal scale, ‘selecting the 

appropriate level of detail for a task is essential to study the right phenomena’ (Hornsby and 

Egenhofer, 2002; Cöltekin et al., 2011, p. 1). 

Though time was widely formulated as a fundamental element in spatial thinking for decades, 

the term Modifiable Temporal Unit Problem (MTUP) was only first formally coined by 

Cöltekin et al. in a 2011 workshop proceeding on persistent problems in geographic 
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visualisation. In this position paper, they identify key temporal scale effects which impact 

analysis and suggest categorising them under the label of MTUP (Cöltekin et al., 2011). By 

drawing the first explicit parallel between issues of temporal scale and the famous MAUP,  

Cöltekin et al. formalise the idea that analysts must be equally aware of issues pertaining to 

temporal scales as they are aware of MAUP’s impact on spatial analysis. They also help identify 

the MTUP’s effect in analogy to the MAUP’s zoning and scaling effects (introduced in detail 

in Chapters 2 and 3).  

They list three main temporal effects: “duration (how long), temporal resolution (how often) 

and the point in time (when).”(Cöltekin et al., 2011, p. 1). Other efforts in formulating the 

MTUP effects included concepts of temporal boundaries (when the time frame starts and ends), 

but this chapter will centre around Cöltekin et al.'s initial definition (Cheng and Adepeju, 2014).  

We find that the scaling and zoning effects which define the MAUP can be helpfully transposed 

to the MTUP to help quantify the impacts of these changes of temporal measurements in the 

context of aggregation: 

Scale:  the temporal scale here corresponds to the temporal resolution and duration 

defined by Cöltekin et al. Namely the ‘size’ of a temporal unit. Aggregating an hour of 

data rather than a day implies a change of temporal scale during aggregation, analogous 

to aggregating to different spatial scales. 

Zone:  the temporal zone corresponds to the point in time. For example, Monday and 

Tuesday have the same scale (a 24-hour day), but correspond to different ‘zones’ 

(different points in time, different days of the week). Thus, aggregating different days 

of data corresponds to a change in ‘temporal zones’ with this analogy. 

This simplification of the MTUP allows for a more quantifiable understanding of changes of 

temporal dimensions in the context of the H3BR. This chapter seeks to illustrate these effects 

on the way H3BR are generated, and highlight why considering temporal scales is vital for the 

method to be generalisable to multiple uses cases and datasets. Below, we show how changing 

the scale and zone of the data aggregated to H3BR equates to a loss in the regions’ relevance 

where temporal differences are not considered, and propose ways to approach temporal 

dimensions when generating these bespoke regions. 
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6.1.2. MTUP impacts on the H3BR’s performance 

6.1.2.1. H3BRs: data-driven, for a day 

The H3BRs detailed in Chapter 5 are made with a day of data. They are thus made at the 

temporal scale of a day, and the temporal zone is stabilised by using the average activity of 

multiple days. Thus, these bespoke regions are made to best fit a typical day’s worth of in-app 

data. In Chapter 5, it was demonstrated that, for any day of data, the H3BR outperformed other 

forms of aggregation in terms of data preservation. Figure 1 summarises this finding.  

Figure 1. Comparison of proportions of counts and regions omitted for different days of data 
(temporal zones), for H3BR and OSGB. 
 
When changing the temporal zone but keeping the scale stable (aggregating different days of 

data) we see the counts omitted are not always identical. This is expected as the regions are 

made based on an average day, and the omissions are due to certain days’ activity being below 

this average day’s. In fact, this highlights the relationship between a day’s omission and its total 

contribution to the week’s activity. For H3BR, that relationship displays a correlation of -0.99. 

Days which contribute the least activity when compared to the whole are the ones with the 

highest percentage of regions omitted. Though the relationship is still confirmed for OSGB, the 

number is lower (-0.83), indicating that more regions may be omitted at random. 

Regardless, the data aggregated to H3BR experience significantly lower omissions than when 

aggregated using the OSGB250 grids. For OSGB, a third of regions are omitted day by day, 

against less than 7% on any given day for the H3BR. Sunday appears to be the day with the 

highest omission (2% more regions omitted on Sunday than any other day for the H3BR), 

% 

COUNTS OMITTED REGIONS OMITTED  
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though the H3BR aggregate made based on a day of data preserves significant amounts data on 

this day nonetheless. 

What can be expected if the H3BRs are used to aggregate and share the same in-app data at 

different temporal scales and varying temporal zones? In the following sections, we seek to 

identify whether bespoke regions made with a certain time frame of data perform better than 

arbitrary grids through the changes of temporal dimensions. We find that the H3BR, as they are 

currently defined, are only viable for the specific temporal scale (a day of data) they were built 

from and for. 

6.1.2.2. Changes of temporal scale 

First, different temporal scales are compared in decreasing order to visualise the MTUP’s 

impact on the regions’ relevance. Here, relevance is understood as the H3BR’s core purpose of 

best fitting the data and preserving counts as much as possible, especially when compared to 

traditional aggregates. Throughout these sections, we continue comparing the H3BR to the 

OSGB250, which were the arbitrary units closest in size and performance to H3BR over the 

last chapters of comparisons related to MAUP (Chapters 4 and 5).  

To assess changes of scale, we compare the data lost as we reduce the quantity of time and 

aggregate the data to H3BR and OSGB. For this, the activity counts (number of unique devices 

per area per time) were calculated using incrementally decreasing time blocks, starting with 

24hrs of data (the activity count for each region over a day) and ending with 1hr (the activity 

count for an average hour of the same day). We then obtain the activity count per hour block 

per region, rather than the activity per day per region. Some examples of these ‘hour blocks’, 

and how they are calculated, are illustrated by Figure 2 below. This was performed using the 

raw in-app data points over the month of September 2019, the same data sample used to create 

the H3BR and much of the prior analysis conducted throughout Chapters 3 to 5. 



 
 

180 

 
Figure 2. Illustration of the making of the hour blocks. In order to capture significant blocks of 
time, a rolling average is kept for the hour blocks where required. For example, for the average 
3-hour block, the activity count is calculated for all consecutive 3-hour blocks starting at 
midnight (0-2, 3-5 and so on) and all activity across these blocks are averaged to get the ‘typical 
3-hour block activity’. Where the block number is not a fraction of 24, a random hour is 
exempted (such as for the 5-hour block). 
 
The final hour blocks thus capture the average (or typical) activity for their temporal scale (e.g. 

the average activity of any three consecutive hours). This is in the hopes of mitigating the 

temporal zoning effect implied in this exercise. Taking only one 3-hour block or one 12-hour 

block to represent their full temporal scales meant that outlier hours, and their potentially 

different activity levels, could be driving the underlying activity gain or loss, rather than the 

quantity of time itself. 

Figure 3 displays the percentage of regions omitted by hour blocks (i.e. temporal scale) for 

H3BR and OSGB250. As demonstrated earlier, H3BRs preserve much more space when they 

are used to aggregate a day of data (see Figure 1 and Figure 3) (0.3% of regions omitted against 

33% for OSGB). However, this advantage is progressively lost as the temporal scale decreases 

(shorter hour-blocks). At the 4-hour block scale, the H3BR’s trend intersects with the OSGB’s 

(Figure 3). At this point, H3BRs do not preserve more areas than using arbitrary grids, and thus 

do not maintain their relevance as an optimal aggregate for the in-app data. We can note that 

the variations around the 8 to the 4-hour blocks can potentially be explained by the moving 

averages, and those blocks potentially containing more mixes of day and night hours. 
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Figure 3. Percentage of regions omitted by hour-block for H3BR and OSGB250. 24 on the x 
axis corresponds to a full day of data. 
 
This demonstrates a key point of the MTUP issue described earlier. A bespoke region is only 

the best fit at the temporal scale it is created from and for. The H3BRs’ data-driven aspects do 

not confer them an advantage and a guarantee to perform better than arbitrary grids at all 

temporal scales. Ultimately, a change of temporal scale renders them arbitrary as well, as they 

do not capture the data’s distribution at these scales and are made to meet a threshold of 10 for 

a day of data. However, before investigating the possibility of making hourly H3BRs, we turn 

towards investigating how a change of temporal zones at these scales affects the H3BR’s 

performance. 

 

6.1.2.3. Changes of temporal zones 

To assess the impact of changing temporal zones, a similar comparison as described above is 

conducted by aggregating varying temporal zones of data to the H3BR and OSGB and assessing 

the resulting omissions. For this, the average activity for each hour, averaged across a week is 

calculated. For example, we averaged the activity counts at 3 am for each day of the week, in 

order to control for ad-hoc events which may impact a specific day and hour’s activity. Figure 

4 shows the percentage of counts and regions omitted for each hour, when aggregated to 

OSGB250 and H3BR.  
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Figure 4. Percentage of counts and regions omitted per hour for OSGB250 and H3BR 
 
The percentage of regions omitted per hour are similar for both sets of aggregates, and seem to 

be the reverse of the activity per hour (activity peaks expected at 8am and 5pm incur the least 

omission, especially when compared to the omissions of low activity nighttime hours. See later 

figure of activity per hour, Figure 5). However more counts are omitted for the H3BR aggregate, 

across all hours. This could be due to the H3BR’s size. At an average area of 51,205 m2, they 

are smaller than the OSGB250’s average area of 61,068 m2. Their smaller size could explain 

why they are less likely to meet the threshold of 10 devices per hour compared with their grid 

counterparts. This adds to the earlier temporal scales findings to confirm that the H3BRs, which 

perform so well for a day of data, are worse than arbitrary grids for aggregating hourly data. 

We can suppose that the omitted region proportion remains similar because there are more 

H3BRs than OSGB250. 

The difference between hourly activity from day to day would be very difficult to analyse 

spatially with the regions as they are. In fact, the overwhelming majority of the data is lost at 

the hour scale, making it difficult for sharing any meaningful hourly data outside of a secure 

lab using the regions as they are. We thus cannot at this stage observe if, spatially, noon activity 

on Sunday is different to noon activity on Thursday, for example. This is true for both OSGB 

and H3BR, and at this stage, in order to analyse significant hourly data, we must either reshape 

the H3BR or perform analysis in controlled environment. 
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6.1.3. Implications 

These first sections of the chapter have introduced the key terms and interpretations of MTUP 

used throughout the subsequent analysis. At this stage, it was demonstrated that the H3BRs, 

though performant for a day of data, suffer greatly from changes of temporal scales. They do 

not confer any advantages for aggregating data below blocks of 4 hours, and perform poorly 

for hourly aggregates. These exploratory analyses focused on hourly temporal zones and scales 

as the aim of this chapter is to investigate whether the H3BRs can perform with increased time 

granularity. Thus, the impact of changing temporal zones and scales by aggregating weekly or 

monthly averages was not analysed here. It is safe to say that MTUP has impacts in those 

directions as well. However, the initial regions were created with the hopes of creating smaller, 

more precise spatial units which would meet the threshold of 10 devices. This is less necessary 

for a month of data, for example, where the threshold is much more likely to be met at the H310 

scale pre-regionalisation. Weekly, monthly and yearly aggregates do not necessarily require the 

level of regionalisation needed here for data preservation, and the MTUP effects we take 

interest in here uniquely concerns delineation and data omission for granular temporal scales. 

When conducting analysis using external sources of data (e.g. consumer data, in-app data etc.) 

the decision of the temporal scale is often dependent on data availability alone (Cöltekin et al., 

2011). When the choice is available, it often relies on ‘trial and error’ approach, as the 

quantifiable impacts of the MTUP are less formalised than for the MAUP (Cheng and Adepeju, 

2014). This adds further dimensions to the MAUP issues discussed throughout this thesis, as 

both of these problems are intrinsically linked when dealing with spatial areas built around 

temporal dimensions. However, owing to an access to the original in-app data points, this 

research has an opportunity to reflect upon the MTUP’s impact on the methodology, and to 

attempt to visualise and quantify recommendations of use of the H3BR based on the temporal 

effects described.  For certain MTUP effect (particularly a change of temporal scales), there is 

a possibility to conduct temporal analyses of geographic processes (such a regionalisation) 

using H3BR as a method where controlled temporal input is possible.  

The following sections thus first seek to assess the MTUP’s impact on the H3BR methodology’s 

volatility. Then, they investigate whether the H3BRs can be adapted for, and extrapolated to, 

hourly analyses. Finally, the key aim is to make analysts aware of the MTUP as much as the 

MAUP in the context of H3BR applications. Thus, suggestions are provided to adapt the regions 

and promote their most realistic and informative use.  
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6.2. Hour-based H3BR 

Hourly data provides unique insights in time geography, rhythmanalysis and mobility analysis, 

as detailed throughout Chapter 3. However, before using in-app data at the hourly scale, we can 

wonder whether the data sample is sufficient to do so, and whether, practically speaking, it is 

possible to make H3BRs with hourly data at the basis. First, times of low data are identified, 

investigating which hours of the day capture the least in-app data activity. These times of low 

data can then be explored spatially to investigate whether there are geographically identifiable 

and thus relevant to regionalise. Then an hourly H3BR is made for comparison with the current 

daily version to see whether the times of low data can be analysed through a more appropriate, 

time-scaled version of the regions.  

 

6.2.1.  Identifying times of low data 

An initial exploration of hourly distribution is conducted to identify times (hours) of low data 

based on the same data sample which was used for the regionalisation process and exploratory 

analysis above: the month of September 2019. Figure 5 shows the average percentage activity 

per hour and the average percentage activity per day across London (Sieg and Cheshire, 2023). 

 

 
Figure 5. Proportions of hourly activity of a typical September day in London (left) and 
hourly activity for a typical week (right) 
 
The second chart highlights two distinctive daily patterns: the weekday pattern (from Monday 

to Friday), which displays two main peaks of activity around rush hours, and the weekend 

pattern, which is unimodal and increases until midday. These patterns, though expected, help 

illustrate the data’s behaviour on the London scale and show that nighttime hours are expected 
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to contribute the least activity regardless of weekday.  However, adding together the nighttime 

hours (6pm to 6am), we notice their total contribution to a day’s worth of data amounts to more 

than 40% (20% if considering only 11pm to 5am). This is a non-negligible proportion of activity 

which could be driven by different types of behaviours, and be differently spatially distributed. 

These potentially defining traits can only be investigated through careful choices of aggregation 

which preserve these times of low data. 

In order to assess whether there are spatial differences between nighttime, daytime, weekday 

and weekend activities, binary classes were created based on Figure 5 results for a first 

inspection. Regions were attributed their peak time: if their peak activity happened during a 

weekday, they were categorised as a weekday unit. If it was during a weekend, they became a 

weekend unit. The same logic followed to determine whether a region was to be considered 

daytime or nighttime driven. Figure 6 maps these binary classes, with a focus on the London 

Borough of Camden. Most green space activity (Hamstead Heath, Primrose Hill, Regent’s Park) 

is classified as occurring over the weekend, during the day. On the other hand, Soho is a 

weekend night hub. The Bloomsbury and Fitzrovia areas, mostly student and working 

neighbourhoods, are here dominated by weekday activities, and Camden High Street (above 

Primrose Hill) appears most active at night. 
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Figure 6. Map of H3BR regions coloured by time attributes. Centred on the London Borough 
of Camden. 
 
The darker colours in Figure 6 indicate that the region’s peak activity occurs at night. Though 

this type of activity does not contribute to a majority of the dataset, it is noticed that it can 

contribute to specific areas’ principal activity. This indicates there might be some merit in 

investigating these times of data closer, to see what may differentiate them from others. This 

exploration thus confirms a purpose in making an hour-based H3BR for exploring these times 

of low data, or, more fundamentally, being able to delve deeper into hourly-patterns as a whole 

and not be constricted to daily analysis due to IDE. 

 

6.2.2. Performance of an Hour-based H3BR 

6.2.2.1. Can H3BR regions be made at the hour scale? 

Throughout the rest of this chapter, the H3BRs will be referred to as H3BR_D for the version 

made based on the average day of data (developed in Chapter 5) and H3BR_H for the ones 

made based on an hour-scaled sample. A key thing to consider before making H3BR_H, is 

whether the current methodology and choices are applicable to the temporal scale of an hour. 
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Before generating the previous H3BR_D, an administrative boundary was chosen to contain 

the iterative algorithm but also ensure linkage with other datasets. The choice of MSOAs as this 

container was informed by the in-app data counts within MSOAs. If a large number of MSOAs 

had not met the threshold of 10, it would have been impossible to subdivide them into smaller 

regions, as these would certainly have not met the threshold (as detailed in Chapter 5, Section 

5.1.1.3.).  

Thus, for H3BR_H, a similar exercise is conducted, to confirm whether the current H3BR-

making algorithm can be applied to an hourly sample of in-app data. This is done by aggregating 

the same hourly data as in Section 6.1.2.3 (exploring changes of hourly zones) to MSOAs 

instead of H3BR and OSGB, and counting the omitted MSOAs per hour. Figure 7 displays the 

results. 

 
Figure 7. Counts and regions omitted per MSOAs per hour. 

 
For 16 out of 24 hours, all MSOAs meet the threshold, and none are omitted (Figure 7). 

However, at 3 am, 71 MSOAs are removed due to IDE (activity < 10). This represents 7% of 

Greater London MSOAs. Despite these omissions, the average activity per MSOA at 3 am is 

of 35 devices. This means that, on average, each MSOA could be divided into 3 smaller regions 

at 3 am, though 71 of them would remain undivided. Overall, the results are encouraging: the 

average activity per hour per MSOA is of 152 (implying 15 regions per MSOA on average at 

any given time), with some hours seeing very high counts throughout (256 devices per MSOA 
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on average at 5pm). In light of this test, we can conclude it is possible to create an average 

hourly H3BR (H3BR_H) nested within MSOAs, and perhaps even investigate what a bespoke 

3am set of regions would look like compared to a 5pm set, for instance. 

On top of confirming the plausible use of MSOAs as the merge boundary for H3BR_H, this 

test provides two key insights for the following steps. Firstly, the mean activity per MSOA is 

lower for H3BR_H than it was for H3BR_D confirming that the H3BR_H will be larger than 

H3BR_D (the mean activity per MSOA for a day of data was 192, see Chapter 5). Secondly, 

the large difference in activity (and omissions) between hours (Figure 7) indicates that the data 

is negatively skewed by the most active hours. Thus the “typical hourly regions” should be 

made from the median activity across all hours rather than the mean, as the median is less 

sensitive to outliers.  

 

6.2.2.2. Comparing H3BR_D and H3BR_H 

The same data sample as H3BR_D was selected for the making of H3BR_H: September 2019. 

For each hour, the mean activity per hour across the month was retrieved, and the median of all 

those hours was kept for making the regions. Thus, the regions are made with a “typical hour’s” 

worth of data across the month. As per with the H3BR_D, this typical hour’s activity is 

calculated per H310 cell, linking median hourly activity to the H310 lookup tables created in 

Chapter 5 with the terrain information and MSOA labels for each H310. This data, with the 

median hour activity and all contextual attributes, is then run through the PNMx algorithm to 

join all H310s of less than 10 devices. As it requires more iterations to reach the threshold due 

to the lower starting counts, the algorithm ran for around 20 minutes on a single threaded Intel 

64 processor, 5 minutes longer than for the H3BR_D. The resulting regions are roughly twice 

as big as the H3BR_D on average, though some areas with high activity remain spatially 

granular. Figure 8 presents a side-by-side comparison of H3BR_D and H3BR_H, still with a 

focus on the borough of Camden. The statistics provided with Figure 8 are for the Greater 

London area, describing the number of regions and average unit area for both versions of the 

H3BR. 
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Figure 8. Comparison of H3BR_D and H3BR_H at the London scale, with a focus on 
Camden and surrounding areas for ease of comparison of the partitioning differences. 
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The H3BR_H are thus spatially coarser than H3BR_D, but hypothetically more appropriate for 

hourly analysis, which constitutes an interesting compromise between spatial and temporal 

granularities. Using the H3BR_H for daily analysis would not be optimal, as they are not as 

granular as the daily version and thus information is lost where the data counts would otherwise 

allow for a higher level of detail. The H3BR_H could also be arbitrary in light of daily data 

distribution, as can be assumed from the daily versions being unsuitable for hourly data. 

The H3BR_H are then compared with OSGB 250 and H3BR_D, following the same process as 

Section 6.1.2.3. Hourly data was aggregated to H3BR_H, and the omitted counts and regions 

were returned and plotted alongside the previous results of Figure 4. This is displayed by Figure 

9 below. 

 
Figure 9. Comparison of percentage omitted counts and regions per hour - H3BR_H added 
 

A clear improvement is seen from using H3BR_H compared to H3BR_D and OSGB250, 

especially in daytime hours, perhaps busier than the median activity used to delineate the 

regions. In fact, during busy daytime hours, the percentage of regions omitted is almost 50 

points lower than the region omission incurred by OSGB250 and H3BR_D (20% omission 

against 68%). This gap is narrower for times of low data defined previously. At 3am, the time 

with the least activity throughout the dataset (See Figure 5), the H3BR_H still omit close to half 

of the counts and 69% of regions due to not meeting the threshold. These results highlight two 

main findings. Creating an H3BR_H indeed makes hourly data more exploitable, by significant 

margins across all hours, however, that margin is much less conclusive for times of low data at 

COUNTS OMITTED REGIONS OMITTED 
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this temporal scale. We remember that, for daily data, Sunday experienced a slight increase in 

omission compared to other weekdays when aggregated at the H3BR_D made with a mean day 

of data (Figure 1). This is due to Sunday being the day with least data, but this difference in 

omission proportions was not as drastic at the day-scale as it is at the hour-scale.  

