
Vol.:(0123456789)

Behavior Research Methods          (2025) 57:160  
https://doi.org/10.3758/s13428-025-02630-5

ORIGINAL MANUSCRIPT

The CogLearn Toolkit for Unity: Validating a virtual reality paradigm 
for human avoidance learning

Marina Rodriguez Lopez1 · Huaiyu Liu1 · Federico Mancinelli2 · Jack Brookes1 · Dominik R. Bach1,2

Accepted: 10 January 2025 
© The Author(s) 2025

Abstract
Avoidance learning encompasses the acquisition of behaviours that enable individuals to evade or withdraw from poten-
tially harmful stimuli, prior to their occurrence. Maladaptive avoidance is a crucial feature of anxiety and trauma-related 
disorders. In biological and clinical settings, avoidance behaviours usually involve uninstructed, idiosyncratic and complex 
motor actions. However, there is a lack of laboratory paradigms that allow investigating how such actions are acquired. To 
fill this gap, we developed a wireless virtual reality platform to investigate avoidance learning in naturalistic settings, with 
an uncomfortable sound as unconditioned stimulus (US), a physically plausible avoidance action, and allowing for uncon-
strained movements. This platform, the CogLearn Toolkit for Unity, is publicly available and allows conducting various types 
of learning experiments with simple text files as input. We validated this platform in an exploration-confirmation approach 
with five independent experiments. Overall, participants showed successful acquisition of avoidance behaviour in all experi-
ments. In three exploration experiments, we refined the paradigm and identified mean distance from US location during 
conditioned stimulus (CS) presentation (before US occurs) as a sensitive measure of avoidance. Two confirmation experi-
ments revealed stronger avoidance for CS+ than CS- during avoidance learning, whether or not this phase was preceded by 
Pavlovian acquisition. Furthermore, we demonstrated reduced avoidance during extinction with instruction to approach CS, 
but persistent residual avoidance during this phase. We found evidence of reinstatement in one of two confirmation experi-
ments. Overall, our study provides robust evidence supporting the efficacy of our paradigm in studying avoidance learning 
in conditions of high ecological relevance.
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Introduction

Avoidance learning is a type of instrumental conditioning in 
which a certain object or spatial location (conditioned stim-
ulus, CS) is coupled with a noxious event (unconditioned 
stimulus, US) such that the agent can avoid US exposure 
by performing (or withholding) certain actions. Avoidance 

learning is paramount for any species that inhabits dynami-
cally changing environments and must protect themselves 
from harm such as predators (Colwill, 2022). However, 
maladaptive avoidance, e.g. avoiding non-harmful objects 
or places, could be detrimental. Indeed, dysfunctional avoid-
ance is observed in various psychiatric conditions, including 
post-traumatic stress disorder (Yehuda et al., 2015), anxiety 
disorders (Craske et al., 2017), and obsessive-compulsive 
disorder (Stein et al., 2019). As such, avoidance learning is 
often investigated in a pre-clinical context, and in paradigms 
designed to capture specific aspects of clinical conditions 
(for a review, see Krypotos, 2015). Specifically, maladap-
tive and enduring persistence of avoidance can be instigated 
directly by the process of avoidance learning (Moutoussis 
et al., 2008). This is because performing the avoidance action 
not only prevents US exposure, but often also blocks any 
information on whether the US actually occurs, which pre-
cludes further learning. Thus, if avoidance erroneously takes 
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effect in situations that are actually safe (e.g. because of 
improper CS generalisation), or if avoidance ceases to be 
adaptive because CS-US contingencies have changed, then 
the agent would be unable to adapt their learned actions. 
In clinical conditions, this could mean that agents abstain 
from potentially rewarding situations and/or are confined 
to performing costly actions with no objective benefit (e.g. 
Moutoussis et al., 2008). Hence, the computational, algorith-
mic and neural underpinnings of avoidance learning are of 
obvious bearing on issues of clinical relevance.

A variety of laboratory paradigms in humans have been 
developed to investigate such issues, including the role of 
avoidant habits (De Wit et al., 2018; Flores et al., 2018; 
Godier et al., 2016; Patterson et al., 2019; Roberts et al., 
2022) and of avoidance generalisation (Glogan et al., 2022; 
Lemmens et al., 2021; Norbury et al., 2018; San Martín 
et al., 2020; Wong & Pittig, 2022). While thought-provoking 
and informative, currently existing experimental procedures 
could be improved in several directions (Krypotos et al., 
2018; Pittig et al., 2018). (1) The situations faced by partici-
pants sometimes lack in ecological validity; both in terms of 
the eliciting situation and in terms of the required avoidance 
action. For such simplified paradigms, clinical relevance 
remains to be established. (2) Avoidance is often imple-
mented by recurring categorical (mostly unary or binary) 
measures, which precludes assessing the clinically relevant 
spectrum between a weak and a strong avoidance response. 
(3) Unlike in biological or clinical situations, instructions 
often play a major role in shaping avoidance learning, and in 
particular in finding the required actions. Presumably, these 
shortcomings come about because the vast majority of tasks 
(with due exceptions, e.g. Reichenberger et al., 2017) take 
place on a computer screen. This often (though not always) 
implies that the required actions are non-natural, often dis-
crete (e.g. key presses), and have no intrinsic relation to the 
stimulus that the agent seeks to avoid, such that they need 
to be instructed rather than found by exploration. Finally, 
this precludes body movement measurements, which might 
be pertinent to naturally and clinically occurring avoidance 
actions and would arguably add to the granularity of avoid-
ance measures.

