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Abstract

In the last two decades, identification based on highermoments has attracted
increasing theoretical attention and been widely adopted in empirical prac-
tice in macroeconometrics. This article reviews two parallel strands of the
literature. The first is identification strategies based on heteroskedasticity
of the structural shocks, which can provide additional covariance equations.
The second exploits non-Gaussianitymore generally of the structural shocks
for identification, generally under the assumption of independence, based
on the mature independent components analysis literature. I describe in
detail the seminal identification results and discuss recent extensions. For
each scheme, I describe parametric and nonparametric implementations
and highlight prominent empirical applications. I also discuss key issues for
the adoption of such strategies, including weak identification and the in-
terpretability of statistically identified structural shocks. I further outline
key areas of ongoing research, such as the blending of multiple sources of
identifying information.
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1. INTRODUCTION

Following Sims (1980), structural vector autoregressions (SVARs) have been the workhorse of
causal inference in macroeconometrics. To recover dynamic causal effects or structural shocks
from these models, the econometrician must identify a matrix of contemporaneous causal effects.
Most traditional approaches to doing so are economic in nature. In particular, they either impose
economically motivated restrictions on these contemporaneous impacts [e.g., short-run restric-
tions (Sims 1980), long-run restrictions (Blanchard & Quah 1989), sign restrictions (Uhlig 2005)]
or supply external economic information to help pin down a unique set of structural parameters
[e.g., external instruments (Stock 2008,Mertens & Ravn 2013)]. A separate strand of the literature
that has gained popularity in recent years employs so-called statistical identification, in particular
exploiting the information from higher moments. It is well-known that the second moments of
reduced-form vector autoregression (VAR) innovations—the reduced-form covariance matrix—
contain inadequate information to uniquely decompose the innovations into the structural shocks
and their contemporaneous impacts. However, moments beyond the covariance can contain suffi-
cient information to achieve identification under certain conditions. This insight dates to as early
as 1928 (Wright 1928).

Two distinct, although closely connected, threads of this literature have developed. The first is
based on heteroskedasticity, stemming from Sentana & Fiorentini (2001). If the variances of the
structural shocks change through time, then there is not just a single reduced-form covariance ma-
trix to exploit. Thus, an SVAR model may no longer be underidentified using the expanded set of
second moments. Over the past two decades, this idea has been applied, extended, and generalized
in multiple directions, most popularly to a small number of discrete variance regimes (Rigobon
2003) but also to smooth transition models (Lütkepohl & Netšunajev 2017) and parametric pro-
cesses (Sentana & Fiorentini 2001, Lanne et al. 2010). More recently, Lewis (2021) synthesized
earlier approaches in a distribution-free identification argument that accommodates all previously
proposed processes and, indeed, essentially arbitrary persistent variance processes, including those
with a state-space representation.

The second strand of the literature is based on the information offered by higher moments
more generally and is often referred to by the shorthand of identification via non-Gaussianity
of the structural shocks. Since Gaussian distributions are fully characterized by their first two
moments, any identification scheme that successfully exploits higher moments must leverage
some deviation of the structural shocks’ distribution from Gaussianity. Due to the Darmois–
Skitovich theorem (e.g., Darmois 1953, Skitovich 1953), if at least all but one of the structural
shocks exhibit non-Gaussianity and the structural shocks are mutually independent, then the de-
composition of innovations into structural shocks is unique (e.g., Comon 1994). This result is
well-known and has been widely adopted in statistics and signal processing, as well as in eco-
nomics more generally. Within macroeconometrics, it has been exploited in several different
ways. These include nonparametric estimators based on independent component analysis (ICA)
algorithms (Hyvärinen et al. 2010), maximum likelihood estimators (Lanne et al. 2017), pseudo-
maximum likelihood (PML) estimators (Gouriéroux et al. 2017), and moment-based estimators
(Guay 2021, Keweloh 2021, Lanne & Luoto 2021). Of course, heteroskedasticity of the structural
shocks in general implies non-Gaussianity; for example, shocks coming randomly from two dif-
ferent variance regimes are unconditionally non-Gaussian. Thus, the two strands of the literature
are intrinsically connected.

Statistical identification approaches are attractive because they avoid making potentially
controversial economic assumptions about the underlying structural parameters. Indeed, the
structural parameters are typically the objects of interest to the econometrician, so imposing
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assumptions on them may be unappealing. Therefore, statistical identification, which can remain
largely agnostic to these coefficients, is attractive when the econometrician is interested in
testing hypotheses about structural parameters. However, these identification approaches do
make assumptions of their own—on the statistical properties of the data. While the presence
of heteroskedasticity in macroeconomic or financial data may be uncontroversial, to avoid
weak identification (and, thus, for standard inference techniques to be reliable) the departures
from homoskedasticity may need to be substantial in typical applications; the mere existence of
heteroskedasticity is not enough in finite samples. If adequate departures from homoskedasticity
or Gaussianity are not present, such models will be only weakly identified, as recognized by
Magnusson & Mavroeidis (2014) and Nakamura & Steinsson (2018) and recently studied by Lee
et al. (2022), Lewis (2022), and Montiel Olea et al. (2022), for example.While it is generally hard
to test identification conditions related to higher moments, there has been recent progress in this
direction (e.g., Guay 2021, Lütkepohl et al. 2021, Lewis 2022).

Another key assumption, at least in the non-Gaussian family of approaches, is that of mutual
independence of the structural shocks. Mutual independence is much stronger than the usual
assumption that the structural shocks are mutually and serially uncorrelated, since it rules out the
possibility that their variances follow a common or factor process, for instance—a condition that
seems tenuous in light of episodes like the Great Moderation. Several recent papers have aimed
to relax the independence assumption to varying degrees (e.g., Guay 2021, Lanne & Luoto 2021,
Mesters & Zwiernik 2024). A final challenge of statistical identification is labeling. Based on the
statistical information contained in higher moments alone, models are only ever identified up to
sign/scale and column permutations, or locally; there is no way to place an interpretable “label” on
a structural shock, a column of impact coefficients, or an impulse response function (IRF). Some
papers have sought to provide an initial labeling approach based on a purely statistical preference
over column order, which guarantees global identification but no economic interpretation (e.g.,
Lanne et al. 2017).More typically, though, authors resort to economic information—meaning that
these identification approaches are not completely devoid of economic assumptions.

This review describes the identification strategies named above in detail and outlines ongoing
areas of research; the focus is macroeconometric settings, particularly SVARs. However, appli-
cations and similar theoretical contributions exist throughout economics. A leading example is
errors-in-variables models, where the idea of exploiting higher moments for identification dates
to at least 1950 (Reiersøl 1950; see, e.g.,Gospodinov et al. 2017, Lewbel 1997).Heteroskedasticity
has been used to identify simultaneous equation models more broadly (e.g., Klein & Vella 2010,
Lewbel 2012, Prono 2014). Arguments described in this review for macroeconometric settings
are very similar to those used to study income dynamics (e.g., Blundell et al. 2008, Bonhomme
& Robin 2009). Higher moments have also been used in the literature on noninvertible models,
where they offer novel identifying variation to distinguish between invertible and noninvertible
models that are observationally equivalent up to second moments (e.g., Gospodinov & Ng 2015,
Gouriéroux et al. 2019). Clearly, the applicability of the information contained in higher moments
and in particular non-Gaussianity is broad in economics, and a complete treatment is beyond the
scope of this review.

The remainder of this review proceeds as follows. Section 2 reviews the SVAR setting. Section 3
discusses identification approaches based on heteroskedasticity. Section 4 presents approaches
based on non-Gaussianity. Section 5 describes the issues posed by weak identification as well as
methods for robust inference and detection. Section 6 outlines key open questions in the litera-
ture and active research areas. Section 7 concludes by identifying several appealing avenues for
ongoing research.

www.annualreviews.org • Identification Based on Higher Moments 667
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2. SETTING

Consider an n × 1 vector of observed variables, Yt, with an assumed mean of zero for simplicity
(for a comprehensive treatment of SVARs, see Kilian & Lütkepohl 2017). A standard SVAR has
the form

Yt = A1Yt−1 + A2Yt−2 + · · · + ApYt−p + ut , ut = Bϵt , 1.

or, more compactly,

A(L)Yt = Bϵt . 2.

Here, ut are the reduced-form SVAR innovations and ϵt are mean-zero mutually orthogonal and
serially uncorrelated structural shocks, or

E [ϵt ] = 0,E
[
ϵitϵ js

] = 0,∀i ̸= j, s ̸= t,E
[
ϵtϵ

′
t

] = 3, 3.

where3 is diagonal. Crucially,B is the n× nmatrix of contemporaneous causal effects, assumed to
be invertible.1 The coefficients of the lag polynomial,A(L), are consistently estimable via ordinary
least squares (OLS). The SVAR identification problem pertains to B. In particular, the covariance
of the reduced-form innovations, ut,

6 = E
[
utu′

t

]
, 4.

provides only n(n + 1)/2 unique equations, but there are n2 unknown parameters to be identified
in the n × n matrix B and the n-entry diagonal covariance of ϵt, even after a suitable scale nor-
malization, giving n restrictions, is imposed (via either a unit diagonal for B or identity covariance
for ϵt).2 Indeed, the impact coefficients of B are identified only up to orthonormal rotations. To
understand this point, impose the unit variance normalization, so that 3 = In. Let Q ∈ On, where
On is the space of all n × n orthonormal matrices. Then,

6 = BInB′ = BB′ = (BQ)Q′InQ (Q′B′ ) = B∗B∗′, 5.

where B∗ = BQ. In other words, B and B∗ are observationally equivalent up to second moments of
ut without further restrictions.

As discussed in Section 1, there are now two options to identify B uniquely. Either restrictions
must be imposed on B, to reduce the number of free parameters from n2 toward the n(n + 1)/2
equations available in 6 (or, in the case of sign restrictions, reduce the space of permissible rota-
tions from On to some subset of On), or additional information must be furnished, through either
external variables or further moments of ut. This review focuses on the latter option, exploiting
higher moments of the data. Two notions of identification are considered: Local identification
means that there is some neighborhood around B in which no other parameters are observa-
tionally equivalent, while global identification means that there exist no other observationally
equivalent parameters. Below, higher moments alone only ever identify B up to scale and column
permutations, so they are at most locally identifying without economic or other restrictions.