Nonetheless, an average or median-based region is helpful to conduct hourly comparisons 

throughout the day. More specific regions are tested later to assess whether more precise zoning 

is helpful to preserve data at lowest times, but first the H3BR_H are applied to explore daytime 

activity against nighttime activity overall.  

 

6.2.2.3. Using H3BR_H to map daytime and nighttime activity 

To expand on the previous exploratory analysis of daytime, nighttime, weekend and weekday 

regions, we use the H3BR_H to visualise activity levels during the night and the day. Here, 

nighttime corresponds to 11pm to 5am, the hours with the lowest activity, which we could 

identify from Figure 5 displayed very different levels to daytime hours. Here, distinguishing 

nighttime and daytime by stretches of 12 hours (6am to 6pm being daytime and 6pm to 6am 

nighttime, for example) would not capture the realistic activity during the times of low data of 

the night, with the activity potentially being driven up by the busiest evening hours.  

Figure 10 overlaps the daytime activity and nighttime activity in a bivariate choropleth map, 

with the activity levels aggregated at H3BR_H. The activity levels correspond the average 

hourly activity over the respective time periods. Though the levels of activity are lower for 

nighttime, using H3BR_H allows us to visualise nighttime activity and plot it alongside daytime 

hours for comparison. At a glimpse, we can identify areas which are busy throughout the 24 

hours of a day, and distinguish those that are notably active during the day or night only. 
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Figure 10. Bivariate choropleth maps showing night and day activity levels across Greater 
London, aggregated at H3BR_H. Night activities range from 10 to 100 and day activities 10-
150. Greys are under 10. Boroughs are outlined in white, and the zoom focuses on central areas. 
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With nighttime activity being overall much lower than daytime, one question persists as to 

whether the H3BR_H, which are drawn based on an average hour across the day, capture 

nighttime activity closely enough. The hypothesis here is that the H3BR_H, built on the median, 

are closer to daytime activity and the areas driven by it than nighttime activity, which might 

remain prone to omissions. Additionally, areas of the map with significant activity for both may 

have different shapes for night activity and day activity, if those two dimensions were to be 

distinguished in the regionalisation process. This sparks the question of how the same space 

may be partitioned differently between different times outside of scale. We refer to this as 

thematic regionalisation through the following sections (i.e. choosing the time dimension based 

on the field question or theme of research rather than only data availability). 

 

6.3. Times of low data and thematic regionalisation 
6.3.1. Controlled temporal input: making regions for specific hours or use cases 

This section seeks to assess the value of making very specific regions in cases of low data, or 

to research specific phenomena (such as night activity levels against day activity). It also seeks 

to assess, through controlled temporal input, the effects of MTUP on the regions created. 

Following previous findings, questions remain about the fit of ‘generalised’ regions at the 

hourly scale. Though the daily average regions (H3BR_D) did not discriminate significantly 

between days when aggregating different days using the regions, the hourly median set 

(H3BR_H) seems to be more skewed towards times of higher activity, as the activities per hour 

range more widely than activities per day.  

Would more targeted regions help mitigate this, and would these have any relevant analytical 

purpose in their specificity? What would come out of making ‘typical nighttime hour’ and 

‘typical daytime hour’ sets of regions, anticipating their differences? In this section, it is shown 

that specific regions improve upon the omissions, but that this comes at a trade-off for 

interpretability and comparison potential across times. After detailing the rationale behind the 

making of the specified units and comparing them statistically, recommendations are proposed 

regarding the approach to take when choosing a temporal scale for the making of H3BR in the 

context of future analyses using in-app data aggregates.  

Four additional sets of regions are made to compare with H3BR_H. Their fit to specific times 

of low data is assessed:  



 
 

194 

(1) H3BR_3am, built from the average 3 am activity. 

(2) H3BR_5pm, built from the average 5pm activity.  

(3) H3BR_NT, based on average hourly nighttime activity (11pm to 5am). 

(4) H3BR_DT, based on average hourly daytime activity (6am-10pm) (not to confuse 

with the earlier H3BR_D, based on a full day on data).  

The H3BR_5pm are made to compare the busiest hour (5pm) with the quietest one (3am) and 

see how they compare to median hour regions and night or day ones. 

Following previous region-making methodologies, activity counts for each temporal scale and 

zone above are computed at the H310-scale, joined with the H310 attributes and run through 

the PNMx to assign merge neighbours and reach the 10-device threshold. Each timeframe tested 

(3am, 5pm, night average, day average) produce very different mean activity per H310 atomic 

unit prior to aggregation (Table 1). This already forecasts notable differences between the 

regions resulting from each sample as the algorithm follows device counts as its first and most 

important criteria. 

Table 1. Descriptive statistics of the specific hourly H3BRs. Mean per H310 prior to 
regionalisation, and number of resulting H3BR units post regionalisation 

(H3BR_) 3am 5pm NT DT H (median) 

Mean activity per H310 0.77 3.34 0.91 1.86 3.01 

Number of H3BR units 3666 14734 4296 9025 13564 

 

From Table 1, we see that the mean nighttime activity per H310 is slightly below one device 

per atomic unit, more than twice as less as the mean daytime activity (1.86 devices per H310). 

The resulting regions are thus twice as big for H3BR_NT. Regions have to recombine more 

often to reach a threshold of 10 for a typical nighttime hour. Interestingly, the 5pm regions are 

closer to the median regions than they are to the daytime ones. This indicates a possibility that 

5pm (the busiest hour of the day) drives much of the H3BR_H’s shapes due to its high activity. 

The hypothesis at this stage would be that 3am data looks suited to the nighttime regions: both 

have a mean activity of less than one device, and their region count is much closer than when 

compared to the other sets. To assess these differences, we compare each set of regions against 

one another using the Jaccard index introduced in Chapter 5. This allows for a quantitative 
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measure of similarity, inspecting if certain areas remain stable throughout the temporal zone 

changes, and whether the more ‘generalisable’ ones (nighttime, daytime, median) are spatially 

comparable to more specific times such as 3am and 5pm and useful to aggregate these hours.  

 

6.3.2. Jaccard comparisons of resulting regions 

As discussed above, the time samples used in making the 5 regions compared return very 

different counts per H310. These differences in turn result in drastically different regions, 

especially when the counts hover around the threshold much more than they did for a day’s 

average of data. In Chapter 4, the Jaccard relationship between regions made with different 

days of data was between 0.25 and 0.40 depending on the day (meaning roughly a third or more 

of the regions remained the same if made with any day of data). We can expect that, for hourly 

data, the Jaccard indexes will be much lower. In fact, 5pm data records more than 4 times more 

activity than 3am data, which will inevitably result in drastically different regions. This is 

exacerbated by low overall hourly counts. If hourly counts were often of 10 or more activity 

per H310, as they are for daytime data, more regions would remain unmerged, and thus identical 

between hours. Instead, when most, if not all, H310 are below a count of 10, an additional count 

in any cell may have a significant impact on the number of iterations needed to meet a threshold 

of 10. This is illustrated by Figure 11, and constitutes a key weakness of applying H3BR 

methodology at times of low data, as it increases the method’s volatility. In fact, Figure 11 

illustrates in parts the impact of MTUP on the H3BR making methodology, showing that the 

notion of threshold can disproportionately impact data surrounding said threshold. The H3BR 

are adaptable and easy to apply, but it is important to note their increased volatility in areas and 

times of low data. 
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Figure 11. Diagram simplification of region reassignment when data is added. In the top case, 
regions with data counts largely above 10 will be see little difference if an activity is or two is 
added. This is similar to comparing two days of data. However, starting H310s with low data, 
particularly counts hovering around 10, will be creating very different output regions if one 
count or two are added. This simulates what can happen when one hour sees slightly more 
counts than a previous hour when regionalising both separately, as the starting counts are 
lower, and the differences larger than between days.  

As explained by Figure 11 samples with higher counts do not recombine as much, and are less 

prone to be impacted by small differences in data. As the hours sampled for the regions tested 

here are low in counts and vary by three folds or more between them, we can expect the Jaccard 

similarity indexes to be much lower than they were between days of data. Nonetheless, we can 

observe their relative relationships to assess the level of overlap between the regions. Table 2 

displays the Jaccard similarity indexes between each of the four sets.  

Table 2. Jaccard similarity indexes between hourly region sets. Colours correspond to relative 
similarity as indicated by the legend. 

 

 

 

 

 

 5pm 3am NT DT H 6pm 

5pm 1  

3am 0.03 1  

NT 0.04 0.1 1  

DT 0.06 0.03 0.04 1  

H 0.2 0.05 0.04 0.08 1  

6pm 0.2 0.03 0.03 0.08 0.2 1 

>= 10% 

< 10% 

< 5% 
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The 6pm results correspond to regions made with 6pm data, following the same methodology 

as the H3BR_5pm. These were made to get a sense of similarity between two adjacent hours of 

similar activity levels, demonstrating the above discussion regarding volatility at the hour scale 

(Figure 11). Despite their proximity in time and activity counts, H3BR_5pm and 6pm only 

share 20% of their units when regionalised, something to keep in mind when looking at the 

other relatively low results.  

The focus of this analysis is the H3BR_3am, the time of lowest data. H3BR_3am share little 

similarities with other regions, but encouragingly, their closest counterpart are the NT 

(nighttime) regions. About 10% of their units are identical. This implies that aggregating 3am 

data to H3BR_NT could preserve more data than aggregating them to H3BR_H. 3am and 5pm 

regions are the ones which share the least overlap, which is to be expected given their drastically 

different activities and expected data distribution. Thus, in order, H3BR_3am are closest to NT 

first, then H, with DT and 5pm tied last.  

The highest Jaccard indexes seen in Table 2 are between the H3BR_5pm and H3BR_H (median 

hour). This is interesting as one could have first hypothesised that 5pm would also share more 

similarities with DT (daytime) regions. However, looking at activity counts per H310 earlier 

(Table 1), it follows logic that the 5pm regions have more in common with H3BR_H. 

It may not always be sustainable nor interesting to create new regions for every hour of data, 

particularly in cases where the spatial units must remain stable for comparison over time. 

Though the regions are delineated very differently between the NT and DT sets and share few 

identical regions with the specific hourly ones (3am, 5pm), can they be used to aggregate and 

potentially preserve counts compared to using the H3BR_H alone? Would aggregating 

nighttime hours to an average nighttime set of regions truly help preserve relevant information? 

The following analysis takes a sample of data from a single day (rather than hourly averages 

over the week of data) and aggregates specific hours using the thematic regions to compare 

against H3BR_H. 

 

6.3.3. Sunday’s 3am and 5pm omissions by regions  

As the 3am and 5pm regions are made based on the ‘typical’ 3am and 5pm values (average of 

all 3am hours across the week, for example), all bespoke regions for these hours do not 

automatically meet the threshold when aggregating a random 3am or 5pm sample. Looking at 
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earlier findings regarding activity distribution across the day and week, we see that Sunday is 

the day with least activity. Data for 3am and 5pm on Sunday the 8th of September 2019 was 

thus extracted and aggregated at their respective regions to compare omissions. The samples 

were also aggregated to H3BR_H, and H3BR_NT (for 3am data) or H3BR_DT (for 5pm data). 

The idea here is to ensure that regions with higher similarities in the earlier Jaccard tests would 

also omit less data when used for aggregation. This can help inform the balance to strike 

between creating too specific a set of H3BR, which would be hard to compare or generalise, or 

use a version which might not be the best fit for the research question or data sample. Figure 

12 displays the resulting omitted counts and regions for Sunday 3am (left) and Sunday 5pm 

(right) for each type of H3BR tested. 

 

 
Figure 12. Bar plots showing the proportions of omitted counts and regions per region type 
when aggregating 3am (left) and 5pm (right) Sunday data. 
 
For Sunday 3am data, the H3BR_3am are unsurprisingly the regions which omit the least data. 

The omission, however, remains relatively high, with 3am being a time of such low counts. 

when using the closest region, 20% of counts are omitted, with over 40% of regions omitted. 

However, this is a net improvement compared to H3BR_H, which omits 40% of counts and 70% 

of regions, as was illustrated in Section 6.2.2.2 (Figure 9). Using the H3BR_NT helps preserve 

close to 20% of counts and regions compared to the median hour regions, and they only perform 

slightly worse than the bespoke 3am regions. In this context, the H3BR_NT are a good choice. 

Significant context is gained from using regions which are not too specific (unlike single-hour 
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regions), as they allow for wider use, and the H3BR_NT provide an advantage over H3BR_H 

in terms of data and space preservation.  

The results for Sunday 5pm are, at first glance, much more surprising. In fact, the bespoke 5pm 

regions perform less well for Sunday 5pm than the H3BR_DT. This can be explained by 

Sunday’s 5 pm activity being atypical of the usual 5pm activity driving the H3BR_5pm regions. 

In this case, the H3BR_DT preserve more data, meaning Sunday 5pm activity is closer to the 

average daytime hour in terms of activity distribution. Similarly to Sunday 3am, the H3BR_H 

are the regions which see the highest omission; though we can note the proportions of omissions 

are two times lower for Sunday 5pm than 3am.  

The unexpected result of the Sunday 5pm data not being best preserved by 5pm regions reflects 

the intricacies of MTUP. When making precise single-hour regions, one must also take into 

account weekly patterns, as they also constitute changes of zones. The recommendation is thus 

to privilege making regions based on stable medians or averages, preferably over longer periods 

of time rather than a single hour (such as 3am or 5pm). The making of the most specific regions 

(H3BR_3am, H3BR_5pm) is to be considered for times of low data where the count 

preservation is crucial and a core priority of the regionalisation. Otherwise, one is exposing 

themselves to MTUP-driven inconsistencies without notable advantages.  

As demonstrated earlier, the H3BR_H do help preserve some data when compared to H3BR_D 

or OSGB250. This attests for the possibility to apply the H3BR methodology at changing scales. 

The question of zones then relies more heavily on field knowledge and regionalisation aims. 

The omissions comparison above highlighted the advantages of making thematic regions based 

on relevant temporal zones such as day or night, as these preserve data and remain more stable 

than specific hour-based ones. However, these must be considered with the considerable 

assumptions they carry. For instance, in aggregating 3am data to H3BR_NT, we assume that 

3am data is most closely represented or captured by nighttime regions over daytime regions, 

something we felt safe to presume from initial exploratory analyses of hourly data distributions. 

This could be untrue depending on data samples and specific events occurring on specific days, 

and must be taken into account in the decision making.  

Controlling the temporal input and testing its impact on data preservation helps build a more 

precise picture of realistic H3BR applications. An advantage of the region making methodology 

is its versatility and efficiency in producing the different sets of regions compared here. These 
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demonstrations help make a case for incorporating the H3BR into an aggregation querying 

system, where in-app data users outside of secure data environments could request data at 

specific temporal scales and retrieve ready-made aggregates corresponding to their needs.  

However, the performance of each time-based H3BR was only assessed with regards to data 

omission as specific times. The impact of MTUP is crucially spatial as well as temporal, and 

the drastic difference in the regions sets impacts in the way space is interpreted by each of them. 

This is further explored below, in an attempt to illustrate the indissociable effects of MTUP and 

MAUP. 

 

6.4. MTUP and dynamic reconfigurations of otherwise fixed 
space 

The H3BR methodology inputs dynamic information (in-app data over time) to create a static 

snapshot (region outlines).  However, as shown above, different hours of data produce different 

shapes of regions. This implies that, when changing the region’s data times, there can be a shift 

in the way underlying static space is delineated and interpreted.  

So far, this chapter has focused on omission of data counts and spatial units as a metric to assess 

the impact of temporal scale and zone changes on the H3BR methodology. In fact, throughout 

most of the thesis, the measure of success of regionalisation was largely quantified through 

omission reduction. MTUP has mostly been addressed as an issue of data preservation and 

method volatility throughout the chapter. However, changing the partitioning of space, whether 

due to temporal choices or spatial ones, can impact the interpretation of otherwise fixed space 

(Openshaw, 1979; Viegas, Martínez and Silva, 2009; Cheng and Adepeju, 2014). In Chapter 3, 

this was explored using LOAC classifications, a demographic descriptor, illustrating the ways 

in which the change of spatial zones and scales impacts the proportions of activities assigned 

to various populations. Here, the aim is to go one step further and demonstrate that static spaces 

(such as terrain, buildings), rather than population characteristics, are also subject to this effect. 

This is situated in the context of MTUP effects by assessing those changes based on changes of 

temporal units when regionalising. 

This section takes points of interested (POI) data to assess whether the region compositions 

change between different versions of the hourly H3BRs. The aim is to assess whether the 
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changes in region numbers and shapes seen above drastically impact the way the city is 

interpreted, or whether, at the scales at which H3BR operate, these effects are negligible.  

 

6.4.1.  Methodology 

For this assessment, we compare H3BR_H, H3BR_NT and H3BR_DT. These regions are 

chosen as they capture different levels of activity, and it can be assumed that their underlying 

trends are driven by different behaviours (Kim, 2020; Nemeškal et al., 2020). Inspecting earlier 

results of using the H3BR_H to compare nighttime and daytime (Figure 10), it was noted that 

certain areas of London appeared to have significant levels of activity for both time frames, and 

questions persisted as to whether the same area would see different partitioning imposed at 

these varying times. Furthermore, using H3BR_NT and H3BR_DT is more informative than 

comparing the 3am and 5pm regions which were shown to be more volatile and appropriate 

only for very specific use cases. Thus, H3BR_H, NT and DT regions are linked to POI 

information, and the composition of the regions are compared to see how each capture the 

underlying space. 

 

6.4.1.1. Data presentation: AddressBase Premium POIs 

For this, we use the POI classifications from the Ordnance Survey’s (OS) AddressBase 

Premium dataset. AddressBase datasets are derived from multiple authoritative sources 

including the Royal Mail's Postcode Address File (PAF), local authority data, Ordnance Survey 

mapping data, and valuation office data. They are designed to support various applications 

ranging from emergency planning and services, delivery logistics, infrastructure development, 

and government services. The AddressBase Premium (ABP) is the most comprehensive dataset 

offered by the OS, with information on objects without postal addresses (such as parks, open 

spaces etc.) and historical addresses.  

We use the 2021 ABP classification scheme which provides a category description to each POI 

registered. The ABP shapefile contains coordinates for each POI along with different levels of 

classification. Table 3 lists the classification’s primary and secondary codes selected for this 

analysis, along with their category descriptions. The full list of classifications is provided in 

Appendix 3.  

Table 3. Primary and Secondary POI classification categories as described by the OS ABP 
dataset. Classes which have low presence across London, or low relevance to the analysis, 
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were not considered in the profiles. All 58 classes, including the ones not considered here, are 
listed in Appendix 3. 

Primary category (Class 1) Secondary category (Class2) Description  
C (Commercial) CA Agricultural 

CC Community Services 
CE Education 
CH Hotel/Motel/Boarding house 
CI Industrial  
CL Leisure 
CM Medical 
CO Office 
CR Retail 
CT Transport 

L (Land) LD Development 
LF Forestry 
LL Allotment 
LO Open Space 
LP Park 

Z (Object of Interest) ZW Place of Worship 
 

Given the level of granularity of the regions, and with the aim to differentiate them in a helpful 

way, the primary categories of Class 1 appear too coarse. The C (Commercial) category, for 

instance, does not provide a sufficient level of information, whereas Class 2 categories help 

differentiate if regions capture primarily retail spaces, offices, industrial complexes etc. It is 

thus interesting to investigate the secondary categories of POI. Which ones are most prevalent 

across the NT and DT regions and do the distribution differ only based on region type?  

Classes not listed in Table 3 (See Appendix 3) were removed for their low relevance to the 

analysis. For example, CZ (Information) was largely composed of signalisation (road signs, 

monument descriptions). The primary category named “Other” is also difficult to conceptualise. 

Support POIs or ancillary buildings say little about the type of activity that characterises the 

area. “Monuments” (ZM) recorded many statues and other small features, skewing the data to 

indicate large proportion of “monuments” in regions, but not adding to an understanding of the 

regions’ usage. Finally, parent shells were also removed as simply knowing there is a property 

shell does not help distinguish its type. Often, property shells are desirable to detect visits to 

specific POI; if a visit is recorded near an airport, the parent shell helps determine whether the 

visit enters the airport or not. However, parent shells could describe malls, universities, stations, 

and other large buildings containing varieties of POIs, and being unable to distinguish them 

from the P label alone, they were filtered out to prevent misinterpretation. Most importantly, 

residential POIs were also removed. They constitute the overwhelming majority of London 
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POIS (over 60%), and thus would not help distinguish space compared to more ‘functional’ 

POIs (such as retail, leisure, transport kept above) in the following exercise. 

