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This paper discusses the propagation of coastal currents generated by a river outflow
using a 1 1

2 -layer, quasigeostrophic model, following Johnson et al. (2017) (JSM17).
The model incorporates two key physical processes: Kelvin-wave-generated flow and
vortical advection along the coast. We extend JSM17 by deriving a fully-nonlinear,
long-wave, dispersive equation governing the evolution of the coastal current width.
Numerical solutions show that at large times the flow behaviour divides naturally into
three regimes: a steady outflow region, intermediate regions consisting of constant-width
steady currents, and unsteady propagating fronts leading the current. The widths of
the steady currents depend strongly on dispersion when the constant outflow potential
vorticity anomaly is negative. Contour-dynamic simulations show that the dispersive
equation captures the full quasigeostrophic behaviour more closely than JSM17 and gives
accurate bounds on the widths of the steady currents.
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1. Introduction

River outflows and their associated boundary fronts strongly influence the ocean and
thermohaline circulation (Rahmstorf 2003), where less dense freshwater flows entering
higher-density oceanic waters generate movement across the globe. Freshwater input from
rivers introduced by the Arctic Ocean is observed to slow heat distribution throughout the
Northern Hemisphere (Holliday et al. 2020). Piecuch et al. (2018) examine how variable
river discharge influences oceanic circulation, contributing to rising sea levels on the East
Coast of the United States. Moreover, the mixing of ocean and coastal waters generated
by outflow currents determines nutrient transport and the subsequent distribution of
phytoplankton populations (Ajani et al. 2020). Sun et al. (2022) specifically emphasise
how complex interactions between different river flows affect the distribution of the
phytoplankton community in coastal waters of South Korea. On a smaller scale, the
Hawkesbury River estuary in Australia is a source of nutrient-dense waters transported
by the river plume (Li et al. 2022), directly influencing the marine taxonomy of the river
mouth. Wang et al. (2022) note that coastal and estuarine fronts led by river discharges
cause the accumulation of pollutants and microplastics.
There is growing evidence to causally relate increasing river discharge to rising coastal

sea levels, as currents can be trapped along the coast. With the intensifying hydrological
cycle (Pratap & Markonis 2022), Tao et al. (2014) predict up to a 60% increase in
discharge from the Mississippi River basin over the next century, the largest source of
water drainage from North America into the Atlantic Ocean. Similarly, Piecuch et al.
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Figure 1: Winter sediment plumes from the Yangtze River spreading into the East China Sea
forming a “shelf” of water stretching leftwards (data from the MODIS satellite, 2017), made
visible by tidal stirring of bottom sediments (Luo et al. 2017).

(2018) suggest from Atlantic and Gulf coast data that river discharge is responsible for
up to 15% of the annual sea-level variance.
Numerical studies of river outflows (Mestres et al. 2007) examine how changes in

river width, inlet transport, and the Coriolis parameter affect the surface plume width
given a constant outflow discharge. Tides, wind forcing, and unsteady outflows can also
influence the evolution of the coastal front (Southwick et al. 2017). In the Northern
Hemisphere freshwater from rivers could be expected to turn right (in the direction of
the Coriolis force). There are, however, clear indicators of leftward propagation, such as
the suspended sediments that form the Yangtze River plume front (figure 1). Johnson
et al. (2017, JSM17 herein) capture both phenomena by using a theoretical long-wave
approximation to the 1 1

2 -layer, quasigeostrophic (QG) equations where fluid expelled
from a single-channel outflow is driven by a Kelvin wave (KW) and vortical advection
along the coast. More sophisticated 2-layer outflow models describing the discharge of the
Ganges-Brahmaputra-Meghna mega-delta (Kida & Yamazaki 2020), a major freshwater
source in the Bay of Bengal, show how fronts from individual river branches that form
the delta, are crucial in the overall outflow dynamics.
Jamshidi & Johnson (2019) modify JSM17 using the semigeostrophic equations (SG) to

investigate the validity range in the QG approximation. The modification admits a KW
propagating along the coast at a finite speed in contrast to the QG limit where the KW
propagates infinitely fast. While the SG equations admit Rossby numbers of order unity,
the outflow behaviour remains qualitatively similar. Thus, we continue with the simpler
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QG model, but capture further detail in the solutions by studying the dispersive long-
wave PV equation which adds first-order terms to the hydraulic PV equation in JSM17.
This addresses the incomplete predictions of the hydraulic theory for narrow source
outflows and predicts new behaviour, such as the formation of dispersive shock waves
(DSWs) under certain parameters of the coastal outflow problem. The analysis builds
on the methods in Jamshidi & Johnson (2020, JJ20 herein) who derive the dispersive
equation for a coastal current of constant flux along a wall, and analyse the Riemann
problem for the adjustment of a step change in the width of an alongshore current using
El’s dispersive-shock fitting technique (El 2005).
Section 2 describes the idealised flow geometry considered here, governed by the 1 1

2 -
QG equations, and presents the leading-order hydraulic limit of the equations and their
first-order dispersive correction. Away from the source, the system supports travelling
waves of fixed form and the equations governing these are noted in §2.3. The flow evolves
to divide naturally at large times into three regimes: a steady region containing the
outflow, constant-width currents leading away from the outflow regions, and unsteady
propagating frontal regions leading the constant-width currents. Section 3 considers
the outflow region, presenting numerical solutions for the asymptotically steady flow
there and discussing the transition between subcritical and supercritical flow across
the outflow. The widths of the outflow currents for negative PV outflows are shown
to depend strongly on the strength of the dispersion. Section 4 describes the various
compound wave structures observed in the fronts leading the constant-width currents,
and §5 compares predictions from the dispersive long-wave theory with integrations of
the full QG equations. The results are summarised briefly in §6.

2. Formulation

We consider a river outflow model where fluid is released from a constant depth inlet
and flows along the coast into a half-space consisting of an upper active layer, comprising
the expelled fluid and displaced ambient ocean water, and an ambient lower layer of
infinite depth. The problem setup is shown from a plan view in figure 2(a) and a side
view in figures 2(b)(i), 2(b)(ii). We take Cartesian coordinates Oxyz, with x along the
coast, y offshore, and z vertical. The system is rotating with Coriolis parameter f about
the z-axis. Here, Ds denotes the inlet depth, D the depth of the upper ambient fluid, and
L denotes the half-width of the outflow lying along a vertical coast y = 0. We denote the
connected region of the expelled fluid as D which is bounded by the contour C separating
the expelled fluid from the ambient. At time t > 0, fluid is released from the outflow into
the half-space y > 0 with a constant discharge rate that is independent of the width of
the source and constant non-zero potential vorticity (PV) denoted by Π⋆. The expelled
and ambient fluid in the upper layer has density ρ1 while the lower layer has zero PV
and density ρ2 > ρ1, with |ρ1 − ρ2| ≪ ρ2 so the Boussinesq approximation is valid. This
layered system satisfies the 11

2 -layer QG equations provided the relative depth change
between the inlet and the active layer is small, i.e., |D−Ds| ≪ D. Typical velocities are
small compared to the speed of long free-surface water waves, so the surface z = 0 can be
taken as effectively rigid with the dynamics restricted to the interface between the layers.
The difference between the potential vorticity of the expelled fluid and the upper ambient
fluid, defined as the potential vorticity anomaly (PVa), Π0 := ∆Π⋆ = f/Ds − f/D, is
positive if the outflow depth is deeper than the inlet depth Ds < D, or negative if
Ds > D. Herein (as in JJ20) we denote PVa as just PV for brevity.

We consider the case where the coastal front C does not overturn so the frontal width
can be expressed as y = Y (x, t). This is true for gently propagating coastal fronts but
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(a)

(b)

Figure 2: A schematic of a river outflow expelling fluid at t > 0 from an inlet with depth Ds into
the upper layer of depth D. The lower layer of ambient ocean water below has infinite depth
hence Π⋆ = 0. The subsequent displacement of the interface between the layers is denoted by
h. (a) the plan view of a river source of half-width L where the expelled fluid evolves to form
a region D enclosed by a closed coastal front C (including the coast boundary y = 0). (b) the
side-view where (b)(i): the outflow depth is deeper than the river inlet, so there is positive PV(a)
generation. (b)(ii): outflow depth is shallower than the inlet (due to the presence of a shoal say)
so there is negative PV(a) generation.

contour-dynamical integrations of the full QG equations in §5 suggest that overturning
can occur, particularly for flows begun impulsively, and is discussed separately. In our
QG framework, we introduce a streamfunction

ψ(x, y, t) =
g′h(x, y, t)

fQ0
, (2.1)

where h(x, y, t) is the interface displacement. The time-dependent evolution of C is
governed by the QG equation for ψ. Here, Q0 is the area flux expelled by the outflow
(with total volume Q0D), g′ is the reduced gravity, with the horizontal velocities of the
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flow given by (u, v) = (−ψy, ψx). Spatial and temporal scales are nondimensionalised
(with choices justified, along with other quantities below, in JSM17) according to the
vortex length Lv and advection timescale Tv where

Lv = (Q0/|Π0D|)1/2, Tv = L2
v/Q0. (2.2)

We define W to be the nondimensionalised half-width (herein just width) of the outflow
such that W = L/Lv. The nondimensional governing equation becomes

q = ∇2ψ − 1

a2
ψ =

{
0 y > Y (x, t)

