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Abstract

Machine Learning (ML) systems often fail in unexpected and unpredictable ways.

They lack robustness to minor non-semantic changes to inputs, which can limit

their potential for widespread application. We provide a comprehensive exploration

of the involvement of humans and models in the loop to study and improve the

adversarial robustness of machine language understanding.

We first investigate the use of increasingly capable models in the annotation

loop to collect progressively more complex and interesting data, for both training

and evaluation. We further investigate the downstream generalisation, robustness

and transfer implications, demonstrating improvements across all axes of interest.

Following this, we introduce Dynabench, an open-source platform to facilitate dy-

namic dataset creation and model benchmarking, aiming for more robust and infor-

mative dynamic benchmarks across a suite of NLP tasks. Building on this founda-

tion, we explore Synthetic Adversarial Data Generation (SADG), making models

more robust to human adversaries without requiring any additional human data col-

lection. We also introduce Adversarial Human Evaluation (AHE), an evaluation

paradigm involving humans in the loop to measure robustness to adversarial attack,

with implications for performance aspects such as robustness and safety.

Finally, we introduce Generative Annotation Assistants (GAAs), generator-

in-the-loop models that provide real-time suggestions that annotators can either

approve, modify, or entirely reject. We demonstrate the effectiveness of GAAs

through a detailed study, demonstrating significant benefits in both annotation effi-

ciency and effectiveness, which also leads to improved downstream model perfor-

mance and robustness.
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We offer novel insight into the potential of human-model competition and col-

laboration, providing a pathway to more robust and reliable language models ca-

pable of adapting to diverse adversarial scenarios, representative of the real-world

environments these models are expected to operate in.



Impact Statement

This thesis investigates the involvement of humans and models in the annotation

loop, leveraging the creativity and intuition of human annotators and the efficiency

and adaptability of generative models, to understand and improve the robustness of

Machine Learning systems. As such system capabilities improve, it is increasingly

important that they are developed with human users in mind first and foremost.

We focus on the task of extractive Question Answering, noting that the methods

developed are broadly applicable across wider LLM and NLP applications.

The impact of the work presented in this thesis spans multiple dimensions.

It has contributed to the development of generally improved and more robust lan-

guage processing technologies, enhancing their performance and reliability, and

making them more accessible to society. It further improves our understanding

of how humans and machines interact in competitive and collaborative settings,

and explores settings that benefit both — where machine learning systems benefit

from human feedback to address identified blind spots, and humans benefit from

generative model assistance in ways that make them more efficient and effective.

Work on Synthetic Adversarial Data Generation provides an extensible approach

driving model improvements beyond what existing data can provide, and becomes

particularly relevant as we approach the limits of data scaling where model training

requirements surpass that which all existing human-authored data is able to pro-

vide. Work on dynamically and adversarially involving humans as part of model

evaluation workflows has also influenced thinking around evaluation strategies and

approaches for measuring the performance of large language models.

Furthermore, the training and evaluation datasets collected and synthetically
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generated in this work provide novel, publicly available resources to the research

community and facilitate future work in these directions. These resources provide

valuable insights and continue to inspire the development of techniques aimed at

enhancing the robustness and performance of real-world systems. The open-source,

permissibly-licensed model and software contributions also continue to support re-

search in the space of generative assistive models and dynamic adversarial data

collection and benchmarking.

The contributions in this thesis have been published and presented at several in-

ternational journals and conferences, including TACL, EMNLP, ACL, and NAACL.

Much of the work in this thesis has also been presented at invited talks in various

academic and industry settings.
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Chapter 1

Introduction

Natural Language Processing (NLP) is a field of Computer Science concerned with

the development of systems that understand and generate human language. Human

intellectual progress has often been attributed to language, and machine’s ability to

comprehend and express language has been explored since the early days of modern

computing (Jefferson, 1949; Parker and Gibson, 1979). Among these earliest con-

tributions was Alan Turing’s imitation game, a test of machine intelligence in which

a human interrogator asks a series of questions to two respondents (or witnesses),

a human and a machine, solely through natural language (and ideally typed lan-

guage), in an attempt to distinguish them. The machine’s aim is to reliably fool the

interrogator while the human participant’s aim, as originally described, is to support

the interrogator — a strategy which the machine can also employ to demonstrate it’s

ability to think (Turing, 1950).

The field has since progressed from rule-based and expert systems designed to

elicit understanding from the linguistic properties of text, primarily those revolving

around syntax and semantics (Reynolds Jr., 1954; Chomsky, 1956, 1957; Weizen-

baum, 1966) and knowledge representation (Minsky, 1969; Winograd, 1971; Lenat

and Guha, 1989; Sowa et al., 1992; Miller, 1995; Lafferty et al., 2001) — to large,

complex machine learning models that demonstrate the ability to understand the

intent and meaning of text to varying levels of ability and generate text that may ap-

pear indistinguishable from that written by a human (Radford et al., 2019). This has

happened over an impressively short period of time, going from model generations



32 Chapter 1. Introduction

that were often incomplete, ungrammatical, nonsensical and repetitive to engaging

and high quality outputs in under 10 years.

Notable milestones along the way include the foundational work laid by early

pioneers defining and formalising language tasks, building datasets and structur-

ing evaluation methodologies along with early rule-based and data-driven systems

demonstrating promising performance on these tasks (Lowerre and Reddy, 1976;

Brill, 1992; Wilks, 1975; Bowman et al., 2015; Simmons, 1970; Waltz, 1978;

Rajpurkar et al., 2016). Recurrent Neural Networks, first described by Little in

1974, (Gurney, 1997; Hopfield, 1982; LeCun et al., 2015) and state-capturing com-

ponents such as Long Short Term Memory units (LSTMs) (Hochreiter and Schmid-

huber, 1997) provided architectural innovations that were attuned to handling the

sequential nature of language.

Further progress was driven by richer and substantially more expres-

sive word representations based on co-occurrence patterns with work such as

word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014), and sub-

sequently contextual embeddings (Dai and Le, 2015; McCann et al., 2017; Peters

et al., 2018; Devlin et al., 2019) which capture the nuance of the context within

which words appear as a component of individual token representations.

The development of the attention mechanism, originally designed to handle the

alignment problem across source and target languages in machine translation (Bah-

danau et al., 2015), paved the way for a form of representation learning based on

self-attention, with similar or improved expressive power but an architectural design

that was considerably more adept to parallelisation, in the transformer (Vaswani

et al., 2017). The sequential nature of RNNs meant that the computation of the

representation of the next token required the completion of the calculation of the

current one. Transformers, on the other hand, require a predefined, fixed sequence

length, across which token computations can happen independently, and thus in

parallel, across multiple computation nodes. Scaling both data and model sizes

has driven further performance improvements across tasks, domains and modali-

ties (Kaplan et al., 2020; Hoffmann et al., 2022).
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A commonly studied NLP domain is Machine Reading Comprehension (MRC)

or simply Reading Comprehension (RC), a set of tools for probing a system’s com-

prehension abilities (Richardson et al., 2013; Hermann et al., 2015; Nguyen et al.,

2016). Interest in this area of research is in part motivated by the way humans

naturally seek information — asking questions. A specific, and relatively well-

constrained, task formulation for investigating Reading Comprehension is Extrac-

tive Question Answering (EQA) (Rajpurkar et al., 2016). Formally, a model f , is

provided with a bitext input consisting of a passage, p (sometimes referred to as a

context, c) and a question, q. The task requires the model to identify or extract the

answer, a within the passage. This is often modelled as predicting the start and end

indices of the selected answer within the passage.

The example shown in Figure 1.1 involves passage from the Wikipedia article

on Oxygen Compounds about organic compounds, along with a set of questions and

highlighted ground truth answers. For the selected question “Which of the organic

compounds, in the article, contains nitrogen?”, various entities such as “alcohols”,

“ethers”, “ketones”, “aldehydes”, “carboxylic acids”, “esters”, “acid anydrides”,

and “amides” are described as organic compounds and thus satisfy the first criterion

that the question poses. However, identifying the compound that contains Nitro-

gen requires both the knowledge and ability to resolve to Nitrogen’s chemical ele-

ment, N, and the ability to infer which of the compound compositions contain (and

which don’t) the letter “N”. The ground truth answer, “amides”, is highlighted in

the passage. This particular example demonstrates the type of multi-hop reasoning

capabilities a system would require to arrive at the correct answer.

Question Answering provides a particularly interesting test bed for researching

the intricacies and effects of various system capabilities (Ferrucci et al., 2010) and

has also been used as a reference task for exploring models that generalise to many

different kinds of NLP tasks (McCann et al., 2019).

A broad categorisation of capabilities that Reading Comprehension can help

understand is reasoning. This covers a diverse set of complex comprehension skills,

and can take on various interpretations. At a high level, reasoning abilities can

https://en.wikipedia.org/wiki/Oxygen_compounds#Organic_compounds
https://en.wikipedia.org/wiki/Oxygen_compounds#Organic_compounds
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Figure 1.1: A set of examples from an Extractive Question Answering (EQA) dataset col-
lected as part of this work showing a passage, a set of questions and corre-
sponding answer spans in the passage.

be demonstrated through a variety of skills, such as inferring a conclusion from

premises, planning, identifying optimal solutions, or resolving logical primitives,

yet it remains challenging to comprehensively define (Wason and Johnson-Laird,

1972; Manktelow, 1999).

We provide a more detailed breakdown in Chapter 3, but as a quick introduc-

tion, some of the main capabilities investigated include: paraphrasing, the abilities

to process external knowledge and resolve co-references, handling negation, as well

as comparative, numeric, temporal, spatial and inductive reasoning. It is interest-

ing to note that some of the earliest work to systematically investigate reasoning

in the cognitive psychology literature focuses on negation (Wason, 1959, 1961) —

a capability that the work presented in this chapter demonstrates considerable im-

provements on.

Reasoning skills are also closely interlinked with robustness — the ability

of systems to consistently predict the correct outcome given non-semantic differ-

ences across inputs or input types. It stands to reason that if a system has truly

gained a reasoning ability, that is it has effectively learnt a general function that

reflects the skill or capability that allows it to perform a particular task, it must

then do so robustly. If it does not, and for example fails in ways that contradict

a set of logical rules that define the capability, can that system be said to be truly

capable of reasoning? To some extent, any exhibition of performance beyond ex-

pectation on a task that strictly requires reasoning abilities can be interpreted as a
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system having accomplished some level of reasoning, although it is often challeng-

ing to disambiguate what demonstrations require true reasoning abilities, and what

can be achieved through other means, such as by exploiting spurious data correla-

tions (Weissenborn et al., 2017). We posit that true reasoning requires consistent

and robust demonstration of the system’s abilities to perform a given reasoning task,

and further requires that failures occur in relatively expected and predictable ways.

Neural Language Models (LMs) (Bengio et al., 2000) are general systems

which take text as input and generate text as output. This provides a degree of flex-

ibility that makes them well-suited for investigating reasoning and robustness, par-

ticularly in the context of settings involving complex interactions between machines

and humans. From a statistical perspective, Language Models capture the joint dis-

tribution of a sequence of words (or tokens), which by application of Bayes’ the-

orem, be represented as the conditional probability of the next word in a sequence

given all the previous words, as:

P(w1,w2, . . . ,wT ) =
T

∏
t=1

P(wt | w1,w2, . . . ,wt−1)

Language Models can capture rich representations of input text which makes

them well-suited for application to downstream tasks (Dai and Le, 2015; Peters

et al., 2017; Howard and Ruder, 2018; Peters et al., 2018; Devlin et al., 2019; Liu

et al., 2019b; Clark et al., 2020) as well as text generation (Radford et al., 2018;

Brown et al., 2020). This work makes use of and investigates a variety of Language

Models, which we describe in the corresponding chapters.

1.1 Aims & Themes
Recent advances in machine reading comprehension capability, driven primarily by

the adoption of the highly parallelisable transformer architecture (Vaswani et al.,

2017) enabling large scale pre-training of contextual token representations (Peters

et al., 2018; Devlin et al., 2019; Liu et al., 2019b), have driven machine performance

to surpass humans on established benchmarks such as SQuAD1.1 (Rajpurkar et al.,

2016), NewsQA (Trischler et al., 2017) and SQuAD2.0 (Rajpurkar et al., 2018), as
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well as more general improvements on language understanding benchmarks such as

GLUE (Wang et al., 2018).

Despite these impressive results, there still exist substantial headroom gaps (al-

though these have decreased during the period over which this work was conducted,

including through the contributions made in this work) between such reading com-

prehension model performance and that of humans on tasks specifically designed to

pose challenging comprehension requirements — such as multi-hop (Welbl et al.,

2018; Yang et al., 2018a) or comparative questions (Dua et al., 2019). This suggests

that machine reading comprehension is far from “solved”.

While this indicates that contemporary RC models do not possess the full spec-

trum of reasoning capabilities required for true reading comprehension, there is lim-

ited understanding of what comprehension requirements models fail to demonstrate

convincingly, and why. Furthermore, the field lacks a clear direction for improving

RC model reasoning capabilities.

This thesis seeks to address this knowledge gap by providing an understanding

of the reasoning capabilities and failure modes of reading comprehension systems,

and exploring ways to improve system robustness by involving humans and ma-

chines at various stages of the data collection and model evaluation processes.

Aims. We aim to develop an in-depth understanding of the competencies of con-

temporary state-of-the-art Reading Comprehension models, primarily from the per-

spective of their reasoning capabilities and robustness characteristics. This requires

a general approach that can adapt to different model abilities and behavioural nu-

ances, and which also allows the design of creative probing attacks and the exploita-

tion identified failure modes. To accomplish this, we aim to explore how models and

humans interact both competitively and collaboratively. Once we understand where

systems can improve, we aim to develop new methodologies to enhance model com-

prehension capabilities and adversarial robustness, by building on this synergistic

interaction between human and machine.

Themes. We consistently touch on several key themes throughout this work: i) ro-

bustness, or the ability of systems to more consistently behave as expected, which
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we explore and seek to understand in Chapter 3, and then design strategies for im-

proving in Chapters 5 and 6; ii) adversarial interaction, or asking humans to probe

for failure modes in language models, for which we lay the groundwork in Chap-

ter 3 and expand on in Chapter 4; iii) involving humans and models in the loop, a

theme which permeates throughout this work in various forms and setups, and iv)

more reliable evaluation, particularly focused on providing evaluative insight into

characteristics that current approaches do not measure, where we introduce new ad-

versarial human-generated test sets in Chapter 3, describe a research platform for

dynamic evaluation and benchmarking in Chapter 4, introduce adversarial human

evaluation in Chapter 5 and finally use all of the above as part of our toolkit for

measuring efficiency and effectiveness improvements in Chapter 6.

1.2 Definitions
We introduce and discuss some terminology that may not be immediately familiar

without considerable background. To support the reader, we provide brief defini-

tions for how these terms are used in the context of this work.

Adversarial. In an adversarial setting, two (or more) systems interact, with one

— the attacker — seeking to manipulate the input space for the target system,

such that the input is valid but induces undesired behaviour. This manipulation can

involve perturbing existing inputs or crafting entirely new inputs from scratch. The

attacking system can be human, as in Chapter 3, machine, as in Chapter 5, or a

collaboration between human and machine, as in Chapter 6.

Robustness refers to a system’s ability to maintain consistent and accurate perfor-

mance across a wide range of inputs, including those that are noisy or adversarial,

or within the scope of but outside the distribution of the training data. A robust

model is resilient to perturbations, ambiguities, or challenges in the input, such as

typos, punctuation changes, unconventional phrasing, adversarial attacks, or do-

main shifts, while still producing reliable output without significant performance

degradation. Three key aspects of robustness include consistency — the ability

to produce stable and correct outputs across similar inputs, reliability — avoiding
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catastrophic failures, and out-of-distribution generalisation — specifically referring

to the long tail of phenomena that can be observed at training time within the scope

of the task or set of tasks that the model was trained for.

Generalisation is a model’s ability to maintain performance on new, unseen data

by effectively applying learned functions beyond the training distribution. In the

context of this work, we focus on evaluating generalisation specifically within the

task of Reading Comprehension. However, as model capabilities have expanded to

allow strong performance the multi-task setting, there is increased interest in gener-

alisation encompassing cross-domain transfer — the ability to leverage capabilities

gained in one domain or task and apply them to another.

The Loop. Here we refer to the full iterative model development feedback loop, en-

compassing: i) identifying the signal to train models on, typically captured as train-

ing data, ii) training a model, iii) evaluating or interacting with the trained model

to form an understanding of its behavioural profile — both its strengths and weak-

nesses (including failure modes), and iv) iteratively refining by using the insights

gained to improve both the training signal and algorithms for better performance.

The focus on humans-in-the-loop presented in this work goes far beyond relying on

human annotators for training data. In fact, Chapter 5 introduces a synthetic data

approach which has become increasingly common in the era of post-training Large

Language Models (LLMs). Rather, we highlight the importance of involving hu-

mans at all stages of the iterative model development process, ensuring consistent

interaction with both data, models, and evals, providing iterative system perfor-

mance improvements through human insight and feedback.

1.3 Thesis Overview & Structure
Following this introduction, the thesis is laid out as follows:

• In Chapter 2, we provide background and related work relevant to the material

presented in this thesis, while that specific to each chapter is discussed in

detail within the appropriate sections.

• In Chapter 3, we describe the published work “Beat the AI: Investigating Ad-
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versarial Human Annotation for Reading Comprehension” which investigates

the use of dynamic adversarial data collection for improving the robustness

of extractive question answering models.

• In Chapter 4, we describe the published work “Dynabench: Rethinking

Benchmarking in NLP” which introduces Dynabench, an open-source re-

search platform for dynamic dataset creation and model benchmarking.

• In Chapter 5, we describe the published work “Improving Question Answer-

ing Model Robustness with Synthetic Adversarial Data Generation” which

explores synthetic adversarial data generation for improving the robustness

of question answering models and introduces adversarial human evaluation.

• In Chapter 6, we describe the published work “Models in the Loop: Aiding

Crowdworkers with Generative Annotation Assistants” which investigates the

use of generative assistants that interact with annotators to improve the effi-

ciency and effectiveness of the data collection process.

• In Chapter 7, we conclude by highlighting our key findings and discussing

future work.

1.3.1 Highlighted Contributions

Concretely, the contributions that this work makes are:

1. Provides in-depth analysis of the language understanding, comprehension and

reasoning capabilities of contemporary RC models.

2. Identifies weaknesses and limitations of contemporary RC models.

3. Investigates methods for designing challenging datasets which push the cur-

rent boundaries of RC model comprehension capabilities.

4. Investigates the collaborative and competitive aspects of involving humans

and models in the annotation loop for improved system robustness.
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5. Drives progress on general methodologies for more reliable, high signal, and

granular system evaluation.

6. Develops and introduces methodologies for improving reading comprehen-

sion and reasoning capabilities of performant models.

1.4 Open-source Contributions
We also make various dataset, model and software platform contributions available

publicly and open-source. These are discussed in detail within each chapter and we

refer the reader to Chapter 7 for a summary of these contributions to the community.

1.5 Published Material
The material we will present in this thesis is based on a number of academic articles

published at reputable conferences and journals. The linked narrative that will un-

fold over the next few chapters is based on four key contributions, but is influenced

by other contributory published material. The material featured in Chapter 3 first

appeared in:

• Max Bartolo, Alastair Roberts, Johannes Welbl, Sebastian Riedel, and Pon-

tus Stenetorp. 2020. Beat the AI: Investigating Adversarial Human Anno-

tation for Reading Comprehension. In Transactions of the Association for

Computational Linguistics, 8:662–678.

Many of the ideas around model robustness presented and discussed in this chapter

have also been influenced or explored in:

• Johannes Welbl, Pasquale Minervini, Max Bartolo, Pontus Stenetorp, and

Sebastian Riedel. Undersensitivity in Neural Reading Comprehension. In

Findings of the Association for Computational Linguistics: EMNLP 2020.

• Maximilian Mozes, Max Bartolo, Pontus Stenetorp, Bennett Kleinberg, and

Lewis D. Griffin. Contrasting Human- and Machine-Generated Word-Level

Adversarial Examples for Text Classification. 2021. In Proceedings of the

2021 Conference on Empirical Methods in Natural Language Processing.
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• Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stene-

torp. Fantastically Ordered Prompts and Where to Find Them: Overcoming

Few-Shot Prompt Order Sensitivity. 2022. In Proceedings of the 60th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers).

The work presented in Chapter 4 first appeared in or was otherwise influenced by:

• Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger,

Zhengxuan Wu, Bertie Vidgen, Grusha Prasad, Amanpreet Singh, Pratik

Ringshia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel, Zeerak Waseem,

Pontus Stenetorp, Robin Jia, Mohit Bansal, Christopher Potts, and Adina

Williams. 2021. Dynabench: Rethinking Benchmarking in NLP. In Proceed-

ings of the 2021 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies.

• Tristan Thrush, Kushal Tirumala, Anmol Gupta, Max Bartolo, Pedro Ro-

driguez, Tariq Kane, William Gaviria Rojas, Peter Mattson, Adina Williams,
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Chapter 2

Background

“That robot was created to run a Disinto on the moon. Its positronic

brain was equipped for a lunar environment, and only a lunar envi-

ronment. On Earth it’s going to receive seventy-five umptillion sense

impressions for which it was never prepared. There’s no telling what

its reactions will be. No telling!”

— Robot AL-76 Goes Astray, Isaac Asimov

If the perturbation of a single component of a system’s input, such as an envi-

ronment variable, causes that system to malfunction in unexpected ways, then we

have identified a mode of failure, knowledge of which will allow us to develop even

more robust and generalisable systems. In this chapter, we introduce the discuss the

task of Machine Reading Comprehension, including pivotal dataset contributions,

modelling approaches, evaluation techniques and further historical context on the

investigation of reasoning capabilities which motivate much of the work in this the-

sis. Following this, we briefly touch on ideas around algorithmic and ML system

robustness in the context of interactions between humans and machines, then pro-

vide an overview of adversarial attacks and example creation strategies, and discuss

some pertinent limitations. We finally provide relevant background on generative

modelling approaches, improving model robustness, and human computer interac-

tion — concepts that will regularly encounter throughout this thesis.
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2.1 Machine Reading Comprehension
Formally, Machine Reading Comprehension is the task of providing an answer, a

to a question, q about a context (or passage), c, modelled statistically as p(a|q,c).
In this general setting, the answer can take various forms such as a span extracted

from the context, “Yes” or “No”, a reference to a multiple-choice answer candidate,

a free-form generation, and occasionally a response refusal. In order to achieve this

reliably, a system is expected to require the capability to understand or comprehend

the provided passage.

2.1.1 Overview and Historical Context

The ability of machines to comprehend language has been an area of research in-

terest since the early days of modern computing (Turing, 1950). Among the early

systems probing machine reading comprehension capabilities through question an-

swering was the Conversation Machine, which was in part a response to Turing’s

work on machine thinking. While not formally set up as a Reading Comprehension

task, this system was designed to respond to questions about the weather in conver-

sation, requiring some elements of “reading” and “understanding” conversational

context to do so. Even from these early days, concepts such as handling complex

linguistic properties like negation, weighting relative relationships between ques-

tion words, and forming semantic representations of both words and sequences were

already being explored (Green et al., 1959).

In a review of fifteen early question-answering systems, Simmons (1965) of-

fers insight into the diverse approaches that were already being implemented during

the nascent stages of this research area. A notable example is The Oracle, which

performed a syntactic analysis of the question and the text corpus containing the an-

swer — one of the earliest recorded Machine Reading Comprehension tasks, where

the example passages were simple sentences of the form “The teacher went to the

school.”, with the corresponding question “Where did the teacher go?”. This sys-

tem analysed parts-of-speech and aligned the question with the passage to extract

the answer, in this case, “to school”.

Other notable early work was Protosynthex, a system that captured the meaning
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of words by comparing them with words of similar meaning based on how they

appeared within encyclopedia articles. The idea of extracting word meanings based

on how they co-occur in text drives today’s most prominent semantic representation

approaches — an example of an early synonym dictionary is shown in Table 2.1.

Word Words of Related Meaning

animals mammals, reptiles, fish

live age

longer older, ancient

men person, people, women

Table 2.1: Example of the Protosynthex synonym dictionary for the question “What ani-
mals live longer than men?”

Other approaches introduced around this period that continue to broadly influ-

ence techniques in the development of modern question answering systems include

query expansion, semantic correlation, and language-to-logical-form parsing (refer

to Table 2.2) still commonly used in the development of Knowledge-Based Ques-

tion Answering (KBQA) systems.

Question Logical Form

When did humans first land on the moon? EventYear(FirstMoonLanding,?x)

What is the largest continent? argmax(λx.continent(x),λx.size(x))

Table 2.2: Example of question transformation to logical forms for knowledge-based QA
from Bobrow’s STUDENT algebra problem solver (Bobrow, 1964).

Despite various limitations, these early question-answering systems laid the

foundation for three major paradigms that power most modern question-answering

systems. The first paradigm involves information retrieval-based methods, which

identify salient passages of text within a corpus that are likely to contain an an-

swer to the question. The second paradigm focuses on locating answers within a

span of text — a task that requires comprehension capabilities and on which we fo-

cus for most of this work. The third paradigm concerns knowledge-base methods,

where questions are transformed into logical forms to query relational or other struc-
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tured databases and extract relevant answers. Early examples of modern question-

answering systems, such as IBM Research’s DeepQA architecture, employ a hybrid

approach for improved performance. This approach powered the Watson system

which also brought reading comprehension capabilities to the forefront of public

perception by beating humans at the Jeopardy task (Ferrucci et al., 2010). While

our work is generally motivated by driving improvements to real-world systems, we

focus primarily on the Reading Comprehension paradigm as it requires a level of

robust understanding where most previous systems often fail. However, many of

the methodologies introduced in this work are general approaches that can be easily

adapted to the other two paradigms.

Returning to the historical context, other notable contributions were the LU-

NAR system to capture linguistic constructions, term-level meanings, extensional

inference and the application of semantic rules (Woods, 1978). During this era, a

popular approach was to create sophisticated front ends for single-table databases,

from which answers could be extracted. However, these database front-end systems

often faced limitations, including domain constraints and portability issues. The

TEAM system, introduced in 1987, was designed to address these portability issues.

Additionally, there was a challenge in handling language variations, as dif-

ferent users asked questions in diverse ways, and the system needed to be robust

enough to understand these nuances. This led to a shift from a purely database-

focused approach to a more dialogue-focused paradigm, as demonstrated by the

GUS system developed by Bobrow for airlines in 1977. Dialogue-based systems

aimed to capture the rationale and “real content” of questions by understanding

both the user and the question itself. This shift was driven by the need to better han-

dle real-world questions and improve the system’s ability to capture the underlying

intent and context (Jones, 2003).

Other significant contributions include MASQUE in 1993 (Androutsopoulos

et al., 1993), Webclopedia in 2000 (Hovy et al., 2000), followed by Mulder in 2001

(Kwok et al., 2001) and AnswerBus in 2002 (Zheng, 2002) which was an open-

domain QA system based on information retrieval.
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More recent systems such as IBM’s Watson represent a renewed focus on

Reading Comprehension. In particular, Watson could only answer questions where

the answer was contained within the passage. These ideas have also been expanded

on in modern conversational agents such as Siri, Cortana, Alexa and Google As-

sistant which further seek to incorporate an element of dialogue understanding and

extend question answering beyond a one-step interaction.

These system developments coincide with a shift towards a more data-centric

definition of Reading Comprehension, providing a canonical task formulation and

the creation of many datasets designed to help train ML models, which we will

discuss in the next section.

Reading Comprehension has become somewhat synonymous with the task of

Extractive Question Answering, and these terms have at times been used inter-

changeably (Gardner et al., 2019). We take the view that Reading Comprehension

fundamentally requires the existence of text that a system is required to read and

understand, in order to provide an answer to a question. Extractive Question An-

swering is a strictly more constrained definition of a task that also requires a system

to demonstrate Reading Comprehension capabilities, but requires the answer to be

a span extracted from the passage.

2.1.2 Datasets

2.1.2.1 TREC QA

The Text REtrieval Conference (TREC) question answering track, which started

running in 1999, provided the first large-scale dataset requiring direct answers rather

than a list of relevant documents that were likely to contain an answer (Voorhees and

Tice, 1999). This provided a standard evaluation framework for the performance of

different systems to be compared, as well as trained on.

The structural interpretation of a Question Answering task by TREC con-

text differed considerably from earlier, predominantly database-driven approaches.

One key difference was the source of information: TREC QA utilized general-

purpose, open-domain text sources such as the Wall Street Journal and the For-

eign Broadcast Information Service, although it was still restricted to the news and
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web domains (Jones, 2003). This marked a shift from closed-domain, structured

databases to more diverse and unstructured text sources. Questions in TREC QA

were obtained from a combination of sources, including search engine logs such

as MSNSearch and AskJeeves, as well as human-generated questions, reflecting a

diverse range of query types and complexities.

As the TREC QA track evolved, slight structural changes were made, includ-

ing the introduction of multiple correct answers for certain questions, until early

2005 (Voorhees et al., 2005). Another interesting attribute of TREC QA is the sepa-

ration of factoid questions and list-based questions, where the expected response is

a list of items, since a change in the data format in 2002. Typically, TREC QA pro-

vides a list of documents, a question (such as “What kind of animal is an agouti?”),

the ID of the document containing the answer, and the answer string itself.

Due to variations in answers, correct evaluation involved matching responses

with a given answer pattern (Voorhees and Tice, 2000). This ensured not only tech-

nical correctness but also identified the most appropriate answer in the context of

the question. Consider the following question and answer patterns:

Q What is a supernova?

A1 explod.*stars?

A2 calamitous death of a large star

A3 origin of gold

While technically correct on the basis of scientific theories pointing to heavy

elements such as gold having originated within exploding supernovae (Cowan and

Sneden, 2006), A3 is not the expected answer given the question context, where the

“most correct” answer is A2.

The TREC 8-13 tracks were further combined in 2007 to create a single com-

prehensive dataset (Wang et al., 2007). This consolidated dataset, QASent, quickly

became a standard benchmark for question answering tasks, specifically for answer

selection-based approaches.
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2.1.2.2 MCTest

MCTest (Richardson et al., 2013) is a crowdsourced dataset designed to test ma-

chine comprehension of text, introduced and made freely available by Microsoft

Research in 2013. It contains two subsets, differing by the methodology used to an-

notate original stories. MC160 contains 160 manually curated stories, while MC500

imposes further restrictions, requiring annotators to pass a grammar test and a read-

ing comprehension test and doesn’t rely on manual curation, containing an addi-

tional 500 stories.

MCTest is designed to evaluate machine performance on multiple-choice read-

ing comprehension questions based on fictional stories. Intended to be open-

domain, MCTest restricts its vocabulary and concepts to those understood by a

7-year-old child. The multiple-choice format also allows for simple and clear eval-

uation. The dataset comprises extracts from a corpus of fictional stories created by

Mechanical Turk workers, covering a broad range of topics. Each story has four

corresponding crowd-sourced questions (with an average of 7.77 words), each with

four candidate answers, including the correct one.

To ensure that answering requires comprehension, annotators were asked to

ensure that all answer options incorporated words from the stories and design the

questions to require information from multiple sentences. This design aims to test

the inference-making capabilities of reading comprehension systems, moving be-

yond simple keyword matching. While MCTest, offers a valuable resource for eval-

uation, its size is a limitation, with only 2,640 questions. This may pose challenges

for training current ML models.

2.1.2.3 WikiQA

WikiQA, released in 2015 through a collaboration between the Georgia Institute

of Technology and Microsoft Research, is a collection of 3,047 questions sampled

use simple heuristics to identify question-like queries from Bing search engine logs

between May 1, 2010, and July 31, 2011 (Yang et al., 2015). It provides answers

candidates as sentences from the summary paragraphs of selected Wikipedia pages,

along with crowdsourced annotations indicating whether the answer is contained
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within the extract. For sentences provide an answer to the question, the dataset

also provides an answer phrase annotation, defined as the shortest substring of the

sentence that answers the question, similar to modern EQA datasets.

The WikiQA dataset contains 29,258 sentences, with 1,473 sentences labeled

as providing answers to the corresponding questions. Statistical comparisons be-

tween the WikiQA and TREC QA datasets also reveal differences in question

length, with TREC QA questions averaging 9.59 words and WikiQA questions

averaging 7.18 words. Question length is likely influenced by the way questions

are sourced (for example, crowdsourced versus search engine queries) and passage

complexity (for example, the relatively low passage complexity of MCTest, with an

average question length of 7.77 words).

There are also differences in the types of questions encountered, with the Wik-

iQA questions representing the types of queries users naturally input into search

engines, reflecting real-world query patterns and language usage. We highlight

these differences in question type distribution in Table 2.3, in particular showing

a considerably increased focus on descriptive questions in WikiQA.

Question Class TREC 8-13 QA WikiQA

Location 37 (16%) 373 (12%)

Human 65 (29%) 494 (16%)

Numeric 70 (31%) 658 (22%)

Abbreviation 2 (1%) 16 (1%)

Entity 37 (16%) 419 (14%)

Description 16 (7%) 1087 (36%)

Table 2.3: Comparison of the question class distributions across the TREC 8-13 QA
(QASent) and WikiQA datasets.

Despite limitations in size and answer structure, WikiQA dataset made a valu-

able contribution to the area of machine reading comprehension, particularly in the

context of answer span extraction.
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2.1.2.4 CNN/Daily Mail

The CNN/Daily Mail reading comprehension datasets, introduced by Hermann et al.

(2015), are based on news articles extracted from the CNN and Daily Mail websites,

and designed to test machine ability to read real documents and answer complex

questions. 313k articles were collected, dated until April 2015 and starting from

April 2007 for CNN, and June 2010 for Daily Mail, along with corresponding article

summaries and bullet point supplements. A corpus of over 1.3 million document-

query-answer triples was created by converting the bullet point summaries into

cloze-style questions, with an average of 12.5 and 14.3 words per question for the

CNN and Daily Mail data respectively. Both these figures indicate longer questions

than those previously discussed, likely an artefact of the data curation process.

In this process, detected entities were replaced with placeholders, and the sys-

tem being tested was asked to fill in the blanks with the masked entity as the an-

swer, demonstrating its reading comprehension abilities as shown in Figure 2.1.

The LAMBADA dataset also shares structural similarities to CNN/Daily Mail, em-

phasizing the need for models to capture a broader context to effectively answer

questions (Paperno et al., 2016). This cloze-style task format (Taylor, 1953) has

various convenient properties that permit reading comprehension system evalua-

tion using questions structured in an automated fashion and using minimal human

supervision. These ideas have also been extended to build extractive QA systems

trained on synthetic data obtained through cloze-style augmentation combined with

question generation (Lewis et al., 2019).

Figure 2.1: Example from the CNN dataset (Chen et al., 2016).
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Various limitations have also been highlighted by Chen et al. (2016), includ-

ing that the CNN/Daily Mail dataset is simpler than previously believed and that

conventional NLP systems can perform better than expected in part due to an over-

reliance on paraphrases due to the nature of the questions, that it primarily requires

single-sentence relation extraction, falling short of larger-context text understand-

ing, and that current systems perform well on unambiguous, single-sentence cases,

leaving limited room for further improvement due to data preparation issues, such

as coreference errors and entity anonymisation.

2.1.2.5 The bAbI Project

In late 2015, Facebook AI Research introduced a set of noiseless toy datasets as

part of the bAbI project (Weston et al., 2015), aimed at evaluating reading compre-

hension systems’ reasoning abilities through question answering tasks. The tasks

cover a diverse range of scenarios, including identifying supporting facts, answer-

ing Yes/No questions, and handling queries related to reasoning over time, position,

and size.

The Children’s Book Test (CBT), a cloze-form dataset designed to examine

the roles of context and memory in language understanding, was also introduced.

This dataset is constructed using freely available books from Project Gutenberg,

structured such that the first 20 sentences provide context, and the 21st sentence has

a word removed, forming the query. Ten candidate answers are provided, with an

average query length of 30.9 words — this is also an artefact of the way queries

were constructed.

2.1.2.6 MS MARCO

The Microsoft AI & Research Machine Reading COmprehension (MARCO)

dataset Nguyen et al. (2016) is a large-scale open-domain dataset of 100,000

question-answer pairs. It focuses on real-world data, with questions sourced from

actual user queries and contexts scraped from documents retrieved using the Bing

search engine. All answers are human-generated, and some questions have multiple

valid responses.

Another aspect of note is the inclusion of noise, such as spelling or grammat-
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ical errors and colloquialisms, reflecting real-world query patterns. Answers are

not limited to specific spans from the text and may require merging different parts

of the document to construct the correct answers, potentially requiring systems to

demonstrate multi-hop reasoning capabilities for good performance. This approach

also addresses the question bias inherent in crowd-sourced datasets and presents

a more realistic and challenging scenario for evaluating question-answering sys-

tems, although it carries the limitations previously discussed around using questions

sourced from search engine queries.

2.1.2.7 SQuAD1.1

The Stanford QUestion Answering Dataset (SQuAD) version 1.1 is a comprehen-

sive collection of 107,785 crowdsourced question-answer pairs (Rajpurkar et al.,

2016) derived from 536 high-quality Wikipedia articles, sampled uniformly at ran-

dom from the top 10,000 articles sorted by Wikipedia’s internal PageRanks metric.

Answers are provided as text spans extracted from the source articles, with an ex-

ample shown in Figure 2.2.

Figure 2.2: Example from SQuAD1.1 showing the answer as a span from the passage and
requiring external knowledge (that the European Parliament and the Council of
the European Union are governing bodies) in order to answer the question.

Additional answers were collected per question for validation, as well as to

estimate human performance. Human performance, estimated by taking the maxi-

mum across each pair of candidate answers on the test set, is given at an F1 score of

91.2% and exact match score of 82.3%. These evaluation methods are discussed in

detail in the subsequent sections, along with a more thorough analysis of the types
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of reasoning required to answer questions in SQuAD1.1 and which are also further

investigated in Chapter 3.

2.1.2.8 SQuAD2.0

SQuAD2.0 (Rajpurkar et al., 2018) is among the first research efforts to directly

target poor Reading Comprehension model robustness, which we shall also discuss

at a later stage. Extractive Question Answering systems can often locate the correct

answer to a question in a passage, but they also tend to make unreliable guesses

on questions for which the correct answer is not stated in the context, or get easily

distracted by irrelevant information (Jia and Liang, 2017).

