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Abstract

Purpose Colorectal cancer is one of the most prevalent cancers worldwide, highlighting the critical need for early and accurate
diagnosis to reduce patient risks. Inaccurate diagnoses not only compromise patient outcomes but also lead to increased costs
and additional time burdens for clinicians. Enhancing diagnostic accuracy is essential, and this study focuses on improving
the accuracy of polyp classification using the NICE classification, which evaluates three key features: colour, vessels, and
surface pattern.

Methods A multiclass classifier was developed and trained to independently classify each of the three features in the NICE
classification. The approach prioritizes clinically relevant features rather than relying on handcrafted or obscure deep learning
features, ensuring transparency and reliability for clinical use. The classifier was trained on internal datasets and tested on
both internal and public datasets.

Results The classifier successfully classified the three polyp features, achieving an accuracy of over 92% on internal datasets
and exceeding 88% on a public dataset. The high classification accuracy demonstrates the system’s effectiveness in identifying
the key features from the NICE classification.

Conclusion This study underscores the potential of using an independent classification approach for NICE features to enhance
clinical decision-making in colorectal cancer diagnosis. The method shows promise in improving diagnostic accuracy, which
could lead to better patient outcomes and more efficient clinical workflows.

Keywords Surgical data science - Polyp classification - Deep learning - Colonoscopy

Introduction

Colorectal cancer is the third most common cancer world-
wide, with nearly two million new cases reported accord-
ing to the World Cancer Research Fund International.
Colonoscopy is the gold standard for diagnosing colorec-
tal cancer by detecting precancerous lesions called polyps.
Identifying and removing adenomas (cancerous polyps) is
crucial, as each undetected adenoma increases cancer risk
and reduces patient survival chances. Research indicates that
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a 1% increase in adenoma detection rate correlates with a 3%
reduction in cancer risk [1].

Polyps are either cancerous (adenomas) or non-cancerous
(hyperplastic), requiring different approaches during colono-
scopy. Adenomas should be removed, while hyperplastic
polyps can often be left untreated. Accurate identification
is essential to avoid unnecessary costs, time, and potential
risks to the patient from incorrect diagnoses.

Three main systems classify polyps: the Paris classifica-
tion, the Kudo classification, and the Narrow-Band Imaging
(NBI) International Colorectal Endoscopic (NICE) classifi-
cation [2]. This study focuses on the NICE classification,
which categorizes polyps into three types based on vessels,
surface patterns, and colour (see Table 1). Type-1 polyps are
likely hyperplastic, type-2 are adenomas, and type-3 indicate
deep submucosal invasive cancer.

While histology (polyp removal or biopsy) is the most
accurate diagnostic method, it is expensive and time-
consuming. An alternative is on-site diagnosis using NBI and
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Table 1 NICE classification [2]

Type 1 Type 2 Type 3
Brown to dark
Same or lighter | Brown relative to brown relative to
Colour the  background,
than background background .
sometimes patchy
whiter areas
None, or isolated Brown vessels sur- | Has area(s) of dis-
lacy vessels may . . .
Vessels . rounding white | rupted or missing
be present coursing
. structures vessels
across the lesion
Dark or white | Oval, tubular or
spots of uniform | branched white | Amorphous or
Surface size, or homoge- | structures sur- | absent surface pat-
nous absence of | rounded by brown | tern
pattern vessels
. . Deep submucosal
Most likel hol H 1 A . .
ost likely pathology yperplastic denoma invasive cancer
Example

the NICE classification during colonoscopy, which reduces
costs and time. However, clinician effectiveness can vary sig-
nificantly based on experience. Although datasets for polyp
diagnosis are limited compared to those for polyp detection,
private datasets have enabled numerous studies focussing on
polyp classification.

Previous research on polyp classification has predom-
inantly focussed on feature extraction using handcrafted
features. Early methods employed vascularization features,
texture analysis with local binary patterns, colour and tex-
ture features combined with classifiers like support vector
machines (SVM), and shape-based features using curva-
ture and Delaunay triangulation [3-9]. Wavelet transforms
and discrete cosine transforms were also explored for scale-
invariant features [10-12]. While these approaches have
contributed to polyp classification, the reliance on hand-
crafted features often results in models that are not easily
interpretable by clinicians.

