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Parametrisations of unresolved gravity waves used in general circulation models
can be made more computationally efficient by introducing a stochastic component
to the forcing. An additional advantage of introducing stochasticity is that inter-
mittency associated with the scheme could be tuned to resemble the intermittency
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of observed gravity wave sources, and could therefore act to improve the physical
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fidelity of the scheme. Here, it is argued that using stochastic differential equations
(SDESs) to drive the stochastic component provides a natural general framework to
develop such schemes. The Holton-Lindzen-Plumb model of the quasi-biennial
oscillation (QBO) is used to demonstrate the flexibility of the approach. The QBO
generated in a (computationally expensive) deterministic broadband multiwave
simulation is accurately reproduced using a number of quite different (cheap)
stochastic schemes. The method of stochastic averaging is used to prove a matching
result that shows that a wide class of such schemes, driven by different SDEs, can
each reproduce the deterministic QBO provided that the characteristic time-scale
7 of the SDE:s is sufficiently short. However, each scheme has different intermit-
tency properties: as 7 is increased, their QBOs are shown to diverge, despite the
time-averaged source spectrum in each case remaining unchanged. The SDE frame-
work therefore provides great flexibility to tune a stochastic parametrisation to
match observed intermittencies, meaning that future parametrisations can be devel-
oped that can account for non-steady gravity wave forcing in a physically consistent
manner.
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1 | INTRODUCTION

Therefore, in order to reproduce fundamental features of
stratospheric dynamics such as the quasi-biennial oscil-

In the Earth’s stratosphere, momentum and temperature
fluxes due to gravity waves are known to make significant
contributions to the budget of the mean circulation. An
important part of the budget is due to gravity waves with
horizontal spatial scales comparable to or less than the
resolution of state-of-the-art general circulation models.

lation (QBO; e.g., Baldwin et al., 2001), the sources,
propagation, and dissipation of these subgrid waves
must be parametrised in models. At present (Plougonven
et al., 2020), the source terms used in these parametri-
sations are not well constrained by observations and are
usually “tuned” to some extent in models to produce the
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desired results. In future, as improved observations begin
to better constrain the source terms, there is a clear need
to improve understanding of how effects associated with
the statistical properties of the wave sources should best
be accounted for in parametrisations. For example, it is
already understood that account needs to be taken of inter-
mittency in wave sources, leading to additional tuning
parameters in model parametrisations, such as the “effi-
ciency parameter” used in the scheme of Alexander and
Dunkerton (1999). The efficiency parameter of Alexander
and Dunkerton (1999) is a constant correction factor, usu-
ally taken to be approximately 0.1, by which the calculated
(non-intermittent) forcing is multiplied in order to capture
the effect of intermittency.

An interesting innovation in the development of
parametrisation schemes is the introduction of stochastic-
ity (Eckermann, 2011; Lott et al., 2012; Piani et al., 2004) in
the treatment of the source terms. The idea is that instead
of treating a broadband wave source by discretising the
wave number-frequency (k, w) spectrum and modelling
the propagation and dissipation of each discretised wave
at every model time step—a so-called multi-wave scheme
(e.g., Alexander & Dunkerton, 1999; Lindzen, 1981;
Richter et al., 2010; Song & Chun, 2008)—the spectrum is
sampled randomly. Since the stochastic scheme needs to
compute fluxes for a relatively small number of waves at
each model step compared with the multi-wave scheme,
large computational savings are possible. A further poten-
tial advantage, highlighted by Lott and co-workers (Lott
et al., 2012; Lott & Guez, 2013), is that the intermittent
behaviour of the stochastic scheme could somehow be
tuned to match the intermittency of the observed source,
negating the need for a tuning parameter such as that
used by Alexander and Dunkerton (1999). How this is best
achieved is an open question that is a key motivation for
this work.

The central thesis of the present work is that stochas-
tic differential equations (SDEs) provide a natural and
flexible framework for the future development of stochas-
tic parametrisation schemes. SDEs offer the following
advantages:

1. SDEs generate random processes in continuous
time, meaning that grid and time-step independent
equations can be used to define the scheme, which is
an evidently desirable property for reproducible mod-
elling. Note that the scheme by Eckermann (2011),
which is based upon re-sampling the forcing frequency
at every time-step, is necessarily time-step depen-
dent. Numerical noise associated with the time-step
dependence of the scheme of Eckermann (2011) led
subsequent researchers such as Lott and co-workers
(Lott et al., 2012; Lott & Guez, 2013) to introduce

more waves into the scheme, with their impact being
smoothed over multiple time-steps using a first-order
autoregressive (AR(1)) process. In the following we will
show that the SDE approach naturally leads to a more
stable scheme, without the use of additional waves.

2. The freedom to choose the drift and noise functions
in an SDE means that, potentially, SDEs can be found
that generate time series with the desired intermit-
tent behaviour. This flexibility means that SDEs have
great potential to match the intermittency of observed
sources.

3. The analysis of SDEs is a mature field; in particu-
lar, asymptotic results exist that can be exploited to
give mathematical insight into the best approaches
to parametrisation. For example, the method of
homogenisation (e.g., Pavliotis & Stuart, 2008) can be
used to evaluate the effects of fast stochastic processes
on slow dynamics, and has been used recently in the
QBO setting by Ewetola and Esler (2024).

The aim herein is to develop the SDE framework for
parametrisation in as simple a model as possible, namely
the Holton-Lindzen-Plumb (HLP) model of the QBO
Lindzen and Holton (1968); Holton and Lindzen (1972);
Plumb (1977); also, see the review of Renaud and
Venaille (2020). Choosing this simplified framework
allows concrete results to be established and verified.
Despite using this simplification, however, it will be made
clear that there is no obvious obstacle to extending the
same approach to more comprehensive models. The HLP
model is first adapted from its standard formulation, in
which the QBO is forced by two monochromatic waves
generated at the model lower boundary, to a broadband
multi-wave version (BBM-HLP hereafter) in which the
forcing is due to a more realistic continuous spectrum
of waves in both wave number and frequency space. A
recent systematic study (Léard et al., 2020) has confirmed
that broadening the source spectrum in this manner
does not change the essential nature of the QBO, except
to make the periodic signal more robust, increasing the
range of values of the Reynolds number that lead to stable
QBO-like oscillations (as opposed to frequency locking or
chaotic behaviour). In addition, broader source spectrums
resulted in typically longer QBO periods and increased
amplitudes. Broadening the source spectrum has also been
found (Garfinkel et al., 2022) to lead to longer periods and
larger QBO amplitudes in a more comprehensive model
that uses the Alexander and Dunkerton (1999) scheme.