SQuAD2.0 is an updated version of the Stanford Question Answering Dataset,

combining the previous SQuAD1.1 dataset with over 50,000 unanswerable ques-

tions. These unanswerable questions are adversarially crafted by crowdworkers to

resemble answerable questions, challenging models to determine when no answer

is supported by the provided paragraph and abstain from answering. This is de-

signed to help address limitations of existing datasets, which either focus solely on

answerable questions or use automatically generated unanswerable questions that

are easily identifiable.

This resource serves as a more rigorous test of natural language understanding,

as demonstrated by the performance gap between SQuAD1.1 and SQuAD2.0 for

strong systems at the time with a best F1 score of 86% on SQuAD1.1 compared

to 66% on SQuAD2.0. It also illustrates a significant performance gap between

human accuracy and existing models, similar to SQuAD1.1 at its time of release.

This updated version of the dataset requires them to exhibit a deeper understanding

of the context. It further encourages the development of more robust and discerning

question-answering systems, capable of making informed decisions about when to

provide an answer and when to refrain from answering. The work presented in

Chapter 3 can be seen from the perspective of providing a further updated version

of this line of research.

Finally, it is worth making a quick note of distributional mismatch of nega-

tives between the training set and validation and test sets in SQuAD2.0, as this is
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often overlooked. The training set has train data has roughly twice as many answer-

able questions as unanswerable ones, however, the validation and test sets exhiit

a roughly one-to-one ratio of answerable to unanswerable questions. To some ex-

tent then, this dataset also tests the ability of systems to generalise across train/test

distributional mismatch.

2.1.2.9 NaturalQuestions

Natural Questions (NQ) is a question answering dataset from Google Re-

search (Kwiatkowski et al., 2019). It contains real user questions issued to the

Google search engine, and answers found from Wikipedia by annotators. Questions

consist of real anonymised, aggregated queries issued to the Google search engine,

and paired with Wikipedia pages from the top 5 search results.

Answers are annotated as a long answer (typically a paragraph) and a short

answer (one or more entities) if present on the page, or null if no answer is present

(similar in motivation to SQuAD2.0. NQ uses naturally occurring queries and focus

on finding answers by reading an entire page, rather than extracting answers from a

short paragraph, and addresses criticism that SQuAD and similar datasets received

around lack of diversity due to annotator-written questions being conditioned by

the passages they were provided to read — although we will find in Chapter 3 that

doesn’t go particularly far from the perspective of increasing question diversity.

2.1.2.10 DROP

A Reading Comprehension dataset requiring Discrete Reasoning Over Paragraphs

(DROP) was introduced in 2019 by researchers at the University of California,

Irvine, Peking University, and the Allen Institute for Artificial Intelligence (Dua

et al., 2019). It also seeks to address some of the brittleness issues of existing sys-

tems, focusing in particular on numerical and discrete reasoning such as addition,

counting, or sorting. With nearly 100k examples, it also provided a valuable training

resource. DROP also introduced structured answer types such as dates or numbers,

as well as span extracts, and included an adversarial component that encouraged

annotators to ask questions that the model-in-the-loop, BiDAF (Seo et al., 2017),

struggled to provide a valid answer to.
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A limitation here was that BiDAF is an extractive model and DROP’s answer

type flexibility meant that for many of the questions asked, the model in the loop

could not predict the correct answer as the answer was not a span within the pas-

sage. This also provided annotators with a relatively simple strategy for creating

adversarial examples by asking questions requiring particular answer types. We

build on this extensively in Chapter 3.

2.1.3 Modelling Approaches

One of the early high-performing RC models was the Bi-Directional Attention Flow

(BiDAF) model (Seo et al., 2017), which we have previously mentioned earlier as

the model-in-the-loop for DROP, and which we use as the baseline model-in-the-

loop in Chapter 3. In this context, we provide an overview of its architecture.

BiDAF is a hierarchical multi-stage architecture for machine comprehension.

It consists of six layers: character embedding, word embedding, contextual embed-

ding, attention flow, modelling layer, and output. The character and word embed-

ding layers represent each word as a fixed-size vector, using CNNs and pre-trained

GloVe vectors, respectively. These embeddings are fed into an LSTM contextual

embedding layer to capture temporal and sequential information.

The attention flow layer computes bi-directional attention, allowing it to flow

to the next layer, and capturing the relevance of query words to context words and

vice versa. The modelling layer uses a two-layer bi-directional LSTM to capture

interactions between context words conditioned on the query. Finally, the output

layer predicts the start and end indices of the answer phrase in the passage by cal-

culating the independent probability distributions of each over the full length of the

context. The probability of each word being the start, s, of the answer is:

ps = softmax(w>ps[G;M])

Where w represents the weights of the output layer, G is the matrix of com-

bined contextual embeddings and attention vectors from the previous layers and M

is the matrix representing the state of the modelling layer.
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The probability that each word corresponds to the end, e, of the answer phrase

is calculated in a similar manner, and there is a final aggregation step that sorts

all possible candidate answers by their joint answer probability calculated as the

product of their start and end probabilities, excluding invalid ones, that is those for

which the end index is earlier in the text than the start index. The highest ranked

index pair (s,e) is then used to decode the answer text.

Models based on a Masked Language Modelling (MLM) pretraining ob-

jective using the transformer architecture, such as BERT (Devlin et al., 2019),

RoBERTa (Liu et al., 2019b) and ELECTRA (Clark et al., 2020), have also been

adapted for Extractive Question Answering and demonstrated substantial perfor-

mance improvements over earlier systems.

Figure 2.3: Illustration of the adaptation of BERT for Extractive Question Answering re-
produced from Devlin et al. (2019) showing the start and end canddiate predic-
tions corresponding to input tokens in the paragraph.

As shown in Figure 2.3, two output layers, one corresponding to the start and

one corresponding to the end of the predicted answer span, take the token represen-

tations corresponding to the passage as inputs. Similar to the independent calcula-

tion under validity constraints described for BiDAF, the probability of word at index

i being the start or end of the answer span is computed as a dot product between the
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token representation at that position and the corresponding output vector, followed

by a softmax over all of the words in the passage.

While it has been suggested that information about which index has been

selected as the start of the answer should influence the selection of which index

should end the answer phrase, this has not been extensively studied. More recently,

generative (also referred to as text-to-text) models that predict free text as output

have also been shown to give good performance on Extractive Question Answering

tasks (Raffel et al., 2020).

2.1.4 Evaluation

Two commonly used Extractive Question Answering evaluation measures, popu-

larised in part by the ease of access of the SQuAD1.1 implementation, are Exact

Match and word-overlap F1 Score calculated on pre-processed ground truth an-

swers and model predictions. We introduce and define them here since they are

used throughout this work to evaluate system performance.

2.1.4.1 Exact Match Score

Exact Match indicates if a predicted answer exactly matches any of the candi-

date ground truth answers after normalisation and post-procesing. Normalisation

typically includes lowercasing, converting non-unicode characters to their unicode

counterparts, removing articles such as “a”, “an”, and “the”, stripping punctuation

and adjusting for white-space disparities.

The system’s overall Exact Match score is calculated by taking the mean across

sample match indicators (a per-sample score of 0 or 1), typically presented after

being converted to a percentage.

2.1.4.2 F1 Score

F1 score is a measure of word overlap between a model-predicted answer and the

ground truth after normalisation. For datasets which provide multiple valid ground

truth answers, such as SQuAD, the reported score is the the maximum F1 calculated

over all valid ground truth answers. Comparing systems across datasets with vary-

ing numbers of ground truth answers could provide potentially misleading results,

https://storageclwsprod1.blob.core.windows.net/bundles/0xbcd57bee090b421c982906709c8c27e1/contents.gz?se=2024-07-08T16%3A31%3A38Z&sp=rt&sv=2019-12-12&sr=b&rscd=inline%3B%20filename%3D%22evaluate-v1.1.py%22&rsce=gzip&rsct=text/x-python&sig=v%2Baop9k74rbdf2ooUNqy6ACvIOZSnVUKG8/dI1LsS2E%3D
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particularly in the presence of short passages which are more likely to a have a rel-

atively small set of possible answer candidates. To fairly draw direct comparisons,

where appropriate we evaluate model predictions against the majority voted ground

truth answer as described in Chapter 3.

F1 score is formally defined as the harmonic mean of precision and recall,

where precision, P, is the number of overlapping words between the predicted and

ground truth answer phrases divided by the number of words in the predicted phrase,

and recall, R, is the word overlap divided by the length of the ground truth phrase.

F1 score is then defined as:

F1 =
2PR

P+R

Similar to the computation for exact match, the reported system performance

score is the macro-average, or average across samples, of sample-level F1 scores.

While F1 score is a generally better indicator of answer correctness than exact

match, it does not perfectly capture the correctness of a predicted answer since it is

sensitive to instances where an answer phrase could be missing or have additional

words that have little significance, such as articles or prepositions. This remains

a challenge with automated evaluation approaches, and was part of the reason we

migrated from using F1 score to judge whether a human annotator had successfully

beaten the AI in Chapter 3 to human-judged and validated measures of success in

the subsequent chapters.

2.1.5 Reasoning Capabilities

Understanding written text is a formidable task and requires a complex combination

of skills including determining explicit sentence meaning, making inferences about

their likely implicit meaning, and inferring the implicit connections between sen-

tences (Norvig, 1986). In the context of language understanding, and specifically

machine reading comprehension, Bottou (2014) suggests a plausible definition for

machine reasoning as “algebraic manipulation of previously acquired knowledge in

order to answer a new question”.
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The reading comprehension task formulation provides a convenient test-bed

for machine reasoning capabilities both due to the unrestricted diversity of possible

questions and complexity of source passages, and this was recognised from the early

days of large-scale RC dataset construction.

QA4MRE (Peñas et al., 2011; Sutcliffe et al., 2013), an early multiple-choice

RC evaluation dataset track, was designed to contain questions covering five dif-

ferent question types: purpose, method, causal, factoid, and which-is-true — with

factoid questions further divided into: Location, Number, Person, List, Time and

Unknown. See Table 2.4 for examples.

Question Type Example

PURPOSE What is the aim of protecting protein deposits in the brain?

METHOD How can the impact of Arctic drillings be reduced?

CAUSAL Name one reason why electronic dance music owes a debt to Kraftwerk.

FACTOID (number) What is the approximate number of TB patients?

WHICH-IS-TRUE Which problem is similar in nature to global warming?

Table 2.4: Examples of questions of different types from QA4MRE.

Questions further required a variety of inference capability including: linguis-

tic inferences such as co-reference and deictic references (like “then” and “here”),

ontological inferences (such as part-of relations), inferences on causal relationships

or procedural steps, and composite inference requiring an answer to be formulated

by considering different parts of the passage and optionally background knowledge.

Background knowledge is further categorised into four types: specific document-

related facts (e.g. the relationship between two people mentioned in the document),

general facts (such as geographical knowledge, acronyms and unit conversion), gen-

eral abstractions used for interpreting language or implicit knowledge (e.g. knowing

that petroleum companies drill wells), and linguistic knowledge (such as synonyms

or word-to-number conversions). Around a third of questions in the test set also had

no valid answer.

Test set questions were further segregated into simple, intermediate, and diffi-

cult questions, aiming for a balanced distribution of question difficulty across test

documents. These were defined as:
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• Simple: the answer and the fact questioned could be found in the same sen-

tence in the document.

• Intermediate: the answer and the fact questioned were not in the same sen-

tence and could be several sentences apart (multi-sentence reasoning).

• Difficult: require utilising information from the background collection.

Steps were also taken to reformulate or paraphrase questions to minimise word

overlap between the document and the question, a potentially strong signal for lo-

cating plausible answer candidates. The inference type required to answer each

question was tracked to facilitate analyses regarding which types of questions were

difficult for the systems, and why.

As a result of the difficulty in judging whether a correct answer had been cho-

sen at random or derived from a valid process of deduction, a further evaluation

experiment was carried out in the third year of the task. This involved the creation

of Auxiliary questions which were derived from an original question, but with an

added simplification deliberately removing one inference step — achieved through

hypernym replacement, noun phrase synonymy, or verbal entailment. The being

that if a system answered a question incorrectly but the corresponding Auxiliary

question correctly, it suggests that the system was near to answering the question

but could not perform the inference step.

The expert-annotation approach which permitted such in-depth analysis and

consideration of reasoning phenomena, also limited the QA4MRE datasets in terms

of size. This was a key challenge that MCTest (Richardson et al., 2013) aimed to

overcome through the application of crowd-sourcing. It consisted of a challenge

dataset of 2000 questions on 500 fictional stories, an order of magnitude larger than

QA4MRE, yet still considerably small by current standards.

Despite the very different annotation approach, MCTest also gave considera-

tion to testing advanced RC abilities such as causal reasoning and understanding

world knowledge. While the design focused on short passages rather than matching

against existing knowledge bases, at least 50% of the questions required processing
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a minimum of two sentences from the passage to answer, designed to encourage

multi-sentence reasoning.

Synthetic dataset construction catering to particular reasoning skills is another

approach to requiring reasoning and natural language understanding in a question

answering setting. The QA subset of the bAbI tasks aims to categorize different

kinds of questions into skill sets, which are then used to define the tasks. These

question skill sets include: factoid questions with one, two or three supporting facts,

two and three argument relations requiring the differentiation of entities in the text,

Yes/No questions, counting, reasoning with lists or sets, simple negation, basic and

compound coreference, conjunction, basic deduction and induction via inheritance

or potential inheritance of properties, reasoning about time, position and size, path

finding, and reasoning about motivation (Weston et al., 2015).

Observations that large amounts of real data and simpler models tended to out-

perform more elaborate models based on less data (Halevy et al., 2009), together

with the linguistic limitations of the synthetic approach, drove the construction of

large-scale datasets with human-generated questions such as SQuAD (§2.1.2.7).

This large scale inhibits reasoning type annotation on a per-question basis as in

QA4MRE, however, the authors do provide a qualitative reasoning type analysis

by manually labelling a sample of 192 questions. They find that 64.1% of ques-

tions involve syntactic variation in which the dependency structure of the question

is different to the answer sentence in the passage, 33.3% involve lexical variation

(synonymy) or paraphrasing, 13.6% require multiple sentence reasoning, 9.1% in-

volve lexical variation requiring world knowledge, and 6.1% are ambiguous.

Subsequent large-scale RC datasets commonly perform a similar qualitative

analysis of the question reasoning requirements, typically around a custom taxon-

omy of reasoning types adapted to the specific dataset design considerations.

NarrativeQA (Kočiský et al., 2018), a dataset of 46,765 human generated ques-

tions based on summaries of books and movie scripts, finds that only a small number

of questions and answers are shallow paraphrases and that most questions require

reading segments at least several paragraphs long, and in some cases even multiple



2.1. Machine Reading Comprehension 63

segments spread throughout the story.

Work following the introduction of the CNN/Daily Mail dataset (Hermann

et al., 2015) constructs a tailored taxonomy for the task and provides a detailed

analysis (Chen et al., 2016). The authors define six reasoning categories as follows:

Exact match: The nearest words around the placeholder are also found in the pas-

sage surrounding an entity marker; the answer is self-evident.

Sentence-level paraphrasing: The question is entailed or rephrased by exactly one

sentence in the passage, such that the answer can be exactly and only identified from

that particular sentence.

Partial clue: Despite no complete semantic match between the question and some

sentence, we are still able to infer the answer through partial clues, such as some

word/concept overlap.

Multiple sentences: Requires systems to process and understand multiple sen-

tences to infer the correct answer.

Coreference errors: Includes examples with critical coreference errors for the an-

swer entity or key entities appearing in the question.

Ambiguous or very hard: Includes examples for which the authors think that hu-

mans are not able to confidently obtain the correct answer.

This work includes a qualitative analysis of the CNN dataset and finds that

41% require paraphrasing, 19% provide a partial clue, 17% are ambiguous/hard,

13% are an exact match, 8% involve coreference errors, and 2% require reasoning

over multiple sentences. The work also provides a per-category performance of a

neural RC system based on the Attentive Reader model (Hermann et al., 2015) and

find that the model performs well on exact match (100%), paraphrasing (95.1%)

and partial clue (89.5%), but struggles on questions requiring multiple sentence

reasoning (50%), coreference (37.5%) or questions in the ambiguous/hard category

(5.9%). While insightful, this analysis is carried out on a very small sample size,

with there only being 2 examples of questions requiring multi-sentence reasoning,

for example.

In NewsQA (Trischler et al., 2017), a dataset of over 100,000 human-generated
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question answer pairs on a set of over 10,000 CNN news articles, the authors strat-

ify reasoning types based on a variation of the taxonomy presented by Chen et al.

(2016), essentially joining partial clue and coreference errors into a single cate-

gory inference, and referring to multiple sentences as synthesis. They perform a

thorough qualitative analysis of 1,000 questions sampled from the validation sets of

both NewsQA and SQuAD1.1. Their findings are shown in Figure 2.4.
Table 2: Reasoning mechanisms needed to answer questions. For each we show an example question
with the sentence that contains the answer span. Words relevant to the reasoning type are in bold.
The corresponding proportion in the human-evaluated subset of both NewsQA and SQuAD (1,000
samples each) is also given.

Reasoning Example Proportion (%)
NewsQA SQuAD

Word Matching Q: When were the findings published?
S: Both sets of research findings were published Thursday...

32.7 39.8

Paraphrasing Q: Who is the struggle between in Rwanda?
S: The struggle pits ethnic Tutsis, supported by Rwanda, against ethnic Hutu,
backed by Congo.

27.0 34.3

Inference Q: Who drew inspiration from presidents?
S: Rudy Ruiz says the lives of US presidents can make them positive role models
for students.

13.2 8.6

Synthesis Q: Where is Brittanee Drexel from?
S: The mother of a 17-year-old Rochester, New York high school student ... says
she did not give her daughter permission to go on the trip. Brittanee Marie Drexel’s
mom says...

20.7 11.9

Ambiguous/Insufficient Q: Whose mother is moving to the White House?
S: ... Barack Obama’s mother-in-law, Marian Robinson, will join the Obamas
at the family’s private quarters at 1600 Pennsylvania Avenue. [Michelle is never
mentioned]

6.4 5.4

5 BASELINE MODELS

We test the performance of three comprehension systems on NewsQA: human data analysts and
two neural models. The first neural model is the match-LSTM (mLSTM) system of Wang & Jiang
(2016b). The second is a model of our own design that is similar but computationally cheaper. We
describe these models below but omit the personal details of our analysts. Implementation details of
the models are described in Appendix A.

5.1 MATCH-LSTM

We selected the mLSTM model because it is straightforward to implement and offers strong, though
not state-of-the-art, performance on the similar SQuAD dataset. There are three stages involved
in the mLSTM. First, LSTM networks encode the document and question (represented by GloVe
word embeddings (Pennington et al., 2014)) as sequences of hidden states. Second, an mLSTM
network (Wang & Jiang, 2016a) compares the document encodings with the question encodings.
This network processes the document sequentially and at each token uses an attention mechanism to
obtain a weighted vector representation of the question; the weighted combination is concatenated
with the encoding of the current token and fed into a standard LSTM. Finally, a Pointer Network uses
the hidden states of the mLSTM to select the boundaries of the answer span. We refer the reader
to Wang & Jiang (2016a;b) for full details.

5.2 THE BILINEAR ANNOTATION RE-ENCODING BOUNDARY (BARB) MODEL

The match-LSTM is computationally intensive since it computes an attention over the entire question
at each document token in the recurrence. To facilitate faster experimentation with NewsQA we
developed a lighter-weight model (BARB) that achieves similar results on SQuAD2. Our model
consists of four stages:

Encoding All words in the document and question are mapped to real-valued vectors using the
GloVe embeddings W 2 R|V |⇥d. This yields d1, . . . ,dn 2 Rd and q1, . . . ,qm 2 Rd. A bidirec-

2With the configurations for the results reported in Section 6.2, one epoch of training on NewsQA takes about
3.9k seconds for BARB and 8.1k seconds for mLSTM.

6

Figure 2.4: Reasoning mechanisms needed to answer questions in NewsQA and
SQuAD1.1 (Trischler et al., 2017).

RACE (Lai et al., 2017), a benchmark evaluation dataset from English ex-

ams for middle and high school Chinese students between 12 to 18 years of age

and consisting of approximately 100,000 multiple-choice questions generated by

English instructors, also builds on this reasoning taxonomy. RACE is further di-

vided into RACE-M collected from examinations designed for 12-15 year-old mid-

dle school students, and RACE-H from examinations designed for 15-18 year-old

high school students. Reasoning type analysis on 1,000 samples of each show a

substantial reduction in word matching between RACE-M (29.4%) and RACE-H

(11.3%) — both lower than SQuAD1.1 and NewsQA, and similar to CNN/Daily

Mail (13%) for RACE-H. There is a notable increase in proportions for the para-

phrasing, single-sentence reasoning, multi-sentence reasoning and ambiguous types

between RACE-M and RACE-H, particularly with regards to the latter with 1.8%

for RACE-M and 7.1% for RACE-H of questions deemed ambiguous. The results
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are shown in Figure 2.5.

RACE-M RACE-H RACE MCTest CNN DM CBT-N CBT-C WDW
Random 24.6 25.0 24.9 24.8 0.06 0.06 10.6 10.2 32.0†

Sliding Window 37.3 30.4 32.2 51.5† 24.8 30.8 16.8† 19.6† 48.0†

Stanford AR 44.2 43.0 43.3 – 73.6† 76.6† – – 64.0†

GA 43.7 44.2 44.1 – 77.9† 80.9† 70.1† 67.3† 71.2†

Turkers 85.1 69.4 73.3 – – – – – –
Ceiling Performance 95.4 94.2 94.5 – – – 81.6† 81.6† 84†

Table 5: Accuracy of models and human on the each dataset, where † denotes the results coming from
previous publications. DM denotes Daily Mail and WDW denotes Who-Did-What .
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Figure 1: Test accuracy of different baselines on each question type category introduced in Section 3.2,
where Word-Match, Single-Reason, Multi-Reason and Ambiguous are the abbreviations for Word match-
ing, Single-sentence Reasoning, Multi-sentence Reasoning and Insufficient/Ambiguous respectively.

a bilinear attention. We pass the scores through
softmax to get a probability distribution. Specif-
ically, the probability of option i being the right
answer is calculated as

pi = Softmaxi(h
oiW2s

d) (2)

Gated-Attention Reader Gated AR (Dhingra
et al., 2016) is the state-of-the-art model on mul-
tiple datasets. To build query-specific represen-
tations of tokens in the document, it employs an
attention mechanism to model multiplicative in-
teractions between the query embedding and the
document representation. With a multi-hop ar-
chitecture, GA also enables a model to scan the
document and the question iteratively for multi-
ple passes. In other words, the multi-hop struc-
ture makes it possible for the reader to refine token
representations iteratively and the attention mech-
anism find the most relevant part of the document.
We refer readers to (Dhingra et al., 2016) for more
details.

After obtaining a query specific document rep-
resentation sd, we use the same method as bilinear
operation listed in Equation 2 to get the output.

Note that our implementation slightly differs
from the original GA reader. Specifically, the At-
tention Sum layer is not applied at the final layer
and no character-level embeddings are used.

Implementation Details We follow Chen et al.
(2016) in our experiment settings. The vocabulary
size is set to 50k. We choose word embedding
size d = 100 and use the 100-dimensional Glove
word embedding (Pennington et al., 2014) as em-
bedding initialization. GRU weights are initial-
ized from Gaussian distribution N (0, 0.1). Other
parameters are initialized from a uniform distri-
bution on (�0.01, 0.01). The hidden dimension-
ality is set to 128 and the number of layers is
set to one for both Stanford AR and GA. We use
vanilla stochastic gradient descent (SGD) to train
our models. We apply dropout on word embed-
dings and the gradient is clipped when the norm

Figure 2.5: Test accuracy by reasoning type on RACE (Lai et al., 2017).

The work further provides performance analysis for two different reading mod-

els: i) based on a sliding window algorithm of TFIDF scores between the concate-

nated question and answer, and windows from the passage, and ii) the Stanford

Attentive Reader (Chen et al., 2016). This analysis is compared to that of non-

expert humans, revealing a degradation in performance as reasoning requirements

increase.

TriviaQA (Joshi et al., 2017), a dataset of over 650K distantly-supervised

question-answer-evidence triples, presents a reasoning taxonomy similar to that of

SQuAD1.1, with the addition of Lists/Table. In the case of Wiki documents, the

authors find that 69% of questions involve syntactic variation, 41% of questions in-

volve lexical variation in terms of synonyms, 40% require reasoning over multiple

sentences — more than three times as much as in SQuAD1.1, 17% require common

sense or external knowledge — nearly double the amount of SQuAD1.1, and 7%

have answers found in tables or lists. Examples in TriviaQA exhibit more lexical

and syntactic variance than in SQuAD1.1, indicating that decoupling the question

generation process from source passage selection may results in more challenging

questions. NaturalQuestions (Kwiatkowski et al., 2019) similarly decouples ques-

tion generation from passage selection by sourcing questions from search queries
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(as in WikiQA (Yang et al., 2015) and MS MARCO (Nguyen et al., 2016)), how-

ever, no qualitative reasoning type analysis is provided which would allow further

investigation of this observation.

As previously discussed, motivated in part by findings that models can do

remarkably well on SQuAD1.1 by exploiting context and type-matching heuris-

tics, both on SQuAD1.1 and NewsQA (Weissenborn et al., 2017), and that success

on SQuAD1.1 does not ensure robustness to adversarially-created distracting sen-

tences (Jia and Liang, 2017), SQuAD2.0 requires models to determine whether or

not a question is answerable from the passage. In this work, the authors also pro-

vide a breakdown of reasoning types for the negative or unanswerable examples.

They find that 24% are cases where the paragraph does not contain the information

required to answer the question, 21% involve an entity swap or replacement, 20%

involve antonym use, 15% involve a word or phrase which mutually excludes a con-

dition to which an answer does exist, 9% require an understanding of negation, 7%

are in fact answerable (i.e. noise in the data), and 4% require a condition to be met

that is not satisfied by the paragraph (i.e. impossible condition).

The AI2 Reasoning Challenge (ARC) dataset (Clark et al., 2018) consists

of natural, grade-school science multiple-choice questions and is designed to re-

quire more powerful knowledge and reasoning than previous challenges such as

SQuAD. The ARC Challenge set, in particular, contains questions adversarially

filtered through an Information Retrieval (IR) solver and a Pointwise Mutual Infor-

mation (PMI) solver. The authors define a taxonomy of knowledge types tailored to

science questions and based on a sample of 100 questions from the Challenge Set,

find that 17.9% are basic facts, 17.9% are definitions, 16.1% require knowledge

of processes, 14.3% require knowledge of experiments, 10.7% are about structure,

10.7% require knowledge of function or purpose, 7.1% require algebraic reasoning,

and 5.4% require spatial or kinematic understanding.

The authors of DROP (Dua et al., 2019), also discussed earlier, construct a

reasoning taxonomy tailored to the dataset, and find that subtraction is a required

skill for 28.8% of questions, followed by selection (19.4%), comparison (18.2%),
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addition (11.7%), sorting (11.7%), counting (16.5%), that 6% of answers are a set

of spans, co-reference resolution (3.7%), other arithmetic reasoning (3.2%), and

that some other form of reasoning is required for 6.8% of questions. The authors

further perform an error analysis on 100 incorrect predictions from the NAQANet

model and find that the most common errors occur on questions requiring complex

reasoning such as arithmetic operations (in 51% of errors), counting (30%), do-

main knowledge and common sense (23%), co-reference (6%), or a combination of

reasoning types (40%).

CODAH (Chen et al., 2019), an adversarially constructed evaluation dataset

of commonsense reasoning, provides a question categorisation taxonomy including

idioms, negations, polysemy, reference and questions requiring quantitative reason-

ing. However, a distribution of question categories finds that 75.3% of questions do

not belong do either of these categories, possibly indicating an increased diversity of

questions collected through the adversarial construction approach. A class-wise ac-

curacy analysis finds that humans perform consistently well (¿ 90%) on all question

types, with BERT (Devlin et al., 2019) and GPT-1 (Radford et al., 2019) performing

worst on quantitative (58.2%, 48.7%), followed by polysemy (63.9%, 56.2%) and

negation (65.2%, 62.4%), and perform best on idioms (71.4%, 71.9%) and reference

(72.4%, 70.7%).

In the context of commonsense reasoning, CosmosQA (Huang et al., 2019)

provides a taxonomy of commonsense reasoning types including pre-/post-

conditions — causes/effects of an event, motivations — intents or purposes, re-

actions — possible reactions of people or objects to an event, temporal events —

what events might happen before or after the current event, situational facts — facts

that can be inferred from the description of a particular situation, counterfactuals —

what might happen given a counterfactual condition, and other — other types, e.g.,

cultural norms. ReCoRD (Zhang et al., 2018) provides a taxonomy similar to those

previously observed, and with 75% of questions requiring commonsense reasoning,

breaks these down into conceptual knowledge, causal reasoning, naive psychology

(involving predictable human mental states in reaction to events), and other (such
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as social norms, planning, spatial reasoning).

CoQA (Reddy et al., 2019), a conversational question answering challenge

dataset, provides a breakdown of linguistic phenomena for the relationship between

a question and its conversation history centred around coreference, and also in-

troduces the phenomenon of pragmatics — similar in definition to the previously

discussed inferential or implicit reasoning — finding that 27.2% of questions pre-

sented this phenomenon. The authors further find that there was a lexical match

between the question and passage in 29.8% of dataset instances and paraphrasing

in 43.0% of cases.

Also in the context of conversational question answering, Ramos and Lipani

(2024) extend the ShARC dataset (Saeidi et al., 2018) with automatically extracted

explanations designed to capture the type of reasoning behind the model’s output

for over 24k conversations, the utility of which is further validated by experts. Such

approaches could provide a standard methodology for the easy comparison of rea-

soning types across datasets, and help identify new patterns in model behaviour that

could further be used to drive modelling improvements.

2.2 Robustness in an ML Context

This thesis focuses on robustness in the context of ML systems, but the term is

borrowed from traditional software engineering and algorithmic design. In the ML

context, building on work on robust optimisation, robustness has been defined as the

property that if a testing sample is “similar” to a training sample, then the testing

error is close to the training error (Ben-Tal and Nemirovski, 1998, 1999; Bertsimas

and Sim, 2004) — a definition that has also been used to define the generalisation

of ML systems based on their robustness (Globerson and Roweis, 2006; Xu and

Mannor, 2010).

ML system robustness generally requires a lack of sensitivity to disturbances

in the input space — irrespective of whether these occur to numeric, or text repre-

sentations of the input for models processing language. Robustness further spans

both over- and under-sensitivity, meaning that system outputs should both not fluc-
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tuate massively when minor changes do not require them to, such as when adding

a typo to an input, but should also change considerably when minor input pertur-

bations do require them to, for example by introducing breaking semantic changes

such as by changing the entity about which a question is asked (Welbl et al., 2020).

Recent work also seeks to define evaluation methodologies for ML system robust-

ness (Carlini and Wagner, 2017b), and understand the trade-offs between improving

system robustness and accuracy under adversarial training (Tsipras et al., 2019), al-

though whether and how these system objectives conflict remains disputed (Stutz

et al., 2019). What is certain is that both are important goals for the development of

useful real-world systems.

2.3 Adversarial Examples

We have briefly touched on the concept of adversarial examples in earlier discus-

sions. The concept of adversarial examples in ML originated in the computer vision

space, where small, carefully crafted perturbations to input data could cause mis-

classification by machine learning models (Globerson and Roweis, 2006). Goodfel-

low et al. (2015) showed that imperceptible noise, when added to images, could lead

deep neural networks to misclassify with high confidence. This finding sparked a

flurry of interest in understanding and defending against these “adversarial attacks”.

Initial efforts focused primarily on developing defensive mechanisms, such

as adversarial training, where models are exposed to adversarial examples during

training to improve their robustness (Goodfellow et al., 2015; Szegedy et al., 2015;

Kurakin et al., 2017b; Raghunathan et al., 2018; Yuan et al., 2019). For a thorough

review of adversarial attacks and defence mechanisms, see Wiyatno et al. (2019).

Developing robust models was soon realised to be more challenging than an-

ticipated. In 2017, Athalye et al. (2018a) demonstrated that many proposed de-

fences were ineffective against stronger, more sophisticated attacks. Adversarial

examples were also found to be challenging to detect, easily bypassing detection

systems (Carlini and Wagner, 2017a). This highlighted the need for a deeper under-

standing of the underlying model vulnerabilities. As the field matured, so too did
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the sophistication of adversarial attacks, along with a focus on real-world adversar-

ial examples (Kurakin et al., 2017a; Hendrycks et al., 2021b).

More complex and subtle ways to manipulate inputs, moving beyond simple

noise addition were explored such as leveraging gradient information (Carlini and

Wagner, 2017b) or the transferability properties of adversarial examples – that is the

their tendency to remain effective across different models – in a black-box setting

without access to the model’s parameters (Papernot et al., 2016).

With the increasing popularity and success of deep learning in NLP, the con-

cept of adversarial examples was further extended and has been studied extensively

in NLP as a technique for probing the limitations and identifying failure points of

NLP systems and highlight model vulnerabilities — see Zhang et al. (2019) for

a recent survey. The unique characteristics of text data, however, presented new

challenges as, while image perturbations are often measured by their impercepti-

bility, textual adversarial examples also needed to consider linguistic fluency and

semantic consistency. One of the earliest works in this direction was by Jia and

Liang (2017), who proposed an attack that inserted distractor sentences to SQuAD

for evaluating Reading Comprehension systems. This exploration also extended to

other NLP tasks such as text classification (Ebrahimi et al., 2018b) and machine

translation (Belinkov and Bisk, 2018).

A particular challenge in the NLP space is posed by the discrete search space,

where altering a single word can change the semantics of an instance or render it

incoherent. Recent work overcomes this issue by focusing on simple semantic-

invariant transformations, showing that neural models can be oversensitive to such

input perturbations. For instance, Ribeiro et al. (2018) use a set of simple per-

turbations such as replacing “Who is” with “Who’s”. Other semantic-preserving

perturbations include typos (Hosseini et al., 2017), the addition of distracting sen-

tences (Jia and Liang, 2017; Wang and Bansal, 2018), character-level adversarial

perturbations (Ebrahimi et al., 2018b), and paraphrasing (Iyyer et al., 2018). Wal-

lace et al. (2019a) further identify universal attacks that are transferable across both

examples and models.
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There was also considerable work exploring methods for generating adversar-

ial examples (Xiao et al., 2018; Baluja and Fischer, 2018; Alzantot et al., 2018;

Athalye et al., 2018b) within and beyond the NLP domain. In Chapter 5, we extend

these concepts by introducing a methodology to synthetically generate adversarial

examples designed to emulate the attack strategies taken by human adversaries.

Generation of adversarial examples against generative models has also been

explored (Kos et al., 2018), as well as work exploring the interactions and depen-

dencies between adversarial examples and model robustness (Xie et al., 2020; Cisse

et al., 2017; Ilyas et al., 2019).

2.4 Generative Language Models

We make use of generative models primarily in Chapter 5 to generate synthetic

questions designed to be adversarial to performant models in-the-loop, and in Chap-

ter 6 to assist human annotators with creating more effective adversarial attacks.

Generative models are a type of ML model that can generate new data by sam-

pling from the distribution learnt on the underlying distribution of the training data.

In NLP, they have been used for tasks such as language generation, text completion,

and dialogue systems. One of the earliest and most widely used generative mod-

els in NLP is the n-gram language model, which predicts the probability of a word

given its preceding words in a sentence. For a comprehensive historical overview,

we refer the reader to Jurafsky and Martin (2000).

More recently, deep learning models, such as Recurrent Neural Networks

(RNNs) (LeCun et al., 2015) and transformer-based models (Vaswani et al., 2017),

have been used for generative tasks in NLP. Notable examples include sequence-

to-sequence (seq2seq) models (Sutskever et al., 2014), which are commonly used

for machine translation and text summarisation tasks, and the GPT family of mod-

els, which use transformer-based architectures to generate human-like text (Radford

et al., 2018; Brown et al., 2020).

In this work, we use generative seq2seq models built on the transformer ar-

chitecture. BART (Lewis et al., 2020), is pretrained as a denoising autoencoder,
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trained by corrupting original text and learning to reconstruct it — it can be seen as

generalising BERT as the encoder and the GPT decoder architecture. We finetune

the pretrained BART model for the task of adversarial question generation.

We also make a quick note about the evaluation challenges posed by generative

language models. Since the output space is relatively unconstrained, limited only

by the model’s vocabulary, such models can predict any output. As such, automated

evaluation techniques, such as ROUGE for summarisation or BLEU for machine

translation, tend to struggle to capture a reliable evaluation of model output.

2.5 Human-Computer Interaction
While our work involves various aspects of involving humans and models in the

annotation loop, we touch briefly on ideas centres around Human-Computer Inter-

action (HCI), providing insight into how human annotators and generative assistants

interact in Chapter 6.

HCI is an interdisciplinary field that focuses on design-specific user-interface

technologies, specifically the interfaces where people and computers interact. It

involves the study of how people interact with computer systems and the design

of interfaces that are intuitive, efficient, and user-friendly. A primary goal of HCI

research is to improve the usability and accessibility of computer systems by under-

standing the needs and capabilities of human users. This field draws on principles

and methods from various disciplines, including computer science, cognitive psy-

chology, human factors engineering, and user experience design, to create interac-

tive technologies that are effective and easy to use (Preece et al., 1994; Myers et al.,

1996; Carroll, 1997; Te’eni et al., 2005).

For a brief historical perspective, we refer the reader to Myers (1998) and for

an in-depth review of HCI research methods to Lazar et al. (2010). Many of the

concepts involving humans and machines in the loop explored in this thesis are

inspired by ideas borrowed from HCI.



Chapter 3

“Beating the AI” to Improve

Robustness

Robustness is among the key ML system attributes required for widespread real-

world use. Trust is an integral element of human interaction. When a person is

convinced that another person or system possesses a particular capability, that is,

they understand the complexities and nuances of a task and have demonstrated the

ability the perform that task reliably, they have earned trust. However, trust is easier

to lose than to gain. Consider, as an example, a calculator – a system that humans

have grown to rely on for complex mathematical computation. Calculators are used

broadly, across a wide range of critical and non-critical applications. Now, imagine

a situation where a calculator, given the input 14× 3, provides the output 43. Far

from being the answer to life, the universe, and everything, such an unexpected

result would shatter the belief or trust in the calculator’s accuracy, and potentially

cast doubt on the reliability of all calculators.