Π 0 < y < Y (x, t),
(2.3)

where ∇2 = ∂/∂x2+∂/∂y2 is the Laplacian operator, the constant PV is nondimension-
alised Π = Π0/|Π0| so that positive PV is Π = +1 and negative PV is Π = −1,
and a = LR/Lv is the ratio of the Rossby radius of deformation for the interface
LR =

√
g′H/f to the vortical length scale Lv. The parameter a is later referred to

as simply the Rossby radius. It measures the ratio of the strength of advection by the
image vorticity effect to that by the Kelvin-wave induced flow. If Π = +1, then the
advection of the fluid combines with the Kelvin wave to reinforce the turning effect. If
Π = −1, the image effect opposes the Kelvin wave.
We denote the flux function of the source outflow by Q(x) with width W along the

coast y = 0. The fluid is impulsively expelled at t > 0 given by the no-flux boundary
condition (2.4), and far from the coast the fluid is stationary so

ψ(x, 0, t) = Q(x), (2.4)

ψ → 0, y → ∞, (2.5)

Here Q(x) is normalised so Q(x ⩽ −W ) = 0, Q(x ⩾ W ) = 1. The remaining condition
is the kinematic boundary condition so that fluid particles on the coastal front remain
on the coastal front C,

Yt = [ψ(x, Y (x, t))]x. (2.6)

2.1. The leading-order hydraulic solution

Rescaling (2.3) using the long-wave variables

X = εx, T = εt,

where ε = 1/W , and expanding ψ in terms of ε gives

ψ(X, y, T ) = ψ0 + ε2ψ1 +O(ε4). (2.7)

We substitute (2.7) into (2.3) which is matched with the leading-order ε0 and first-order
ε2 terms. This derivation is summarised from JJ20, with the modification that Q(x)
here varies instead of being constant in x. Directly evaluating ψ0 at the coastal front
y = Y (X,T ) gives

ψ0(X,Y, T ) = Qe(X,Y, T ) = −a
2Π

2
+ (Q(X) + a2Π)e−Y/a − Πa2

2
e−2Y/a. (2.8)

Qe(X,Y, T ) represents the net transport of the (ambient) oceanic fluid from point X.
The kinematic boundary condition (2.6) at the leading order becomes

Yt +

[(
Q(x)

a
+ aΠ

)
e−Y/a − aΠe−2Y/a

]
Yx +Q′(x)e−Y/a = 0, (2.9)
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reconverting from (X,T ) → (x, t) and its respective derivatives. Equation (2.9) governs
the leading-order behaviour of the coastal front at y = Y (X,T ), described here as the
hydraulic solution.

2.2. The first-order dispersive correction

The next order in ε gives the first order correction of ψ at y = Y (X,T ) as

ψ1(X,Y, T ) =

− a3Π

4
YXX +

(
a2

2
ΠY YXX +

a3

4
ΠYXX − aΠ

2
Y (YX)2

)
e−2Y/a +

a

2
QXX(X)Y e−Y/a.

(2.10)

The dispersive kinematic boundary condition (2.6) including first-order terms becomes

Yt +

[
a2Π

2
e−2Y/a −

(
Q(x) + a2Π

)
e−Y/a

]
x

+
a3Π

4
Yxxx −Π

[(
a2

2
Y Yxx − a

2
Y (Yx)

2 +
a3

4
Yxx

)
e−2Y/a

]
x

−
[a
2
Qxx(x)Y e

−Y/a
]
x
= 0.

(2.11)

Expanding (2.11) gives the alternative form of the first-order dispersive kinematic bound-
ary condition

Yt +

[(
Q(x)

a
+ aΠ

)
e−Y/a − aΠe−2Y/a

]
Yx

+
a3Π

4
Yxxx −Π

(
(Y − a/2)(Yx)

3 +
a3

4
Yxxx +

a2

2
Y Yxxx − 2aY YxYxx

)
e−2Y/a (2.12)

−Qx(x)e
−Y/a − a

2
Qxxx(x)Y e

−Y/a − a

2
Qxx(x) (1− Y/a)Yxe

−Y/a = 0,

again reconverting from (X,T ) → (x, t). While the parameter ε no longer appears, the
variables x, t vary slowly. Formally, this means 1/ε ≡ W ≫ 1 and a is of order unity.
When Q(x) narrows to a point source outflow W → 0, its derivatives become large
Qx(x) ∼ 1/W ≫ 1, which violates this requirement. Nevertheless, this system can still
be treated with surprisingly good accuracy in §3.2.

2.3. The travelling wave solutions of the dispersive equation

Provided the flux function is constant Q(x) ≡ Q (in the regions |x| > W ), the system
supports waves of permanent form as noted in JJ20. We change to moving coordinates
by setting ξ = x − st and looking for solutions in a steady frame, the governing PV
equation (2.12) can be written in potential form

(Yξ)
2
=

2

a2
a3e−2Y/a − 4a(QΠ + a2)e−Y/a + 2sΠY 2 + αY + E

a− (a+ 2Y )e−2Y/a
≡ 2

a2
ν(Y, s, α,E)

G(Y )
,

(2.13)
where α,E are the constants of integration, and s is the speed of the travelling wave.
JJ20 describe the different types of nonlinear travelling waves and the criteria for their
formation for the case Q = 1. We focus on the soliton and kink soliton waves for arbitrary
but constant Q: a soliton wave is a single wavepacket of amplitude given by |Y∞ −
Y1| maintaining its shape, propagating along some background Y = Y∞ value, with
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conditions given by

ν(Y = Y1) = 0, ν(Y = Y∞) = 0, ν′(Y = Y∞) = 0, (2.14)

where ′ denotes differentiation with respect to Y . Two far-field states of Y say Y1 and
Y2 may be connected by a kink soliton, often regarded as a “half-soliton” (as opposed
to a soliton which returns to its background value). A special case of a kink soliton is a
coastal intrusion which is a current of constant width YI terminating at the coast Y = 0.
From JJ20, the intrusion meets the coast smoothly adding one more condition

ν(Y = 0) = 0, ν′(Y = 0) = 0, ν(Y = YI) = 0, ν′(Y = YI) = 0. (2.15)

This determines the constants α,E, as well as giving the unique speed sI and the
width of the intrusion YI determined by solving the equations

(−a2YI + 3a3 + 4aQΠ − 2QΠYI)e
2YI/a − (2a2YI + 4a3 + 4aQΠ + 2QΠYI)e

YI/a

+(a2YI + a3) = 0, (2.16)

sI =
−2a2e−2YI/a + 4(a2 +QΠ)e−YI/a − 2a2 − 4QΠ

−4YIΠ
, (2.17)

such that the PV front meets the coast with finite gradient

(Yξ)
2|Y=0 =

2Π(asI −Q)

a2
. (2.18)

The parameters a,Q and Π determine the speed, sI and width, YI , of the intrusion.

3. The outflow region

For steady flow, (2.6) integrates directly to give

F (Y, Yx, Yxx) := ψ0(x, Y ) + ψ1(x, Y, Yx, Yxx) = Φ, (3.1)

where Φ is a constant. In the far field |x| → ∞, the PV front settles to a constant-width
current (upstream width denoted by Y− and downstream width Y+) and the full solution
there becomes identical to the hydraulic solution, as noted below in §3.1.

We solve (2.12) as a boundary value problem (BVP) in steady flow. By selecting the
solution that satisfies the condition dY/dx = 0 up or downstream (depending on the sign
of Π), this uniquely determines the solution that omits waves incident on the constant-
width current region. We focus (for reasons discussed in §3.1.2) on the case Π = −1,
where the constant Φ ≡ Qe(x = −W ) is set so that the upstream current width at Q = 0
can be rewritten as Y (−W ) ≡ Y−.

Outside the source x > W , the steady dispersive PV equation is rewritten in potential
form where s = 0 in (2.13). This introduces a truncated or partially complete soliton
where the current width decays exponentially towards the far-field Y+ width for Π = −1.
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The steady problem for Π = −1 is thus

• Y = Y−; x < −W, (3.2)

• ψ0(x, Y ) + ψ1(x, Y, Yx, Yxx) = Φ; |x| ⩽W (3.3)

Φ = Qe(x = −W ), Yx(−W ) = 0, Yx(W )2 =
2

a2
ν(Y (W ), α+, E+)

G(Y (W ))
,

• (Yx)
2 =

2

a2
ν(Y, α+, E+)

G(Y )
; x > W. (3.4)

The constants α+, E+ are determined using the conditions for the existence of soliton
in (2.14) at Y = Y+, Π = −1, and solving (3.3) in the outflow region |x| ⩽ W gives the
value of Y (W ) ≡ Y+ and Φ, allowing (3.4) to be solved from x = W . Knowledge of Φ
uniquely determines the widths of the far-field Y+, Y− and by extension the entire steady
system.
We solve the steady equation using the method of Jamshidi & Johnson (2021) by

truncating the domain to some x = ±L for large L using a BVP solver (bvp4c/bvp5c)
in MATLAB. Equation (3.3) is solved across the entire domain, setting the flux function
to be Q(x) := Q4(x) in (4.1), which is equivalent to solving (3.2), (3.3), (3.4) separately
in each domain and unifying the solutions. Although a shooting method can be used to
find Φ similarly done in Jamshidi & Johnson (2021), this is automatically handled in the
bvp4c/bvp5c solvers by introducing one more equation,

Φ = Qe(x = −W ) =
−a2Π

2
(Q+ a2Π)e−Y−/a − Πa2

2
e−2Y−/a, (3.5)

that must be satisfied alongside the ODE. Figure 3 gives an example of the numerical
simulation.