With advancements in deep learning, convolutional neu-
ral networks (CNNs) have been increasingly applied to polyp
classification tasks. Ribeiro et al. (2016) [13] pioneered this
approach, followed by studies employing transfer learning,
comparing CNNs with handcrafted methods, and exploring
various CNN architectures [14—18]. Ensemble methods and
context-sensitive models have also been proposed to improve
classification accuracy [19-21]. Despite these advancements,
many studies rely on private datasets and classify polyps into
only a few categories, limiting direct comparisons and clini-
cal interpretability.
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This study aims to address these limitations by propos-
ing a methodology that classifies distinct clinical features of
polyps, namely vessels, surface patterns, and colour, within
a unified framework. By aligning the classification with
medical criteria and focussing on features interpretable by
clinicians, the proposed system seeks to enhance diagnostic
decision-making grounded in clinical reasoning. Integrating
the analysis of all three features under a single network not
only streamlines the process but also contributes to a more
clinically relevant understanding of polyp characteristics. To
the best of our knowledge, no prior study has specifically
focussed on the classification of NICE features. This study
aims to provide a framework for classifying NICE features
to assist clinicians in making informed decisions, rather than
directly predicting a diagnosis.

Methods

The objective is to classify the texture, colour, and vessel fea-
tures of a polyp according to the NICE classification using a
deep neural network based on ResNet [22]. The third cate-
gory of the NICE classification pertains to deep submucosal
invasive cancer, which is rare and relatively straightforward
for doctors to classify. Due to limited data, this study focuses
on the first two categories: adenoma and hyperplastic polyps.
This creates a multiclass problem with two labels for each
feature category. The diagnosis is also predicted during the
training process, as the label is already available and pro-
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Fig.1 Architecture of the networks used for the classification task of the polyp features

vides additional valuable information to enhance the model’s
learning and overall accuracy. The model employed is a
ResNet-101, pretrained on ImageNet, with four classes, as
depicted in Fig. 1.

The model classifies four features of polyps: colour, sur-
face pattern, vessels, and diagnosis. Diagnosis prediction
is utilized solely during the training phase, as the primary
objective of this study is to provide clinicians with detailed
information on NICE features to support their diagnostic
decision-making, rather than offering a direct diagnosis. Ini-
tially, binary cross-entropy loss with sigmoid activation is
used because each class is independent, allowing for sepa-
rate predictions.

To handle low-quality frames that cannot be classified as
type-1 or type-2—due to issues like camera movement or
light reflection, an “indistinguishable” label is introduced.
This addition transforms the problem into a multiclass, multi-
label classification with three mutually exclusive labels for
each feature. Examples of images with the “indistinguish-
able” label are shown in Table 2.

With the inclusion of the “indistinguishable” label, the
loss function changes to standard cross-entropy loss, and the
activation function switches to softmax to ensure only one
label is predicted per feature. The final loss is a combination
of losses from each feature: colour, vessels, surface pattern,
and diagnosis. The final loss Lfipg is defined as:

Lfinal = Lcolour + Lvessels + Lisurface + Ldiagnosis (D

The dataset is split into 60% for training, 10% for
validation, and 30% for testing, ensuring a proportional rep-
resentation of each feature through k-means clustering and
stratified sampling. Metrics used for clustering include the
number of polyps, adenomas, non-adenomas, Narrow-Band
Imaging (NBI) frames, and high-quality frames. During
training, classes are balanced to maintain equal numbers of
adenomas and non-adenomas.

Frames extracted from colonoscopy videos are resized to
224 %224 pixels and normalized using ImageNet’s pixel dis-
tribution values. The model is trained with a learning rate
of 0.0001, a batch size of 64, and the Adagrad optimizer

[23]. On the fly data augmentation techniques such as rota-
tion (—180° to 180°), translation (—20% to 20%), scaling
(0.8 to 1.2), shearing (—20° to 20°), and colour adjust-
ments (brightness: 0-0.5, contrast: 0-0.5, saturation: 0-0.5)
are applied to enhance model robustness. The model outputs
four predictions—one for each class—with each prediction
representing the probability of the feature being type-2.