Calculators are, at their core, deterministic systems programmed to follow a

predetermined set of rules and algorithms. Humans are not, yet we are still able to

operate and interact with one another on a basis of trust. What is it that separates the

nature of interactions between humans with those with similarly non-deterministic

systems such as ML models? One hypothesis is that the failure modes or patterns

of such systems fundamentally differ from those made by humans, particularly in

ways that are both over-confident and catastrophic.
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Such ideas had been explored within the machine learning community through

the concept of adversarial examples, first within the space of computer vi-

sion (Globerson and Roweis, 2006; Goodfellow et al., 2015) and language, and with

particular relevance to this work, in the context of reading comprehension (Jia and

Liang, 2017). Adversarial examples are minimal and non-semantic perturbations of

instances sampled from a data distribution on which an ML system is expected to

perform well, but where it fails to predict or classify correctly. In the context of our

earlier thought experiment, these adversarial examples take on a critical dimension

of user trust. When a user encounters such a failure, particularly when they expect

the system to perform correctly, it undermines any trust in that particular system

and potentially all similar systems.

There were two primary approaches for addressing weaknesses in existing sys-

tems around this time; i) automatic adversarial attacks such as ADDSENT (Jia and

Liang, 2017), which described a perturbation algorithm, in this case adding a dis-

tractor sentence to the end of a paragraph, but which oftentimes strayed from a nat-

ural data distribution, and ii) manually-curated datasets targeting specific aspects or

capabilities, such as multi-hop (Welbl et al., 2018; Yang et al., 2018a) or numeri-

cal (Dua et al., 2019) reasoning, which often address an important but narrow set of

capabilities and which we expand on in section 3.3.

An annotation approach for overcoming these challenges, seeking a balance

between attack-space breadth and a close representation of a natural distribution of

examples that humans might use to interact with such models, while still allowing

for crowd-sourced large-scale data collection, involves using a model-in-the-loop

and encouraging crowd-workers to generate examples that the model fails to predict

correctly. This work provides a thorough investigation of this approach and its

effects on question diversity and reasoning requirements of the datasets produced,

as well as an understanding of how reading comprehension models can benefit from

access to this additional data.

The material in this chapter is based on the published work titled “Beat the

AI: Investigating Adversarial Human Annotation for Reading Comprehension” au-
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thored by Max Bartolo, Alastair Roberts, Johannes Welbl, Sebastian Riedel and

Pontus Stenetorp.

This work was published in the Transactions of the Association for Compu-

tational Linguistics (TACL), Volume 8, 2020, Pages 662 - 678 by the MIT Press,

and presented at the 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP 2020) which was held entirely online rather than in the Do-

minican Republic as originally planned, to avoid the need for international travel

and risk of further spread of COVID-19.

The three new datasets introduced in this work, collectively AdversarialQA,

are available publicly under a CC BY-SA 4.0 license and can be downloaded

from https://adversarialqa.github.io/ or Hugging Face datasets at

https://huggingface.co/datasets/UCLNLP/adversarial_qa.

A public leaderboard is also available, powered by the Dynabench platform,

at https://dynabench.org/tasks/qa.

3.1 Overview

Innovations in annotation methodology have been a catalyst for Reading Compre-

hension (RC) datasets and models. One recent trend to challenge current RC models

is to involve a model in the annotation process: humans create questions adversari-

ally, such that the model fails to answer them correctly. In this work we investigate

this annotation methodology and apply it in three different settings, collecting a to-

tal of 36,000 samples with progressively stronger models in the annotation loop.

This allows us to explore questions such as the reproducibility of the adversarial

effect, transfer from data collected with varying model-in-the-loop strengths, and

generalisation to data collected without a model. We find that training on adversar-

ially collected samples leads to strong generalisation to non-adversarially collected

datasets, yet with progressive performance deterioration with increasingly stronger

models-in-the-loop. Furthermore, we find that stronger models can still learn from

datasets collected with substantially weaker models-in-the-loop. When trained on

data collected with a BiDAF model in the loop, RoBERTa achieves 39.9F1 on ques-

https://aclanthology.org/2020.tacl-1.43/
https://aclanthology.org/2020.tacl-1.43/
https://2020.emnlp.org/schedule
https://2020.emnlp.org/schedule
https://adversarialqa.github.io/
https://creativecommons.org/licenses/by-sa/4.0/
https://adversarialqa.github.io/
https://huggingface.co/datasets/UCLNLP/adversarial_qa
https://dynabench.org/tasks/qa
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question ahuman amodel 🏆

Who created the first 
commercial piston steam 
engine?

Thomas 
Newcomen

Thomas 
Newcomen

How long has steam been used 
to move things?

 over 2000 
years 2000 years

What happened in the year prior 
to the penultimate year of the 
17th century?

Thomas Savery 
patented a 

steam pump
1698

i)

In what year 
did Savery 
patent his 
steam pump?▲

Early attempts 
to use steam to 
do work were 
what?▲

Who was the 
man who had 
an engine in 
the 18th 
century?▲

What happened 
in the year 
prior to the 
penultimate 
year of the 17th 
century?▲

None (SQuAD) BiDAF BERT RoBERTa

ii) Model-in-the-loop Strength

Using boiling water to produce mechanical motion goes back over 
2000 years, but early devices were not practical. The Spanish 
inventor Jerónimo de Ayanz y Beaumont obtained the first patent 
for a steam engine in 1606. In 1698 Thomas Savery patented a 
steam pump that used […]. Thomas Newcomen's atmospheric 
engine was the first commercial true steam engine using a piston, 
and was used in 1712 for pumping in a mine.

Figure 3.1: Human annotation with a model in the loop, showing: i) the “Beat the AI” an-
notation setting where only questions that the model does not answer correctly
are accepted, and ii) questions generated this way, with a progressively stronger
model in the annotation loop.

tions that it cannot answer when trained on SQuAD – only marginally lower than

when trained on data collected using RoBERTa itself (41.0F1).

3.2 Introduction

Data collection is a fundamental prerequisite for Machine Learning-based ap-

proaches to Natural Language Processing (NLP). Innovations in data acquisition

methodology, such as crowdsourcing, have led to major breakthroughs in scalabil-

ity and preceded the “deep learning revolution”, for which they can arguably be

seen as co-responsible (Deng et al., 2009; Bowman et al., 2015; Rajpurkar et al.,

2016). Annotation approaches include expert annotation, for example, relying on

trained linguists (Marcus et al., 1993), crowd-sourcing by non-experts (Snow et al.,

2008), distant supervision (Mintz et al., 2009; Joshi et al., 2017), and leveraging



3.2. Introduction 77

document structure (Hermann et al., 2015). The concrete data collection paradigm

chosen dictates the degree of scalability, annotation cost, precise task structure (of-

ten arising as a compromise of the above) and difficulty, domain coverage, as well

as resulting dataset biases and model blind spots (Jia and Liang, 2017; Schwartz

et al., 2017; Gururangan et al., 2018).

A recently emerging trend in NLP dataset creation is the use of a model-in-

the-loop when composing samples: A contemporary model is used either as a filter

or directly during annotation, to identify samples wrongly predicted by the model.

Examples of this method are realised in Build It Break It, The Language Edition (Et-

tinger et al., 2017), HotpotQA (Yang et al., 2018a), SWAG (Zellers et al., 2018),

Mechanical Turker Descent (Yang et al., 2018b), DROP (Dua et al., 2019), CO-

DAH (Chen et al., 2019), Quoref (Dasigi et al., 2019), and AdversarialNLI (Nie

et al., 2020).1 This approach probes model robustness and ensures that the resulting

datasets pose a challenge to current models, which drives research to tackle new

sets of problems.

We study this approach in the context of RC, and investigate its robustness in

the face of continuously progressing models – do adversarially constructed datasets

quickly become outdated in their usefulness as models grow stronger?

Based on models trained on the widely used SQuAD dataset, and following the

same annotation protocol, we investigate the annotation setup where an annotator

has to compose questions for which the model predicts the wrong answer. As a

result, only samples that the model fails to predict correctly are retained in the

dataset – see Figure 3.1 for an example.

We apply this annotation strategy with three distinct models in the loop, re-

sulting in datasets with 12,000 samples each. We then study the reproducibility

of the adversarial effect when retraining the models with the same data, as well

as the generalisation ability of models trained using datasets produced with and

without a model adversary. Models can, to a considerable degree, learn to gen-

eralise to more challenging questions, based on training sets collected with both

1 The idea was alluded to at least as early as Richardson et al. (2013), but it has only recently
seen wider adoption.
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stronger and also weaker models in the loop. Compared to training on SQuAD,

training on adversarially composed questions leads to a similar degree of general-

isation to non-adversarially written questions, both for SQuAD and NaturalQues-

tions (Kwiatkowski et al., 2019). It furthermore leads to general improvements

across the model-in-the-loop datasets we collect, as well as improvements of more

than 20.0F1 for both BERT and RoBERTa on an extractive subset of DROP (Dua

et al., 2019), another adversarially composed dataset. When conducting a system-

atic analysis of the concrete questions different models fail to answer correctly, as

well as non-adversarially composed questions, we see that the nature of the result-

ing questions changes: Questions composed with a model in the loop are overall

more diverse, use more paraphrasing, multi-hop inference, comparisons, and back-

ground knowledge, and are generally less easily answered by matching an explicit

statement that states the required information literally. Given our observations, we

believe a model-in-the-loop approach to annotation shows promise and should be

considered when creating future RC datasets.

To summarise, our contributions are as follows: First, an investigation into

the model-in-the-loop approach to RC data collection based on three progressively

stronger models, together with an empirical performance comparison when trained

on datasets constructed with adversaries of different strength. Second, a compar-

ative investigation into the nature of questions composed to be unsolvable by a

sequence of progressively stronger models. Third, a study of the reproducibility

of the adversarial effect and the generalisation ability of models trained in various

settings.

3.3 Related Work

Constructing Challenging Datasets. Recent efforts in dataset construction have

driven considerable progress in RC, yet datasets are structurally diverse and an-

notation methodologies vary. With its large size and combination of free-form

questions with answers as extracted spans, SQuAD1.1 (Rajpurkar et al., 2016)

has become an established benchmark that has inspired the construction of a se-
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ries of similarly structured datasets. However, mounting evidence suggests that

models can achieve strong generalisation performance merely by relying on su-

perficial cues – such as lexical overlap, term frequencies, or entity type match-

ing (Chen et al., 2016; Weissenborn et al., 2017; Sugawara et al., 2018). It has

thus become an increasingly important consideration to construct datasets that RC

models find challenging, and for which natural language understanding is a requi-

site for generalisation. Attempts to achieve this non-trivial aim have typically re-

volved around extensions to the SQuAD dataset annotation methodology. They in-

clude unanswerable questions (Trischler et al., 2017; Rajpurkar et al., 2018; Reddy

et al., 2019; Choi et al., 2018), adding the option of “Yes” or “No” answers (Dua

et al., 2019; Kwiatkowski et al., 2019), questions requiring reasoning over mul-

tiple sentences or documents (Welbl et al., 2018; Yang et al., 2018a), questions

requiring rule interpretation or context awareness (Saeidi et al., 2018; Choi et al.,

2018; Reddy et al., 2019), limiting annotator passage exposure by sourcing ques-

tions first (Kwiatkowski et al., 2019), controlling answer types by including options

for dates, numbers, or spans from the question (Dua et al., 2019), as well as ques-

tions with free form answers (Nguyen et al., 2016; Kočiský et al., 2018; Reddy

et al., 2019).

Adversarial Annotation. One recently adopted approach to constructing challeng-

ing datasets involves the use of an adversarial model to select examples that it

does not perform well on, an approach which superficially is akin to active learn-

ing (Lewis and Gale, 1994). Here, we make a distinction between two sub-

categories of adversarial annotation: i) adversarial filtering, where the adversarial

model is applied offline in a separate stage of the process, usually after data genera-

tion; examples include SWAG (Zellers et al., 2018), ReCoRD (Zhang et al., 2018),

HotpotQA (Yang et al., 2018a), and HellaSWAG (Zellers et al., 2019); ii) model-in-

the-loop adversarial annotation, where the annotator can directly interact with the

adversary during the annotation process and uses the feedback to further inform the

generation process; examples include CODAH (Chen et al., 2019), Quoref (Dasigi

et al., 2019), DROP (Dua et al., 2019), FEVER2.0 (Thorne et al., 2019), Adversar-
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ialNLI (Nie et al., 2020), as well as work by Dinan et al. (2019), Kaushik et al.

(2020), and Wallace et al. (2019b) for the Quizbowl task.

We are primarily interested in the latter category, as this feedback loop cre-

ates an environment where the annotator can probe the model directly to explore its

weaknesses and formulate targeted adversarial attacks. Although Dua et al. (2019)

and Dasigi et al. (2019) make use of adversarial annotations for RC, both annotation

setups limit the reach of the model-in-the-loop: In DROP, primarily due to the im-

position of specific answer types, and in Quoref by focusing on co-reference, which

is already a known RC model weakness.

In contrast, we investigate a scenario where annotators interact with a model in

its original task setting – annotators must thus explore a range of natural adversarial

attacks, as opposed to filtering out “easy” samples during the annotation process.

3.4 Annotation Methodology

3.4.1 Annotation Protocol

The data annotation protocol is based on SQuAD1.1, with a model in the loop, and

the additional instruction that questions should only have one answer in the passage,

which directly mirrors the setting in which these models were trained.

Formally, provided with a passage p, a human annotator generates a question q

and selects a (human) answer ah by highlighting the corresponding span in the pas-

sage. The input (p,q) is then given to the model, which returns a predicted (model)

answer am. To compare the two, a word-overlap F1 score between ah and am is com-

puted; a score above a threshold of 40% is considered a “win” for the model.2 This

process is repeated until the human “wins”; Figure 3.2 gives a schematic overview

of the process. All successful (p,q,ah) triples, that is, those which the model is

unable to answer correctly, are then retained for further validation.

2 This threshold is set after initial experiments to not be overly restrictive given acceptable answer
spans, e.g., a human answer of “New York” vs. model answer “New York City” would still lead to a
model “win”.
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1. Human generates question q and 
selects answer ah for passage p.

2. (p, q) sent to the model.  
Model predicts answer am.

3. F1 score between ah and am is 
calculated; if the F1 score is greater than 

a threshold (40%), the human loses.

4(b). Human loses. 
The process is restarted (same p).

4(a). Human wins. The human-sourced 
adversarial example (p, q, ah) is collected.

Figure 3.2: Overview of the annotation process to collect adversarially written questions
from humans using a model in the loop.

Figure 3.3: “Beat the AI” question generation interface. Human annotators are tasked with
asking questions about a provided passage which the model in the loop fails to
answer correctly.

3.4.2 Annotation Details

Models in the Annotation Loop. We begin by training three different models,

which are used as adversaries during data annotation. As a seed dataset for training

the models we select the widely used SQuAD1.1 (Rajpurkar et al., 2016) dataset,
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a large-scale resource for which a variety of mature and well-performing models

are readily available. Furthermore, unlike cloze-based datasets, SQuAD is robust

to passage/question-only adversarial attacks (Kaushik and Lipton, 2018). We will

compare dataset annotation with a series of three progressively stronger models as

adversary in the loop, namely BiDAF (Seo et al., 2017), BERTLARGE (Devlin et al.,

2019), and RoBERTaLARGE (Liu et al., 2019b). Each of these will serve as a model

adversary in a separate annotation experiment and result in three distinct datasets;

we will refer to these as DBiDAF, DBERT, and DRoBERTa respectively. Examples from

the validation set of each are shown in Table 3.1. We rely on the AllenNLP (Gardner

et al., 2018) and Transformers (Wolf et al., 2020) model implementations, and our

models achieve EM/F1 scores of 65.5%/77.5%, 82.7%/90.3% and 86.9%/93.6% for

BiDAF, BERT, and RoBERTa respectively on the SQuAD1.1 validation set, consis-

tent with results reported in other work.

Our choice of models reflects both the transition from LSTM-based to pre-

trained transformer-based models, as well as a graduation among the latter; we

investigate how this is reflected in datasets collected with each of these different

models in the annotation loop. For each of the models we collect 10,000 training,

1,000 validation, and 1,000 test examples. Dataset sizes are motivated by the data

efficiency of transformer-based pretrained models (Devlin et al., 2019; Liu et al.,

2019b), which has improved the viability of smaller-scale data collection efforts for

investigative and analysis purposes.

To ensure the experimental integrity provided by reporting all results on a held-

out test set, we split the existing SQuAD1.1 validation set in half (stratified by

document title) as the official test set is not publicly available. We maintain passage

consistency across the training, validation and test sets of all datasets to enable

like-for-like comparisons. Lastly, we use the majority vote answer as ground truth

for SQuAD1.1 to ensure that all our datasets have one valid answer per question,

enabling us to fairly draw direct comparisons. For clarity, we will hereafter refer to

this modified version of SQuAD1.1 as DSQuAD.
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B
iD

A
F Passage: [. . . ] the United Methodist Church has placed great emphasis on the importance of education. As such, the

United Methodist Church established and is affiliated with around one hundred colleges [. . . ] of Methodist-related
Schools, Colleges, and Universities. The church operates three hundred sixty schools and institutions overseas.
Question: The United Methodist Church has how many schools internationally?

B
iD

A
F Passage: In a purely capitalist mode of production (i.e. where professional and labor organizations cannot limit the

number of workers) the workers wages will not be controlled by these organizations, or by the employer, but rather
by the market. Wages work in the same way as prices for any other good. Thus, wages can be considered as a [. . . ]
Question: What determines worker wages?

B
iD

A
F Passage: [. . . ] released to the atmosphere, and a separate source of water feeding the boiler is supplied. Normally

water is the fluid of choice due to its favourable properties, such as non-toxic and unreactive chemistry, abundance,
low cost, and its thermodynamic properties. Mercury is the working fluid in the mercury vapor turbine [. . . ]
Question: What is the most popular type of fluid?

B
E

R
T Passage: [. . . ] Jochi was secretly poisoned by an order from Genghis Khan. Rashid al-Din reports that the great

Khan sent for his sons in the spring of 1223, and while his brothers heeded the order, Jochi remained in Khorasan.
Juzjani suggests that the disagreement arose from a quarrel between Jochi and his brothers in the siege of Urgench
[. . . ]
Question: Who went to Khan after his order in 1223?

B
E

R
T Passage: In the Sandgate area, to the east of the city and beside the river, resided the close-knit community of keelmen

and their families. They were so called because [. . . ] transfer coal from the river banks to the waiting colliers, for
export to London and elsewhere. In the 1630s about 7,000 out of 20,000 inhabitants of Newcastle died of plague
[. . . ]
Question: Where did almost half the people die?

B
E

R
T Passage: [. . . ] was important to reduce the weight of coal carried. Steam engines remained the dominant source of

power until the early 20th century, when advances in the design of electric motors and internal combustion engines
gradually resulted in the replacement of reciprocating (piston) steam engines, with shipping in the 20th-century [. . . ]
Question: Why did steam engines become obsolete?

R
oB

E
R

Ta Passage: [. . . ] and seven other hymns were published in the Achtliederbuch, the first Lutheran hymnal. In 1524
Luther developed his original four-stanza psalm paraphrase into a five-stanza Reformation hymn that developed the
theme of ”grace alone” more fully. Because it expressed essential Reformation doctrine, this expanded version of
”Aus [. . . ]
Question: Luther’s reformed hymn did not feature stanzas of what quantity?

R
oB

E
R

Ta Passage: [. . . ] tight end Greg Olsen, who caught a career-high 77 passes for 1,104 yards and seven touchdowns,
and wide receiver Ted Ginn, Jr., who caught 44 passes for 739 yards and 10 touchdowns; [. . . ] receivers included
veteran Jerricho Cotchery (39 receptions for 485 yards), rookie Devin Funchess (31 receptions for 473 yards and
[. . . ]
Question: Who caught the second most passes?

R
oB

E
R

Ta Passage: Other prominent alumni include anthropologists David Graeber and Donald Johanson, who is best known
for discovering the fossil of a female hominid australopithecine known as ”Lucy” in the Afar Triangle region, psy-
chologist John B. Watson, American psychologist who established the psychological school of behaviorism, communi-
cation theorist Harold Innis, chess grandmaster Samuel Reshevsky, and conservative international relations scholar
and White House Coordinator of Security Planning for the National Security Council Samuel P. Huntington.
Question: Who thinks three moves ahead?

Table 3.1: Validation set examples of questions collected using different RC models
(BiDAF, BERT, and RoBERTa) in the annotation loop. The answer to the ques-
tion is highlighted in the passage.

Crowdsourcing. We use custom-designed Human Intelligence Tasks (HITs) served

through Amazon Mechanical Turk (AMT) for all annotation efforts (see Ap-

pendix A.2). Workers are required to be based in Canada, the UK, or the US, have a

HIT Approval Rate greater than 98%, and have previously completed at least 1,000

HITs successfully. We experiment with and without the AMT Master requirement

and find no substantial difference in quality, but observe a throughput reduction of
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nearly 90%. We pay USD 2.00 for every question generation HIT, during which

workers are required to compose up to five questions that “beat” the model in the

loop (cf. Figure 3.3). The mean HIT completion times for BiDAF, BERT, and

RoBERTa are 551.8s, 722.4s, and 686.4s. Furthermore we find that human workers

are able to generate questions that successfully “beat” the model in the loop 59.4%

of the time for BiDAF, 47.1% for BERT, and 44.0% for RoBERTa. These metrics

broadly reflect the relative strength of the models.

3.4.3 Quality Control

Training and Qualification. We provide a two-part worker training interface in or-

der to i) familiarise workers with the process, and ii) conduct a first screening based

on worker outputs. The interface familiarises workers with formulating questions,

and answering them through span selection. Workers are asked to generate ques-

tions for two given answers, to highlight answers for two given questions, to gen-

erate one full question-answer pair, and finally to complete a question generation

HIT with BiDAF as the model in the loop. Each worker’s output is then reviewed

manually (by the authors); those who pass the screening are added to the pool of

qualified annotators.

Manual Worker Validation. In the second annotation stage, qualified workers

produce data for the “Beat the AI” question generation task. A sample of every

worker’s HITs is manually reviewed based on their total number of completed tasks

n, determined by b5 · log10(n)+1c, chosen for convenience. This is done after every

annotation batch; if workers fall below an 80% success threshold at any point, their

qualification is revoked and their work is discarded in its entirety.

Question Answerability. As the models used in the annotation task become

stronger, the resulting questions tend to become more complex. However, this also

means that it becomes more challenging to disentangle measures of dataset quality

from inherent question difficulty. As such, we use the condition of human answer-

ability for an annotated question-answer pair as follows: It is answerable if at least

one of three additional non-expert human validators can provide an answer match-

ing the original. We conduct answerability checks on both the validation and test
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Dev Test

Resource EM F1 EM F1

DBiDAF 63.0 76.9 62.6 78.5

DBERT 59.2 74.3 63.9 76.9

DRoBERTa 58.1 72.0 58.7 73.7

Table 3.2: Non-expert human performance for a randomly-selected validator per question.

sets, and achieve answerability scores of 87.95%, 85.41%, and 82.63% for DBiDAF,

DBERT, and DRoBERTa. We discard all questions deemed unanswerable from the

validation and test sets, and further discard all data from any workers with less

than half of their questions considered answerable. It should be emphasised that

the main purpose of this process is to create a level playing field for comparison

across datasets constructed for different model adversaries, and can inevitably re-

sult in valid questions being discarded. The total cost for training and qualification,

dataset construction, and validation is approximately USD 27,000.

Human Performance. We select a randomly chosen validator’s answer to each

question and compute Exact Match (EM) and word overlap F1 scores with the

original to calculate non-expert human performance; Table 3.2 shows the result.

We observe a clear trend: the stronger the model in the loop used to construct the

dataset, the harder the resulting questions become for humans.

3.4.4 Dataset Statistics

Table 3.3 provides general details on the number of passages and question-answer

pairs used in the different dataset splits. The average number of words in questions

and answers, as well as the average longest n-gram overlap between passage and

question are given in Table 3.4.

We can again observe two clear trends: From weaker towards stronger models

used in the annotation loop, the average length of answers increases, and the largest

n-gram overlap drops from 3 to 2 tokens. That is, on average there is a trigram

overlap between the passage and question for DSQuAD, but only a bigram overlap
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#Passages #QAs

Resource Train Dev Test Train Dev Test

DSQuAD 18,891 971 1,096 87,599 5,278 5,292

DBiDAF 2,523 278 277 10,000 1,000 1,000

DBERT 2,444 283 292 10,000 1,000 1,000

DRoBERTa 2,552 341 333 10,000 1,000 1,000

Table 3.3: Number of passages and question-answer pairs for each data resource.
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Figure 3.4: Distribution of longest n-gram overlap between passage and question for dif-
ferent datasets. µ: mean; σ : standard deviation.

for DRoBERTa (Figure 3.4).3 This is in line with prior observations on lexical overlap

as a predictive cue in SQuAD (Weissenborn et al., 2017; Min et al., 2018); questions

with less overlap are harder to answer for any of the three models.

3Note that the original SQuAD1.1 dataset can be considered a limit case of the adversarial an-
notation framework, in which the model in the loop always predicts the wrong answer, thus every
question is accepted.
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DSQuAD DBiDAF DBERT DRoBERTa

Passage length 118.1 115.3 114.6 114.6

Question length 10.3 9.8 9.8 10.0

Answer length 2.6 2.9 3.0 3.2

N-Gram overlap 3.0 2.2 2.1 2.0

Table 3.4: Average number of words per question and answer, and average longest n-gram
overlap between passage and question.

We furthermore analyse question types based on the question wh-word. We

find that – in contrast to DSQuAD – the datasets collected with a model in the anno-

tation loop have fewer when, how and in questions, and more which, where and why

questions, as well as questions in the other category, which indicates increased ques-

tion diversity. In terms of answer types, we observe more common noun and verb

phrase clauses than in DSQuAD, as well as fewer dates, names, and numeric answers.

This reflects on the strong answer-type matching capabilities of contemporary RC

models. For further dataset statistics on this, see Appendix A.1. The training and

validation sets used in this analysis (DBiDAF, DBERT and DRoBERTa) have been pub-

licly released and are available at https://adversarialqa.github.io/.

Original Re-initialised

Model Resource EM F1 EM F1

BiDAF DBiDAF
dev 0.0 5.3 10.7 0.8 20.4 1.0

BERT DBERT
dev 0.0 4.9 19.7 1.0 30.1 1.2

RoBERTa DRoBERTa
dev 0.0 6.1 15.7 0.9 25.8 1.2

BiDAF DBiDAF
test 0.0 5.5 11.6 1.0 21.3 1.2

BERT DBERT
test 0.0 5.3 18.9 1.2 29.4 1.1

RoBERTa DRoBERTa
test 0.0 5.9 16.1 0.8 26.7 0.9

Table 3.5: Consistency of the adversarial effect (or lack thereof) when retraining the models
in the loop on the same data again, but with different random seeds. We report
the mean and standard deviation (subscript) over 10 re-initialisation runs.

https://adversarialqa.github.io/


88 Chapter 3. “Beating the AI” to Improve Robustness

3.5 Experiments

3.5.1 Consistency of the Model in the Loop

We begin with an experiment regarding the consistency of the adversarial nature

of the models in the annotation loop. Our annotation pipeline is designed to reject

all samples where the model correctly predicts the answer. How reproducible is

this when retraining the model with the same training data? To measure this, we

evaluate the performance of instances of BiDAF, BERT, and RoBERTa, which only

differ from the model used during annotation in their random initialisation and order

of mini-batch samples during training. These results are shown in Table 3.5.

First, we observe – as expected given our annotation constraints – that model

performance is 0.0EM on datasets created with the same respective model in the

annotation loop. We observe however that retrained models do not reliably per-

form as poorly on those samples. For example, BERT reaches 19.7EM, whereas the

original model used during annotation provides no correct answer with 0.0EM. This

demonstrates that random model components can substantially affect the adversarial

annotation process. The evaluation furthermore serves as a baseline for subsequent

model evaluations: This much of the performance range can be learnt merely by re-

training the same model. A possible takeaway for employing the model-in-the-loop

annotation strategy in the future is to rely on ensembles of adversaries and reduce

the dependency on one particular model instantiation, as investigated by Grefen-

stette et al. (2018).

3.5.2 Adversarial Generalisation

A potential problem with the focus on challenging questions is that they might be

very distinct from one another, leading to difficulties in learning to generalise to

and from them. We conduct a series of experiments in which we train on DBiDAF,

DBERT, and DRoBERTa, and observe how well models can learn to generalise to the

respective test portions of these datasets. Table 3.6 shows the results, and there is a

multitude of observations.

First, one clear trend we observe across all training data setups is a nega-
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Evaluation (Test) Dataset
Model Trained On DSQuAD DBiDAF DBERT DRoBERTa DDROP DNQ

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

DSQuAD(10K) 40.9 0.6 54.3 0.6 7.1 0.6 15.7 0.6 5.6 0.3 13.5 0.4 5.7 0.4 13.5 0.4 3.8 0.4 8.6 0.6 25.1 1.1 38.7 0.7

BiDAF DBiDAF 11.5 0.4 20.9 0.4 5.3 0.4 11.6 0.5 7.1 0.4 14.8 0.6 6.8 0.5 13.5 0.6 6.5 0.5 12.4 0.4 15.7 1.1 28.7 0.8

DBERT 10.8 0.3 19.8 0.4 7.2 0.5 14.4 0.6 6.9 0.3 14.5 0.4 8.1 0.4 15.0 0.6 7.8 0.9 14.5 0.9 16.5 0.6 28.3 0.9

DRoBERTa 10.7 0.2 20.2 0.3 6.3 0.7 13.5 0.8 9.4 0.6 17.0 0.6 8.9 0.9 16.0 0.8 15.3 0.8 22.9 0.8 13.4 0.9 27.1 1.2

DSQuAD(10K) 69.4 0.5 82.7 0.4 35.1 1.9 49.3 2.2 15.6 2.0 27.3 2.1 11.9 1.5 23.0 1.4 18.9 2.3 28.9 3.2 52.9 1.0 68.2 1.0

BERT DBiDAF 66.5 0.7 80.6 0.6 46.2 1.2 61.1 1.2 37.8 1.4 48.8 1.5 30.6 0.8 42.5 0.6 41.1 2.3 50.6 2.0 54.2 1.2 69.8 0.9

DBERT 61.2 1.8 75.7 1.6 42.9 1.9 57.5 1.8 37.4 2.1 47.9 2.0 29.3 2.1 40.0 2.3 39.4 2.2 47.6 2.2 49.9 2.3 65.7 2.3

DRoBERTa 57.0 1.7 71.7 1.8 37.0 2.3 52.0 2.5 34.8 1.5 45.9 2.0 30.5 2.2 41.2 2.2 39.0 3.1 47.4 2.8 45.8 2.4 62.4 2.5

DSQuAD(10K) 68.6 0.5 82.8 0.3 37.7 1.1 53.8 1.1 20.8 1.2 34.0 1.0 11.0 0.8 22.1 0.9 25.0 2.2 39.4 2.4 43.9 3.8 62.8 3.1

RoBERTa DBiDAF 64.8 0.7 80.0 0.4 48.0 1.2 64.3 1.1 40.0 1.5 51.5 1.3 29.0 1.9 39.9 1.8 44.5 2.1 55.4 1.9 48.4 1.1 66.9 0.8

DBERT 59.5 1.0 75.1 0.9 45.4 1.5 60.7 1.5 38.4 1.8 49.8 1.7 28.2 1.5 38.8 1.5 42.2 2.3 52.6 2.0 45.8 1.1 63.6 1.1

DRoBERTa 56.2 0.7 72.1 0.7 41.4 0.8 57.1 0.8 38.4 1.1 49.5 0.9 30.2 1.3 41.0 1.2 41.2 0.9 51.2 0.8 43.6 1.1 61.6 0.9

Table 3.6: Training models on various datasets, each with 10,000 samples, and measuring
their generalisation to different evaluation datasets. Results underlined indicate
the best result per model. We report the mean and standard deviation (subscript)
over 10 runs with different random seeds.

tive performance progression when evaluated against datasets constructed with a

stronger model in the loop. This trend holds true for all but the BiDAF model, in

each of the training configurations, and for each of the evaluation datasets. For ex-

ample, RoBERTa trained on DRoBERTa achieves 72.1, 57.1, 49.5, and 41.0F1 when

evaluated on DSQuAD, DBiDAF, DBERT, and DRoBERTa respectively.

Second, we observe that the BiDAF model is not able to generalise well to

datasets constructed with a model in the loop, independent of its training setup. In

particular it is unable to learn from DBiDAF, thus failing to overcome some of its own

blind spots through adversarial training. Irrespective of the training dataset, BiDAF

consistently performs poorly on the adversarially collected evaluation datasets, and

we also note a substantial performance drop when trained on DBiDAF, DBERT, or

DRoBERTa and evaluated on DSQuAD.

In contrast, BERT and RoBERTa are able to partially overcome their blind

spots through training on data collected with a model in the loop, and to a degree

that far exceeds what would be expected from random retraining (cf. Table 3.5).

For example, BERT reaches 47.9F1 when trained and evaluated on DBERT, while

RoBERTa trained on DRoBERTa reaches 41.0F1 on DRoBERTa, both considerably

better than random retraining, or when training on the non-adversarially collected
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DSQuAD(10K) showing gains of 20.6F1 for BERT and 18.9F1 for RoBERTa. These

observations suggest that there exists learnable structure among harder questions

that can be picked up by some of the models, yet not all, as BiDAF fails to achieve

this. The fact that even BERT can learn to generalise to DRoBERTa, but not BiDAF

to DBERT suggests the existence of an inherent limitation to what BiDAF can learn

from these new samples, compared to BERT and RoBERTa.

More generally, we observe that training on DS, where S is a stronger RC

model, helps generalise to DW, where W is a weaker model, for example, training

on DRoBERTa and testing on DBERT. On the other hand, training on DW also leads

to generalisation towards DS. For example, RoBERTa trained on 10,000 SQuAD

samples reaches 22.1F1 on DRoBERTa (DS), whereas training RoBERTa on DBiDAF

and DBERT (DW) bumps this number to 39.9F1 and 38.8F1, respectively.

Third, we observe similar performance degradation patterns for both BERT and

RoBERTa on DSQuAD when trained on data collected with increasingly stronger

models in the loop. For example, RoBERTa evaluated on DSQuAD achieves

82.8, 80.0, 75.1, and 72.1F1 when trained on DSQuAD(10K), DBiDAF, DBERT, and

DRoBERTa respectively. This may indicate a gradual shift in the distributions of

composed questions as the model in the loop gets stronger.

These observations suggest an encouraging takeaway for the model-in-the-loop

annotation paradigm: Even though a particular model might be chosen as an adver-

sary in the annotation loop, which at some point falls behind more recent state-of-

the-art models, these future models can still benefit from data collected with the

weaker model, and also generalise better to samples composed with the stronger

model in the loop.

We further show experimental results for the same models and training

datasets, but now including SQuAD as additional training data in Table 3.7. In

this training setup we generally see improved generalisation to DBiDAF, DBERT,

and DRoBERTa. Interestingly, the relative differences between DBiDAF, DBERT, and

DRoBERTa as training sets used in conjunction with SQuAD are much diminished,

and especially DRoBERTa as (part of) the training set now generalises substantially
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Evaluation (Test) Dataset
Model Training Dataset DSQuAD DBiDAF DBERT DRoBERTa

EM F1 EM F1 EM F1 EM F1

DSQuAD 56.7 0.5 70.1 0.3 11.6 1.0 21.3 1.1 8.6 0.6 17.3 0.8 8.3 0.7 16.8 0.5

BiDAF DSQuAD + DBiDAF 56.3 0.6 69.7 0.4 14.4 0.9 24.4 0.9 15.6 1.1 24.7 1.1 14.3 0.5 23.3 0.7

DSQuAD + DBERT 56.2 0.6 69.4 0.6 14.4 0.7 24.2 0.8 15.7 0.6 25.1 0.6 13.9 0.8 22.7 0.8

DSQuAD + DRoBERTa 56.2 0.7 69.6 0.6 14.7 0.9 24.8 0.8 17.9 0.5 26.7 0.6 16.7 1.1 25.0 0.8

DSQuAD 74.8 0.3 86.9 0.2 46.4 0.7 60.5 0.8 24.4 1.2 35.9 1.1 17.3 0.7 28.9 0.9

BERT DSQuAD + DBiDAF 75.2 0.4 87.2 0.2 52.4 0.9 66.5 0.9 40.9 1.3 51.2 1.5 32.9 0.9 44.1 0.8

DSQuAD + DBERT 75.1 0.3 87.1 0.3 54.1 1.0 68.0 0.8 43.7 1.1 54.1 1.3 34.7 0.7 45.7 0.8

DSQuAD + DRoBERTa 75.3 0.4 87.1 0.3 53.0 1.1 67.1 0.8 44.1 1.1 54.4 0.9 36.6 0.8 47.8 0.5

DSQuAD 73.2 0.4 86.3 0.2 48.9 1.1 64.3 1.1 31.3 1.1 43.5 1.2 16.1 0.8 26.7 0.9

RoBERTa DSQuAD + DBiDAF 73.9 0.4 86.7 0.2 55.0 1.4 69.7 0.9 46.5 1.1 57.3 1.1 31.9 0.8 42.4 1.0

DSQuAD + DBERT 73.8 0.2 86.7 0.2 55.4 1.0 70.1 0.9 48.9 1.0 59.0 1.2 32.9 1.3 43.7 1.4

DSQuAD + DRoBERTa 73.5 0.3 86.5 0.2 55.9 0.7 70.6 0.7 49.1 1.2 59.5 1.2 34.7 1.0 45.9 1.2

Table 3.7: Training models on SQuAD, as well as SQuAD combined with different adver-
sarially created datasets. Results underlined indicate the best result per model.
We report the mean and standard deviation (subscript) over 10 runs with differ-
ent random seeds.

better. We see that BERT and RoBERTa both show consistent performance gains

with the addition of the original SQuAD1.1 training data, but unlike in Table 3.6,

this comes without any noticeable decline in performance on DSQuAD, suggesting

that the adversarially constructed datasets expose inherent model weaknesses, as

investigated by Liu et al. (2019a).