3.1. Hydraulic and dispersive control

Consider a steady solution Y ≡ Ys(x) of (2.12). Perturbing the solution with small
waves say

Y = Ys(x) + ε̂y, y ∼ O(1) (3.6)

where ε̂ ≪ 1, substituting this into (2.12) and discarding terms smaller than order ε̂
gives the equation

∂y

∂t
+ C

∂y

∂x
= f (y) , C = (C0 + C1), (3.7)

C0 =

(
Q(x)

a
+ aΠ

)
e−Ys/a − aΠe−2Ys/a ∼ O(1), (3.8)

C1 = −Π
(
3
(
Ys −

a

2

)
(Y ′

s )
2 − 2aYsY

′′
s

)
e−2Ys/a − a

2
Q′′(x) (1− Ys/a) e

−Ys/a ∼ O(ε̂2).

(3.9)

To remain in the long-wave regime we require ε̂y to be much smaller than a typical
disturbance wavelength, and strictly f is a function of yxx, yxxx ∼ O(ε̂2), O(ε̂3) that
is disregarded. Keeping terms O(ε̂) or greater only, we view (3.7) as a forced first-order
partial differential equation (PDE) with a disturbance propagation speed C = C0+O(ε̂2),
so C0 is regarded as the locally constant long-wave speed of the dispersive equation at
a given point. In the context of steady-flow hydraulics, the flow is supercritical where
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Figure 3: The steady dispersive solutions (shown in blue) for a = 1.3, Π = −1 plotted for source
widths: top) W=3, bottom) W=10 with the outflow centred at x = 0 (marked as a filled star).
For comparison the full QG solutions (in black) is shown for t = 500. The locations of the
hydraulic and dispersive control point are shown by a black and blue filled circle respectively.
The red line denotes the hydraulic rarefaction at t = 10000, an almost constant-width current
extending from the hydraulic control point.

C > 0 and subcritical where C < 0. The parts where C = 0 give critical control and we
denote its location by the control point x = xc.

3.1.1. The Π = −1 case

First, considering the hydraulic PV equation (2.9) and summarising the results in
JSM17, the steady solution selects the condition in which the control point is fixed at
the downstream edge xc = W of the source, determining Y+. The controlled solution at
xc = W also establishes the size of the steady constant-width current upstream Y−. In
the hydraulic context, condition (3.1) simplifies to

Qe(Y = Y−, Q = 0, Π) = Qe(Y = Y+, Q = 1, Π) = Φ, (3.10)

recalling Qe ≡ ψ0 is the leading-order (hydraulic) streamfunction evaluated at the PV
front. Requiring flow to be critically controlled gives some essential conditions in the
hydraulic equation. Upstream at Q = 0 the long-wave speed C(Y )|Q=0 < 0 holds for all
Y , therefore, we always have steady supercritical flow in this region. The Q = 1 region
downstream must transition to subcritical flow, which means that there is a critical point
in between C(Y ) = 0. This is used to determine Y+ and we can derive the minimum value
of Y− in our equation using (3.10)

Y+ := (Y+)hyd, −1 = a ln

(
a2

a2 − 1

)
, Y− := (Y−)hyd, −1 = a ln

(
a4 + a2

√
2a2 − 1

(a2 − 1)2

)
.

(3.11)
When a ⩽ 1, Y−, Y+ diverges (or becomes negative or undefined), hence steady solutions
are only possible for a > 1.
Similar behaviours occur in the dispersive PV equation, as (3.10) holds in the constant-
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width current regions. Upstream of the source outflow x < −W , as with the hydraulic
equation, there is supercritical flow C < 0; thus, any Rossby waves that form must
propagate away from the coastal front. In this region, the hydraulic terms dominate the
front and C1 ≡ 0. It follows that the upstream current is constant-width where waves
cannot stand, hence we can set dY/dx = 0 at x = −W .
The control point is fixed at xc = W in the hydraulic prediction and so the current

widths Y−, Y+ do not change with the outflow width. Jamshidi & Johnson (2021)
describes a PV front involving a topographic symmetrical shelf (of a different fixed
depth to the seabed) in which the dispersive prediction selects the critical condition
C = 0 exactly at the peak of the topographic perturbation x = 0. In the context of this
dispersive PV equation, the control point is also influenced by the width of the outflow,
so the position of the control point can no longer be determined a priori.
Figure 3 compares the numerical steady solution with the full problem (using the

contour dynamics method of §5), which are run until Y−, Y+ converges to its steady
value. The widths Y± are well predicted for source widths W = 3, W = 10. This is
a significant improvement to the hydraulic rarefactions (red), although there are some
discrepancies in the dispersive wave (less so for W = 10) that links Y− to Y+ compared
to the full problem. Note that the Y locations of the hydraulic and dispersive control
points are virtually identical (with O(ε̂2) error), but as the solutions differ, these control
points lie on different x values. Here, the dispersive control point (blue) is not necessarily
fixed at the outflow edge x =W unlike the hydraulic control point (black). This allows it
to match the widths of the full solutions. For the larger width outflow, the control point
lies closer to the downstream outflow as it converges to the hydraulic rarefaction.

3.1.2. The Π = +1 case

Critical control for Π = +1 in the hydraulic solution occurs at the edge of the source
outflow x = −W , when there is no current upstream. As shown in JSM17, this gives
remarkably accurate results compared to the full problem, predicting the upstream and
downstream steady currents as

(Y−)hyd, +1 ≡ 0, (Y+)hyd, +1 = a ln
(
1/a2 + 1 +

√
1/a4 + 2/a2

)
. (3.12)

The dispersive equation also establishes its own control point but this causes the front
to lie below the coast, i.e., reach negative Y values. From §3.3, these solutions are not
valid and must be omitted when comparing them to the full problem. The dispersive PV
equation is therefore only useful in predicting current widths Y−, Y+ when Π = −1.

3.2. The narrow source limit, W → 0

The governing PV equation (2.12) is not formally valid for narrow outflowsW ≪ O(1).
However, over long times, the dispersive equation forΠ = −1 captures the far-field values
(Y−, Y+) of the full problem well in these regimes (figure 4). Therefore, it is useful to
analyse the dispersive equation here and extend the analysis of (2.12) to all W .

In §3 forΠ = −1, the far-field currents Y+, Y− are joined together by the outflow region
as follows: a (truncated) soliton formed by the outflow region connects the downstream
constant-width current Y+ to an intermediate point Y = Ys at x = W . This point Ys
smoothly links to the constant-width current Y (x = −W ) = Y− within the outflow region
|x| < W to x = −W . As the source width becomes arbitrarily small W → 0, the ODE
can no longer smoothly adjust the soliton to Y− and must undergo a shock at x = 0
instead. The soliton becomes truncated exactly at its maximum point to minimise the
width of the shock, so the derivative Yx is zero at x = 0. Figure 5 illustrates the shape
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Figure 4: Top): The steady dispersive solutions (blue) at a = 1.3, Π = −1 shown for different
widths W = 1, 10, 100, compared directly to the contour dynamics at W = 0 at t = 1000
(shown in black). Also overlaid is the comparison (dotted lines) with the hydraulic and dispersive
predictions of the current widths (Y±)hyd, (Y±)W=0. bottom): as in top) but for a = 1.75 and
a = 2.5 respectively (W = 1, 3, 10).

of the coastal front given a point source outflow. Overall, we stipulate that as W → 0,
Y (x) satisfies

Y (x→ 0−) = Y−, Y (x→ 0+) = Ys, Yx(x→ 0−) = 0, Yx(x→ 0+) = 0, (3.13)

provided Π = −1, and Ys denotes the width of the soliton from the coast.
We choose a smooth and monotonic normalised outflow Q(x) with extremely small

width W that converges to a point source. Integrating the steady form of (2.11) once
gives

a3Π

4
Yxx −Π

[(
a2

2
Y Yxx − a

2
Y (Yx)

2
+
a3

4
Yxx

)
e−2Y/a

]
− a

2
Q′′(x)Y e−Y/a

+
a2Π

2
e−2Y/a −

(
Q(x) + a2Π

)
e−Y/a − Φ = 0, (3.14)

with the constant of integration Φ = Qe(Y−). Integrating (3.14) from −W to W with
respect to x in the limit W → 0 implies that the integral involving the last line of (3.14)
vanishes as the integrand is bounded. Since Yx = 0 at x = ±W following (3.13) then
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Figure 5: The suggested structure of the coastal front C for Π = −1 as the outflow width W → 0
in dispersive flow. A shock links the constant-width current in x < 0 to a soliton asymptoting
to Y+.

the first term in the first line of (3.14) also becomes zero. After some simplification, we
arrive at the expression

lim
W→0

∫ W

−W

{
Πa

4

[
(2Y + a)e−2Y/a

]
Yxx +Q′′(x)Y e−Y/a

}
dx = 0. (3.15)