In a bid to overcome these issues, the present work intro-
duces a novel task in immersive (wireless) virtual reality 
in order to study human avoidance learning. The task is 
presented and validated here in its basic form, but the para-
digm can be modularly extended to study complex learn-
ing phenomena or computational models. It simply requires 
participants to learn to avoid a noxious sound by moving in 
a virtual room. Participants come up by themselves with the 
timing and execution of their avoidance action and are unin-
formed about experimental contingencies. We then measure 
where, when, and which, avoidance responses occur. In the 
remainder of this manuscript, we introduce the software tool 

used to generate experimental paradigms, evaluate a range of 
outcome measures, establish their retrodictive validity (Bach 
et al., 2020) in independent confirmation experiments, and 
discuss future applications.

Methods

The CogLearn Toolkit for Unity

Our goal was to create a versatile avoidance learning plat-
form within the Unity VR game engine with the following 
conceptual features: (1) a primary reinforcer as US that can 
be implemented in wireless VR; (2) a conditioned (avoid-
ance) response that is physically related to the specific US 
and can be found by free exploration; (3) full flexibility to 
present single or multiple objects as CS; (4) a possibility to 
implement context conditioning (not used or evaluated in the 
current work); (5) a possibility to implement an incidental 
task during which avoidance can be quantified; (6) defini-
tion of experiments by means of simple text files without the 
need to train in the Unity software.

Thus, we created the CogLearn Toolkit for Unity, which 
includes the following features:

1.	 Virtual room. Throughout the experiment, participants 
are located within a bare, tiled, square-shaped room 
(dimensions: 8 m x 8 m x 3 m; see Fig. 1A). Tile pat-
tern was visually designed to provide clear orientation 
cues and to minimise cybersickness compared to plain 
walls in a series of technical tests. Room colour can be 
set for each trial, such as to implement simple form of 
contexts, and can be changed within the trial for higher-
order learning paradigms. At the far end of the room, a 
screen is mounted where short user-defined prompts can 
be presented.

2.	 US. The US is a loud monaural sine sound (1760 Hz, 
80 dB at zero distance from source, adjustable linear 
decay from source), which is presented for an adjustable 
duration. We chose the maximum loudness to be clearly 
aversive to most participants. The monaural presentation 
and (non-natural) linear decay were chosen for technical 
simplicity and because they provide a clearly defined 
distance from which the US cannot be aversive, whereas 
a physically realistic inverse-square decay would render 
this distance dependent on a participant’s hearing abili-
ties. For this type of sound, it is objectively impossible 
for a stationary person to locate its source. We specu-
late that this might be the reason why some participants 
did not exhibit any avoidance response in experiment 1 
reported here. To overcome this limitation and signal the 
sound source visually, from experiment 2 onwards, we 
added a set of loudspeakers in the sound source location 
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(under the CS pedestal), which vibrated when the US 
occurred. To prevent participants from garnering visual 
information about the occurrence of the US, this vibra-
tion feature could be turned off.

3.	 CS. In an adjustable location within the virtual room, 
one or two pedestals provide a platform to present any 
CS that are defined within Unity (only one pedestal is 
used in the experiments presented here). The toolkit 
includes a range of simple geometric objects as CS; new 
CS can be added in Unity. Multiple CS can be presented 

on the same pedestal by bundling them into a single 
Unity object.

4.	 Search task. As an incidental task conceptually based on 
Binder & Spoormaker's (2020) fishing task, we imple-
mented a search task in which coins appear in succes-
sion for 1 s each. They could appear anywhere at ran-
dom within an elliptical area of 2 m in width and 2 m 
in depth, 1 m from the floor. The centre of the area is 
between the subject starting point and the table (1 m in 
front of the player's starting point). Participants would 

Fig. 1   A Virtual reality environment. The screen, pedestal and small 
lightbulb are the only objects in the virtual room. B The pedestal on 
which CS is presented. In experiments 2–5, a set of speakers under-

neath the pedestal vibrate when US is presented. C Conditioned stim-
uli. In experiments 1–4, CS were the green and blue cubes, while in 
experiment 5, CS were blue cube and yellow cylinder 
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have to touch the coins with the hand controllers to col-
lect them.

5.	 Synchronisation with peripheral equipment. In order to 
synchronise with equipment such as psychophysiologi-
cal recordings, Unity sends a set of transistor-transistor 
logic (TTL) markers at each event.

6.	 Stimulus control. To define the various adjustable fea-
tures described above, users can define fixed features in 
a json file, and trial-specific features in a CSV file, both 
of which are read and compiled by the CogLearn project 
at runtime. Multiple definition files (e.g. corresponding 
to different trial orders) can be provided simultaneously, 
and the user will then be prompted to select one when 
starting the experiment.