In the following, it will first be demonstrated that
the QBOs generated in BBM-HLP can be reproduced to
high accuracy using a stochastic scheme with a small
number of waves (two here), controlled by carefully cho-
sen SDEs. Our main mathematical results, which exploit
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the principle of stochastic averaging (e.g., Pavliotis &
Stuart, 2008, chap. 10), show that the QBO in the stochas-
tic model converges accurately to that in BBM-HLP when
the time-scale 7, of the SDEs in question becomes much
shorter than the QBO time-scale T.. Further, for a given
broadband forcing spectrum, it is discovered that there
is considerable flexibility in the choice of SDEs that can
be used. In fact, the SDEs are constrained only by a
matching condition that relates their associated invariant
density (i.e., their probability density function in the
long-time limit) to the broadband forcing spectrum to
be emulated.

The flexibility in the choice of SDEs presents a natural
framework to seek stochastic parametrisations that can go
beyond just reproducing the QBO generated by the deter-
ministic BBM-HLP model, in order to simulate QBOs due
to more realistic intermittent broadband wave forcing. The
importance of intermittency effects on the QBO is clear
from the numerical calculations of Couston et al. (2018)
in a two-dimensional stratified Boussinesq system. These
calculations compare the QBO that emerges from an inter-
mittent wave source due to a “tropospheric” lower layer
of active convection with that from a non-intermittent
wave forcing with the same (time-averaged) energy spec-
trum in a “stratosphere-only” model forced at the bottom
boundary. The results show a dramatic difference in the
emergent QBO between the simulations—the convec-
tively forced model (their M; ) has a QBO with significantly
smaller amplitude and around half the period of that in
the steadily forced model (their M,). The M; QBO also
exhibits considerable variability not captured by M,.

A recent step towards understanding the impact of
intermittent forcing on the QBO has been made by Ewe-
tola and Esler (2024). There, intermittent forcing is intro-
duced to the standard (two-wave) HLP model, by allow-
ing the amplitude of each of the two forcing waves to
evolve stochastically in time according to an SDE. The
main mathematical result is that the impact of this ampli-
tude intermittency on the QBO can be captured by a
single intermittency parameter 4, which depends only on
the details of the SDE controlling the wave amplitudes.
Extending this result to broadband forcing, in the general
setting, is a complex and lengthy problem that we do not
attempt to solve here. To make a first step in this direction,
our aim here, using numerical simulations with stochas-
tic schemes based on different families of SDEs, is to
demonstrate that the intermittency effects associated with
each scheme, which are introduced by varying the SDE
time-scale 7, can have quite different impacts on the QBO
period and amplitude. These proof-of-concept simulations
demonstrate that solving the optimisation problem of find-
ing the SDE-based parametrisation that best reproduces
the QBO generated by a specified intermittent broadband
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wave source could be a highly promising avenue for the
future development of parametrisations.

The plan of this work is as follows. First, the
HLP model and its broadband multi-wave extension
(BBM-HLP) are described in Section 2. Section 3 then
explains the theory of how QBOs generated in BBM-HLP
can be reproduced using a stochastic parametrisation
based on an adapted version of the two-wave HLP coupled
to an SDE (broadband stochastic HLP, BB-sHLP hereafter).
The main mathematical result, which defines the fam-
ily of SDEs that converge to the correct QBO when .
is small, is presented and the implications are discussed.
In Section 4, proof-of-concept numerical simulations are
described that show the convergence of three different
families of BB-sHLP simulations to the BBM-HLP QBO,
and the contrasting intermittency effects within each fam-
ily are highlighted. Finally, in Section 5, the outlook for
future work is discussed and conclusions are drawn.

2 | THE BBM-HLP MODEL

The HLP model is, arguably, the simplest system to capture
the fundamental physics of the QBO. Its parent system is
a stratified Boussinesq fluid, with constant buoyancy fre-
quency N and kinematic (eddy) viscosity v, forced at the
bottom boundary by leftward and rightward-propagating
waves of amplitude a., wave number k., and angular fre-
quencies +®, (asterisks will be used throughout to denote
dimensional quantities). The gravity waves excited by
the oscillating lower boundary propagate upwards and
are eventually dissipated in the fluid interior by thermal
damping at rate a. Using the Wentzel-Kramers—Brillouin
method to approximate the momentum flux conver-
gence —(W)z due to these waves results in the following
non-dimensional integro-differential equation that
describes the time evolution of the zonal mean zonal wind
U(z, b):

— ‘ 1 /
a= ‘2‘)2{”“’ [_./0 U@, 517 dz] }

+ é o;U. 1)
Note that the two terms in the sum correspond to the
momentum flux convergence due to the rightward and
leftward-propagating waves. The complete derivation
and discussion of the physical basis of the associated
approximations leading to Equation (1) is reviewed in
Renaud and Venaille (2020). Following Renaud and
Venaille (2020), the dimensional velocity and height and
time scales are respectively U, = w./ks, Z. = w?/ak.N,
and T, = 2w?/aN?k2a?. The height scale Z,, known as
the attenuation length, is the scale over which waves
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of frequency w, and wave number k, are damped. The
time-scale T, known as the streaming time-scale, mea-
sures the time-scale over which the wave momentum
flux interacts with the mean flow. Vallis (2017) discusses
approximate dimensional values for these characteristic
scales: the choices U, ~ 25m s}, Z, ~ 6km, and T, ~
160 days result in the HLP QBO having period, amplitude,
and vertical scale close to that observed in the stratosphere.
A detailed study of the role of the only free parameter, the
Reynolds number Re = w?a?/(2av), in the QBO dynamics
of HLP is given in Renaud et al. (2019). To summarise,
increasing Re past a critical value has the effect of desta-
bilising the U = 0 solution to the HLP equation, and the
system enters a regime of regular QBO-like oscillations.
As Re is increased further, there is a break down of period-
icity, with a transition to quasi-periodic oscillations, then
to frequency locking and finally onto chaos.