Denoting the shock width or jump in Y (x) across x = 0 by ⟨Y ⟩, we define

⟨Y ⟩ = lim
W→0

[Y (W )− Y (−W )] = Y− − Ys, (3.16)

so ⟨Q⟩ = 1. Now considering the indefinite integral of (3.14) from −W to x, then
integrating once more from −W to W as W → 0, integrating by parts and simplifying
using (3.15) gives

a2Π

2
⟨Y ⟩+ Πa2

4
⟨(Y + a)e−2Y/a⟩

+ lim
W→0

∫ W

−W

x

{
Πa

4

[
(2Y + a)e−2Y/a

]
Yxx +Q′′(x)Y e−Y/a

}
dx = 0. (3.17)

In the limit W → 0, where δ(x) is the Dirac delta function,

Y ′′(x) → ⟨Y ⟩δ′(x), Q′′(x) → δ′(x), (3.18)

holds true, so simplifying (3.17) gives the required jump condition

a2Π

2
⟨Y ⟩+ Πa2

4
⟨(Y + a)e−2Y/a⟩ − Πa

4
⟨Y ⟩

[
(2Y + a)e−2Y/a

]
x=0

−
[
Y e−Y/a

]
x=0

= 0,

(3.19)

where for any g(Y ), we define [g(Y )]x=0 as

[g(Y )]x=0 = [g(Y−) + g(Ys)] /2. (3.20)

We have the first equation (3.19) to solve the three unknowns (Y−, Ys, Y+). Next, we
introduce a steady soliton in the constant Q = 1 region by imposing the conditions
(2.14) derived from the travelling-wave solutions of the dispersive PV equation. We also
stipulate the soliton joins to Ys ̸= Y+, which gives the second equation

a3e−2Ys/a − 4a(a2 − 1)e−Ys/a + α+Ys + E+ = 0, (3.21)

with the constants α+, E+ determined from (2.14).
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Since Y+, Y− are linked by the hydraulic flux function Qe(Y ) = Φ, the final equation
is given by

(1− a2)e−Y+/a +
a2

2
e−2Y+/a = −a2e−Y−/a +

a2

2
e−2Y−/a = Φ, (3.22)

thus solving (3.19), (3.21), (3.22) simultaneously gives the values of (Y−, Y+, Ys) for
Π = −1, where we demand Y+ ⩽ Ys < Y−. This shock is an unphysical artefact that
predicts the correct (Y−, Y+) found in the numerical solutions of the full problem.
Together the steady hydraulic and dispersiveW → 0 width predictions form the upper

or lower bounds of Y± at Π = −1 such that

(Y−)W=0, −1 := (Y−)max, −1, (Y−)hyd, −1 := (Y−)min, −1

(Y+)W=0, −1 := (Y+)min, −1, (Y+)hyd, −1 := (Y+)max, −1, (3.23)

where hyd refers to the hydraulic predictions, giving an upper (max) and lower bound
(min) to the steady current widths for some Rossby radius a. Figure 4 compares the
numerical steady dispersive solutions for different W, a values for Π = −1 with the
theoretical current widths Y±. For small widths the upstream Y− is close to the theoretical
(Y−)max value. As the outflow width increases from W = 1 to W = 100 in the a = 1.3
case, the current widths converge towards the hydraulic prediction (Y−)min. The full QG
solutions for a point source W = 0 closely align with the narrow outflow case: in the
W = 1 dispersive simulations, a shock appears at Ys where the soliton terminates that
matches the current widths for the full problem.

3.3. The validity of the W → 0 predictions and overturning

For all width outflows as t→ ∞, the time-dependent PV equation chooses Φ (for which
all of Y+, Y−, α±, E± are determined) such that

(i) There is a constant-width current at one of the edges of the source width which
stipulates Yx(x = −WΠ) = Yxx(x = −WΠ) = 0;
(ii) The flow is critically controlled transitioning from subcritical flow far upstream

(Y−) to supercritical flow far downstream (Y+), or vice versa depending on the sign of
Π. In the hydraulic solution, the current width is critically controlled at the edge of the
source width, but this condition is relaxed in the dispersive equation, being true only
provided W → ∞. Dispersion means that Φ is a function that is also dependent on the
width of the outflow.
Moving from subcritical to supercritical flow in the dispersive equation for Π = +1

requires C(Y )|Q=0, Π=+1 ⩾ 0. This implies Y ⩽ 0 upstream for the steady system for
all W , and equality is only reached provided W = ∞ (i.e., the hydraulic case). The
wave always overturns for outflows W <∞ in the full problem seen in §5, but long-wave
theory returns single-valued solutions that cannot capture this case. While the hydraulic
solution indicates overturning by producing a shock immediately upstream the outflow,
the dispersive solution instead allows the coastal front to reach values Y < 0. Overturning
decreases with increasing outflow width, and this is reflected in the dispersive equation by
decreasing how far below the coast the front reaches. Hydraulic solutions are sufficient to
determine the current widths of the full problem provided Π = +1; contrary to dispersive
solutions, the full solution indicates that Φ only changes with W when Π = −1.
In the negative PV case, the W → 0 treatment matches remarkably with the steady

dispersive integrations seen in figure 6. As the outflow width decreases, the current widths
tend towards the (Y±)W→0 analytical values seen in the W = 1 and W = 3 numerical
simulations. AtW = 10 these values align more closely towards the hydraulic widths; and
all lie comfortably in the shaded region that represents the range of solutions for any W .
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Figure 6: The predicted steady dispersive current widths Y−, Y+ at different values of a for
Π = −1. The shaded regions for both Y+ (lined edge, yellow) and Y− (dotted edge, blue) show
the range of width values based on the outflow width W . The Ys value (red, dashed) gives the
location of the shock for a point source outflow. Also plotted are numerical simulations of the
steady dispersive equation at a = 1.3, 1.75, 2.5 at different widths W = 1, 3, 10.

In the W → 0 case, the location of the shock is well predicted by the W = 1 numerical
steady solution and this is where the Q = 1 soliton terminates. The dependence of the
outflow width on the range of values Y± is also captured in the full problem provided
Π = −1, detailed in §5.
For sufficiently large Rossby radius a and Π = −1, the downstream current width Y+

reaches the coast Y = 0. This behaviour is reflected in the full problem that is not found
in the hydraulic solution: only as a→ ∞ then Y+ → 0, so the current always reaches the
coast via a rarefaction. As it is unphysical for the front to lie underneath the coast, we
stipulate that for a ⩾ aturn, defining aturn as the point the PV front reaches the coast
Y = 0, it necessarily follows that

Y+ = 0, Y− = a ln

(
a

a−
√
2

)
∀ a ⩾ aturn. (3.24)

Therefore, the current widths for either Π = ±1 from (3.12), (3.24) both tend to Y± →√
2 as a → ∞ as in Johnson & McDonald (2006). Following the W → 0 analytical

treatment suggests that aturn ≈ 2.96, which is explicitly compared to the full problem
in §5. Thus, the dispersive theory consolidates the hydraulic theory by predicting the
steady current widths Y± in all cases of a, W .

4. The leading frontal regions

4.1. The time-dependent dispersive long-wave equation

With the widths Y+, and Y− of the currents leaving the source region determined, it
remains to consider the propagation of the dispersive fronts leading the currents. Table 1
summarises the notation used below. In order to numerically solve the unsteady dispersive
equation (2.12) noting the three spatial derivatives in Q(x), we require that the flux is
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Name Description

Y+ Constant-width current upstream from source outflow
Y− Constant-width current downstream from source outflow
YI Width of intrusion (or half-intrusion) that connects the current width to the coast
sI Speed of the intrusion (or half-intrusion)
Ys Width of the soliton edge resulting from DSW formation
s̃I Speed of the soliton edge
sr Speed of the rarefaction at coast Y = 0

Table 1: The notation for the different wave structures in the PV front.

sufficiently smooth so that at least the third derivative is bounded. For the integrations
below, we use the flux function

Q4(x) :=



0 x ⩽ −W
8
9 sin

4
(

π(x+W )
3W

)
−W < x ⩽ 0

1− 8
9 sin

4
(

π(x−W )
3W

)
0 < x < W

1 x ⩾W.

(4.1)

Using Q(x) := Q4(x) in (4.1) guarantees no discontinuities in the boundary condition
(2.4). Simulations were also attempted with simpler functions, but there was very little
difference in the results in either the full problem or the dispersive integrations.
A simple fourth-order Runge-Kutta scheme is used to advance the equation in time

using a pseudo-spectral method, where the equation is Fourier transformed in x and
solved as an ODE in Fourier space, and is then transformed back into real space.
The domain we assume is periodic; hence, we require the flux function to also be
periodic. In practice, we truncate the domain to x = L, L ≫ 1, and to maintain
periodicity, the flux function must also descend to 0 downstream. We make this descent
gradual enough as not interfere with the true propagation of the source outflow, in
this case, Q4(x) is stepped down to 0 using a sufficiently wide tanh function. We also
apply de-aliasing following Orszag (1971) to remove any exponentially decaying high-
wavenumber solutions, eliminating any spurious waves that have a frequency greater
than the resolution of the domain.