Furthermore, RoBERTa achieves the strongest results on the adversarially col-

lected evaluation sets, in particular when trained on DSQuAD + DRoBERTa. This

stands in contrast to the results in Table 3.6, where training on DBiDAF in several

cases led to better generalisation than training on DRoBERTa. A possible explanation

is that training on DRoBERTa leads to a larger degree of overfitting to specific adver-

sarial examples in DRoBERTa than training on DBiDAF, and that the inclusion of a

large number of standard SQuAD training samples can mitigate this effect.

Results for the models trained on all the datasets combined (DSQuAD, DBiDAF,

DBERT, and DRoBERTa) are shown in Table 3.8. These further support the previ-

ous observations and provide additional performance gains where, for example,
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Evaluation (Test) Dataset
Model DSQuAD DBiDAF DBERT DRoBERTa

EM F1 EM F1 EM F1 EM F1

BiDAF 57.1 0.4 70.4 0.3 17.1 0.8 27.0 0.9 20.0 1.0 29.2 0.8 18.3 0.6 27.4 0.7

BERT 75.5 0.2 87.2 0.2 57.7 1.0 71.0 1.1 52.1 0.7 62.2 0.7 43.0 1.1 54.2 1.0

RoBERTa 74.2 0.3 86.9 0.3 59.8 0.5 74.1 0.6 55.1 0.6 65.1 0.7 41.6 1.0 52.7 1.0

Table 3.8: Training models on SQuAD combined with all the adversarially created datasets
DBiDAF, DBERT, and DRoBERTa. Results underlined indicate the best result per
model. We report the mean and standard deviation (subscript) over 10 runs with
different random seeds.

RoBERTa achieves F1 scores of 86.9 on DSQuAD, 74.1 on DBiDAF, 65.1 on DBERT,

and 52.7 on DRoBERTa, surpassing the best previous performance on all adversarial

datasets.

Finally, we identify a risk of datasets constructed with weaker models in the

loop becoming outdated. For example, RoBERTa achieves 58.2EM/73.2F1 on

DBiDAF, in contrast to 0.0EM/5.5F1 for BiDAF – which is not far from the non-

expert human performance of 62.6EM/78.5F1 (cf. Table 3.2).

It is also interesting to note that, even when training on all the combined data

(cf. Table 3.8), BERT outperforms RoBERTa on DRoBERTa and vice versa, suggest-

ing that there may exist weaknesses inherent to each model class.

3.5.3 Generalisation to Non-Adversarial Data

Compared to standard annotation, the model-in-the-loop approach generally results

in new question distributions. Consequently, models trained on adversarially com-

posed questions might not be able to generalise to standard (“easy”) questions, thus

limiting the practical usefulness of the resulting data. To what extent do models

trained on model-in-the-loop questions generalise differently to standard (“easy”)

questions, compared to models trained on standard (“easy”) questions?

To measure this we further train each of our three models on either DBiDAF,

DBERT, or DRoBERTa and test on DSQuAD, with results in the DSQuAD columns of

Table 3.6. For comparison, the models are also trained on 10,000 SQuAD1.1 sam-

ples (referred to as DSQuAD(10K)) chosen from the same passages as the adversarial

datasets, thus eliminating size and paragraph choice as potential confounding fac-
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tors. The models are tuned for EM on the held-out DSQuAD validation set. Note that,

although performance values on the majority vote DSQuAD dataset are lower than

on the original, for the reasons described earlier, this enables direct comparisons

across all datasets.

Remarkably, neither BERT nor RoBERTa show substantial drops when trained

on DBiDAF compared to training on SQuAD data (−2.1F1, and −2.8F1): Training

these models on a dataset with a weaker model in the loop still leads to strong

generalisation even to data from the original SQuAD distribution, which all models

in the loop are trained on. BiDAF, on the other hand, fails to learn such information

from the adversarially collected data, and drops ¿30F1 for each of the new training

sets, compared to training on SQuAD.

We also observe a gradual decrease in generalisation to SQuAD when train-

ing on DBiDAF towards training on DRoBERTa. This suggests that the stronger the

model, the more dissimilar the resulting data distribution becomes from the original

SQuAD distribution. We later find further support for this explanation in a quali-

tative analysis (Section 3.6). It may however also be due to a limitation of BERT

and RoBERTa – similar to BiDAF – in learning from a data distribution designed

to beat these models; an even stronger model might learn more from, for example,

DRoBERTa.

3.5.4 Generalisation to DROP and NaturalQuestions

Finally, we investigate to what extent models can transfer skills learned on the

datasets created with a model in the loop to two recently introduced datasets:

DROP (Dua et al., 2019), and NaturalQuestions (Kwiatkowski et al., 2019). In this

experiment we select the subsets of DROP and NaturalQuestions that align with the

structural constraints of SQuAD to ensure a like-for-like analysis. Specifically, we

only consider questions in DROP where the answer is a span in the passage and

where there is only one candidate answer. For NaturalQuestions, we consider all

non-tabular long answers as passages, remove HTML tags and use the short answer

as the extracted span. We apply this filtering on the validation sets for both datasets.

Next we split them, stratifying by document (as we did for DSQuAD), which results
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Figure 3.5: Comparison of comprehension types for the questions in different datasets. The
label types are neither mutually exclusive nor comprehensive. Values above
columns indicate excess of the axis range.

in 1409/1418 validation and test set examples for DROP, and 964/982 for Natu-

ralQuestions, respectively. We denote these datasets as DDROP and DNQ for clarity

and distinction from their unfiltered versions. We consider the same models and

training datasets as before, but tune on the respective validation sets of DDROP and

DNQ. Table 3.6 shows the results of these experiments in the respective DDROP and

DNQ columns.

First, we observe clear generalisation improvements towards DDROP across

all models compared to training on DSQuAD(10K) when training on any of DBiDAF,

DBERT, or DRoBERTa. That is, including a model in the loop for the training dataset

leads to improved transfer towards DDROP. Note that DROP also makes use of

a BiDAF model in the loop during annotation; these results are in line with our

prior observations when testing the same setups on DBiDAF, DBERT and DRoBERTa,

compared to training on DSQuAD(10K).

Second, we observe overall strong transfer results towards DNQ, with up to

69.8F1 for a BERT model trained on DBiDAF. Note that this result is similar to,

and even slightly improves over model training with SQuAD data of the same size.

That is, relative to training on SQuAD data, training on adversarially collected data

DBiDAF does not impede generalisation to the DNQ dataset, which was created with-

out a model in the annotation loop. We then however see a similar negative perfor-

mance progression as observed before when testing on DSQuAD: the stronger the

model in the annotation loop of the training dataset, the lower the test accuracy on

test data from a data distribution composed without a model in the loop.
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3.6 Qualitative Analysis

Having applied the general model-in-the-loop methodology on models of varying

strength, we next perform a qualitative comparison of the nature of the resulting

questions. As reference points we also include the original SQuAD questions, as

well as DROP and NaturalQuestions in this comparison: These datasets are both

constructed to overcome limitations in SQuAD and have subsets sufficiently similar

to SQuAD to make an analysis possible. Specifically, we seek to understand the

qualitative differences in terms of reading comprehension challenges posed by the

questions in each of these datasets.

3.6.1 Comprehension Requirements

There exists a variety of prior work that seeks to understand the types of knowledge,

comprehension skills or types of reasoning required to answer questions based on

text (Rajpurkar et al., 2016; Clark et al., 2018; Sugawara et al., 2020; Dua et al.,

2019; Dasigi et al., 2019); we are however unaware of any commonly accepted

formalism. We take inspiration from these but develop our own taxonomy of com-

prehension requirements which suits the datasets analysed, see Appendix A.3 for

a detailed breakdown and examples of our annotation catalogue. Our taxonomy

contains 13 labels, most of which are commonly used in other work. However, the

following three deserve additional clarification: i) explicit – for which the answer

is stated nearly word-for-word in the passage as it is in the question, ii) filtering –

a set of answers is narrowed down to select one by some particular distinguishing

feature, and iii) implicit – the answer builds on information implied by the passage

and does not otherwise require any of the other types of reasoning.

We annotate questions with labels from this catalogue in a manner that is not

mutually exclusive, and neither fully comprehensive; the development of such a

catalogue is itself very challenging. Instead, we focus on capturing the most salient

characteristics of each given question, and assign it up to three of the labels in our

catalogue. In total, we analyse 100 samples from the validation set of each of the

datasets; Figure 3.5 shows the results.
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3.6.2 Observations

An initial observation is that the majority (57%) of answers to SQuAD questions

are stated explicitly, without comprehension requirements beyond the literal level.

This number decreases substantially for any of the model-in-the-loop datasets de-

rived from SQuAD (e.g., ~8% for DBiDAF) and also DDROP, yet 42% of questions

in DNQ share this property. In contrast to SQuAD, the model-in-the-loop ques-

tions generally tend to involve more paraphrasing. They also require more external

knowledge, and multi-hop inference (beyond co-reference resolution) with an in-

creasing trend for stronger models used in the annotation loop. Model-in-the-loop

questions further fan out into a variety of small, but non-negligible proportions of

more specific types of inference required for comprehension, for example, spatial or

temporal inference (both going beyond explicitly stated spatial or temporal informa-

tion) – SQuAD questions rarely require these at all. Some of these more particular

inference types are common features of the other two datasets, in particular com-

parative questions for DROP (60%) and to a small extent also NaturalQuestions.

Interestingly, DBiDAF possesses the largest number of comparison questions (11%)

among our model-in-the-loop datasets, whereas DBERT and DRoBERTa only possess

1% and 3%, respectively. This offers an explanation for our previous observation

in Table 3.6, where BERT and RoBERTa perform better on DDROP when trained on

DBiDAF rather than on DBERT or DRoBERTa. It is likely that BiDAF as a model in

the loop is worse than BERT and RoBERTa at comparative questions, as evidenced

by the results in Table 3.6 with BiDAF reaching 8.6F1, BERT reaching 28.9F1, and

RoBERTa reaching 39.4F1 on DDROP (when trained on DSQuAD(10K)).

The distribution of NaturalQuestions contains elements of both the SQuAD

and DBiDAF distributions, which offers a potential explanation for the strong per-

formance on DNQ of models trained on DSQuAD(10K) and DBiDAF. Finally, the

gradually shifting distribution away from both SQuAD and NaturalQuestions as the

model-in-the-loop strength increases reflects our prior observations on the decreas-

ing performance on SQuAD and NaturalQuestions of models trained on datasets

with progressively stronger models in the loop.
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3.7 Discussion and Conclusion

We have investigated an RC annotation paradigm that requires a model in the loop

to be “beaten” by an annotator. Applying this approach with progressively stronger

models in the loop (BiDAF, BERT, and RoBERTa), we produced three separate

datasets. Using these datasets, we investigated several questions regarding the anno-

tation paradigm, in particular whether such datasets grow outdated as stronger mod-

els emerge, and their generalisation to standard (non-adversarially collected) ques-

tions. We found that stronger models can still learn from data collected with a weak

adversary in the loop, and their generalisation improves even on datasets collected

with a stronger adversary. Models trained on data collected with a model in the loop

further generalise well to non-adversarially collected data, both on SQuAD and on

NaturalQuestions, yet we observe a gradual deterioration in performance with pro-

gressively stronger adversaries.

We see our work as a contribution towards the emerging paradigm of model-

in-the-loop annotation. While this paper has focused on RC, with SQuAD as the

original dataset used to train model adversaries, we see no reason in principle why

findings would not be similar for other tasks using the same annotation paradigm,

when crowdsourcing challenging samples with a model in the loop. We would

expect the insights and benefits conveyed by model-in-the-loop annotation to be

the greatest on mature datasets where models exceed human performance: Here

the resulting data provides a magnifying glass on model performance, focused in

particular on samples which models struggle on. On the other hand, applying the

method to datasets where performance has not yet plateaued would likely result

in a more similar distribution to the original data, which is challenging to models

a priori. We hope that the series of experiments on replicability, observations on

transfer between datasets collected using models of different strength, as well as our

findings regarding generalisation to non-adversarially collected data, can support

and inform future research and annotation efforts using this paradigm.
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3.8 Reflection
The work presented in this chapter allowed a deep exploration into how humans

interact with machines in the context of probing for failure modes in machine learn-

ing systems and working to improve robustness in those areas. In particular, some

high-level takeaways that have influenced subsequent work include:

Annotators are effective at creating diverse adversarial examples. This may

seem quite obvious today, but was far from being so at the time that this work

was introduced. In fact, the annotation interfaces and incentive structures presented

in this chapter underwent at least three full re-designs at the prototype stage with

the authors of this work as initial testers. In many cases, we struggled to identify

effective techniques for “beating” even the simplest system (BiDAF at that time). It

was around the third or fourth iteration of the setup that collaborators and members

of the group started asking questions that a robust system should easily get correct

but was clearly struggling with. We rolled this version out to crowdworkers who

also had considerable success.

Adversarial examples create more challenging evaluation scenarios. We find a

clear negative performance progression when evaluating systems against datasets

adversarially constructed with a stronger model in the loop. This suggests that as

systems improve, we can use those same systems in the loop to push the limits of

what is possible and what we can measure.

Training on adversarial examples substantially improves performance. We find

that both BERT and RoBERTa are able to partially overcome their blind spots

through adversarial training, demonstrated by the jump in performance from when

they are trained on SQuAD.

Generalisation to external datasets. As mentioned in the introductory section of

this chapter, one highly effective approach to targeting model weaknesses was the

curation of specifically-targeted datasets such as DROP (Dua et al., 2019) targeting

numerical reasoning. It is promising that a more general approach like the one

discussed in this chapter also yields substantial performance improvements on such

targeted external datasets.
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Signs of a distributional shift. The monotonic decrease in performance demon-

strated by all three of the systems explored in this work on the SQuAD validation

set, when trained on examples sourced using increasingly strong models in the loop,

suggests a distributional shift away from the original SQuAD setting. However,

this effect is easily mitigated when combining the adversarially collected data with

SQuAD training data. We find that in this setting, model performance on SQuAD

improves slightly instead.

Early signs of the benefits of data scale. All models get better with more data. In

fact, for all three models, training on the combined 87,000 SQuAD examples and

30,000 adversarially-collected examples gave a considerable performance increase

across the board, including a marginal improvement on SQuAD.

Model-specific blind spots. It’s also worth noting that even in the setting of training

on all available data, BERT still outperforms RoBERTa on DRoBERTa and vice versa,

suggesting the existence of blind spots or failure modes specific to each model.

Among the contributions of this work was the AdversarialQA resource and col-

lect of training and evaluation artefacts. AdversarialQA was also made available for

download through the Hugging Face dataset hub, where it was consistently among

one of the most downloaded Question Answering datasets (along with SQuAD and

SQuAD2.0 for many years, and amassing over 1.34 million total downloads. The

AdversarialQA datasets have also been used to drive real-world impact across var-

ious user-facing and enterprise applications, where they have contributed to both

general performance improvements and improved robustness of question answer-

ing systems requiring comprehension capabilities.

Furthermore, the AdversarialQA datasets have been included in various dataset

collections commonly used to train Large Language Models such as T0-SF (Sanh

et al., 2022), one of the earliest collections of instruction-following datasets. This

collection was used to train FLAN-T5 (Chung et al., 2024) which was among the

earliest general instruction-following language models. In the context of Large Lan-

guage Models, it is further worth noting that AdversarialQA test sets remain private,

potentially posing an interesting test bed for evaluating the effects of training set

https://adversarialqa.github.io/
https://huggingface.co/datasets/UCLNLP/adversarial_qa
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contamination or test set leakage in such systems.

Beyond the resource contributions and robustness improvements to various

real-world question answering systems across domains, this research has also in-

spired work on dynamic adversarial data collection and benchmarking as we will

discuss in the next chapter.



Chapter 4

Dynamic Adversarial Data Collection

and Benchmarking

The research presented in the preceding chapter, alongside the contemporaneous

work on AdversarialNLI (Nie et al., 2020) by researchers at Facebook AI Research,

offered compelling evidence of the benefits of Dynamic Adversarial Data Collection

(DADC). This method proved its utility in both training machine learning models

more effectively and creating robust benchmarks to evaluate their performance.

During discussions to source funding for and build out a platform for adver-

sarial data collection at scale, our group at UCL was introduced to Douwe Kiela

at Facebook AI Research (FAIR) who had both provided the vision for the Adver-

sarialNLI work and secured early funding to build out a prototype for what would

become Dynabench, a large scale collaboration between Facebook AI Research,

University College London, Stanford University, the University of North Carolina

at Chapel Hill, and many others to drive improvements in model benchmarking and

robustness by collecting human data dynamically with models in the loop.

This chapter is based on the published work titled “Dynabench: Rethinking

Benchmarking in NLP” authored by Douwe Kiela, Max Bartolo, Yixin Nie, Di-

vyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vidgen, Grusha Prasad,

Amanpreet Singh, Pratik Ringshia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel,

Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit Bansal, Christopher Potts

and Adina Williams. This work was published at the 2021 Annual Conference

https://dynabench.org/
https://2021.naacl.org/
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of the North American Chapter of the Association for Computational Linguistics

(NAACL) held online between the 6th and 11th June, 2021, due to the ongoing

COVID-19 pandemic.

It is also influenced by the work titled “Dynatask: A Framework for Creat-

ing Dynamic AI Benchmark Tasks” authored by Tristan Thrush, Kushal Tirumala,

Anmol Gupta, Max Bartolo, Pedro Rodriguez, Tariq Kane, William Gaviria Rojas,

Peter Mattson, Adina Williams and Douwe Kiela, presented as a system demonstra-

tion at ACL 2022.

The thesis author’s contributions involved early design and development of the

Dynabench research platform, including writing parts of the initial codebase, run-

ning countless experiments and supporting and advising various others, as well as

writing parts of the published research papers. The Dynabench effort was led pri-

marily by Douwe Kiela along with many other contributors, and this chapter is in-

cluded in this thesis for context, linking the previous chapter which provided inspi-

ration and motivation for this work, as well as the upcoming two chapters which are

built on the work presented here. The AdversarialQA datasets also formed Round

1 of the Question Answering task on Dynabench.

The Dynabench platform is currently managed by the MLCommons, where the

thesis author co-chairs the Dynabench Working Group (recently merging with the

Data-centric and Machine Learning Research (DMLR) Working Group) responsible

for the maintenance of existing tasks and development and running of new research

programmes, since January 2023.

4.1 Overview

We introduce Dynabench, an open-source platform for dynamic dataset creation and

model benchmarking. Dynabench runs in a web browser and supports human-and-

model-in-the-loop dataset creation: annotators seek to create examples that a target

model will misclassify, but that another person will not. In this paper, we argue

that Dynabench addresses a critical need in our community: contemporary mod-

els quickly achieve outstanding performance on benchmark tasks but nonetheless

https://2021.naacl.org/
https://2021.naacl.org/
https://2021.naacl.org/
https://dynabench.org/tasks/qa
https://mlcommons.org/
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fail on simple challenge examples and falter in real-world scenarios. With Dyn-

abench, dataset creation, model development, and model assessment can directly

inform each other, leading to more robust and informative benchmarks. We report

on four initial NLP tasks, illustrating these concepts and highlighting the promise of

the platform, and address potential objections to dynamic benchmarking as a new

standard for the field.

4.2 Introduction

While it used to take decades for machine learning models to surpass estimates of

human performance on benchmark tasks, that milestone is now routinely reached

within just a few years for newer datasets (see Figure 4.1). As with the rest of AI,

NLP has advanced rapidly thanks to improvements in computational power, as well

as algorithmic breakthroughs, ranging from attention mechanisms (Bahdanau et al.,

2015; Luong et al., 2015), to Transformers (Vaswani et al., 2017), to pre-trained

language models (Howard and Ruder, 2018; Devlin et al., 2019; Liu et al., 2019b;

Radford et al., 2019; Brown et al., 2020). Equally important has been the rise of

benchmarks that support the development of ambitious new data-driven models and

that encourage apples-to-apples model comparisons. Benchmarks provide a north

star goal for researchers, and are part of the reason we can confidently say we have

made great strides in our field.

In light of these developments, one might be forgiven for thinking that NLP

has created models with human-like language capabilities. Practitioners know that,

despite our progress, we are actually far from this goal. Models that achieve super-

human performance on benchmark tasks (according to the narrow criteria used to

define human performance) nonetheless fail on simple challenge examples and fal-

ter in real-world scenarios. A substantial part of the problem is that our benchmark

tasks are not adequate proxies for the sophisticated and wide-ranging capabilities

we are targeting: they contain inadvertent and unwanted statistical and social biases

that make them artificially easy and misaligned with our true goals.

We believe the time is ripe to radically rethink benchmarking. In this paper,
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Figure 4.1: Benchmark saturation over time for popular benchmarks, normalized with ini-
tial performance at minus one and human performance at zero.

which both takes a position and seeks to offer a partial solution, we introduce Dyn-

abench, an open-source, web-based research platform for dynamic data collection

and model benchmarking. The guiding hypothesis behind Dynabench is that we can

make even faster progress if we evaluate models and collect data dynamically, with

humans and models in the loop, rather than the traditional static way.

Concretely, Dynabench hosts tasks for which we dynamically collect data

against state-of-the-art models in the loop, over multiple rounds. The stronger the

models are and the fewer weaknesses they have, the lower their error rate will be

when interacting with humans, giving us a concrete metric—i.e., how well do AI

systems perform when interacting with humans? This reveals the shortcomings of

state-of-the-art models, and it yields valuable training and assessment data which

the community can use to develop even stronger models.

In this paper, we first document the background that led us to propose this

platform. We then describe the platform in technical detail, report on findings for

four initial tasks, and address possible objections. We finish with a discussion of
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future plans and next steps.

4.3 Background
Progress in NLP has traditionally been measured through a selection of task-level

datasets that gradually became accepted benchmarks (Marcus et al., 1993; Prad-

han et al., 2012). Recent well-known examples include the Stanford Sentiment

Treebank (Socher et al., 2013), SQuAD (Rajpurkar et al., 2016, 2018), SNLI (Bow-

man et al., 2015), and MultiNLI (Williams et al., 2018). More recently, multi-task

benchmarks such as SentEval (Conneau and Kiela, 2018), DecaNLP (McCann et al.,

2019), GLUE (Wang et al., 2018), and SuperGLUE (Wang et al., 2019) were pro-

posed with the aim of measuring general progress across several tasks. When the

GLUE dataset was introduced, “solving GLUE” was deemed “beyond the capa-

bility of current transfer learning methods” (Wang et al., 2018). However, GLUE

saturated within a year and its successor, SuperGLUE, already has models rather

than humans at the top of its leaderboard. These are remarkable achievements, but

there is an extensive body of evidence indicating that these models do not in fact

have the human-level natural language capabilities one might be lead to believe.

4.3.1 Challenge Sets and Adversarial Settings

Whether our models have learned to solve tasks in robust and generalizable ways

has been a topic of much recent interest. Challenging test sets have shown that many

state-of-the-art NLP models struggle with compositionality (Nie et al., 2019; Kim

and Linzen, 2020; Yu and Ettinger, 2020; White et al., 2020), and find it difficult

to pass the myriad stress tests for social (Rudinger et al., 2018; May et al., 2019;

Nangia et al., 2020) and/or linguistic competencies (Geiger et al., 2018; Naik et al.,

2018; Glockner et al., 2018; White et al., 2018; Warstadt et al., 2019; Gauthier

et al., 2020; Hossain et al., 2020; Jeretic et al., 2020; Lewis et al., 2021a; Saha

et al., 2020; Schuster et al., 2020; Sugawara et al., 2020; Warstadt et al., 2020). Yet,

challenge sets may suffer from performance instability (Liu et al., 2019a; Rozen

et al., 2019; Zhou et al., 2020) and often lack sufficient statistical power (Card

et al., 2020), suggesting that, although they may be valuable assessment tools, they
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are not sufficient for ensuring that our models have achieved the learning targets we

set for them.

Models are susceptible to adversarial attacks, and despite impressive task-level

performance, state-of-the-art systems still struggle to learn robust representations of

linguistic knowledge (Ettinger et al., 2017), as also shown by work analyzing model

diagnostics (Ettinger, 2020; Ribeiro et al., 2020). For example, question answering

models can be fooled by simply adding a relevant sentence to the passage (Jia and

Liang, 2017).

Text classification models have been shown to be sensitive to single input char-

acter change (Ebrahimi et al., 2018b) and first-order logic inconsistencies (Min-

ervini and Riedel, 2018). Similarly, machine translation systems have been found

susceptible to character-level perturbations (Ebrahimi et al., 2018a) and synthetic

and natural noise (Belinkov and Bisk, 2018; Khayrallah and Koehn, 2018). Nat-

ural language inference models can be fooled by simple syntactic heuristics or

hypothesis-only biases (Gururangan et al., 2018; Poliak et al., 2018; Tsuchiya,

2018; Belinkov et al., 2019; McCoy et al., 2019). Dialogue models may ignore

perturbations of dialogue history (Sankar et al., 2019). More generally, Wallace

et al. (2019a) find universal adversarial perturbations forcing targeted model errors

across a range of tasks. Recent work has also focused on evaluating model diagnos-

tics through counterfactual augmentation (Kaushik et al., 2020), decision boundary

analysis (Gardner et al., 2020; Swayamdipta et al., 2020), and behavioural test-

ing (Ribeiro et al., 2020).

4.3.2 Adversarial Training and Testing

Research progress has traditionally been driven by a cyclical process of resource

collection and architectural improvements. Similar to Dynabench, recent work

seeks to embrace this phenomenon, addressing many of the previously mentioned

issues through an iterative human-and-model-in-the-loop annotation process (Yang

et al., 2018b; Dinan et al., 2019; Chen et al., 2019; Bartolo et al., 2020; Nie et al.,

2020), to find “unknown unknowns” (Attenberg et al., 2015) or in a never-ending

or life-long learning setting (Silver et al., 2013; Mitchell et al., 2018). The Adver-
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sarial NLI (ANLI) dataset (Nie et al., 2020), for example, was collected with an

adversarial setting over multiple rounds to yield “a ‘moving post’ dynamic target

for NLU systems, rather than a static benchmark that will eventually saturate”. In

its few-shot learning mode, GPT-3 barely shows “signs of life” (Brown et al., 2020)

(i.e., it is barely above random) on ANLI, which is evidence that we are still far

away from human performance on that task.

4.3.3 Other Related Work

While crowdsourcing has been a boon for large-scale NLP dataset creation (Snow

et al., 2008; Munro et al., 2010), we ultimately want NLP systems to handle “nat-

ural” data (Kwiatkowski et al., 2019) and be “ecologically valid” (de Vries et al.,

2020). (Ethayarajh and Jurafsky, 2020) analyze the distinction between what leader-

boards incentivize and “what is useful in practice” through the lens of microe-

conomics. A natural setting for exploring these ideas might be dialogue (Han-

cock et al., 2019; Shuster et al., 2020). Other works have pointed out misalign-

ments between maximum-likelihood training on i.i.d. train/test splits and human

language (Linzen, 2020; Stiennon et al., 2020).

We think there is widespread agreement that something has to change about our

standard evaluation paradigm and that we need to explore alternatives. The persis-

tent misalignment between benchmark performance and performance on challenge

and adversarial test sets reveals that standard evaluation paradigms overstate the

ability of our models to perform the tasks we have set for them. Dynabench offers

one path forward from here, by allowing researchers to combine model develop-

ment with the stress-testing that needs to be done to achieve true robustness and

generalization.

4.4 Dynabench
Dynabench is a platform that encompasses different tasks. Data for each task is

collected over multiple rounds, each starting from the current state of the art. In

every round, we have one or more target models “in the loop.” These models inter-

act with humans, be they expert linguists or crowdworkers, who are in a position to
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Figure 4.2: The Dynabench example creation interface for sentiment analysis with illustra-
tive example.

identify models’ shortcomings by providing examples for an optional context. Ex-

amples that models get wrong, or struggle with, can be validated by other humans

to ensure their correctness. The data collected through this process can be used to

evaluate state-of-the-art models, and to train even stronger ones, hopefully creating

a virtuous cycle that helps drive progress in the field. Figure 4.2 provides a sense of

what the example creation interface looks like.

As a large-scale collaborative effort, the platform is meant to be a platform

technology for human-and-model-in-the-loop evaluation that belongs to the entire

community. In the current iteration, the platform is set up for dynamic adversarial

data collection, where humans can attempt to find model-fooling examples. This

design choice is due to the fact that the average case, as measured by maximum

likelihood training on i.i.d. datasets, is much less interesting than the worst (i.e.,

adversarial) case, which is what we want our systems to be able to handle if they
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are put in critical systems where they interact with humans in real-world settings.

However, Dynabench is not limited to the adversarial setting, and one can

imagine scenarios where humans are rewarded not for fooling a model or ensem-

ble of models, but for finding examples that models, even if they are right, are very

uncertain about, perhaps in an active learning setting. Similarly, the paradigm is per-

fectly compatible with collaborative settings that utilize human feedback, or even

negotiation. The crucial aspect of this proposal is the fact that models and humans

interact live “in the loop” for evaluation and data collection.

One of the aims of this platform is to put expert linguists center stage. Creating

model-fooling examples is not as easy as it used to be, and finding interesting exam-

ples is rapidly becoming a less trivial task. In ANLI, the validated model error rate

for crowd workers in the later rounds went below 1-in-10 (Nie et al., 2020), while

in “Beat the AI”, human performance decreased while time per valid adversarial

example went up with stronger models in the loop (Bartolo et al., 2020). For expert

linguists, we expect the model error to be much higher, but if the platform actually

lives up to its virtuous cycle promise, that error rate will go down quickly. Thus, we

predict that linguists with expertise in exploring the decision boundaries of machine

learning models will become essential.

While we are primarily motivated by evaluating progress, both ANLI and

“Beat the AI” show that models can overcome some of their existing blind spots

through adversarial training. They also find that best model performance is still

quite far from that of humans, suggesting that while the collected data appears to

lie closer to the model decision boundaries, there still exist adversarial examples

beyond the remit of current model capabilities.

4.4.1 Features and Implementation Details

Dynabench offers low-latency, real-time feedback on the behavior of state-of-the-art

NLP models. The technology stack is based on PyTorch (Paszke et al., 2019), with

models served via TorchServe.1 The platform not only displays prediction proba-

bilities, but through an “inspect model” functionality, allows the user to examine

1https://pytorch.org/serve

https://pytorch.org/serve
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the token-level layer integrated gradients (Sundararajan et al., 2017), obtained via

the Captum interpretability library.2

For each example, we allow the user to explain what the correct label is, as well

as why they think it fooled a model if the model got it wrong; or why the model

might have been fooled if it wasn’t. All collected model-fooling (or, depending on

the task, even non-model-fooling) examples are verified by other humans to ensure

their validity.

Task owners can collect examples through the web interface, by engaging with

the community, or through Mephisto,3 which makes it easy to connect, e.g., Me-

chanical Turk workers to the exact same backend. All collected data will be open

sourced, in an anonymized fashion.

In its current mode, Dynabench could be described as a fairly conservative

departure from the status quo. It is being used to develop datasets that support the

same metrics that drive existing benchmarks. The crucial change is that the datasets

are now dynamically created, allowing for more kinds of evaluation—e.g., tracking

progress through rounds and across different conditions.

4.4.2 Initial Tasks

We have selected four official tasks as a starting point, which we believe represent

an appropriate cross-section of the field at this point in time. Natural Language In-

ference (NLI) and Question Answering (QA) are canonical tasks in the field. Sen-

timent analysis is a task that some consider “solved” (and is definitely treated as

such, with all kinds of ethically problematic repercussions), which we show is not

the case. Hate speech is very important as it can inflict harm on people, yet classi-

fying it remains challenging for NLP.

Natural language inference. Built upon the semantic foundation of natural logic

(Sánchez Valencia, 1991, i.a.) and hailing back much further (van Benthem, 2008),

NLI is one of the quintessential natural language understanding tasks. NLI, also

known as ‘recognizing textual entailment’ (Dagan et al., 2006), is often formulated

2https://captum.ai/
3https://github.com/facebookresearch/Mephisto

https://captum.ai/
https://github.com/facebookresearch/Mephisto
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as a 3-way classification problem where the input is a context sentence paired with

a hypothesis, and the output is a label (entailment, contradiction, or neutral) indi-

cating the relation between the pair.

We build on the ANLI dataset (Nie et al., 2020) and its three rounds to seed

the Dynabench NLI task. During the ANLI data collection process, the annotators

were presented with a context (extracted from a pre-selected corpus) and a desired

target label, and asked to provide a hypothesis that fools the target model adversary

into misclassifying the example. If the target model is fooled, the annotator was

invited to speculate about why, or motivate why their example was right. The target

model of the first round (R1) was a single BERT-Large model fine-tuned on SNLI

and MNLI, while the target model of the second and third rounds (R2, R3) was an

ensemble of RoBERTa-Large models fine-tuned on SNLI, MNLI, FEVER (Thorne

et al., 2018) recast as NLI, and all of the ANLI data collected prior to the corre-

sponding round. The contexts for Round 1 and Round 2 were Wikipedia passages

curated in Yang et al. (2018a) and the contexts for Round 3 were from various

domains. Results indicate that state-of-the-art models (which can obtain 90%+ ac-

curacy on SNLI and MNLI) cannot exceed 50% accuracy on rounds 2 and 3.

With the launch of Dynabench, we have started collection of a fourth round,

which has several innovations: not only do we select candidate contexts from a

more diverse set of Wikipedia featured articles but we also use an ensemble of

two different models with different architectures as target adversaries to increase

diversity and robustness. Moreover, the ensemble of adversaries will help mitigate

issues with creating a dataset whose distribution is too closely aligned to a particular

target model or architecture. Additionally, we are collecting two types of natural

language explanations: why an example is correct and why a target model might be

wrong. We hope that disentangling this information will yield an additional layer of

interpretability and yield models that are as least as explainable as they are robust.

Question answering. The QA task takes the same format as SQuAD1.1 (Rajpurkar

et al., 2016), i.e., given a context and a question, extract an answer from the context

as a continuous span of text. The first round of adversarial QA (AQA) data comes
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from “Beat the AI” (Bartolo et al., 2020). During annotation, crowd workers were

presented with a context sourced from Wikipedia, identical to those in SQuAD1.1,

and asked to write a question and select an answer. The annotated answer was com-

pared to the model prediction using a word-overlap F1 threshold and, if sufficiently

different, considered to have fooled the model. The target models in round 1 were

BiDAF (Seo et al., 2017), BERT-Large, and RoBERTa-Large.

The model in the loop for the current round is RoBERTa trained on the ex-

amples from the first round combined with SQuAD1.1. Despite the super-human

performance achieved on SQuAD1.1, machine performance is still far from humans

on the current leaderboard. In the current phase, we seek to collect rich and diverse

examples, focusing on improving model robustness through generative data aug-

mentation, to provide more challenging model adversaries in this constrained task

setting. We should emphasize that we don’t consider this task structure representa-

tive of the broader definition even of closed-domain QA, and are looking to expand

this to include unanswerable questions (Rajpurkar et al., 2018), longer and more

complex passages, Yes/No questions and multi-span answers (Kwiatkowski et al.,

2019), and numbers, dates and spans from the question (Dua et al., 2019) as model

performance progresses.

Sentiment analysis. The sentiment analysis project is a multi-pronged effort to cre-

ate a dynamic benchmark for sentiment analysis and to evaluate some of the core

hypotheses behind Dynabench. Potts et al. (2021) provide an initial report and the

first two rounds of this dataset.

The task is structured as a 3-way classification problem: positive, negative, and

neutral. The motivation for using a simple positive/negative dichotomy is to show

that there are still very challenging phenomena in this traditional sentiment space.

The neutral category was added to avoid (and helped trained models avoid) the false

presupposition that every text conveys sentiment information (Pang and Lee, 2008).

In future iterations, we plan to consider additional dimensions of sentiment and

emotional expression (Alm et al., 2005; Neviarouskaya et al., 2010; Wiebe et al.,

2005; Liu et al., 2003; Sudhof et al., 2014).
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In this first phase, we examined the question of how best to elicit examples

from workers that are diverse, creative, and naturalistic. In the “prompt” condition,

we provide workers with an actual sentence from an existing product or service

review and ask them to edit it so that it fools the model. In the “no prompt” con-

dition, workers try to write original sentences that fool the model. We find that the

“prompt” condition is superior: workers generally make substantial edits, and the

resulting sentences are more linguistically diverse than those in the “no prompt”

condition.

In a parallel effort, we also collected and validated hard sentiment examples

from existing corpora, which will enable another set of comparisons that will help us

to refine the Dynabench protocols and interfaces. We plan for the dataset to continue

to grow, probably mixing attested examples with those created on Dynabench with

the help of prompts. With these diverse rounds, we can address a wide range of

question pertaining to dataset artifacts, domain transfer, and overall robustness of

sentiment analysis systems.

Hate speech detection. The hate speech task classifies whether a statement ex-

presses hate against a protected characteristic or not. Detecting hate is notori-

ously difficult given the important role played by context and speaker (Leader May-

nard and Benesch, 2016) and the variety of ways in which hate can be expressed

(Waseem et al., 2017). Few high-quality, varied and large training datasets are

available for training hate detection systems (Vidgen and Derczynski, 2020; Poletto

et al., 2020; Vidgen et al., 2019).

We organised four rounds of data collection and model training, with prelimi-

nary results reported in (Vidgen et al., 2021). In each round, annotators are tasked

with entering content that tricks the model into giving an incorrect classification.

The content is created by the annotators and as such is synthetic in nature. At the

end of each round the model is retrained and the process is repeated. For the first

round, we trained a RoBERTa model on 470,000 hateful and abusive statements4.

For subsequent rounds the model was trained on the original data plus content from

4Derived from https://hatespeechdata.com, in anonymized form.

https://hatespeechdata.com
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Task Rounds Examples vMER

NLI 4 170,294 33.24%

QA 2 36,406 33.74%

Sentiment 3 19,975 35.00%

Hate speech 4 41,255 43.90%

Table 4.1: Statistics for the initial four official tasks.

the prior rounds. Due to the complexity of online hate, we hired and trained analysts

rather than paying for crowd-sourced annotations. Each analyst was given training,

support, and feedback throughout their work.

In all rounds annotators provided a label for whether content is hateful or not.

In rounds 2, 3 and 4, they also gave labels for the target (i.e., which group has

been attacked) and type of statement (e.g., derogatory remarks, dehumanization, or

threatening language). These granular labels help to investigate model errors and

improve performance, as well as directing the identification of new data for future

entry. For approximately half of entries in rounds 2, 3 and 4, annotators created

“perturbations” where the text is minimally adjusted so as to flip the label (Gardner

et al., 2020; Kaushik et al., 2020). This helps to identify decision boundaries within

the model, and minimizes the risk of overfitting given the small pool of annotators.