To extend HLP to include a broad spectrum of waves,
the (non-dimensional) lower boundary condition applied
at z = h(x, t) in the underlying Boussinesq system must be
modified. In the derivation of HLP in Equation (1), h(x, t)
consists of a leftward and rightward-propagating wave

h(x, H=R {ei(x—t/e) + ei(x+t/£)} , (2)

where R denotes the real part and € = (w,T,)™' < 1. The
small parameter ¢, which is central to the derivation of
HLP, allows for a natural separation of time-scales into
a fast wave time-scale described by the fast time variable
t' =t/e and the slow QBO time-scale described by the
slow time variable t. Using the dimensional values given
by Vallis (2017) gives € = 0.014. In a more general set-
ting, the evolving lower boundary height h(x, t’, t) can be
interpreted as a function of both ¢’ and ¢, in the spirit of
the method of multiple scales (e.g., Holmes, 2013). The
associated spectral power density can be defined to be

— 1i 4 ¢ 2
A(k, , t) - L,l'll"r—l;looﬁ |hLT(k, , t)l ) (3)
where

T L
hir(k, o, t) = L / / hix,t', He =) gx dr'. (4)
2n Jo Jo

The separation of time-scales means that the T — oo
limit in Equation (3) is formally long compared with the
short ¢ time-scale, but is short compared with the long ¢
time-scale, which allows for the treatment of a fully inter-
mittent (i.e., time-evolving) spectrum of waves on the QBO
time-scale. In this work, however, we will be primarily
concerned with non-intermittent spectra, and henceforth
consider only time-independent spectra with spectral den-
sities A(k, w).

Extending the derivation of Renaud and
Venaille (2020) to this broadband setting is straightfor-
ward, and the HLP equation, Equation (1), is modified to
become the BBM-HLP:

oU = —az{/oo/wwA(k, ®)
-0 J0

Z k ,
X exp [—/O —(kU(z’,t) mpne dz] dk dco}

+ % 07U, (5)
where Equation (5) is non-dimensionalised using the
same characteristic scales as earlier herein, based on the
forcing spectrum having a characteristic frequency w.
and wave number k.. The HLP case is recovered from
Equation (5) when h is given by Equation (2), because in
this case the spectral density is (in terms of the Dirac delta)
given by A(k, w) = 6(k — 1)(6(w — 1) + 6(w + 1)). Itis to be
emphasised that Equation (5) requires the evaluation of a
triple integral, making explicit the point made in Section 1
that deterministic broadband multi-wave parametrisa-
tions of gravity waves are in general computationally
expensive.

3 | THE BB-SHLP MODEL

Next we will introduce a broad class of stochastic HLP
models each of which is capable of reproducing the QBO
behaviour of BBM-HLP, Equation (5), in the limit in which
the stochastic process is fast. The stochastic models have
the advantages of being simpler to implement and of being
significantly cheaper computationally than BBM-HLP is.
The idea is to return to forcing the QBO at z = h with
two propagating waves, but to allow the amplitudes, wave
numbers, and frequencies QF = (AF, K, and Q)" of the
two waves to evolve according to a joint stochastic pro-
cess defined on the domain R x R, x R. It should be stated
clearly at this point that the choice of two waves is just a
convenience for studying systems that are close to the orig-
inal HLP set-up. Similar formulations are possible with
any number of evolving stochastic waves, with the opti-
mal choice determined by the complexity of the forcing
spectrum A(k, ) to be captured.

In the stochastic model, the boundary condition,
Equation (2), is replaced by

. t
h(e, b) = R{ ZA:—' exp(iK;—'x — é/ QF ds> } (6)

Provided that the (dimensional) time-scale of the stochas-
tic processes satisfies 7, > w;!, the derivation of the
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resulting equation remains essentially unaltered from that
described in Renaud and Venaille (2020) and results in the
BB-sHLP model:

oU = =) 0. {QF|AF?

z Kt‘—f
X exXp —/ — — d7/
o (KU, 1) —QF)?

1
+ e 2U. (7

Notice that the deterministic HLP, Equation (1), is
recovered when (A7, K, QF) = (1,1, £1).

The main result here is to highlight a close relationship
between BB-sHLP, Equation (7), and BBM-HLP,
Equation (5). This result is formally valid in the limit in
which the time-scale of the stochastic process 7, is much
shorter than the QBO streaming time-scale (7. < T.), and
the stochastic processes Q; have stationary probability
densities p¥(a, k, w), known as invariant densities. In this
limit, assuming a standard ergodicity property for Q7 (e.g.,
Pavliotis & Stuart, 2008, chap. 6.4 discussion), the principle
of stochastic averaging (Pavliotis & Stuart, 2008, chap. 10)
applies, because the stochastic process Q, will effectively
sample its entire state space before U(z, t) evolves signif-
icantly. Applying stochastic averaging to Equation (7),
following the methodology of Pavliotis and Stuart (2008),
results in

a,u:-Zaz{/ / / wa?
+ —00J0 —o0

X exp [—/Z# dz’]
o kU@, 1) - w)?

X pE(a, k,w) da dk da)}

1 »

+ Re o;U. (8)
Equation (8) is obtained from Equation (7) because
stochastic averaging involves simply replacing the
stochastic variables in Equation (7) with their
time-averaged values. For example, for any function
fAF K, QF) of the ergodic process Q, its time average is
given by

) = / " / ) / " fa b o)p*a ko) da de do. ()
-0 J0 —0

This time-average formula holds because p{(a,k,®)
da dk dw is by definition the proportion of time that the
process Q;f spends in the interval [a,a + da] X [k, k+
dk] X [@, w + dw]. The result, Equation (8), follows from
the application of Equations (9) to (7).

Royal Meteorological Society

Comparing Equations (8) and (5), it follows that, if
SDEs governing Q; can be found so that their invariant
densities pF satisfy the “matching condition”

> / ooazp;—'(a, k, ) da = Ak, ), (10)

then BB-sHLP, Equation (7), should reproduce the
behaviour of BBM-HLP, Equation (5), in the limit 7, < T,.
The matching condition Equation (10) has an alternative
interpretation as a conditional expectation:

D EAD? | (KE Q) = (ko) = Alk,w). (1)

It turns out that the matching condition is satisfied by
a broad class of SDEs. To simplify the following discussion,
however, a restricted class of SDEs will be considered in
which the evolution of A is slaved to the wave number
and frequency Q = (K", Q)" according to

A* = GEQY), (12)

where the “amplitude modulation” functions G*(-) must
be chosen with the matching condition in mind. Further,
the wave number and frequency QF are governed by a
type of SDE known as an overdamped Langevin (ODL)
equation:

+(OQ*
BAGCIIN

T

dQF =

2\ /2 .

: +(2) aBr @3
Here, the functions V*(®), known as potential functions,
are prescribed functions of @ = (k,w)”, Ve = (0, 00)T
and 7 = 7, /T, is the non-dimensional time-scale of the
process (required here to satisfy ¢ < 7 < 1), and B} are
independent Brownian processes in two dimensions.
The ODL equation, Equation (13), is convenient to work
with here because, provided that the potential functions
satisfy the conditions required for normalisation (essen-
tially that V*(w) — oo as |@| — oo sufficiently quickly),
its invariant density is proportional to exp(-V*(®)) (e.g.,
Gardiner, 2009).