As a final processing step, thresholding is applied to all
predictions. Let 7 be the threshold and p the raw prediction
output by the model. The final prediction, p ¢, is then defined
as follows:

1 if p>05+41¢
pr=10 ifp<05—t¢ 2)
N/A if05—-t<p<05+1¢

In this context, “N/A” signifies that the prediction is dis-
carded due to insufficient confidence to ensure reliability.
For instance, with a threshold of 0.2, a prediction of above
0.7 would result in a type-2 classification, while a predic-
tion below 0.3 would be type-1. All the other predictions
would be discarded. This thresholding step effectively fil-
ters out uncertain cases, focussing on retaining only the most
accurate predictions. The model checkpoint with the highest
validation accuracy is selected for final evaluation.

Results and discussion
Datasets

No public dataset with annotations for the NICE features is
available. Therefore, three datasets were annotated by a gas-
troenterology doctor with expertise in artificial intelligence
applied to colonoscopy. An overview of the three datasets
is provided in Tables 3, 4, and in Fig.2. Only high-quality
NBI frames were annotated since the NICE classification is
specific to the NBI modality, and low-quality frames ren-
der diagnosis impossible. Each frame is annotated with four
independent labels, corresponding to the classes: colour, ves-
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Table 2 Examples of type-1, type-2, and indistinguishable images for each class

Colour Vessels

Type-1

Type-2

Indistinguishable

Surface-pattern

Table3 Overview of the

datasets used in this study Status Patients Adenomas Non-adenomas
Dataset 1 (Full procedures) Private 391 262 140
Dataset 2 (Clips) Private 573 596 293
PICCOLO Public 40 50 20

Table 4 Summary of the number of frames corresponding to each label and feature utilized in this study

Dataset 1 (Full procedures) Dataset 2 (Clips) PICCOLO
Type-1 26821 476 739
Colour Type-2 50740 979 2235
Indistinguishable 3211 608 66
Type-1 27517 472 721
Vessels Type-2 51407 921 2233
Indistinguishable 1848 670 86
Type-1 26038 471 754
Surface-pattern Type-2 52519 910 2208
Indistinguishable 2215 682 78
Diagnosis Non-adenoma 23293 868 757
Adenoma 57482 1811 2526

sels, surface pattern, and diagnosis. These labels are assigned
independently of one another.

The first dataset is a private dataset containing 391
videos with 402 polyps, including 262 adenomas and 140
non-adenomas. Data were collected using an Olympus 290
scope at the University College London Hospital. The sec-
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ond dataset is another private dataset collected with an
Olympus 190 scope, comprising 889 polyps from 573 pro-
cedures. Frames were annotated for 596 adenomas and
293 non-adenomas. The last dataset is the public PIC-
COLO dataset [24], which includes images from clinical
colonoscopy videos collected with an Olympus 190, includ-
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Fig.2 Examples of images
from each dataset, with type-1
polyps on the left and type-2
polyps on the right. Some
polyps can be challenging to
locate. All annotated frames
provide a clear view of the polyp
and utilize the NBI modality to
ensure diagnostic accuracy

Type-1

ing NBI images. It comprises 70 different lesions from 40
patients, with 50 adenomas and 20 non-adenomas. Only the
private datasets were used for training, while PICCOLO was
used solely for testing.