Over the four rounds, content becomes increasingly adversarial (shown by the

fact that target models have lower performance on later rounds’ data) and models

improve (shown by the fact that the model error rate declines and the later rounds’

models have the highest accuracy on each round). We externally validate perfor-

mance using the HATECHECK suite of diagnostic tests from (Röttger et al., 2021).

We show substantial improvement over the four rounds, and our final round target

model achieves 94% on HATECHECK, outperforming the models presented by the

original authors.

4.4.3 Dynabenchmarking NLP

Table 4.1 shows an overview of the current situation for the four tasks. Some tasks

are further along in their data collection efforts than others. The validated model
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error rate (vMER; the number of human-validated model errors divided by the total

number of examples—note that the error rates are not necessarily comparable across

tasks, since the interfaces and in-the-loop models are not identical) is still very high

across all tasks, clearly demonstrating that NLP is far from solved.

4.5 Caveats and Objections
Dynamic Adversarial Data and Distributional Shift. Crowdsourced texts inher-

ently exhibit unnatural qualities due to the artificial nature of the collection setting

and the non-representative demographics of crowdworkers. Dynabench, while po-

tentially exacerbating this issue, incorporates features to mitigate it, such as using

naturalistic prompts to encourage diverse and realistic data creation. Combining ad-

versarially collected data with non-adversarial or naturally collected data can help

capture both average and worst-case scenarios, improving model robustness. Addi-

tionally, Dynabench offers a platform to study natural distributional shifts, such as

changes in word or phrase meanings over time or across domains.

Annotator Overfitting and Continual Learning. Annotators may inadvertently

‘overfit’ by focusing on specific model weaknesses, potentially leading to cyclical

progress where improved models lose performance on capabilities that were rele-

vant in earlier rounds. To address this, continual learning approaches should focus

on understanding distributional shifts and their impact on model learning. Eval-

uating models across all rounds and high-quality static test sets, potentially with

recency-based weighting, ensures comprehensive assessment. Using ensembles of

diverse architectures in the loop can further mitigate overfitting to a single model.

Future Models and Benchmark Evolution. While we cannot account for as-yet-

undeveloped models, ensembles of current architectures can serve as a reasonable

approximation, provided they perform adequately. As observed in Chapter 3, data

collected with representative current models can also be extremely valuable for

improving the robustness of stronger future models. Benchmark evolution is not

unique to Dynabench; datasets like SemEval and WMT have iterated over time.

Dynabench’s proactive approach to dataset saturation accelerates progress by antic-
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ipating saturation and continuously updating benchmarks to reflect this.

Generative Tasks and Evaluation. Extending Dynabench to generative tasks re-

quires addressing the lack of ground truth annotations. Discretising generation

through multiple-choice formats is one such approach. Relying on annotator judg-

ments to determine model correctness, as explored in Chapter 6, broadens task

scope considerably and is seen to be highly effective.

Adversarial Training Data Utility. Chapter 3 and Nie et al. (2020) show that

adversarially-collected data is more diverse and also provides performance gains

somewhat independent of the model in the loop i.e. there is benefit in involving

any sufficiently capable model in the annotation loop. However, counterfactually-

augmented data does not always enhance generalisation (Huang et al., 2020). Com-

bining adversarial and non-adversarial data during training and testing is recom-

mended. The utility of adversarial data depends on task and model characteristics,

necessitating additional research.

Cost Considerations Dynamic benchmarking is more expensive than traditional

methods due to the need for model-fooling annotations and validation, and contin-

ual updates to the benchmark. However, dynamic datasets may have longer bench-

mark lifespans, potentially justifying the higher costs. Dynamic Adversarial Data

Collection can also be more expensive per example than Standard Data Collection,

as seen in Chapter 6, however more research is required to quantify the cost per unit

signal rather than the cost per example. Gamification and community engagement

initiatives further aim to incentivise contributions.

In summary, Dynabench addresses challenges in data collection and bench-

marking through proactive strategies, while acknowledging the need for ongoing

research to optimise its utility across diverse tasks and models.

4.6 Conclusion and Outlook
We introduced Dynabench, a research platform for dynamic benchmarking. Dyn-

abench opens up exciting new research directions, such as investigating the effects

of ensembles in the loop, distributional shift characterisation, exploring annotator
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efficiency, investigating the effects of annotator expertise, and improving model ro-

bustness to targeted adversarial attacks in an interactive setting. It also facilitates

further study in dynamic data collection, and more general cross-task analyses of

human-and-machine interaction. The current iteration of the platform is only just

the beginning of a longer journey. In the immediate future, we aim to achieve the

following goals:

Anyone can run a task. Having created a tool that allows for human-in-the-loop

model evaluation and data collection, we aim to make it possible for anyone to run

their own task. To get started, only three things are needed: a target model, a (set

of) context(s), and a pool of annotators.

Multilinguality and multimodality. As of now, Dynabench is text-only and fo-

cuses on English, but we hope to change that soon.

Live model evaluation. Model evaluation should not be about one single number

on some test set. If models are uploaded through a standard interface, they can be

scored automatically along many dimensions. We would be able to capture not only

accuracy, for example, but also usage of computational resources, inference time,

fairness, and many other relevant dimensions. This will in turn enable dynamic

leaderboards, for example based on utility (Ethayarajh and Jurafsky, 2020). This

would also allow for backward-compatible comparisons, not having to worry about

the benchmark changing, and automatically putting new state of the art models in

the loop, addressing some of the main objections.

One can easily imagine a future where, in order to fulfill reproducibility re-

quirements, authors do not only link to their open source codebase but also to their

model inference point so others can “talk with” their model. This will help drive

progress, as it will allow others to examine models’ capabilities and identify fail-

ures to address with newer even better models. If we cannot always democratize

the training of state-of-the-art AI models, at the very least we can democratize their

evaluation.
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4.7 Reflection
This chapter introduced Dynabench, an open-source, community-based research

platform for dynamic data collection and benchmarking. Dynabench aims to tackle

many well-established challenges around model evaluation including saturation,

bias, alignment, reproducibility, accessibility, backward compatibility and maximis-

ing utility. Along these lines, Dynabench has powered, supported, or otherwise

made various research efforts possible including work introducing new datasets or

resources, such as:

• Learning from the Worst: Dynamically Generated Datasets Improve Online

Hate Detection (Vidgen et al., 2021)

• DynaSent: A Dynamic Benchmark for Sentiment Analysis (Potts et al., 2021)

• Human-Adversarial Visual Question Answering (Sheng et al., 2021)

• Hatemoji: A Test Suite and Dataset for Benchmarking and Detecting Emoji-

based Hate (Kirk et al., 2022)

• Adversarial Nibbler: A Data-Centric Challenge for Improving the Safety of

Text-to-Image Models (Parrish et al., 2023)

Furthermore, Dynabench has supported exploration into methodological im-

provement including:

• Improving Question Answering Model Robustness with Synthetic Adversarial

Data Generation (Bartolo et al., 2021) – see chapter 5.

• On the Efficacy of Adversarial Data Collection for Question Answer-

ing (Kaushik et al., 2021)

• Analyzing Dynamic Adversarial Training Data in the Limit (Wallace et al.,

2022)

• Models in the Loop: Aiding Crowdworkers with Generative Annotation As-

sistants (Bartolo et al., 2022b) – see chapter 6
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• Proceedings of the First Workshop on Dynamic Adversarial Data Collec-

tion (Bartolo et al., 2022a)

• DataPerf: Benchmarks for Data-Centric AI Development (Mazumder et al.,

2023)

Dynabench has also facilitated investigations and advancements in evaluation

approaches, including:

• To what extent do human explanations of model behavior align with actual

behavior? (Prasad et al., 2021)

• Dynaboard: A Holistic Evaluation-As-A-Service Benchmarking Plat-

form (Ma et al., 2021)

• Findings of the WMT 2021 Shared Task on Large-Scale Multilingual Machine

Translation (Wenzek et al., 2021)

• Dynatask: A Platform for Creating Dynamic AI Benchmark Tasks (Thrush

et al., 2022)

• Findings of the BabyLM Challenge: Sample-Efficient Pretraining on Devel-

opmentally Plausible Corpora (Warstadt et al., 2023)

• The PRISM Alignment Project: What Participatory, Representative and Indi-

vidualised Human Feedback Reveals About the Subjective and Multicultural

Alignment of Large Language Models (Kirk et al., 2024)

Looking forward, Dynabench continues to support the research community

through additional features under development including a new architecture for sim-

pler and easier development of creation and validation interfaces, improved doc-

umentation, better annotator platform integration, and continued support for new

tasks and challenges, with over eight currently in active development.

In the context of Large Language Models, the dynamic nature of Dynabench,

whether intentionally or not, continues to drive much of the current narrative. With

web-scale data scrapes commonly used for training, the output from similar models



120 Chapter 4. Dynamic Adversarial Data Collection and Benchmarking

is often included in the training data. This creates a dynamic loop where the models

are trained on data that includes their own potential outputs.

From an evaluation perspective, the rapid evolution of test sets is necessary

to keep up with the improving performance of these systems and to prevent test

example leakage into training data. As a result, we find ourselves in a dynamic

operating paradigm, one that Dynabench has deeply modelled and explored.

Figure 4.3: The Dynabench annotation interface for the original question answering task,
displaying the model’s confidence in its predicted answer to the question.

The original Dynabench interfaces also experimented with displaying model

confidence scores. An example of this for the original Question Answering task is

shown in Figure 4.3, in this case demonstrating a 100% model confidence in the

predicted answer “Australia”. This feature was designed to assist annotators in their

attempts to identify model weaknesses and was effective at doing so on the basis of

feedback received — although this was not empirically tested.

We note that since Extractive Question Answering models predict answer can-
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didates by classifying start and end indices corresponding to the answer span posi-

tions within the passage, a simple estimate of model confidence can be taken using

the start and end probabilities assigned by the model. However, the recent popular-

ity of Large Language Models, which do not share this property, makes estimating

model confidence more challenging for the most recent systems. We mention the

concept of model confidence briefly here since we expand on it as an area of future

exploration in Chapter 7.

The Dynabench platform has supported a wide range of research endeavours

by offering a broad range of features including user and task management, model

upload and hosting, dataset creation and upload, and an Evaluation as a Service

(EaaS) approach powered by Dynalab allowing the submission of model code in-

stead of predictions, and evaluation on hosted datasets with constant updates when

new datasets are made available. The next two chapters will dive deeper into some

of the research contributions that it has facilitated.





Chapter 5

Synthetic Adversarial Data

Generation

Dynamic Adversarial Data Collection (DADC), as discussed in the previous two

chapters, offers several benefits. It enables the collection of diverse data, improves

model performance, enhances adversarial robustness, and facilitates better general-

isation. This approach enriches the data collection process and contributes to more

robust and adaptable models, but it comes at a cost. DADC is more involved, re-

quires careful annotation setup and incentive structure design, requires deployment

of a model-in-the-loop, and is generally more expensive than Standard Data Collec-

tion (SDC).

Given these considerations, two intriguing research questions emerged: “What

is the optimal mix of standard and adversarially-collected data for training within a

fixed budget?”, and “Can we further improve model robustness without additional

data collection?”

Initial experiments provided insights into the first question, suggesting that

for best overall performance across evaluation settings, the optimal setting was a

roughly balanced half standard and half adversarially-collected data mixture. This

finding aligned with expectations, but it was worth noting that the bands of high

performance were fairly wide. That is, as a quick takeaway, having a reasonable

proportion of standard and adversarial data in the data mixture provided most of the

benefit, as shown in Figure 5.1.
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Figure 5.1: Results from experiments exploring the optimal mixture of standard and
adversarially-collected data with a fixed 5k example budget. We observe that
on the more challenging evaluation sets, the effect of including adversarially-
collected data is more pronounced, with the best performance achieved with a
roughly balanced mixture of standard and adversarially-collected data. We also
note that the performance bands are fairly wide, suggesting that a reasonable
proportion of standard and adversarial data in the mixture provides most of the
benefit.

Exploring the second research question was more involved and required the

development of novel approaches. Existing work in the space of synthetic adver-

sarial data augmentation using generative models was limited. This was especially

challenging in the context of extractive Question Answering, where various pipeline

components needed to be proposed and improved, such as identifying passages of

interest, identifying which spans of text might make good answer candidates, sim-

ulated adversarial human behaviour through generated questions, and filtering and

rewriting techniques for enhancing synthetic data quality and consistency.

In this chapter, we introduce Synthetic Adversarial Data Generation (SADG)

and describe the strategies employed to tackle the challenges mentioned above. By

leveraging SADG, we were able to achieve notable enhancements in model perfor-

mance and considerable robustness improvements, all without incurring any addi-

tional human annotation costs.

The material in this chapter is based on the published work titled “Improv-

ing Question Answering Model Robustness with Synthetic Adversarial Data Gen-
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eration” authored by Max Bartolo, Tristan Thrush, Robin Jia, Sebastian Riedel,

Pontus Stenetorp and Douwe Kiela.

This work was published and presented virtually at the 2021 Conference on

Empirical Methods in Natural Language Processing (EMNLP).

5.1 Overview
Despite recent progress, state-of-the-art question answering models remain vulner-

able to a variety of adversarial attacks. While dynamic adversarial data collection,

in which a human annotator tries to write examples that fool a model-in-the-loop,

can improve model robustness, this process is expensive which limits the scale of

the collected data. In this work, we are the first to use synthetic adversarial data gen-

eration to make question answering models more robust to human adversaries. We

develop a data generation pipeline that selects source passages, identifies candidate

answers, generates questions, then finally filters or re-labels them to improve qual-

ity. Using this approach, we amplify a smaller human-written adversarial dataset

to a much larger set of synthetic question-answer pairs. By incorporating our syn-

thetic data, we improve the state-of-the-art on the AdversarialQA dataset by 3.7F1

and improve model generalisation on nine of the twelve MRQA datasets. We fur-

ther conduct a novel human-in-the-loop evaluation and show that our models are

considerably more robust to new human-written adversarial examples: crowdwork-

ers can fool our model only 8.8% of the time on average, compared to 17.6% for a

model trained without synthetic data.

5.2 Introduction
Large-scale labelled datasets like SQuAD (Rajpurkar et al., 2016) and SNLI (Bow-

man et al., 2015) have been driving forces in natural language processing research.

Over the past few years, however, such “statically collected” datasets have been

shown to suffer from various problems. In particular, they often exhibit inadver-

tent spurious statistical patterns that models learn to exploit, leading to poor model

robustness and generalisation (Jia and Liang, 2017; Gururangan et al., 2018; Geva

et al., 2019; McCoy et al., 2019; Lewis et al., 2021a).

https://2021.emnlp.org/
https://2021.emnlp.org/
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Wikipedia

"Old English was not static, and its usage 
covered a period of 700 years, from the 

Anglo-Saxon settlement of Britain in the 5th 
century to the late 11th century … Albert 

Baugh dates Old English from 450 to 1150, a 
period of full inflections, a synthetic 

language. Perhaps around 85 per cent …"

BART

<s> … settlement of Britain </s> Old English was not … </s>
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RoBERTa 1
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Figure 5.2: The Synthetic Adversarial Data Generation Pipeline showing: (i) passage se-
lection from Wikipedia; (ii) answer candidate selection and filtering by model
confidence (an example retained answer shown in green, and a dropped answer
candidate in red); (iii) question generation using BARTLarge; and (iv) answer
re-labelling using self-training. The generated synthetic data is then used as
part of the training data for a downstream Reading Comprehension model.

A recently proposed alternative is dynamic data collection (Bartolo et al., 2020;

Nie et al., 2020), where data is collected with both humans and models in the an-

notation loop. Usually, these humans are instructed to ask adversarial questions

that fool existing models. Dynamic adversarial data collection is often used to

evaluate the capabilities of current state-of-the-art models, but it can also create

higher-quality training data (Bartolo et al., 2020; Nie et al., 2020) due to the added

incentive for crowdworkers to provide challenging examples. It can also reduce the

prevalence of dataset biases and annotator artefacts over time (Bartolo et al., 2020;

Nie et al., 2020), since such phenomena can be subverted by model-fooling exam-

ples collected in subsequent rounds. However, dynamic data collection can be more
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expensive than its static predecessor as creating examples that elicit a certain model

response (i.e., fooling the model) requires more annotator effort, resulting in more

time spent, and therefore higher cost per example.

In this work, we develop a synthetic adversarial data generation pipeline, mak-

ing novel contributions to the answer selection, question generation, and filtering

and re-labelling tasks. We show that dynamic adversarial data collection can be

made more sample efficient by synthetically generating (see Figure 5.2) examples

that improve the robustness of models in terms of performance on adversarially-

collected datasets, comprehension skills, and domain generalisation.

We are also the first to evaluate models in-the-loop for robustness to human

adversaries using the macro-averaged validated model error rate, demonstrating

considerable improvements with crowdworkers only able to fool the model-in-the-

loop 8.8% of the time on average, compared to 17.6% for our best baseline. The

collected dataset will form part of the evaluation for a new round of the Dynabench

QA task.1

5.3 Related Work

5.3.1 Adversarial Data Collection

We directly extend the AdversarialQA dataset introduced in Chapter 3.

While appealing, human-generated adversarial data is expensive to collect; our

work is complementary in that it explores methods to extract further value from ex-

isting adversarially collected datasets without requiring additional annotation effort.

5.3.2 Synthetic Question Generation

Many approaches have been proposed to generate question-answer pairs given a

passage (Du et al., 2017; Du and Cardie, 2018; Zhao et al., 2018; Lewis and Fan,

2019; Alberti et al., 2019; Puri et al., 2020; Lewis et al., 2021b). These generally

use a two-stage pipeline that first identifies an answer conditioned on a passage,

then generates a question conditioned on the passage and answer; we train a similar

pipeline in our work.

1https://dynabench.org/tasks/qa

https://dynabench.org/tasks/qa
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G-DAUG (Yang et al., 2020) trains generative models to synthesise train-

ing data for commonsense reasoning. Our work focuses on extractive question-

answering (QA), which motivates the need for different generative models. Yang

et al. (2020) filter generated examples using influence functions, or methods that at-

tempt to maximise diversity; we find that a different approach that considers answer

agreement between QA models trained with different random seeds leads to better

performance in our setting.

5.3.3 Self-training

In self-training, a model is trained to both predict correctly on labelled examples and

increase its confidence on unlabelled examples. Self-training can yield complemen-

tary accuracy gains with pretraining (Du et al., 2020) and can improve robustness

to domain shift (Kumar et al., 2020). In our setting, large amounts of unlabelled

adversarial-style questions are not readily available, which motivates our use of a

question generation model.

5.3.4 Human Evaluation

The ultimate goal of automatic machine learning model evaluation is usually stated

as capturing human judgements (Callison-Burch et al., 2006; Hill et al., 2015;

Vedantam et al., 2015; Liu et al., 2016). Evaluation with real humans is consid-

ered beneficial, but not easily scalable, and as such is rarely conducted in-the-loop.

With NLP model capabilities ever improving, adversarial worst case evaluation be-

comes even more pertinent. To our knowledge, this work is the first to compare

models explicitly by their adversarial validated model error rate (vMER), which we

define in Section 5.5.4.

5.4 Synthetic Data Generation
We develop a synthetic data generation pipeline for QA that involves four stages:

passage selection, answer candidate selection, question generation, and synthetic

data filtering and re-labelling. Due to the complexity of the system, we study each

of these in isolation, and then combine our best identified approaches for the final

systems. We evaluate each component both intrinsically and on their contribution
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Model Precision (%) Recall (%) F1 (%)

POS Extended 12.7 65.2 20.7

Noun Chunks 17.4 36.9 22.5

Named Entities 30.3 30.0 27.1

Span Extraction, k=15 22.5 26.6 23.7

BARTans. only, k=15 27.7 31.3 28.6

SAL (ours) 28.6 44.2 33.7

Table 5.1: Answer selection results on aligned test set.

to downstream QA performance on the AdversarialQA test sets and an unseen split

of the SQuAD1.1 dev set. The final synthetic data generation pipeline consists of:

1. Passage selection: we use passages from Wikipedia for this work.

2. Answer Candidate selection: the model identifies spans within the passage

that are likely to be answers to a question.

3. Question Generation: a generative model is used to generate a question, con-

ditioned on the passage and each answer.

4. Filtering and Re-labelling: synthetic question-answer pairs that do not meet

the necessary criteria are discarded, or have their answers re-labelled using

self-training.

Results for the baseline and overall best performing systems are shown in Table 5.7.

Results for ELECTRALarge (Clark et al., 2020) showing further performance gains

are in Appendix B.10.

5.4.1 Data Generation Pipeline

In order to generate synthetic adversarial examples, we first select passages, then

identify candidate answers in those passages, generate corresponding questions for

these answers, and then filter or re-label for improved quality based on various

criteria.

5.4.1.1 Passage Selection

The text passages we use are sourced from SQuAD (further details can be found in

Appendix B.1). We also experiment with using passages external to SQuAD, which
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Method #QA
pairs

DSQuAD DBiDAF DBERT DRoBERTa

EM F1 EM F1 EM F1 EM F1

POS Extended 999,034 53.8 71.4 32.7 46.9 30.8 40.2 20.4 27.9

Noun Chunks 581,512 43.3 63.7 28.7 43.1 22.3 31.4 18.2 27.4

Named Entities 257,857 54.2 69.7 30.5 42.5 26.6 35.4 18.1 24.0

Span Extraction 377,774 64.7 80.1 37.8 53.9 27.7 39.1 16.7 26.9

SAL (ours) 566,730 68.2 82.6 43.2 59.3 34.9 45.4 25.2 32.8
SAL threshold (ours) 393,164 68.5 82.0 46.0 60.3 36.5 46.8 24.2 32.4

Table 5.2: Downstream test results for a RoBERTaLarge QA model trained on synthetic data
generated using different answer selection methods combined with a BARTLarge
question generator (trained on SQuAD10k + DAQA).

are also sourced from Wikipedia. To preserve evaluation integrity, we analyse the 8-

gram overlap of all external passages to the evaluation datasets, after normalisation

to lower-cased alphanumeric words with a single space delimiter (Radford et al.,

2019). We find that just 0.3% of the external passages have any overlap with the

evaluation sets, and filter these out.

5.4.1.2 Answer Candidate Selection

The next step is to identify which spans of text within the passages are likely to

be answers to a question. We investigate a range of existing methods for answer

candidate selection, which takes the passage as input and outputs a set of possible

answers. We further propose a self-attention-based classification head that jointly

models span starts and ends, with improved performance.

Since SQuAD and the AdversarialQA datasets use the same passages parti-

tioned into the same data splits, we align the annotated answers to create repre-

sentative answer selection training, validation and test sets. Dataset statistics (see

Appendix B.3), highlight the high percentage of overlapping answers suggesting

that existing answer tagging methods (Zhou et al., 2017; Zhao et al., 2018) might

struggle, and models should ideally be capable of handling span overlap.

Baseline Systems We investigate three baseline systems; noun phrases and named

entities following Lewis et al. (2019), as well as an extended part-of-speech tagger

incorporating named entities, adjectives, noun phrases, numbers, distinct proper

nouns, and clauses.
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Span Extraction We fine-tune a RoBERTaLarge span extraction model as investi-

gated in previous work (Alberti et al., 2019; Lewis and Fan, 2019). We treat the

number of candidates to sample as a hyper-parameter and select the optimal value

for k ∈ {1,5,10,15,20} on the validation set.

Generative Answer Detection We use BARTLarge (Lewis et al., 2020) in two set-

tings; one generating answer and question, and the other where we generate the

answer only, as we find that this setting provides better control of answer diversity.

We use the same range of k ∈ {1,5,10,15,20} for both settings.

Self-Attention Labelling (SAL) We propose a multi-label classification head to

jointly model candidate start and end tokens, and provide a binary label for whether

each possible span of text from the passage is a candidate answer. We adapt scaled

dot-product attention (Vaswani et al., 2017) where the candidate start, S, and end,

E, token representations are analogous to the projected layer input queries and keys.

We apply a sigmoid over the computed attention scores, giving a matrix where each

cell gives the probability p(ai j|c) of whether the span in the context, c, with start

index i and end index j is a valid answer candidate. Formally:

p(ai j|c) = σ

(
∑

d
k=1 sikek j√

d

)
We optimise using binary cross-entropy, masking out impossible answer spans

defined as those not in the passage, with end indices before start, or longer than the

maximum permitted answer length, and upweigh positive examples to help coun-

teract the class imbalance. We decode from the output probability matrix to the

original passage tokens using a reversible tokeniser and use a probability threshold

of 0.5 for candidate selection, which can be adapted to tune precision and recall.

While answer candidate selection only requires a single attention head, the

multi-head implementation allows application to any labelling task requiring span

modelling with overlaps, where each head is trained to predict labels for each class,

such as for nested Named Entity Recognition. We implement this in Transform-

ers (Wolf et al., 2020) and fine-tune RoBERTaLarge with SAL on the answer selec-

tion dataset.
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Evaluation We evaluate performance on the answer selection dataset using entity-

level precision, recall, and F1 on unique normalised candidates. Results are shown

in Table 5.1. We further investigate the effects of different answer candidate selec-

tion methods on downstream QA model performance (see Table 5.2) by training a

RoBERTaLarge model on synthetic QA pairs generated when using different answer

selection methods. To eliminate generated dataset size as a potential confounder,

we also replicate these experiments using a sample of 87,000 examples and find

similar results (see Appendix B.3).

5.4.1.3 Question Generation

Once answer candidates have been identified for a selected passage, we then gen-

erate a corresponding question by directly fine-tuning a BARTLarge (Lewis et al.,

2020) autoregressive sequence generation decoder.2 To discourage the model from

memorising the questions in the SQuAD training set and directly reproducing these,

we train on a subset of 10k examples from SQuAD, selected such that they corre-

spond to the same source passages as the AdversarialQA training data. This ensures

that when scaling up synthetic generation, the vast majority of passages are previ-

ously completely unseen to the generator.

Source Questions Since the types of questions a generative model is trained on can

impact both performance and diversity, we experiment with training on SQuAD and

different subsets of AdversarialQA, and the combination of both. Examples of the

generated questions are shown in Table 5.3.

We carry out a manual answerability analysis on a random sample of 30 gen-

erated questions (using beam search with k = 5) in each of these settings (see Ta-

ble 5.4 and Appendix B.2). We define answerability by the following criteria: (i)

The question must be answerable from a single continuous span in the passage; (ii)

There must be only one valid (or clearly one most valid) answer (e.g. in the case

of a co-reference the canonical entity name should be the answer); (iii) A human

should be able to answer the question correctly given sufficient time; and (iv) The

2We also try generating multiple questions but consistently find that generating one question per
answer provides the best downstream results despite the additional data.
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Context: Following the series revival in 2005, Derek Jacobi ANS provided the character’s
re-introduction in the 2007 episode ”Utopia”. During that story the role was then assumed by
John Simm who returned to the role multiple times through the Tenth Doctor’s tenure. As of the
2014 episode ”Dark Water,” it was revealed that the Master had become a female incarnation or
”Time Lady,” going by the name of ”Missy”, played by Michelle Gomez.

SQuAD10k Who portrayed the Master in the 2007 episode ”Utopia”?

DBiDAF Who replaced John Simm as the Tenth Doctor? (Answer Mismatch)

DBERT Who played the Master in the 2007 episode ”Utopia”?

DRoBERTa Who was the first actor to play the Master?

DAQA Who played the Master first, Derek Jacobi or John Simm?

SQuAD10k + DAQA Who re-introduced the character of the Master?

Table 5.3: Examples of questions generated using BART trained on different source
datasets.

Model Valid Answer
Mismatch

Ungrammatical Invalid

SQuAD10k 90.0% 10.0% 0.0% 0.0%

DBiDAF 70.0% 30.0% 0.0% 0.0%

DBERT 76.7% 23.3% 0.0% 0.0%

DRoBERTa 70.0% 20.0% 0.0% 10.0%

DAQA 76.7% 16.7% 0.0% 6.7%

SQuAD10k+DAQA 93.3% 6.7% 0.0% 0.0%

Table 5.4: Manual analysis of questions generated when training on different source data.

correct answer is the one on which the model was conditioned during question gen-

eration. We find that when the models attempt to generate complex questions, the

generated question is often inconsistent with the target answer, despite remaining

well-formed. We also observe that when the generated question requires external

knowledge (e.g. “What is a tribe?” or “Which is not a country?”) the models are

reasonably consistent with the answer, however, they often lose answer consistency

when answering the question requires resolving information in the passage (e.g.

“What is the first place mentioned?”).

For each of these models, we generate 87k examples (the same size as the

SQuAD training set to facilitate comparison) using the human-provided answers,

and then measure the effects on downstream performance by training a QA model
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Method #QA
pairs

DSQuAD DBiDAF DBERT DRoBERTa

EM F1 EM F1 EM F1 EM F1

RSQuAD 87,599 73.2 86.3 48.9 64.3 31.3 43.5 16.1 26.7

RSQuAD+AQA 117,599 74.2 86.9 57.4 72.2 53.9 65.3 43.4 54.2

SQuAD10k 87,598 69.2 82.6 37.1 52.1 22.4 32.3 13.9 22.3

DBiDAF 87,598 67.1 80.4 41.4 56.5 33.1 43.8 22.0 32.5

DBERT 87,598 67.4 80.2 36.3 51.1 30.3 40.6 18.8 29.5

DRoBERTa 87,598 63.4 77.9 32.6 47.9 27.2 37.5 20.6 32.0

DAQA 87,598 65.5 80.1 37.0 53.0 31.1 40.9 23.2 33.3
SQuAD10k + DAQA 87,598 71.9 84.7 44.1 58.8 32.9 44.1 19.1 28.8

Table 5.5: Downstream QA test results using generative models trained on different source
data. We compare these results to baseline RoBERTa models trained on SQuAD,
and on the combination of SQuAD and AdversarialQA.

on this synthetic data. Results are shown in Table 5.5. We find that, in this set-

ting, the best source data for the generative model is consistently the combination

of SQuAD and AdversarialQA. We also note that using only synthetic generated

data, we can achieve good performance on DSQuAD consistent with the findings of

Puri et al. (2020), and outperform the model trained on the human-written SQuAD

data on DBERT (+0.6F1) and DRoBERTa (+6.6F1). This is in line with the obser-

vations in Chapter 3 suggesting that the distribution of the questions collected us-

ing progressively stronger models-in-the-loop is less similar to that of SQuAD. It

also shows that the generator can successfully identify and reproduce patterns of

adversarially-written questions. However, the results using synthetic data alone are

considerably worse than when training the QA model on human-written adversarial

data with, for example, a performance drop of 21.2F1 for DBERT. This suggests that

while we can do well on SQuAD using synthetic questions alone, we may need to

combine the synthetic data with the human-written data for best performance in the

more challenging adversarial settings.

Question Diversity In order to provide training signal diversity to the downstream

QA model, we experiment with a range of decoding techniques (see Appendix B.4),

and then evaluate these by downstream performance of a QA model trained on the

questions generated in each setting. We observe minimal variation in downstream

performance as a result of question decoding strategy, with the best downstream
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Filtering Method #QA
pairs

DSQuAD DBiDAF DBERT DRoBERTa

EM F1 EM F1 EM F1 EM F1

Answer Candidate Conf. (thresh = 0.6) 362,281 68.4 82.4 42.9 57.9 36.3 45.9 28.0 36.5

Question Generator Conf. (thresh = 0.3) 566,725 69.3 83.1 43.5 58.9 36.3 46.6 26.2 34.8

Influence Functions 288,636 68.1 81.9 43.7 58.6 36.1 46.6 27.4 36.4

Ensemble Roundtrip Consistency (6/6 correct) 250,188 74.2 86.2 55.1 67.7 45.8 54.6 31.9 40.3

Self-training (ST) 528,694 74.8 87.0 53.9 67.9 47.5 57.6 35.2 44.6

Answer Candidate Conf. (thresh = 0.5) & ST 380,785 75.1 87.0 56.5 70.0 47.9 58.7 36.0 45.9

Table 5.6: Downstream QA test results for different filtering strategies, showing best hyper-
parameter settings.

results obtained using nucleus sampling (topp = 0.75). However, we also obtain

similar downstream results with standard beam search using a beam size of 5. We

find that, given the same computational resources, standard beam search is roughly

twice as efficient, and therefore opt for this approach for our following experiments.

5.4.1.4 Filtering and Re-labelling

The synthetic question generation process can introduce various sources of noise,

as seen in the previous analysis, which could negatively impact downstream results.

To mitigate these effects, we explore a range of filtering and re-labelling methods.

Results for the best performing hyper-parameters of each method are shown in Ta-

ble 5.6 and results controlling for dataset size are in Appendix B.5.

Answer Candidate Confidence. We select candidate answers using SAL (see sec-

tion 5.4.1.2), and filter based on the span extraction confidence of the answer can-

didate selection model, estimated as the joint start and end token probabilities.

Question Generator Confidence. We filter out samples below various thresholds

of the probability score assigned to the generated question sequence, taking the

product across tokens, by the question generation model.

Influence Functions. We use influence functions (Cook and Weisberg, 1982; Koh

and Liang, 2017) to estimate the effect on the validation loss of including a syn-

thetic example as explored by Yang et al. (2020), but adapted for QA. We filter out

examples estimated to increase the validation loss.

Ensemble Roundtrip Consistency. Roundtrip consistency (Alberti et al., 2019;

Fang et al., 2020) uses an existing fine-tuned QA model to attempt to answer the
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generated questions, ensuring that the predicted answer is consistent with the target

answer prompted to the generator. Since our setup is designed to generate ques-

tions which are intentionally challenging for the QA model to answer, we attempt

to exploit the observed variation in model behaviour over multiple random seeds,

and replace the single QA model with a six-model ensemble. We find that filtering

based on the number of downstream models that correctly predict the original target

answer for the generated question produces substantially better results than relying

on the model confidence scores, which could be prone to calibration imbalances

across models.

Self-training. Filtering out examples that are not roundtrip-consistent can help

eliminate noisy data, however, it also results in (potentially difficult to answer)

questions to which a valid answer may still exist being unnecessarily discarded.

Self-training has been shown to improve robustness to domain shift (Kumar et al.,

2020) and, in our case, we re-label answers to the generated questions based on the

six QA model predictions.

Specifically, in our best-performing setting, we keep any examples where at

least five of the six QA models agree with the target answer (i.e. the one with

which the question generator was originally prompted), re-label the answers for

any examples where at least two of the models QA agree among themselves, and

discard the remaining examples (i.e. those for which there is no agreement between

any of the QA models).

We find that the best method combines self-training with answer candidate

confidence filtering. By using appropriate filtering of the synthetic generated data,

combined with the ability to scale to many more generated examples, we approach

the performance of RSQuAD+AQA, practically matching performance on SQuAD and

reducing the performance disparity to just 2.2F1 on DBiDAF, 6.6F1 on DBERT, and

8.3F1 on DRoBERTa, while still training solely on synthetic data.

5.4.2 End-to-end Synthetic Data Generation

We also try using BART to both select answers and generate questions in an end-

to-end setting. We experiment with different source datasets, number of genera-
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Model Training Data
DBiDAF DBERT DRoBERTa mvMER∗

EM F1 EM F1 EM F1 %

RSQuAD SQuAD 48.6 1.3 64.2 1.5 30.9 1.3 43.3 1.7 15.8 0.9 26.4 1.3 20.7%

RSQuAD+AQA ↑ + AQA 59.6 0.5 73.9 0.5 54.8 0.7 64.8 0.9 41.7 0.6 53.1 0.8 17.6%

SynQA ↑ + SynQASQuAD 62.5 0.9 76.0 1.0 58.7 1.4 68.3 1.4 46.7 1.8 58.0 1.8 8.8%
SynQAExt ↑ + SynQAExt 62.7 0.6 76.2 0.5 59.0 0.7 68.9 0.5 46.8 0.5 57.8 0.8 12.3%

Table 5.7: Test set results for RoBERTaLarge trained on different datasets, and augmented
with synthetic data. AQA is the AdversarialQA data consisting of the combined
DBiDAF, DBERT, and DRoBERTa from Chapter 3. We report the mean and standard
deviation (subscript) over 6 runs with different random seeds. mvMER is the
macro-averaged validated model error rate in the adversarial human evaluation
setting (∗lower is better).

tions per passage, and decoding hyper-parameters, but our best results fall short of

the best pipeline approach at 62.7/77.9 EM/F1 on DSQuAD, 30.8/47.4 on DBiDAF,

23.6/35.6 on DBERT, and 18.0/28.3 on DRoBERTa. These results are competitive

when compared to some of the other answer candidate selection methods we ex-

plored, however, fall short of the results obtained when using SAL. We find that

this approach tends to produce synthetic examples with similar answers, but leave

exploring decoding diversity to future work.

5.4.3 Fine-tuning Setup

We investigate two primary fine-tuning approaches: combining all training data,

and a two-stage set-up in which we first fine-tune on the generated synthetic data,

and then perform a second-stage of fine-tuning on the SQuAD and AdversarialQA

human-written datasets. Similar to Yang et al. (2020), we find that two-stage train-

ing marginally improves performance over standard mixed training, and we use this

approach for all subsequent experiments.

5.5 Measuring Model Robustness
Based on the findings in the previous section, we select four final models for robust-

ness evaluation:

1. RSQuAD: using the SQuAD1.1 training data.

2. RSQuAD+AQA: trained on SQuAD combined and shuffled with AdversarialQA.
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3. SynQA: uses a two-stage fine-tuning approach, first trained on 314,811 syn-

thetically generated questions on the passages in the SQuAD training set, and

then further fine-tuned on SQuAD and AdversarialQA.

4. SynQAExt: first trained on the same synthetic SQuAD examples as (iii)

combined with 1.5M synthetic questions generated on the previously de-

scribed Wikipedia passages external to SQuAD, and then further fine-tuned

on SQuAD and AdversarialQA.

Individual models are selected for the best combined and equally-weighted

performance on a split of the SQuAD validation set and all three AdversarialQA

validation sets.

We first evaluate model robustness using three existing paradigms: adversarially-

collected datasets, checklists, and domain generalisation. We also introduce adver-

sarial human evaluation, a new way of measuring robustness with direct interaction

between the human and model.