The restricted class of SDE defined by Equations (12)
and (13) represents a considerable simplification com-
pared with the general case, but nevertheless offers con-
siderable flexibility in satisfying the matching condition.
Using the ODL result, the invariant density for Q;—' is
given by

p; (@, ) = p;6(a — G*(@)) exp(-V*(@)).

Here, 6(-) is the Dirac delta and

-1
py = ( / exp(—V*(@)) dw)
R, xR
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TABLE 1 Choices for the amplitude modulation and potential functions for three schemes which satisfy the matching condition in
Equation (15).
Scheme Amplitude modulation function G* () Potential function V*(w) Normalisation constant (p:f)‘l
ODL ()12 —log(A*(@)) R (R A% (@) do
H (PE)2Ax (@) /4 —2 log(A*(e)) Jr R AZ@)'? doo
0 weD*
ELGM Py 2A% (@) |D*|
o ¢ D*

Note: ODL: overdamped Langevin; H: hybrid; ELGM: Eckermann-Lott-Guez-Maury. Note that the final scheme (ELGM) is defined only when the broadband
spectra A* (@) are non-zero only within finite simply connected subsets D* C R+ x R (i.e., A% (@) has compact support). In this context |D*| denotes the area

of these subsets.

are normalising constants. Inserting the expression for
p¥ into the matching condition Equation (10), and then
integrating over a, results in

Y GH(@)’pi exp(-VE(@)) = A(@). (14)

In the HLP context it is natural to assume that the
broadband forcing spectrum can be decomposed into
leftward and rightward components according to
A(w) = At (@) + A~ (w), where AT (w) is the spectrum asso-
ciated with rightward-propagating waves and A~ (®) is
associated with leftward-propagating ones. This further
simplifies the matching condition to

G*(@)’p; exp(-V*(®)) = A*(@). (15)

Since there is considerable freedom to choose the func-
tions G* and V%, it should be clear Equation (15)
defines a broad family of schemes each of which
has the property that, in the limit = — 0, it should
reproduce the deterministic QBO generated by the
multi-wave model BBM-HLP. Table 1 details three pos-
sible schemes, which we have named ODL, hybrid
(H), and Eckermann-Lott-Guez-Maury (ELGM). The
ELGM scheme is so named because the choice of the
“square-well” potential function means that QF evolves
according to a regular Brownian process within its (respec-
tive) domain D*, with a reflecting boundary condition
applying at the boundary of D*. Our ELGM scheme is
therefore quite close in concept to the random update
procedure for the wave phase speed used in the scheme of
Eckermann (2011), with the key difference being that the
wave frequency evolves continuously in time in our ELGM
scheme, as opposed to being updated every time step in
the scheme of Eckermann (2011). It should be noted that
the abrupt time-step dependence associated with the ran-
dom updates in Eckermann’s scheme is associated with
numerical problems, which led to subsequent works (Lott
et al., 2012; Lott & Guez, 2013) adapting the scheme by
retaining a larger number of stochastic waves, with their

impact being smoothed over multiple time steps using an
AR(1) process. In the following it will be demonstrated
that the SDE framework leads to more stable schemes
without the need for additional waves.

The three schemes in Table 1 will be the focus of the
next section.

4 | PROOF-OF-CONCEPT
SIMULATIONS

In this section, numerical simulations of the determinis-
tic multi-wave model BBM-HLP, Equation (5), and of the
stochastic model of BB-sHLP, Equation (7), driven by the
three stochastic schemes detailed in Table 1, are investi-
gated with the primary aim of demonstrating that:

1. For each of the three BB-sHLP stochastic schemes,
the BB-sHLP QBO converges accurately to the deter-
ministic BBM-HLP QBO in the “fast” (r — 0) limit
in which the SDE effectively samples its state space
on a time-scale much shorter than the QBO evolution
time-scale.

2. As 7 is increased, each of the three BB-sHLP schemes
exhibits quite different intermittency properties, as can
be seen clearly by observing changes in QBO amplitude
and period.

The details of the integrations follow.

41 | Set-up of the numerical simulations
For the BBM-HLP simulations, the following choice for
the spectral density function A(k, w) = At(k, w) + A~ (k, w)
is made:

Ak, ) = 6(k — 1) —— exp

2no?

[_M]_ 16)

2072

The choice to make the spectrum narrowband in wave
number (i.e., fixing k = 1) and broadband in frequency
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is made with computational efficiency in mind, because
in the general case the numerical solution of BBM-HLP
requires a discretisation of the spectrum in both wave
number and frequency space, which makes the model
expensive to integrate. The parameter ¢ controls the width
of the broadband frequency spectrum; notice that the
original HLP model, Equation (1), is recovered in the limit
oc—0.

Correspondingly, BB-sHLP, Equation (5), is simplified
by setting K* = 1. The dynamics are then governed by
AF = G*(Q7) for the amplitude of each wave, and the cor-
responding frequency QF is governed by the single variable
SDE:

VE(QF 1/2
dor = 80 g, (3) dBE. a7)

T T

For the three schemes the potential and amplitude modu-
lation functions are then given by

) . (wF1)?
ODL: V#(w) = ?,
Gr(w)* =1,
R (0¥1)
H: V_(CO) = ?,
— 2
GH(@)? = V2exp [—%] (18)

0 € w_,
ELGM: Vi(a))={ lo| € [@ w+]’

co otherwise

— 1)\2
Gi(a))z — (01 —w-) exp [_ (wF1) ]

N 207

Figure 1 illustrates the behaviour of the SDEs govern-
ing the three schemes. The left panels show the invariant
density (or stationary probability density function) pf (w)
for the stochastic process Q in each case, together with
histograms compiled from numerical realisations of
Equation (17). The histograms serve to demonstrate that
in each case the stationary probability density function
of QF is effectively sampled by the process Q; within 507
time units (corresponding to 1.5 X 10° samples). The mid-
dle panels show a single realisation of Q; over an interval
of length 107 in order to illustrate the typical behaviours
of Equation (17) for the three schemes. Finally, the right
panels plot the square of the amplitude modulation func-
tion G*(w), which determines the wave amplitude A
in terms of its frequency Qf Notice that, for the ELGM
scheme, the process Q; is a random walk that is reflected
at the boundary points [w_,®.], which means that the
tails of the spectrum A*(w) outside of this interval are
not captured by the scheme. However, provided that
the cut-offs are chosen so most of the spectral power is

Royal Meteorological Society

captured then the approximation is not significant. Here,
[w—,w,+] =[0.1,1.9], which is sufficient to capture the
Eliassen-Palm (EP) flux at the lower boundary to eight
significant figures.