These datasets initially contained either detection or seg-
mentation labels for polyps, where the label could be a
detailed segmentation mask or a bounding box around the

PICCOLO

polyp. The annotations were then expanded to include labels
for each feature: type-1, type-2, or indistinguishable. Type-1
and type-2 correspond to the NICE classification, while the
indistinguishable label is applied when artefacts like light
reflections make feature classification impossible. This label
is also used for frames that are out of focus or blurry due to
camera movements, as shown in Table 2. During the train-
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Table 5 Results of the

5 R A B
i‘f:;?g?‘t‘l‘]’: f?ﬁiv;?él;e%ifes Sensitivity (%)  Specificity (%)  Sensitivity (%)  Specificity (%)
dataset Full procedures

Colour 96.1 91.9 96.8 92.0
Surface 98.7 86.5 99.2 85.4
Vessels 98.5 919 98.6 84.1

Model A is trained without indistinguishable labels, and model B is trained with them. The best performance
for a given metric and feature between models A and B is highlighted in bold

ing and testing phases, images are cropped to include only
the content within the detection box, focussing on the polyp
itself without background distractions. This approach allows
the model to concentrate on feature analysis rather than polyp
detection.

The models are evaluated using sensitivity, specificity,
accuracy, and the area under the curve (AUC). Sensitivity
assesses how effectively the network identifies positive cases,
while specificity measures its ability to correctly classify neg-
ative cases. Accuracy reflects the overall correctness of the
model’s predictions. The AUC provides a summary of the
model’s performance across all classification thresholds by
plotting true positive rates against false positive rates. These
metrics are computed independently for each feature using
the corresponding labels.

Management of indistinguishable labels

This experiment investigates the impact of indistinguishable
labels on training, where indistinguishable labels are either
included as a third class or ignored by removing frames with
at least one indistinguishable feature. The results, comparing
model A trained without indistinguishable labels and model
B trained with them, are presented in Table 5.

Both models are trained and tested only on a subset of the
long procedures dataset. The two models exhibit very similar
results, with differences of less than 1% for both sensitivity
and specificity on all features except vessels. For vessels, the
specificity is higher for the model trained without the indis-
tinguishable label, with 91.9% against 84.1%. However, the
sensitivity is consistently higher for model B. Considering
the marginal performance differences (< 0.7%), it cannot
be conclusively stated that model B is significantly supe-
rior. According to this experiment, the indistinguishable label
does not significantly enhance overall results. Consequently,
the final model is trained without the indistinguishable label,
but the label is retained as a filter to remove low-quality
frames from the data.

@ Springer

Qualitative results

Examples of predictions from each dataset are shown in
Fig. 3. These examples are provided before the thresholding
step, meaning no rejections have been applied yet. It is impor-
tant to note that some frames present significant challenges
for feature classification, particularly due to light reflections.
Additionally, distinguishing between type-1 and type-2 fea-
tures can be difficult, as they sometimes appear quite similar.
For instance, surface pattern and vessel classifications from
the full procedures dataset illustrate challenging cases where
the network struggled. While Fig.3 highlights some of the
most difficult examples and failure cases, it is reassuring that
the majority of the data resembles the true positives and true
negatives examples also depicted in the figure.

It is important to note that not all features are required to
have the same classification type. For example, a type-2 polyp
may exhibit type-1 colour or type-1 vessels. According to the
official NICE classification, the presence of a single type-2
feature is sufficient to classify the polyp as type-2. In prac-
tice, however, these annotations are highly subjective and can
vary between clinicians. In this study, features are evaluated
independently, leaving their interpretation and combination
for the final diagnosis to the clinician’s discretion.

Quantitative results

The classification results for the features before applying the
threshold are detailed in Table 6. The accuracies and AUC
values are quite similar across different features within the
same dataset, suggesting minimal differences in predictions
between the features. All metrics reach at least 80%. The low-
est values observed are the specificity of the surface features
(80.8%) and vessel features (81.5%) in the full procedures,
as well as the sensitivity in the PICCOLO dataset, with the
surface features at 82.0% and vessel features at 80.3%. It is
also worth noting that the colour feature consistently achieves
high performance across all datasets, particularly in sensitiv-
ity, where it outperforms surface and vessel features in most
cases. The specificity metric shows some variability, with the
PICCOLO dataset displaying the highest specificity values,
particularly for the vessels feature, which reaches 99.0%.
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Fig.3 Examples of predictions from each dataset. The predictions are organized by each feature and displayed in a confusion matrix to compare
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Table 6 Results of the

classification network on the Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

three datasets fo.r each feature Full procedures

before thresholding
Colour 90.6 92.6 86.0 96.8
Surface 89.2 93.2 80.8 96.4
Vessels 89.2 92.9 81.5 96.3
Clips
Colour 88.1 87.1 90.1 95.2
Surface 88.1 87.7 88.8 94.6
Vessels 88.1 86.4 91.6 94.6
PICCOLO
Colour 86.8 83.1 98.1 96.8
Surface 84.8 82.0 92.7 94.5
Vessels 84.9 80.3 99.0 96.4