4.2. Compound-wave structures and dispersive shock wave fitting

The structure of the PV front can be seen as a composition of different wave struc-
tures discussed in JJ20. Two far-field states can be connected by shock, rarefaction, or
compound shock-rarefaction depending on the specific conditions in the hydraulic PV
equation (2.9). Compound wave structures occur provided Qe(Y ) is not entirely convex
in the region of interest, which means that the interval [Y−, Y+] contains a turning point
Yturn of C(Y ) := −Q′

e(Y ) where C ′(Yturn) = 0; that is, Yturn ∈ [Y−, Y+].
Importantly, the governing dispersive equation also forms compound-wave structures

providedQe(Y ) is not convex. Although rarefactions still occur, far-field states are instead
linked by kink-solitons or intrusions analogous to a shock, or by a dispersive shock wave
(DSW) provided Y+ ̸= 0. Here, a DSW is a wave structure slowly modulated in amplitude
and frequency connecting two far-field states with different propagation speeds at each
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edge: one being a linear wavepacket and the other a solitary wavepacket. The dispersive
shock fitting method (El 2005) that analyses DSW properties is valid if the governing
PV equation satisfies a certain set of conditions outlined in the appendix 7.1.
Seeking solutions of the form Y = Y∞ + ηei(kx−ωt), η ≪ O(1) for waves propagating

on a background Y∞, the governing PV equation for constant Q(x) = Q has a linear
dispersion relation where O(η2) terms or higher are ignored given by

ω(k) = C(Y∞)k − a2Π

4
G(Y∞)k3, (4.2)

where C(Y ) =
(

Q
a + aΠ

)
e−Y/a − aΠe−2Y/a, G(Y ) = a− (a+ 2Y )e−2Y/a.

We denote the linear-wave-edge wavenumber as k with dispersion relation ω(k), and
the conjugate wavenumber of the solitary-wave edge as k̃, typically defined as the inverse
half-width of the solitary wave, with conjugate dispersion relation ω̃(κ̃) = −iω(ik̃). In
this problem the far-field states are given by YI ̸= 0 (the intrusion width) and either
Y−, Y+ ̸= 0 according to the sign of the PV Π. We can find the wavenumber or
conjugate wavenumber by solving the ODE’s derived by El (2005) to obtain JJ20 for
general constant Q(x) = Q:

Π = −1 :

k2− =
−8

3a2G(Y−)2/3

∫ Y−

YI

C ′(Y )

G(Y )1/3
dY, k̃2I =

8

3a2G(YI)2/3

∫ YI

Y−

C ′(Y )

G(Y )1/3
dY, (4.3)

Π = +1 :

k2+ =
8

3a2G(Y+)2/3

∫ Y+

YI

C ′(Y )

G(Y )1/3
dY, k̃2I =

−8

3a2G(YI)2/3

∫ YI

Y+

C ′(Y )

G(Y )1/3
dY, (4.4)

where k− is the wavenumber of the linear wave-edge (k̃I = 0 here), and k̃I is the conjugate
wavenumber of the solitary wave-edge (k− = 0 here).
Thus, the DSW forms a compound wave structure with the upstream steady current

(Y−, Π = −1), where the DSW travels leftward from the linear wave edge at Y− to
the solitary wave edge at YI where it connects to an intrusion on the left; or with the
downstream steady current (Y+, Π = +1), where the DSW travels rightward from the
linear-wave edge at Y+ to the solitary wave-edge at YI where it connects to an intrusion
on the right. The propagation speeds of the solitary and linear wave-edges are

s± =
∂ω

∂k
(Y±, k±), s̃I = ω̃(YI , k̃I)/k̃I , (4.5)

computing the speeds and the amplitude of the solitary wave at YI , denoted by Ys, as
well as the wavelength of the linear wave at Y±. Sections 4.3 and 4.4 give examples of
DSWs.

4.3. The structure of the PV front: the Π = +1 positive PV case

4.3.1. Upstream of the source, x < −W : Q = 0, Π = +1

The upstream flow of Π = +1 is well captured by the hydraulic theory of JSM17. The
flow is led by a shock and terminates at the edge of the source outflow and control point
x = −W , so Y− ≡ 0, x ⩽ −W for all a. The unsteady dispersive equation is ignored as it
gives a poor representation of the upstream flow, predicting negative values to indicate
wave overturning as discussed in §3.1.2.
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Figure 7: Top: Dispersive solution for Π = +1, a = 1.3 and widths W = 3, 10, 20 (overlaid as
blue; dashed, dash-dotted, dotted respectively), compared directly with the point source contour
dynamics simulation (black) at time t = 1000, focusing on the Y+ region and upstream. Bottom:
Similar to top but for width W = 10 and a = 0.8, 1.0, 1.3, 1.75 (black, black-dashed, yellow,
yellow-dashed respectively) run until t = 4000. The dotted lines in both figures correspond to
the theoretical predictions of the structure’s locations.

4.3.2. Downstream of the source, x > W : Q = 1, Π = +1

Downstream the source outflow, x > W , the flux function Qe(Y ) is always non-convex
in the solution if

Yturn = a ln

(
2a2

a2 + 1

)
⩾ 0. (4.6)

For a < 1 a rarefaction joins these states and thus we denote ar, +1 = 1 as the value
of a when a rarefaction just forms. Equation (4.6) is satisfied provided a ⩾ 1, where
an intrusion connects the downstream current Y+ to the coast with a finite slope and
current width YI determined by (2.16) and (2.18). A rarefaction, if it occurs, propagates
according to the equation

x

t
= C(Y ) =

1

a

(
1 + a2

)
e−Y/a − ae−2Y/a, C(Y+) < C(Y ) < C(Y = Yjoin) ≡

1

a
, (4.7)

where Yjoin refers to Y = 0 if a rarefaction fully joins to the coast, or YI if a rarefaction
joins to an intrusion instead.
We also require for any soliton or intrusion that the stationary points of Yξ in (2.13)

must be local minima (representing a stable equilibrium of the far-field states), i.e.

ν′′(YI) > 0 =⇒ |sI | > |C(YI)|, (4.8)

consequently an intrusion always overtakes a rarefaction and join the far-field state to
the coast. This forms a constant-width current region that is referred herein as a “shelf”.
We can calculate the values for which the shelf is wider or narrower than the immediate
downstream current Y+ by determining when

YI = (Y+)hyd. (4.9)
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List of downstream behaviours according to the value of a (Π = +1)

Name Description Value (2 d.p.)

ar, +1 Lower limit of a when an intrusion forms 1.00
aI, +1 Lower limit of a when a DSW forms 1.62
acrit, +1 Lower limit of a when a constant-width shelf no longer forms 1.99

Table 2: The values of a where different behaviours of the upstream PV front form for Π = +1.
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Figure 8: The numerical solution to the governing dispersive equation withΠ = +1 and a = 1.75,
run until t = 10000, showing a DSW propagating upstream. The source outflow centred at x = 0
is Q(x) ≡ Q4(x) with width W = 10. The dotted lines represent the predictions of the dispersive
analysis using El’s technique and travelling-wave solutions.

We denote the value of a for which (4.9) is satisfied by aI, +1. Then for all a > aI, +1,
the intrusion shelf always remains wider than the constant-width downstream current
Y+, leading to DSW formation. A shelf cannot form if the speed of the leading soliton
edge of the DSW s̃I matches the speed of the intrusion sI , which occurs when

s̃I = sI . (4.10)

We denote the value of a for which (4.10) holds by acrit, +1. A “half-intrusion” joins the
far-field current to the coast for a > acrit, +1, discussed further in §4.5. The values of
ar, +1, aI, +1 and acrit, +1 are given in table 2.
The type of structures that form also vary with the outflow width W in the dispersive

equation. However, as noted in §3.3, this is an artefact of the dispersive equation which
does not reflect the behaviour of the full problem. Although changing the source width
W does not affect Y+ in the full QG equations, it introduces more waves to the system
due to dispersion. Herein, irrespective of W , we only use hydraulic solutions (Y+)hyd to
estimate the actual downstream current width.
Figure 7 (top) shows the numerical differences in the downstream behaviour by

comparing the point source W = 0 contour dynamics with the dispersive dynamics
at widthsW = 3, 10, 20 for a = 1.3. In theW = 3 case, the dispersive dynamics capture
the waves propagating upstream the source, but the W = 10, 20 outflows capture Y+
better and so the simulations below are restricted, unless noted, to the width W = 10
for Π = +1. This width closely matches to the point source prediction of Y+, yet is not
so large that dispersive waves interfere with the solution (as with W = 20). The contour
dynamics also matches reasonably well to the predicted intrusion location at t = 500 from
travelling-wave theory. This is shown further in figure 7 (bottom) where the predicted
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Figure 9: Downstream behaviour of the dispersive equation for Π = +1. The numbers i) - iv)
describe regions of a where different behaviours of the front occur. (a) The theoretical and
numerical (W = 10) widths of YI (black, plotted diamond), Y+ (orange, plotted square), and
Ys (blue, plotted circle) if a DSW forms. (b) The respective speeds for sr (black dash-dotted,
plotted stars) sI (red lined, plotted diamond), s̃I (blue, plotted circle). All simulations are run
for at least t ⩾ 1000 so Y+ becomes steady.

intrusions, rarefactions C(Y = 0) and long-wave propagation C(Y = Y+) locations align
well at t = 4000 for a range of values of a.

We verify El’s technique for a = 1.75 > aI, +1 where DSWs can form. Figure 8 shows
a DSW propagating to the right downstream, where there is a rightwards solitary-wave
leading edge and a linear-wave trailing edge. A long simulation time (t = 10000) is used so
that the DSW can be fully developed. The PV front terminates via an intrusion (a kink-
DSW structure) with a corresponding width and speed YI , sI that is well matched with
the theoretical travelling-wave theory; similarly, the theoretical dispersive shock fitting
matches well with the trailing, leading positions and the soliton width at the leading
edge s−t, s̃It, Ys. We deduce the linear wave wavelength of the DSW by calculating
the distance 2π/k−, given by the two dotted lines along the trailing edge shown in the
figure, again showing good agreement.