7.	 Data logging. For trial management and data collection, 
the toolkit uses the Unity Experiment Framework (UXF, 
Brookes et al., 2020). Trial-wise data are saved in CSV 
format with one row per trial. Movement data from the 
head-mounted display (HMD) tracking system, sampled 
at the rate that the Unity simulation runs, which is cur-
rently tied to the render rate (80–120 Hz, depending on 
HMD), are reported in Unity’s left-handed coordinate 
system and saved as one CSV file per tracker per trial. 
A number of functions to read and manipulate this type 
of data are provided with our R packages CogLearn 
(https://​github.​com/​bachl​ab/​CogLe​arn) and vrthreat 
(http://​github.​com/​bachl​ab/​vrthr​eat) (Brookes et al., 
2023; Sporrer et al., 2023).

This toolkit is available on OSF (https://​osf.​io/​8u9ms/), 
both as build (not requiring Unity) and as Unity project. 
With the build, the user can change parametric features of 
the task, such as CS type, US parameters, stimulus timings, 
pedestal number and positions, room colours, prompt texts, 
task breaks, and features of the search task (via json and 
CSV files). This allows building many types of associa-
tive learning experiments, such as delay, trace and context 
conditioning with various timing and reinforcement set-
tings, return of fear tasks, latent inhibition, second-order 
conditioning, or Pavlovian-to-instrumental transfer tasks. 
By simply adding new CS objects in Unity, the user can 
implement further associative learning experiments requir-
ing compound CS or generalisation stimuli, such as forward 
and backward blocking, overshadowing, summation tests, 
patterning tasks, and generalisation experiments. The Unity 
project also allows users to change the conceptual layout of 
the task, and can thus serve as starting point for more varied 
learning experiments.

Participants

For the reported five validation experiments, non-overlap-
ping samples of healthy individuals were recruited from the 

general population through university-wide recruitment plat-
forms (see Table 1 for demographic details and Table 2 for a 
summary of questionnaire scores) and received a fixed mon-
etary compensation. Volunteers were considered eligible to 
take part in the study if they met the following criteria: over 
18 years old; fluent in English; no history of neurological, 
psychological or medical conditions; no movement impair-
ments; normal hearing, and normal or corrected-to-normal 
vision. Across all experiments, seven participants (< 5%) 
did not complete the experiment per protocol due to techni-
cal failures and were therefore excluded for analysis. For 
all experiments, we conducted sensitivity power analyses 
for one-sided paired t tests (CS+ > CS-) using G*Power 
3.1.9.7 (Faul et al., 2007), assuming 80% power and an alpha 
level of 0.05. These analyses showed that our samples were 
powered to detect effects with Cohen’s d values of 0.51, 
0.50, 0.44, 0.45, and 0.45 for the five experiments, respec-
tively. All participants gave written informed consent before 
the experiment, in accordance with the Declaration of Hel-
sinki. The experiment, including the form of establishing 
consent, was approved by UCL Research Ethics Committee 
(6649/005).

Settings and equipment

Virtual reality presentation

The VR paradigm was presented on an HTC Vive Pro Eye 
HMD headset with integrated headphones, using a wireless 
adapter and run on a PC with an Intel i7 9700K CPU and 
Nvidia RTX 2080Ti GPU using SteamVR version 1.26.7. 
Participants held VIVE hand controllers. The experiment 
was built using the Unity Engine version 2020.3.15f2 (Unity 
Technologies) under Windows 10 Enterprise (version 22H2).

Behavioural data recording

Participants were instructed that they were free to move 
around and explore the virtual room. The VR equipment 
allowed unrestricted body and head rotations, including but 
not limited to arm stretching and motion, jumping, and run-
ning. Hand and finger movements were restricted due to the 

Table 1   Demographic information for participants that completed the 
experiments per protocol

Experiment Sample size Mean age ± SD (range) Female/male

1 23 32.4 ± 9.19 (23–58) 13/10
2 24 29.3 ± 10.28 (18–45) 17/7
3 32 23.9 ± 6.36 (19–46) 28/4
4 30 22.5 ± 4.60 (18–40) 23/7
5 31 23.4 ± 6.26 (18–42) 29/2

https://github.com/bachlab/CogLearn
http://github.com/bachlab/vrthreat
https://osf.io/8u9ms/


Behavior Research Methods          (2025) 57:160 	 Page 5 of 14    160 

hand controllers being held. Headset and hand controller 
positions were tracked throughout the experiment.

Questionnaire data

We implemented questionnaires using the REDCap elec-
tronic data capture tools hosted at University College Lon-
don (Harris et al., 2009). A few days prior to the experiment, 
participants provided demographic information, including 
sex and gender, age, body weight and height. Then, they 
were asked to complete a set of questionnaires assessing trait 
anxiety (State-Trait Inventory for Cognitive and Somatic 
Anxiety, STICSA-T) (Ree et al., 2008), sensation seeking 
(Brief Sensation Seeking Scale, BSSS) (Hoyle et al., 2002), 
disgust propensity and sensitivity (Disgust Propensity and 
Sensitivity Scale, DPSS-12) (Fergus & Valentiner, 2009) 
and fearfulness (Fear Survey Schedule-III, FSS) (Wolpe & 
Lang, 1964). We used one question from the Video Game 
Usage Questionnaire (Tolchinsky, 2013) to assess the par-
ticipants’ video game habits, specifically asking to indicate 
the number of hours spent playing videogames per week. 
Upon arrival, and immediately before the experimental ses-
sion, participants completed a questionnaire on their state 
anxiety (STICSA-S: Grös et al., 2007; Ree et al., 2008) and 
physical state (e.g. hunger, thirst, tiredness, etc.). After the 
experimental session, participants completed the 16-item 
cybersickness inventory (Simulator Sickness Questionnaire, 
SSQ) (Kennedy et al., 1993). Table 2 summarises the sample 
characteristics for all experiments.