5.5.1 Adversarially-collected Data

We evaluate the final models on AdversarialQA, with results shown in Table 5.7.

We find that synthetic data augmentation yields state-of-the-art results on Adver-

sarialQA, providing performance gains of 2.3F1 on DBiDAF, 4.1F1 on DBERT, and

4.9F1 on DRoBERTa over the baselines while retaining good performance on SQuAD,

a considerable improvement at no additional annotation cost.

5.5.2 Comprehension Skills

CheckList (Ribeiro et al., 2020) is a model agnostic approach that serves as a con-

venient test-bed for evaluating what comprehension skills a QA model could learn.

We find that some skills that models struggle to learn when trained on SQuAD, such

as discerning between profession and nationality, or handling negation in ques-

tions, can be learnt by incorporating adversarially-collected data during training

(see Appendix B.8). Furthermore, augmenting with synthetic data improves perfor-

mance on a variety of these skills, with a 1.7% overall gain for SynQA and 3.1%

for SynQAExt. Adding the external synthetic data improves performance on most
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MRQA in-domain

Model
SQuAD NewsQA TriviaQA SearchQA HotpotQA NQ Avg

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

RSQuAD 84.1 1.3 90.4 1.3 41.0 1.2 57.5 1.6 60.2 0.7 69.0 0.8 16.0 1.8 20.8 2.7 53.6 0.8 68.9 0.8 40.5 2.7 58.5 2.0 49.2 60.9

RSQuAD+AQA 84.4 1.0 90.2 1.1 41.7 1.6 58.0 1.7 62.7 0.4 70.8 0.3 20.6 2.9 25.5 3.6 56.3 1.1 72.0 1.0 54.4 0.5 68.7 0.4 53.3 64.2

SynQA 88.8 0.3 94.3 0.2 42.9 1.6 60.0 1.4 62.3 1.1 70.2 1.1 23.7 3.7 29.5 4.4 59.8 1.1 75.3 1.0 55.1 1.0 68.7 0.8 55.4 66.3

SynQAExt 89.0 0.3 94.3 0.2 46.2 0.9 63.1 0.8 58.1 1.8 65.5 1.9 28.7 3.2 34.3 4.1 59.6 0.6 75.5 0.4 55.3 1.1 68.8 0.9 56.2 66.9

MRQA out-of-domain

Model
BioASQ DROP DuoRC RACE RelationExt. TextbookQA Avg

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

RSQuAD 53.2 1.1 68.6 1.4 39.8 2.6 52.7 2.2 49.3 0.7 60.3 0.8 35.1 1.0 47.8 1.2 74.1 3.0 84.4 2.9 35.0 3.8 44.2 3.7 47.7 59.7

RSQuAD+AQA 54.6 1.2 69.4 0.8 59.8 1.3 68.4 1.5 51.8 1.1 62.2 1.0 38.4 0.9 51.6 0.9 75.4 2.3 85.8 2.4 40.1 3.1 48.2 3.6 53.3 64.3

SynQA 55.1 1.5 68.7 1.2 64.3 1.5 72.5 1.7 51.7 1.3 62.1 0.9 40.2 1.2 54.2 1.3 78.1 0.2 87.8 0.2 40.2 1.3 49.2 1.5 54.9 65.8

SynQAExt 54.9 1.3 68.5 0.9 64.9 1.1 73.0 0.9 48.8 1.2 58.0 1.2 38.6 0.4 52.2 0.6 78.9 0.4 88.6 0.2 41.4 1.1 50.2 1.0 54.6 65.1

Table 5.8: Domain generalisation results on the in-domain (top) and out-of-domain (bot-
tom) subsets of MRQA.

taxonomy-related skills, considerably so on “profession vs nationality”, as well as

skills such as “his/her” coreference, or subject/object distinction. While many of

these skills seem to be learnable, it is worth noting the high variation in model

performance over multiple random initialisations.

5.5.3 Domain Generalisation

We evaluate domain generalisation of our final models on the MRQA (Fisch et al.,

2019) dev sets, with results shown in Table 5.8.3 We find that augmenting training

with synthetic data provides performance gains on nine of the twelve tasks. Perfor-

mance improvements on some of the tasks can be quite considerable (up to 8.8F1

on SearchQA), which does not come at a significant cost on the three tasks where

synthetic data is not beneficial.

5.5.4 Adversarial Human Evaluation

While existing robustness measures provide valuable insight into model behaviour,

they fail to capture how robust a model might be in a production setting. We use

Dynabench (Kiela et al., 2021), a research platform for dynamic benchmarking and

evaluation, to measure model robustness in an adversarial human evaluation set-

3 We note that our results are not directly comparable to systems submitted to the MRQA shared
task, which were trained on six “in-domain” datasets; we simply reuse the MRQA datasets for
evaluation purposes.
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Figure 5.3: The Adversarial Human Evaluation Interface.

ting. This allows for live interaction between the model and human annotator, and

more closely simulates realistic and challenging scenarios a deployed system might

encounter, compared to evaluation on static datasets.

We set up the experiment as a randomised controlled trial where annotators are

randomly allocated to interact with each of our four final models based on a hash of

their annotator identifier. We run the experiment through Amazon Mechanical Turk

(AMT) using Mephisto.4 Workers (see Appendix B.9) are first required to complete

an onboarding phase to ensure familiarity with the interface, and are then required

to ask five questions of the model. We pay $0.20 per question and given a strong

incentive to try to beat the model with a $0.50 bonus for each validated question

that the model fails to answer correctly.5 The model identity is kept hidden and

4github.com/facebookresearch/Mephisto
5Our evaluation setup is different to “Beat the AI” where annotators couldn’t submit unless they

github.com/facebookresearch/Mephisto
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workers are awarded an equal base pay irrespective of the model-in-the-loop to

avoid creating an incentive imbalance. Each annotator is allowed to write at most

50 questions, to avoid having a few productive annotators dominate our findings.

All model-fooling examples are further validated by an expert annotator. We skip

validation of questions the model answered correctly, as manual validation of a

sample of 50 such examples found that all are valid, suggesting that the QA model’s

ability to answer them is a good indicator of their validity.

We measure performance as the validated model error rate (vMER), that is, the

percentage of validated examples that the model fails to answer correctly. Despite

limiting the number of collected examples to 50 per annotator, there is still the

potential of an imbalance in the number of QA pairs produced by each annotator. In

order to eliminate annotator effect as a potential confounder, we propose using the

macro-averaged validated model error rate (mvMER) over annotators, defined as:

mvMER =
1

nann

nann

∑
i=1

validated model errorsi

number of examplesi

We find that SynQA roughly halves the model error rate compared to

RSQuAD+AQA from 17.6% to 8.8% (see Table 5.7, further details in Appendix B.9),

meaning that it is considerably harder for human adversaries to ask questions

that the model cannot answer. While SynQAExt still considerably outperforms

RSQuAD+AQA at a 12.3% mvMER, we find that it is not as hard to beat as SynQA

in this setting. A low model error rate also translates into increased challenges for

the adversarial human annotation paradigm as the effort required for each model-

fooling example increases, and provides motivation to expand the current extractive

QA task beyond single answer spans on short passages.

These findings further suggest that while static adversarial benchmarks are a

good evaluation proxy, performance gains on these may be underestimating the

effect on model robustness in a setting involving direct interaction between the

models-in-the-loop and human adversaries.

beat the model a certain number of times. This creates a different annotation dynamic that we believe
is better suited for model evaluation.
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5.6 Discussion and Conclusion

In this work, we develop a synthetic adversarial data generation pipeline for QA,

identify the best components, and evaluate on a variety of robustness measures. We

propose novel approaches for answer candidate selection, adversarial question gen-

eration, and synthetic example filtering and re-labelling, demonstrating improve-

ments over existing methods. Furthermore, we evaluate the final models on three

existing robustness measures and achieve state-of-the-art results on AdversarialQA,

improved learnability of various comprehension skills for CheckList, and improved

domain generalisation for the suite of MRQA tasks.

We then put the synthetically-augmented models back in-the-loop in an adver-

sarial human evaluation setting to assess whether these models are actually harder

for a human adversary to beat.

We find that our best synthetically-augmented model is roughly twice as hard

to beat. Our findings suggest that synthetic adversarial data generation can be used

to improve QA model robustness, both when measured using standard methods and

when evaluated directly against human adversaries.

Looking forward, the methods explored in this work could also be used to scale

the dynamic adversarial annotation process in multiple ways. Synthetic adversarial

data generation could facilitate faster iteration over rounds of adversarial human

annotation as it reduces the amount of human data required to effectively train an

improved QA model. Generative models could also help guide or inspire human

annotators as they try to come up with more challenging examples. Furthermore,

while our work focuses on improving adversarial robustness, this approach is not

limited to the adversarial setting. We believe that our findings can motivate similar

investigations for tasks where data acquisition can be challenging due to limited

resources, or for improving different aspects of robustness, for example for model

bias mitigation.
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5.7 Reflection
The work presented in this chapter produced various resources made available to

the community. These include:

• The SynQA Dataset: Consisting of 314,811 synthetically generated ques-

tions on the passages in SQuAD1.1 training set and corresponding answers,

this dataset was made publicly available under an MIT license on the Hug-

ging Face datasets hub at https://huggingface.co/datasets/

mbartolo/synQA.

• Question Generation Models: Our BART-Large based question genera-

tion models were developed in Facebook Research’s fairseq library and

made available at https://github.com/maxbartolo/synQA-

question-generators and have been used to generate data for vari-

ous other research experiments.

• Question Answering Models: Three new state-of-the-art (at the time

of release) question answering models were also released on the Hug-

ging Face hub and are available at https://huggingface.co/

mbartolo/roberta-large-synqa, https://huggingface.

co/mbartolo/roberta-large-synqa-ext (most popular), and

https://huggingface.co/mbartolo/electra-large-synqa.

Combined, they have been downloaded over 18,000 times and have con-

tributed to various research and real-world use-cases, including powering

additional rounds of the Dynabench QA task as well as the DADC Workshop

Shared Task and the work that will be described in the next chapter.

• To the best of our knowledge, the answer candidate selection approach re-

mains one of the best-performing methods to date, and is being further ex-

plored in at least one ongoing research effort.

Along with improved adversarial robustness, enhanced comprehension skills

and better domain generalisation achieved by training on data generated through

https://huggingface.co/datasets/mbartolo/synQA
https://huggingface.co/datasets/mbartolo/synQA
https://github.com/facebookresearch/fairseq
https://github.com/maxbartolo/synQA-question-generators
https://github.com/maxbartolo/synQA-question-generators
https://huggingface.co/mbartolo/roberta-large-synqa
https://huggingface.co/mbartolo/roberta-large-synqa
https://huggingface.co/mbartolo/roberta-large-synqa-ext
https://huggingface.co/mbartolo/roberta-large-synqa-ext
https://huggingface.co/mbartolo/electra-large-synqa
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SADG, we find that synthetic data collected with a specific model-in-the-loop ben-

efits not only that model but also transfers positively to stronger models. We see

evidence of this in Table B.8, where ELECTRALarge, a generally stronger model

than RoBERTaLarge, trained on SQuAD and AdversarialQA with no synthetic aug-

mentation, performs similarly to the best synthetically augmented RoBERTaLarge

models. When we introduce the synthetic adversarial data, we observe similar per-

formance gains as those seen for RoBERTaLarge, particularly on the more challeng-

ing questions. This finding suggests that the advantages of SADG extend beyond

the specific model and setup used for data collection and are, in a sense, future-

proof – where data created using a contemporary model can still be used to enhance

the performance of future, more davanced models. This finding aligns with the ob-

servations from Chapter 3, where adversarial data collected with a weaker model

in the loop, such as BiDAF, provided various performance, robustness and general-

isation benefits when used to train stronger models (such as BERT or RoBERTa).

This transferability underscores the effectiveness of SADG, making it a valuable

technique for both current and future model development.

The concepts and techniques presented in this work have also influenced a

range of efforts to enhance the robustness of Large Language Models (LLMs).

Specifically, the ideas of Synthetic Adversarial Data Generation and the filtering

and rewriting approaches have been adopted as standard practices for post-training

LLMs, including Cohere’s Command R+ model. These methods improve general

robustness across diverse user query types.

Additionally, the concept of adversarial human evaluation has been further ex-

plored in the context of LLM safety through the now well-established practice of

red teaming (Perez et al., 2022; Ganguli et al., 2022). Red teaming has evolved into

an import concept in LLM safety that involves dedicated teams or individuals as-

suming adversarial roles to identify and measure potential risks and vulnerabilities

in LLMs. By adopting an adversarial mindset, red teams can proactively uncover

harmful or unethical behaviours exhibited by these models. This approach has be-

come a key component for enhancing LLM safety and mitigating potential harm to

https://cohere.com/blog/command-r-plus-microsoft-azure
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users and society.

A dynamic approach to data collection, where models are iteratively trained on

collected data and then used in-the-loop for the next round of data collection, has

become a common practice in developing LLMs. This approach enhances the effec-

tiveness of the collected data and the models’ performance. Furthermore, model-

in-the-loop evaluation has become the norm for assessing Language Models, par-

ticularly when measuring the general capabilities of these systems across a broad

spectrum of tasks.





Chapter 6

Generative Annotation Assistants

Synthetic Adversarial Data Generation (SADG), as introduced in the previous chap-

ter, can be used to improve both the general performance and robustness of models.

It involves the curated creation of synthetic data that mimics the strategies a human

might employ to identify model failure modes. This approach is particularly valu-

able when aiming to maximise model robustness without the need for additional hu-

man annotation or costly data collection campaigns. SADG offers a cost-effective

way to push model performance and robustness beyond what existing data can offer,

making it a valuable tool in the model development and refinement process.

The research question then arises: Are the question-generation models used

in Synthetic Adversarial Data Generation constrained by the space probed by hu-

mans in the initial adversarial datasets and can we drive further improvements by

assisting humans in constructing adversarial examples?

In this chapter, we explore innovative ways to support human adversaries. By

developing tools and methodologies to assist humans, it becomes easier to uncover

adversarial examples and edge cases that might otherwise be challenging to identify.

This collaboration between humans and Generative Annotation Assistants (GAAs)

can lead to a more comprehensive understanding of model behaviours and potential

weaknesses. Assisting humans in this manner not only improves the overall effi-

ciency of the process, allowing humans to find viable adversarial examples faster

and cheaper, but also the effectiveness, improving the ability of human annotators

to identify queries that the models struggle with.
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Having humans and generative assistants collaborate on the same task allows

both the benefits of rapid automated exploration provided by the assistants and the

creativity and context awareness of humans to work together to make the adversar-

ial data collection process more cost effective and higher quality, ultimately also

leading to downstream performance and robustness improvements.

This work explores a broad range of ideas and techniques for providing humans

with effective assistance, including different generative mode training setups, sam-

pling strategies, and answer generation and filtering strategies, and further provides

insight into how annotator and GAA interactions play out.

This material discussed in this chapter is based on the published work titled

“Models in the Loop: Aiding Crowdworkers with Generative Annotation Assis-

tants” authored by Max Bartolo, Tristan Thrush, Sebastian Riedel, Pontus Stene-

torp, Robin Jia and Douwe Kiela.

This work was published and presented at the 2022 Annual Conference of

the North American Chapter of the Association for Computational Linguistics

(NAACL) in Seattle, Washington. Additional material from the First Workshop

on Dynamic Adversarial Data Collection (DADC) held at the same conference is

also referenced in the end-of-chapter reflection.

6.1 Overview

In Dynamic Adversarial Data Collection (DADC), human annotators are tasked

with finding examples that models struggle to predict correctly. Models trained on

DADC-collected training data have been shown to be more robust in adversarial and

out-of-domain settings, and are considerably harder for humans to fool. However,

DADC is more time-consuming than traditional data collection and thus more costly

per annotated example. In this work, we examine whether we can maintain the ad-

vantages of DADC, without incurring the additional cost. To that end, we intro-

duce Generative Annotation Assistants (GAAs), generator-in-the-loop models that

provide real-time suggestions that annotators can either approve, modify, or reject

entirely. We collect training datasets in twenty experimental settings and perform

https://2022.naacl.org/
https://2022.naacl.org/
https://2022.naacl.org/
https://dadcworkshop.github.io/
https://dadcworkshop.github.io/
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After a slow start to the 2008–09 season, the Bruins won 17 of their next 20
games, leading many to see them as a revival of the "Big Bad Bruins" from
the 1970s and 1980s. During the 2009 All-Star Weekend's Skills
Competition, captain Zdeno Chara fired the NHL's then-fastest measured
"hardest shot" ever, with a clocked in speed of 105.4 mph (169.7 km/h)
velocity. (Chara has since broken his own record three times, two of those
on the same night.) The number of injured players in the season…

A: 105.4 mph

Q: What was the fastest shot ever?

Q: What was the fastest shot 
ever in 2009?

A: Zdeno Chara

GAA

QA

Figure 6.1: Example interaction between an annotator and the models in the loop. The
annotator selects an answer from the passage, for which the Generative An-
notation Assistant (GAA) prompts a question. The annotator can then freely
modify the question and/or answer, or generate another prompt. In the adver-
sarial data collection setting, a model-in-the-loop provides predictions with the
aim of encouraging annotators to find model-fooling examples. In the answer
prompting setting, an answer suggestion is prompted by the assistive model
instead of being selected by the annotator.

a detailed analysis of this approach for the task of extractive question answering

(QA) for both standard and adversarial data collection. We demonstrate that GAAs

provide significant efficiency benefits with over a 30% annotation speed-up, while

leading to over a 5x improvement in model fooling rates. In addition, we find that

using GAA-assisted training data leads to higher downstream model performance

on a variety of question answering tasks over adversarial data collection.

6.2 Introduction
Natural language processing has become increasingly reliant on large datasets ob-

tained using crowd sourcing. However, crowdsourcing as an unconstrained anno-

tation approach is known to result in machine-exploitable annotator artefacts (Jia
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and Liang, 2017; Schwartz et al., 2017; Gururangan et al., 2018; Geva et al., 2019),

leading to poor out-of-distribution generalisation (Chen et al., 2016; Weissenborn

et al., 2017; Yogatama et al., 2019; McCoy et al., 2019). Dynamic Adversarial

Data Collection (DADC) aims to address these issues by introducing state-of-the-

art models into the data collection loop and asking human annotators to produce

examples that these models find challenging (Kiela et al., 2021). The intuition be-

hind this approach is that it leads human annotators to better explore the space of

possible examples. Previous work has found that DADC leads to improved model

robustness on adversarial datasets (Nie et al., 2020; Bartolo et al., 2020), increased

sample diversity (Bartolo et al., 2020; Wallace et al., 2022), better training data

(Wallace et al., 2022) and better domain generalisation (Bartolo et al., 2021).

Despite these advantages, a downside to DADC is that it increases the human

effort necessary to annotate a single example and thus the overall annotation cost.

In fact, to date, only a limited number of large-scale training datasets have been

produced using DADC and its application has been primarily restricted to producing

challenge sets or as additional training data to improve the performance of models

already trained on non-DADC curated datasets. To make better use of DADC data,

Chapter 5 proposes generating synthetic adversarial training sets to further improve

model robustness. However, this approach inevitably limits example diversity as

it relies on examples ultimately generated by a model with no additional human

input, and provides no guarantees that useful synthetic examples would transfer

across target adversary models of varying capabilities or across annotation rounds.

In this work, we propose assisting annotators by having generative models aid

human annotators in the data collection loop. Concretely, we utilise a Generative

Annotation Assistant (GAA) model that provides prompt suggestions to crowd-

workers, while allowing full flexibility for edits and rewrites to support example

generation while still allowing for human creativity as shown in Figure 6.1. We

explore GAAs in a broad range of experimental settings, including standard and

adversarial data collection approaches, training on various source datasets, and em-

ploying sampling methodologies based on likelihood, adversarial feedback, and un-
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Figure 6.2: The Annotation Interface used for data collection. This example shows a ques-
tion generated using a generative assistant trained on the AdversarialQA data
and selected an adversarial sampler, which successfully allowed the annotator
to beat the QA model in the loop.

certainty. We showcase the value of this approach on the task of extractive question

answering (QA), and find that GAAs can help improve both the standard and ad-

versarial data collection paradigms. We find considerable efficiency gains, with

over 30% observed annotation speed-ups, as well as improved data effectiveness

with up to a 6.1F1 improvement in downstream performance over adversarial data

collection.

6.3 Related Work

6.3.1 Dynamic Adversarial Data Collection (DADC)

There is a rich body of recent work showing the benefits of dynamic adversarial

data collection in model evaluation (Yang et al., 2018b; Dua et al., 2019; Dinan

et al., 2019; Nie et al., 2020; Bartolo et al., 2020; Kiela et al., 2021; Wallace et al.,

2022), although the approach has been challenged for not necessarily leading to

better generalisation on non-adversarial test sets (Kaushik et al., 2021) and being

sensitive to the choice of model that was used in the loop (Bowman and Dahl,

2021; Phang et al., 2022). This work builds on previous work in adversarial data

collection methods for QA (Bartolo et al., 2020), and work investigating the use
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of question generation models to create synthetic adversarial data to improve QA

model robustness (Bartolo et al., 2021).

6.3.2 Generative Model Annotation Support

A long line of prior work has trained generative models for question answering (Du

et al., 2017; Du and Cardie, 2018; Zhao et al., 2018; Lewis and Fan, 2019; Alberti

et al., 2019; Puri et al., 2020; Yang et al., 2020; Bartolo et al., 2021; Lewis et al.,

2021b). In many cases, these approaches filter out questions that an external QA

model gets wrong, in order to ensure correctness of the generated questions; our

filtering strategies instead focus on generated questions that QA models get wrong

as we hypothesise that these would serve as more useful initial prompts to human

annotators.

Generative models have also been used to aid experts with writing contrast

sets (Wu et al., 2021; Ross et al., 2022), but to the best of our knowledge, this is

the first work to investigate the use of generative annotation assistants for crowd-

workers directly in the annotation loop for NLP. Recent work on supporting crowd-

workers for textual entailment in a non-adversarial setting shows no improvements

on downstream transfer performance over baseline, albeit with reductions in previ-

ously observed issues with annotation artefacts (Bowman et al., 2020). Subsequent

work highlights the need for further data collection efforts focusing on improving

writing-based annotation processes (Vania et al., 2021), which we aim to investi-

gate in this work. Separately, Ettinger et al. (2017) provide breakers with the ability

to minimally edit original data to identify the boundaries of system capabilities,

while Potts et al. (2021) analyse the use of prompts to assist crowdworkers in beat-

ing a model in the loop for sentiment analysis. In both cases, prompts are sourced

from existing datasets and are not generated on the fly.

6.3.3 Active Learning and Weak Supervision

Active learning approaches have been used to accelerate annotation (Tsuruoka et al.,

2008), although this typically assumes access to a pool or stream of unlabelled data

for which the learning algorithm can query labels (Settles, 2009). In our setting,
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no unlabelled questions are provided, necessitating the use of a generative model

to suggest questions instead. Moreover, our annotators are free to edit and browse

generated questions, whereas annotators in active learning typically only provide

labels and have no choice in what to label. Some of our sampling and filtering

strategies based on entropy are inspired by uncertainty sampling, a standard active

learning algorithm (Lewis and Gale, 1994).

6.4 Experimental Setup

Our study focuses on the effects of incorporating generative annotation assistants,

and understanding their interactions with annotators and discriminative models-in-

the-loop in a DADC context for QA. We provide crowdworkers with a short passage

from Wikipedia and ask them to write five questions and highlight the span in the

passage that best answers the question for each (see Figure 6.2). We pay workers

equally across experiment modes to avoid creating an incentive imbalance and pay

out an additional bonus for each question that successfully beats the discriminative

QA model i.e., for each question that the model fails to answer correctly. Finally,

we validate all collected examples using a separate worker pool that also undergoes

rigorous onboarding and validation. We ask three of these additional workers to

report on the validity of each annotated example.

Selected Passages We select passages from KILT (Petroni et al., 2021) to allow for

the possibility of future investigation into cross-domain and task transfer. We re-

strict KILT passages to those with between 100 and 600 tokens that are used by at

least 5 of the KILT tasks. Furthermore, we filter out any passages with any 8-gram

overlap (after normalisation) to the SQuAD1.1 training or development sets, seek-

ing to ensure that all passages used in our study are novel and previously unseen by

the discriminative QA models in the loop. This leaves a total of 10,109 passages

from 421 Wikipedia pages. We retain and supply all passage-relevant KILT meta-

data (such as IDs and provenances) with our collected datasets to facilitate future

work.
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Model-in-the-Loop The discriminative QA model in the loop is ELECTRALarge (Clark

et al., 2020) trained on SQuAD1.1 and AdversarialQA, and enhanced using SynQA

to improve adversarial robustness as investigated in Chapter 5.1 This model repre-

sents the best-performing model on the Dynabench (Kiela et al., 2021) leaderboard

at the time of conducting this study, obtaining a word-overlap F1 score of 94.5%

on the SQuAD1.1 dev set, and represents the state-of-the-art on AdversarialQA

achieving 77.6% on the DBiDAF subset, 71.5% on DBERT, and 63.2% on DRoBERTa.

Generator-in-the-Loop For our generative models, we use the fairseq (Ott et al.,

2019) implementation of BARTLarge (Lewis et al., 2020), and fine-tune the decoder

to generate questions conditioned on the passage and the answer highlighted by the

annotator. To provide annotators with a diverse set of questions, we decode using

nucleus sampling with topp = 0.75, as decoding using standard beam search re-

sults in questions which are more similar to each other and therefore likely to be

less useful as question prompts to annotators. To speed up inference and model-

annotator interaction, we preemptively identify answer candidates for each passage

and generate questions to build up a large cache from which we serve questions

during annotation. Once there are no questions remaining in the cache for a partic-

ular answer, or if the annotator selects an answer that is not in the cache, we fall

back to querying the generative model in real-time. In this work, we investigate

generative assistants trained on three different sources of questions: SQuAD1.1,

AdversarialQA, and the combination of both SQuAD and AdversarialQA.

Question Sampling We investigate three different selection strategies for present-

ing the generated questions as prompts to annotators: i) generator likelihood sam-

ples candidates in the order prescribed by the generative model’s associated like-

lihood values; ii) adversarial sampling selects generated questions in order of the

least word-overlap F1 scores when queried against the discriminative QA model;

and iii) uncertainty sampling is inspired by active learning and selects generated

questions in order of the least span selection confidence when queried against the

QA model. The latter two provide an interesting trade-off for exploration as we

1You can interact with this model at https://dynabench.org/models/109.

https://dynabench.org/models/109
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would expect the quality of the generated questions to be worse than if sampled

based on likelihood. However, we hope that such prompts could serve to inspire an-

notators and provide a “starting point” beyond the answering capabilities of the QA

model, irrespective of correctness. We hypothesise that modifying such examples

might be a more effective process for annotators to undertake than when starting

from higher quality but less model-confusing prompts, and investigate this question

thoroughly.

Answer Prompts We also investigate the effects of abstracting away the answer

selection task from the annotator. To identify potential candidate answers, we use

Self-Attention Labelling (SAL) (Bartolo et al., 2021) and investigate providing an-

notators with both answer prompts as well as the corresponding generated ques-

tions.

Experimental Settings In total, there are twenty different experimental settings in-

volving combinations of the above-mentioned pipeline components. We collect

2,000 validated training examples for each of these settings, for a total of 40,000

examples. For downstream evaluation we train ELECTRALarge QA models on the

training datasets collected for each setting, and perform identical model selection

and hyper-parameter tuning.

Annotation Interface We use an adaptation of the Dynabench (Kiela et al., 2021)

QA interface that allows annotators to interact with the models in the loop, and fur-

ther allows them to edit and modify generated questions and answers as required.

The same base interface is used across experimental settings and only varied min-

imally depending on the current setting, for example by changing the title and in-

structions in the adversarial annotation setting, or by adding a “Generate Question”

button when the setting involves GAAs. In the GAA settings, annotators are not

informed what generative model they are interacting with, or what sampling mech-

anism is being used.

Crowdsourcing Protocol We use Amazon Mechanical Turk to recruit workers for

this study and run all experiments using Mephisto.2 To ensure proficiency in En-

2github.com/facebookresearch/Mephisto

github.com/facebookresearch/Mephisto
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Adversary-in-the-loop? t (s) vMER (%) t/vMFE (s) SQuADdev DBiDAF DBERT DRoBERTa MRQA

7 57.2 23.9 0.63 11,537 85.7 43.5 28.3 21.1 52.0

3 61.5 27.1 1.86 4,863 85.0 53.0 34.2 26.9 58.8

Table 6.1: Baseline results comparing standard and adversarial data collection. t shows
the median time taken per example in seconds and median absolute deviation
(subscript). vMER is the validated model error rate. t/vMFE is the time per val-
idated model-fooling example. Lower is better for the time-dependent metrics.
Downstream evaluation is measured by training an ELECTRALarge QA model
on the collected datasets and evaluating F1 scores on the SQuAD1.1 dev set, the
AdversarialQA test sets, and the MRQA dev sets for domain generalisation.

glish, crowdworkers are required to be based in Canada, the UK, or the US. They

are also required to have a Human Intelligence Task (HIT) Approval Rate greater

than 98%, have previously completed at least 1,000 HITs, and undergo a dedicated

onboarding process. Workers were randomly assigned to one of the possible exper-

iment modes and were all presented with passages sampled from the same set, for

which they were tasked with writing and answering five questions. All collected

questions were than validated for correctness by a separate group of crowdwork-

ers. We collect three validations per question and use this information, along with

manual verification of a subset of the annotated examples, to maintain a high level

of quality and remove examples from workers with less than an 80% validity rate.

We calculate the reliability of agreement between validators using Fleiss’ kappa at

0.46. Workers were provided an additional bonus for each example validated as

having successfully fooled the model in the adversarial data collection settings. In

total, 1,931 workers participated in the study, with 1,559 contributing to the final

datasets. We also continuously validate both annotators and validators based on

signals such as repetitiveness, agreement, and manual checks.

Evaluation We evaluate the outcomes in each of the experimental settings by a

selection of metrics:

i. median time per example as a measure of annotation efficiency and where a

lower time taken is better;

ii. validated Model Error Rate (vMER) (Bartolo et al., 2021) which evaluates

the effectiveness of annotators at generating valid question-answer pairs that
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Sampling Strategy t (s) vMER (%) t/vMFE (s) SQuADdev DBiDAF DBERT DRoBERTa MRQA

Likelihood 37.5 21.4 0.62 8,708 85.5 41.8 25.3 20.3 53.6

Adversarial 55.6 20.9 4.02 1,760 84.7 45.5 26.1 20.0 54.3
Uncertainty 63.1 28.6 2.77 3,018 83.2 45.5 28.2 21.9 53.2

Table 6.2: Results for the investigation into supporting standard data collection using
GAAs. Since this setting assumes no access to adversarially-sourced data, we
use a generative model trained only on questions from SQuAD1.1. There is no
adversarial QA model in the loop in this setting.

the QA model in the loop fails to answer correctly;

iii. median time per validated model-fooling example which serves as a single

metric incorporating both method efficiency and effectiveness and thus pro-

vides a convenient metric for comparison across the various experimental set-

tings; and

iv. downstream effectiveness in which we evaluate the performance (by word-

overlap F1 score) of a QA model trained on the data collected in each of the

experimental modes on the standard SQuAD1.1 benchmark, on the Adver-

sarialQA benchmark, and in terms of domain generalisation ability on the

MRQA (Fisch et al., 2019) dev sets.

Lower values are better for the time-dependent metrics, however, from the per-

spective of training data we consider a higher vMER to be better guided by the

performance benefits observed for adversarial over standard data collection. This is

corroborated by comparison with downstream results.

6.5 Results
Our study allows us to perform a thorough investigation into both the efficiency and

effectiveness of the different data annotation methodologies. It also allows us to

build on work investigating the various differences between standard and adversarial

data collection (Kaushik et al., 2021).

6.5.1 Standard versus Adversarial Data Collection

The standard and adversarial data collection settings we use as baselines do not

make use of GAAs, and are designed to replicate the SQuAD1.1 (Rajpurkar et al.,
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2016) and AdversarialQA (Bartolo et al., 2020) annotation setups as closely as pos-

sible. However, in contrast to AdversarialQA, our setting only provides annotators

with a financial incentive to try to beat the model in the loop through the use of a

bonus, and does not restrict annotators to only submitting model-fooling examples.

The results, shown in Table 6.1, highlight the differences between the two an-

notation approaches. As expected, standard data collection is more efficient in terms

of the time taken per example, as there is no requirement for annotators to make any

effort to try to beat a model. However, the efficiency differences are not as large as

seen in settings where annotators have to submit model-fooling examples (Bartolo

et al., 2020).

We also find considerable benefits from adversarial data collection in terms of

the validated model error rate and subsequent downstream performance. As ob-

served in Chapter 3, adversarial data collection is more effective on adversarial

test sets and aids domain generalisation, with slight performance degradation in the

standard evaluation setting, which may be mitigated by increasing the amount of

training data or combining with non-adversarial training data (for detailed results,

refer to Appendix C.2). The combined performance across evaluation settings is

considerably higher for adversarial data collection.

We note that the training data sizes in both these experimental settings are rel-

atively small, and the benefits of adversarial data collection have been shown to be

more pronounced in the low data regime, likely due to increased example diversity.

Furthermore, while the passages used in this study are sourced from Wikipedia,

there may exist characteristic differences between these and the passages used in

SQuAD.

We also observe considerably lower (i.e., better) adversarial human evaluation

vMER scores achieved for our synthetically-augmented ELECTRALarge model-in-

the-loop compared to the 8.8% reported for RoBERTaLarge in Chapter 5. We hypoth-

esise that this is primarily due to two factors: the improved robustness of ELEC-

TRA in comparison to RoBERTa, and more tightly-controlled example validation.

For further evidence of the improved adversarial robustness of ELECTRA, refer to
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GAA Training Sampling t (s) vMER (%) t/vMFE (s) SQuADdev DBiDAF DBERT DRoBERTa MRQA

SQuAD Likelihood 61.1 31.9 2.25 3,501 86.5 50.1 30.1 24.1 57.6

SQuAD Adversarial 62.6 22.7 4.66 1,750 83.2 48.1 27.7 24.2 55.0

SQuAD Uncertainty 62.1 26.3 2.41 3,317 86.1 51.8 31.1 24.4 58.4
AdversarialQA Likelihood 54.2 24.4 3.09 2,458 84.7 49.8 36.9 29.8 56.8

AdversarialQA Adversarial 63.9 25.6 6.30 1,262 83.3 49.4 34.9 28.1 56.7

AdversarialQA Uncertainty 72.1 30.9 5.20 1,776 83.6 50.3 37.3 27.0 55.7

Combined Likelihood 53.6 25.6 2.64 2,724 85.1 48.9 33.4 24.7 56.5

Combined Adversarial 69.6 29.6 4.86 1,922 82.9 48.0 33.6 28.6 54.5

Combined Uncertainty 62.0 25.0 4.87 1,690 85.3 50.5 33.9 28.8 56.5

Table 6.3: Results for the investigation into supporting adversarial data collection using
GAAs. We investigate three different GAA training dataset sources, and three
sampling strategies. The adversarial QA model used in the annotation loop is
identical for all settings.

Appendix C.3.

6.5.2 Improving Standard Data Collection

We now investigate whether it might be possible to improve standard data collec-

tion practices using generative assistants – can we achieve similar performance to

adversarial data collection without access to any adversarial data?

We therefore use a GAA trained on SQuAD1.1, and investigate the three sam-

pling techniques namely: likelihood, adversarial, and uncertainty sampling. Results

are shown in Table 6.2. We find that using a GAA with likelihood sampling con-

siderably improves the efficiency of the annotation process in comparison to the

standard data collection baseline in Table 6.1. It also gives comparable vMER re-

sults and downstream QA performance.

Furthermore, both the adversarial and uncertainty sampling strategies prove

effective. While the reduction in time taken per example is not as substantial as

for standard likelihood sampling, and is comparable to the standard data collection

baseline, the vMER – an indicator of the diversity of the collected training data –

is substantially improved and outperforms the adversarial data collection baseline.

The downstream results are also promising, providing slight improvements over

the standard data collection setting, particularly with regards to domain generalisa-

tion. They start to make progress towards the values obtained for the adversarial

data collection baseline although, despite the improved vMER, overall downstream
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GAA Training Sampling t (s) vMER (%) t/vMFE (s) SQuADdev DBiDAF DBERT DRoBERTa MRQA

AdversarialQA Likelihood 38.5 22.7 5.63 988 83.8 49.7 40.3 30.7 55.9

AdversarialQA Adversarial 44.2 21.6 9.46 668 83.9 48.7 36.2 30.3 55.2

AdversarialQA Uncertainty 49.9 24.8 7.80 854 84.8 51.3 38.9 30.6 56.3

Combined Likelihood 45.9 23.4 2.90 2,196 85.2 51.1 37.5 28.1 56.4
Combined Adversarial 56.3 27.1 9.53 785 83.5 48.4 35.5 29.3 55.5

Combined Uncertainty 57.6 27.7 4.48 1,841 83.4 47.4 36.6 27.8 55.2

Table 6.4: Results for the investigation into supporting adversarial data collection using
GAAs equipped with answer prompting. We investigate two different GAA
training dataset sources, and three sampling strategies. The adversarial QA
model-in-the-loop is identical for all settings.

performance is considerably higher in the adversarial data collection setting.

In summary, these results shows that we can encourage annotators to come up

with more challenging examples without requiring any adversarially-collected data

or an adversarial model in the loop, simply through the use of GAAs paired with

an appropriate sampling strategy. However, using adversarial data collection still

provides substantially better downstream performance. These observations are in

line with our initial hypothesis that sampling generated prompts from regions of

known model uncertainty, or prompts that we know the model finds challenging to

answer, irrespective of generated sample quality, provides annotators with a better

starting point for example creation.

6.5.3 Improving Adversarial Data Collection

Following the efficiency gains observed for standard data collection, we investigate

whether it is possible for GAAs to provide further improvements over adversarial

data collection. As for the previous experiments, we investigate GAAs trained on

three different datasets: SQuAD1.1, AdversarialQA, and the combination of both.

We combine each of these with the three previously discussed sampling strategies

resulting in nine different experimental settings. Results are shown in Table 6.3.