4.2 | Numerical integrations
of BBM-HLP

The broadband multi-wave model BBM-HLP, given by
Equation (5) and with spectral density A*(k,w) given
by Equation (16), with Reynolds number Re =10, is
integrated numerically using a scheme adapted from
that described in the supplementary material of Renaud
et al. (2019). Time stepping is performed with a standard
two-step predictor-corrector scheme. The treatment of the
vertical integral is as described in Ewetola and Esler (2024),
in which the mean velocity U is replaced by a piecewise
linear approximation. The integrals in the right-hand side
of Equation (5) can then be evaluated exactly for the piece-
wise linear flow, greatly reducing the sensitivity of the
scheme to the relative location of critical levels and the
model grid. The vertical domain is of height 5 (dimen-
sional units Z,) and is discretised with grid size Az = 1073.
A time step At = 1072 /Re was found to be adequate across
a wide range of model parameter space. The numerical
validation of the code for the monochromatic HLP case is
described in Ewetola and Esler (2024). For the extension to
BBM-HLP, the frequency spectrum integral is discretised
into a sum over N,, = 50 discrete frequencies in the range
0.01 < w < 1.99 with Aw = 0.0404, which was found to be
sufficient to capture the EP flux associated with the contin-
uous spectrum to high accuracy. The discretisation of the
spectrum means that BBM-HLP is close to N, times more
computationally expensive than the original HLP model.
Figure 2 shows Hovmoller plots of U(z, t) illustrating
the typical QBO-like oscillations that occur in BBM-HLP.
Each panel shows integrations in which the width ¢ of
the broadband spectrum is varied, from ¢ =0, which
corresponds to the original HLP system, Equation (1),
and then BBM-HLP calculations with ¢ = 0.15 and ¢ =
0.3. The effect of spectral broadening in our simulations
differs somewhat from that reported recently by Léard
et al. (2020). Here, increasing o is seen to increase the QBO
period and (slightly) increase the QBO amplitude, whereas
Léard et al. (2020) found much larger increases in both
QBO period and amplitude. There are a number of dif-
ferences in the experimental set-up that can account for
the differences between the two studies. For example, a
different dissipation mechanism for the waves is used in
Léard et al. (2020), which means their governing equations
differ from HLP. Arguably even more significantly, in
Léard et al. (2020) the total wave kinetic energy at the
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FIGURE 1 Illustrating the behaviour of the stochastic differential equations governing the overdamped Langevin (ODL), hybrid (H),

and Eckermann-Lott-Guez-Maury (ELGM) schemes when the spectral density A*(k, ) is governed by Equation (16) with ¢ = 0.15. Left
panels: Histograms of Q; (compiled from 1.5 X 10° data points sampled at every time step over a time interval 507) plotted against the

corresponding invariant density p{ (w) (curves). Middle panels: A single realisation of Q; over an interval of length 10 . Right panels: The

amplitude modulation (AM) function G*(w)>?.

lower boundary is held constant as ¢ is varied, whereas
in Figure 2 it is the total spectral density (i.e., the integral
of A(k,w)) held constant. Additionally, a special property
of the spectrum in Equation (16) is that the total EP flux
associated with the left and right parts of the spectrum, for
example

/ wA*(k, w) dk dw, (19)
R, xR

is also conserved as o is varied. Recently, steps towards
understanding what controls the changing stability of the
QBO when the spectrum is broadened have been made by
Chartrand et al. (2024), in a detailed study of a multi-wave
HLP system.

Next, the practical question of how these (expen-
sive) BBM-HLP calculations can be emulated by (cheap)
BB-sHLP stochastic calculations will be addressed.

4.3 | Numerical integrations of BB-sHLP
The BB-sHLP model, Equation (7), can be integrated
numerically by making minimal alterations to a stan-
dard HLP numerical code. Essentially, the HLP model
needs only to be coupled to a pair of SDEs that solve
for QF and Q;. In the present set-up, it is sufficient to
couple to Equation (17), which solves for Q and Q,
since K =1 and AF = G*(Q;") are prescribed. In our
experience, it is sufficient to solve Equation (17) using
a standard Euler-Maruyama time-stepping scheme. Note
that the standard Euler-Maruyama discretisation of the
Ornstein—-Uhlenbeck (OU) process yields an AR(1) pro-
cess. Solving the SDE is of very low computational expense
compared with evaluating the integral terms in HLP;
therefore, in ideal circumstances, BB-sHLP is hardly more
expensive than the original HLP model, Equation (1).
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FIGURE 2 Hovmobller plots of U(z, t) in the broadband multi-wave version of the Holton-Lindzen-Plumb (BBM-HLP) model

calculations showing the equilibrated quasi-biennial oscillations after a spin-up period. In each case Re = 10 and the width ¢ of the broadband
spectrum is (a) o = 0 (the monochromatic HLP case), (b) o = 0.15, and (c) 6 = 0.3. [Colour figure can be viewed at wileyonlinelibrary.com]

However, in practice, particularly for lower values of the
SDE time-scale 7, it is necessary to reduce the BB-sHLP
model time step in order to resolve accurately the time
dependence of the integrand appearing in Equation (7).
The time step used for the ODL and H schemes is
At = Min{7/20,1072/Re} with smaller steps required for
ELGM (see subsequent discussion).

For Figure 4, the BB-sHLP, Equation (7), is inte-
grated with each of the three stochastic schemes
(ODL, H, ELGM), for a range of values of r = {0.001,
0.002,0.005,0.01,0.02,0.05,0.1,0.2,0.3}. In each case,
Equation (7) with Re = 10 is coupled with Equation (17)
with the potential function and amplitude modulation
functions obtained from Equation (18) with the spectral
width ¢ = 0.15. In Figure 3, Hovmoller plots of U(z, ) are
shown for the shorter SDE time-scale value (z = 0.02, left
panels) and the longest value (z = 0.3, right panels). Note
that, although we are comparing the schemes at fixed
in Figure 3, the exact value of 7 is not directly comparable
between the different schemes. Our main results, however,
are not qualitatively sensitive to redefining = for each
scheme.