Stimuli and procedure

Virtual reality environment

All experiments used the same virtual reality room. In 
experiment 1, the only objects in this room were a white 
pedestal and a screen on which short prompts were presented 

(Fig. 1A). In experiments 2–5, a set of loudspeakers under-
neath the pedestal (Fig. 1B) would vibrate slightly when the 
US was presented to create the impression that the sound 
was coming from them.

Stimuli and timing

For experiments 1–4, CS were differently coloured cubes 
(blue, RGB: 46, 61, 124; dark green, RGB: 5, 31, 32; size: 
0.2 m x 0.2 m x 0.2 m), presented on top of the pedestal. CS-
colour relation was counterbalanced across participants. To 
facilitate CS differentiation and reduce potential generalisa-
tion in experiment 5, we substituted the dark green cube with 
a yellow cylinder (RGB: 222, 151, 11; size: 0.24 m x 0.1 m 
x 0.24 m) (Fig. 1C). CS were presented for 9 s.

US was a 1-s loud monaural sine sound (1760 Hz) with an 
intensity of 80 dB at zero distance from source, with a 25% 
linear decay per meter (becoming inaudible at 4-m distance 
from the source). US co-terminated with the CS.

The inter-trial interval (ITI) was randomly drawn from 
a uniform distribution between 9 and 15 s. Thus, mean ITI 
duration was 12 s.

Task sequence

All five experiments followed a similar design, consisting of 
different combinations of the following experimental phases: 
practice phase, Pavlovian acquisition phase (Fig. 2A), avoid-
ance learning phase (Fig. 2B), transfer task (Fig. 2C), extinc-
tion phase with instruction to approach (Fig. 2D), extinction 
recall phase (Fig. 2E), reinstatement phase (Fig. 2F). During 
breaks between the phases, a prompt appeared on the screen 
(“Now take a short break”), and the instructions for the next 
phase were read out to the participant. The next phase would 
commence after participants confirmed they understood the 
instructions. Table 3 summarises the trial structure for each 
experiment.

Table 2   Summary statistics (mean ± SD) of demographics and questionnaire scores from all experiments

Note: BMI body-mass-index, calculated from the weight and height responses given by participants days in advance. BSSS Brief Sensation Seek-
ing Scale, DPSS  Disgust Propensity and Sensitivity Scale, FSS  Fear Survey Schedule. STICSTA-T/S State-Trait Inventory for Cognitive and 
Somatic Anxiety – Trait/State, SSQ Simulator Sickness Questionnaire. See main text for details

Questionnaire Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

BMI 23.6 (± 3.44) 22.8 (± 4.71) 21.6 (± 4.50) 20.9 (± 3.02) 21.4 (± 2.37)
BSSS 23.7 (± 5.99) 24.1 (± 5.61) 22.5 (± 5.66) 23.2 (± 5.17) 21.3 (± 6.60)
DPSS 27.5 (± 6.27) 26.8 (± 6.12) 30.1 (± 7.19) 28.0 (± 6.77) 29.7 (± 8.58)
FSS 45.3 (± 20.9) 47.0 (± 28.3) 59.5 (± 35.0) 47.8 (± 23.3) 69.3 (± 22.5)
STICSA-T 27.7 (± 6.53) 28.8 (± 8.07) 33.6 (± 8.06) 30.0 (± 8.86) 32.4 (± 9.26)
STICSA-S 27.1 (± 5.73) 26.8 (± 8.28) 28.2 (± 7.89) 25.4 (± 4.23) 25.8 (± 5.59)
SSQ 16.2 (± 22.2) 19.0 (± 24.7) 27.0 (± 26.7) 24.4 (± 21.9) 21.2 (± 23.2)
Videogames (h/week) 2.26 (± 4.52) 2.55 (± 6.37) 2.31 (± 4.73) 2.64 (± 4.07) 4.07 (± 9.66)
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1)	 Practice phase: During a 40-s familiarisation period, 
participants could walk around freely, without any CS 
being presented.

2)	 Pavlovian acquisition phase: This phase consisted of 16 
trials: 8 CS+ and 8 CS-. Each CS was presented on top 
of the pedestal for 9 s. In 75% of CS+ trials, a US was 
delivered 8 s after CS onset, and co-terminated with CS 
presentation. During the entire phase, participants were 
sitting in a chair 2 m away from the pedestal, looking 
towards the CS, and were asked not to move.