1Note that the invertibility assumption is not innocuous and is studied by a growing literature (for a discussion
of such issues, see Fernández-Villaverde et al. 2007). Gouriéroux et al. (2019) consider the interaction of
non-Gaussianity and noninvertibility.
2Note that the identity covariance normalization results in a sign indeterminacy for the columns of B, or,
equivalently, the structural shocks, that is not associated with the unit diagonal normalization. That translates
into local identification below, resulting in solutions that are unique only up to sign in addition to column
permutations.
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3. HETEROSKEDASTICITY

The intuition for how identification via heteroskedasticity can solve the SVAR identification prob-
lem is straightforward.Observational equivalence is based on the single set of equations, contained
in 6, available under homoskedasticity. However, if there are multiple values for the variances of
the structural shocks through time, then the number of available equations scales linearly. The
key assumption permitting identification is that B remains constant, even as the variances change.
Then, the number of new free parameters added for each variance regime is only n, fewer than
the n(n + 1)/2 equations added, provided that those equations are linearly independent.

3.1. Identification from Variance Paths

Sentana & Fiorentini (2001) provide the first formal result exploiting heteroskedasticity directly
for identification.3 Let 3t denote the diagonal covariance matrix of the structural shocks at time
t, which follows an arbitrary stochastic process. Then, their proposition 3 shows that if the paths
of the n diagonal elements, λt, through time have full rank, then B is uniquely determined up to
permutations (and scale/sign normalization). The condition allows at most one shock to be ho-
moskedastic. Indeed, the requirement of n − 1 dimensions of linearly independent time-varying
volatility is shared by all schemes exploiting heteroskedasticity below, and mirrored by the re-
quirement of at least n − 1 non-Gaussian shocks in the next section. In general, this result
provides substantial overidentification, as discussed below. However, a major limitation of this
result for practical use is that identification is based on the time path of 3t, and thus the time
path of 6t, denoting the time-specific covariance of the reduced-form innovations. In general,
these time-specific reduced-form covariances are not consistently estimable without further par-
ticular parametric assumptions on the variance process for the structural shocks: As T increases,
the sample size informative for time t stays fixed without any further restrictions. Sentana &
Fiorentini’s (2001) solution is to impose a Generalized Autoregressive Conditional Heteroskedas-
ticity (GARCH) functional form for the structural variance process, under which the variances
are deterministic functions of past data and consistently estimable parameters. A relatively small
empirical literature has employed the Sentana & Fiorentini (2001) approach directly, based on es-
timating a GARCH process for the structural shocks by (pseudo-)maximum likelihood, and thus
estimating the structural parameters of interest (e.g., King et al. 1994, Normandin & Phaneuf
2004, Bouakez & Normandin 2010, Lütkepohl & Milunovich 2016).

3.2. Variance Regimes

Rigobon (2003) makes perhaps the best-known, and most widely applied, contribution to this
literature. In a special case of Sentana & Fiorentini’s (2001) results, he argues that if there are two
discrete regimes for the structural variances, then B is uniquely determined provided that 31 and
32 are not scalar multiples of each other. Simple equation counting shows why: 2 × n(n + 1)/
2 = n2 + n, which is the number of structural parameters in B and two diagonal variance matrices,
after n elements are normalized for scale. If there are more than two regimes, or values for the
structural variances, the model is overidentified. Rigobon’s proposition 1 gives rise to the well-
known identification condition in the two-regime case: Identification holds as long as none of the
variances change proportionally across regimes. Generalized for n ≥ 2, this condition reads as

λ2i/λ1i ̸= λ2 j/λ1 j , ∀ i ̸= j. 6.

3However, the result appears earlier in an unpublished working paper (Sentana 1992).

www.annualreviews.org • Identification Based on Higher Moments 669
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There are extensions allowing for additional common shocks (requiring further regimes) (Rigobon
2003, proposition 2).Crucially, the econometrician is not required to know the precise dates of the
two variance regimes or, indeed, that the variances follow a discrete process at all. Provided that the
econometrician specifies the regimes such that the associated covariance estimators are consistent
for distinct variance matrices (without proportional entries), the identification condition is met
(Rigobon 2003, proposition 3). However, the better specified, and thus more distinct, the regimes
are, the stronger identification is likely to be. Additional regimes that provide overidentifying
information allow the econometrician to test the modeling assumptions via the overidentifying
restrictions, such as the assumption that B stays fixed over time.

In the special case of two regimes, where the model is just-identified, a convenient closed-form
solution exists. As noted by Lanne et al. (2010), for example, B is identified as the left eigenvectors
of the matrix 626

−1
1 :

626
−1
1 = B323

−1
1 B−1, 7.

where 323
−1
1 is diagonal, containing the eigenvalues, and thus B contains the eigenvectors. These

eigenvectors are unique (up to normalization and order) provided that there are no repeated
eigenvalues—no variances change proportionally across regimes.This result also clarifies how par-
tial identification can occur: If there are repeated eigenvalues, then the columns of B (eigenvectors)
corresponding to the nonrepeated entries are still identified, but only the column space associ-
ated with repeated values is identified. The case of partial identification has received relatively
little formal attention, although Lütkepohl et al. (2020) establish asymptotic theory under par-
tial identification (along with tests to determine the extent to which point identification fails) and
Bacchiocchi et al. (2024) derive identified sets resulting from partially identifying heteroskedas-
ticity and sign or zero restrictions. In general, estimation of these regime-based models proceeds
via the generalized moment of methods (GMM). Moments take the form

ϕ (B,31, . . . ,3N , ηt ) =


1[t ∈ R1]

(
E

[
ηtη

′
t

] − B31B′)
...

1[t ∈ RN ]
(
E

[
ηtη

′
t

] − B3NB′)
, 8.

where 1[t � Rr] is an indicator for whether observation t belongs to the rth regime. However,
maximum likelihood approaches are also available, and Brunnermeier et al. (2021), Bacchiocchi &
Kitagawa (2023), and Bacchiocchi et al. (2024), for example, adopt fully Bayesian frameworks.

Under additional assumptions, such that the variance of only one shock changes through time
with the other(s) remaining homoskedastic, Rigobon & Sack (2004) show that an instrumental
variables (IV)-type estimator is available for a typical parameter of interest. In particular, consider
n = 2 and let Bij be the coefficient of interest, and assume that it measures the effect of the shock
whose variance does change, say j, on some variable, say i. In this case, under the unit diagonal
normalization,

62,i j − 61,i j

62, j j − 61, j j
= Bi jλ2 j + B jiλi − Bi jλ1 j − B jiλi

λ2 j + B2
jiλi − λ1 j − B2

jiλi
= Bi j

λ2 j − λ1 j

λ2 j − λ1 j
= Bi j . 9.

The left-hand side is equivalent to
E [uitZt ]
E

[
u jtZt

] , 10.

where the instrument Zt is given by

Zt = T
T2

1 [t ∈ R2] u jt − T
T1

1 [t ∈ R1] u jt , 11.

and Tr denotes the number of observations in regime r.
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For the estimators described above, provided that identification is strong—that is, Equation 6
is satisfied—inference can proceed using the standard asymptotic results associated with each esti-
mation strategy.However, the final formulation of the identification strategy (under the additional
assumption that one shock is homoskedastic), Equation 10, presents an analogy to IV estimation,
which makes clear that weak identification is possible, in this case when the variance of shock j
changes little between the two regimes (for further discussion, see Section 5).

A key distinction between the Sentana & Fiorentini (2001) and Rigobon (2003) results is the
type of heteroskedasticity accommodated. In principle, the former applies to both unconditional
and conditional heteroskedasticity, although Sentana & Fiorentini (2001) focus on conditional
heteroskedasticity. The latter exploits unconditional heteroskedasticity, and it remains to deter-
mine the variance regimes. In some cases, external information proves helpful; perhaps the most
popular example is, in daily financial data, to use dates corresponding to announcements, espe-
cially monetary policy announcements, as a high-variance regime, and dates far away from such
announcements as a control regime (e.g., Rigobon & Sack 2004, Nakamura & Steinsson 2018).
Applying the same logic to continuous time periods like the Great Moderation, for instance, is
more problematic, since doing somaymask considerable variation (periods of larger shocks within
an otherwise low-variance interval). Rigobon (2003) uses narrative information on the dates of
tranquil and crisis periods in Latin American debt markets to define regimes for identification.
Alternatively, Rigobon & Sack (2003) propose to estimate the regime dates based on realized
volatility, in particular by comparing rolling averages of squared reduced-form SVAR innovations
with the average levels of the squared innovations to determine high- and low-variance periods.
In population, the precise regime breaks are not crucial, but in finite samples, estimation error can
lead to more muted variance changes and, thus, weak identification.

An additional drawback of estimating regimes, however, that has not been explored in the
literature is that the realizations of squared innovations used to determine variance regimes are
of course driven by realized values of the structural shocks. Depending on B, it might be the case
that, for instance, large positive realizations of two shocks lead to larger squared innovations than
realizations of the same magnitude but opposite signs. Thus, conditional on the realized value of
the squared innovations, the shocks may not be orthogonal. As a result, it need not be the case
that the covariance matrix of the structural shocks is diagonal conditional on estimated regime
membership, introducing bias.

When regimes are unknown, perhaps a more natural option is to estimate them parametri-
cally, using a Markov switching model. This is precisely the innovation of Lanne et al. (2010).
In a straightforward extension, they propose a maximum likelihood estimator exploiting the
Rigobon (2003) identification result; the identification conditions remain unchanged.Herwartz &
Lütkepohl (2014) combine a Markov switching model with more conventional short- and long-
run restrictions.Lütkepohl&Woźniak (2020) develop a Bayesian implementation of this approach
and use it to test overidentifying restrictions on B.