 

6.4.1.2. Linkage to H3BR_NT and H3BR_DT 

The ABP points are spatially joined to the H3BR_H, H3BR_NT and H3BR_DT separately, 

using point-in-polygon operations, to obtain datasets listing all the POIs and their corresponding 

Class 2 labels per region for each H3BR version. From these POI lists per region, frequency 

tables are then computed to obtain the most frequent POI class for each unit. This is called the 

unit’s dominant ABP. Thus, we obtain the distribution of dominant ABP categories per region 

type across Greater London. This helps assess what type of POI is captured by the various 

versions of the hourly H3BR, and investigate whether changing the hour zone results in 

different dominant ABP summaries across London. Figure 13 maps the dominant ABP per 

region for all three sets with a focus on Camden. The first map snippet corresponds to the raw 

POI points, visualising how the region delineation around static points creates different pictures 

of the dominant POIs per region. 
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Figure 13. Maps of dominant ABP per region for each region types, focus on Camden. In order, 
from left to right and top to bottom: (1) POI original points coloured by ABP class (2) H3BR_H 
coloured by their majority (dominant) POI’s class (3) same thing for H3BR_DT and (4) 
H3BRD_NT. Though the underlying POIs are the same as in the first map for all, the majority 
class varies spatially depending on the delineation chosen.  
 

6.4.2. Results 

The dominant POI per regions were then summed across Greater London and compared 

between sets. This is visualised in the bar chart of Figure 14. Firstly, we can note that the order 

of most prominent POI is different for the H3BR_NT than the two other sets. All three have 

retail (CR) and transport (CT) POIs as the top 2 most frequent dominant POIs. However, in 

third position, the nighttime regions have industry (CI) POIs instead of offices (CO) captured 

third by the other two region sets. This corroborates Greater London Administration (GLA) 

research reporting that nighttime workers in 2019 worked mostly in health sectors, professional 
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services and transport and storage (this last category often being located within CI POIs) 

(Greater London Authority, 2024). 

Mainly, Figure 13 and Figure 14 show that the dominant POIs are captured in different 

proportions across regions. Though the POIs are static, the description of Greater London 

provided through the filtering of key POIs per region is dynamic and dependant on the regions 

used. This is an effect of MAUP, but in this specific study, it also demonstrates clearly the 

effects of MTUP: changing the temporal zone in turn changes the regions’ spatial scales and 

zones and the way the same city is summarised. Across London, the CR category is more 

present for nighttime regions by 4% when compared to daytime regions and by 8% when 

compared to the median regions (Figure 14).  

 

 
Figure 14. Distribution of dominant ABP classes per region. Comparison of H3BR_NT, 
H3BR_DT and H3BR_H over Greater London. 
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Then, the same distributions were plotted at borough level, inspecting whether certain 

neighbourhoods of London may be disproportionately affected by this effect. The focus was 

put on boroughs with both day and night activity identified through Figure 10, to see whether 

the same relatively busy space is captured differently through temporal zone selection. 

For Camden (Error! Reference source not found.), the proportions are relatively similar. 

However, POIs of industrial, agricultural, medical categories, as well as parks, are not present 

in the list of dominant POIs for H3BR_NT. This could be explained by the larger size of the 

H3BR_NT not allowing for a high level of specificity. 

 
Figure 15. Distribution of dominant ABP classes per region. Comparison of H3BR_NT, 
H3BR_DT and H3BR_H across Camden. 
 
In Westminster (Figure 16), regions with a dominance of places of worship are only captured 

by the median regions. Again, the H3BR_NT sees high proportions of the dominant types, here 

offices and retail, which does not automatically indicate more activity in areas of retail and 

offices for nighttime region, but could be that the regions delineated may not be specific enough 

to capture detailed activity in other POI categories (see Figure 13). However, the GLA reports 

that Westminster experiences the most nighttime retail visits (between 6pm to midnight) when 

compared to any other borough (Greater London Authority, 2024). Thus, the H3BR_NT regions 

are expected to be comparable to the median and daytime versions for Westminster, which they 

appear to be with this assessment. 
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Figure 16. Distribution of dominant ABP classes per region. Comparison of H3BR_NT, 
H3BR_DT and H3BR_H across Westminster. 
 
Encouragingly, throughout those first examples, the daytime and median H3BRs propose very 

similar POI profiles of Camden and Westminster. It is encouraging that, despite a low Jaccard 

relationship (below 1% similarity) these two regions do not differ drastically in their POI 

summaries. 

Differences across Tower Hamlet are more pronounced (Figure 17). The order of key dominant 

ABP is different between the regions. H3BR_NT are led by CI POIs, whereas this category 

only come at the 4rth position for H3BR_DT and H3BR_H. There is a marked 10% difference 

in CI POI proportion between H3BR_NT and H3BR_DT. Nighttime regions display less 

regions with dominant CR classes, and CT dominated regions only come second after industry. 

Using one set of regions rather than another to summarise Tower Hamlets provides very 

different profiles of the borough. For the daytime and median regions, Tower Hamlets is a retail, 

office and transport led borough. For the nighttime region, it is dominated by industry and 

offices.  
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Figure 17. Distribution of dominant ABP classes per region. Comparison of H3BR_NT, 
H3BR_DT and H3BR_H across Tower Hamlets. 

 

6.4.3. Implications 

The results presented above show that there are differences in the way POIs are summarised 

across space depending on the time frames used for aggregation. The choice of temporal units 

impacts the profiles of London, Camden, Westminster and Tower Hamlets obtained. The 

changing mixes of POIs in these areas alert to scale and location issues. This finding echoes 

earlier findings from Chapters 3 and 4, which showed that, for different aggregates, LOAC and 

WPZ profiles were notably different. However, here, the POIs do not describe the data itself, 

but the underlying, fixed space. There is thus a dynamic reshaping of otherwise static elements 

through the choice of temporal units. Aggregation that follows mobile points captures space in 

varying ways, which had not been showed explicitly before in this work. 

The results above show a closer relationship between the POI profiles of H3BR_DT and 

H3BR_H, pressing that the times of low data captured by H3BR_NT are disproportionately 

impacted by the MTUP and MAUP effects. In a sense, using a more general set of regions 

(H3BR_H) would have less impact for daytime analysis with higher counts, than it does for 

nighttime, low activity-based analysis. In many ways, the findings through this chapter 

repeatedly highlight the intertwined natures of MAUP and MTUP. Much like with MAUP, 
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there is also no “one size fit all” solution to prevent MTUP effects in the aggregation process. 

The key takeaways from these results are discussed further below. 

 

6.5. Summary and discussion 

This chapter highlighted the importance of considering time in regionalisation and aggregation 

processes. It started off by reminding us of the H3BR’s good performance at the day scale 

before demonstrating its advantages were progressively lost as we strayed further away from 

the original H3BR underlying temporal scale. Following this finding, it was showed that the 

H3BR making methodology was applicable to hourly temporal scales, and multiple new region 

sets, based on varying temporal scales and zones, were created and tested. The tests built on 

what was developed throughout the thesis (Jaccard index, omission counts and analytical 

comparisons) to try to quantify and formulate the MTUP’s effect on the overall H3BR making 

process. In this context, the H3BR were harnesses as a tool to help assess what incremental 

changes to temporal input can change in outcome regions. This was a great opportunity, both 

to inform on the realistic capabilities of the method, but also to insist on the MTUP’s importance. 

The key conclusion showed that the impacts of these incremental changes were significant, and 

many factors can and should inform decision making. 

Some important limitations to the studies above can be noted. Firstly, there were no attempts to 

change the atomic unit of H310 to another H3 scale which could have been a better fit to hourly 

counts. This alteration would have increased the complexity of comparing H3BR_D with 

H3BR_H, and the impact of MTUP on the method would have been harder to assess, as the 

regions would have been different through other factors than temporal alone. MSOAs were 

assessed to ensure they could still be reasonably used, and from there onwards, the aim was to 

change the methodology as little as possible, so the outcome differences between versions of 

the H3BR would only be due to temporal scale and zone differences. Another limitation is that 

these analyses do not investigate the region’s appropriateness in picking up events rather than 

overall patterns. What mix of POIs would capture unique events rather than repeatable space? 

It would have been valuable to explore this more thoroughly through the final section of this 

chapter concerned with spatial compositions. 

Regardless, the findings help draw some recommendations for H3BR in light of MTUP effects. 

First, using a summary region (average of a period of time, such as the H3BR_H and H3BR_D) 
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was found to provide advantages compared to traditional methods. These summary regions 

allow for comparison across different times, and promote general applications at their temporal 

scale. However, the closest fit to the data, especially for areas and times of low activity, might 

not be these summary regions. In many contexts, nothing can replace having a research 

direction or informed hypothesis. If research is conducted specifically on times of low data, 

such as nighttime, the thematic regions (H3BR_NT or DT) can be a better fit for the analysis. 

They, however, won’t be as generalisable as the summary ones. This is especially true for times 

of low data, as it was shown through the analysis in this chapter that these are the times that 

gain the most from bespoke regionalisation and are the most affected by unfit regions.  

Using data at specific hourly scales also relies on the data being good enough at said scales. 

‘Big data’ does not equate to the data being appropriate and plenty at all temporal and spatial 

scales. Choosing the scale requires good field knowledge, a good notion of the applications, 

and an understanding of the dataset. In fact, this dataset has low hourly counts, especially at 

night. This could be driven by underlying factors such as app types, but also simply by the type 

of activity captured being lower at night. If a research aim was to conduct an analysis of night 

activity around specific, granular areas, perhaps this dataset might not be the most suitable, as 

it is biased towards daytime activity and is best aggregated to small areas by day rather than by 

hour. Reducing the impact of MTUP and MAUP also relies on a strong understanding of the 

dataset dynamics. We can confidently recommend its use for tracking daily activities. Hours-

wise, it captures interesting dynamics across days, but for very precise hourly comparisons it 

would be helpful to gain more confidence that an hour’s activity in a small area is due to specific 

events rather than apps-based dynamics.  

The final analysis stressed the importance of seeing MAUP and MTUP as a combined set of 

problems rather than separate effects. The kernel of time geography remains this intrinsic 

relationship. Accounting for both in reasonable ways ensures conclusions reached through 

analyses are due to the data and behaviour studies rather than a tampering of spatial and 

temporal scales.  

Regardless, this chapter helps close the current H3BR experiments on a relatively high note. 

The methodology proved to be rapidly and easily reusable to the creation of multiple sets of 

units, which enabled this exploration of MTUP. Thus, they can also become a research tool as 

well as a flexible aggregation unit. This is encouraging as the long journey towards temporal 

tessellation starts with more incremental and quantitative explorations of the MTUP effect.  
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7. DISCUSSION 
 

7.1.  Introduction 

 
Traditionally, in-app mobile phone datasets and other sensitive consumer location datasets have 

been mostly aggregated to arbitrary grids or administrative boundaries. When the data is 

accessible in its raw form, researchers have been able to utilise it to conduct valuable analysis 

in epidemiology, transport planning and countless other fields. However, preliminary tests 

proposed in this work demonstrated that aggregating the datasets to protect privacy significantly 

alters the data, often impacting the results of analysis conducted with them. This proves to be 

particularly troublesome as the access to raw datasets is still largely limited, with the more 

frequent use cases relying on aggregates. Consequently, the aim of this thesis has been to spark 

conversation about the way these datasets are accessed and disseminated, and propose a new 

tractable method for regionalising and aggregating sensitive location dataset. This work 

benefitted from a privileged access to an in-app dataset, a novel source of location data with 

established potential for geodemographic and mobility analysis. The efforts were directed 

towards generating regions which not only could preserve the underlying data well and protect 

privacy, but would also provide new granular insights on the spaces defined based on the times 

at which they are accessed and the type of activity they may capture.  

The presentation of the in-app data provided in Chapter 3 identified issues with the dataset 

related mostly to coverage, uncertainty and inconsistencies in sampling. It also brought forth 

the necessity to produce aggregated products, to even be able to provide and present the data’s 

initial descriptions. As a result, Chapter 4 sought to investigate more deeply the outstanding 

challenges posed by the MAUP during data aggregation. The regionalisation principles, along 

with the preliminary tests conducted in Chapter 4, provided a firm foundation enabling the key 

findings of Chapter 5. Learning from other methodologies, and assessing their strengths and 

drawbacks helped justify and inform the development of the proposed H3BR method. The 

analyses throughout provided evidence that bespoke data-driven regionalisation facilitates 

aggregation and helps propose better quality aggregates that meet disclosure control 

requirements and protect individual and commercial information. Chapter 6 followed the 

thematic thread woven throughout this work: the value of applying these new forms of data at 

granular temporal and spatial scales for mobility analysis. It thus proposed an initial assessment 
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of the effect of MTUP on the H3BR methodology, aiming to highlight the key impacts of 

changing temporal scales and zones, to better inform future regionalisation efforts and 

applications of the method developed here. Together, these findings suggest that alternative 

geographic units derived from consumer data can be made which capture granular insights on 

data users and spaces. These kinds of outcomes are now possible due to the advent of new data 

sources and new GIS tools enabling the development of these data-driven regionalisation 

methodologies.  

This final discussion chapter aims to consolidate this thesis’ contributions by first reflecting on 

the methods used throughout. The key limitations of the analyses presented are also described 

in more depth. Then, the applications of this work are explored primarily in the contexts of 

academic research, with acknowledgments of the implications for data providers and users alike. 

Future prospects for this study are discussed, exploring the research avenues which could 

potentially acknowledge some of the limitations and shortcomings discussed. The chapter 

concludes on the key takeaways from this thesis.   

 

7.2.  Reflection on Methods 

Research conducted on in-app data is often exploratory, due to the novelty and recent uptake of 

this specific data type. On the other hand, regionalisation methodologies are more established, 

but often remain proprietary or project specific. In developing this thesis, it thus became 

necessary to devise new methods to suit the specific research objectives of regionalising in-app 

data, but also produce more generalisable regionalisation methodologies. In the approach to 

assessing the impact of MAUP on this dataset, new criteria for what constitutes data loss needed 

to be defined. However, the most prominent example where new heuristics were required for 

this work was the development of the unique regionalisation methodology. This method relied 

on several context-based decisions and pragmatic steps which are discussed here in more detail. 

The final assessment of MTUP effects in Chapter 6 hinged on various definitions and tests, 

which should also be reflected upon. Given that other methodological approaches were more 

established, such as the point-in-polygon techniques and the app accuracy assessments, this 

section does not extensively discuss them. This discussion will thus focus on three main areas: 

the initial data assessment with a special emphasis on the MAUP tests, the regionalisation 

methodology, and finally, the MTUP analysis, outlining the rationale and impact of each. Each 

stage required a mix of subjective, field-informed and quantitative decision making, and where 
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possible, tests were implemented to justify the choices as objectively as possible in the context 

of the desired outputs. 

7.2.1. Data assessment methods 

The dataset assessment (Chapter 3), comprising of metadata and data description, was largely 

exploratory. Other studies have described with much greater detail what composes in-app data, 

and what sets them apart from other large human-generated location datasets (See Calabrese et 

al., 2013; Almuhimedi et al., 2015; Kishore et al., 2020; Gibbs, Eggo and Cheshire, 2024 for 

some examples). However, the descriptions provided in Chapter 3, pertaining to spatial and 

temporal coverage, app counts, device and impression distributions, as well as accuracy levels 

throughout the dataset, amply served the purpose of contextualising the subsequent analysis. 

The coverage analysis helped decide which samples of the data were the most appropriate for 

future tests, settling largely on Greater London and the years 2018-2019. Low-accuracy 

locations were filtered out following these assessments, and the data description provided a 

strong basis to scope the type of insights one could expect from the in-app data, when 

contextualising its different attributes (such as the implication of certain apps and devices 

producing more data). Mostly, this initial data assessment served to build an understanding of 

what was at stake with the subsequent MAUP analyses. What was implied by “data alteration” 

in this context, would be loss of valuable and interesting information, potentially uniquely 

provided by these types of data.  

Focusing on the MAUP assessment, quantifying the data loss through changes of scales and 

zones required the invention of a stable metric to compare across aggregates. This was done 

through the creation of the activity count: the count of unique devices per day per area tested. 

This is a new heuristic, as there is no general consensus on how this should be accounted for in 

the literature, each decision remaining project specific. It should be noted that other metrics 

were presented, such as total impressions or modal locations per area. These were not tested 

against one another beyond exploratory assessments, which would have been a more inductive 

approach. However, the choice of the activity count was justified in the context of the data’s 

nature and potential in providing mobility insights. As explained throughout the work, 

capturing individuals as they travel through various regions provides interesting information 

closer to capturing the original data than modal locations, and removes noise from otherwise 

counting all impressions. It is, however, important to acknowledge that the impact of double 

counting unique devices in that matter is an outstanding challenge. Claiming an output is more 
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granular, when it is perhaps simply counting the same device more times, could be inaccurate 

in multiple contexts. Differentiating granularity from multiplicity, and proposing a consistent 

and transferable way to quantify granularity requires further heuristics. Overall, the activity 

count produced the level of insight needed to assess the various regionalisation methods tested. 

It allowed for a quantitative comparison of population counts obtained through the standard 

aggregate against a control in the context of Chapter 3, and was applied in Chapter 4 to identify 

which aggregate scale best fit the original data. 

The initial assessment of MAUP (Chapter 4) was conducted by varying both scale and zone. 

This helped describe both key MAUP effects and show the importance of creating bespoke 

regions on top of aggregating at larger scales. However, this assessment could have been 

conducted with more precision by introducing the scale and zone changes more incrementally 

and reporting exact measures for each, as well as the WPZ group comparison displayed. This 

was improved upon in Chapter 5, in two ways: (1) when H3 resolutions are assessed to settle 

on the H310 size for the building block selection and (2) when comparing the regions 

quantitatively to OAs and OSGBs through the tracking of omitted counts rather than population 

counts.  

 

7.2.2. Reflections on regionalisation methodologies 

Developing the regionalisation methodology was the core output of this thesis. The literature 

review’s focus on aggregation provided the backbone for much of the initial decision making. 

The core principles proposed by Casado Díaz and Coombes (2011) for the making of functional 

regions were integrated to help provide a more formal understanding of what constitutes an 

acceptable output. Considering the ‘building block’ methodology, famously used in OA 

delineation, among others, helped conceptualise and develop the core function of the H3BR 

methodology (Cockings et al., 2013). However, as the first in-app data specific regionalisation 

process, many considerations were not directly answered via traditional methods.   

A key methodological consideration was to create static regions. This constitutes a drawback, 

especially in the context of mobility analysis. Not having a notion of origin-destination and 

flows significantly reduces the scope of analysis conducted with the aggregate. However, the 

aim was to create outputs more akin to WPZ, which may not be renewed past the 2011 census. 

Travel-to-work areas could also be devised, potentially by readapting the proposed method. 

This represents a commonly recognised issues when aggregating granular point datasets to 
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areas, which was not addressed as part of this work’s methodologies. This key decision sought 

to simplify the method with the aim of making it more generalisable. It is hoped that, 

nevertheless, the static snapshots provided still constitute clear improvements over the industry 

standard aggregates to arbitrary grids. That being said, future research, with more specific and 

less global focus, could explore the generalisation of the regionalisation method to specific 

flows and origin-destination behaviours not captured here.  

The criteria selected for the regionalisation methodology were in part informed by literature 

and in part justified by the aims outlined. Homogeneity is a key criterion of most rule-based 

functional regions (Martin, 2000; Cockings et al., 2011). However, this is limited in our 

methodology, as the dataset did not contain geodemographic information to quantify that 

homogeneity. The choice of land use and terrain became a practical alternative, as it also 

promoted the creation of regions considerate of underlying land attributes. The decision to nest 

the regions within administrative boundaries was also justified by the intended use of these 

types of data aggregates. By allowing direct linkage with MSOAs, a nested geography has more 

transfer potential for analysis, and reduces the necessity for another spatial join and change of 

spatial units (which introduce more uncertainty and MAUP impacts) to compare with other 

dataset or attribute geodemographic characteristics. Consistency between geographies is valued 

in geographical analysis (Walford and Hayles, 2012). There is additional value in proposing 

nested geographies as they are more easily interpretable and understood by users outside 

specific research communities, and reflect the shared advantages of a recognisable region 

outside of solely being a statistical summary. It is important to note that nesting this 

methodology inside other geographies may have given the regions another dimension which 

may be harder to predict and quantify, as these overarching geographies carry their own 

meaning and criteria.  

The ranking of criteria was also justified by the aims. The first criterion for merging was to 

meet the threshold number of devices, as the key motivation of the regionalisation was 

disclosure control. Terrain came second, and the whole process was nested within 

administrative boundaries. No assessment was conducted to investigate how removing the 

nesting would impact the region shapes, or if data-only regions would capture the same thing 

as those made with the inclusion of the land-use attribute. The method proposed, however, 

provides the same result every time, as long as the criteria and thresholds set are the same (no 

seed, the method does not require a specific starting point, etc.). Though the changes in outputs 
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resulting from the removal of certain criteria were not investigated, a quantitative sensitive 

analysis was conducted using the established Jaccard similarity index to assess the method’s 

volatility.  