In summary,

(i) if 0 ⩽ a ⩽ ar, +1: Y+ terminates towards the coast by a rarefaction (see figure 7
(bottom), labelled yellow).
(ii) if ar, +1 < a ⩽ aI, +1: The PV front from Y+ terminates towards the coast via an

intrusion with current width YI , and a compound-wave intrusion-rarefaction joins to the
downstream current Y+. Here 0 < YI < Y+ (see figure 7 (bottom), labelled black-dashed).
(iii) if aI, +1 < a ⩽ acrit, +1: An intrusion terminates towards the coast with current

width YI , and a compound-wave intrusion-DSW joins to Y+ for all widths W . Here
0 < Y+ < YI (see figure 8).
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Figure 10: (a) The upstream analytical predictions (in dash-dotted) of the rarefaction and
intrusion locations and the numerical integrations of the Π = −1, a = 1.3 dispersive equation
at t = 10000, W = 3. (b) The analytical prediction of the gradient of the intrusion, zoomed
in from the top figure. Note the gradient line (dashed) is adjusted very slightly from sIt, the
predicted intrusion location (marked as a cross ×), for clarity of comparison.

(iv) if a > acrit, +1: a shelf no longer forms, and the upstream current terminates into
a “half-intrusion” instead (see figure 14b).
The parameter regimes for these cases are indicated in figure 9 showing the current

widths and speeds Y, s of any structures that form according to a in the W = 10
dispersive integrations. In all regions a < acrit, +1 there is good agreement between the
theoretical predictions and the numerical simulations for the speeds of the intrusions,
solitons and rarefactions (bottom figure). As a → 0 the downstream speed of the
rarefaction tends to infinity where simulations become more numerically challenging to
run.
If the speed of the intrusion sI matches with the speed of the soliton edge s̃I , the

soliton edge Ys reaches the coast and this leads to a change in behaviour. The dispersive
equation forms a half-intrusion instead of a standard intrusion that connects the far-field
state to the coast provided a ⩾ acrit, +1. This significantly changes the expected width
for the new half-intrusion (shown in dashed lines in figure 9), discussed in §4.5.

4.4. The structure of the PV front: the Π = −1 negative PV case

The structures in the negative PV case are similar to those of the positive PV case
but the current widths Y± are also dependent on the source width W and a.

4.4.1. Upstream of the source, x < −W : Q = 0, Π = −1

Upstream where Q = 0, x < −W , since |C(Y = 0)| < |C(Y = Y−)| ∀ Y− > 0,
an intrusion always forms and it is not necessary to satisfy the non-convexity condition
for Qe(Y ). This is true even if a ⩽ 1 where there are no steady solutions. Unless the
intrusion is of the same width as Y− (analogous to a shock in hydraulic flow), compound-
wave structures always appear. Again the intrusion meets the coast with finite slope
and current width YI predicted using the equations (2.16) and (2.18). Similarly in (4.8)
the intrusion satisfies ν′′(YI) > 0, travelling faster than any rarefaction, so the constant-
width shelf formed by the intrusion lengthens over time (in the x-direction) before joining
to either a rarefaction or DSW.
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List of upstream behaviours according to the value of a (Π = −1)

Name Description Value (2 d.p.)

alower, −1 Lower limit of a when a DSW forms (W → ∞) 1.46
ahigher, −1 Lower limit of a when a DSW forms (W → 0) 1.53

acrit, −1, min Lower limit of a when a constant-width shelf no longer forms (W → ∞) 1.94
acrit, −1, max Lower limit of a when a constant-width shelf no longer forms (W → 0) 2.02

Table 3: The values of a for the different upstream behaviours of the PV front for Π = −1.

The equation of a rarefaction provided it forms is given by

x

t
= C(Y ) = ae−2Y/a − ae−Y/a, C(YI) < C(Y ) < C(Y−). (4.11)

Figure 10 shows a kink-rarefaction structure for a = 1.3 and an example of shelf
formation in 10(a). The location of the rarefaction is well predicted by long-wave speed
calculations C(Y ), likewise with the location, width, and instantaneous gradient of the
intrusion. Figure 11 gives another example of an (upstream) DSW where its solitary-
edge propagates leftward. The discussion of the theoretical predictions (dotted in figure)
is identical to the discussion following figure 8 in the positive PV case, with both the
predicted locations and widths agreeing well with the dispersive integrations.
Similarly to §4.3.2, we can determine the values of a for which the shelf is as wide as

the constant-width current Y− for long times by determining when

YI = Y−, (4.12)

and again (4.10) determines when a shelf no longer forms. Since changing the source
width leads to two different bounds of Y−, this also gives two different values of a for
when these behaviours occur. These values and their corresponding notation are given
in table 3.
In summary,
(i) if 0 ⩽ a ⩽ alower, −1: The PV front terminates towards the coast via an intrusion

with current width YI , followed by a rarefaction which joins to the downstream current
Y−. Here 0 < YI < Y− (see figure 10 (a)).
(ii) if alower, −1 < a < ahigher, −1: Same in (i) for sufficiently large W , otherwise

rarefaction-intrusions may also form for sufficiently small width outflows.
(iii) if ahigher, −1 ⩽ a ⩽ acrit, −1, min: An intrusion terminates towards the coast with

current width YI , followed by a DSW which connects to the downstream current width
Y− for all outflows width W . Here 0 < Y− < YI (see figure 11).
(iv) if acrit, −1, min < a ⩽ acrit, −1, max: This forms the lower (when W = ∞) and

upper bound (when W = 0) of when a shelf can form according to the source width.
(v) if a > acrit, −1, max: a shelf no longer forms for all outflow widths W . Instead,

the downstream current terminates towards the coast via a series of modulated, periodic
travelling waves, described here as “half-intrusions” (see figure 14b)).
As in the case Π = +1, changing the width of the outflow produces additional waves

forming a range of different phenomena that is not straightforward to quantify. For
example, figure 11 (bottom) is identical to the top figure but a large width outflow W =
100 is used instead. Using a very large outflow generates waves arising from dispersion
that interact with the DSW forming breathers, e.g. Chabchoub et al. (2019), which are
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Figure 11: Top: as in figure 8 but with Π = −1, a = 1.75 and W = 3, run until t = 10000.
Bottom: as in top but with a source outflow W = 100 run until t = 10000. We observe oscillating
“breathers” forming upstream inside the DSW.

unsteady nonlinear solutions with internal oscillations. Hoefer et al. (2023) analyse an
exact solution that generates breathers in the Korteweg-de Vries equation. Further KdV
analytical work has determined whether solitons can tunnel through or stay trapped in
some form of mean-flow (e.g. a DSW) wave (van der Sande et al. 2021). In this example,
the waves generated by the outflow interact with the DSW producing breathers where
outflow solitons tunnel through the DSW towards the shelf. These become solitons that
remain along the shelf, distinct from the solitons formed by the DSW.
Figure 12 shows the corresponding predictions i) - v) describing the structural be-

haviours as functions of a against the dispersive integrations. The shaded regions give
the ranges of Ys, Y−, s̃I depending on the value of W . There is generally good agreement
with the theory for i) to iv) for small and large widths (set to W = 3 and W = 100)
until a = acrit,−1, min or a = acrit,−1, max depending on the width of the source. At this
point the intrusion appears to reach a maximum width before decreasing again, out of
line with the predictions (shown as an increasing dashed line in the top figure). In figure
12(b), this corresponds to the DSW soliton edge speed s̃I matching the intrusion speed
sI , forming a a half-intrusion structure described in §4.5.

4.4.2. Downstream of the source, x > W : Q = 1, Π = −1

From width Y+, the front always terminates to Y = 0 via a rarefaction. The turning
point width of C(Y ) is always greater than the maximum value of Y+, given by (Y+)max,
or explicitly

Yturn = a ln

(
2a2

a2 − 1

)
> (Y+)max = a ln

(
a2

a2 − 1

)
. (4.13)

This follows that Y+ < Yturn ∀ a and Y+ can always be joined to the coast by a smooth
rarefaction given by

x

t
= C(Y ) = ae−2Y/a +

(
1

a
− a

)
e−Y/a, C(Y+) < C(Y ) < C(Y = 0) ≡ 1

a
, (4.14)



23

1 1.5 2 2.5 3

a

0

0.5

1

1.5

2

2.5

3

3.5

4

Y

Ys

Y!