Another important extension of the regime-based model is the so-called smooth transition
approach, in which the covariances are assumed tomove as a convex combination between twoma-
trices in a continuous manner. Lütkepohl &Netšunajev (2017) propose such a model. Concretely,
the reduced-form covariance, �t, follows the law of motion:

�t = [1 − F (st )]61 + F (st )62, 12.

where F(·) is a parametric function. In particular, they propose

F (γ , b, st ) = (
1 + exp

[− exp(γ )(st − b)
])−1 , 13.

www.annualreviews.org • Identification Based on Higher Moments 671
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where γ is a slope parameter determining the speed of transition, b is a location parameter, and
st is the so-called transition variable that governs the state at time t. It can be either a random
variable (lagged inflation in Lütkepohl & Netšunajev 2017) or a deterministic variable, like t. If
the former, it must be exogenous in order for standard inference results to hold. As γ → ∞, the
model approaches a threshold model, where �t = 61 for st < b and �t = 62 for st > b. As γ →
0, the model becomes unidentified (variances are constant), so weak identification is a concern for
small values of γ .Conditional on a set of parameters in the transition equation, (γ , b), identification
follows by Rigobon’s (2003) argument, applied to61 and62. In practice, Lütkepohl &Netšunajev
(2017) note that (γ , b) must be identified and that the choice of st may be important. For example, if
st does not evolve with the underlying structural variances, then identification will likely be weak or
nonexistent. The authors propose to estimate the model via Gaussian maximum likelihood across
a grid of parameters for (γ , b) using a two-step procedure, alternating between estimating the
reduced-form and structural parameters. Then, the final log likelihoods can be compared across
the grid for (γ , b).

3.3. Unconditional Moments

All of the papers described in the preceding section adopt different forms for the variance pro-
cess but rely on the same key insight: Multiple values for the structural variances offer additional
covariance matrices from which B may be identified. These approaches can all be thought of as
relying on the paths of the structural or reduced-form variances for identification. A much smaller
literature argues for identification based on the properties of the process governing the evolution
of the variances through time. Milunovich & Yang (2013) revisit identification based on ARCH-
type functional forms. They formulate the mapping between parameters of the reduced-form
GARCH process for the innovations and those of the structural GARCH process for the shocks.
They assume that the structural ARCH coefficient matrix is diagonal. Based on the Jacobian of
these equations, they show that B and the structural GARCH parameters are jointly locally iden-
tified from the reduced-form GARCH parameters provided that there is at most one zero on the
diagonal of the structural ARCH coefficient matrix.This condition amounts to a requirement that
at most one shock is homoskedastic, mirroring the arguments presented above.

Lewis (2021) takes a different approach to argue that B is identified from the uncondi-
tional autocovariances of the squares of the reduced-form SVAR innovations. Under the slightly
stronger assumption that the shocks are a martingale difference sequence with respect to past
shocks and current and past volatilities, and finite fourth moments, the following equations
hold:

cov[vec(utu′
t ), vec(ut−su

′
t−s )

′] = (B⊗ B) G cov[λt , vec(ϵt−sϵ ′
t−s )

′](B⊗ B)′, s > 0, 14.

E
[
utu′

t

] = BE[3t ]B′. 15.

Here,G is a selectionmatrix of zeroes and ones.Themain result is that this system of equations has
a unique solution for B, cov[λt , vec(ϵt−sϵ ′

t−s )
′], and E[3t], up to normalization and column order,

provided that, for some lag s, the n × (n2 + 1) matrix
[
cov[λt , vec(ϵt−sϵ ′

t−s )
′] E[λt ]

]
has a rank of

at least two and no proportional rows. If there are no ARCH effects, then cov[λt , vec(ϵt−sϵ ′
t−s )

′] =
cov(λt , λ′

t−s )G
′, the autocovariance matrix of λt at lag s. Applied to cov[λt , vec(ϵt−sϵ ′

t−s )
′], the rank

condition essentially means that the autocovariance structures of the shock volatilities are not
proportional. This rank condition will be satisfied if the volatility processes have persistence
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coming from a source other than a lower-dimensional factor structure, for example. Augmented
with E[λt], the condition states that even if the autocovariance structures are proportional, identi-
fication will still hold as long as the constants of proportionality are not equal to the ratios between
the mean structural variances. Notably, this condition can be interpreted as allowing at most one
homoskedastic shock, much like the earlier schemes. If the identification conditions for any of
the preceding schemes hold, then the rank condition above is satisfied. In this sense, the Lewis
(2021) argument nests all previous identification schemes based on heteroskedasticity, without
relying on parametric features for identification or to ensure consistent estimability of identifying
moments.

The intuition behind the argument is that if the shocks are serially uncorrelated (and, in fact,
are martingale difference sequences), then the only persistence in the squared innovations is that
of the variance process (and/or ARCH effects). Then B, or rather (B� B), contains the coefficients
relating the autocovariance of the squared reduced-form innovations to the autocovariance of the
squared structural shocks.4

Lewis’s (2021) argument has several important features. First, it is distribution-free, so it can
be implemented without assuming any form for the identifying heteroskedasticity, for instance, by
simply estimating Equations 14 and 15 by GMM. Second, given standard macroeconomic sample
sizes, it will often be challenging, however, to estimate the required higher moments precisely,
so in practice it may be more appealing to view it as a general-purpose argument that shows
that a very wide range of parametric models will identify the structural parameters of interest.
Provided that a parametric model satisfies the rank condition, then B will be identified from the
associated likelihood, if it is well-specified. Finally, distinct from any previous arguments based
on heteroskedasticity, it permits identification based on volatility models that include state vari-
ables. For example, the autoregressive log stochastic volatility model is very popular in empirical
research (e.g., Cogley & Sargent 2005, Primiceri 2005) but previously was not compatible with
any available identification arguments, since they all require consistent estimation of the path
of (reduced-form) volatilities (e.g., Bertsche & Braun 2022, developed concurrently). Since the
Lewis (2021) argument instead requires consistent estimation of unconditional moments of the
variances, it is compatible with state-space volatility models.

Although this review focuses on identification as opposed to estimation and inference, one
common estimation issue across these identification schemes warrants further discussion. Typ-
ically, SVARs are estimated in a two-step process. In the first step, the reduced-form VAR is
estimated via OLS, and in the second step, the implied estimated innovations are treated as data
to estimate the structural parameters. For estimation purposes, these two steps are often treated
as entirely separable (although inference may adjust for estimation error in ût ). However, identi-
fication via heteroskedasticity motivates generalized least squares–type estimators for the entire
model, since they may offer efficiency gains if heteroskedasticity is present. In practice, maximum
likelihood estimation alternates among estimating the reduced-form parameters and structural
parameters, computing time-varying variances and thus weights, and then updating, until conver-
gence (as described above for, e.g., Lütkepohl & Netšunajev 2017). Moreover, without additional
assumptions, inference on the structural parameters (particularly IRFs) is complicated. Indeed,
the estimation error in ût cannot be ignored for the purpose of inference on B̂ and IRFs in gen-
eral. However, if the shocks, ϵt, are assumed to follow a symmetric distribution, one can show

4The structure of the argument, particularly in the simplified motivating example presented in this review,
is not dissimilar to the seminal argument of Blundell et al. (2008), who identified coefficients of an income
process in panel data.
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that the estimators of the reduced-form covariances and those of the reduced-form VAR parame-
ters are asymptotically independent, which means that estimation error in ût does not necessitate
adjustments in estimating the asymptotic variance of B̂ (for further discussion, see especially
theorem 2.1 of Brüggemann et al. 2016 and footnotes 15 and 20 of Lewis 2021; for a de-
tailed discussion of estimation for many of the schemes described above, see Kilian & Lütkepohl
2017).

4. NON-GAUSSIANITY

While the previous section considers the use of a particular type of higher moment for identifi-
cation, identification based on non-Gaussianity (and some independence-like assumption for the
structural shocks) exploits moments beyond the second generically. Some approaches take a stand
on what types of deviation from Gaussianity are likely to be informative in macroeconomic data,
while others are more flexible.Note that, in general, heteroskedasticity generates non-Gaussianity
in the structural shocks, even if the underlying (standardized) disturbances are themselves
Gaussian, so identification via heteroskedasticity can be thought of as a special case of
identification based on non-Gaussianity.

This approach can be motivated by the idea that structural shocks should be independent (or,
at least, more than uncorrelated), as discussed by Keweloh (2024), for instance. For example, the
shocks ϵ1t ∼ N (0, 1) and ϵ2t = ϵ21t − 1 are uncorrelated but exhibit dependence that is inconsis-
tent with how most macroeconomists think about structural shocks. Independence assumptions
rule out these types of dependence. Given such an assumption, non-Gaussianity can identify the
shocks.Consider themomentE[ϵ21tϵ2t ], a “coskewness” (i.e., skewness in the product of two shocks)
condition that measures the dependence of the two shocks. If E[ϵ21tϵ2t ] ̸= 0, then the first shock’s
size is informative for the sign of the second shock, and independence is violated; the key is to
find an orthogonal rotation of the structural shocks such that independence holds. If the shocks
are Gaussian, the moment is mechanically zero, but if they are non-Gaussian, such moments are
informative for B.

4.1. The Main Result

The idea that non-Gaussianity in general suffices to identify B follows from the Darmois–
Skitovich theorem (Darmois 1953, Skitovich 1953), a generalization of the earlier Kac–Bernstein
theorem (Kac 1939, Bernstein 1941). This result states that if the elements of ζ = (ζ 1, . . . , ζ n)′

are independent random variables and µ′ζ and β ′ζ are independent (for nonzero µ and β), then
all ζ i are Gaussian. As a consequence, Comon (1994, theorem 11 and corollary 13) shows that a
decomposition of the form ut = Bϵt is unique up to column order and scale provided that at most
one component of ϵt is Gaussian and the components of ϵt are independent. This follows from the
use of a contrast function,9(·). According to Comon (1994, definition 5), for some random vector
et , 9( fet ) = 9( fϵt ), where fet denotes the density of et, if and only if et is a scaled permutation of ϵt.
Furthermore, if ϵt are independent, then 9( fMϵt ) ≤ 9( fϵt ), whereM is invertible, so maximizing
the contrast function will return (a scaled permutation of ) ϵt. Intuitively, 9(·) measures the (neg-
ative) deviation of a random vector from independence, and any candidate shock vector et cannot
be any more independent than the original shocks, ϵt.