3)	 Avoidance learning phase: This phase had the same 
procedure and reinforcement schedule as the Pavlovian 
acquisition phase, but participants were standing and 
allowed to walk around the room. Trials would start as 
soon as participants positioned themselves on a starting 
point, located at 1 m distance from the CS and indicated 
with a green light and floor mark. Thus, participants 

were compelled to walk away from the CS if they wanted 
to avoid the US sound.

4)	 Transfer task: Participants completed the aforemen-
tioned search task while CS were presented for 21 s 
without reinforcement. Each transfer task consisted of 
four trials (2 CS+, 2 CS-) in random order. Trials would 
start as soon as participants positioned themselves on a 
starting point located 2.5 m away from the CS.

5)	 Extinction phase with instruction to approach: This 
phase had the same trial structure as the Pavlovian 
acquisition and avoidance learning phases (eight trials 
per condition) but without any US. Trials started as soon 
as participants positioned themselves on a starting point 
located 4 m away from the CS. A screen prompt behind 
the pedestal tasked participants to approach the CS and 
try to stand as close as possible.

Fig. 2   Task sequence diagram. See section task sequence for detailed descriptions of each phase

Table 3   Summary of the experiment structure and task sequence of all five experiments. The trial number refers to the total number of trials, 
half of which involved CS+ and CS-, respectively

Experiment Pavlovian 
acquisition

Avoidance learning Transfer task 1 Instructed 
extinction

Extinction recall Transfer task 2 Reinstatement

1 16 trials 16 trials 4 trials 16 trials 4 trials
2 16 trials 16 trials 4 trials 16 trials 4 trials
3 16 trials 4 trials 16 trials 4 trials
4 16 trials 16 trials 4 trials 16 trials 4 trials 1 US+ 16 trials
5 16 trials 4 trials 16 trials 4 trials 4 trials 1 US+ 6 trials
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6)	 Extinction recall phase. This phase consisted of four tri-
als (two per condition), without any US or instruction, 
and with the starting point located 1 m away from the 
CS as in the avoidance learning phase.

7)	 Reinstatement phase: One presentation of the US with-
out CS was followed by trials without US (experiment 4: 
16 trials, 8 CS+, 8 CS-; experiment 5: six trials, 3 CS+, 
3 CS-). The starting point was located 1 m away from 
the CS.

In all phases except the Pavlovian acquisition phase, par-
ticipants were free to move around the room.

Data analysis

All data analysis was conducted using the statistical soft-
ware R 4.1.0 (R Core Team, 2022). Anonymised trial-level 
summary statistics and R scripts are publicly available on 
OSF (https://​osf.​io/​yxvfz/). Full movement data are available 
upon request under a data sharing agreement in line with 
local data protection regulations.

Data pre‑processing

Behavioural data were pre-processed using the R pack-
ages CogLearn (https://​github.​com/​bachl​ab/​CogLe​arn) and 
vrthreat (https://​github.​com/​bachl​ab/​vrthr​eat). For the con-
tinuous head tracker data, we extracted seven trial-level sum-
mary statistics over the interval from CS onset to US onset: 
mean/maximum/minimum distance to CS location; overall 
distance travelled; maximum speed; head direction relative 
to CS; reaction time for the first move away from CS, defined 
as the first time the head moved at least 0.7 m away from its 
position at CS onset.

Statistical analyses

Experiments 1–3 served to develop and validate the behav-
ioural task, and to identify the dependent variables that are 
most indicative of avoidance learning and extinction. The 
large number of alternative dependent variables that could 
have been explored poses a considerable multiple compari-
son problem, such that we focus on effect sizes and report 
statistical tests for illustration only. Confirmation experi-
ments 4–5 served to test out-of-sample generalisation of 
results garnered in experiments 2–3.

To assess the CS+/CS- difference within each phase, 
our primary criterion for the selection of dependent vari-
ables, we report effects sizes as Cohen's d and Hedge’s g. 
Next, we ran one linear mixed-effects model (LMM) per 
dependent variable per phase of the experiment. This model 
included the main effects of the CS condition (two levels: 
CS+/CS-), trial number, and their interaction, as well as 

a random participant intercept. We note that models with 
more complex random-effects structures failed to converge 
for all available optimisers. As robustness analysis, we ran 
repeated-measures ANOVAs. Results are available on OSF 
and largely consistent with LMM results. To compare across 
phases (acquisition/extinction and extinction/reinstatement), 
we conducted linear mixed-effects models across phases. 
Table 4 lists the model syntax in R. We fitted all LMMs and 
obtained relevant p values using the R package LmerTest 
3.1.3 (Kuznetsova et al., 2017).

Results

Experiment 1

In the avoidance learning phase, all dependent variables 
differentiated CS+ and CS- with effects sizes (Hedge’s g) 
between 0.2 and 0.6 (Fig. 3A, see supplementary materials 
on OSF, https://​osf.​io/​yxvfz/, for table of coefficients and 
p values). Of note, the CS+/CS- difference in minimum dis-
tance from CS is affected by some participants approaching 
CS on some trials. The largest effect size was observed for 
the mean distance from CS. During the first search task, 
only the maximum distance from CS showed an appreciable 
condition difference (Fig. 3B). Across the extinction phase, 
some variables still differentiated CS+ and CS-, but a direct 
comparison of the avoidance learning and extinction phases 
indicated extinction (Fig. 3B).