Another key methodological decision in regionalising the data was the choice of hexagons for 

the initial tessellation. As explained in Chapter 2, they provide many advantages, particularly 

for large scale computations and uniform comparisons across neighbours. It should be noted 

that they are not ideal for all applications. In the case where the data is to be compared to 

physical geography databases, commonly provided in rasters or square grids, a square-based 

methodology would provide a more appropriate and direct relationship between the two 

datasets. However, for nesting and comparison with administrative boundaries, hexagons were 

the preferred choice. They fit regional outlines more closely, particularly at the high resolution 

of H310 (De Sousa et al., 2006). 

Many other choices were motivated by the desire to propose a clear, reusable and tractable 

methodology. The simplicity of the method, which could be one of its main drawbacks, is here 

privileged for its adaptability and versatility. It is hoped that this thesis helped consider 

regionalisation with a less project-specific approach than usual. Great regionalisation examples 

cited throughout this work sought to output specific datasets, such as the OA. However, the 

frequency at which new consumer datasets appear called for generalisable methodologies for 

sensitive point datasets. Often, they carry similar privacy risks, and could benefit from an 

approachable, widely applicable methodology to conduct initial regionalisation tests. The 

methodologies and considerations provided in this work, though currently specific to in-app 

data, can still be primordial in the development of such new tools. 

The regionalisation validation was conducted mostly through the assessment of count 

preservation. This helped assess the performance of the regions and clearly rank them amongst 

other methods. However, to further validate the proposed regionalisation method, additional 

statistical approaches could be applied. These include testing spatial autocorrelation to measure 

internal consistency, and evaluating how much information retention occurs in the new regions, 

such as with entropy measures. Bootstrapping could be used to validate the robustness of 

regional boundaries under resampling, strengthening confidence in the methodology’s 

reliability.  
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This focus on omissions (and remaining counts) to compare the performance of aggregation 

methods is a core element throughout the thesis. While focusing on omission as a performance 

indicator in the thesis is valuable for ensuring data retention and minimising privacy risks, it is 

important to recognize that omission alone may not fully capture the effectiveness or usability 

of the regionalisation method, especially in different application contexts. The significance of 

omission depends largely on the intended use of the dataset. For example, in mobility research, 

minimising data omission is critical for maintaining detailed movement patterns. However, in 

other contexts such as policy-making or urban planning, factors like the representativeness or 

predictive power of the regional units might be more important than simply reducing omitted 

data points. The choice of minimising data omission throughout the thesis was motivated by its 

focus on mobility analysis, but this means that findings must be recontextualised within this 

exercise and thematic emphasis.  

To consider other contexts, a more comprehensive validation framework could be considered, 

incorporating additional performance criteria beyond omission. These might include: (1) data 

retention and information loss: assessing how well the regionalisation preserves key patterns or 

relationships within the data. Entropy measures listed above could quantify the extent to which 

the original data’s variability is retained after aggregation. (2) Predictive accuracy: evaluating 

how well the regionalised units can predict relevant real-world outcomes (e.g. mobility patterns, 

socioeconomic trends, or transport flows) would provide a practical measure of their utility. (3) 

Clustering consistency: assessing the internal consistency of the regions, in terms of spatial 

homogeneity or spatial autocorrelation, would also help determine whether the regions reflect 

natural spatial patterns. By incorporating these additional criteria, the evaluation framework 

could offer a more balanced view of the performance. This would have helped ensure that the 

regionalisation process is better aligned with the varying needs of different applications, but 

was outside of the scope of this specific thesis, which focused on mobility analysis applications 

to drive necessary choices in refining the methodology. 

It finally should be noted that the assessment of other data-driven methodologies (quadtree and 

Voronoi) relied heavily on the aforementioned qualitative assessments built on the Casado Díaz 

and Coombes (2011) principles. Voronoi, quadtree and H3BRs are differently generated, some 

of them requiring prior clustering or aggregation to building blocks. Their incomparable shapes 

and resulting outputs are complicated to assess quantitatively against one another. Thus, the 

final claim that H3BRs are more appropriate is heavily reliant on the initial criteria set out to 
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frame this project. H3BRs proved especially performant in creating regions which were 

recognisable as such and interpretable in the context of other geographies, underlying terrain 

and mobility studies. As there was no statistical assessment between the three proposed data-

driven methods, this project does not necessarily claim that the final methodology (H3BR) 

outperforms the others quantitatively in every context.  

 

7.2.3. Reflection on MTUP assessment 

The final area of analysis which required methodological considerations was the assessment of 

MTUP effects on the regionalisation methodology. As touched upon in the Chapter 6 summary, 

this assessment could be improved upon in a number of ways. It was primarily investigational, 

and though it provided considerations and recommendations to address the issues identified, it 

did not provide technical solutions to the MTUP. It applied the heuristics developed throughout 

other chapters, and most of the methodological considerations listed above for the making of 

the regionalisation algorithm carried over into the MTUP analysis. 

Nonetheless, one key area where new methods were implemented was to define and quantify 

what was understood by temporal scales and zones. This was built from MTUP literature and 

echoed MAUP terminology used throughout previous chapters, to homogenise the conversation, 

help in quantifying the effects, and relate findings to previous assessments of MAUP. This 

description of temporal scale changes on H3BR relevance focused mostly on reducing temporal 

scales rather than increasing them, as this work aimed to promote granularity. Zones could have 

been explored through dimensions other than hours, but multiple angles of the zoning question 

were explored throughout the analysis of ‘thematic regionalisation’, which was also defined for 

this analysis. Finally, the MTUP assessment attempted to go one step further than simply 

tallying omission proportions by assessing the distribution of POIs across different sets of 

regions. It should be noted that this was done through the comparison of ‘majority’ or dominant 

POI types. Perhaps a more complete and nuanced analysis could have explored mixes of POIs, 

and try to address whether the regions are helpful in capturing singular and notable events rather 

than simply generalising space. Nevertheless, it was necessary to attempt to summarise spatial 

interpretations for comparative analysis, to grasp the broader impacts of MTUP on the H3BR 

method and inform its realistic use. 

Regretfully, the complexity of quantifying the relationship of MAUP and MTUP in a more 

explicitly paired analysis was proven to be outside the scope of this work. However, this 
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assessment shed light on their intertwined natures to motivate analysts to consider them in equal 

measure, and perhaps helped drive future spatial and temporal tessellation attempts.  

 

7.3. Limitations 

This thesis provides numerous insights and outputs, despite some methodological 

considerations evoked above. The work also has limitations, primarily stemming from the 

inherent uncertainty of the data and the ways sensitive datasets are restricted.  These limitations 

are acknowledged and discussed below 

 

7.3.1. Dataset limitations 

Issues of data quality introduced in Chapter 3 brought about concerns of uncertainty at various 

stages of analysis, which could not always be quantified and accounted for. One example is the 

unequal spatial and temporal data distribution. Attempts were made to reduce this concern by 

focusing on Greater London, the area with the most consistent coverage throughout the data 

period. Trying to acknowledge the disparate coverage brought about a key limitation of the 

work, the exclusion of rural areas. Only conducting this assessment at the city scale means there 

is little understanding of how the regionalisation method would perform nationally, especially 

in areas of lowest data. Count preservation strategies may be most relevant in areas of low data, 

which could not be assessed here. However, the inconsistent coverage would have weakened 

the conclusions and reduced the likelihood of creating a stable, comparable output. Though the 

dataset provided was high in volume, not all points were retained, and the behaviours captured 

might represent very specific, mostly urban, populations. 

This brings us to issues of representativeness being prominent with the in-app data provided. A 

concern with consumer datasets is that their fewest most active users generate a majority of the 

points (Lansley and Cheshire, 2018). Attempts were made to try and mitigate this, by removing 

large outliers from the data, or counting unique devices, thus filtering the noise overactive 

devices may produce. However, with these new forms of data, some uncertainty could remain 

undetected and unaccounted for. For instance, it was assumed that the large variations in device 

proportion throughout 2018 were explained by changes in operating software policies or apps, 

but this remains speculative insofar as we were not provided empirical evidence to make 

causation out of correlation. 
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The data bias analysis of Chapter 3 attempted to identify which populations are best captured 

by the dataset. Certain populations across Greater London were in fact under or overrepresented 

by the data when compared to census information. Though this analysis was imperfect due to 

the linkage necessary for the assessment, and the filtering of nighttime points to reflect census 

data, it pointed out uncertainties in how closely populations are captured by these datasets. 

Additional research could be conducted to provide a more thorough assessment of population 

representation. Recent studies using the same in-app dataset described here have developed 

home-location assignment heuristics to more closely describe the underlying populations 

driving these data impressions (Gibbs et al., 2024).  

Finally, notable uncertainty stemmed from the proprietary aspect of consumer data. For 

example, there were no details provided on the apps, likely for commercial data protection 

reasons. This meant that, despite benefiting from very privileged access to raw point data, many 

questions pertaining to the dataset collection processes remained unanswered. Therefore, this 

work could selfdom account from uncertainties arising at these stages of the data making 

process, or filter out specific apps to capture specific behaviours. The full list of variables 

provided in the dataset were also not communicated here to prevent commercial disclosure, 

which could be seen as a limitation to this thesis’s aims of transparency and reproducibility. 

Consequently, apart from the data representativeness assignments laid out in Chapters 3 and 4, 

this work had little insight as to what type of transaction or behaviour this in-app datasets may 

capture. This was less of an issue for developing the regionalisation strategy, especially as we 

aimed for a generalisable method. However, studies seeking to harness in-app mobile phone 

data to produce geodemographic or mobility insights would require a more in depth 

understanding of the underlying behaviours and collection methods.  

 

7.3.2. Secure environments and software access 

Due to the sensitive nature of the dataset, all data processing was constrained to the DSH, 

including the development of the regionalisation methodology. This carried additional 

limitations. A lot of time was required to reach a balance between the data requirements (e.g. 

size, format etc.) and the DSH permissions. It is acknowledged that access to remote secure 

environments greatly improved the feasibility of this work, in comparison to the traditional 

physical labs, by reducing the physical barriers required to access the dataset. However, it can 
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be reiterated that the skills necessary to navigate technical hurdles inside remote servers 

required substantial training and resources. 

More importantly, some tools were unavailable due to DSH restrictions. An aim of this work 

was to test the AZTool automated zone design software (Martin, 2003). This was not feasible 

as it could not be onboarded onto the DSH within an appropriate time frame for this project. 

This further motivated the choice to develop a methodology in R, or other programming 

languages, as, in the DSH experience, these are more directly adoptable. As most sensitive 

dataset would be subjected to similar restrictions, providing R functions increases the likelihood 

that the method is authorised across platforms. In light of these limitations, a number of 

interesting automated zone design methodologies could not be properly compared using the 

sensitive in-app data. 

In summary, this thesis underscores key considerations for using such data to capture specific 

patterns, noting that the analysis is contingent on the data available, which may restrict the 

range of insights that can be obtained. Despite this, it is hoped the data quality was appropriately 

assessed to meet the main aim of addressing issues pertaining to regionalisation and aggregation. 

 

7.4. Applications and Implications 

Despite the recognized limitations above, this thesis offered key insights for the aggregation, 

dissemination and integration of in-app mobile phone datasets in and beyond geographic 

research. The applications and implications of this work can be broadly categorised into five 

parts: (1) enabling real world applications of promising mobile phone data through their safe 

dissemination (2) contributions towards an understanding of the utilised in-app data, (3) 

provision of a formal framework for addressing MAUP and assess data regionalisation and 

aggregation, (4) implications derived from the MTUP assessment (5) contributions toward data 

protection, privacy and ethical discussions. 

 

7.4.1. Harnessing promising datasets  

As listed in the literature review (Chapter 2, Section 2.2.2.2), mobile phone data has a wide 

range of applications. The potential of these datasets grows further as they are disseminated 

with more stakeholders and applied in new areas to provide real-time insights in a safe manner. 

The regionalisation method proposed is essential for disseminating sensitive data in ways that 
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maintains individual privacy but still provides actionable insights. In doing so, the work directly 

addresses one of the most critical barriers to the use of mobile phone data in applied contexts: 

how to balance utility with confidentiality. This newfound balance opens up important 

opportunities for use in public health, disaster management, and humanitarian response, 

amongst many others. For example, during the COVID-19 pandemic, mobile phone data played 

a key role in many countries, tracking movement patterns and investigating the efficiency of 

lockdown strategies (Jeffrey et al., 2020; Kang et al., 2020). In conflict zones or areas 

experiencing natural disasters, humanitarian actors could use similarly regionalised and 

aggregated datasets to monitor displacement, aiding the protection of civilians, as activity 

counts at granular scales provide valuable insights when timely information is vital. The spatial 

sensitivity preserved through regionalisation enhances the ability to respond dynamically to 

unfolding crises using novel and promising datasets. 

Beyond these example applications, the methodology developed is intentionally flexible and 

can be adapted to other forms of dynamic spatial data (such as transport flows, social media 

activity, or other point data) making the approach transferable. This broad applicability 

increases the relevance of the work for a wide range of actors, including governments, NGOs, 

urban planners, and public health agencies. Ultimately, the uptake and impact of this work will 

depend on institutional efforts to safely integrate data-driven information into research, policy 

and practice. 

7.4.2. Understanding in-app data  

Regarding the usability of the specific in-app data used throughout this thesis, it is evident that, 

when considered alone, this dataset would be insufficient to accurately represent the general 

public. However, the analyses provided illustrate ways in which this data could offer relevant 

insights into its target populations. Due to their recent emergence, few public studies provide 

in-app data descriptions inclusive of information such as app distributions and other key 

metadata. This work, through providing such descriptions, contributes to building a knowledge 

base of what is captured by these datasets. The high granularity of the data can be harnessed 

with a strong understanding of its representativeness, which could enrich representations of 

space and populations outside of traditional census-based measures. Providing this information 

in an accessible format could offer academics a reliable reference point, and allow further 

investigation into the biases and representation issues mentioned previously. 
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The specific applications of the dataset could take many forms, and should be considered 

independently, on a case-by-case basis. This decision making can be enabled by an access to 

the dataset provided by this study. The aggregated products proposed allow researchers outside 

of the CDRC to inspect the dataset and assess its usability in the context of their own research. 

The H3BRs’ linkage potential helps couple these datasets to other sources of data, potentially 

facilitating these analyses. By making the dataset both easily accessible and generalisable, this 

thesis hopes to promote their use and inspection by the wider research community, which in 

turns will help build a rigorous, shared and transparent understanding of these novel sources of 

data.  

 

7.4.3. The MAUP, formal frameworks for aggregation, and dissemination 

Perhaps the most notable application of this thesis relates to MAUP and regionalisation. There 

has been a significant gap in the assessment of these issues, particularly with regards to new 

forms of data and spatial aggregation. This thesis provided ample illustrations of the impact of 

MAUP when aggregating in-app data. The basis provided encourages future assessments, as 

new forms of data continue to arise and permeate geographic and social science research. 

For the regionalisation methodology proposed, a formal framework was designed, building on 

past literature and adding elements centred around reproducibility and transparency. A formal 

framework generally refers to a structured set of rules, principles, or guidelines that are 

explicitly defined and rigorously applied to a specific process, with explicit rules and definitions, 

including generalisability and scalability. The assessment principles proposed could thus be 

considered as a formal framework for benchmarking regional outputs for use in mobility and 

geographical analysis. It is hoped that this can inform future regionalisation methodologies for 

aggregation and consolidate decision-making. 

The detailed methodological descriptions of the H3BR algorithm were also provided to promote 

future applications. Point datasets could now more readily be aggregated to bespoke regions 

rather than arbitrary grids where a project-specific regionalisation is unnecessary or 

inaccessible. Standard practice aggregates could thus be improved upon, without requiring in-

depth knowledge of the datasets or investing human and financial resources into creating 

dataset-specific regions each time. If the regions remain general, as described in this work 

(static, capturing only a general time frame), they still improve upon arbitrary aggregates for 

dissemination.  
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7.4.4. Applications of the MTUP assessment 

Insights from the MTUP assessment revealed several implications for optimised region profiles 

that are both spatially and temporally pertinent for analysis. This analysis showed how 

incrementally changing the temporal input can help pinpoint the scales and zones at which a 

certain method is most useful. This information both guides the potential applications of the 

dataset used to create the regions, and provides additional dimension for those seeking to use 

the output regions themselves to conduct analysis. The evidence regarding the differences 

between the compared temporal regions may also help grasp the temporality and behaviour of 

users within the data.  

Three key applications can thus be retained from this temporal assessment. First, the regions 

are better understood as a result. Future users are aware of their limitations and the boundaries 

imposed by the underlying dataset, specifically in terms of temporal scale. Clear 

recommendations were provided for selecting temporal scales when using the H3BR in general, 

which provides overall guidance for their best practice use.  

In turn, questioning the aggregate’s quality for times of low data provides further insights into 

the dataset, confirming that it captures daily activities over the daytime the best, especially if 

aggregated. Big data does not equate to perfect data across all spatial and temporal scales, and 

these analyses reminded future users of the importance of considering data capacities, as well 

as spatial and temporal dimensions, when choosing aggregate zones.  

Finally, the assessment demonstrated the versatility of the H3BR methodology. Automated 

zone designs beyond the H3BR can be used as exploration tools where the spatial and temporal 

dimensions can be tested and better quantified. Generalisable methodologies thus have this 

added benefit of being adaptable to multiple test scenarios for conducting tests. 

 

7.4.5. Data protection, privacy and ethical implications 

A more theoretical perspective on this thesis’ implications includes a discussion of how the 

work proposed throughout contributes to debates around data ethics. The main emphasis was 

put on preserving data privacy through disclosure control, largely by removing counts below 

10 devices. This was successfully achieved.  However, the creation of spatial aggregates of 

these data types carries ethical implications beyond simple disclosure control. Producing ethical 
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outputs using in-app data does not equate solely to producing non-disclosive, law-abiding 

outputs. Considerations of context and thinking through potential scenarios of use is paramount. 

This is in part because data could still potentially be misused despite being non-disclosive per 

se (Ruppert et al., 2017; Williams, 2020; Sieg et al., 2024). Additionally, transparency and 

reproducibility are core ethical principles which are sought to be enabled through the proposed 

research.  

‘Where’ data is collected plays into the ethical challenges that may arise when it is disseminated. 

Data travels but is always encountered within significant local settings. The invisible aspects of 

data (origin, locality of collectors, initial cultural context etc.), must be thought of critically and 

always in relation to other localities rather than as general entities (Loukissas, 2019). This 

geographical recontextualization is particularly difficult with datasets such as in-app data, as 

the sources are heterogeneous, with various and often unknown local attachments. In line with 

this, another ethical concern in treating these datasets is their dehumanisation, partly leading us 

to believe that the data cannot be dangerous because it is impersonal (which has been 

demonstrated to be untrue), and partly masking the often-complex social dynamics of the 

individuals who make up the data. As explained by Ruppert et al. (2017) “to speak about data 

as though it records subjects and objects independent from the social and political struggles that 

govern them is to mask such struggles” (p.1). Grasping the social and political context is not 

simply a matter of disclosure control, but also a matter of understanding the acceptable 

dynamics to represent, and how to visualise underlying struggles and power dynamics 

represented by the data and its use (Ruppert et al., 2017). The work presented here sought to 

define the dataset as best as possible prior to aggregation in the hopes of recontextualising the 

data within its local setting, rather than only presenting it as disjointed point data. The literature 

review (Chapter 2) sought to place ethical concerns pertaining to the data’s nature at the centre 

of the conversation. It is hoped that improving aggregate data quality can help address many of 

the issues relating to misuse and misinterpretation of these inherently socio-political datasets. 

Additional ethical challenges have also arisen from the rapid appearance of new actors (third 

party data holders) and technologies which are hard to foresee. The development of technical 

solutions to strengthen disclosure control proposed in this thesis offers promising solutions to 

this. These allow for analysis to be obtained without the researchers having access to any 

individual’s data, thus preventing issues stemming from data sharing or mistakes in aggregation 

processes (Jain et al., 2016; Bampoulidis et al., 2020). These developments promise a wider 
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access to data by researchers, reducing imbalances in power-dynamics. This shift from expert 

to non-expert driven data access and spatial data science helps democratise tools, data and 

information access, and empowers users. Non-experts can thus both advocate for better use of 

their data and utilise them themselves. Defining privacy helps shift the debate focus from what 

privacy is to the outcomes of societal struggles over privacy (Ash, 2016). Thus, this work 

promotes the safe dissemination of these new data types in these ever-evolving contexts and 

proposes technologies which could potentially increase individual’s control and understanding 

over their data. Safe dissemination of location data and understanding of its place in the physical 

world can open up the ethical debates to help define and legislate “acceptable use” and “public 

benefit” of sensitive data, and enable wider discussions and explorations of other ethical debates 

centred around data ownership and usage.  

 

7.5. Future Prospects and Conclusion 

In the context of data dissemination, a notable area of future research would be to investigate 

how the proposed regionalisation methodology could be intergrated as part of a database 

querying system (see de Montjoye et al., 2018). This would mean users could request a data 

aggregate of the in-app data or other sensitive point datasets, specifying the criteria required, 

and receive an aggregated product meeting these requirements. This would be interesting as 

researchers would not automatically depend on a direct access to the raw data to obtain more 

specific aggregates. For instance, one could specify if they would like total impressions or 

unique device counts, which time scale and zone are preferred, which geography to merge the 

outputs in, and which thresholds to meet. This carries over this work and the dataset from a 

restricted access model to a querying system model and would provide valuable insights on 

what is feasible in terms of data-driven bespoke regionalisation for project-specific requests. 