It remains to propose candidate functions with these properties. Early results on identifiability
under non-Gaussianity are presented by Geary (1941) and Reiersøl (1950). A notable feature of all
of these results is the independence assumption on ϵt, which is notably stronger than the mutually
orthogonal and serial uncorrelatedness assumption typically employed elsewhere in the SVAR
literature. I return to this topic in Section 4.4.
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4.2. Independent Components Analysis

Results like Comon’s (1994) are central to the ICA literature, which originated the idea of iden-
tification via non-Gaussianity in modern macroeconometrics. ICA focuses on deconvolutions of
the form ut = Bϵt, where ϵt are independent, and is a key technique in the signal processing and
neural network literatures. While there are many implementations of ICA, the basic idea is, for
an initial set of candidate standardized shocks (e.g., those arising from a Cholesky factorization,
say ẽt ), to find the orthonormal rotation Q for which the shocks et = ẽtQ are as independent as
possible, in practice by maximizing some contrast function. For example, Comon (1994) proposes
to use a feasible approximation to the (negative of ) the Kullback–Leibler divergence of the joint
density of et from the density under the independence of e1t, . . . , ent (i.e., mutual information).
This approximation can be expressed in terms of the cumulants of ut and Q.

I first consider nonparametric ICA. The ICA literature is vast, and a comprehensive discus-
sion is outside of the scope of this review (for a review of this literature, see, e.g., Hyvärinen
2013, Mesters & Zwiernik 2024). I focus on contributions that have directly affected macroe-
conometrics. One such variant is the FastICA algorithm (Hyvärinen 1999), which is in wide use
and available in many statistical software packages (many alternatives exist; see, e.g., the JADE
algorithm of Cardoso & Souloumiac 1993). FastICA exploits results showing that the negentropy
(which measures the distance between some distribution and the normal distribution) can be bet-
ter approximated by the maximum entropy principle than by cumulants (e.g., Hyvärinen 1997)
and, furthermore, that minimizing the mutual information is approximately equivalent to maxi-
mizing the negentropy, or the degree of non-Gaussianity, of each shock. In practice, the algorithm
uses an approximation to the negentropy of eit = c′iut , Jh(·),

Jh(ci ) = (
E

[
h(c′iut )

] − E [h(z)]
)2 , 16.

for some n× 1 vector ci and (nonquadratic) function h(·), where z is standard normal. For symmet-
ric variables, this is a generalization of the cumulant-based approximation presented by Comon
(1994), where h(eit ) = e4it . Then, the contrast function is

∑n
i=1 Jh(ci ), which is maximized over C =

B−1 (where the ith row of C is ci). Hyvärinen (1999) proposes a number of different choices for
h(a) implemented in the algorithm, including 1/k1log cosh(k1a), −1/k2exp(−k2a2/2), and 1/4 a4,
motivated by efficiency and robustness considerations. The FastICA algorithm then proceeds to
maximize the negentropy given h(·) using a computationally efficient fixed point algorithm.While
most of the ICA literature assumes independent and identically distributed shocks, a concern that
I discuss in detail in Section 4.4, some recent algorithms have been extended to accommodate
heteroskedasticity (e.g., g JADE; Matilainen et al. 2015).

Results on the statistical properties of estimators are relatively rare in the ICA literature. In
particular, consistency results for the estimators resulting from many algorithms are hard to find,
and some are in fact inconsistent (for discussion, see Gouriéroux et al. 2017). The consistency and
asymptotic normality of the FastICA algorithm were established by Wei (2015), although expres-
sions for the asymptotic variance (assuming consistency) originated with Shimizu et al. (2006),
for example. Bonhomme & Robin (2009) provide earlier consistency and asymptotic normality
results for a modification of the JADE algorithm.

Hyvärinen et al. (2010) were likely the first to exploit modern non-Gaussianity results to iden-
tify an SVAR,using financial data.They consider an SVARof four global stock indices and estimate
the reduced form before applying the FastICA-based LiNGAMalgorithm of Shimizu et al. (2006).
They impose a sparsity penalty in the estimation to find that more than half of the impact coef-
ficients are zero and that B̂ can be permuted to a lower-triangular matrix, with strong spillovers
between certain indices. Moneta et al. (2013) employ the same methodology but in an economics
outlet, with applications to both firm growth and the effects of monetary policy.
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4.3. Likelihood Approaches

The next generation of results to identify SVARs using non-Gaussianity rely on likelihood
approaches instead of nonparametric ICA. Lanne et al. (2017) assume that the shocks are se-
quences of independent and identically distributed and mutually independent disturbances with
variances λi, with at most one shock Gaussian. Their identification result is based on those
above. They propose a maximum likelihood estimator in terms of the density fi,λi (x, θi ) =
λ

−1/2
i fi(x/λ

1/2
i , θi ), but in practice assume that each shock follows a Student t distribution. Stan-

dard asymptotic properties for maximum likelihood estimation hold, provided that the choice
of densities is correct—a rather heroic assumption, given that there are infinitely many ways
to model non-Gaussianity, and presenting a challenge to empirical users. They propose a
computationally simpler three-step estimator that is efficient if the shocks follow symmetric
distributions. In an extension, they are able to relax the assumption of temporal independence
to no serial correlation, which admits time-dependent heteroskedasticity for the shocks, pro-
vided that the volatility processes remain independent. They also provide an approach for
refining local identification to global identification, which is discussed in detail in Section 6.4.
In an empirical application, they study the relationship between the macroeconomy and fi-
nancial conditions and are able to marginally reject a conventional recursive structure in their
SVAR.

Contemporaneously, Gouriéroux et al. (2017) instead consider PML estimation. They as-
sume that the shocks ϵt are independent, with at most one Gaussian. Importantly, they establish
consistency for the PML estimator even when the likelihood is misspecified, provided that the
misspecified model is identified. Additional results offer testable implications of Gaussianity of
two or more shocks for the observed data, Yt. They also provide expressions for the asymptotic
variance. In an empirical application involving real activity, inflation, the Fed Funds rate, and oil
prices, they are able to reject two recursive schemes, depending on the chosen real activity variable.
Additional PML results are presented by Hyvärinen et al. (2001).

More recently, Jarociński (2024) proposed to estimate the effects of four different dimensions
of monetary policy based on non-Gaussianity using maximum likelihood estimators. His baseline
approach uses the Student t distribution, as done by Lanne et al. (2017), but he also proposes an
alternative estimator allowing for dependence. In particular, he allows for endogenously deter-
mined dependence in the tails of the shock distributions by designing a new partially dependent
multivariate t distribution that nests both independent and multivariate t distributions as extreme
cases. In the data, the level of dependence is found to be small, leading to minimal changes in
results, but this contribution may be of interest in many applications.

Elsewhere, Chen & Bickel (2006) avoid the choice of likelihood by proposing a semiparamet-
ric estimator based on the efficient score function, which they show is asymptotically efficient.
Hafner et al. (2023) propose to maximize a kernel estimate of the likelihood in another non-
parametric approach. Fiorentini & Sentana (2023) propose mixtures of normals PML estimators.
They prove that, while for other likelihood approaches estimates of impact coefficients (and
autoregressive parameters) will generally be consistent under misspecification, they are incon-
sistent for VAR intercepts and shock moments. Their proposed estimators provide consistent
estimates of all parameters. Maxand (2020) considers maximum likelihood estimation of models
with possibly more than one Gaussian shock, and provides tests for the number of such shocks.
Bayesian implementations of identification based on non-Gaussianity can be found in papers by
Lanne & Luoto (2020) (t-distributed shocks to assess the plausibility of sign restrictions hold-
ing), Anttonen et al. (2023) (generalized skewed t-distributed shocks; Markov-chain Monte Carlo
methods are proposed), Braun (2021) (Dirichlet process mixture model), Keweloh et al. (2023b)
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(skewed t-distributed shocks and potentially invalid proxy variables), and Lanne et al. (2023b)
(t-distributed errors and a GARCH process for the shock volatilities).

4.4. Moment-Based Approaches

More recently, the literature has turned to moment-based estimators exploiting non-Gaussianity.
Typically, these results relax the independence assumption and instead require uncorrelated shocks
that additionally satisfy either a number of zero restrictions on coskewness, that is, third moments
that are a function of two distinct shocks,

E
[
ϵ2itϵ jt

] = 0, i ̸= j, 17.

or fourth moments that are a function of two distinct shocks,

E
[
ϵ2itϵ

2
jt

]
− 1 = 0, E

[
ϵ3itϵ jt

] = 0, i ̸= j. 18.

These coskewness and cokurtosis conditions are implied by the stronger (and previously main-
tained) independence assumption. Unsurprisingly, this exercise (like similar efforts to allow
dependence in the likelihoods above) presents a trade-off, since additional restrictions implied by
independence can improve identification when valid. By virtue of selecting specific moments, all
such approaches rely on particular deviations from Gaussianity, but in practice, the identification
condition is heuristically thought of as “at least n − 1 non-Gaussian shocks.”

One set of identification results focuses on the use of fourthmoments, particularly excess cokur-
tosis restrictions. These results date to Bonhomme & Robin (2009), who show that B is identified
(up to sign and permutations) from the covariance and cokurtosis (e.g., the collection of equa-
tions E[uitujtultumt]) of reduced-form innovations ut, provided that the cokurtosis tensor of ϵt is
diagonal, as implied by independence, and that at most one shock has zero excess kurtosis. Their
proof is based on spectral arguments, in a factor model setting. They establish consistency and
asymptotic normality of GMM estimators, as do the following authors. Guay (2021) considers the
same moment conditions as Bonhomme & Robin (2009) but establishes local identification under
the assumption of zero excess cokurtosis by studying the rank of the Jacobian, which facilitates ad-
ditional results discussed below. Keweloh (2021) works from slightly different moments, written
instead in terms of the underlying shocks, which, under a mutual independence assumption and
normalization, have the form

E[ϵ2it ] = 1, 19.

E[ϵitϵ jt ] = 0, i ̸= j, 20.

E[ϵ2itϵ
2
jt ] = 1, i ̸= j, 21.