The left panels in Figure 3 should be compared
with the corresponding BBM-HLP calculation shown in
Figure 2b. Accurate convergence of the BB-sHLP integra-
tion to the corresponding BBM-HLP QBO is evident for all

three schemes. This convergence occurs because stochas-
tic averaging applies, since the SDE in each case evolves
rapidly compared with the QBO time-scale (as 7 < 1),
and each SDE scheme satisfies the matching condition in
Equation (15).

The typical effect on the QBO of introducing intermit-
tency (i.e., finite 7) to each of the three schemes is shown
in the right panels of Figure 3, for which 7 = 0.3 in each
case. Based on Figure 3 alone, the most robust difference
between the schemes is that they become increasingly
noisy from ODL — H — ELGM. Autocorrelation plots of
U(z,t) (not shown) reveal that differences in the QBO
vertical structure between the three schemes are in fact
small. The variations in the QBO structure apparent
in Figure 3 are therefore primarily due to the internal
variability of each scheme as opposed to differences
between them.

A more systematic picture of how the resulting QBO
varies as 7 is increased in each of the three schemes is
presented in Figure 4, where the QBO period P is plot-
ted against QBO amplitude A. Here, the QBO amplitude
is calculated using the following root-mean-square norm:

1 T, rz 1/2
== Uz, t)> dz dt) 20
A (AT/T_/O (z,0* dz ) (20)
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FIGURE 3 Hovmoller plots of U(z, t) from broadband stochastic Holton-Lindzen-Plumb (HLP) model integrations using the

overdamped Langevin (ODL), hybrid (H), and Eckermann-Lott—Guez-Maury (ELGM) schemes. Left panels: Calculations with r = 0.02
and ¢ = 0.15 illustrating convergence to the deterministic broadband multi-wave HLP quasi-biennial oscillation (QBO; see Figure 2b). Right
panels: Calculations with = = 0.3 illustrating the QBOs generated by each scheme when significant intermittency is present. [Colour figure

can be viewed at wileyonlinelibrary.com|

where z; =5 is the top of the domain, (T_,T;)=
(200,10, 200), and AT = T, — T_ = 10*. The QBO period
is calculated from the location of the principal maximum
of the autocorrelation function of U(z,, t), where z, = 0.2
is a representative level near the bottom of the domain.
Note that both of these definitions are modified from those
used in Ewetola and Esler (2024), where the amplitude was
taken to be the root-mean-square value of U(zy,, t), where
Zm is the level of its maximum value, and the period was
obtained from the Fourier transform of U(zy, t). The new
definitions have been adopted because they return more
robust results for the most noisy time series; however, the
change has minimal impact on any of the results presented
here or in the previous work.

The solid black point in Figure 4 shows (A, P) for the
o = 0.15 BBM-HLP calculation shown in Figure 2b. For
context, to show the impact of varying the spectral band-
width ¢ in BBM-HLP, the unfilled black circles show the
corresponding results for ¢ = 0.1, 0.125, and 0.175. The
BB-sHLP results for the simulations described earlier, over
the full range of 7, are shown by the coloured points. The
simulations illustrated in Figure 3 (i.e., those with 7 =
0.02 and 0.3) are given an additional outline for emphasis.

As 7 is decreased for each scheme, the QBO amplitude
A and period P are seen to converge to the BBM-HLP
result. At the lowest value of = = 0.001, the differences
in (A, P) between BBM-HLP and BB-sHLP are < 0.2%
for all three schemes for ¢ = 0.15. It should be noted
that the = 0.001 integrations have significant associated
computational cost compared with HLP, because a shorter
time step is required. A time step 5t = min(z /20,1072 /Re)
is used, with the second value being the standard time
step for the deterministic HLP model, giving 6t = 1073 for
our Re = 10 simulations. Consequently, the 7 = 0.001 runs
require a time step 20 times smaller than for the deter-
ministic case. However, the differences in (A, P) when
7 = 0.02, which is the lowest value of = for which a shorter
time step is not required (for the ODL and H schemes)
to properly resolve the SDE, remains less than 1%. There-
fore, it has been demonstrated that the BBM-HLP QBO can
be effectively reproduced by a BB-sHLP stochastic scheme
thatis a factor of N,, (here, 50) cheaper than the broadband
multi-wave calculation.

Table 2 shows how the convergence of the schemes
perform as the width of the broadband forcing spectrum
o is increased. For broader spectra, the accuracy of the

85U8017 SUOWILIOD BA1e81D) 8|qeotjdde ay) Aq peuIsnob ae sspile O '8sn J0 Sa|n 10) Areiq18ul|UO 8|1 UO (SUORIPUOD-PUR-SULBY WD AB |1 ARe1q 1 UI|UO//:SHNY) SUORIPUOD PUe WIS | 811 89S *[5202/50/90] Lo Akeiqiauljuo AB|IM ‘ssoinies Ariqi TON uopuoabe| oD AisieAlun Ad €861 /00T 0T/10p/w0o" A3 (1M Ateiq [l UO SIS/ STy WO1) PpeojumOa ‘0 'X0L8LLYT


http://wileyonlinelibrary.com

XIE ET AL.

Quarterly Journal of the 11 of 16

Royal Meteorological Society ESRMets
0.678 0.679
87 T T T T T
oc=0.175 &
8.6 TE—%@HL ._%8.33
Increasing 7 ' 1
8.32
_T 8.31
8.4+ %
HA
_. 831 Y oc=0.15 |
& F%H ]
< 82+ i
@]
.a @ ’E‘
o S
8.1 @ gi
gl oc=0.125& U:g |
\]
79r| m ODL i
H
78 %L A ELGM -
e BBM-HLP ® 0=01
7.7 | | 1 | | | I
0.6 0.62 0.64 0.66 0.68 0.7 0.72
Amplitude (A)
FIGURE 4 Calculated quasi-biennial oscillation (QBO) period P against QBO amplitude .4 for the set of broadband stochastic

Holton-Lindzen-Plumb (HLP) model simulations described in the text with ¢ = 0.15. Error bars calculated according to the method
described by Flyvbjerg and Petersen (1989, section III). The overdamped Langevin (ODL), hybrid (H), and Eckermann-Lott-Guez-Maury
(ELGM) schemes are illustrated by triangles, diamonds and squares respectively. The result from the corresponding deterministic broadband
multi-wave HLP (BBM-HLP) calculation is shown by the circle. The results for BBM-HLP simulations with different values of ¢ are shown by
unfilled circles. The simulations shown in Figure 3 are labelled with an additional bounding box.

TABLE 2

Table of the percentage error when calculating period and amplitude of the broadband multi-wave Holton-Lindzen-Plumb

(HLP) model for several values of o when using broadband stochastic HLP models with = = 0.001.