Avenues for future research should also include more exploration of time analysis in 

conjunction with space. The conclusions drawn from Chapter 6 emphasised the need to design 

regions for both space and time, and seeking ways to establish how to simultaneously account 

for the two together rather than as separate elements. Perhaps considering space and time 

variograms or space-time point patterns, exploring ways to more systematically measure the 

stability of spatial units over time, and ultimately designing the first space time units could be 

exciting future developments which would build upon the exploratory space-time research 

conducted in this thesis.  
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As was demonstrated throughout this discussion section, this research carried significant 

amounts of uncertainty. The aim here was to focus on addressing key issues of data aggregation, 

but much more could be done with regards to adapting in-app data for mobility research. 

Particularly, it is deemed necessary to explore avenues of aggregation which could produce 

non-static grids, and consider key concepts in mobility analysis, namely origin and destination 

flows, and a clearer notion of movement across different key spaces at different times. 

Furthermore, developing case studies that apply the in-app data to specific problems, and 

address a particular social or public issue could be beneficial. This approach would clearly 

demonstrate the scenarios in which these datasets can offer social value or mobility insights. It 

is hoped that this work lays the groundwork for understanding the types of use cases that might 

be applicable. Several such research avenues may rely on robust aggregated products, where 

access to raw data is not available. Thus, we hope that this work also provided the initial dataset 

and theoretical basis required to encourage and inform future analysis conducted on these 

interesting and novel data sources. 

Overall, although additional progress is necessary, this study offers encouraging evidence that 

granular insights into the population can be drawn from innovative location datasets in an 

ethical and non-disclosive way, using bespoke data-driven regionalisation. In-app data carries 

significant potential, but also significant risks. Their ethical implications are often poorly 

understood, making it critical to gain further access into the datasets to define what constitutes 

appropriate use, in both technical and ethical terms. Though they may not be appropriate 

substitutes for other established data sources (such as the census) their granularity can be 

harnessed to propose new ways of approaching mobility analysis and conduct research at scales 

previously too disclosive.  

Finally, the MAUP and MTUP are well-known phenomena in geographic analysis. This work 

demonstrated that they cannot be neglected when creating data product for use in research, 

especially at granular scales for which the tolerable margins of error are smaller. With the 

technology made available to us as geographers, there is no longer a strict necessity to 

drastically sacrifice data quality and analytical completeness in the name of privacy protection, 

as disclosure control principles can be respected using new bespoke methodologies.  

  



 
 

228 

References 
Achara, J.P., Acs, G. and Castelluccia, C. (2015) ‘On the Unicity of Smartphone 
Applications’, Proceedings of the 14th ACM Workshop on Privacy in the Electronic Society, 
pp. 27–36. Available at: https://doi.org/10.1145/2808138.2808146. 

Alan Turing Institute (2021) Ecosystems of digital twins | The Alan Turing Institute. Available 
at: https://www.turing.ac.uk/research/research-projects/ecosystems-digital-twins (Accessed: 
15 September 2021). 

Alessandretti, L., Aslak, U. and Lehmann, S. (2020) ‘The scales of human mobility’, Nature 
2020 587:7834, 587(7834), pp. 402–407. Available at: https://doi.org/10.1038/s41586-020-
2909-1. 

Allshouse, W.B. et al. (2010) ‘Geomasking sensitive health data and privacy protection: an 
evaluation using an E911 database’, Geocarto international, 25(6), pp. 443–452. Available at: 
https://doi.org/10.1080/10106049.2010.496496. 

Almuhimedi, H. et al. (2015) ‘Your Location has been Shared 5,398 Times! A Field Study on 
Mobile App Privacy Nudging’, in Proceedings of the 33rd Annual ACM Conference on 
Human Factors in Computing Systems. New York, NY, USA: Association for Computing 
Machinery (CHI ’15), pp. 787–796. Available at: https://doi.org/10.1145/2702123.2702210. 

Antoine, S. and Weill, G. (1968) ‘Les metropoles et leur region’, L’Espace et les Poles de 
Croissance [Preprint]. 

Ash, A. (2016) Whistleblowing and Ethics in Health and Social Care. Jessica Kingsley 
Publishers. 

Atkinson, P.M. and Tate, N.J. (2000) ‘Spatial Scale Problems and Geostatistical Solutions: A 
Review’, The Professional Geographer, 52(4), pp. 607–623. Available at: 
https://doi.org/10.1111/0033-0124.00250. 

Aubin, M. (2020) ndjson Newline Delimited JSON, ndjson.org. Available at: 
http://ndjson.org/ (Accessed: 14 August 2023). 

Aurenhammer, F., Klein, R. and Lee, D.-T. (2013) Voronoi Diagrams and Delaunay 
Triangulations. Available at: 
https://www.worldscientific.com/worldscibooks/10.1142/8685#t=aboutBook (Accessed: 20 
September 2023). 

Axhausen, K.W. (1995) ‘Travel diaries: An annotated catalogue’, p. 133 p. Available at: 
https://doi.org/10.3929/ETHZ-B-000024848. 

Azaele, S. et al. (2009) ‘Predicting spatial similarity of freshwater fish biodiversity’, 
Proceedings of the National Academy of Sciences, 106(17), pp. 7058–7062. Available at: 
https://doi.org/10.1073/pnas.0805845106. 



 
 

229 

Bampoulidis, A. et al. (2020) ‘Privately Connecting Mobility to Infectious Diseases via 
Applied Cryptography’. Available at: https://eprint.iacr.org/2020/522 (Accessed: 14 March 
2023). 

Basellini, U. et al. (2020) ‘Linking excess mortality to Google mobility data during the 
COVID-19 pandemic in England and Wales’. Available at: 
https://doi.org/10.31235/OSF.IO/75D6M. 

Becker, R. et al. (2013) ‘Human Mobility Characterization from Cellular Network Data’, 
56(1). Available at: https://doi.org/10.1145/2398356.2398375. 

Bengtsson, L. et al. (2015) ‘Using Mobile Phone Data to Predict the Spatial Spread of 
Cholera’, Scientific Reports, 5. Available at: https://doi.org/10.1038/srep08923. 

Berry, B.J. (1965) ‘Research frontiers in urban geography’, The study of urbanization, pp. 
403–430. 

Berry, B.J.L., Barnum, H.G. and Tennant, R.J. (1962) ‘Retail location and consumer 
behavior’, Papers of the Regional Science Association, 9(1), pp. 65–106. Available at: 
https://doi.org/10.1007/BF01947623. 

Berry, T. et al. (2016) ‘Using workplace population statistics to understand retail store 
performance’, The International Review of Retail, Distribution and Consumer Research, 
26(4), pp. 375–395. Available at: https://doi.org/10.1080/09593969.2016.1170066. 

Bertini, R.L. and El-Geneidy, A. (2003) ‘Generating Transit Performance Measures with 
Archived Data’, Transportation Research Record, 1841(1), pp. 109–119. Available at: 
https://doi.org/10.3141/1841-12. 

Biehl, A., Ermagun, A. and Stathopoulos, A. (2018) ‘Community mobility MAUP-ing: A 
socio-spatial investigation of bikeshare demand in Chicago’, Journal of Transport 
Geography, 66, pp. 80–90. Available at: https://doi.org/10.1016/j.jtrangeo.2017.11.008. 

Birenboim, A. and Shoval, N. (2016) ‘Mobility Research in the Age of the Smartphone’, 
Annals of the American Association of Geographers, 106(2), pp. 1–9. Available at: 
https://doi.org/10.1080/00045608.2015.1100058. 

Bock, M. et al. (2010) ‘Generalized Voronoi Tessellation as a Model of Two-dimensional 
Cell Tissue Dynamics’, Bulletin of Mathematical Biology, 72(7), pp. 1696–1731. Available 
at: https://doi.org/10.1007/s11538-009-9498-3. 

Bondaruk, B., Roberts, S.A. and Robertson, C. (2019) ‘Discrete Global Grid Systems: 
Operational Capability of the Current State of the Art’, Spatial Knowledge and Information 
Canada, 7(6), p. 1. 

Brennetot, A. and Ruffray, S. de (2015) Une nouvelle carte des régions françaises, 
Géoconfluences. École normale supérieure de Lyon. Available at: http://geoconfluences.ens-
lyon.fr/informations-scientifiques/dossiers-regionaux/la-france-des-territoires-en-
mutation/articles-scientifiques/regions-francaises (Accessed: 4 September 2023). 

Brockmann, D., Hufnagel, L. and Geisel, T. (2006) ‘The scaling laws of human travel’, 
Nature, 439(7075), pp. 462–465. Available at: https://doi.org/10.1038/nature04292. 



 
 

230 

Brodsky, I. (2018) H3: Uber’s Hexagonal Hierarchical Spatial Index, Uber Blog. Available 
at: https://www.uber.com/en-GB/blog/h3/ (Accessed: 28 November 2022). 

Brodsky, I. and Uber Technologies Inc. (2015) H3: A hexagonal hierarchical geospatial 
indexing system. Available at: https://h3geo.org/#/ (Accessed: 28 November 2022). 

Brunet, R., Ferras, R. and Théry, H. (1993) Les Mots de la Géographie, Dictionnaire 
Critique. 3rd edn. Montpellier-Paris: Reclus -  La Documentation Française. 

Brunsdon, C. and Comber, A. (2020) ‘Opening practice: supporting reproducibility and 
critical spatial data science’, Journal of Geographical Systems, 23, pp. 477–496. Available at: 
https://doi.org/10.1007/s10109-020-00334-2. 

Bustos, M.F.A. et al. (2020) ‘A pixel level evaluation of five multitemporal global gridded 
population datasets: a case study in Sweden, 1990–2015’, Population and Environment 2020 
42:2, 42(2), pp. 255–277. Available at: https://doi.org/10.1007/S11111-020-00360-8. 

Bwambale, A. et al. (2020) ‘Getting the best of both worlds: a framework for combining 
disaggregate travel survey data and aggregate mobile phone data for trip generation 
modelling’, Transportation 2020, pp. 1–28. Available at: https://doi.org/10.1007/S11116-020-
10129-5. 

Cabinet Office (2020) [Withdrawn] Staying at home and away from others (social 
distancing), GOV.UK. Available at: https://www.gov.uk/government/publications/full-
guidance-on-staying-at-home-and-away-from-others/full-guidance-on-staying-at-home-and-
away-from-others (Accessed: 19 July 2023). 

Calabrese, F. et al. (2013) ‘Understanding individual mobility patterns from urban sensing 
data: A mobile phone trace example - ScienceDirect’, Transportation research. Part C, 
Emerging technologies, 26. Available at: 
https://www.sciencedirect.com/science/article/abs/pii/S0968090X12001192 (Accessed: 29 
July 2023). 

Casado Díaz, J. and Coombes, M. (2011) ‘The Delineation of 21st Century Local Labour 
Market Areas: A Critical Review and a Research Agenda’, Boletín de la Asociación de 
Geógrafos Españoles, pp. 7–32. 

CDRC (2022) Protecting Data | CDRC Data. Available at: https://data.cdrc.ac.uk/protecting-
data (Accessed: 15 June 2023). 

Chai, Y. (2013) ‘Space—Time Behavior Research in China: Recent Development and Future 
Prospect’, Annals of the Association of American Geographers, 103(5), pp. 1093–1099. 

Chang, S. et al. (2021) ‘Mobility network models of COVID-19 explain inequities and inform 
reopening’, Nature, 589(7840), pp. 82–87. Available at: https://doi.org/10.1038/s41586-020-
2923-3. 

Cheng, T. and Adepeju, M. (2014) ‘Modifiable Temporal Unit Problem (MTUP) and Its 
Effect on Space-Time Cluster Detection’, PLoS ONE, 9(6), p. e100465. Available at: 
https://doi.org/10.1371/journal.pone.0100465. 



 
 

231 

Cheshire, J. (2020) ‘Code/Space’, in A. Kobayashi (ed.) International Encyclopedia of 
Human Geography (Second Edition). Oxford: Elsevier, pp. 303–308. Available at: 
https://doi.org/10.1016/B978-0-08-102295-5.10524-4. 

CMA (2015) The commercial use of consumer data - Report on the CMA’s call for 
information. 38. Available at: www.nationalarchives.gov.uk/doc/open-government- 
(Accessed: 2 September 2021). 

Cockings, S. et al. (2011b) ‘Maintaining Existing Zoning Systems Using Automated Zone-
Design Techniques: Methods for Creating the 2011 Census Output Geographies for England 
and Wales’, Environment and Planning A: Economy and Space, 43(10), pp. 2399–2418. 
Available at: https://doi.org/10.1068/a43601. 

Cockings, S. et al. (2013) ‘Getting the Foundations Right: Spatial Building Blocks for 
Official Population Statistics’, Environment and Planning A: Economy and Space, 45(6), pp. 
1403–1420. Available at: https://doi.org/10.1068/a45276. 

Cockings, S. and Martin, D. (2005) ‘Zone design for environment and health studies using 
pre-aggregated data’, Social Science & Medicine, 60(12), pp. 2729–2742. Available at: 
https://doi.org/10.1016/j.socscimed.2004.11.005. 

Cöltekin, A. et al. (2011) ‘Modifiable temporal unit problem’. Available at: 
https://doi.org/10.5167/UZH-54263. 

Cook, S. (2018) ‘Geographies of mobility: a brief introduction’, Geography, 103(3), pp. 137–
145. 

Coombes, M. et al. (1982) ‘Functional regions for the population census of Great Britain’, in. 
Available at: https://www.semanticscholar.org/paper/Functional-regions-for-the-population-
census-of-Coombes-Dixon/eba727f1d168fe0aebc421d1a93909335be55cbd (Accessed: 20 
June 2023). 

Costa, L. da F. (2021) ‘Further Generalizations of the Jaccard Index’, Computer Science and 
Machine Learning [Preprint]. Available at: https://doi.org/10.48550/arXiv.2110.09619. 

Cowpertwait, P.S.P. (2011) ‘A regionalization method based on a cluster probability model’, 
Water Resources Research, 47(11). Available at: https://doi.org/10.1029/2011WR011084. 

Crampton, J.W. et al. (2013) ‘Beyond the geotag: Situating “big data” and leveraging the 
potential of the geoweb’, Cartography and Geographic Information Science, 40(2), pp. 130–
139. Available at: https://doi.org/10.1080/15230406.2013.777137. 

Crang, M. (2001) ‘Rhythms of the City: temporalised space and motion.’, in Timespace. 
London: Routledge. Available at: 
https://www.academia.edu/27783141/Crang_M_2001_Rhythms_of_the_City_temporalised_s
pace_and_motion_TimeSpace_J_May_and_N_Thrift_London_Routledge_187_207 
(Accessed: 4 September 2023). 

Crawford, K. (2013) ‘The Hidden Biases in Big Data’, Harvard Business Review, 1 April. 
Available at: https://hbr.org/2013/04/the-hidden-biases-in-big-data (Accessed: 4 September 
2023). 



 
 

232 

Dalton, C.M. and Thatcher, J. (2015) ‘Inflated granularity: Spatial “Big Data” and 
geodemographics’, Big Data & Society, 2(2), p. 2053951715601144. Available at: 
https://doi.org/10.1177/2053951715601144. 

D’Angelo, A. (2016) ‘A Brief Introduction to Quadtrees and Their Applications’, in. 
Available at: https://www.semanticscholar.org/paper/A-Brief-Introduction-to-Quadtrees-and-
Their-D%27Angelo/beffc40cd086948bbfcd28b3a3ce2b974498aadb (Accessed: 19 September 
2023). 

De Meersman, F. et al. (2016) Assessing the Quality of Mobile Phone Data as a Source of 
Statistics. Available at: 
http://economie.fgov.be/nl/consument/Internet/telecommunicatie/teledistributie/ (Accessed: 
21 April 2021). 

De Sousa, L. et al. (2006) ‘Assessing the accuracy of hexagonal versus square tilled grids in 
preserving DEM surface flow directions’. 

Degirmenci, K. (2020) ‘Mobile users’ information privacy concerns and the role of app 
permission requests’, International Journal of Information Management, 50, pp. 261–272. 
Available at: https://doi.org/10.1016/J.IJINFOMGT.2019.05.010. 

Deville, P. et al. (2014) ‘Dynamic population mapping using mobile phone data’, 111(45), pp. 
15888–15893. Available at: https://doi.org/10.1073/pnas.1408439111. 

Diestel, R. (2000) Graph theory. 2. ed. New York, NY: Springer (Graduate texts in 
mathematics, 173). 

Diggelen, F.S.T.V. (2009) A-GPS: Assisted GPS, GNSS, and SBAS. Artech House. 

D’Ignazio, C. and Klein, L. (2020) Data Feminism. Available at: https://data-
feminism.mitpress.mit.edu/pub/vi8obxh7/release/4; (Accessed: 16 March 2023). 

van Dijck, J. (2014) ‘Datafication, dataism and dataveillance: Big data between scientific 
paradigm and ideology’, Surveillance and Society, 12(2), pp. 197–208. Available at: 
https://doi.org/10.24908/ss.v12i2.4776. 

Diker, A. and Nasibov, E. (2012) ‘Estimation of traffic congestion level via FN-DBSCAN 
algorithm by using GPS data’, in, pp. 1–4. Available at: 
https://doi.org/10.1109/ICPCI.2012.6486279. 

Domingo-Ferrer, J. and Mateo-Sanz, J.M. (2002) ‘Practical data-oriented microaggregation 
for statistical disclosure control’, IEEE Transactions on Knowledge and Data Engineering, 
14(1), pp. 189–201. Available at: https://doi.org/10.1109/69.979982. 

Dong, P. (2008) ‘Generating and updating multiplicatively weighted Voronoi diagrams for 
point, line and polygon features in GIS’, Computers & Geosciences, 34(4), pp. 411–421. 
Available at: https://doi.org/10.1016/j.cageo.2007.04.005. 

Duke-Williams, O. and Rees, P. (1998) ‘Can Census Offices publish statistics for more than 
one small area geography? An analysis of the differencing problem in statistical disclosure’, 
International Journal of Geographical Information Science, 12(6), pp. 579–605. Available at: 
https://doi.org/10.1080/136588198241680. 



 
 

233 

Dusek, T. (2004) ‘Spatially aggregated data and variables in empirical analysis and model 
building for economics’, Cybergeo: European Journal of Geography [Preprint]. Available at: 
https://doi.org/10.4000/cybergeo.2654. 

Ebdon, D. (1992) ‘SPANS—A quadtree-based GIS’, Computers & Geosciences, 18(4), pp. 
471–475. Available at: https://doi.org/10.1016/0098-3004(92)90077-5. 

Edensor, T. (2016) ‘Rhythm’, in Urban Theory. Routledge. 

ESRI (2020) Boundary Effect Definition, GIS Dictionary. Available at: 
https://support.esri.com/en-us/gis-dictionary/boundary-effect (Accessed: 20 September 2023). 

EthicalGeo (2021) Locus Charter. 

Eurostat and Coombes, M.G. (1992) Étude sur les zones d’emploi. 20. Luxembourg: Office 
for Official Publications of the European Communities. 

Farmer, C.J.Q. and Fotheringham, S. (2011) ‘Network-based functional regions’, 
Environment and Planning A, 43(11), pp. 2723–2741. Available at: 
https://doi.org/10.1068/a44136. 

Fletcher, S. and Islam, M.Z. (2018) ‘Comparing sets of patterns with the Jaccard index’, 
Australasian Journal of Information Systems, 22. Available at: 
https://doi.org/10.3127/ajis.v22i0.1538. 

Forgó, N. et al. (2021) ‘An ethico-legal framework for social data science’, International 
Journal of Data Science and Analytics, 11(4), pp. 377–390. Available at: 
https://doi.org/10.1007/s41060-020-00211-7. 

Fortunato, S. (2010) ‘Community detection in graphs’, Physics Reports, 486(3), pp. 75–174. 
Available at: https://doi.org/10.1016/j.physrep.2009.11.002. 

Fotheringham, A.S., Densham, P.J. and Curtis, A. (1995) ‘The Zone Definition Problem in 
Location-Allocation Modeling’, Geographical Analysis, 27(1), pp. 60–77. Available at: 
https://doi.org/10.1111/j.1538-4632.1995.tb00336.x. 

Fotheringham, A.S. and Rogerson, P.A. (1993) ‘GIS and spatial analytical problems’, 
International journal of geographical information systems, 7(1), pp. 3–19. Available at: 
https://doi.org/10.1080/02693799308901936. 

Gahegan, M.N. (1989) ‘An efficient use of quadtrees in a geographical information system’, 
International journal of geographical information systems, 3(3), pp. 201–214. Available at: 
https://doi.org/10.1080/02693798908941508. 

Garfinkel, S. (2022) ‘Differential Privacy and the 2020 US Census’, MIT Case Studies in 
Social and Ethical Responsibilities of Computing [Preprint], (Winter 2022). Available at: 
https://doi.org/10.21428/2c646de5.7ec6ab93. 