E[ϵ3itϵ jt ] = 0, i ̸= j. 22.

After the set of permissible B matrices is restricted to those matching the permutation/scaling
rule of Lanne et al. (2017) and under the assumption that n − 1 shocks exhibit excess kurtosis, the
covariance and cokurtosis conditions globally identify B, following an argument similar to that
of Comon (1994). Note that while each author may write the assumptions and results somewhat
differently, these identification conditions are indeed the same, exploiting all third and/or fourth
moment restrictions implied by independence. The only difference is that writing the moments
in terms of ϵt instead of ut entails fewer moments and unknowns but requires the inversion of B,
both of which may have finite sample consequences.

Lanne & Luoto (2021) argue that B is identified if E
[
ϵ3itϵ jt

] = 0 for at least n(n − 1)/2
combinations of i ̸= j. This condition appears weaker than those in the preceding three papers
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(Bonhomme & Robin 2009, Guay 2021, and Keweloh 2021). However, this result does not
hold under the stated assumptions; rather, it requires all cokurtosis restrictions (symmetric, i.e.,
Equation 21, and asymmetric, i.e., Equation 22) implied by independence to be satisfied—the
same as the previous papers. Lanne & Luoto (2021) rely on these conditions in their proof,
which establishes local identification via the Jacobian of the identifying moments. Keweloh
(2021) shows by counterexample that under the stated conditions, the model is not identi-
fied up to sign and permutation. Ultimately, all of the above studies require exactly the same
restrictions on the dependence of the shocks. Lanne et al. (2023a) subsequently introduce
the additional assumption that n − 1 shocks have excess kurtosis of the same sign, under
which they achieve identification using only n(n − 1)/2 higher moments—all of the symmetric
cokurtosis conditions implied by independence. However, asymptotic normality also requires
n(n − 1)/2 asymmetric cokurtosis restrictions. They argue that this number is potentially far
lower than the moments required by Keweloh (2021). Nevertheless, they still require all fourth
moments implied by independence to hold for their asymptotic theory, even if they are not
exploited for identification. They propose a moment selection procedure, although it is unlikely
to perform well in realistic sample sizes in the larger SVARs, where it would be most useful.
Karamysheva & Skrobotov (2022) extend the identification results of Lanne & Luoto (2021) to
the so-called AB model, where A0ut = Bϵt and A0 must also be identified.

Another strand of this literature uses third moments, or skewness, for identification, either
separately or in conjunction with kurtosis. Again, all restrictions on coskewness implied by inde-
pendence are used for identification. In parallel to their result using kurtosis, Bonhomme&Robin
(2009) show that under the restriction of zero coskewness (i.e., E[ϵ2itϵ jt ] = 0, i ̸= j), provided
that at most one shock has zero skewness, B is identified, following similar spectral arguments.
Guay’s (2021) identification argument also applies to sets of moments including skewness con-
ditions alongside kurtosis conditions. The identification condition holds when all but one shock
exhibits skewness and/or nonzero excess kurtosis. Moreover, Guay establishes partial identifica-
tion results, such that the parameters corresponding to all skewed and/or nonmesokurtic shocks
are identified regardless of the properties of the remaining shocks. He further shows that the
rank can be decomposed into the sum of the ranks of certain blocks of the Jacobian. Importantly,
this decomposition makes the identification conditions testable. The number of skewed shocks is
equal to the rank of the coskewness matrix of the reduced-form innovations; likewise, the num-
ber of nonmesokurtic shocks is equal to the rank of the cokurtosis matrix of the reduced-form
innovations. Guay proposes a bootstrap procedure to implement this test. Keweloh’s (2021) iden-
tification argument, based on that of Comon (1994), goes through whether skewness conditions,
kurtosis conditions, or both are used. An advantage of using skewness conditions alone is that they
admit possible coheteroskedasticity in the data, an empirically relevant form of dependence that
violates the diagonal coskewness assumptions discussed above.

As originally noted by Bonhomme & Robin (2009), estimation of the higher moments re-
quired can be challenging without parametric restrictions due to relatively small sample sizes; this
is especially true for inference, which requires up to eighth moments. Guay (2021) uses the iden-
tity weighting matrix because of the difficulty of estimating the efficient weighting matrix. For
improved finite sample performance, Keweloh (2021) proposes the fast-GMM estimator, which
uses a diagonal weighting matrix in which the weight on the covariance moments goes to in-
finity, so that the shocks are always whitened. The idea is similar to ICA, with the weighting
matrix replacing the problem of minimizing dependencies between the shocks with that of max-
imizing non-Gaussianity, subject to satisfying the covariance moments. In larger models, there is
a significant computational advantage to this change, and Keweloh does not find efficiency loss
relative to the efficient estimator in simulations. Moreover, he finds that the estimators used by
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Lanne & Luoto (2021) and Gouriéroux et al. (2017) do not effectively exploit information found
in skewed shocks, instead relying on excess kurtosis, and more generally that information con-
tained in coskewness can be important. Lanne & Luoto (2021) propose two-step, iterative, and
continuous updating GMM estimators, as well as a test for overidentifying restrictions and a mo-
ment selection procedure based on that of Andrews (1999), although this procedure may struggle
in larger SVARs in short samples. In simulations, they prefer the two-step procedure, which in
general performs slightly worse than the baseline PML estimator of Gouriéroux et al. (2017) but
better than their iterative estimator. Keweloh (2023) then studies the limitations of GMM esti-
mators in short samples. In particular, he notes the challenge of precisely estimating the efficient
weighting matrix (which requires up to eighth moments) and also that bias is typically introduced
toward parameters implying shock variances below unity. He proposes to impose independence
assumptions not only for identification but also in the estimation of the efficient weighting matrix
for the former and a continuously updated scaling term for the latter. Simulations show reduced
bias and improved coverage. Keweloh (2024) provides a method (discussed in more detail below)
to incorporate uncertain economic prior information into moment-based estimators exploiting
non-Gaussianity.

In a minimum distance setting, Mesters & Zwiernik (2024) are able to relax the independence
assumption in important ways. They show that diagonality of any higher-order cumulant tensor
is generally sufficient for identification up to sign and permutation, generalizing away from previ-
ous research focused on third and fourth moments (e.g., Bonhomme & Robin 2009, Guay 2021,
Keweloh 2021). More importantly, they show that reflectionally invariant restrictions, where the
only nonzero cumulant tensor entries are those where each index appears an even number of
times, are similarly sufficient for identification. This is the first identification result exploiting
non-Gaussianity and fourth moments that can accommodate coheteroskedasticity in the errors,
an empirically relevant form of higher-order dependence.However, the shocks must satisfy an ad-
ditional technical genericity condition.Working in a similar direction, but taking a very different
approach, Herwartz &Wang (2024) combine the nonparametric approach of Hafner et al. (2023)
with standardization using a kernel estimate of time-varying volatility to identify B in the presence
of coheteroskedasticity.

5. WEAK AND UNDERIDENTIFICATION BASED
ON HIGHER MOMENTS

It may be tempting to view identification based on higher moments as a free lunch for recovering
causal effects in macroeconometrics. No “economic” assumptions are required—at least for local
identification—and identification obtains, provided that often uncontroversial properties of the
data hold. However, the separation of statistical and economic assumptions is a false dichotomy;
assuming that the variances of certain shocks have changed over time in a particular pattern, that
all shocks are mutually independent, or that shocks have meaningful excess kurtosis has real eco-
nomic content. More importantly, the higher moments leveraged by the identification schemes
discussed above are all nontrivial to estimate in realistic macroeconomic sample sizes. At best,
the schemes exploit the difference in second moments, but more generally they rely on up to the
fourth moments of the data, which typically will be very imprecisely estimated in at most 50 years
of quarterly data—200 observations.

Researchers are now generally familiar with the weak instruments problem, but similar chal-
lenges apply to almost any identification scheme.As described formally by Stock&Wright (2000),
when the objective function is relatively flat in the neighborhood of the true parameters, standard
inference methods will be invalid, exhibiting large size distortions and poor coverage. This occurs
when deviations from homoskedasticity are small, relative to estimation error, so additional values
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for the variances offer little information beyond the original n(n+ 1)/2 covariance equations (and
deviations of B̂ from B are at best weakly rejected by the data in a nontrivial neighborhood of B).
Alternatively,when deviations fromGaussianity are small, higher moments offer little information
beyond those of a Gaussian distribution—where they are completely redundant with the original
covariance restrictions. The possibility that identification based on heteroskedasticity might only
be weak—and, thus, that standard inference methods likeWald tests might perform poorly—dates
back to at least Magnusson &Mavroeidis (2014), who consider how instability in moments can be
used to sharpen identification in general, and propose identification-robust test statistics (Stock
& Wright 2000) tailored to such settings. They consider the Rigobon (2003) model as a leading
example.More recently,Montiel Olea et al. (2022) argued that weak identification is likely present
in many applications of identification based on higher moments.

Lewis (2022) studies the problem of weak identification via heteroskedasticity directly, again in
the context of the Rigobon (2003) model. Rigobon & Sack (2004) show that in a bivariate model
where only one variance changes that regime-based identification can be rewritten as an IV prob-
lem (see Equations 9–11). In that setting, it is unsurprising that weak identification may arise;
it does so when the variance that does change does so by only a small amount. In that case, the
pretest for weak instruments of Montiel Olea & Pflueger (2013) applies (with bias-based critical
values), and the usual robust inference methods for IV estimators can be adopted. Lewis (2022)
further characterizes weak identification problems in models identified using variance regimes
more generally, which arise when variance changes are close to proportional across regimes. In
this general setting, the size-based Andrews (2018) procedure to detect weak identification in
GMM problems can be applied. In these models, robust inference is more complicated due to
the projection problem: Robust inference can have prohibitively conservative limiting distribu-
tions when the econometrician is interested in only a subset of the parameters in B. Lewis (2022)
provides conditions under which limiting distributions providing exact size can be derived, which
hinge on whether the remaining nuisance parameters can be uniquely determined from the data
conditional on the null hypothesis. Empirical evidence suggests that weak identification is present
in event studies based on daily financial data, a popular setting in applied practice.