Error (%)

Period Amplitude
o ODL H ELGM ODL H ELGM
0.15 0.0038 0.0194 —0.0633 0.0244 0.0081 0.0962
0.30 0.0495 0.0512 0.0297 0.2902 0.1369 0.0669
0.45 0.9012 1.8435 0.0058 3.9653 2.0359 0.8102

Abbreviations: ODL: overdamped Langevin; H: hybrid; ELGM: Eckermann-Lott-Guez-Maury.

period and amplitude calculated from the ODL and H
BB-sHLP model at a fixed value of 7 is reduced. This result
is expected, as the stochastic wave has a broader spectrum
to traverse in order to emulate the results of the determin-
istic multi-wave model, and it is likely that accuracy could
be recovered by increasing the number of stochastic waves.
However, even with a single wave the accuracy remains
reasonable for a significant range of values of ¢.

The ELGM results come with a caveat, because techni-
cal issues become important as the spectrum gets broader.
In the ELGM scheme, the stochastic processes Q;r must
be restricted to a finite interval [w_, w,]. The tails of the
spectrum A'*(w) outside this interval are cut off and not
captured by the scheme. Aslong as the interval is chosen to
be sufficiently broad, the approximation is not significant.
For a Gaussian spectrum, the width of interval required to
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capture a given percentage of the total flux is linear in the
standard deviation ¢. For ¢ = 0.15, we chose an interval of
width 120, which captures the total EP flux of the Gaus-
sian spectrum up to eight significant figures. However,
for o > 1/6, an interval of width 126 would give w_ < 0,
which means that the wave associated with the rightward
spectrum can have a negative frequency w. As our model
fixes k =1, this means that the “rightward wave” can
have a leftward phase speed; this causes problems, as the
QBO-like oscillations of the HLP model are dependent on
two opposing waves. In order to circumvent these issues,
for 6 > 1/6 we have set [w_, w,] = [0, 2]. This has the side
effect of cutting off more of the forcing spectrum com-
pared with an interval of width 120, but the majority is
still captured. A choice of [w_, ] = [0, 2] captures 99.9%
of the spectrum for o = 0.3, and 97.4% of the spectrum for
o = 0.45. However, as this is not the same percentage for
each value of o, the results for different values of ¢ for the
ELGM model are not directly comparable.

Figure 4 shows that the effect of introducing intermit-
tency (increasing 7) has a different impact on the QBO
for each scheme. The effect of increasing z in the ODL
scheme is primarily to shorten the QBO period, whereas
the QBO amplitude remains fairly constant. By contrast,
in the ELGM scheme the QBO amplitude is reduced as
increases but the period remains almost unchanged. The
behaviour of the H scheme is intermediate between the
other two schemes. These results make clear that it is not
sufficient simply to introduce randomness into a gravity

wave parametrisation in order to improve the modelling
of an intermittent source. The nature of the intermittency
to be modelled must first be understood, and then the
stochastic scheme must be chosen carefully to account
for it. Although a full solution to this problem must be
addressed in future work, Figure 4 makes clear that even
the restricted SDE framework presented here offers the
flexibility to capture a wide range of intermittency impacts
on idealised QBO amplitude and period.

In order to understand some of the differences between
the three schemes, in particular why ELGM appears to be
noisier and more intermittent than ODL and H are at the
same value of 7, the time evolution of the lower boundary
EP flux F* = QF|A/|* due to the rightward-propagating
wave is shown in Figure 5 for = = 0.3. It is at once evi-
dent that F* is relatively constant in time in ODL, is more
variable in H, and is extremely variable with large inter-
mittent pulses in ELGM. The requirement of resolving the
variable impact on the QBO associated with these inter-
mittent EP flux pulses is the reason the ELGM scheme
requires a shorter time step than ODL or H. We have
found that for moderate r the ELGM time step needs to
be smaller by at least a factor of 5 compared with ODL,
because the intrinsic QBO time-scale T, is shorter by a
factor of 5 during the high EP flux episodes (see scaling
of T, earlier herein). To understand the differences in the
EP flux behaviour, consider that the ODL scheme visits
frequencies at the tails of the spectrum infrequently but
maintains the wave amplitude when it does so, resulting

—m— ODL

—A—ELGM

N

Sl 1 \ 0 '

0.3 0.4 0.5 0.6
Time (¢/T7)

FIGURE 5
of the Eliassen-Palm flux at the
lower boundary F* = Q*|A}|? of
the rightward-propagating wave in
the overdamped Langevin (ODL),
hybrid (H), and
Eckermann-Lott-Guez-Maur
(ELGM) schemes; T = 0.3.
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in a relatively constant EP flux. By contrast, the ELGM
scheme visits the tails of the spectrum often but attenuates
the wave amplitude when it does so, resulting in the long
intervals with low EP flux seen in Figure 5.

Figure 6 shows a different perspective on the inter-
mittency of the three schemes by contouring the EP
flux as a function of (z,t). This can also be seen in a
contour plot of forcing—as given by the right-hand side of
Equation (7)—as a function of height and time. The results
of this contour plot for the deterministic HLP model are
well known. The monochromatic case consists of a sharp
spike just below the critical level, whereas the BBM-HLP
results in a broader peak. Figure 6 shows that the forcing
due to the BB-sHLP schemes is less smooth than that due
to the BBM-HLP scheme. In particular, the forcing due to
the ELGM scheme is highly localised in time, occurring
in several short separated bursts. This corresponds with
the behaviour shown in Figure 5, with the ODL, H, and
ELGM schemes being ordered by increasing intermittency
of their forcing.

5 | CONCLUSIONS
The SDE framework developed here has a number of
advantages that have been clarified herein.

1. The SDE framework generates parametrisations that
are defined independently of the details of the model
discretisation, such as the model time step, meaning
that researchers are free to choose a numerical scheme

Time (¢/T%)

best suited to their needs. Model developers can then
draw on the vast literature on the numerical solu-
tion of SDEs (e.g., Kloeden & Platen, 1992; Milstein &
Tretyakov, 2004).