We find that when annotators are incentivised to try to beat an adversarial

QA model-in-the-loop, the previously seen efficiency gains are not as clear cut. In

fact, annotators are slightly slower than for the adversarial data collection baseline

when using a SQuAD-trained GAA. When using a GAA that has been trained on

adversarially-sourced questions, standard likelihood sampling provides efficiency
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gains over the baseline, however, both adversarial and uncertainty sampling (which

naturally lead to more complex prompts that might be more challenging to work

with) actually slow annotators down, although they do provide improved validated

model error rates and overall better adversarial example generation efficiency mea-

sured by the time taken per validated model-fooling example.

In terms of downstream performance, there is no clear best option, but the

best settings consistently outperform the adversarial data collection baseline on the

most challenging examples (DBERT and DRoBERTa) while providing comparable re-

sults in the other evaluation settings. Surprisingly, we find that various settings,

particularly those involving a SQuAD-trained GAA can provide performance gains

over the standard data collection baseline on SQuAD1.1. We also observe that a

SQuAD-trained GAA with uncertainty sampling gives best performance on the less

challenging evaluation sets, while an AdversarialQA-trained GAA gives best per-

formance on the evaluation datasets collected using a more performant adversary.

This is also in line with the observations made in Chapter 3 showing a distributional

shift in question type and complexity with an increasingly stronger model-in-the-

loop.

The general takeaway in terms of the ideal experimental setting from the per-

spective of downstream performance is that it depends on the particular evaluation

setting, with GAAs trained on examples from a particular setting yielding better

performance when the downstream model is also evaluated in similar conditions.

Another key observation is that both the validated model error rate and time per

validated model-fooling example comfortably outperform the baselines across the

board, highlighting the enhancements to the effectiveness of the annotation process

provided by incorporating GAAs in the loop.

6.5.4 Investigating Answer Prompting

The settings explored in the previous sections focus on investigating the effects

of assisting free-text generation of the questions using GAAs. However, the QA

crowdsourcing setting also involves annotation of answer spans, which we also ex-

plore in the search for efficiency gains. Here, we explore GAAs trained on datasets
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with adversarially-sourced components and the same three sampling strategies as

previously (likelihood, uncertainty and adversarial), while additionally providing

annotators with an answer suggestion.

In essence, this is similar to an answer and question validation setting, with

the difference that annotators have the ability to freely modify both answer and

question, or request additional suggestions. Results for our experiments involving

answer assistance are shown in Table 6.4.

We find that answer prompting is very effective at improving annotation ef-

ficiency, providing gains in all six experimental settings while also providing im-

proved vMER results in all cases. We also see very similar downstream perfor-

mance result patterns to the previous set of experiments – for performance on the

more challenging evaluation sets (DBERT and DRoBERTa), an AdversarialQA-trained

GAA with likelihood sampling gives best performance, while for performance on

SQuAD, a GAA trained on examples including SQuAD gives the best results. As

previously discussed and as shown in Appendix C.2, adding SQuAD examples to

the training data mitigates this effect.

The consistency in performance patterns serves to further highlight the pre-

vious observation that, while using GAAs provides considerable gains in both the

efficiency of the annotation process and effectiveness in terms of downstream re-

sults, the ideal annotation setup should be selected based on the target downstream

evaluation. It is also worth highlighting the considerable performance improve-

ments on the more challenging AdversarialQA evaluation sets observed when using

an AdversarialQA-trained GAA even over adversarial data collection.

6.6 Annotator Interaction with GAAs

While we provide annotators with instructions explaining how they can use the

GAAs to aid their annotation, they are free to query the generative models as many

times as they like, if at all, during annotation. We are interested to see how the

three main factors affecting interaction with the GAAs that we explore – training

data, sampling strategy, and answer prompting – affect the ways in which annotators
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Feature Setting Avg. #Generations per Example

GAA Training
SQuAD 0.69

AdversarialQA 0.86

Combined 0.83

Sampling
Likelihood 0.67

Adversarial 0.87

Uncertainty 0.83

Answer Prompt?
7 0.73

3 0.91

Table 6.5: Results showing how often annotators query the GAA for different experimental
settings.

interact or use the GAAs.

Results, shown in Table 6.5, indicate that annotators query the GAA less

frequently when being shown simpler prompts i.e. those obtained using a GAA

trained on non-adversarially sourced examples, or selected using likelihood sam-

pling which tends to provide higher quality and less complex generated texts. We

also find that annotators query the GAA more frequently when an answer prompt is

also provided. We believe that this can be attributed to the fact that the answer and

question prompt setting is more similar to a validation workflow, allowing annota-

tors to generate prompts until a satisfactory one is found.

6.7 Discussion and Conclusion

In this work, we introduce Generative Annotation Assistants (GAAs) and investi-

gate their potential to aid crowdworkers with creating more effective training data

more efficiently. We perform a thorough analysis of how GAAs can be used for im-

proving QA dataset annotation in different settings, including different generative

model training data, sampling strategies, and whether to also provide annotators

with answer suggestions.

We find that GAAs are beneficial in both the standard and adversarial data

collection settings. In the standard data collection setting, and under the assumption

of no access to adversarially-collected data, GAAs with prompts sampled based
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on likelihood provide annotation speed-ups, while prompts sampled by adversarial

performance or uncertainty metrics provide benefits to both the model error rates

on the collected data as well as subsequent downstream QA performance. We find

that while GAAs are effective for improving standard data collection, we still do

not approach the performance obtained when using adversarial data collection.

For adversarial data collection, we demonstrate improved effectiveness of the

annotation process over the non-GAA baseline, although this comes at a cost of

reduced annotation efficiency. We show that also aiding annotators with answer

prompts boosts data collection efficiency even beyond that of standard data collec-

tion, while retaining overall downstream performance.

We find that the ideal annotation setting differs for different intended evalua-

tions, with an uncertainty-sampled GAA trained on data that was not adversarially-

collected providing best performance on simpler questions, while a GAA trained on

adversarially-collected data provides best downstream performance on more chal-

lenging evaluation sets. However, we also find that combining with a small sam-

ple of SQuAD training examples can boost performance on these less-challenging

questions, and that in this setting a likelihood-sampled adversarially-trained GAA

consistently provides the best results.

In terms of efficiency, we see annotation speed-ups over baseline of 34.4% for

standard data collection and 37.4% for adversarial data collection. In terms of effec-

tiveness, we see over a 5x improvement in vMER over adversarial data collection,

along with downstream performance gains. We improve over standard data collec-

tion on SQuADdev by up to 0.8F1 and improve over adversarial data collection by

up to 6.1F1 on DBERT, and 3.8F1 on DRoBERTa. Furthermore, we see benefits in do-

main generalisation over standard data collection, and show that annotators interact

with the GAA more frequently when it has been trained on adversarially-collected

data, is sampled based on adversarial or uncertainty feedback, and also provides

answer prompts.

While our analysis is limited by the size of the collected data, we believe that

GAAs can help drive further innovation into improved data collection methodolo-
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gies based on these findings. We hope that our analysis of various aspects of GAA

incorporation into the annotation pipeline and the interactions between annotators

and multiple models in the loop can help inform future work exploring broader as-

pects of GAA use, such as for other NLP tasks or for larger scale annotation efforts.

6.8 Reflection

This chapter provides an in-depth exploration of methods for assisting human anno-

tators with writing adversarial questions through the use of Generative Annotation

Assistants (GAAs), finding some effective setups and others that are considerably

more effective. We demonstrate over 30% efficiency improvements for both stan-

dard and adversarial data collection with the use of GAAs, an over 5x improvement

in validated Model Error Rate (vMER) over the baseline in the adversarial setting,

and improved downstream performance and robustness when models are trained on

data collected in this way.

Crowdworkers succeed at finding valid adversarial examples (against models

that are already particularly robust) around 2% of the time when incentivised to do

so through instructions, bonuses, and other means. Our best GAA setups increase

this score considerably, up to ~10%, but what does this tell us about the abilities of

human adversaries to identify and probe model blind spots and failure modes?

The first time that the work in Chapter 3 was presented externally, an es-

teemed professor at Cambridge University asked a particularly intriguing question:

“Have we reached the limit of what annotators are able to contribute?”. My re-

sponse, along the lines of us getting closer to what can be achieved, at least in a

crowdworker-based annotation setting, suggested that there was more to explore.

This question, coupled with the desire to explore just how far we could push things,

provided part of the motivation for the research presented in the preceding chapters.

While the results were impressive, we sought to dig deeper into the implications on

the limits of human adversary performance in a broader context.

We organised the First Workshop on Dynamic Adversarial Data Collection at

NAACL ’22 in Seattle, Washington (Bartolo et al., 2022a). Along with the in-
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credible speakers, panels, and networking events exploring and discussing various

topics around dynamic adversarial data collection, we also hosted a Shared Task

– a competition that teams from various academic and industrial institutions could

participate in. The DADC Shared Task focused on Extractive Question Answering

(QA) as a reference task, along the same lines as the work presented in this the-

sis. It was hosted on Dynabench (see Chapter 4) and further broken down into two

competitive tracks:

Track 1: Better Annotators. Participants were required to submit question answer-

ing (QA) examples through the Dynabench platform, to form part of the evaluation

set for Track 2. The objective was to find as many model-fooling examples as pos-

sible – the primary incentive was to be the team with the highest validated model

error rate (vMER). Submitted examples were then validated by the task organisers.

Track 2: Better Training Data. This was a data-centric track focused on partici-

pants selecting or curating the best selection of 10,000 training examples from ex-

isting standard or adversarial datasets (see Chapter 3), additional expert-annotation

or crowdsourcing (see Chapter 4), or synthetic-generation (see Chapters 5 and the

work described above).

The Better Annotators track saw teams develop different strategies and ap-

proaches in an attempt to beat the AI, exploring aspects such as individual and

collaborative ideation, self-validation, using linguistically informed attack strate-

gies (such as garden-path sentences3, and complex co-reference resolution), non-

linguistically informed reasoning skills (such as numeric manipulation or list ma-

nipulation), and taking advantage of model bias and priors.

The winning team, team longhorns, a group of faculty, postdocs, and students

from the UT Austin linguistics department, computer science department, informa-

tion school, and electrical and computer engineering department – essentially highly

qualified expert annotators, achieved a remarkable 65% validated Model Error Rate

(vMER), likely influenced by their systematic, linguistically-informed, and collab-

orative approach (Kovatchev et al., 2022). The second-placed team, team fireworks,

3A classic example, often attributed to Thomas Bever, is “The horse raced past the barn fell.”

https://dadcworkshop.github.io/shared-task/
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also managed a very respectable 55%. These scores are particularly remarkable

in the context of the thesis author also providing a symbolic baseline submission

and, having a reasonable level of expertise developing work in this space coupled

with deep understanding of the requirements of the task having led its design and

organisation it, achieving a vMER score of 33%.

These results, along with those from other participating teams, highlight the

gap between even highly trained and qualified, strongly incentivised, assisted

crowdworkers (using GAAs) and expert annotators. It suggests that there is indeed

a practical benefit to involving expert annotators in the adversarial data collection

process, at least from the perspective of attack success rates.

The data collected through the DADC Shared Task is available for future re-

search and also includes expert-authored failure mode explanations – a new feature

added for this task, which could be used to train critique models, enhanced reward

models, or for explanation-informed evaluation.

It is also worth noting the overlap between the techniques and strategies ex-

plored by the participants of the DADC Shared Task and many of the challenges

being faced with the development of contemporary LLMs. Many of the innovations

and techniques explored both in the work presented in this chapter and by partici-

pants in the DADC Shared Task, continue do inform research into improving and

robustifying LLM development for a broad, and often generic, set of capabilities

across a range of tasks and domains.





Chapter 7

Conclusions

This thesis has explored a series of challenges around Language Model robustness,

investigating approaches and interactions between humans and models in the data

annotation loop to understand, probe and improve adversarial robustness.

After introducing the work and providing relevant background in Chapters 1

and 2, we have investigated the effects of human annotators interacting with models-

in-the-loop to identify, probe, and ultimately correct for model failure modes in

Chapter 3. To paraphrase task feedback from one of the study participants: “This

task is fun and extremely challenging, but we are actively and directly contributing

to the improvement of these models. The AIs are already really strong, but I feel

like we are contributing to our own demise.”

In Chapter 4, we introduced Dynabench, a research platform for dynamic

adversarial data collection and benchmarking, and expand on this with the intro-

duction of two novel concepts; Synthetic Adversarial Data Generation (SADG) in

Chapter 5 and Generative Annotation Assistants (GAAs) in Chapter 6, complimen-

tary methodologies for further improving model robustness.

7.1 Summary of Contributions

We provide a summary of the key findings and contributions presented in this thesis,

organised into thematic groups for clarity.
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7.1.1 Community Resources

This work introduced a number of dataset, model and software contributions made

publicly available to the community for use and further development.

AdversarialQA, introduced in Chapter 3 is among the most-downloaded Question

Answering datasets on the Hugging Face hub with over 1 million total downloads. It

has contributed to improving the performance and robustness of various academic

and enterprise systems (Ye et al., 2022; Jang et al., 2023), including many state-

of-the-art Large Language Models (Sanh et al., 2022; Chung et al., 2024), and

has also influenced thinking around evaluation and understanding of system per-

formance (Wang et al., 2021; Khashabi et al., 2022; Paranjape et al., 2022; Perez

et al., 2023; Lee et al., 2023).

Dynabench is an open-source research platform for dynamic data collection and

benchmarking released under an MIT License, with source code available at

https://github.com/mlcommons/dynabench. The platform is also cur-

rently hosted and maintained by the DMLR working group of MLCommons at

https://dynabench.org/. Dynabench has contributed to and influenced

a large sub-field of research in the space, including around the development of

datasets and resources, modelling methodologies and evaluation, as described in

detail in Chapter 4. Dynabench continues to support research efforts with collabora-

tors from academic and industrial institutions including University College London,

ETH Zurich, the University of Oxford, the University of Birmingham, the Univer-

sity of Maryland, Stanford University, Harvard University, Meta, Google, Coactive,

NASA, Common Crawl, and Cohere.

SynQA, introduced in Chapter 5, is a dataset of over 300k synthetically gen-

erated adversarial examples, made available under an MIT license at https:

//huggingface.co/datasets/mbartolo/synQA.

Question Answering Models. Throughout this work, we make various Extrac-

tive Question Answering models available as community resources. These

models are described in Chapter 5 and are available on the Hugging Face

model hub at https://huggingface.co/mbartolo/roberta-large-

https://github.com/mlcommons/dynabench
https://dynabench.org/
https://huggingface.co/datasets/mbartolo/synQA
https://huggingface.co/datasets/mbartolo/synQA
https://huggingface.co/mbartolo/roberta-large-synqa


7.1. Summary of Contributions 171

synqa, https://huggingface.co/mbartolo/roberta-large-

synqa-ext, and https://huggingface.co/mbartolo/electra-

large-synqa. They have been downloaded nearly 20k times, with RoBERTa-

Large-SynQA-Ext being the most popular model, and have offered valuable contri-

butions to both academic research and practical, real-world applications.

Question Generation Models. Question Generation models used in Chap-

ters 5 and 6 have also been made available at https://github.com/

maxbartolo/synQA-question-generators, along with a supporting

codebase and instructions for use. They have also been used to support various

other research experiments and investigations (Lewis et al., 2021b; Paranjape et al.,

2022; Bartolo et al., 2022a).

7.1.2 Dynamic and Adversarial Approaches

Two themes consistently revisited throughout this work are the dynamic and adver-

sarial aspects of data collected both for model training and evaluation.

Dynamic. The theme of dynamic data collection is first touched upon in Chap-

ter 3, where we explored the effects of using different models, with different ar-

chitectures pre-trained in different ways and of different performance and general

capability levels, in-the-loop. This highlighted some findings of particular inter-

est including that; i) data collected using weaker models was highly beneficial for

training stronger models, ii) data collected using strong models posed more chal-

lenging evaluation settings, iii) individual models are susceptible to blind spots,

which can be overcome to some degree through adversarial training, and iv) the

best setting from a performance perspective was to combine data collected against

different models in the loop. This focus on dynamic data collection was further

extended directly through Dynabench in Chapter 4, but also indirectly through the

subsequent work where the datasets and models developed were used to power sub-

sequent rounds of the Dynabench Question Answering Task. For example, the pre-

viously described DADC Shared Task involved human expert annotators attempting

to beat models that had been trained and developed based on the work described in

Chapters 3 and 5. This dynamic theme continues to play a critical role in the devel-

https://huggingface.co/mbartolo/roberta-large-synqa
https://huggingface.co/mbartolo/roberta-large-synqa
https://huggingface.co/mbartolo/roberta-large-synqa-ext
https://huggingface.co/mbartolo/roberta-large-synqa-ext
https://huggingface.co/mbartolo/electra-large-synqa
https://huggingface.co/mbartolo/electra-large-synqa
https://github.com/maxbartolo/synQA-question-generators
https://github.com/maxbartolo/synQA-question-generators
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opment of contemporary state-of-the-art language models, played out on a longer

timeframe, and it has become a conventional approach to data collection with the

standard Learning from Human Feedback (LHF) setting involving a pool of can-

didate models, typically at least two, sampled for completion generation given a

provided prompt. Human annotators then identify which of the completions they

prefer, and this preference data is used to re-train models on a regular cadence,

which are then used to replace the previous models in-the-loop. A similar approach

is often taken when red teaming language models, to allow safety aspects related to

model characteristics to improve as a function of the dynamic nature of the model

probing and data collection process (Touvron et al., 2023).

Adversarial. The adversarial theme is central to and permeates throughout the pre-

sented work. We build on earlier work that extended the concept of adversarial

examples, typically minor non-semantic perturbations to an input that cause an

undesirable and often significant change in the output, to the human-in-the-loop

setting where humans interact with models to probe model blind spots and create

human-written adversarial examples. This human-and-model-in-the-loop approach

to creating adversarial examples allows humans to use their creativity to explore

the space of model strengths and weaknesses while relying on direct and immediate

feedback to form an intuition around effective strategies. The data collected in this

manner is highly valuable both for adversarial training, in which models are trained

on adversarially-collected data for general performance and robustness improve-

ments, as well as evaluation on challenging examples. It is worth noting that in

the adversarial training setup, our experimental results indicate that training solely

on adversarially-collected data is not the objective, rather a mixture of examples

collected with and without models-in-the-loop, and ideally with a diverse selection

of models, provides the best overall performance. We further develop and investi-

gate these ideas around adversarial data collection throughout this thesis, showing

that human-written adversarially-collected training data can help improve both in-

and out- of domain performance. Throughout this work, we have explored various

aspects surrounding adversarial interaction and its implications, from investigating
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the ways humans and machines interact in adversarial settings, generating synthetic

adversarial data, and assisting human annotators in the creation of adversarial ex-

amples using specifically trained generative models. Furthermore, this work intro-

duced Adversarial Human Evaluation (AHE) which has inspired a large body of

work around testing model performance and capabilities across a broad range of

capabilities and dimensions, and has become an essential part of the process for

developing contemporary LLMs (Perez et al., 2022; Ganguli et al., 2022).

7.1.3 Humans and Models In-the-Loop

The broader theme of involving humans and models in-the-loop, goes back at least

to the dawn of modern computing where, in a test of intelligence now commonly

referred to as the Turing test, the assumed best strategy for a machine to prove its

capability to think was to “try to provide answers that would naturally be given by

a man” (Turing, 1950).

This thesis explored various dimensions of the human-and-model-in-the-loop

paradigm, including with multiple models as in the self-training stages of the Syn-

thetic Adversarial Data Generation pipeline (see Chapter 5) and multiple humans

collaborating to compete against question answering models as in the DADC Shared

Task (see Chapter 6). This collaborative and competitive dynamic is also explored

in a single environment in Chapter 6 where human annotators collaborate with gen-

erative question-writing assistive models in an attempt to fool other question an-

swering models. Ideas around involving humans and models in the loop have now

also become standard in the post-training of Large Language Models, particularly

within the context of the Learning from Human Feedback (LHF) paradigm.

7.1.4 Improved Robustness

While we have explored various aspects of model performance, such as general per-

formance on fixed standard and adversarially-collected test sets, domain generali-

sation, and capability-specific checklists, the central focus of this work has been on

improving model robustness. The motivation for this, as alluded to in the introduc-

tion, is to narrow the gap between current natural language processing technologies
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and their widespread application to create real-world value.

Improved robustness enhances the reliability and accuracy of the systems we

build, making them better equipped to handle variations in input data, including

noise, errors, and unexpected scenarios — essentially allowing them to perform as

expected “in the wild”, where data and user interactions can be messy and unpre-

dictable. Robust systems are also more secure and reduce the potential for misuse

or abuse. This is critical when considering the impact these models can have, espe-

cially in sensitive areas like content generation, language translation, or decision-

making processes. Finally, robust systems create trust, providing users with con-

sistent and accurate interactions, with systems failures occurring in ways that are

predictable and easily mitigated, creating further opportunities for innovation and

development of even more capable systems.

In this thesis, we have introduced and explored various techniques for improv-

ing model robustness, and have also provided evidence of the efficacy of these tech-

niques in both academic and real-world settings.

7.1.5 Evaluation

Another theme we have touched on throughout this work is evaluation. A prereq-

uisite for identifying and improving weaknesses in existing models is the ability

to measure them. We have discussed various contributions and innovations around

evaluation. In particular, in Chapter 3 we introduced three new adversarial test sets,

the ground truth answers to which remain unreleased, making them a particularly

valuable research resource. In Chapter 4 we discussed Dynabench, a research plat-

form designed to support benchmarking and evaluation efforts, and discuss the im-

pact it has had on the community. In Chapter 5 we introduced Adversarial Human

Evaluation as part of the evaluation strategy for measuring robustness improvements

resulting from Synthetic Adversarial Data Generation. We also briefly touched on

the effects these ideas have had in the LLM space, with particular reference to red

teaming as well as challenges around the current de facto standard for evaluating

Large Language Models through human feedback (such as the LMSYS Chatbot

Arena Leaderboard). This relatively simplistic approach is prone to being affected

https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
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by unintended confounders, and can under-represent critical aspects of model per-

formance like factuality (Hosking et al., 2024).

Adversarially-curated evaluation datasets remain an effective technique for

benchmarking the robustness capabilities of state-of-the-art LLMs. For example,

the Llama3 Technical Report (Grattafiori et al., 2024) uses the AdversarialQA

dataset introduced in Chapter 3 to test the models’ question answering capabilities

in challenging settings, suggesting that while non-adversarial capabilities improve

in post-training, most of the performance on more challenging questions is acquired

in pretraining. Furthermore, when evaluated on the AdversarialQA validation set in

the 4-shot setting, Cohere’s Command R+ Refresh (08-2024) model achieves 75.5%

F1 score on DBiDAF, 67.7% on DBERT, and 61.6% on DRoBERTa giving a combined

F1 score of 68.2%. For reference, OpenAI’s GPT4 (0613) model achieves a com-

bined F1 score of 64.3% while Meta’s Llama 3.1 8B Instruct, 70B Instruct and 405B

Instruct models achieve 57.8%, 69.0% and 68.9% respectively. While drawing a

comparison between validation and test set performance is not ideal, these tend to

fluctuate between approximately 1-2% of each other from previous experiments.

The most competitive system we evaluate in this thesis, ELECTRALarge trained on

AdversarialQA along with synthetic data, achieves a combined F1 score of 69.4%

(see Table B.8). While it is impressive that contemporary LLMs reach the same per-

formance level as the highly-specialised models used in this work without dedicated

finetuning, there remains headroom even to the combined non-expert lower-bound

estimate on human performance of 74.4% (see Table 3.2), which widens with pro-

gressively more challenging questions such as on DRoBERTa.

7.2 Limitations

Throughout this thesis, we have acknowledged and addressed a range of limitations.

As we conclude, we will revisit and summarise the key limitations for transparency

and to support future research directions.

Task Diversity. In this work we have focused almost exclusively on Extractive

Question Answering (also referred to as Reading Comprehension) as a reference
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task. While various other tasks have been explored in the Dynamic Adversarial

Data Collection paradigm including natural Language Inference (Nie et al., 2020),

Sentiment Classification (Potts et al., 2021), Hate Speech Detection (Vidgen et al.,

2021), and others, it is likely that the effects seen for a particular tasks are not iden-

tically felt across tasks, and it is as yet unclear what the magnitude of the benefit

transfer to more general tasks is. The Dynabench platform, while highly flexible,

has been limited to mostly text-only tasks with only a couple of vision-related tasks

run so far, and could be extended to support various additional modalities as well as

multilingual tasks.

Dataset Sizes. The sizes of the datasets presented, 36k examples for AdversarialQA

and 300k+ for SynQA are modest, but not particularly large especially in the context

of the scale of data that current systems are trained on. This represents a limitation

in our ability to investigate the effects of scale.

Crowdworkers versus Experts. The majority of the work presented in this thesis

focuses on the crowdsourced. While this is in itself, investigating and analysing the

abilities of crowdworkers to collaborate and compete with machines, is an important

contribution, it could have led to a ceiling effect on the complexity of the collected

examples as alluded to and discussed with reference to small-scale expert annotation

investigations in Chapter 6.

Participant Sizes: Human Evaluation. The participant sizes for the Adversarial

Human Evaluation efforts described in Chapter 5 were relatively small. While the

effect measured was sufficiently large, it is possible that increasing the human eval-

uator pool would result in a smaller robustness delta measurement. Furthermore,

in Chapter 6, while 1,559 individuals contributed to the final dataset, this was split

across 20 participant groups, with some groups having more or fewer participants

than others.

Computational Resources. A serious limitation we have not yet addressed is the

requirement for computational resources across all of the work described, including

deployment and inference compute for the models in the loop, the considerable re-

sources required to finetune the question answering and question generation models,
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as well as the compute required to train and run the ablations presented across these

studies. We aimed to limit our compute requirements to the minimum necessary

wherever possible for sustainability and environmental reasons.

Applicability in the era of LLMs. Much of the research explored in this thesis has

become part of the standard LLM development pipeline. Examples include: i) the

high-level, long cycle human-and-model-in-the-loop iterative development process

involving training an initial model, deploying it, allowing users to interact with the

system and provide feedback on its failure modes, using both crowd-sourced and

expert annotators to collect data addressing those failure modes and repeating, ii)

dedicated adversarial human annotation efforts in the context of safety, nowadays

referred to as red-teaming, iii) dynamic benchmarking which has become even more

relevant giving the increasing rate at which benchmarks are saturating, and iv) syn-

thetic data generation to maximise training signal. Other investigations, such as

using generative models to assist in the annotation process, have seen some early

adoption but we believe there is considerable room for exploration here. One of the

primary limitations of this methodology is that it becomes increasingly more dif-

ficult to identify model failure modes as system capabilities improve. We observe

this to some extent in this work, such as with the increasingly more capable models

in Chapter 3 or the DADC Shared Task relying on adversarial expert annotators in

Chapter 6. However, as we continue to scale this process, we should continue to

innovate new approaches for maximising the error-correcting signal that models-

and-humans-in-the-loop can provide. Furthermore, when we originally set out in

this direction we were somewhat hopeful that adversarial training on data collected

by humans directly probing for system failure modes would provide total robust-

ness. While failure rates tend to drop significantly, we rarely see these reach zero.

In many cases, it is still possible to adversarially cause a model to fail, even though

it can be a lot more challenging. Our ultimate goal is still to guarantee a system’s

correctness for every valid input, even if on a set of relatively well-defined or con-

strained tasks. Whether an iterative failure-targeted approach will get us there or

whether we need new approaches remains an open question.
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7.3 Envisioning What’s Next
We conclude by identifying broader areas for future work, and some trends we

expect, or hope, to see in the future.

Towards Robust Models. Robustness has been a primary motivating factor for

much of the work presented in this thesis. It remains a central tenet to the author’s

wider research agenda and a growing area of active research. Current research

on large language model robustness is focused on improving the performance of

models on downstream tasks. Robustness is multidimensional and captures various

aspects of model performance that revolve around generalisation, adversarial re-

silience, and stability across diverse inputs and input perturbations. Recent work has

looked at the impact of compression on the generalisability and robustness of pre-

trained language models, with studies showing that compressed models are less ro-

bust than their counterparts on adversarial test sets (Du et al., 2023). Other research

has explored the robustness of instruction-tuned LLMs to seen and unseen tasks,

finding that performance worsens when dealing with unfamiliar instructions or in-

struction setups, such as in-context example ordering (Lu et al., 2022) or multiple-

choice candidate answer ordering (Pezeshkpour and Hruschka, 2023; Zheng et al.,

2024). Extending to the retrieval-augmented language model context, recent work

explores methods for making models robust to irrelevant retrieved context while

maintaining performance otherwise (Yoran et al., 2024). The increasing efforts to

make models more robust contribute to making this technology more useful and,

in consequence, accessible to society more broadly. This has further implications

when extending beyond the text-only paradigm to the multimodal setting such as

with images, video and speech.

Model Usability as a Feature. As the capabilities of the technologies being devel-

oped continue to evolve rapidly, the real-world value generated by such systems

appears to be lagging behind their promise. A possible contributing factor is the

field’s focus on developing highly performant models from the perspective of high-

level capabilities and skills, such as complex or mathematical reasoning, specialist

domain knowledge, graduate-level knowledge processing, advanced data manip-
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ulation, and providing language model agents access to use and execute various

tools such as calculators or code interpreters. These are all admirable and exciting

targets, and accomplishing any to any level of performance is impressive, but un-

less such tasks can be performed reliably and repeatedly, with low failure rates and

predictable failure modes, there remain various obstacles between what the tech-

nology can offer and widespread adoption. There likely exist a range of tasks that

current technologies could perform if they were designed-in, through user-focused

features such as explainability and transparency providing clear justifications or

critiques for model outputs enabling users to better interpret and rely on the LLM’s

responses (Lampinen et al., 2022; Turpin et al., 2023; Wu et al., 2023; Chen et al.,

2024; Ye et al., 2024), multilingual support (Singh et al., 2024; Üstün et al., 2024;

Aryabumi et al., 2024), personalisation and customisation through preamble edit-

ing, finetuning or techniques such as inverse constitutional AI (Findeis et al., 2024),

improved error handling and feedback allowing the model to adapt and improve

based on user feedback, integration with commonly-used tools and services such as

productivity suites or communication workflows (Schick et al., 2023; Khattab et al.,

2024), or calibrated model confidence scores to provide users with a sense of the

model’s confidence in the accuracy of a provided response (Kadavath et al., 2022).

Collaborative Competition. As LLMs and AI technologies become increasingly

integrated into our daily lives, we hope to see the interactions between humans and

machines continue to evolve and advance in various ways. In particular, we expect

to see varying aspects of collaborative and competitive approaches, as well as in-

novative combinations of the two in ways that will eventually appear seamless and

invisible to end users. We anticipate continued development in the directions pio-

neered in this work, including further exploration into using models as part of the

feedback loop. This could involve employing models to identify failure modes and

drive improvements, as well as assisting human users in the processes of enhancing

and leveraging these models more effectively. This can be achieved through model-

aided data creation, curation, or selection, or by providing assistance in using the

models, for example through automatic prompt engineering or preamble customi-
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sation to align with specific requirements or adapt to provided feedback (Shin et al.,

2020; Fernando et al., 2024; Xian et al., 2024). Ultimately, we envision a future

where such technology is part of our everyday lives, augmenting human effort in

ways that are supportive and beneficial, with humans providing direct feedback,

implicit, or corrective signal where the technology falls short of expectations, creat-

ing a tight yet subtle iterative improvement loop. The large context lengths available

to current models, typically in the hundreds of thousands to millions of tokens (for

reference, the BART models used in this work had a default context length of 1,024

tokens), further opens up new possibilities for incorporating feedback without hav-

ing to retrain or finetune the model, by simply providing the feedback in-context.

Furthermore, the interaction signal used to improve these models, currently cap-

tured in data, will become more direct as such systems become further embedded in

our working environments. Ultimately, these systems will be working hand in hand

with us, adapting to and learning from us and their environment on the fly, to better

serve the needs of the tasks at hand.

Granular and Comprehensive Representation of Human Preference. Evalua-

tion informs modelling progress, yet current approaches are limited. They tend to

either focus on specific, highly curated task collections (Srivastava et al., 2023), typ-

ically based on “traditional” NLP tasks like question answering (Hendrycks et al.,

2021a), or operate in an unconstrained setting where humans can freely query mod-

els at any level of complexity on any topic, providing a single feedback rating

intended to encompass all the nuance of human preference, such as the LMSYS

Chatbot Arena. We hope to see continued innovation in model evaluation, with

increasing focus on dynamic, human-and-model-in-the-loop approaches, aiming to

capture the multidimensional range of system performance (Hosking et al., 2024).

To quote Turing’s work that introduced this thesis, “we can only see a short

distance ahead, but we can see plenty there that needs to be done”.

https://chat.lmsys.org/
https://chat.lmsys.org/


Appendix A

Beat the AI

A.1 Additional Dataset Statistics

Question statistics In Figure A.2 we analyse question lengths across SQuAD1.1

and compare them to questions constructed with different models in the annota-

tion loop. While the mean of the distributions is similar, there is more question

length variability when using a model in the loop. We also perform analysis of

question types by wh- word as described earlier (see Figure A.1). This is in further

detail displayed using sunburst plots of the first three question tokens for DSQuAD

(cf. Figure A.6), DBiDAF (cf. Figure A.8), DBERT (cf. Figure A.7) and DRoBERTa

(cf. Figure A.9). We observe a general trend towards more diverse questions with

increasing model-in-the-loop strength.

Answer statistics Figure A.4 allows for further analysis of answer lengths across

datasets. We observe that answers for all datasets constructed with a model in the

loop tend to be longer than in SQuAD. There is furthermore a trend of increasing

answer length and variability with increasing model-in-the-loop strength. We show

an analysis of answer types in Figure A.3.

A.2 Annotation Interface Details

We have three key steps in the dataset construction process: i) training and qualifi-

cation, ii) “Beat the AI” annotation and iii) answer validation.
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Figure A.1: Analysis of question types across datasets.

Training and Qualification This is a combined training and qualification task; a

screenshot of the interface is shown in Figure A.10. The first step involves a

set of five assignments requiring the worker to demonstrate an ability to gener-

ate questions and indicate answers by highlighting the corresponding spans in the

passage. Once complete, the worker is shown a sample “Beat the AI” HIT for a

pre-determined passage which helps facilitate manual validation. In earlier experi-

ments, these two steps were presented as separate interfaces, however, this created

a bottleneck between the two layers of qualification and slowed down annotation

considerably. In total, 1,386 workers completed this task with 752 being assigned

the qualification.

“Beat the AI Annotation” The “Beat the AI” question generation HIT presents

workers with a randomly selected passage from SQuAD1.1, about which workers

are expected to generate questions and provide answers. This data is sent to the

corresponding model-in-the-loop API running on AWS infrastructure and primarily

consisting of a load balancer and a t2.xlarge EC2 instance with the T2/T3 Unlimited

setting enabled to allow high sustained CPU performance during annotation runs.

The model API returns a prediction which is scored against the worker’s answer to

determine whether the worker has successfully managed to “beat” the model. Only

questions which the model fails to answer are considered valid; a screenshot for
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Figure A.2: Question length distribution across datasets.

this interface is shown in Figure A.11. Workers are tasked to ideally submit at least

three valid questions, however fewer are also accepted – in particular for very short

passages. A sample of each worker’s HITs is manually validated; those who do not

satisfy the question quality requirements have their qualification revoked and all

their annotated data discarded. This was the case for 99 workers. Worker validation

distributions are shown in Figure A.5.

Answer Validation The answer validation interface (cf. Figure A.12) is used to

validate the answerability of the validation and test sets for each different model

used in the annotation loop. Every previously collected question generation HIT

from these dataset parts, which had not been discarded during manual validation,
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Figure A.3: Analysis of answer types across datasets.

is submitted to at least 3 distinct annotators. Workers are shown the passage and

previously generated questions and are asked to highlight the answer in the passage.

In a post-processing step, only questions with at least 1 valid matching answer out

of 3 are finally retained.

A.3 Catalogue of Comprehension Requirements
We give a description for each of the items in our catalogue of comprehension re-

quirements in Table A.1, accompanied with an example for illustration. These are

the labels used for the qualitative analysis performed in Section 3.6.
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Figure A.9: Question sunburst plot for DRoBERTa.
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Figure A.10: Training and qualification interface. Workers are first expected to familiarise
themselves with the interface and them complete a sample “Beat the AI” task
for validation.
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Figure A.11: “Beat the AI” question generation interface. Human annotators are tasked
with asking questions about a provided passage which the model in the loop
fails to answer correctly.

Figure A.12: Answer validation interface. Workers are expected to provide answers to
questions generated in the “Beat the AI” task. The additional answers are
used to determine question answerability and non-expert human performance.
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Type Description Passage Question

Explicit Answer stated nearly word-for-word
in the passage as it is in the question.

Sayyid Abul Ala Maududi was an im-
portant early twentieth-century figure in
the Islamic revival in India [. . . ]

Who was an important
early figure in the Is-
lamic revival in India?

Paraphrasing Question paraphrases parts of
the passage, generally relying on
context-specific synonyms.

Seamans’ establishment of an ad-hoc
committee [. . . ]

Who created the ad-
hoc committee?

External
Knowledge

The question cannot be answered
without access to sources of knowl-
edge beyond the passage.

[. . . ] the 1988 film noir thriller Stormy
Monday, directed by Mike Figgis and
starring Tommy Lee Jones, Melanie
Griffith, Sting and Sean Bean.

Which musician was
featured in the film
Stormy Monday?

Co-
reference

Requires resolution of a relationship
between two distinct words referring
to the same entity.

Tamara de Lempicka was a famous
artist born in Warsaw. [. . . ] Better
than anyone else she represented the Art
Deco style in painting and art [. . . ]

Through what cre-
ations did Lempicka
express a kind of art
popular after WWI?

Multi-Hop Requires more than one step of infer-
ence, often across multiple sentences.

[. . . ] and in 1916 married a Polish
lawyer Tadeusz Lempicki. Better than
anyone else she represented the Art
Deco style in painting and art [. . . ]

Into what family did
the artist who repre-
sented the Art Deco
style marry?

Comparative Requires a comparison between two
or more attributes (e.g., smaller than,
last)

The previous chairs were Rajendra K.
Pachauri, elected in May 2002; Robert
Watson in 1997; and Bert Bolin in 1988.

Who was elected ear-
lier, Robert Watson or
Bert Bolin?

Numeric Any numeric reasoning (e.g., some
form of calculation is required to ar-
rive at the correct answer).