The methods proposed have several limitations. The bias-based pretest is attractive but applies
only in a restricted bivariate model. The Andrews (2018) test requires the computation of robust
confidence sets and inherits their properties: They can be computationally demanding to con-
struct in larger models and prohibitively conservative when the conditions provided for improved
limiting distributions do not hold. Finally, those conditions place strong limits on the extent of
weak identification, which may be hard to justify for n > 2.

Lütkepohl et al. (2021) provide a test of the identification condition for the Rigobon (2003)
identification scheme using two regimes. They test whether equality can be rejected for each
subset of eigenvalues in Equation 7. This is not a test for weak identification, but rather a test
of non- or underidentification. A limitation of this test is that it presents a potentially substantial
multiple testing problemwhen n> 2: To reject nonidentification, as many tests as there are subsets
of adjacent integers in 1, . . . , n must be conducted. However, it remains an attractive option in
applied practice, given the computational and performance issues of the Andrews (2018) procedure
for larger models. Bacchiocchi & Kitagawa (2020) develop a Bayesian approach that defaults to
robust Bayesian inference (as in Giacomini &Kitagawa 2021) and treat the model as set-identified
whenever weak identification is a concern [e.g., when the Lütkepohl et al. (2021) test indicates that
the eigenvalues of Equation 7 are not distinct].

Similar tests for nonidentification exist for other schemes. Lewis (2021) derives testable im-
plications of his distribution-free identification conditions and proposes a suitable Cragg–Donald
statistic. Lanne & Saikkonen (2007) propose two Lagranger Multiplier–type tests for the order
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of the GARCH process driving the SVAR innovations, which can help determine whether the
required n − 1 dimensions are present or whether identification is only partial. Lütkepohl &
Milunovich (2016) propose an additional test and study all three in extensive simulations. The
size and power of the tests and their ranking varies with data-generating processes and sample
sizes, and they tend to be conservative in determining the dimension of heteroskedasticity. How-
ever,Lanne& Saikkonen (2007) and Lütkepohl &Milunovich (2016) consider only the case where
there are r heteroskedastic shocks and n − r homoskedastic shocks, rather than models where all
shocksmay be heteroskedastic, but with a factor structure in the volatilities. Lütkepohl et al. (2020)
consider several tests for the rank of heteroskedasticity in order to study partial identification.

Turning to non-Gaussianity, serious effort has recently been applied to robust inference. Lee&
Mesters (2021) and Hoesch et al. (2024) provide a robust inference approach based on a semipara-
metric score statistic (with the nonparametric part corresponding to the shock distributions). Lee
& Mesters (2021) consider identification via non-Gaussianity from observed innovations, while
Hoesch et al. (2024) extend the results to SVARs and IRFs and show how the score can be used
to construct an efficient estimator. Inference on IRFs ultimately requires a Bonferroni step and
projection methods. The confidence intervals constructed by Drautzburg &Wright (2021), based
on sign restrictions and an independence assumption, are also robust to weak identification (with
respect to the variation from non-Gaussianity).

Recently, Amengual et al. (2022a,b) provided tests of the assumptions for identification based
on non-Gaussianity, based on the estimated shocks. The authors propose moment-based tests
for whether one or more shocks has a Gaussian distribution and for dependence in the shocks
(Amengual et al. 2022a) and present a test for dependence among the shocks that compares the es-
timated joint cumulative distribution function of the shocks with the estimated marginal cumula-
tive distribution functions (Amengual et al. 2022b). Both tests are based on the mixture of normals
PML estimator of Fiorentini & Sentana (2023), for which influence functions allow adjustment
for estimation error in the shocks. Additional research on testing the independence assumption
alone can be found in the ICA literature (e.g., Matteson & Tsay 2017, Davis & Ng 2023).

Notably, proposals to pretest for Gaussianity are relatively rare, given that non-Gaussianity
is a necessary condition for any identification approach based on higher moments. A finding of
Gaussian shocks can preclude identification entirely or limit the scope to partial identification. As
discussed above, Amengual et al. (2022a) and Maxand (2020) recently developed tests for Gaus-
sianity of shocks in the context of identification based on non-Gaussianity in moment-based and
maximum likelihood settings, respectively. However, consideration of such tests in the literature
is limited, and they are rarely adopted in practice. In contrast, there is a developed literature on
testing for Gaussianity outside of identification based on higher moments, which could be ex-
ploited. For instance, Bai & Ng (2005) propose tests for skewness, kurtosis, and non-Gaussianity
more generally tailored to time-series settings; they find testing for skewness in particular to be
effective.

Finally, while empirical researchers might find guidance helpful on how large a sample is re-
quired to obtain reliable estimates based on higher moments, there is currently no sound basis
for such guidance. Rather than clear recommendations, the overwhelming message of simulation
studies (e.g., Lewis 2021, Herwartz et al. 2022, Keweloh 2023) is that, for a given sample size,
performance can vary starkly with the degree of parameterization imposed in addition to the re-
strictions required for identification (and, of course, whether those additional assumptions are
consistent with the data). Of course, the effective sample size will always depend on the strength
of the identifying variation and any dependence in the data as well. These studies further illustrate
that, even absent additional parametric structure, results may vary dramatically with the precise
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estimator used for a given sample size—for instance, one based on variance regimes as opposed to
one based on unconditional higher moments.

6. OPEN ISSUES

In this section, I review several open issues and areas of ongoing research related to identification
based on higher moments. In particular, I address the possibility of time variation in B, the trade-
offs of distribution-free versus likelihood-based approaches, the combination of different sources
of identifying information, and the shock labeling problem that arises due to local identification
up to only column permutations (and possibly signs of the shocks).

6.1. Time-Varying B

A possible tension in standard models identified via heteroskedasticity is that the structural pa-
rameters in B—the causal effects—are required to be constant over time, while the variances are
allowed to change. Indeed, these two sources of variation are sometimes included together inmod-
els where identification comes from other sources (e.g., Cogley & Sargent 2005, Primiceri 2005).
On the other hand, some dynamic stochastic general equilibrium models include time-varying
volatility but not changes in the deep structural parameters that dictate B in a VAR representa-
tion. In any case, arguments for identification based on higher moments hinge on the constancy
of B. However, it is possible to accommodate time-varying reduced-form parameters, A(L), and
the failure to do so when demanded by the data can be a source of spurious heteroskedasticity in
SVAR innovations (Sims 2002). There have been several recent attempts to combine identifica-
tion via heteroskedasticity with particular forms of time variation in B. Typically, these approaches
make use of additional regimes that would be overidentifying with constant coefficients in order to
identify changes in a restricted number of coefficients.Note, however, that adding further regimes
cannot identify time-varying B and volatilities without such restrictions: Each additional regime
adds n new volatility parameters and n2 new coefficients, but only (n2 + n)/2 new equations.Often,
the identification results in this literature provide local identification conditions under which the
Jacobian of the reduced-form covariance matrices with respect to the unrestricted parameters is
full rank.

Bacchiocchi & Fanelli (2015) and Bacchiocchi et al. (2018) propose a framework that nests that
of Rigobon (2003). They consider two regimes with the covariance matrix of the shocks constant
but with two matrices of coefficients, B and B̃ ≡ B+W , modeled as functions of a vector of n2 +
n unknown parameters. Note that changes in shock variances can be subsumed into B̃ = B+W ,
where each column is rescaled only by the new volatility additively instead of multiplicatively.
They derive the rank condition for identification; unsurprisingly, changes in relative effects of the
shocks can be identified only if some of the variances are restricted to be unchanged (via the ma-
trix W). These are the same equations that were just-identifying with B fixed and all volatilities
allowed to change. Angelini et al. (2019) go a step further. They likewise do not explicitly model
heteroskedasticity but rather exploit it to identify three different regimes of impact coefficients
in a study of economic uncertainty. In particular, they keep the shock variances fixed at unity and
model the impact coefficients as B,B+W1, and B+W1 +W2.This structure allows for changes in
the volatilities viaW1 andW2, as well as changes in the relative effects of the shocks. Identification
is achieved by imposing a suitable number of zero restrictions inW1 andW2. Recently, Bacchioc-
chi &Kitagawa (2023) considered more general SVARs with breaks permitted in all reduced-form
and structural parameters, where the econometrician may exploit stability restrictions, inequalities
across regimes, standard zero and sign restrictions, and constraints on forecast error variance de-
compositions. They provide conditions for point and set identification. Brenna et al. (2023) take a
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different perspective. Studyingmacrofinancial linkages, they note that there are too few uncontro-
versial restrictions that can be imposed on time variation in B to offer point identification. Instead,
for a regime i > 1 they let Bi = B + Wi, construct the full set of combinations of zero restrictions
that could be sufficient to identify the model, and recover the identified set of parameters across
that collection of sets of possible identifying restrictions.

Dungey et al. (2015) marry the smooth transition and GARCH-based identification ap-
proaches.Theymodel volatilities as evolving according to aGARCHprocess and the time-varying
Bt as a convex combination of N + 1 unit diagonal matrices:

Bt = (1 − SN ) [. . . [(1 − S2 ) [(1 − S1 )B0 + S1B1] + S2B2] . . .] + SNBN . 23.

Here, S j = [1 + e−γ (xt−d j )]−1, where dj is the center of the transition between regimes j − 1 and j
and xt = t/T expresses time t as a fraction of the sample. The identification argument contends
that when the speed of transition, γ , is large enough that within each regime j, Bt is essentially
Bj, then identification results like that of Milunovich & Yang (2013) can be applied regime by
regime.However, the true parameters appear to be identified only in the limit as γ → ∞. Camehl
&Woźniak (2024) propose to combine aMarkov switching process for economically plausible ex-
clusion restriction patterns for monetary policy shocks with stochastic volatility, allowing for time
variation in B; however, formal joint identification results for the regimes and shock volatilities
appear challenging.