Garrison, W.L. et al. (1959) ‘Studies of highway development and geographic change’. 
Available at: https://trid.trb.org/view/89512 (Accessed: 4 September 2023). 



 
 

234 

GDPR (2018a) Art. 5 GDPR – Principles relating to processing of personal data, General 
Data Protection Regulation (GDPR). Available at: https://gdpr-info.eu/art-5-gdpr/ (Accessed: 
26 August 2024). 

GDPR (2018b) Art. 7 GDPR – Conditions for consent | General Data Protection Regulation 
(GDPR). Available at: https://gdpr-info.eu/art-7-gdpr/ (Accessed: 17 August 2021). 

Geofabrik (2022) Geofabrik, Maps and Data. Available at: https://www.geofabrik.de/data/ 
(Accessed: 28 November 2022). 

Georgiadou, Y., By, R.A. de and Kounadi, O. (2019) ‘Location Privacy in the Wake of the 
GDPR’, ISPRS International Journal of Geo-Information 2019, Vol. 8, Page 157, 8(3), p. 
157. Available at: https://doi.org/10.3390/IJGI8030157. 

Gibbons, A. (1985) Algorithmic Graph Theory. Cambridge University Press. 

Gibbs, H. et al. (2021) ‘Population disruption: estimating changes in population distribution 
in the UK during the COVID-19 pandemic’, medRxiv, p. 2021.06.22.21259336. Available at: 
https://doi.org/10.1101/2021.06.22.21259336. 

Gibbs, H., Eggo, R.M. and Cheshire, J. (2024) ‘Detecting behavioural bias in GPS location 
data collected by mobile applications’. medRxiv, p. 2023.11.06.23298140. Available at: 
https://doi.org/10.1101/2023.11.06.23298140. 

Giraudel, J.L. and Lek, S. (2001) ‘A comparison of self-organizing map algorithm and some 
conventional statistical methods for ecological community ordination’, Ecological Modelling, 
146(1), pp. 329–339. Available at: https://doi.org/10.1016/S0304-3800(01)00324-6. 

González, M.C., Hidalgo, C.A. and Barabási, A.L. (2008) ‘Understanding individual human 
mobility patterns’, Nature, 453(7196), pp. 779–782. Available at: 
https://doi.org/10.1038/nature06958. 

González-Bailón, S. (2013) ‘Big data and the fabric of human geography’:, 
https://doi.org/10.1177/2043820613515379, 3(3), pp. 292–296. Available at: 
https://doi.org/10.1177/2043820613515379. 

Goodchild, M.F. (2007) ‘Citizens as Voluntary Sensors: Spatial Data Infrastructure in the 
World of Web 2.0’, International Journal of Spatial Data Infrastructures Research, 2(2), pp. 
24–32. 

Goodchild, M.F. (2013) ‘The quality of big (geo)data’, Sage, 3(3). Available at: 
https://journals.sagepub.com/doi/10.1177/2043820613513392 (Accessed: 4 September 2023). 

Goodchild, M.F. (2018) ‘Reimagining the history of GIS’, Annals of GIS, 24(1), pp. 1–8. 
Available at: https://doi.org/10.1080/19475683.2018.1424737. 

Goodchild, M.F. and Proctor, J. (1997) ‘Scale in a digital geographic world’, Geographical 
and Environmental Modelling, 1(1), pp. 5–23. 

Google (2020) COVID-19 Community Mobility Reports. Available at: 
https://www.google.com/covid19/mobility/ (Accessed: 15 September 2021). 



 
 

235 

Greater London Authority (2024) London at Night Update. Available at: 
https://data.london.gov.uk/blog/london-at-night-an-updated-evidence-base-for-a-24-hour-city/ 
(Accessed: 25 August 2024). 

Grieco, M. and Urry, J. (2012) ‘Introduction: Introducing the Mobilities Turn’, in Mobilities: 
New Perspectives on Transport and Society. Routledge. 

Griffiths, E. et al. (2019) ‘Handbook on Statistical Disclosure Control for Outputs’. 

Gu, X. and Shen, Q. (2022) ‘Self-organizing Divisive Hierarchical Voronoi Tessellation-
based classifier’, Information Sciences, 603, pp. 106–129. Available at: 
https://doi.org/10.1016/j.ins.2022.04.049. 

GVR (2022) Location Intelligence Market Size, Share & Trends Analysis Report. GVR-2-
68038-401-7. Grand View Research. Available at: 
https://www.grandviewresearch.com/industry-analysis/location-intelligence-market 
(Accessed: 28 February 2023). 

Hagen, T., Hamann, J. and Saki, S. (2022) ‘Discretization of Urban Areas using POI-based 
Tesselation’. Available at: https://doi.org/10.48718/7JJR-1C66. 

Hägerstrand, T. (1970) ‘What About People in Regional Science?’, Papers in Regional 
Science, 24(1), pp. 7–24. Available at: https://doi.org/10.1111/j.1435-5597.1970.tb01464.x. 

Hägerstrand, T. (1974) ‘On socio-technical ecology and the study of innovations’, Ethnologia 
Europaea, 7(1). Available at: https://doi.org/10.16995/ee.3295. 

Hägerstrand, T. (1975a) ‘On the definition of migration’, in Readings in Social Geography. 
E.Jones. Oxford University Press, pp. 200–209. 

Hägerstrand, T. (1975b) ‘Space, time and human conditions’, in Dynamic allocations of 
urban space. Farnborough: Saxon House/Lexington, D.C Heath, pp. 3–12. 

Hahsler, M. and Piekenbrock, M. (2022) ‘dbscan: Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) and Related Algorithms’. 

Halás, M. et al. (2015) ‘An alternative definition and use for the constraint function for rule-
based methods of functional regionalisation’, Environment and Planning A: Economy and 
Space, 47(5), pp. 1175–1191. Available at: https://doi.org/10.1177/0308518X15592306. 

Hales, T.C. (2001) ‘The Honeycomb Conjecture’, Discrete & Computational Geometry, 
25(1), pp. 1–22. Available at: https://doi.org/10.1007/s004540010071. 

Haley, A. (2017) ‘Defining geographical mobility: Perspectives from higher education’, 
Geoforum, 83, pp. 50–59. Available at: https://doi.org/10.1016/j.geoforum.2017.04.013. 

Hallisey, E. et al. (2017) ‘Transforming geographic scale: a comparison of combined 
population and areal weighting to other interpolation methods’, International Journal of 
Health Geographics 2017 16:1, 16(1), pp. 1–16. Available at: 
https://doi.org/10.1186/S12942-017-0102-Z. 



 
 

236 

Han, K. (2021) ‘Broken promises: How Singapore lost trust on contact tracing privacy | MIT 
Technology Review’, MIT Technology Review. Available at: 
https://www.technologyreview.com/2021/01/11/1016004/singapore-tracetogether-contact-
tracing-police/ (Accessed: 16 February 2021). 

Harrower, M., MacEachren, A. and Griffin, A.L. (2000) ‘Developing a Geographic 
Visualization Tool to Support Earth Science Learning’, Cartography and Geographic 
Information Science, 27(4), pp. 279–293. Available at: 
https://doi.org/10.1559/152304000783547759. 

Helbich, M., Mute Browning, M.H.E. and Kwan, M.-P. (2021) ‘Time to address the 
spatiotemporal uncertainties in COVID-19 research: Concerns and challenges’, The Science 
of the Total Environment, 764, p. 142866. Available at: 
https://doi.org/10.1016/j.scitotenv.2020.142866. 

Helmpecht, B. and Schackis, D. (1996) Manual on disclosure control methods. Luxembourg : 
Lanham, MD: Office for Official Publications of the European Communities ; UNIPUB, 
[distributor] (Theme 9--Research and development). 

Holmes, J.H. and Haggett, P. (1977) ‘Graph Theory Interpretation of Flow Matrices: A Note 
on Maximization Procedures for Identifying Significant Links’, Geographical Analysis, 9(4), 
pp. 388–399. Available at: https://doi.org/10.1111/j.1538-4632.1977.tb00591.x. 

Hormann, K. and Agathos, A. (2001) ‘The point in polygon problem for arbitrary polygons’, 
Computational Geometry, 20(3), pp. 131–144. Available at: https://doi.org/10.1016/S0925-
7721(01)00012-8. 

Hornsby, K. and Egenhofer, M.J. (2002) ‘Modeling Moving Objects over Multiple 
Granularities’, Annals of Mathematics and Artificial Intelligence, 36(1), pp. 177–194. 
Available at: https://doi.org/10.1023/A:1015812206586. 

Huang, C.-W. and Shih, T.-Y. (1997) ‘On the complexity of point-in-polygon algorithms’, 
Computers & Geosciences, 23(1), pp. 109–118. Available at: https://doi.org/10.1016/S0098-
3004(96)00071-4. 

Hubrich, S. and Wittwer, R. (2017) ‘Effects of improvements to survey methods on data 
quality and precision – Methodological insights into the 10th wave of the cross-sectional 
household survey ”Mobility in Cities – SrV”’, Transportation Research Procedia, 25, pp. 
2276–2286. Available at: https://doi.org/10.1016/j.trpro.2017.05.436. 

Hut, D. et al. (2020) ‘Statistical Disclosure Control When Publishing on Thematic Maps’, in 
J. Domingo-Ferrer and K. Muralidhar (eds) Privacy in Statistical Databases. Cham: Springer 
International Publishing (Lecture Notes in Computer Science), pp. 195–205. Available at: 
https://doi.org/10.1007/978-3-030-57521-2_14. 

Iacus, S.M. et al. (2021) ‘Anomaly detection of mobile positioning data with applications to 
COVID-19 situational awareness’, Japanese Journal of Statistics and Data Science [Preprint]. 
Available at: https://doi.org/10.1007/s42081-021-00109-z. 

ICO (2022) What is personal data? ICO. Available at: https://ico.org.uk/for-
organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-
gdpr/key-definitions/what-is-personal-data/ (Accessed: 9 January 2023). 



 
 

237 

INSEE (2020) Méthode de constitution des zones d’emploi 2020, pp. 1–4. 

Jaccard, P. (1912) ‘The Distribution of the Flora in the Alpine Zone.’, New Phytologist, 11(2), 
pp. 37–50. Available at: https://doi.org/10.1111/J.1469-8137.1912.TB05611.X. 

Jain, P., Gyanchandani, M. and Khare, N. (2016) ‘Big data privacy: a technological 
perspective and review’, Journal of Big Data 2016 3:1, 3(1), pp. 1–25. Available at: 
https://doi.org/10.1186/S40537-016-0059-Y. 

Järv, O., Tenkanen, H. and Toivonen, T. (2017) ‘Enhancing spatial accuracy of mobile phone 
data using multi-temporal dasymetric interpolation’, International Journal of Geographical 
Information Science, 31(8), pp. 1630–1651. Available at: 
https://doi.org/10.1080/13658816.2017.1287369. 

Jeffrey, B. et al. (2020) ‘Anonymised and aggregated crowd level mobility data from mobile 
phones suggests that initial compliance with covid-19 social distancing interventions was high 
and geographically consistent across the UK’, Wellcome Open Research, 5, pp. 1–10. 
Available at: https://doi.org/10.12688/WELLCOMEOPENRES.15997.1. 

Jiang, B. et al. (2019) ‘Higher order mobile coverage control with applications to clustering 
of discrete sets’, Automatica, 102, pp. 27–33. Available at: 
https://doi.org/10.1016/j.automatica.2018.12.028. 

Jiron, P. and Carrasco, J.A. (2020) ‘Understanding Daily Mobility Strategies through 
Ethnographic, Time Use, and Social Network Lenses’, Sustainability, 12(1), p. 312. Available 
at: https://doi.org/10.3390/su12010312. 

Kang, Y. et al. (2020) ‘Multiscale dynamic human mobility flow dataset in the U.S. during 
the COVID-19 epidemic’, Scientific Data 2020 7:1, 7(1), pp. 1–13. Available at: 
https://doi.org/10.1038/s41597-020-00734-5. 

Keegan, J. and Ng, A. (2021) There’s a Multibillion-Dollar Market for Your Phone’s 
Location Data – The Markup, The Markup. Available at: 
https://themarkup.org/privacy/2021/09/30/theres-a-multibillion-dollar-market-for-your-
phones-location-data (Accessed: 1 February 2023). 

Kim, Y.-L. (2020) ‘Data-driven approach to characterize urban vitality: how spatiotemporal 
context dynamically defines Seoul’s nighttime’, International Journal of Geographical 
Information Science, 34(6), pp. 1235–1256. Available at: 
https://doi.org/10.1080/13658816.2019.1694680. 

Kishore, N. et al. (2020) ‘Measuring mobility to monitor travel and physical distancing 
interventions: a common framework for mobile phone data analysis’, The Lancet Digital 
Health, 2(11), pp. e622–e628. Available at: https://doi.org/10.1016/S2589-7500(20)30193-X. 

Kitchin, R. (2013) ‘Big data and human geography: Opportunities, challenges and risks’, 
Dialogues in Human Geography, 3(3), pp. 262–267. Available at: 
https://doi.org/10.1177/2043820613513388. 

Kitchin, R. (2014a) ‘Big Data, new epistemologies and paradigm shifts’, Big Data & Society, 
1(1), p. 205395171452848. Available at: https://doi.org/10.1177/2053951714528481. 



 
 

238 

Kitchin, R. (2014b) The Data Revolution: Big Data, Open Data, Data Infrastructures 
&amp;amp; Their Consequences. SAGE Publications Ltd. Available at: 
https://doi.org/10.4135/9781473909472. 

Kitchin, R. and Dodge, M. (2011) Code/Space: Software and Everyday Life. Available at: 
https://doi.org/10.7551/mitpress/9780262042482.001.0001. 

Klapka, P., Ellegård, K. and Frantál, B. (2020) ‘What about Time-Geography in the post-
Covid-19 era?’, Moravian Geographical Reports, 28(4), pp. 238–247. Available at: 
https://doi.org/10.2478/mgr-2020-0017. 

Kraak, M.J. (2000) ‘Visualisation of the time dimension’, in Time in GIS: Issues in spatio 
temporal modelling. Netherlands Geodetic Commission (NCG), pp. 27–35. Available at: 
https://research.utwente.nl/en/publications/visualisation-of-the-time-dimension (Accessed: 16 
August 2024). 

Kung, K.S. et al. (2014) ‘Exploring Universal Patterns in Human Home-Work Commuting 
from Mobile Phone Data’, PLoS ONE, 9(6), p. e96180. Available at: 
https://doi.org/10.1371/journal.pone.0096180. 

Kwan, M.-P. (1999) ‘Gender, the Home-Work Link, and Space-Time Patterns of 
Nonemployment Activities’, Economic Geography, 75(4), pp. 370–394. Available at: 
https://doi.org/10.2307/144477. 

Lagonigro, R., Oller, R. and Carles Martori, J. (2020a) ‘AQuadtree: an R Package for 
Quadtree Anonymization of Point Data.’, R journal [Preprint]. Available at: 
https://doi.org/10.32614/RJ-2021-013 (Accessed: 14 September 2021). 

Lagonigro, R., Oller, R. and Carles Martori, J. (2020b) ‘Title Confidentiality of Spatial Point 
Data’. Available at: https://doi.org/10.2436/20.8080.02.55. 

Lange, O. and Perez, L. (2020) ‘Traffic prediction with advanced Graph Neural Networks’, 
Deepmind Applied, 3 September. Available at: https://www.deepmind.com/blog/traffic-
prediction-with-advanced-graph-neural-networks (Accessed: 1 March 2023). 

Lansley, G. and Cheshire, J. (2018) ‘Challenges to representing the population from new 
forms of consumer data’, Geography Compass, 12(7), p. e12374. Available at: 
https://doi.org/10.1111/gec3.12374. 

Lapin, M. and Barnes, B.V. (1995) ‘Using the Landscape Ecosystem Approach to Assess 
Species and Ecosystem Diversity’, Conservation Biology, 9(5), pp. 1148–1158. Available at: 
https://doi.org/10.1046/j.1523-1739.1995.9051134.x-i1. 

Lassave, P. and Haumont, A. (2001) Mobilités Spatiales, Une question de société. 
L’Harmattan. Available at: https://www.editions-
harmattan.fr/index_harmattan.asp?navig=catalogue&obj=livre&razSqlClone=1&no=5607 
(Accessed: 29 May 2023). 

Lazer, D. et al. (2009) ‘Life in the network: the coming of age of computational social 
science’, Science, 323(5915), pp. 721–723. Available at: 
https://doi.org/10.1126/science.1167742. 

http://dx.doi.org/10.32614/RJ-2021-013


 
 

239 

Lefebvre, H. (2004) Rhythmanalysis: Space, Time and Everyday Life. Bloomsbury 
Publishing. 

Lenormand, M. et al. (2014) ‘Cross-Checking Different Sources of Mobility Information’, 
PLOS ONE, 9(8), p. e105184. Available at: https://doi.org/10.1371/journal.pone.0105184. 

Lévy, J. (2000) ‘Les nouveaux espaces de la mobilité’, in Les Territoires de la mobilité. Paris 
cedex 14: Presses Universitaires de France (Sciences sociales et sociétés), pp. 155–170. 
Available at: https://doi.org/10.3917/puf.bonne.2000.01.0155. 

Liang, Y. et al. (2022) ‘Region2Vec: Community Detection on Spatial Networks Using 
Graph Embedding with Node Attributes and Spatial Interactions’, in Proceedings of the 30th 
International Conference on Advances in Geographic Information Systems, pp. 1–4. 
Available at: https://doi.org/10.1145/3557915.3560974. 

Lloyd, A.S. (2018) The Applications of Loyalty Card Data for Social Science. Doctor of 
Philosophy (Ph.D.). University College London. 

Longley, P. (2005) Geographic Information Systems and Science. John Wiley & Sons. 

Longley, P. and Singleton, A. (2018) London Output Area Classification (LOAC). London: 
Censur Information Scheme. 

Longley, P.A. et al. (2015) Geographic Information Science and Systems. John Wiley & 
Sons. 

Lovelace, R., Ballas, D. and Watson, M. (2014) ‘A spatial microsimulation approach for the 
analysis of commuter patterns: from individual to regional levels’, Journal of Transport 
Geography, 34, pp. 282–296. Available at: 
https://doi.org/10.1016/J.JTRANGEO.2013.07.008. 

Maas, P. et al. (2019) ‘Facebook Disaster Maps: Aggregate Insights for Crisis Response & 
Recovery’, in Proceedings of the 25th ACM SIGKDD International Conference on 
Knowledge Discovery & Data Mining. KDD ’19: The 25th ACM SIGKDD Conference on 
Knowledge Discovery and Data Mining, Anchorage AK USA: ACM, pp. 3173–3173. 
Available at: https://doi.org/10.1145/3292500.3340412. 

Mai, W., Xie, S. and Chen, X. (2019) ‘Travel Time Estimation and Urban Key Routes 
Analysis Based on Call Detail Records Data: A Case Study of Guangzhou City’, in X.B. Zhai, 
B. Chen, and K. Zhu (eds) Machine Learning and Intelligent Communications. Cham: 
Springer International Publishing (Lecture Notes of the Institute for Computer Sciences, 
Social Informatics and Telecommunications Engineering), pp. 659–676. Available at: 
https://doi.org/10.1007/978-3-030-32388-2_55. 

Martin, D. (2000) ‘Towards the Geographies of the 2001 UK Census of Population’, 
Transactions of the Institute of British Geographers, 25(3), pp. 321–332. 

Martin, D. (2003) ‘Extending the automated zoning procedure to reconcile incompatible 
zoning systems’, International Journal of Geographical Information Science, 17(2), pp. 181–
196. Available at: https://doi.org/10.1080/713811750. 



 
 

240 

Martin, D. (2010) ‘Optimizing census geography: the separation of collection and output 
geographies’, http://dx.doi.org/10.1080/136588198241590, 12(7), pp. 673–685. Available at: 
https://doi.org/10.1080/136588198241590. 

Massey, D. (2005) For Space. SAGE. 

McNutt, M. (2014) ‘Journals unite for reproducibility’, Science, 346(6210), pp. 679–679. 
Available at: https://doi.org/10.1126/science.aaa1724. 

Mearns, B. (2015) QGIS Blueprints. Packt Publishing Ltd. 

Meentemeyer, V. (1989) ‘Geographical perspectives of space, time, and scale’, Landscape 
Ecology, 3(3), pp. 163–173. Available at: https://doi.org/10.1007/BF00131535. 

Megerian, S. et al. (2005) ‘Worst and best-case coverage in sensor networks’, Mobile 
Computing, IEEE Transactions on, 4, pp. 84–92. Available at: 
https://doi.org/10.1109/TMC.2005.15(410). 

Mennis, J. (2019) ‘Problems of Scale and Zoning’, Geographic Information Science & 
Technology Body of Knowledge, 2019(Q1). Available at: 
https://doi.org/10.22224/gistbok/2019.1.2. 

Miller, H.J. (2010) ‘The Data Avalanche Is Here. Shouldn’t We Be Digging?’, Journal of 
Regional Science, 50(1), pp. 181–201. Available at: https://doi.org/10.1111/j.1467-
9787.2009.00641.x. 