However, effect sizes in the avoidance phase were not as 
large as expected. Informal debriefing indicated that some 
participants could not localise the sound and did not find the 
objectively correct avoidance action. Thus, from experiment 
2 onwards, a set of speakers was added to indicate the sound 
source underneath the pedestal, which vibrated when the 
US was played.

Table 4   Linear mixed-effects models and their respective R syntax

Note: In the column R syntax, DV refers to each dependent variable 
(see main text for details). CS refers to the experimental condition 
(CS+/CS-). Trial_num refers to the trial number across conditions 
within each phase (linear predictor with one degree of freedom). 
Phase refers to the experimental phase, and ppid is the participant 
variable

Mixed-effects model R syntax

1 LmerTest::lmer(DV 
~ CS*Trial_
num+ (1|ppid))

2 LmerTest::lmer(DV 
~ 
CS*Phase+Trial_
num+ (1|ppid))

https://osf.io/yxvfz/
https://github.com/bachlab/CogLearn
https://github.com/bachlab/vrthreat
https://osf.io/yxvfz/
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Experiment 2

Experiment 2 followed the same design as experiment 1, 
adding only an indicator of US location. In the avoidance 
learning phase, all behavioural variables – with the excep-
tion of minimum distance from CS – differentiated CS+ and 
CS-, with generally larger effect sizes than in experiment 1 
(Fig. 4A, Table 5 for detailed effect sizes and F-statistic). 
The largest effect was observed for the maximum distance 
from CS during CS presentation. In the first transfer task, 
several variables differentiated CS+/CS- (Fig. 4B). Across 
the extinction phase, some variables still differentiated CS+ 
and CS-; however, a direct comparison of the avoidance 
learning and extinction phases indicated extinction.

Based on the results of experiments 1–2, we chose mean 
distance from CS as the primary outcome measure for all 
phases in all following experiments, as it showed large 
effect sizes and, unlike maximum/minimum distance, is 
not susceptible to floor/ceiling effects due to the starting 
point, which is different for different phases. We report all 
dependent variables in supplementary tables for the sake of 
completeness.

Experiment 3

With experiment 3, we sought to determine whether avoid-
ance learning takes place without a preceding Pavlovian 
acquisition phase. In the avoidance learning phase, our pri-
mary avoidance measure (mean distance from CS) indicated 
differentiation of CS+ and CS-, albeit with smaller effect 
size than in experiment 2 (Fig. 5A). There was no appreci-
able CS+/CS- difference in any of the variables in the trans-
fer task. A direct comparison of the avoidance learning and 
extinction phases indicated a reduction of avoidance across 
CS+/CS- but no CS x phase interaction.

There are two potential reasons for the smaller effect size 
in the avoidance learning phase: that participants do not 
avoid as much for the CS+, or that they generalise avoidance 
to the CS- as well (e.g. perceptual generalisation). Thus, 
if participants start moving away from all CS in early tri-
als, they might miss the information that no US is delivered 
on CS- trials. Trial-by-trial data (Fig. 5B) seem to suggest 
that participants avoid the CS- (even though less than the 
CS+) for most of the avoidance phase. In line with this, the 
CS x trial interaction was not significant in the avoidance 

Fig. 3   Results from experiment 1. We show all dependent vari-
ables for the avoidance learning phase of experiment 1 (A) and the 
main dependent variable for all phases of experiment 1 (B). Detailed 
results can be found in supplementary tables. In panel A, all depend-
ent variables are normalised to the range 0–1 to facilitate illustration. 

Numbers show Hedge’s g with 95% confidence interval for the con-
trast CS+ vs. CS-, while significance stars reflect p values of the con-
dition effect from the within-phase LMM (panel A), and the condi-
tion and condition x phase effects from the across-phase LMM (panel 
B). CSp: CS+, CSm: CS-; p < 0.05: *; p < 0.01: **; p < 0.001: ***
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Fig. 4   Results from experiment 2. Note that the VR setup was 
changed between experiments 1 and 2. We show all dependent vari-
ables for the avoidance learning phase of experiment 2 (A) and the 
main dependent variable for all phases of experiment 2 (B). Detailed 
results can be found in supplementary tables. In panel A, all depend-
ent variables are normalised to the range 0–1 to facilitate illustration. 