6.2. Choosing the Right Functional Form

When choosing from among identification approaches based on heteroskedasticity, the econo-
metrician is usually required to take a stance on the form of heteroskedasticity, at least to some
extent. While now behind the frontier range of options for the volatility process, Lütkepohl &
Netšunajev (2015) provide an early survey of possible models, highlighting their relative strengths
and weaknesses. All identification schemes (except for that in Lewis 2021) rely on estimating the
paths of the reduced-form variances through time, at least for feasible implementations. While
the use of a regime approach can be thought of as unrestrictive—since variance regimes can be
estimated through time regardless of the true variance process—they will offer sharp identifying
information only if there are distinct differences in structural variances across regimes. If the true
variance process is poorly approximated by a regime structure, it is unlikely that identification will
be strong and, at the very least, valuable identifying information will be left on the table. How-
ever, even though distribution-free estimators are available under fairly weak assumptions, it may
be preferable to specify a functional form for the variance process in finite samples for efficiency
in estimating higher moments.

Therefore, how should the researcher go about choosing the variance process to fit to the data?
This remains an open question, with three possible answers. The first option is to use application-
specific knowledge to choose an appropriate model. The second is to conduct statistical tests to
learn the correct functional form, as proposed byLütkepohl&Schlaak (2018),who provide various
information criteria for determining the correct model of heteroskedasticity. They then evaluate
their performance in a simulation study. They consider exogenously determined regimes,Markov
switching, smooth transition, and GARCH DGPs. They find that the information criteria strug-
gle to differentiate between different models for the structural variances, in terms of making the
correct binary determination. They tend to favor the exogenous regime model and, in particu-
lar, struggle to detect GARCH data.However, adopting the criteria can still help reduce the mean
squared error of impulse response estimates.Ultimately, they conclude that these tests can be help-
ful in ascertaining whether adequate heteroskedasticity is present in the data for identification, but
they are not yet well-suited for discriminating among different volatility models.
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The third option is to choose an estimator to be as robust as possible.Lewis (2021) and Bertsche
& Braun (2022) conduct parallel simulation studies comparing the performance of various dif-
ferent estimators (in terms of MSE and other criteria) when correctly and incorrectly specified,
pointing to the possibility of choosing a demonstrably robust functional form. Specifically, they
consider estimators based on AR(1) log stochastic volatility, GARCH, Markov switching, and
regime-based models for the structural variances, as well as a distribution-free estimator based
on GMM. Lewis (2021) adds further estimators, including two exploiting non-Gaussianity. Both
studies consider DGPs corresponding to each of these models, and both find that the AR(1) log
stochastic volatility model is remarkably robust to misspecification. It performs very well when
correctly specified, and even when badly misspecified it often performs nearly as well as correctly
specified estimators. This is not true for any of the other estimators, whose performance is gener-
ally very heterogeneous.Both studies recommend the stochastic volatilitymodel for use in practice
on the basis of its robustness to misspecification. However, beyond the simple flexibility of the
DGP (ex post, paths for the latent volatilities can approximate those coming from any of the other
variance processes, and even the fat tails of homoskedastic non-GaussianDGPs), no theoretical ex-
planation for this performance or justification for this guidance is available to date. Separately, both
studies find that the simple GMM implementation of the Lewis (2021) scheme performs poorly
in realistic sample sizes as a result of the difficulty in estimating the higher moments required.

For the case of non-Gaussianity, similar questions arise, and unfortunately there is little clear
guidance for empirical researchers.There aremaximum likelihood and PML approaches, typically
based on variations on Student t distributions, ICA-type nonparametric estimators, and newer
moment-based approaches. For the last, an important choice is which coskewness and/or cokur-
tosis restrictions to impose, or which contrast function to use for ICA. Moneta & Pallante (2022)
compare a variety of estimators in a simulation study.They include FastICA, the PML estimator of
Gouriéroux et al. (2017), and two other ICA approaches based on Givens matrices; unfortunately,
they do not include recent moment-based estimators. Overall, they find that FastICA has an edge
in terms of bias, efficiency, size distortions, and coverage, with PML slightly behind. Herwartz
et al. (2022) actually compare both non-Gaussianity-based schemes and heteroskedasticity-based
identification in a somewhat wider simulation study based on a range of DGPs. They consider the
maximum likelihood estimator of Lanne et al. (2017) and nonparametric ICA approaches as well as
regime- and GARCH-based methods but, again, none of the recent moment-based approaches.
While all estimators generally perform well when well-specified, a nonparametric “dCov” ICA
approach from Matteson & Tsay (2017) alone performs consistently well across DGPs. As dis-
cussed in Section 4.4, several studies have noted the challenges involved in estimating the required
moments in realistically small sample sizes, similar to those noted for Lewis’s (2021) moment-
based approach. These open questions make an exhaustive comparison with alternative estimators
of great interest and provides fruitful ground for refinements to estimation of the moments, as
considered by, for example, Keweloh (2023).

6.3. Combining Multiple Sources of Identifying Information

An exciting avenue for ongoing research focuses on combining identification based on higher
moments with other identification schemes. This approach can serve three purposes. First, ad-
ditional overidentifying assumptions—particularly economic ones—can be tested. Second, the
combination of statistical identifying information with other types of identifying information, like
an external instrument, zero restrictions, or sign restrictions, can serve to sharpen identification
when the heteroskedasticity or non-Gaussianity may not be pronounced enough to provide strong
identification in finite samples, or may offer only partial identification. Finally, it can help resolve
the labeling indeterminacy (for discussion, see Section 6.4).
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The first purpose is one of the key advantages of statistical identification in the first place. For
example, B can be estimated on the basis of higher moments alone, and then a simple joint Wald
test for all of the entries above the diagonal can determine whether recursive (short-run) identifi-
cation assumptions are rejected by the data. Alternatively, the same can be done using likelihood
ratio tests and other approaches. Myriad examples of this approach to testing economic identifi-
cation assumptions exist, including the empirical applications of virtually all of the references in
this review (e.g., Normandin & Phaneuf 2004, Lanne & Lütkepohl 2008, Herwartz & Lütkepohl
2014, Lütkepohl & Woźniak 2020, Lewis 2021, Bertsche & Braun 2022).

Combining higher moments with additional identifying assumptions to achieve sharper
identification—for example, when one fears that the higher moments may only be weakly
identifying—is still an emerging literature. Carriero et al. (2023) provide a wide-ranging treat-
ment in a Bayesian framework. They propose algorithms to estimate SVARs that combine
heteroskedasticity with sign and narrative restrictions as well as external instruments. They argue
that heteroskedasticity, since it is potentially point-identifying, can substantially reduce the iden-
tified sets resulting from sign or narrative restrictions. In contrast, those restrictions can resolve
the labeling problem associated with statistical identification. A key challenge of such strategies is
understanding how conflicting identifying information will interact. Indeed, the identified set may
be empty if two sources of identifying information are at odds—for instance, if no shock exists,
according to the moments arising from heteroskedasticity, that satisfies stipulated sign restric-
tions. In that case, determining which set of assumptions is incorrect presents a further challenge.
Lütkepohl & Schlaak (2022) consider a slightly different problem. They take the presence of het-
eroskedasticity (in regimes, say) as potential evidence of time-varying impact coefficients. They
combine heteroskedasticity and an external instrument to test whether the column of B identi-
fied by the instrument changes across variance regimes. Bacchiocchi et al. (2024) derive identified
sets resulting from partially identifying heteroskedasticity and zero or sign restrictions and pro-
vide methods to compute them as well as methods for robust Bayesian inference. Bacchiocchi
& Kitagawa (2023) provide a comprehensive treatment of identification in SVARs with breaks,
which nests models identified with heteroskedasticity regimes but also allows for breaks in B
and the reduced-form parameters. They allow for additional information in the form of inequal-
ities on various SVAR objects and stability restrictions and provide Bayesian and robust Bayesian
algorithms and methods for valid inference.

Drautzburg & Wright (2021) combine sign restrictions with non-Gaussianity. They propose
an identified set that is the intersection of that arising from sign restrictions and the set of models
for which independence of the shocks cannot be rejected. Andrade et al. (2024) take a different
approach. They impose not independence but rather only sign restrictions on third or fourth
moments, in addition to economic sign restrictions, to sharpen the identified set. Keweloh et al.
(2023a) combine a block recursive structure with non-Gaussian shocks to propose an estimator
that has advantages over purely statistical information in terms of performance, shock labeling,
and weaker independence requirements. Braun (2021) develops a Bayesian framework combin-
ing priors involving sign restrictions and non-Gaussianity. He models each non-Gaussian shock
as a univariate Dirichlet process mixture model and shows that, combined with weak priors on
important coefficients, the non-Gaussianity sharpens inference to deliver results similar to those
under much stronger restrictions in an application to oil markets. Keweloh et al. (2023b) pro-
pose a Bayesian framework that allows for potentially endogenous proxy variables and show that
that such endogeneity helps to reconcile the range of empirical estimates for fiscal multipliers.
Keweloh (2024) combines non-Gaussianity with potentially invalid short-run restrictions, propos-
ing an estimator with data-dependent shrinkage toward those restrictions. Herwartz & Wang
(2023) develop a point estimator that minimizes the dependence of the implied structural shocks

www.annualreviews.org • Identification Based on Higher Moments 685



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n 
(a

r-
25

91
69

) 
IP

:  
14

4.
82

.1
14

.2
40

 O
n:

 M
on

, 2
0 

O
ct

 2
02

5 
13

:2
8:

05

EC17_Art27_Lewis ARjats.cls July 24, 2025 11:43

subject to sign restrictions. Crucil et al. (2023) exploit external instruments with non-Gaussianity
to sharpen identification and partially resolve the shock labeling problem; the relative importance
of the features depends on the strength of the instruments.