YI

Numerical YI (W = 3)
Numerical Ys (W = 3)
Numerical Y! (W = 3)
Numerical YI (W = 100)
Numerical Ys (W = 100)
Numerical Y! (W = 100)

Widths Y

i)

ii)

iii)

iv)

v)

(a)

1 1.5 2 2.5 3

a

-0.5

-0.4

-0.3

-0.2

s

sI

~sI

Numerical sI (W = 3)
Numerical ~sI (W = 3)
Numerical sI (W = 100)
Numerical ~sI (W = 100)

Speeds s

(b)

Figure 12: Upstream behaviour of the dispersive equation for Π = −1. The numbers i) - v)
describe the regions of a where different behaviours of the front occur. (a) The theoretical and
numerical widths of YI (plotted diamond), Y− (shaded yellow depending on W ), and Ys if a
DSW forms (shaded blue depending on W ). (b) The theoretical and numerical speeds of sI
(plotted diamond) and s̃I (shaded blue depending on W ). All simulations are run for at least
t ⩾ 1000 so Y− becomes steady.

provided Y+ ̸= 0. Far from the source, the hydraulic terms dominate so any dispersive
correction is negligible in determining the rarefaction. In the hydraulic equation (Y+)hyd
is fixed for all widths, and the rarefaction always begins at the control point x = W .
Figure 13 gives an example of a rarefaction beginning from x = 0 given by the blue circle-
marked line that corresponds to the fluid being released from the point source W = 0.
In the dispersive equation, Y+ is no longer fixed at the control point and is instead a
constant-width current propagating at its long-wave hydraulic speed, which then joins
to the coast by a rarefaction. This is shown in figure 13 for a = 1.3 at t = 10000 with
the downstream values of Y+ dependent on the width of the outflow. The locations of
the rarefactions, shown by dotted lines in the figure, are well predicted analytically using
the predicted steady widths Y+ (Y+|hyd is given by (3.11); Y+|W=0 is given by solving
(3.19), (3.21), (3.22)). One exception is the W = 100 case as the solution has yet to
fully settle, and we only begin to see a constant-width current trail emerging. We can
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Figure 13: Dispersive integrations of downstream rarefactions for Π = −1, a = 1.3 at t = 10000,
for widths W = 1, 3, 100 (in black, labelled bottom, middle and top respectively). The blue,
circle-marked line gives the W = 0 hydraulic rarefaction (4.14). For each W the predicted value
of Y+ is shown dotted and the numerically determined solutions is dot-dashed. The predicted
locations (vertical, dotted) on the leading edge of the hydraulic rarefactions are the long-wave
speeds for each current width Y+.

therefore view the dispersive rarefaction as the hydraulic rarefaction truncated at width
Y = Y+ ⩽ (Y+)hyd.

4.5. Half-intrusion formation and the case a≫ 1

At a critical Rossby radius for Π = ±1 (corresponding to a = acrit, +1 or certainly
after a = acrit, −1, max), the soliton edge reaches the coast Y = 0, and the soliton edge
matches the speed of the following intrusion. For a coherent structure to persist at larger
a, the width of the intrusion and the DSW solitary-edge adjusts itself to join the front
at a width where their speeds again match. The structure changes so that the intrusion
is replaced by a series of modulated waves meeting the coast, where the last wave is
equivalent to a soliton propagating along Y = 0 described herein as a “half-intrusion”.
This modulated travelling wave then joins to the adjusted and truncated DSW, denoted
as a partial DSW.
There are studies that analytically determine the widths of the half-intrusions using

Riemann invariants in the nonlinear Schrödinger (NLS) piston problem (Hoefer et al.
2008). Further observations by Congy et al. (2021) categorise these behaviours as part of a
“DSW implosion” with multiple regions of behaviour including the formation of a partial
DSW in the Benjamin-Bona-Mahony (BBM) equation. They note that a quantitative
description of partial DSWs requires significant knowledge of the underlying modulated
wave; in the governing PV equation (2.11), it is not straightforward to determine the
new adjusted width in this context.
Returning to the potential equation (2.13) and setting

ν(Y = 0) = ν′(Y = 0) = 0, ν(Y = YI) = 0, (4.15)

if the new half-intrusion width YI is known, the half-intrusion propagates along the coast
with constant speed
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Figure 14: Upstream DSW behaviour for W = 3 source outflows where (a): a = 3.0 and Π = −1
and (b): a = 6.0 and Π = +1 at time t = 1000, where a constant-width no longer forms. The
predictions for the half-intrusion width and speeds Y ⋆

I , s⋆I are detailed in §4.5.

s⋆I =
4a(a2 +QΠ)e−YI/a − a3e−2YI/a + (2a2 + 4QΠ)YI − (3a3 + 4aQΠ)

2ΠY 2
I

. (4.16)

The travelling wave propagates upstream or downstream with width Y = YI , and joins
to the partial DSW connecting to either Y−, Y+. The same is true in reverse where the
width Y ⋆

I can be obtained given the speed of the wave sI . Figure 14 shows examples
of partial DSWs, where the shelf is replaced by a series of modulated travelling waves
reaching the coast. We note that the width of the travelling waves for a = 3.0, Π = −1
is smaller than for instance, a = 1.75 in figure 11, departing from when the intrusion
width increases if a increases. Equation (4.16) predicts the location of the intrusion well
only if the width is known, as seen in the numerical predictions plotted in the figure.
We expect the dynamics of the system for Π = ±1 to be identical except reflected in

the y-axis outside of the source width |x| > W by taking

x→ −x, Π → −Π, a→ ∞.

One problem in testing this regime as a → ∞ is that the asymptotic validity of the
governing PV equation also begins to break down as a ≫ 1/ε, or when a becomes
(infinitely) larger than the width of the outflow. After a = acrit, +1, numerical simulations
tested up to a = 6.0 in figure 9 (bottom figure) show that the width of the half-intrusion
is relatively constant, although it is unclear whether this holds for larger a. If true, we
also expect the half-intrusion to have same constant width for Π = −1.
As we expect C(Y±) →

√
2 as a → ∞ this stipulates that the half-intrusion width

YI > 3
√
2, but this does not hold. Indeed, a steady solution may no longer exist in the

dispersive long-wave regime a → ∞. As a becomes large the deformation term − 1
a2ψ

becomes negligible and the governing equation reduces to Laplace’s equation. The PV
equation governing the coastal front would include a non-local Hilbert operator instead,
significantly altering the flow dynamics (Clarke & Johnson 1997). In fact, Johnson &
McDonald (2006) find exact steady solutions to this problem that align with the full QG
solutions, suggesting that the asymptotic expansion falters in the limit when a becomes
too large.
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Figure 15: Numerical simulations of the contour dynamics (black) and the dispersive long-wave
integrations (blue, dash-dotted) for negative PV outflows Π = −1, Rossby radius a = 1.3 at
t = 60, 200, 500, with the flux function Q(x) := Q4(x) for different widths: (a) W = 1, (b)
W = 3, and (c) W = 10. In (a), (b) the theoretical dispersive long-wave W = 0 values of the
current widths Y−|W=0, Y+|W=0 (dotted) are overlaid for comparison, along with the theoretical
intrusion widths and locations for all figures.

5. The full problem

With the structure of solutions to the dispersive equation considered we can now
compare the long-wave evolution solutions with contour-dynamical evolutions. The full
QG solution (2.3), (2.4), (2.5), (2.6) is numerically solved to a high level of accuracy using
the contour dynamics method (CD) with surgery following Dritschel (1988). Solving (2.3)

involves the Green’s function using the modified Bessel function K0(r/a), r =
√
x2 + y2

following JJ20, which is further modified by introducing a source outflow along the wall.
The velocity profiles associated with the Q(x) = Q4(x) source outflow are computed in
appendix §7.2 while the velocity profile of the point source is given in Southwick et al.
(2017).
Figure 15 shows for a = 1.3, Π = −1 the improvement of the present dispersive solu-

tion over the hydraulic solution in JSM17. In JSM17, hydraulic rarefactions downstream
the outflow matched closely with the contour dynamics, and this is also captured by
the dispersive integrations. Moreover, there is significantly greater agreement with the
current widths adjacent to the outflow Y± than with the hydraulic solutions (Y±)hyd.
Over long times t = 500, the solution converges to the steady solution where a constant-
width current Y− forms just outside the source outflow upstream x = −W , followed by a
narrower constant-width current downstream Y+ that meets the coast via a rarefaction.
This is consistent with the contour dynamics. When W = 1 (figure 15, top) the long-
wave asymptotics produces a steep shock-like structure in the source outflow region
as predicted by §3.2. The smaller-width sources W = 1, 3 agree remarkably with the
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Figure 16: As in figure 15 but with Rossby radius a = 1.75 at t = 60, 200, 500 for: (a) W = 1,
(b) W = 3, and (c) W = 10. Here, the width YI of the intrusion is wider than the width Y−
of the flow immediately upstream outside the outflow.

predicted currents Y−, Y+ of the point source contour dynamics W = 0 (omitted from
the figure because it is graphically indistinguishable from the W = 1, 3 simulations),
agreeing with the W = 1 integrations to two decimal places. Only when the width
is larger (W = 10) do the theoretical hydraulic predictions match more closely with
the contour dynamics as in the steady solutions of §3.1. The dispersive equation also
accurately predicts the formation of the shelf and the location of the intrusion.
Figure 16 shows an example where the shelf is wider than Y−, with reasonable

agreement with the full problem. For larger widths (W = 10), DSWs increasingly become
out of phase with the full QG solutions, although the locations of their intrusions remain
largely unchanged. This is because the initial contour that forms the front is set up with
an initial outflow width equal (or slightly larger) toW , improving the numerical stability,
but the dispersive solutions always propagate from x = 0. Again, theW = 0 point source
solutions are graphically indistinguishable from the W = 1, 3 solutions.
There is also good agreement with the full problem in the Π = +1 case although

less strongly than for the negative PV case. The full solutions always overturn from the
outflow, causing the dispersive PV front to lie below the coast to negative Y values.
This effect is most prominently seen for smaller widths in figure 17(a). The initial width
of the contour is set larger than the actual source width W to prevent the overturning
from breaking the contour segments in the contour dynamics, but this (initially) widens
the width of the upstream current before it can settle to its true value. Simulations still
generally give good quantitative downstream behaviour, especially at longer times t =
500. For all widthsW , the contour dynamics chooses the current width as Y+ ≡ (Y+)hyd.
The locations of the intrusions are better predicted for the smaller width outflows.