Numbers show Hedge’s g with 95% confidence interval for the con-
trast CS+ vs. CS-, while significance stars reflect p values of the con-
dition effect from the within-phase LMM (panel A), and the condi-
tion and condition x phase effects from the across-phase LMM (panel 
B). p < 0.05: *; p < 0.01: **; p < 0.001: ***

Table 5   Effect sizes with 95% confidence intervals for condition effects, and F-statistics for phase interactions, in Experiment 2

Note: Column headers indicate dependent variables. The first four columns report Hedge’s g values with 95% confidence intervals for CS+/
CS- difference, and the last column report F-statistic for phase interaction. Significance stars in the first four columns reflect the p values from 
linear mixed-effects models (LMMs) examining condition effects. Significance stars in the last column reflect p values from LMMs examine CS 
x Phase interaction. p < 0.05: *; p < 0.01: **; p < 0.001: ***; ns = non-significant

Dependent variable Avoidance learning Transfer task 1 Extinction Transfer task 2 Avoidance vs. extinc-
tion

Mean distance g = 0.75 [0.30, 1.18] 
(***)

g = 0.31 [– 0.09, 0.70] 
(*)

g = 0.26
[– 0.13, 0.66]
(**)

g = 0.28 [– 0.12, 0.67]
(*)

F(1, 740) = 6.19 (***)

Max distance g = 0.88 [0.41, 1.33] 
(***)

g = 0.34 [– 0.06, 0.73]
(*)

g = 0.26 [– 0.14, 0.65] 
(ns)

g = 0.26
[– 0.14, 0.65] (ns)

F(1, 740) = 21.74 (***)

Min distance g = 0.20 [– 0.19, 0.59] 
(ns)

g = 0.24 [– 0.15, 0.63] 
(ns)

g = 0.26 [– 0.13, 0.65] 
(***)

g = 0.59 [0.17, 1.01] 
(**)

F(1, 740) = 4.86 (ns)

Distance covered g = 0.68 [0.24, 1.11] 
(***)

g = 0.16 [– 0.23, 0.55] 
(ns)

g = – 0.23 [– 0.62, 
0.16] (ns)

g = 0.00 [– 0.38, 0.39] 
(ns)

F(1, 740) = 17.27 (***)

Max speed g = 0.60 [0.17, 1.02] 
(***)

g = 0.01 [– 0.38, 0.40] 
(ns)

g = – 0.17 [– 0.56, 
0.22] (ns)

g = – 0.25 [– 0.64, 
0.15] (ns)

F(1, 740) = 12.32 (***)

Head direction g = – 0.32 [– 0.72, 
0.08] (*)

g = 0.42 [0.01, 0.83] 
(*)

g = 0.06 [– 0.33, 0.45] 
(ns)

g = 0.27 [– 0.13, 0.66] 
(ns)

F(1, 740) = 3.71 (*)

Reaction time g = – 0.38 [– 0.79, 
0.05] (*)

g = – 0.08 [– 0.47, 
0.31] (ns)

g = 0.24[– 0.15, 0.63] 
(ns)

g = 0.04 [– 0.35, 0.44] 
(ns)

F(1, 635.83) = 3.51 (*)
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learning phase, F(1, 480.01) = 1.54, p = 0.22. To explore 
the possibility of generalisation, we conducted an additional 
linear mixed-effects model for CS- with trial number as the 
independent variable, including random intercepts at the 
participant level. This exploratory analysis demonstrated a 
significant main effect of trial number (F(1, 224.75) = 65.57, 
p < 0.001), suggesting increased avoidance of the CS- over 
the acquisition phase. Together, these findings suggest that 
participants may generalise avoidance learning from CS+ 
to CS-.

Experiment 4

Experiment 4 was conducted to confirm out-of-sample 
generalisation of the results obtained in experiment 2 and 
followed the same design, with an exploratory reinstate-
ment phase at the end. In the avoidance learning phase, 
all behavioural variables, including the primary outcome 
measure indicated differentiation of CS+ and CS- condi-
tions (see supplemental materials for details). There was 
no CS+/CS- difference in our primary outcome measure 
in the transfer task or in the extinction phase. A direct 

comparison of the avoidance learning and extinction phases 
indicated successful extinction (Fig. 6). After reinstatement, 
most behavioural variables including the primary outcome 
measure differentiated CS+/CS-. Direct comparison of the 
extinction and reinstatement phases indicated successful 
reinstatement (Fig. 6).

Experiment 5

Experiment 5 was conducted to confirm out-of-sample 
generalisation of the results obtained in experiment 3 and 
generally followed the same design. As we had suspected 
generalisation of avoidance to the CS- in experiment 3, 
we changed the CS to be perceptually more dissimilar 
(Methods: Stimuli). Furthermore, we added an explora-
tory extinction recall phase and a reinstatement phase. 
In the avoidance learning phase, most behavioural meas-
ures including the primary outcome measure indicated 
differentiation of CS+ and CS- condition (see supple-
mentary material). The primary avoidance measure dif-
ferentiated CS+/CS- the first transfer task, with a larger 
effect size than in experiment 3. In the extinction phase, 

Fig. 5   Results from experiment 3. We show the effects of condition 
(CS+/CS-) for the main dependent variable for all phases of experi-
ment 3 (A) and trial-by-trial averages of the main dependent vari-
ables for both CS+/CS- conditions for the avoidance learning phase 

(B). Numbers show Hedge’s g with 95% confidence interval for the 
contrast CS+ vs. CS-, while significance stars reflect p values of the 
condition effect from the across-phase LMM. p < 0.05: *; p < 0.01: 
**; p < 0.001: ***
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the primary avoidance measure still differentiated CS+/
CS- but a direct comparison of avoidance learning and 
extinction phases indicated extinction. In the extinction 
recall test, there was no differentiation of CS+/CS- in 
the primary avoidance measure (albeit a small effect was 
seen in maximum distance). After reinstatement, the pri-
mary avoidance measure differentiated CS+/CS- and was 
numerically higher than during extinction. However, there 
was no CS x phase interaction, indicating no reinstate-
ment for both the CS+ and CS-. See Fig. 7 for data pat-
terns and see supplementary material for detailed statisti-
cal information.