6.4. The Shock Labeling Problem

One of the main challenges of purely statistical identification is the shock labeling problem—B is
only ever identified up to column order, and possibly also column sign, by statistical information
alone.5 The solution, in general, is to use economic information to label the shocks (for an early
detailed discussion, see Herwartz & Lütkepohl 2014).While this may seem self-defeating, having
turned to statistical identification to avoid economic assumptions, the versions of economic as-
sumptions required for labeling are generally much less restrictive than those required for point
identification on their own. For example, rather than imposing a lower-triangular structure on
B, the researcher can obtain the permutation of the identified columns of B that is “closest” to
that structure, under the Frobenius norm, say. The shock that is best-correlated with a proxy vari-
able can be chosen without assuming that the proxy is exogenous. The economic assumptions
do not determine the possible values of identified parameters—they are recovered on statistical
information alone; rather, the economic information helps in choosing among the observation-
ally equivalent statistically identified models, which is desirable if the economic restrictions are
thought to be approximately but perhaps not literally true. Another alternative is to obtain a set of
model-based causal effects (values for B, or IRFs at longer horizons) and choose the shock label-
ing that most closely matches the model predictions (e.g., Brunnermeier et al. 2021). Augmenting
the statistical identification assumptions with some economic assumption that selects a unique
column order (or even selects a single column of interest) is enough to point-identify the causal
effects of interest. Lewis (2021) and Kilian & Lütkepohl (2017, chapter 14) discuss the labeling
problem in further detail. Of course, sometimes the economic assumptions supplied may not be
adequate to achieve point identification among permutations, and identification remains local (for
a discussion, see Bacchiocchi & Kitagawa 2020).

There are also noneconomic options for pinning down a unique value for B, beyond column
order. For example, Lanne et al. (2017) propose to globally identify an SVAR based on non-
Gaussianity using a series of transformations. Given any one of the n! observationally equivalent
identified matrices, they first normalize each column to have unit Euclidean norm. Next, they
choose the unique column permutation for which the entries to the right of each diagonal element
are smaller in absolute value than that diagonal element. Finally, they impose the unit diagonal
normalization. That can be thought of as an approximation to a lower-triangular matrix, since one
chooses the permutation chosen for which all of the entries above the diagonal are smaller than
the corresponding diagonal entries. Another popular choice in the ICA literature, and in recent
papers using non-Gaussianity, is the Pham & Garat (1997) scheme, which chooses the permuta-
tion that maximizes the product of the diagonal entries of B, after restricting them to be positive
and making a unit variance assumption. While augmenting statistical assumptions with such col-
umn ordering rules achieves global identification, it does not directly assist in rendering identified
shocks (or their effects) economically interpretable.

An additional concern is the impact of the labeling problem on inference. While the asymp-
totic distribution of a given column permutation of B may be known (after fixing some statistical
rule, like those mentioned above, for estimation), what is the distribution after subsequent
permutations and rescaling for economic labeling? Lewis (2021) applies results from the model

5The shock labeling problem results in the challenging label switching problem for Bayesian inference (for a
discussion, see, e.g., Bacchiocchi & Kitagawa 2020).
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selection literature to show that, provided a consistent labeling criterion is used, the error
introduced by the labeling procedure is asymptotically negligible, and the asymptotic distribution
of the permutation of interest is valid for the labeled estimator without modification. A consistent
labeling criterion is a rule for choosing the column order of B that will choose the economically
correct order with probability approaching one as T → ∞. This result meaningfully simplifies
inference on the parameters of interest in practice.

7. CONCLUSION

To conclude, I review several areas fruitful for ongoing research.

7.1. Robust Inference

As discussed above, higher moments often likely provide only weakly identifying information in
realistic sample sizes. Although this fact has been noted in the theoretical literature for some
time, it has only recently started to influence applied practice. In general, weakly identified SVARs
require projection inference when the researcher is interested in a subset of the parameters, with
available critical values potentially prohibitively conservative, as observed by Lewis (2022) for
heteroskedasticity and Lee et al. (2022) for non-Gaussianity. Lewis (2022) provides a solution
for a particular class of models in the form of considerably smaller critical values, but for most
applications no such results exist. Robust inference methods that exhibit attractive performance
and are computationally convenient remain elusive and, as the literature comes to grips with the
prevalence of weak identification, will increasingly be in demand.

7.2. Testing Identification Conditions

Broadening the range of settings in which the identification conditions are testable should be
a priority. Since the identification conditions are in terms of the structural parameters, it is chal-
lenging to test them without assuming identification in the first place.Doing so generally requires
the derivation of testable implications in terms of only reduced-form quantities. Several methods
are discussed in Section 5. Testing approaches, especially those testing for weak identification as
opposed to nonidentification, that perform well and are computationally tractable for arbitrarily
largemodels remain a target for all of the identification schemes considered above. In another vein,
there is ground for further research to develop inference approaches under partial identification,
which could be detected by such tests.

7.3. Combining Identifying Information

As discussed in Section 6.3, several recent papers have combined statistical identification with
other forms of identification, aiming to combat the weakness of the identifying variation com-
ing from higher moments, provide point identification when economic restrictions are only
set-identifying, or test economic restrictions. This is a conceptually appealing strategy, since it
addresses head-on the fact that many sources of identifying information fail to provide sharp
identification, or may offer only partial identification. It has the potential to exploit the best of
both worlds in terms of statistical and economic identifying information. The Bayesian literature
may be somewhat further advanced in this respect because it is particularly appealing to combine
higher moments with set identification approaches, which are often implemented in a Bayesian
framework. However, there is plenty of scope to pursue such developments in the frequentist
paradigm as well (e.g.,Drautzburg&Wright 2021,Keweloh 2024). In particular, a comprehensive
framework exploiting information from higher moments, external instruments, zero restrictions,
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and possibly sign restrictions, including methods to test the inevitably complicated identification
condition(s), should be the goal. Ongoing research by Carriero et al. (2021) and Bacchiocchi &
Kitagawa (2023) appears to come the closest to this goal, in a Bayesian context. In addition to
theoretical research, this area represents a rich vein for empirical studies, since the combination
of all credible identifying information available will likely pay dividends.

7.4. Functional Forms

Section 6.2 outlines the challenges of choosing the best functional form—and estimation approach
more generally—for a particular application. For both identification based on heteroskedasticity
and identification based on non-Gaussianity, there are meaningful decisions for the researcher to
make in terms of whether to choose a nonparametric estimator or specify some particular func-
tional form for the volatility process or distribution for the shocks. Parametric estimators can
be particularly appealing due to the difficulty in precisely estimating higher moments in realistic
macroeconomic sample sizes. As discussed above, recent attempts to detect the best-fitting form of
heteroskedasticity based on information criteria have proven unsatisfactory (Lütkepohl & Schlaak
2018). Lütkepohl & Schlaak’s (2018) study also predates the availability of identification results
for a much richer range of functional forms, like the AR(1) log stochastic volatility model favored
by Bertsche & Braun (2022) and Lewis (2021). Thus, there is scope both to extend Lütkepohl &
Schlaak’s (2018) analysis and to investigate alternative testing methodologies that may offer better
performance.

To my knowledge, there has been no systematic and comprehensive comparison of the quickly
multiplying options for implementation of identification via non-Gaussianity (e.g., one includ-
ing moment-based approaches). The speed at which new implementations of identification based
on non-Gaussianity are developed makes such comparisons difficult; current options described
in Section 4 include various parametric models, moment-based approaches where the researcher
must choose which higher moments to use and which restrictions implied by independence to
impose, and a plethora of nonparametric estimators from the ICA literature. Moneta & Pallante
(2022) and Herwartz et al. (2022) present the only simulation comparisons of which I am aware.
There is ample scope for more comprehensive simulation studies comparing the leading alterna-
tives, as well as “pretests” to select suitable moments containing relevant identifying variation.

Separately, there is also scope for creative innovation under each of these identification ap-
proaches. For example, Lewis (2021) justifies identification under a very wide class of persistent
volatility models. This frees the researcher to exploit essentially whatever persistent volatility pro-
cess she thinks best suits the data, providing substantial ground for exploration. In the case of
non-Gaussianity, while several early parametric implementations started from obvious fat-tailed
distributions, the identification requirements likewise admit a continuum of possible distributions,
and there is scope to propose new alternatives here as well. For example, Jarociński (2024) proposes
a novel likelihood that allows for dependence in the tails of the shocks,motivated by empirical fea-
tures of US monetary policy. Moreover, Mesters & Zwiernik (2024) provide exciting new results
that relax the independence assumption and open the door for researchers to work on a much
richer and more realistic range of distributions (including, e.g., those with coheteroskedasticity).
Alternatively, it may be worth incorporating shrinkage techniques to estimate higher moments,
from which to identify the SVAR parameters.

7.5. Presenting Statistical Identification to Applied Researchers

While statistical identification often exploits relatively uncontroversial properties of the data, the
mechanisms of identification can be much less clear.Many applied researchers want to know what
economic features identify the parameters. Statistical properties of the data do have economic
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meaning. Unpacking statistical identification in economic terms can be challenging and is an area
where econometricians must do better. The original paper by Rigobon (2003) is exemplary in this
respect: It represents identification based on variance regimes graphically and makes clear how
identification obtains as the variances of two shocks change across them. Lewis (2021) attempts
to reframe rather abstract conditions on the persistence and copersistence of shock variances in
terms of predictions from structural models and conceptual properties of fiscal shocks, as well as
interpreting periods of high and low volatility and particularly sizable shocks through the lens
of historical events. While it is natural to use information from the historical record to define
variance regimes, there is no reason such narrative information cannot also be used to interpret
the variation underlying any other approach using higher moments.

Similar arguments can be made with respect to non-Gaussianity.While somewhat more chal-
lenging, theory can also help motivate the required independence or other restrictions on higher
moments necessary to achieve identification. Guay (2021) provides a compelling graphical illus-
tration of the identification argument, mirroring that of Rigobon (2003) for heteroskedasticity.
Braun (2021) argues similarly, illustrating the power of non-Gaussianity for identifying supply and
demand shocks in oil markets. Greater effort along these lines to build intuition for what drives
identification, aside from a collection of equations and associated rank conditions, will increase
applied uptake and the appeal of future research in these areas.

Statistical identification exploiting higher moments offers tremendous potential as an alter-
native or complementary source of identifying information, alongside economic restrictions.
However, identification does not come for free, and it is important to understand the limitations of
these approaches. Over the past two decades, the literature has developed a rich range of identifi-
cation schemes, and it is now beginning to assess and address the associated challenges in earnest.
Research in the coming years should aim to provide empirical researchers with the tools they
need to understand and judiciously select an appropriate combination of identifying assumptions,
formally evaluate the validity of those assumptions, rigorously choose among available implemen-
tations, conduct reliable inference on their estimates, and present their findings in an intuitive and
compelling manner.
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