While the intrusion speeds remain identical for all outflow widths, increasing W alters
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Figure 17: As in figure 15 but with Π = +1, a = 1.3 dispersive solutions (blue, dash-dotted)
overlaid with contour dynamics (black, lined) at t = 60, 200, 500 for: (a) W = 3, (b) W = 10,
and (c) W = 20.

the magnitude of overturning and increases how far the impulsively started outflow can
initially propagate. The appearance of dispersive waves toward the coast becomes more
pronounced in the wider outflows, although there is very little dispersion (where waves
are virtually constant width) immediately upstream the source. Figure 18 compares the
contour dynamics for the W = 10 outflows to the dispersive integrations with almost no
difference in the case a = 1.0. In all cases, the full solution terminates via a rarefaction
or intrusion corresponding to the predictions of the dispersive equation.
Beyond a = acrit, +1 ≈ 1.99, a shelf no longer appears in the full solution; instead,

a series of travelling waves that reach the coast begin to emerge. Again for larger a
values the DSW’s become out of phase, but the final positions of the intrusions for both
a = 1.75, 2.0 match well with the predicted dispersive locations sIt, t = 500; true even
at shorter times t = 200. The point source W = 0 contour dynamics simulations also
agree with the final coastal positions and Y+ with the W = 10 dispersive integrations.
The only difference is that the wave immediately overturns from the source x = 0.
Finally, the regime is numerically tested at a = 2.5, where half-intrusions begin to form

for Π = ±1 in both the point source and finite-width source regimes. Simulations are run
for shorter times t = 250 to mitigate eddy formation in the contour dynamics present in
figure 19. For larger a values, the solutions align more closely to Johnson & McDonald
(2006), where the positive and negative PV solutions are identical but reversed along the
x axis. The top figure is simulated using a lower resolution leading to a partial separation
of the contours, but using a higher resolution would introduce more eddies to the PV
front.
Although the predicted dispersive current widths Y+, Y− are still captured in the full

problem, the widths of the intrusion from the dispersive integrations are underestimated
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Figure 18: Dispersive integrations of the Π = +1 regime (blue, dash-dotted) at different Rossby
radii a = 1.0, 1.75, 2.0 corresponding to (a), (b), (c) respectively at t = 200, 500, with source
outflow width W = 10 are compared with the corresponding contour-dynamics (black, lined).
Any theoretical predictions are given as dotted lines. The point source contour dynamics is also
given as a comparison with the other solutions (black, dashed).

in both PV regimes. The full QG solutions also form half-intrusions but the last structure
is significantly larger than the previous waves. This is due to eddy formation caused
by the competition of the velocities between the impulsively started outflow and its
subsequent propagation. We also see wave overturning in the negative PV case predicted
in §3.3 provided aturn ≈ 2.96, whereas the full QG solution predicts aturn ≈ 2.5, a
satisfactory estimate. The difference in the overturning predictions explains why the
dispersive integrations and contour dynamics end downstream at different points in the
a = 2.5, W = 3 simulations. The full problem likely overturns where the current Y+
would join to a rarefaction. However, figure 19 (bottom) shows that C(Y+)t is still far
away from where theW = 3 contour dynamics terminates downstream. Longer times are
required for the solution to adjust to its steady state and achieve better agreement.

6. Discussion

JSM17 discussed the leading-order hydraulic behaviour (in the limit of large outflow
width compared to current width) of coastal outflows and compared hydraulic solutions
with accurate contour dynamics simulations of the governing QG equation. Although
hydraulic solutions captured much of the flow behaviour, there were significant differences
in some parameter regimes.

Here, we have continued the expansion to higher order, obtaining a nonlinear, disper-
sive, long-wave equation for the evolution of the front. At large times, the flow behaviour
divides naturally into three regimes: a steady outflow region (§3), steady constant width
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Figure 19: Dispersive integrations for the a = 2.5 regime (blue, dash-dotted) with source outflow
(a): W = 3, Π = −1; and (b): W = 10, Π = +1 compared to the corresponding contour-
dynamics (black, lined) at t = 250. Any theoretical predictions are given as dotted lines. The
point source contour dynamics at a = 2.5 corresponding to the PV is also given as a comparison
with the other solutions (black, dashed).

currents joined to the outflow region directly or through a truncated soliton (§3.1, §3.2),
and terminating unsteady propagating fronts, influenced strongly by dispersive effects
(§4).

The widths of the steady currents are a strong function of the dispersion when the
outflow PV anomaly is negative. Here, the upstream steady current width, Y−, is widest
and the downstream steady current width, Y+, is narrowest for a point source outflow.
By adding dispersive terms, we identify wave overturning in the negative PV case (§3.3)
that is absent in the hydraulic solutions. This overturning is characterised by regions of
negative Y values in the frontal width.

The numerical integrations of the dispersive equation capture the full QG dynamics
more accurately than the hydraulic equation, obtaining new behaviour for positive PV
(§4.3) and accurate predictions for the downstream current widths in the case of negative
PV flows (§3.2). A rich set of behaviours, including dispersive shock wave (DSW) forma-
tion and compound-wave structures (rarefaction-intrusions, DSW-intrusions) observed
in the QG simulations, are discussed and quantified using standard analysis techniques
for nonlinear equations (§4.2, El (2005), JJ20) along with a novel shock-soliton solution
(§3.2). For sufficiently large a the dispersive equation admits travelling waves terminating
in a half-intrusion (§4.5).

For large internal Rossby radius a, the deformation term in (2.3) becomes negligigble
and the governing equation derived here no longer applies. Johnson & McDonald (2006)
discuss this limit but present no analytical evolution theory and so consideration of
hydraulic and dispersive effects in near-rigid-interface flows remains an area for further
exploration.
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7. Appendix

7.1. Conditions for dispersive shock fitting

In §4.2 we describe the method to ascertain the properties of a DSW that connects
two current widths in the regions of constant flux Q(x) = Q. Here we briefly describe,
adapted from JJ20, the conditions that the governing PV equation must satisfy for this
method to successfully apply:

(i) The equation has a hydraulic (zeroth order) limit when we introduce X = εx and
T = εt (this is done in equation (2.9)).
(ii) The linear dispersion relation is real valued, given by (4.2).
(iii) The system possesses at least two conservation laws. The first is equation (2.12)

for Q(x) = Q constant Q. The second conservation law for constant Q(x) ≡ Q, is from
JJ20 (for Q = 1). Multiplying (2.12) by Y and simplifying gives

0 =

(
Y 2

2

)
t

+

[
a2Π

4
(2Y + a)e−2Y/a − (Y + a)(Q+ a2Π)e−Y/a

]
x

+

[
−a3Π

8
(Y 2

x − 2Y Yx) +
aΠ

8

[
4(Y 2Y 2

x +
a

2
Y Y 2

x ) + a2(Y 2
x − 2Y Yxx)− 4aY 2Yxx

]
e−2Y/a

]
x

.

(7.1)

(iv) The equation supports periodic travelling-wave solutions parameterised by three
independent variables. This is shown when writing the PV equation in potential form
(2.13).
(v) Considering slowly modulating (changing) waves means that we are able to obtain

the Whitham system, which is a set of equations involving our two conservation laws
(averaged over the period of a typical travelling wave) plus the wavenumber conservation
equation ωx + kt = 0. This system must be hyperbolic. Since the flux function Qe(x, t)
is non-convex, for certain intervals of Y the system may not be strictly hyperbolic and
compound-wave structures form instead.

7.2. The outflow velocities of the full QG equations

The streamfunction involved in the zero PV part of (2.3), i.e. ∇2ψ − 1/a2ψ = 0, is
found by considering the velocity of the source outflow only. Southwick et al. (2017)
represent the associated horizontal velocity profiles (u, v) by solving the full solution in
appendix B for a general source profile as

(
u
v

)
=

(
−∂ψ/∂y
∂ψ/∂x

)
=

1√
2π

∫ ∞

−∞

(
κ
ik

)
Q̂(k)e−κyeikx dk, (7.2)

where Q̂(k) is the Fourier-transform of the source Q(x). We construct the outflow Q4(x)
to be symmetric in x, so that the following horizontal velocities are odd:
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u =
1

2a
e−y/a +

1

π

∫ ∞

0

κe−κy sin(kx)

k
dk

− 1

π

∫ ∞

0

κe−κy

(
sin(kx)

(
1458k4W 4 − 3240π2k2W 2 − 768π4 (cos(kW )− 1)

)
18(81k5W 4 − 180π2k3W 2 + 64π4k)

)
dk,

(7.3)

v =
1

π

∫ ∞

0

e−κy cos(kx) dk

− 1

π

∫ ∞

0

k cos(kx)
(
1458k4W 4 − 3240π2k2W 2 − 768π4 (cos(kW )− 1)

)
18(81k5W 4 − 180π2k3W 2 + 64π4k)

dk. (7.4)

This gives the velocity profiles of an outflow source of width W used in the contour
dynamics to solve the full QG equation in §5.
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