Sensitivity evaluates the model’s ability to accurately classify type-2 features, while specificity assesses its
effectiveness in correctly classifying type-1 features

Table 7 Results of the

classification network on the Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

three datasets for each feature Full procedures

after thresholding
Colour 95.0 95.8 93.1 98.5
Surface 94.4 96.8 88.4 98.3
Vessels 94.4 96.3 89.7 98.2
Clips
Colour 92.2 90.9 95.0 96.8
Surface 92.3 91.7 93.6 95.8
Vessels 92.3 90.9 95.2 95.9
PICCOLO
Colour 90.7 87.5 100.0 97.5
Surface 88.9 86.9 94.1 95.5
Vessels 89.2 854 100.0 97.1

Sensitivity evaluates the model’s ability to accurately classify type-2 features, while specificity assesses its
effectiveness in correctly classifying type-1 features

The results for the classification of polyp features after
applying a threshold of 0.2 are shown in Table 7. The thresh-
old was determined through an ablation study, representing
the optimal balance between the number of rejections (fewer
than 15% of the test set) and performance improvements.
In the full procedures dataset, the colour feature achieves
the highest accuracy at 95.0%. The surface and vessel fea-
tures perform similarly, each with an accuracy of 94.4%, but
they exhibit higher sensitivity (over 96%) and lower speci-
ficity (below 90%) compared to the colour feature. In the
clips dataset, the three features yield very close results, all
with accuracies exceeding 92%. The surface feature stands
out with a slightly higher sensitivity of 91.7%, compared to
90.9% for the other features, but has a lower specificity of
93.6%, while the other features maintain specificity above
95%. In the PICCOLO dataset, the overall accuracy is lower,
falling below 91% for all features. Specificity is notably high,
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reaching 100% for both colour and vessel features and 94.1%
for surface. However, sensitivity decreases to below 88%
across the board.

Compared to the results before thresholding, all metrics
show improvement. Accuracy increases by 4 to 5%, while the
AUC improves by 1 to 2% across all datasets and features.
This enhancement is expected, as low-confidence predic-
tions are discarded. The results indicate that the model rarely
makes confident errors; instead, it tends to be uncertain when
its predictions are incorrect, allowing those uncertain predic-
tions to be excluded.

Limitations

The primary limitation of this study is the lack of available
data. The datasets used had to be manually labelled with
NICE features, as no pre-annotated datasets exist. These



International Journal of Computer Assisted Radiology and Surgery (2025) 20:1015-1024 1023

annotations are inherently subjective, even when using the
"indistinguishable" label. Additionally, the NICE classifi-
cation system itself is not without flaws, leading to an
unavoidable margin of error in the results. Therefore, the
final decision should always rest with the clinician, who can
consider all relevant factors, including the broader context of
the video.

Conclusion

In summary, this study introduces a robust model capable of
classifying the three polyp features from the NICE classifi-
cation with an accuracy exceeding 92% for internal datasets
and surpassing 88% for the PICCOLO dataset. The pro-
posed classification has the potential to support clinicians in
making accurate diagnoses, providing a medically explain-
able approach. Notably, the study explored the influence
of indistinguishable labels, finding that their inclusion did
not significantly improve overall results. Future work aims
to extend the model to integrate SSP using the Workgroup
serrAted polypS and Polyposis (WASP) classification. This
expansion is expected to enhance diagnostic capabilities,
enabling the comprehensive handling of various polyp types.
The study lays a strong foundation for further advancements
in computer-aided diagnosis for colorectal cancer screenings.
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