Discussion

Avoidance learning is a form of instrumental conditioning 
that enables individuals to evade potentially harmful stim-
uli and, in its maladaptive form, can be clinically relevant 
for many mental health disorders. Here, we developed and 
validated a novel avoidance learning paradigm for humans 
to study natural and uninstructed avoidance actions, which 
are assessed in a fine-grained way rather than categorically.

We report three main results. First, across five experi-
ments with slightly different design, participants exhibited 
the objectively correct avoidance action upon presentation 

Fig. 6   Effects of condition (CS+/CS-) for main dependent variable 
for all phases in experiment 4. Numbers show Hedge’s g with 95% 
confidence interval for the contrast CS+ vs. CS-, while significance 

stars reflect p  values of the condition effect from the within-phase 
LMM, and the condition and condition x phase effects from the 
across-phase LMM. p < 0.05: *; p < 0.01: **; p < 0.001: ***

Fig. 7   Effects of condition (CS+/CS-) for the main dependent vari-
able across all phases in experiment 5. Numbers show Hedge’s g with 
95% confidence interval for the contrast CS+ vs. CS-, while signifi-

cance stars reflect p  values of the condition effect from the within-
phase LMM, and the condition and condition x phase effects from the 
across-phase LMM. p < 0.05: *; p < 0.01: **; p < 0.001: ***
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of the CS+. Initial exploratory experiments identified mean 
distance from CS over the CS-US interval as a sensitive 
measure that was confirmed in independent samples. Par-
ticipants avoided the CS+ more than the CS- both when 
US contingencies were trained in a preceding Pavlovian 
acquisition phase as well as when they were not. Differential 
avoidance, however, appeared to be potentially affected by 
perceptual similarity of CS+ and CS-. Second, action was 
partly extinguished when CS+ was no longer coupled with 
US and participants were instructed to approach CS. How-
ever, several experiments demonstrated residual avoidance 
even during this extinction training. Third, one experiment 
showed latent associations were left intact during extinction, 
as revealed by return of avoidance after reinstatement. This 
result, however, was not replicated in a second experiment 
with different design and an intervening extinction recall 
phase.

These findings generally validate our paradigm as repro-
ducing several canonical features of avoidance learning 
(acquisition, extinction) and a classical feature of Pavlovian 
conditioning (reinstatement). We note that our extinction 
phase intentionally included a feature of exposure therapy, 
namely the explicit instruction to approach the CS, as we 
sought to demonstrate that avoidance learning in our para-
digm can be extinguished in principle. Whether extinction 
would also occur spontaneously remains to be determined 
and could be informative if one sought to investigate the per-
sistence of maladaptive avoidance. In such a case, it might 
be useful to revert to the paradigm version used in experi-
ment 1, where no indication on US presence is given once 
participants walk more than 4 m away from the US. This 
might be more comparable to naturally occurring situations 
outside a therapy setting.

Reinstatement after successful extinction was observed 
in experiment 4 but not experiment 5. Two reasons might 
account for this. The first is that experiment 4 included a 
Pavlovian acquisition phase preceding avoidance learning. 
Reinstatement is classically observed in Pavlovian condi-
tioning and generally thought to reflect the nature of extinc-
tion learning as an additional inhibitory association which 
can neurobiologically tracked to neural structures differ-
ent from those mediating extinction (Kindt, 2018). Thus, 
it is possible that reinstatement does not (fully) form for 
non-Pavlovian avoidance learning. On the other hand, the 
reinstatement phase in experiment 5 comprised fewer trials 
than in experiment 4, and trial-by-trial variability could be a 
methodological reason why reinstatement was not confirmed 
in experiment 5.

While we succeeded in instating learning, avoidance 
behaviour was not consistently observed during an incidental 
transfer task. This task might be improved, for example by 
including a forced choice task (based on Binder & Spoor-
maker, 2020).

Results across all experiments confirm that our virtual 
reality paradigm can indeed be utilised to experimentally 
induce avoidance behaviour. While this paradigm is pre-
sented here in its basic form, it could be further extended 
and modified to study complex learning phenomena. Despite 
promising efforts (Maia, 2010; Moutoussis et al., 2008; Pal-
minteri et al., 2012, 2015), cognitive-computational models 
of avoidance learning are still scarce. Assessing complex 
learning phenomena (e.g. second-order conditioning, over-
shadowing, blocking, etc.) relating to avoidance learning 
would be crucial in developing such models. Therefore, our 
tool might spawn crucial applications in the future cognitive 
and computational research of avoidance learning.

To conclude, we present a novel naturalistic VR para-
digm that can induce learning and extinction of avoidance 
behaviours in healthy human participants without instruc-
tion or previous knowledge of experimental contingen-
cies. This makes our paradigm a precise, sensitive, largely 
automatised and highly standardised tool for testing avoid-
ance learning with high ecological validity.
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