Miller, H.J. (2017) ‘Time Geography and Space-Time Prism’, in D. Richardson et al. (eds) 
International Encyclopedia of Geography. Oxford, UK: John Wiley & Sons, Ltd, pp. 1–19. 
Available at: https://doi.org/10.1002/9781118786352.wbieg0431. 

Miller, H.J. and Goodchild, M.F. (2015) ‘Data-driven geography’, GeoJournal, 80(4), pp. 
449–461. 

Minot, N. and Baulch, B. (2005) ‘Poverty Mapping with Aggregate Census Data: What is the 
Loss in Precision?’, Review of Development Economics, 9(1), pp. 5–24. Available at: 
https://doi.org/10.1111/j.1467-9361.2005.00261.x. 

Molloy, J. and Moeckel, R. (2017) ‘Automated design of gradual zone systems’, Open 
Geospatial Data, Software and Standards 2017 2:1, 2(1), pp. 1–10. Available at: 
https://doi.org/10.1186/S40965-017-0032-5. 

de Montjoye, Y.A. et al. (2018) ‘On the privacy-conscientious use of mobile phone data’, 
Scientific Data, 5(1), pp. 1–6. Available at: https://doi.org/10.1038/sdata.2018.286. 

Morphet, C.S. (1993) ‘The Mapping of Small-Area Census Data—A Consideration of the 
Role of Enumeration District Boundaries’, Environment and Planning A: Economy and 
Space, 25(9), pp. 1267–1277. Available at: https://doi.org/10.1068/a251267. 

Nemeškal, J., Ouředníček, M. and Pospíšilová, L. (2020) ‘Temporality of urban space: daily 
rhythms of a typical week day in the Prague metropolitan area’, Journal of Maps, 16(1), pp. 
30–39. Available at: https://doi.org/10.1080/17445647.2019.1709577. 



 
 

241 

Neutens, T. et al. (2011) ‘The relationship between opening hours and accessibility of public 
service delivery’, Journal of Transport Geography, 25. Available at: 
https://doi.org/10.1016/j.jtrangeo.2011.03.004. 

Office for National Statistics (2016a) Early census-taking in England and Wales - Office for 
National Statistics. Available at: 
https://www.ons.gov.uk/census/2011census/howourcensusworks/aboutcensuses/censushistory
/earlycensustakinginenglandandwales (Accessed: 22 June 2023). 

Office for National Statistics (2016b) Output areas. Available at: 
https://www.ons.gov.uk/census/2001censusandearlier/dataandproducts/outputgeography/outp
utareas (Accessed: 9 January 2023). 

Office for National Statistics (2017) Policy for social survey microdata. Available at: 
https://www.ons.gov.uk/methodology/methodologytopicsandstatisticalconcepts/disclosurecon
trol/policyforsocialsurveymicrodata (Accessed: 9 January 2023). 

Office for National Statistics (2020) ONS methodology working paper series no. 8- Statistical 
uses for mobile phone data: literature review - Office for National Statistics. Available at: 
https://www.ons.gov.uk/methodology/methodologicalpublications/generalmethodology/onsw
orkingpaperseries/onsmethodologyworkingpaperseriesno8statisticalusesformobilephonedatalit
eraturereview (Accessed: 21 April 2021). 

Oliver, N. et al. (2020) ‘Mobile phone data for informing public health actions across the 
COVID-19 pandemic life cycle’, Science Advances, 6(23), p. eabc0764. Available at: 
https://doi.org/10.1126/sciadv.abc0764. 

Ollivro, J. (2005) ‘Les classes mobiles’, L’Information Géographique, 69(3), pp. 28–44. 
Available at: https://doi.org/10.3406/ingeo.2005.3008. 

Openshaw, S. (1977) ‘A Geographical Solution to Scale and Aggregation Problems in 
Region-Building, Partitioning and Spatial Modelling’, Transactions of the Institute of British 
Geographers, 2(4), pp. 459–472. Available at: https://doi.org/10.2307/622300. 

Openshaw, S. (1979) ‘A million or so correlation coefficients, three experiments on the 
modifiable areal unit problem’, Statistical Applications in the Spatial Science, pp. 127–144. 

Openshaw, S. (1981) ‘The modifiable areal unit problem’, Quantitative geography: a British 
view, 68 A(2), pp. 60–69. Available at: https://doi.org/10.4157/GRJ1984A.68.2_71. 

Openshaw, S. (1984) ‘Ecological Fallacies and the Analysis of Areal Census Data’, 
Environment and Planning A: Economy and Space, 16(1), pp. 17–31. Available at: 
https://doi.org/10.1068/a160017. 

Ordnance Survey (2020) A Guide to Coordinate Systems in Great Britain. Southampton: 
Ordnance Survey. 

Oxford Reference (2011) time-space geography, Oxford Reference. Available at: 
https://doi.org/10.1093/oi/authority.20110803104651770. 

Oyabu, Y. et al. (2013) ‘Evaluating Reliability of Mobile Spatial Statistics’, NTT DOCOMO 
Technical Journal, 14(3), pp. 16–23. 



 
 

242 

Peuquet, D.J. (1994) ‘It’s About Time: A Conceptual Framework for the Representation of 
Temporal Dynamics in Geographic Information Systems’, Annals of the Association of 
American Geographers, 84(3), pp. 441–461. Available at: https://doi.org/10.1111/j.1467-
8306.1994.tb01869.x. 

Phillips, M. and Knoppers, B.M. (2019) ‘Whose Commons? Data Protection as a Legal Limit 
of Open Science’, Journal of Law, Medicine & Ethics, 47(1), pp. 106–111. Available at: 
https://doi.org/10.1177/1073110519840489. 

Phithakkitnukoon, S., Smoreda, Z. and Olivier, P. (2012) ‘Socio-Geography of Human 
Mobility: A Study Using Longitudinal Mobile Phone Data’, PLoS ONE, 7(6), p. e39253. 
Available at: https://doi.org/10.1371/journal.pone.0039253. 

Piastra, R. (2015) ‘Brève histoire des régions françaises de Serge Antoine à François 
Hollande’, la Revue des Collectivités Locales. 

Purdam, K. and Elliot, M. (2007) ‘A Case Study of the Impact of Statistical Disclosure 
Control on Data Quality in the Individual UK Samples of Anonymised Records’, 
Environment & Planning A, 39(5), pp. 1101–1118. Available at: 
https://doi.org/10.1068/a38335. 

Qi, Y. and Wu, J. (1996) ‘Effects of changing spatial resolution on the results of landscape 
pattern analysis using spatial autocorrelation indices’, Landscape Ecology, 11(1), pp. 39–49. 
Available at: https://doi.org/10.1007/BF02087112. 

Qin, J. and Liao, F. (2021) ‘Space–time prism in multimodal supernetwork - Part 1: 
Methodology’, Communications in Transportation Research, 1, p. 100016. Available at: 
https://doi.org/10.1016/j.commtr.2021.100016. 

R Core Team (2024) ‘R: A Language and Environment for Statistical Computing’. Vienna, 
Austria: R Foundation for Statistical Computing. Available at: https://www.R-project.org/. 

Raento, M.U., Antti Oulasvirta, L. and Eagle, N. (2009) ‘Smartphones An Emerging Tool for 
Social Scientists’, Sociological Methods & Research, 37, pp. 426–454. Available at: 
https://doi.org/10.1177/0049124108330005. 

Reades, J. et al. (2007) ‘Cellular Census: Explorations in Urban Data Collection’. Available 
at: www.computer.org/pervasive (Accessed: 15 August 2021). 

Roper, C. (2015) GitHub - charlesroper/OSGB_Grids: A collection of Ordance Survey 
National Grids in Shapefile [OSGB 1936] and GeoJSON [WGS84] formats. Available at: 
https://github.com/charlesroper/OSGB_Grids (Accessed: 18 September 2023). 

Rosales, A., Fernández-Ardèvol, M. and Svensson, J. (2023) Digital Ageism: How it Operates 
and Approaches to Tackling it. 1st edn. London: Routledge. Available at: 
https://doi.org/10.4324/9781003323686. 

Roux, V. (2020) ‘The French rolling census: A census that allows a progressive 
modernization’, Statistical Journal of the IAOS, 36(1), pp. 125–134. Available at: 
https://doi.org/10.3233/SJI-190572. 



 
 

243 

Ruggles, S. and Van Riper, D. (2022) ‘The Role of Chance in the Census Bureau Database 
Reconstruction Experiment’, Population Research and Policy Review, 41(3), pp. 781–788. 
Available at: https://doi.org/10.1007/s11113-021-09674-3. 

Ruppert, E., Isin, E. and Bigo, D. (2017) ‘Data politics’, Big Data & Society [Preprint]. 
Available at: https://doi.org/10.1177/2053951717717749. 

Sahebgharani, A., Mohammadi, M. and Haghshenas, H. (2019) ‘Computing Spatiotemporal 
Accessibility to Urban Opportunities: A Reliable Space-Time Prism Approach in Uncertain 
Urban Networks’, Computation, 7(3), p. 51. Available at: 
https://doi.org/10.3390/computation7030051. 

Sahr, K. (2011) ‘Hexagonal discrete global grid systems for geospatial computing’, Archiwum 
Fotogrametrii, Kartografii i Teledetekcji, 22, pp. 363–376. 

Sahr, K., White, D. and Kimerling, A.J. (2003) Geodesic Discrete Global Grid Systems, 
Cartography and Geographic Information Science, pp. 121–134. 

Salat, H., Smoreda, Z. and Schläpfer, M. (2020) ‘A method to estimate population densities 
and electricity consumption from mobile phone data in developing countries’, PLOS ONE. 
Edited by S. Fu, 15(6), p. e0235224. Available at: 
https://doi.org/10.1371/journal.pone.0235224. 

Schubert, E. et al. (2017) ‘DBSCAN Revisited, Revisited: Why and How You Should (Still) 
Use DBSCAN’, ACM Transactions on Database Systems, 42(3), pp. 1–21. Available at: 
https://doi.org/10.1145/3068335. 

Schwanen, T. (2009) ‘Time-Space Diaries’, in R. Kitchin and N. Thrift (eds) International 
Encyclopedia of Human Geography. Oxford: Elsevier, pp. 294–300. Available at: 
https://doi.org/10.1016/B978-008044910-4.00547-2. 

Segaud, M., Brun, J. and Driant, J.-C. (2003) Dictionnaire critique de l’habitat et du 
logement. Armand Colin. France. Available at: 
https://www.eyrolles.com/BTP/Livre/dictionnaire-critique-de-l-habitat-et-du-logement-
9782200261733/ (Accessed: 31 May 2023). 

Sekara, V. et al. (2021) ‘Temporal and cultural limits of privacy in smartphone app usage’, 
Scientific Reports, 11(1), p. 3861. Available at: https://doi.org/10.1038/s41598-021-82294-1. 

Sevtsuk, A. and Ratti, C. (2010) ‘Does Urban Mobility Have a Daily Routine? Learning from 
the Aggregate Data of Mobile Networks’, Journal of Urban Technology, 17(1), pp. 41–60. 
Available at: https://doi.org/10.1080/10630731003597322. 

Sieg, L. and Cheshire, J. (2023) ‘Regionalising mobile phone data: attributing time 
components to optimised regions to create region classifications’, in. Available at: 
https://zenodo.org/records/7835017 (Accessed: 13 May 2024). 

Sieg, L. and Cheshire, J. (2024) ‘The Regionalization and Aggregation of In-App Location 
Data to Maximize Information and Minimize Data Disclosure’, Geographical Analysis 
[Preprint]. Available at: https://doi.org/10.1111/gean.12406. 



 
 

244 

Sieg, L. and Chesire, J. (2021) ‘Spatially aggregating mobility data – implications and 
challenges’. Available at: https://doi.org/10.5281/ZENODO.4669903. 

Silva, K.D.’ et al. (2017) ‘If I build it, will they come? Predicting new venue visitation 
patterns through mobility data’. Available at: https://doi.org/10.1145/3139958.3140035. 

Singleton, A., Longley, P. and Duckenfield, T. (2017) London Workplace Zones 
Classification Technical Report. 

Skinner, C. et al. (1994) ‘Disclosure Control for Census Microdata’, Journal of Official 
Statistics, 10(1), pp. 31–51. 

Slivinskas, G., Jensen, C.S. and Snodgrass, R.T. (2001) ‘A foundation for conventional and 
temporal query optimization addressing duplicates and ordering’, IEEE Transactions on 
Knowledge and Data Engineering, 13(1), pp. 21–49. Available at: 
https://doi.org/10.1109/69.908979. 

Smart, M.W. (1974) ‘Labour market areas: Uses and definition’, Progress in Planning, 2, pp. 
239–353. Available at: https://doi.org/10.1016/0305-9006(74)90008-7. 

Snyder, J.P. (1992) ‘An Equal-Area Map Projection For Polyhedral Globes’, Cartographica: 
The International Journal for Geographic Information and Geovisualization, 29(1), pp. 10–
21. Available at: https://doi.org/10.3138/27H7-8K88-4882-1752. 

Song, Y., Dahlmeier, D. and Bressan, S. (2014) ‘Not So Unique in the Crowd: a Simple and 
Effective Algorithm for Anonymizing Location Data’. 

Stevens, N. (2006) Changing Postal ZIP Code Boundaries. Congressional Research Service. 

Sutherland, W.J. et al. (2012) ‘A Collaboratively-Derived Science-Policy Research Agenda’, 
PLoS ONE. Edited by E. von Elm, 7(3), p. e31824. Available at: 
https://doi.org/10.1371/journal.pone.0031824. 

Taylor, L. (2015) ‘No place to hide? The ethics and analytics of tracking mobility using 
mobile phone data’:, http://dx.doi.org/10.1177/0263775815608851, 34(2), pp. 319–336. 
Available at: https://doi.org/10.1177/0263775815608851. 

Thrift, N.J. (1977) An Introduction to Time-geography. Geo Abstracts, University of East 
Anglia. 

Tiede, D. and Strobl, J. (2006) ‘Polygon-based Regionalisation in a GIS Environment 
Modelling and forecasting land changes using cellular automata and Markov chain View 
project Sen2Cube.at (Sentinel-2 Semantic Data Cube Polygon-based Regionalisation in a GIS 
Environment’. Available at: https://www.researchgate.net/publication/252121443 (Accessed: 
7 July 2021). 

Tizzoni, M. et al. (2014) ‘On the Use of Human Mobility Proxies for Modeling Epidemics’, 
PLoS Computational Biology, 10(7). Available at: 
https://doi.org/10.1371/journal.pcbi.1003716. 



 
 

245 

Tooru, O. and Kawakami, H. (2013) ‘Using Mobile Spatial Statistics in Field of Urban 
Planning 2. The Need for Popu-lation Statistics in Urban Development’, NTT DOCOMO 
Technical Journal, 14(3), pp. 31–36. 

Transport For London (2020) Quieter times to travel, Transport for London. Available at: 
https://www.tfl.gov.uk/status-updates/busiest-times-to-travel (Accessed: 18 September 2023). 

Trasberg, T. and Cheshire, J. (2020) ‘Towards data-driven human mobility analysis’, in. 
Available at: https://huq.io/ (Accessed: 9 February 2021). 

UCL and GLA (2015) London Output Area Classification - London Datastore, London 
Datastore. Available at: https://data.london.gov.uk/dataset/london-area-classification 
(Accessed: 14 August 2023). 

UCL and GLA (2017) London Workplace Zone Classification - London Datastore. Available 
at: https://data.london.gov.uk/dataset/london-workplace-zone-classification (Accessed: 9 
February 2021). 

Urry, J. (2007) Mobilities. Polity. 

Vallina-Rodriguez, N. et al. (2013) ‘When assistance becomes dependence: characterizing the 
costs and inefficiencies of A-GPS’, ACM SIGMOBILE Mobile Computing and 
Communications Review, 17(4), pp. 3–14. Available at: 
https://doi.org/10.1145/2557968.2557970. 

Vanhoof, M. et al. (2018) ‘Assessing the Quality of Home Detection from Mobile Phone Data 
for Official Statistics’, Journal of Official Statistics, 34(4), pp. 935–960. Available at: 
https://doi.org/10.2478/jos-2018-0046. 

Viegas, J.M., Martínez, L.M. and Silva, E.A. (2009) ‘Effects of the modifiable areal unit 
problem on the delineation of traffic analysis zones’, Environment and Planning B: Planning 
and Design, 36(4), pp. 625–643. Available at: https://doi.org/10.1068/B34033. 

Voronoï, G. (1908) Nouvelle application des paramètres continus à la théorie des formes 
quadratiques. Universitäts Göttingen. 

Walford, N.S. and Hayles, K.N. (2012) ‘Thirty Years of Geographical (In)consistency in the 
British Population Census: Steps towards the Harmonisation of Small-Area Census 
Geography’, Population, Space and Place, 18(3), pp. 295–313. Available at: 
https://doi.org/10.1002/PSP.658. 

Wang, F. et al. (2019) ‘Extracting Trips from Multi-Sourced Data for Mobility Pattern 
Analysis: An App-Based Data Example’, Transportation research. Part C, Emerging 
technologies, 105, pp. 183–202. Available at: https://doi.org/10.1016/j.trc.2019.05.028. 

Wang, F. and Chen, C. (2018) ‘On data processing required to derive mobility patterns from 
passively-generated mobile phone data’, Transportation Research Part C: Emerging 
Technologies, 87, pp. 58–74. Available at: https://doi.org/10.1016/j.trc.2017.12.003. 

Wang, J., Kim, J. and Kwan, M.P. (2022) ‘An exploratory assessment of the effectiveness of 
geomasking methods on privacy protection and analytical accuracy for individual-level 
geospatial data’, Cartography and Geographic Information Science, 49. Available at: 



 
 

246 

https://doi.org/10.1080/15230406.2022.2056510/SUPPL_FILE/TCAG_A_2056510_SM4398.
DOCX. 

Watts, D. (2013) ‘Computational Social Science: Exciting Progress and Future Directions’, in 
Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2013 Symposium. 
Available at: https://doi.org/10.17226/18558. 

Wesolowski, A. et al. (2015) ‘Quantifying seasonal population fluxes driving rubella 
transmission dynamics using mobile phone data’, POPULATION BIOLOGY Downloaded by 
guest on August, 16, p. 2021. Available at: https://doi.org/10.1073/pnas.1423542112. 

Wickham, H. (2014) ‘Tidy data’, The Journal of Statistical Software, 59(10). Available at: 
http://www.jstatsoft.org/v59/i10/ (Accessed: 15 September 2021). 

Willberg, E. et al. (2021) ‘Escaping from Cities during the COVID-19 Crisis: Using Mobile 
Phone Data to Trace Mobility in Finland’, ISPRS International Journal of Geo-Information, 
10(2), p. 103. Available at: https://doi.org/10.3390/ijgi10020103. 

Williams, S. (2020) Data Action: Using Data for Public Good. MIT Press. 

Young, C., Martin, D. and Skinner, C. (2009) ‘Geographically intelligent disclosure control 
for flexible aggregation of census data’, International Journal of Geographical Information 
Science, 23(4), pp. 457–482. Available at: https://doi.org/10.1080/13658810801949835. 

Zandbergen, P.A. (2014) ‘Ensuring Confidentiality of Geocoded Health Data: Assessing 
Geographic Masking Strategies for Individual-Level Data’, Advances in Medicine, 2014, pp. 
1–14. Available at: https://doi.org/10.1155/2014/567049. 

Zang, H. and Bolot, J. (2011) ‘Anonymization of location data does not work: a large-scale 
measurement study’, Proceedings of the 17th annual international conference on Mobile 
computing and networking - MobiCom ’11, p. 145. Available at: 
https://doi.org/10.1145/2030613.2030630. 

Zhang, H. and McKenzie, G. (2022) ‘Rehumanize geoprivacy: from disclosure control to 
human perception’, GeoJournal, 88, pp. 189–208. Available at: 
https://doi.org/10.1007/s10708-022-10598-4. 

Zhou, Y. et al. (2020) ‘Effects of human mobility restrictions on the spread of COVID-19 in 
Shenzhen, China: a modelling study using mobile phone data’, The Lancet Digital Health, 
2(8), pp. e417–e424. Available at: https://doi.org/10.1016/S2589-7500(20)30165-5. 

 

  



 
 

247 

Appendix  
 
Appendix 1. CDRC User Guide, including Statistical Disclosure control 
guidance 

 

Introduction  

CONSUMER DATA RESEARCH CENTRE DATA SERVICE 
USER GUIDE  

Version: 7.0  

The Consumer Data Research Centre (CDRC or Centre) is an academic led, multi-
institution laboratory which discovers, mines, analyses and synthesises consumer-
related datasets from around the UK. The CDRC forms part of the ESRC-funded Big 
Data network and offers a data service aimed at providing researchers with access to a 
wide range of consumer data to address many societal challenges. CDRC’s key areas of 
interest include retail, transport, health, crime, housing, energy, mobility and 
sustainable consumption. We support the acquisition and analysis of data in these 
areas and others to achieve benefits for the ‘public good’.  