2. In common with previous stochastic schemes (e.g.,
Eckermann, 2011; Lott et al., 2012), the SDE frame-
work allows for considerable computational savings.
For example, in the HLP setting used here, it has been
shown in principle how to emulate the behaviour of a
deterministic multi-wave forcing spectrum (BBM-HLP)
that is broadband in both frequency and wave number,
using a scheme with just two stochastically evolving
waves (BB-sHLP). In the broadband frequency setting
studied in Section 4, these computational savings are
realised in full, as the ODL scheme in BB-sHLP is
only marginally more expensive to integrate (provided
7 2 0.02) than the deterministic two-wave HLP model.
By contrast, BBM-HLP is N, times more expensive,
where N, = 50 is the number of waves in the discre-
tised spectrum. For a spectrum that is broadband in
both frequency and wave number, much greater savings
are realistic. It is worth emphasising that in the general
circulation model setting these computational savings
could be reinvested in enhancing the realism of the
schemes in other respects; for example, to move beyond
columnar gravity wave propagation, which is known
to be a significant shortcoming of current schemes
(Plougonven et al., 2020).

3. The flexibility introduced by the SDE framework allows
for the possibility that schemes can be developed in
order to match the intermittency of observed gravity
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wave sources. Each SDE scheme having the correct
spectral density A(k, w)—that is, satisfying the match-
ing condition in Equation (10)—has its own intermit-
tency properties that become evident as the time-scale
7 of the SDE process is increased. The intermittency
effects of different schemes can have profoundly differ-
ent impacts on the QBO period and amplitude, as is
seen in Figure 4, showing that the naive approach of
just taking any stochastic scheme and “making it inter-
mittent” will not suffice as a robust approach to model
observed intermittent effects. A step forward in under-
standing the effect of intermittency has been made
recently by Ewetola and Esler (2024), who showed, in a
version of the two-wave HLP in which the wave ampli-
tudes evolve according to an SDE, that the effect of the
intermittency can be reduced to a single intermittency
parameter depending only on the details of the SDE in
question.

4. The flexibility of the SDE framework can also be
exploited to enhance the numerical stability of a
stochastic gravity wave parametrisation. For example,
it was notable in the study of Section 4 that the
ODL scheme was considerably more stable and
computationally robust (and therefore cheaper)
compared with the ELGM scheme, with the probable
cause being the much lower variance in EP flux in the
ODL scheme. Enhancing the numerical stability prop-
erties of such schemes can be a key practical concern of
modellers.

Finally, it should be emphasised that although the SDE
schemes developed here have been tested in the highly
idealised HLP framework, there is no obstacle in prin-
ciple to adapting the approach to more realistic model
settings. Nevertheless, there remain theoretical, practical,
and numerical challenges that need to be addressed before
new schemes based on the framework described here can
be used operationally to their best advantage. Principal
among these are the following:

1. A natural extension of the present work is to deal
with more general parametrisations of wave forcing.
For example, in Ewetola and Esler (2024), the theory
is developed for a general forcing functional F[U(z),z]
in place of the (monochromatic) HLP wave forcing.
Extending the approach of Ewetola and Esler (2024)
to the broadband setting of the current work is
a priority. Functionals F can be chosen to align
with the results of simple wave-breaking parametrisa-
tions as a starting point for addressing more realistic
parametrisations.

2. The next challenge for future work is to extend
the results of Ewetola and Esler (2024), in which a

theoretical description of the effects of intermittency
in the case of monochromatic forcing in HLP is given,
to the more general broadband situation. A theoretical
understanding of intermittency will underpin attempts
to optimise the choice of the potential function (V*(w)
herein), and time-scale z, which define the SDE-based
parametrisation scheme. The aim is that the optimal
choice will best match the QBO generated by the actual
intermittent source. Ideally, the theory can be devel-
oped so that the optimal choice of V*(w) and r follow
from the theory as opposed to being determined by
parameter tuning.

3. Afurther challenge is to relax the vertical localisation of
the launch spectrum to allow for vertically distributed
wave sources; for example, from convective sources; see
Lecoanet et al. (2015).

4. Finally, careful numerical analysis and testing of any
new scheme are required, in order to understand
numerical aspects, such as each scheme’s time-step
restrictions. For example, in the stochastic scheme of
Lott et al. (2012) it was found necessary to apply a
smoother to the time tendency of the wave forcing in
order to minimise numerical issues, which were found
to be present in previous stochastic schemes (Ecker-
mann, 2011). A more general understanding of this type
of numerical issue may be beneficial.

Overall, the features described herein provide a strong
recommendation for exploring the SDE framework as a
promising direction for the future development of gravity
wave parametrisation schemes.
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APPENDIX A. COMPUTATION TIME OF
BB-SHLP

Here, further details of the computational costs of the
various schemes used to solve BBM-HLP and BB-sHLP
are reported. Unsurprisingly, the majority of the compu-
tational resources used in solving the HLP equation are
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required to evaluate the forcing terms on the right-hand
side. Since BBM-HLP requires the simulation of N, waves
for an accurate representation of the forcing spectrum,
it is therefore approximately N,, times more expensive to
simulate. BB-sHLP, on the other hand, only requires the
simulation of one pair of waves, the same as the classi-
cal, monochromatic HLP model. The only additional cost
is the evaluation of the SDE, which can be negligible in
comparison with the cost of simulating the HLP equation,
depending on whether or not the SDE requires a shorter
time step to resolve its variability.

Taking the original monochromatic HLP model as
a baseline, Table A.1 confirms that the three stochastic
schemes have comparable run time for = = 0.02, whereas
the BBM-HLP model takes N, =50 times as long. In
Table A.2, in which the run times for different values of
7 are compared, it can be seen that the amount of time
required to evaluate a single time step remains constant as
7 is varied. Therefore, changing r only changes the com-
putational cost if it necessitates a reduced time step for
the model. Note that there is great potential for improv-
ing the performance of the model at low values of = by
choosing a more sophisticated SDE scheme (e.g., Kloeden
& Platen, 1992; Milstein & Tretyakov, 2004).

TABLE A.1 Time required to simulate the monochromatic,
classical Holton-Lindzen-Plumb (HLP) model; the broadband
multi-wave HLP (BBM-HLP) model with N, = 50, and the three
broadband stochastic HLP schemes (overdamped Langevin [ODL],
hybrid [H], Eckermann-Lott-Guez-Maury [ELGM]), with

7 = 0.02. Each simulation was run until time T = 1007, on a
single-processor laptop on a vertical grid with 5,000 grid points.

Model Runtime (s)

HLP 28.56

BBM-HLP 1439

ODL 28.55

H 28.29

ELGM 28.16
TABLE A.2 Time required to simulate the overdamped

Langevin model for several values of 7.

7=0.005 7=0.01 T = 0.02 T = 0.05
Runtime 126.1 66.81 34.06 34.65
()
Runtime/ 3.152x 10™* 3.341 X 10™* 3.406 x 10~* 3.465x 10~*
time step
(s
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