The purpose of this guide is to describe the Centre’s data services and how researchers 
can access them. It identifies the different types of data the Centre holds and the 
service tiers through which these data sets are available. For data that are not publicly 
available, the guide details how researchers can register or apply for access and the 
kinds of support that is available to them.  

CDRC Data Services  

The CDRC provides data with three different levels of access. These correspond to the 
data levels described in the UK Data Service’s three tier access policy:  

• Open data: data which are freely available to all for any purpose. Data includes 
open datasets where CDRC have added value and non-sensitive and aggregated 
data and derivative products produced by the CDRC. Examples might include 
geodemographic data derived from the Census. Open data are accessed 
through the CDRC service via basic registration and download.  

• Safeguarded data: data to which access is restricted due to licence conditions, 
but where data are not considered ‘personally-identifiable’ or otherwise 
sensitive – an example might include data from retail companies on store 
turnover. Access to safeguarded CDRC data is via a remote service that 
requires users to submit a project proposal. This proposal must receive 
approval from the Centre’s Research Approvals Group (RAG) (see below) before 
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access to the data will be authorised. Users are able to retrieve data after 
authentication and authorisation by the service.  

• Controlled data: data which need to be held under the most secure conditions 
with more stringent access restrictions, including data which are ‘personally-
identifiable’ and therefore subject to Data Protection legislation or are 
considered commercially sensitive. Examples might include data on individual 
consumer purchases. Access to CDRC controlled data is provided through the 
CDRC-secure service. This service requires that individuals gain project 

approval through the RAG and visit one of our secure facilities at either the University 
College London, University of Leeds or University of Liverpool.  

Finding Data  

All data available through the CDRC are accompanied by metadata that enable both 
attributes and geography to be searched.  

Research Approvals Process  

Access to both safeguarded and controlled data requires a process by which individuals 
submit project proposals for assessment and approval. The approval process is 
overseen by an independent Research Approvals Group (RAG) which comprises 
representation from the Data Partner(s) and the social science academic community. 
The Group may also draw upon the expertise from a social science ethics practitioner. 
The CDRC Senior Management Team provides comment on resource implications of a 
proposal. The composition ensures that the RAG has expertise in research design, 
analysis and impact, while also considering any commercial sensitivities a project may 
have. The RAG review process is overseen by the Chair of RAG.  

For full details of the Research Approvals Process please see the Research Approvals 
Guidelines at https://data.cdrc.ac.uk/using-our-data-services.  

Criteria for Approval  

These criteria align with CDRC objectives and cover the following:  

• Scientific advancement – how the project has the potential to advance 
scientific knowledge, understanding and/or methods using consumer data;  

• Public good – how the project has the potential to provide insight and/or 
solutions that could benefit society;  

• Privacy and ethics – the potential privacy impacts or risks, and wider ethical 
considerations relating to the project  

• Project Design and Methods – how the project will be conducted and who 
will be involved with a focus on demonstrating project feasibility.  

• Cost and resources issues – what impact the project is likely to have on 
CDRC resources, including CDRC staff time and use of infrastructure, as well as 
any data acquisition costs. Resource requirements should be justified.  

The RAG typically considers applications remotely and is designed to be 
lightweight but robust, enabling timely decisions on user applications.  

Approval will not be granted without evidence that the user has acquired ethical 
approval for the research through their institution, or supplied evidence that it 
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is not applicable. For non-academic projects, where there is no approval 
process in place the CDRC will assist the user with acquiring this.  

 
 

Safe Researcher Training and Training and Development  

Safe Research Training  

Users, both academic and non-academic stakeholders, wishing to access controlled 
data and on occasion safeguarded data are required to have completed a safe 
researcher course, as offered by the Administrative Data Research Network (ADRN), 
HM Revenue and Customs (HMRC), Office for National Statistics (ONS) or the UK Data 
Service (UKDS). Evidence of valid accreditation for the duration of access to the data 
will be required. If the user has not previously completed such training the CDRC will 
offer access to training courses.  

Training and Development  

In addition to providing data services, the CDRC has a range of training courses and 
materials available. Many of these will be of benefit to those who wish to use our 
facilities, as they are aimed at enhancing capacity in data analytics and data 
visualisation methods. Full details of the training available can be found at 
https://www.cdrc.ac.uk/education-and-training/ and online training tutorials at 
https://data.cdrc.ac.uk/search/field_tags/tutorial-1679. Our programme includes 
training in the following areas:  

• Working on Big Data: introductory courses that explain the growing importance 
of Big Data; the importance of analytics and protocols; and standards for data 
management.  

• Introductory and advanced courses in data analysis and visualisation, including 
courses in R.  

• Introductory and advanced courses in Geographical Information Systems, 
including ArcGIS and QGIS.  

• Advanced courses in microsimulation and geo-temporal demographics.  
• Courses on how insights from Big Data analytics can enhance business.  
• Visualisation.  

Charges for CDRC Services  

While a service will be provided to the academic community and stakeholders 
free of charge, researchers may need to apply for funding to cover the costs of 
additional data acquisitions, or be charged for access to certain, licensed 
software.  

CDRC Services Overview and User Journey  
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CDRC Website: A Single Point of Entry into the CDRC Data Services  

The CDRC website, www.cdrc.ac.uk, is designed to provide a single point of entry into 
our services and these are clearly linked from the homepage.  

CDRC Data  
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Our data portal, CDRC Data, provides a complete listing of data available through the 
three tiers of the service and enables the dissemination of open data and application 
for access to safeguarded and controlled data.  

Accessing data from CDRC Data data.cdrc.ac.uk Open Service:  

Access to the Open Service requires:  

1) Registration  

Users will be required to provide contact details including a valid email address prior to 
download. This is to enable the CDRC to monitor the use of the resource. Data will 
then be available to the user to download for unrestricted use.  

Safeguarded Service:  

Access to the Safeguarded Service requires that users to obtain formal approval.  

1) Initial Proposal  

An approach is made to the CDRC by the user through completion of an online form, 
linked from the data pages. This initial proposal is processed and assessed by the 
Senior Management Team to see if it fits within the remit of the Centre. If not, the 
proposal may be referred to another Centre in the Big Data Network. Proposals that do 
not fit into either of these categories will be turned down at this stage.  

2) Proposal Development  

If the initial proposal fits within the Centre’s remit, the user is supplied with the 
‘Safeguarded Data Project Proposal Form’, and assigned to a CDRC data scientist who 
can advise on the technical aspects of the formal application. The aim is to co-produce 
an acceptable project proposal. Proposals will comprise:  

1. a)  Research motivation and purpose  
2. b)  Research impact  
3. c)  Plannedoutputs  
4. d)  Research team  
5. e)  Data requested  
6. f)  Data linkage  
7. g)  Duration of access  

 
 

h) Ethical approval from user’s institution1  

3) RAG Assessment and Approval  

Once an application has been completed it is considered by the RAG against agreed 
criteria that are published on our website, https://data.cdrc.ac.uk/using-our-data-
services. The number of rejected approvals will be minimised through initial interaction 
with the data scientists. Where approval is withheld, applications are referred back to 
the user for revision, and clear guidance will be given regarding those areas requiring 
clarity. If such amendments are agreeable by RAG, approval will be given. If minor, 
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the user may be asked to make further revisions, however, if issues are still considered 
to be major the RAG may decide to make a final decision to reject the proposal. 
Following approval, the user and their institution are required to agree to the CDRC 
User Agreement, including stipulations made by the Data Partner(s) and RAG.  

4) Data Access  

Access to a secure download of the agreed data is made available. This process 
requires that users telephone the CDRC to obtain a further password to unlock the 
encrypted download files. Once the user has downloaded the encrypted file, they are 
solely responsible for the data and its analysis.  

5) Outputs  

Users can use results of their analyses in publications, reports and presentations 
provided they abide by the terms and conditions with particular reference to the data 
partner publication terms. There is no screening of outputs by CDRC staff.  

6) Completion, Reporting and Acknowledgement  

Users are required to deposit copies of working papers, peer-reviewed journal articles, 
logs of impact and other publications for access with the CDRC site wherever copyright 
permits. Where this is not possible, full references to research outputs are required for 
CDRC audit purposes. Please email publications@cdrc.ac.uk when publications are 
ready for deposit or logging. The commitment to produce specified outputs is normally 
a condition of the data approval process. The terms of service require that published 
outputs include an acknowledgement stating: “The data for this research have been 
provided by the Consumer Data Research Centre, an ESRC Data Investment, under 
project ID CDRC xxx, ES/L011840/1; ES/L011891/1”. The acknowledgement will make 
further reference to the use of specific datasets according to the wishes and needs of 
individual data partners. After the project end date is reached, the CDRC will contact 
the user to confirm the destruction of the data and to document any outputs to date. 
The CDRC will contact users normally at 6 and 12 months after the project end date to 
request a log of any further publications or impact logs.  

1 If the user’s institution does not have a system for data protection and ethics approval then the 
CDRC will assist with gaining ethical review if required.  

 
 

7) Undergraduate and Postgraduate Student Applications  

Undergraduate and Masters Students requesting access to data will be required to 
submit a proposal in the normal way including their academic supervisor as a named 
applicant.  

CDRC Secure Service  

Access to CDRC controlled data is via our Secure Service at one of three secure 
facilities located at University College London, the University of Liverpool and the 
University of Leeds. Independent analysis of secure data can be undertaken at all of 
our secure facilities. If users require bespoke guidance and support with analytics, this 
service is provided at the University of Leeds only.  
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Use of the CDRC-Secure service requires registration and project approval, with an 
additional step of booking into one of the secure facilities and meeting any site specific 
secure facility requirements. The user will be informed of these once the site to be 
visited has been selected.  

Accessing data from CDRC secure sites  

Access to this service requires that users obtain formal approval.  

1) Initial Proposal  

An approach is made to the CDRC by the user through completion of an online form. 
This initial proposal is processed and assessed by the Senior Management Team to see 
if it fits within the remit of the Centre. If not, the proposal may be referred to another 
Centre in the Big Data Network. Proposals that do not fit into either of these categories 
will be turned down at this stage.  

2) Proposal Development  

If the initial proposal fits within the Centre’s remit, the user is supplied with the 
‘Controlled Data Project Proposal Form’, and assigned to a CDRC data scientist who can 
advise on the technical aspects of the formal application. The aim is to co-produce an 
acceptable project proposal. Proposals will comprise:  

1. a)  Research motivation and purpose  
2. b)  Research impact  
3. c)  Plannedoutputs  
4. d)  Research team  
5. e)  Data requested  
6. f)  Data linkage  
7. g)  Access requirements  
8. h)  Ethical approval from user’s institution2  

3) RAG Assessment and Approval  

2 If the user’s institution does not have a system for data protection and ethics approval then the 
CDRC will assist with gaining ethical review if required.  

 
 

Once an application has been co-produced it is considered by the RAG against agreed 
criteria that are published on our website https://data.cdrc.ac.uk/using-our-data-
services. The number of rejected approvals will be minimised through initial interaction 
with the data scientists. Where approval is withheld, applications are referred back to 
the user for revision, and clear guidance will be given regarding those areas requiring 
clarity. If such amendments are agreeable by RAG, approval will be given. If minor the 
user may be asked to make further revisions, however if issues are still considered to 
be major the RAG may decide to make a final decision to reject the proposal. Following 
approval, the user and their institution are required to agree to the CDRC User 
Agreement, including stipulations made by the Data Partner(s) and RAG.  

4) Data Access  
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Following approval, the allocated CDRC data scientist arranges access for the 
registered user. Dates are booked to use the secure facility at either UCL, University of 
Liverpool or University of Leeds. Users will receive a document informing them of site 
specific secure facility requirements and instructions of use.  

5) Data Analysis  

The user works on the data only within the secure environment. If users wish to 
combine controlled data with other less sensitive data (open or safeguarded), then it 
will be necessary to have obtained consent for this from RAG as part of the project 
proposal. This supporting data will then be made available to the user in the secure 
facility. The same applies to software required for analysis. CDRC staff provide limited 
support through the advanced analytics service. At the University of Leeds, a 
supported analytics service is available which provides the user with bespoke guidance 
and support in both accessing and analysing data.  

6) Outputs  

All outputs that the user wants to take out of the secure environment must be vetted 
and cleared by the CDRC before they can be released. Source data do not leave the 
secure facility. Users can take results of their analyses for use in publications, reports 
and presentations provided they abide by the terms of the User Agreement and with 
particular reference to the data partner publication terms.  

After completion of analysis the user informs the data scientist that the analysis is 
complete and that their files are now ready for vetting. For full details of the output 
process please see the CDRC site specific ‘Secure Lab Data Import/Export Procedures’.  

a) Outputs will be checked by two CDRC data scientists to ensure that they conform to 
CDRC control criteria.  

i. Outputs requested should be ‘finished outputs’ i.e. the finished statistical 
analyses that you intend to present to the public, must be easy to read and 
interpret and how they are to be used explained and must be non-disclosive.  

ii. The CDRC team will ensure that the outputs are the same specification as those 
agreed in the approved project proposal.  

 
 

iii. The user is informed of the outputs vetting outcome within 5 working days and 
if successful with details about how the data extracts or analysis will be 
returned to them.  

iv. Extracts that match approval are transferred by the CDRC team to a secure 
server from where outputs can be downloaded under the same arrangements as 
safeguarded data or transferred to the user on an encrypted USB/hard drive.  

v. Whereextractsaredeemednottomatchtherequiredcriteria,theuserisinformed.  
i. Where there are issues with a part of the output, if feasible the user will 

be  

allowed to revisit the secure facility to rectify the problem.  

ii. Major transgressions may be permanently deleted and the remaining 
output  
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is returned to the CDRC approver pool.  

vi. Once the user has completed all their analysis or their agreed lab access time 
has  

been reached all passes or electronic fobs are returned and access to the secure 
facility is immediately revoked.  

7) Completion, Reporting and Acknowledgement  

Users are required to deposit copies of working papers, peer-reviewed journal articles, 
logs of impact and other publications for access with the CDRC site wherever copyright 
permits. Where this is not possible, full references to research outputs are required for 
CDRC audit purposes. Please email publications@cdrc.ac.uk when publications are 
ready for deposit or logging. The commitment to produce specified outputs is normally 
a condition of the data approval process. The terms of service require that published 
outputs include an acknowledgement stating “The data for this research have been 
provided by the Consumer Data Research Centre, an ESRC Data Investment, under 
project ID CDRC xxx, ES/L011840/1; ES/L011891/1”. The acknowledgement will make 
further reference to the use of specific datasets according to the wishes and needs of 
individual data partners. After the project end date is reached, the CDRC will contact 
the user to confirm the destruction of the data and to document any outputs to date. 
The CDRC will contact users normally at 6 and 12 months after the project end date to 
request a log of any further publications or impact logs.  

8) Undergraduate and Postgraduate Student Applications  

Undergraduate and Masters Students requesting access to data will be required to 
submit a proposal in the normal way including their academic supervisor as a named 
applicant.  

9) Request for data not currently available through CDRC  

It is possible to request access to data variables or datasets not currently available 
through the CDRC. To submit a request please send us an email to info@cdrc.ac.uk 
and we will contact you to discuss further.  
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Appendix 2. List of R packages used, including versions and documentation. 

Note: this thesis relied on multiple versions of R software throughout the years, starting at 
version 3.6.2. At the date of submission, all analysis was running on R version 4.4.0 (v4.4.0, R 
Core Team, 2024).  
 
 
Package  Versio

n 
Date Source Documentation and Citation 

AQuadtre
e 

1.0.4 2023 CRAN Lagonigro, R., Oller, R. and Carles Martori, J. 
(2020) ‘AQuadtree: an R Package for Quadtree 
Anonymization of Point Data.’, R journal. 
https://CRAN.R-project.org/package=AQuadtree 

data.table 1.14.8 2023 CRAN Dowle M, Srinivasan A (2023). data.table: 
Extension of `data.frame`. R package version 
1.14.8.  
https://CRAN.R-project.org/package=data.table. 

dbscan 1.2.0 2024 CRAN Hahsler, M., Piekenbrock, M. and Doran, D. 
(2019) ‘dbscan: Fast Density-Based Clustering 
with R’, Journal of Statistical Software, 91, pp. 
1–30. https://doi.org/10.18637/jss.v091.i01. 

dplyr 1.1.2 2023 CRAN Wickham H, François R, Henry L, Müller K, 
Vaughan D (2023). dplyr: A Grammar of Data 
Manipulation. R package version 1.1.2, 
https://CRAN.R-project.org/package=dplyr 

h3 3.7.2 2022 GitHub  Kuethe S (2022). h3: R Bindings for H3. Package 
version 3.7.2, 
https://github.com/crazycapivara/h3-r 

igraph 2.0.3 2006 CRAN Csárdi G, Nepusz T, Traag V, Horvát S, Zanini F, 
Noom D, Müller K (2024). igraph: Network 
Analysis and Visualization in 
R. doi:10.5281/zenodo.7682609, R package 
version 2.0.3, https://CRAN.R-
project.org/package=igraph. 

ggplot2 3.4.1 2016 CRAN Wickham H (2016). ggplot2: Elegant Graphics 
for Data Analysis. Springer-Verlag New York. 
ISBN 978-3-319-24277-4, 
https://ggplot2.tidyverse.org. 

lubridate 1.9.3 2011 CRAN Grolemund G, Wickham H (2011). “Dates and 
Times Made Easy with lubridate.” Journal of 
Statistical Software, 40(3), 1-25. 
https://www.jstatsoft.org/v40/i03/. 

https://cran.r-project.org/package=AQuadtree
https://doi.org/10.18637/jss.v091.i01
https://doi.org/10.5281/zenodo.7682609
https://cran.r-project.org/package=igraph
https://cran.r-project.org/package=igraph
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ndjson 0.9.0 2022 CRAN Rudis B, Lohmann N, Bandyopadhyay D, Kettner 
L, Fultz N, Demeyer M (2022). “Ndjson: 
Wicked-Fast Streaming ‘JSON’ (‘ndjson’) 
Reader”. https://CRAN.R-
project.org/package=ndjson 

parallel 4.2.2 2022 CRAN R Core Team (2022). R: A Language and 
Environment for Statistical Computing. R 
Foundation for 
Statistical Computing, Vienna, Austria. 
https://www.R-project.org/. 

sf 1.0.12 2023 CRAN Pebesma E, Bivand R (2023). Spatial Data 
Science: With applications in R. Chapman and 
Hall/CRC. https://r-spatial.org/book/. 

sp 1.6.0 2013 CRAN Bivand RS, Pebesma E, Gomez-Rubio V (2013). 
Applied spatial data analysis with R, Second 
edition. Springer, NY. https://asdar-book.org/ 

terra 1.7.18 2023 CRAN Hijmans R (2023). terra: Spatial Data Analysis. 
R package version 1.7-18, 
https://CRAN.R-project.org/package=terra. 

tidyr 1.3.0 2023 CRAN Wickham H, Vaughan D, Girlich M (2023). tidyr: 
Tidy Messy Data. R package version 1.3.0, 
https://CRAN.R-project.org/package=tidyr. 

 
  

https://cran.r-project.org/package=ndjson
https://cran.r-project.org/package=ndjson
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Appendix 3. Primary and Secondary POI classification categories as 
described by the Ordnance Survey’s’ AddressBase Premium dataset.  

Primary category 
(Class 1) 

Secondary category 
(Class2) 

Description  

 
 
 
 
 
 
 

C  
(Commercial) 

CA Agricultural 
CB Ancillary Building 
CC Community Services 
CE Education 
CH Hotel/Motel/Boarding/Guest House 
CI Industrial  
CL Leisure 
CM Medical 
CN Animal Centre 
CO Office 
CR Retail 
CS Storage Land 
CT Transport 
CU Utility 
CX Emergency/ Rescue service 
CZ Information 

 
 
 
 
 

L 
(Land) 

LA Agricultural (not business enterprise) 
LB Ancillary Building 
LC Burial Ground 
LD Development 
LF Forestry 
LL Allotment 
LM Amenity – Open area not attracting visitors 
LO Open Space 
LP Park 
LU Unused Land 
LW Water 

 
 

M 
(Military) 

MA Army 
MB Ancillary Building 
MF Air Force 
MG Defense Estates 
MN Navy 

 
 
 
 

O 
(Other) 

OE Emergency Support 
OG Agricultural Support Objects 
OH Historical Site/Object 
OI Industrial Support 
OO Ornamental/Cultural Object 
OP Sport / Leisure Support 
OR Royal Mail Infrastructure 
OS Scientific/Observation Support 
OT Transport Support 

P 
(Parent Shell) 

PP Property Shell 
PS Street Record 

 
 

R 
(Residential) 

RB Ancillary Building 
RC Car Park Space 
RD Dwelling 
RG Garage 
RH House 
RI Residential Institution 
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U 
(Unclassified) 

UC Awaiting Classification 
UP Pending Internal Classification 

X (Dual use) X Dual use 
 
 

Z 
(Object of Interest) 

ZA Archaeological Dig Site 
ZM Monument 
ZS Stately Home 
ZU Underground Feature (Natural) 
ZV Other Underground Feature (Made) 
ZW Place of Worship 
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