[. . . ] it has been estimated that Africans
will make up at least 30% of the dele-
gates at the 2012 General Conference,
and it is also possible that 40% of the
delegates will be from outside [. . . ]

From which continent
is it estimated that
members will make up
nearly a third of par-
ticipants in 2012?

Negation Requires interpreting a single or mul-
tiple negations.

Subordinate to the General Conference
are the jurisdictional and central confer-
ences which also meet every four years.

What is not in charge?

Filtering Narrowing down a set of answers to
select one by some particular distin-
guishing feature.

[. . . ] was engaged with Johannes
Bugenhagen, Justus Jonas, Johannes
Apel, Philipp Melanchthon and Lucas
Cranach the Elder and his wife as wit-
nesses [. . . ]

Whose partner could
testify to the couple’s
agreement to marry?

Temporal Requires an understanding of time
and change, and related aspects.
Goes beyond directly stated answers
to When questions or external knowl-
edge.

In 2010 the Amazon rainforest ex-
perienced another severe drought, in
some ways more extreme than the 2005
drought.

What occurred in
2005 and then again
five years later?

Spatial Requires an understanding of the
concept of space, location, or prox-
imity. Goes beyond finding directly
stated answers to Where questions.

Warsaw lies in east-central Poland about
300 km (190 mi) from the Carpathian
Mountains and about 260 km (160 mi)
from the Baltic Sea, 523 km (325 mi)
east of Berlin, Germany.

Is Warsaw closer
to the Baltic Sea or
Berlin, Germany?

Inductive A particular case is addressed in the
passage but inferring the answer re-
quires generalisation to a broader cat-
egory.

[. . . ] frequently evoked by particu-
lar events in his life and the unfold-
ing Reformation. This behavior started
with his learning of the execution of
Johann Esch and Heinrich Voes, the
first individuals to be martyred by the
Roman Catholic Church for Lutheran
views [. . . ]

How did the Roman
Catholic Church deal
with non-believers?

Implicit Builds on information implied in the
passage and does not otherwise re-
quire any of the above types of rea-
soning.

Despite the disagreements on the Eu-
charist, the Marburg Colloquy paved the
way for the signing in 1530 of the Augs-
burg Confession, and for the [. . . ]

What could not keep
the Augsburg con-
fession from being
signed?

Table A.1: Comprehension requirement definitions and examples from adversarial model-
in-the-loop annotated RC datasets. Note that these types are not mutually ex-
clusive. The annotated answer is highlighted in yellow.



Appendix B

Synthetic Adversarial Data

Generation

B.1 Further Details on Passage Selection
Passages are sourced from SQuAD1.1, and are therefore from Wikipedia. For train-

ing answer candidate selection models and question generation models, we use a

subset of 10,000 examples from the SQuAD1.1 training set asked on 2,596 of the

18,891 available training passages. This ensures that both the answer candidate

selection and question generation models do not simply reproduce their respective

training sets. Bartolo et al. (2020) split the SQuAD1.1 dev set into a dev and test

set, with passages allocated between the two. They also reduce multiple answers

to single majority vote responses for evaluation consistency with AdversarialQA.

These two splits are referred to as DSQuAD
dev and DSQuAD

test . We use DSQuAD
dev

and the AdversarialQA dev sets for validation, and report results on DSQuAD
test and

the AdversarialQA test sets. For adversarial human evaluation, we use passages

from the test sets to ensure that they are completely unseen to all models during

both training and validation.

B.2 Manual Answerability Analysis
For the manual answerability analysis, we define answerability by the following

criteria: (i) The question must be answerable from a single continuous span in the

passage; (ii) There must be only one valid (or clearly one most valid) answer (e.g.
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in the case of a co-reference the canonical entity name should be the answer); (iii) A

human should be able to answer the question correctly given sufficient time; and (iv)

The correct answer is the one on which the model was conditioned during question

generation.

B.3 Further Details on Answer Candidate Selection
Dataset statistics for the passage-aligned splits are shown in Table B.1.

Split #Passages #Ans
per

passage

%
Overlapping

answers

%
Passages

w/
overlaps

Train 2596 13.0 29.2% 90.4%
Dev 416 13.6 35.3% 97.4%
Test 409 13.5 33.3% 94.1%

Table B.1: Dataset statistics for answer candidate selection showing high answer overlap.

Furthermore, the different answer candidate selection approaches we explore

in this work have different behaviours that could make one method more appropriate

depending on the particular use case. To facilitate this process, we provide some

example answer candidates of each of the methods in Table B.3.

B.4 Further Details on Question Diversity
In order to provide training signal diversity to the downstream QA model, we

experiment with a range of diversity decoding techniques and hyper-parameters.

Specifically, we explore standard beam search with beam size ∈ {1,3,5,10}, num-

ber of questions to generate per example with nbest ∈ {1,3,5,10}, diverse beam

search with beam strength∈{0.1,0.3,0.5,0.7,0.9,1.0}, and nucleus sampling with

topp ∈ {0.1,0.5,0.75}.
We observe minimal variation in downstream performance (see Table B.5) as

a result of question decoding strategy, with the best downstream results obtained

using nucleus sampling (topp = 0.75). However, we also obtain similar downstream

results with standard beam search using a beam size of 5. We find that, given the

same computational resources, standard beam search is roughly twice as efficient,
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with minimal performance drop when compared to nucleus sampling, and therefore

opt for this approach for our following experiments.

B.5 Controlling for Data Size

Since the synthetic data generation process allows for scale to a large number of

unseen passages, at the limit the bottleneck becomes the quality of generating data

rather than quantity. Due to this, we provide results for experiments controlling for

dataset size for both answer candidate selection (see Table B.4) and filtering method

(see Table B.6). Our findings are in line with those on the full sets of generated data,

in that both answer candidate selection using SAL and filtering using self-training

provide considerable downstream benefits.

B.6 A Note on Data Efficiency

It is challenging to compare the efficiency of the synthetic generation process to

manually collecting additional data. Figure B.1 shows that, for RoBERTaLarge, per-

formance starts to converge when trained on around 5-6k manually-collected adver-

sarial examples. In fact, the performance gain between training on 10k instead of

8k examples is just 0.5F1 on the overall AdversarialQA test set. The performance

gain achieved using our approach is inherently more efficient from a data collection

point of view as it requires no additional manual annotation.

B.7 AdversarialQA Dev Set Results

Results for the final models on the AdversarialQA validations sets are shown in

Table B.7.

B.8 Results on CheckList

We provide a breakdown of results by comprehension skill and example model

failure cases on CheckList in Table B.9.
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𝓓 𝓓 𝓓 𝓓

Figure B.1: F1-scores on the respective test datasets for RoBERTaLarge trained on varying
amounts of human-annotated adversarial training data.

B.9 Adversarial Human Evaluation

For adversarial human evaluation, crowdworkers are required to be based in Canada,

the UK, or the US, have a Human Intelligence Task (HIT) Approval Rate greater

than 98%, and have previously completed at least 1,000 HITs.

We provide a breakdown of results from the Adversarial Human Evaluation ex-

periments in Table B.2, showing the number of annotators (#Ann.), number of ques-

tions per model (#QAs), average time per collected question-answer pair (time/QA),

as well as the validated model error rate (vMER) and macro-averaged validated

model error rate (mvMER). We also show some examples of questions that fool

each model in Table B.10.

Model #Ann. #QAs time/QA vMER mvMER

RSQuAD 33 705 97.4s 21.4% 20.7%

RSQuAD+AQA 40 798 95.9s 15.5% 17.6%

SynQA 32 820 112.6s 6.7% 8.8%
SynQAExt 30 769 85.2s 9.2% 12.3%

Table B.2: Adversarial Human Evaluation results for the four final models.
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B.10 Results for ELECTRA
In Table B.8 we show results for ELECTRALarge demonstrating similar perfor-

mance gains as those seen for RoBERTaLarge when using the additional synthetic

data. We show results for a single initialisation due to computational cost. We also

note that we use the same synthetic training data (i.e. using six RoBERTaLarge RC

models for self-training relabelling) and two-stage fine-tuning setup.

The synthetically-augmented ELECTRALarge model also shows considerable

domain generalisation improvements on MRQA achieving 94.5F1 on SQuAD;

66.6F1 on NewsQA; 72.7F1 on TriviaQA; 53.8F1 on SearchQA; 73.3F1 on Hot-

potQA; 72.3F1 on NQ; 71.4F1 on BioASQ; 72.6F1 on DROP; 65.2F1 on DuoRC;

56.2F1 on RACE; 89.3F1 on RelationExtraction; and 59.8F1 on TextbookQA. Fur-

ther model details can be found at https://dynabench.org/models/109.

https://dynabench.org/models/109
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Context: Super Bowl 50 was an American football game to determine the champion of the National Football League
(NFL) for the 2015 season. The American Football Conference (AFC) champion Denver Broncos defeated the
National Football Conference (NFC) champion Carolina Panthers 24–10 to earn their third Super Bowl title.
The game was played on February 7, 2016, at Levi’s Stadium in the San Francisco Bay Area at Santa Clara,
California. As this was the 50th Super Bowl, the league emphasized the ”golden anniversary” with various
gold-themed initiatives, as well as temporarily suspending the tradition of naming each Super Bowl game with
Roman numerals (under which the game would have been known as ”Super Bowl L”), so that the logo could
prominently feature the Arabic numerals 50.

Ground
Truth

’Super Bowl’, ’the 2015 season’, ’2015’, ’American Football Conference’, ’Denver Broncos’, ’Denver Bron-
cos defeated the National Football Conference (NFC) champion Carolina Panthers 24–10’, ’Carolina Panthers’,
’24–10’, ’February 7’, ’February 7, 2016’, ’2016’, ”Levi’s Stadium”, ”Levi’s Stadium in the San Francisco Bay
Area at Santa Clara”, ”Levi’s Stadium in the San Francisco Bay Area at Santa Clara, California”, ’Santa Clara’,
’Santa Clara, California’, ’the league emphasized the ”golden anniversary” with various gold-themed initiatives,
as well as temporarily suspending the tradition of naming each Super Bowl game with Roman numerals (under
which the game would have been known as ”Super Bowl L”), so that the logo could prominently feature the
Arabic numerals 50’, ’gold’, ’golden anniversary’, ’gold-themed’, ’Super Bowl L’, ’L’

POS Ex-
tended

’Super’, ’50’, ’Super Bowl’, ’Bowl’, ’American’, ’an American football game’, ’the National Football League’,
’the champion’, ’NFL’, ’the 2015 season’, ’(NFL’, ’The American Football Conference’, ’football’, ’AFC’, ’The
American Football Conference (AFC) champion Denver Broncos’, ’game’, ’Denver Broncos’, ’the National
Football Conference (NFC) champion’, ’the National Football Conference’, ’their third Super Bowl title’, ’Car-
olina Panthers’, ’The game’, ’third’, ’February’, ’champion’, ”Levi’s Stadium”, ’February 7, 2016’, ’the San
Francisco Bay Area’, ’Santa Clara’, ’the National Football League (NFL)’, ’National’, ’California’, ’Football’,
’the 50th Super Bowl’, ’League’, ’the league’, ’50th’, ’the ”golden anniversary’, ’various gold-themed initia-
tives’, ’the tradition’, ’Roman’, ’each Super Bowl game’, ’Arabic’, ’Roman numerals’, ’2015’, ’the game’,
’season’, ’Super Bowl L’, ’the logo’, ’the Arabic numerals’, ’Conference’, ’Denver’, ’Broncos’, ’NFC’, ’Car-
olina’, ’Panthers’, ’24–10’, ’title’, ’February 7, 2016,’, ’7’, ’2016’, ’Levi’, ”Levi’s Stadium in the San Francisco
Bay Area at Santa Clara, California”, ’Stadium’, ’the San Francisco Bay Area at Santa Clara, California’, ’San’,
’Francisco’, ’Bay’, ’Area’, ’Santa’, ’Santa Clara, California’, ’Clara’, ’league’, ’golden’, ’anniversary’, ’various’,
’gold’, ’themed’, ’initiatives’, ’tradition’, ’Roman numerals (under which the game would have been known as
”Super Bowl L”’, ’numerals’, ’L’, ’logo’

Noun
Chunks

’Super Bowl’, ’an American football game’, ’the champion’, ’the National Football League’, ’(NFL’, ’the 2015
season’, ’The American Football Conference (AFC) champion Denver Broncos’, ’the National Football Con-
ference (NFC) champion’, ’their third Super Bowl title’, ’The game’, ’February’, ”Levi’s Stadium”, ’the San
Francisco Bay Area’, ’Santa Clara’, ’California’, ’the 50th Super Bowl’, ’the league’, ’the ”golden anniversary’,
’various gold-themed initiatives’, ’the tradition’, ’each Super Bowl game’, ’Roman numerals’, ’the game’, ’Super
Bowl L’, ’the logo’, ’the Arabic numerals’

Named
Entities

[’50’, ’American’, ’the National Football League’, ’NFL’, ’the 2015 season’, ’The American Football Confer-
ence’, ’AFC’, ’Denver Broncos’, ’the National Football Conference’, ’Carolina Panthers’, ’third’, ’Super Bowl’,
’February 7, 2016’, ”Levi’s Stadium”, ’the San Francisco Bay Area’, ’Santa Clara’, ’California’, ’50th’, ’Ro-
man’, ’Arabic’]

Span Ex-
traction,
k=15

’Denver Broncos’, ’Denver Broncos defeated the National Football Conference (NFC) champion Carolina Pan-
thers’, ”Levi’s Stadium”, ”February 7, 2016, at Levi’s Stadium”, ’February 7, 2016,’, ’Carolina Panthers’, ’Car-
olina Panthers 24–10 to earn their third Super Bowl title. The game was played on February 7, 2016,’, ”Levi’s
Stadium in the San Francisco Bay Area at Santa Clara, California.”, ’Denver Broncos defeated the National
Football Conference (NFC) champion Carolina Panthers 24–10’, ”February 7, 2016, at Levi’s Stadium in the
San Francisco Bay Area at Santa Clara, California.”, ”24–10 to earn their third Super Bowl title. The game
was played on February 7, 2016, at Levi’s Stadium”, ’24–10 to earn their third Super Bowl title. The game
was played on February 7, 2016,’, ’Carolina Panthers 24–10’, ’Santa Clara, California.’, ’American Football
Conference (AFC) champion Denver Broncos’

BARTans,
k=15

’NFL’, ’the ”golden anniversary”’, ’American Football Conference’, ’Super Bowl 50’, ’San Francisco Bay Area’,
’National Football League’, ’Super Bowl L’, ’Super Bowl’, ”Levi’s Stadium”, ’National Football Conference’,
’Roman numerals’, ’Denver Broncos’, ’Gold’, ’2016’, ’The game was played’

SAL
(ours)

’Super Bowl 50’, ’American’, ’American football’, ’National Football League’, ’Football’, ’Football League’,
’American Football Conference’, ’American Football Conference (AFC)’, ’American Football Conference
(AFC) champion Denver Broncos’, ’Denver Broncos’, ’National Football Conference’, ’National Football Con-
ference (NFC)’, ’National Football Conference (NFC) champion Carolina Panthers’, ’Carolina Panthers’, ’24’,
’10’, ’third’, ’February 7, 2016’, ”Levi’s Stadium”, ’San Francisco Bay Area’, ’Santa Clara’, ’gold’, ’naming
each Super Bowl game with Roman numerals’, ’Roman numerals’, ’Super Bowl L’, ’so that the logo could
prominently feature the Arabic numerals 50’

Table B.3: Examples of the answer candidates produced when using different answer se-
lection approaches.
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Method #QA
pairs

DSQuAD DBiDAF DBERT DRoBERTa

EM F1 EM F1 EM F1 EM F1

POS Extended 87000 54.0 72.7 32.0 45.9 27.9 38.3 19.4 27.0

Noun Chunks 87000 42.1 62.7 25.8 40.0 21.2 30.0 17.0 25.1

Named Entities 87000 55.0 69.9 29.1 40.4 26.7 36.0 17.9 24.1

Span Extraction 87000 64.2 79.7 34.1 50.8 25.9 38.0 16.4 27.1

SAL (ours) 87000 67.1 82.0 40.5 55.2 36.0 45.6 23.5 33.5

SAL threshold (ours) 87000 68.4 82.0 43.9 58.6 33.2 43.5 25.2 33.9

Table B.4: Downstream QA test results for different answer candidate selection methods
combined with a question generator, controlling for dataset size.

Decoding Method #QA
pairs

DSQuAD DBiDAF DBERT DRoBERTa

EM F1 EM F1 EM F1 EM F1

Beam Search (beam size = 1) 87,598 67.8 80.7 40.0 55.2 30.4 41.4 17.6 26.8

Beam Search (beam size = 3) 87,598 69.0 82.3 40.4 55.8 30.0 40.1 20.8 30.8

Beam Search (beam size = 5) 87,598 69.3 83.0 39.8 54.0 31.4 42.4 19.4 30.1

Beam Search (beam size = 10) 87,598 69.6 82.7 40.5 54.1 30.4 41.0 18.8 29.0

Diverse Beam Search (beam strength = 0.1) 87,598 68.8 81.8 41.3 56.2 31.1 40.9 19.2 29.7

Diverse Beam Search (beam strength = 0.3) 87,598 67.7 80.8 40.1 53.4 31.6 41.3 18.8 28.0

Diverse Beam Search (beam strength = 0.5) 87,598 68.5 81.7 40.6 55.2 31.0 41.1 20.3 28.8

Diverse Beam Search (beam strength = 0.7) 87,598 69.0 82.5 40.1 55.1 31.1 41.9 18.4 27.6

Diverse Beam Search (beam strength = 0.9) 87,598 68.4 81.5 41.2 55.8 32.6 42.2 19.0 29.1

Diverse Beam Search (beam strength = 1.0) 87,598 68.1 81.4 39.4 53.8 30.9 41.8 17.3 27.2

Nucleus Sampling (topp = 0.1) 87,598 68.4 81.6 42.0 56.7 31.9 42.1 18.7 28.1

Nucleus Sampling (topp = 0.5) 87,598 68.1 81.4 40.8 55.1 31.6 41.4 19.2 28.5

Nucleus Sampling (topp = 0.75) 87,598 69.8 83.2 41.1 56.3 31.1 42.2 21.4 31.9

Table B.5: Downstream QA test results for different question diversity decoding strate-
gies and hyper-parameter settings. Synthetic data for these experiments was
generated on the human-annotated answers and using the generator trained on
SQuAD10k + DAQA.
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Filtering Method #QA
pairs

DSQuAD DBiDAF DBERT DRoBERTa

EM F1 EM F1 EM F1 EM F1

Answer Candidate Conf. (thresh = 0.6) 15,000 65.3 79.9 39.7 53.3 30.9 41.2 20.1 30.6

Question Generator Conf. (thresh = 0.5) 15,000 65.0 80.0 38.7 53.8 29.4 40.8 20.6 31.8

Influence Functions 15,000 63.8 79.3 37.2 53.1 28.4 39.0 19.1 29.7

Ensemble Roundtrip Consistency (6/6 correct) 15,000 70.4 83.5 44.0 57.4 32.5 44.1 22.3 31.0

Self-training (ST) 15,000 71.5 84.3 42.4 56.2 35.4 45.5 23.6 33.0

Answer Candidate Conf. (thresh = 0.5) & ST 15,000 71.0 84.0 47.1 60.6 32.3 43.4 24.9 34.9

Table B.6: Downstream QA test results for different question-answer pair filtering strate-
gies, showing the best hyper-parameter setting for each method, controlling for
dataset size.



B.10. Results for ELECTRA 201

Model Training Data
DBiDAF DBERT DRoBERTa

EM F1 EM F1 EM F1

RSQuAD SQuAD 51.8 1.4 65.5 0.8 30.2 1.8 42.2 1.6 15.1 2.4 24.8 2.8

RSQuAD+AQA ↑ + AQA 59.5 1.1 72.7 0.9 49.4 1.0 60.4 0.9 36.4 1.6 46.6 1.9

SynQA ↑ + SynQASQuAD 63.9 1.0 76.6 0.9 54.5 1.8 65.8 2.0 42.7 1.5 52.6 1.5

SynQAExt ↑ + SynQAExt 63.5 0.2 75.7 0.4 54.2 0.9 65.5 0.6 41.2 0.4 51.9 0.4

Table B.7: Validation set results for RoBERTaLarge trained on different datasets, and aug-
mented with synthetic data. AQA is the AdversarialQA data consisting of the
combined DBiDAF, DBERT, and DRoBERTa from Chapter 3. We report the mean
and standard deviation (subscript) over 6 runs with different random seeds.

Training Data
DSQuAD DBiDAF DBERT DRoBERTa

EM F1 EM F1 EM F1 EM F1

SQuAD + AQA 77.1 88.5 62.2 76.5 58.2 68.1 46.9 58.0

SQuAD + AQA + SynQASQuAD 77.0 88.6 63.5 76.9 60.0 70.3 50.1 61.0

Table B.8: Test set results for ELECTRALarge trained on the SQuAD and AdversarialQA
datasets, and then augmented with synthetic data. It is worth noting that
ELECTRALarge without augmentation performs similarly to RoBERTaLarge with
synthetic augmentation, and synthetically augmenting ELECTRALarge further
provides performance gains of up to 3F1 on the most challenging questions.
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Test Description RSQuAD RSQuAD+AQA SynQA SynQAExt Example Failure cases (with expected behaviour and model prediction)

Vo
ca

b A is COMP than B. Who is more /
less COMP? 19.1 8.2 4.6 4.6 6.7 5.3 2.5 1.7

C: Christina is younger than Joshua.
Q: Who is less young? A: Joshua M: Christina

Intensifiers (very, super, extremely)
and reducers (somewhat, kinda,
etc)?

70.8 13.2 72.6 16.0 78.4 15.3 79.8 14.3

C: Timothy is a little ambitious about the project. Melissa is ambitious about
the project.
Q: Who is least ambitious about the project? A: Timothy M: Melissa

Ta
xo

no
m

y Size, shape, age, color 39.5 3.0 16.2 4.8 9.0 2.9 8.2 1.7

C: There is a tiny oval thing in the room.
Q: What size is the thing? A: tiny M: oval

Profession vs nationality 68.8 8.7 37.5 9.9 23.7 11.7 5.9 1.6

C: Lauren is a Japanese adviser.
Q: What is Lauren’s job? A: adviser M: a Japanese adviser

Animal vs Vehicle 9.6 0.0 2.1 0.0 2.6 0.0 0.0 0.0

C: Emily has a SUV and an iguana.
Q: What animal does Emily have? A: iguana M: SUV

Animal vs Vehicle (Advanced) 3.3 2.4 1.0 1.0 2.9 1.7 2.7 2.5

C: Rebecca bought a train. Christian bought a bull.
Q: Who bought a vehicle? A: Rebecca M: Christian

Sy
no

ny
m

s Basic synonyms 0.3 0.1 0.2 0.1 0.0 0.1 2.1 2.1

C: Samuel is very intelligent. Samantha is very happy.
Q: Who is joyful? A: Samantha M: Samuel

A is COMP than B. Who is
antonym(COMP)? B 17.0 10.6 3.4 3.6 0.7 0.9 2.2 1.8

C: Taylor is darker than Mary.
Q: Who is lighter? A: Mary M: Taylor

A is more X than B. Who is more
antonym(X)? B. Who is less X? B.
Who is more X? A. Who is less
antonym(X)? A.

99.7 0.6 72.8 8.4 81.6 6.6 93.4 5.4
C: Emma is more cautious than Ethan.
Q: Who is more brave? A: Ethan M: Emma

R
ob

us
tn

es
s Swap adjacent characters in Q

(typo) 12.5 1.5 12.8 0.9 7.0 1.0 8.1 0.5

C: . . . to trigger combustion. Oxygen is the oxidant, not the fuel, but neverthe-
less the source . . .
Q: Combustion is caused ) causde by an oxidant and a fuel. What role does
oxygen play in combustion? A: INV M: oxidant, not the fuel ) oxidant

Question contractions 3.6 1.4 5.0 1.3 1.6 0.6 1.8 0.5

C: . . . foliated, and folded. Even older rocks, such as the Acasta gneiss of the
Slave craton in northwestern Canada, the oldest known rock in the world have
been metamorphosed to . . .
Q: What is ) What’s the oldest known rock in the world? A: INV M:
the Acasta gneiss of the Slave craton ) Slave craton

Add random sentence to context 14.9 3.3 14.5 1.8 6.3 1.0 8.4 0.8

C: Each digit will weigh 33 lb (15 kg) for a total of 66 lb (30 kg). The shape
of the Rhine delta is . . . The largest and southern main branch begins as Waal
and continues as Boven Merwede (”Upper Merwede”), Beneden Merwede
(”Lower Merwede”), Noord River (”North . . .
Q: What is the largest main branch of the Rhine? A: INV M: Waal )

Boven Merwede

N
E

R Change name everywhere 9.1 1.5 10.2 0.9 4.8 0.6 5.6 0.7

C: . . . across the continent. From 66–34 Mya ) Kelsey, the rainforest extended
as far south as 45◦. Climate fluctuations during the last 34 million years have
allowed . . .
Q: Savannah areas expanded over the last how many years? A: INV M: 66 )

34 million years

Change location everywhere 15.0 2.2 14.6 0.4 8.2 0.9 8.7 1.0

C: . . . was WKST-TV in Youngstown ) Thornton, Ohio, now WYTV, despite
the small size . . .
Q: ABC had secondary status on the existing stations in what Ohio town? A:
INV M: Youngstown ) WYTV

Fa
ir.

M/F failure rates should be similar
for different professions 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C: Taylor is not a nurse, Scott is.
Q: Who is a nurse? A: Scott M: Taylor∗

Te
m

po
ra

l There was a change in profession 21.0 17.7 14.8 8.6 2.2 3.5 5.5 3.8

C: Both Jennifer and Hannah were editors, but there was a change in Jennifer,
who is now a nurse.
Q: Who is a nurse? A: Jennifer M: Hannah

Understanding before / after -¿ first
/ last. 67.2 31.7 0.0 0.1 0.0 0.1 0.4 0.5

C: Taylor became a artist before Christopher did.
Q: Who became a artist last? A: Christopher M: Taylor

N
eg

at
io

n In context, may or may not be in
question 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C: Jennifer is not an actress. Jordan is.
Q: Who is not an actress? A: Jennifer M: Jordan∗

In question only 85.9 22.2 0.3 0.1 0.3 0.1 0.2 0.1

C: Mary is an advisor. Alexis is an adviser.
Q: Who is not an advisor? A: Alexis M: Mary

C
or

ef
. Simple coreference, he / she 2.9 3.7 0.4 0.2 4.7 4.5 15.5 8.4

C: Gabriel and Rebecca are friends. She is an author, and he is an executive.
Q: Who is an executive? A: Gabriel M: Rebecca

Simple coreference, his / her 31.9 14.2 33.4 10.6 23.2 11.5 8.7 3.3

C: Elijah and Grace are friends. Her mom is an attorney.
Q: Whose mom is an attorney? A: Grace M: Elijah

Former / Latter 93.9 10.9 94.7 7.0 99.4 0.8 100.0 0.0
C: Rebecca and Maria are friends. The former is an educator.
Q: Who is an educator? A: Rebecca M: Maria

SR
L Subject / object distinction 40.1 16.6 29.9 9.1 42.0 11.4 18.3 3.4

C: Jeremy is followed by Michelle.
Q: Who is followed? A: Jeremy M: Michelle

Subject / object distinction with 3
agents 96.2 7.1 96.9 2.9 90.8 6.2 84.5 7.3

C: John is bothered by Kayla. John bothers Nicole.
Q: Who is bothered by John? A: Nicole M: Kayla

Macro Average 34.3% 22.4% 20.7% 19.3%

Table B.9: Failure rates on the CheckList Reading Comprehension suite (lower is better).
We report the mean and standard deviation (subscript) over 6 runs with different
random seeds. ∗Illustrative examples as no failures were recorded.
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Model Model-Fooling Example

RSQuAD

C: When finally Edward the Confessor returned from his father’s refuge in 1041, at the invitation of his half-
brother Harthacnut, he brought with him a Norman-educated mind. He also brought many Norman counsellors
and fighters. . . He appointed Robert of Jumièges archbishop of Canterbury and made Ralph the Timid earl of
Hereford. He invited his brother-in-law Eustace II, Count of Boulogne to his court in 1051, an event. . .
Q: Who is the brother in law of Eustace II? A: Edward the Confessor M: Count of Boulogne

RSQuAD

C: . . . established broadcast networks CBS and NBC. In the mid-1950s, ABC merged with
United Paramount Theatres, a chain of movie theaters that formerly operated as a subsidiary of
Paramount Pictures. Leonard Goldenson, who had been the head of UPT, made the new television network. . .
Q: What company was the subsidiary Leonard Goldenson once worked for? A: United Paramount Theatres
M: Paramount Pictures

RSQuAD

C: Braddock (with George Washington as one of his aides) led about 1,500 army troops and provincial militia
on an expedition. . . Braddock called for a retreat. He was killed. Approximately 1,000 British soldiers were
killed or injured. The remaining 500 British troops, led by George Washington, retreated to Virginia. . .
Q: How many british troops were affected by the attack? A: 1,000 M: 500

RSQuAD+AQA

C: Until 1932 the generally accepted length of the Rhine was 1,230 kilometres (764 miles). . . The error was
discovered in 2010, and the Dutch Rijkswaterstaat confirms the length at 1,232 kilometres (766 miles).
Q: What was the correct length of the Rhine in kilometers? A: 1,232 M: 1,230

RSQuAD+AQA

C: . . . In 1273, the Mongols created the Imperial Library Directorate, a government-sponsored printing office.
The Yuan government established centers for printing throughout China. Local schools and government. . .
Q: What country established printing throughout? A: China M: Yuan Government

RSQuAD+AQA

C: In 1881, Tesla moved to Budapest to work under Ferenc Puskás at a telegraph company, the
Budapest Telephone Exchange. Upon arrival, Tesla realized that the company, then under construction, was
not functional, so he worked as a draftsman in the Central Telegraph Office instead. Within a few months, the
Budapest Telephone Exchange became functional and Tesla was allocated the chief electrician position. . .
Q: For what company did Tesla work for in Budapest? A: Central Telegraph Office M:
Budapest Telephone Exchange

SynQA

C: . . . In 2010, the Eleventh Doctor similarly calls himself ”the Eleventh” in ”The Lodger”. In the 2013
episode ”The Time of the Doctor,” the Eleventh Doctor clarified he was the product of the twelfth regeneration,
due to a previous incarnation which he chose not to count and one other aborted regeneration. The name
Eleventh is still used for this incarnation; the same episode depicts the prophesied ”Fall of the Eleventh”. . .
Q: When did the Eleventh Doctor appear in the series the second time? A: 2013 M: 2010

SynQA

C: Harvard’s faculty includes scholars such as biologist E. O. Wilson, cognitive scientist Steven Pinker, physi-
cists Lisa Randall and Roy Glauber, chemists Elias Corey, Dudley R. Herschbach and George M. Whitesides,
computer scientists Michael O. Rabin and . . . scholar/composers Robert Levin and Bernard Rands, astro-
physicist Alyssa A. Goodman, and legal scholars Alan Dershowitz and Lawrence Lessig.
Q: What faculty member is in a field closely related to that of Lisa Randall? A: Alyssa A. Goodman M:
Roy Glauber

SynQA

C: . . . and the Fogg Museum of Art, covers Western art from the Middle Ages to the present emphasiz-
ing Italian early Renaissance, British pre-Raphaelite, and 19th-century French art . . . Other museums in-
clude the Carpenter Center for the Visual Arts, designed by Le Corbusier, housing the film archive, the
Peabody Museum of Archaeology and Ethnology, specializing in the cultural history and civilizations of the
Western Hemisphere, and the Semitic Museum featuring artifacts from excavations in the Middle East.
Q: Which museum is specific to the Mediterranean cultures? A: Fogg Museum of Art M:
Peabody Museum of Archaeology and Ethnology

SynQAExt

C: . . . the architect or engineer acts as the project coordinator. His or her role is to design the works, prepare
the . . . There are direct contractual links between the architect’s client and the main contractor. . .
Q: Who coordinates the project of the engineer does not? A: the architect M: architect’s client

SynQAExt

C: . . . Tibetan art from the 14th to the 19th century is represented by notable 14th- and 15th-century religious
images in wood and bronze, scroll paintings and ritual objects. Art from Thailand, Burma, Cambodia, Indone-
sia and Sri Lanka in gold, silver, bronze, stone, terracotta and ivory represents these rich and complex cultures,
the displays span the 6th to 19th centuries. Refined Hindu and Buddhist sculptures reflect the influence of
India; items on show include betel-nut cutters, ivory combs and bronze palanquin hooks.
Q: What material is on display with Buddhist sculptures, but not Tibetan art? A: ivory M: bronze

SynQAExt

C: . . . Governor Vaudreuil negotiated from Montreal a capitulation with General Amherst. Amherst granted
Vaudreuil’s request that any French residents who chose to remain in the colony would be given freedom to
continue . . . The British provided medical treatment for the sick and wounded French soldiers. . .
Q: What Nationality was General Amherst? A: British M: French

Table B.10: Examples of questions that fool each of the final four models during Adversar-
ial Human Evaluation.





Appendix C

Generative Annotation Assistants

C.1 Breakdown of MRQA Results

Table C.1 shows the breakdown of results on the 12 MRQA in- and out- of domain

evaluation sets.

C.2 Combining with SQuAD1.1

Bartolo et al. (2020) and subsequent works find that the performance degradation

in the original evaluation setting when training on adversarially-collected data only

is mitigated by also including some of the original training data. To investigate this

further, we combine and shuffle the training datasets collected in each of the experi-

mental settings with 2k SQuAD1.1 examples for a total of 4k training examples per

experiment.

The baseline results in Table C.2 show that this results in similar perfor-

mance, if slightly improved on the SQuAD dev set, when using some adversarially-

collected data. We also show the results for the other experimental settings in Ta-

bles C.3, C.4 and C.5, noting very similar performance variation between settings

as those reported earlier.
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GAA Details Adv?
MRQA in-domain MRQA out-of-domain

Hotpot NQs News Search SQuAD Trivia BioASQ DROP DuoRC RACE RelExt Textbk

- 7 64.5 58.9 51.7 16.5 84.9 55.9 61.5 28.1 50.4 38.1 81.9 31.3

- 3 65.3 65.4 57.2 36.6 85.0 62.2 66.9 43.4 55.5 44.1 83.4 41.1

SQuAD (Likelihood) 7 58.0 61.5 53.9 23.3 85.4 59.5 64.0 32.5 54.2 36.3 81.6 33.4

SQuAD (Adversarial) 7 56.7 63.8 55.4 37.4 84.1 55.4 60.7 30.4 53.9 38.8 75.5 39.3

SQuAD (Uncertainty) 7 62.3 62.0 53.5 26.3 83.4 57.6 63.0 30.9 50.5 37.0 79.6 32.2

SQuAD (Likelihood) 3 67.3 62.9 56.9 30.3 86.7 60.8 66.1 39.0 54.7 43.2 81.8 41.8

SQuAD (Adversarial) 3 60.5 61.6 51.4 30.8 83.3 59.7 62.5 38.1 52.7 39.9 80.7 39.5

SQuAD (Uncertainty) 3 62.7 65.3 55.9 32.9 86.3 63.8 65.2 40.4 56.4 44.4 81.3 46.0

AdvQA (Likelihood) 3 63.5 62.6 53.3 23.5 84.9 59.9 66.7 49.5 53.3 41.5 83.7 39.4

AdvQA (Adversarial) 3 60.8 63.2 52.9 33.2 83.8 59.5 63.9 44.8 53.4 40.8 81.4 43.2

AdvQA (Uncertainty) 3 62.3 61.8 53.3 26.0 83.6 64.0 62.5 47.6 52.9 39.4 81.8 32.9

Combined (Likelihood) 3 61.6 62.6 56.1 21.3 85.0 58.8 67.7 46.9 56.5 43.3 79.1 39.6

Combined (Adversarial) 3 60.8 60.4 51.8 30.0 82.7 55.7 61.2 42.6 53.5 38.5 79.6 37.4

Combined (Uncertainty) 3 64.7 64.2 53.5 27.3 85.4 59.1 64.4 45.5 49.2 41.1 83.5 40.6

Results below are for the settings with answer prompting

AdvQA (Likelihood) 3 60.4 63.9 51.8 26.8 83.5 56.9 65.8 48.4 51.7 42.5 81.0 38.0

AdvQA (Adversarial) 3 60.0 63.8 51.3 25.0 83.7 60.4 65.0 48.6 49.9 40.4 83.3 31.0

AdvQA (Uncertainty) 3 62.7 64.0 51.2 32.9 84.9 58.3 66.3 47.0 45.4 42.3 83.0 37.9

Combined (Likelihood) 3 63.4 63.9 55.1 24.5 83.2 60.6 66.7 47.0 55.9 39.3 82.2 34.9

Combined (Adversarial) 3 62.0 63.7 51.6 18.2 83.5 60.6 64.6 48.5 53.4 40.4 83.8 35.3

Combined (Uncertainty) 3 60.6 62.9 54.2 25.0 83.6 59.2 63.3 44.4 52.5 41.6 80.3 35.3

Table C.1: Result breakdown for all twenty experiment modes on the MRQA evaluation
sets.

Adversary-in-the-loop? SQuADdev DBiDAF DBERT DRoBERTa MRQA

7 88.9 49.8 28.6 22.7 56.1

3 89.3 53.2 34.1 27.3 60.1

Table C.2: Baseline results comparing standard and adversarial data collection. Down-
stream evaluation is measured by training an ELECTRALarge QA model on each
of the collected datasets combined with 2k SQuAD training examples (for a to-
tal of 4k examples) and evaluating F1 scores on the SQuAD1.1 dev set, the
AdversarialQA test sets, and the MRQA dev sets for domain generalisation.

C.3 Adversarial Robustness of ELECTRA and

RoBERTa
Table C.6 shows adversarial robustness performance evaluated on the AddSent and

AddOneSent evaluation datasets introduced by Jia and Liang (2017). We observe

that even when trained only on SQuAD1.1, ELECTRA performs considerably bet-
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Sampling Strategy SQuADdev DBiDAF DBERT DRoBERTa MRQA

Likelihood 88.9 49.2 29.0 22.8 56.7

Adversarial 88.7 52.0 30.1 24.5 58.1
Uncertainty 88.5 50.0 29.7 22.8 57.1

Table C.3: Results for the investigation into supporting standard data collection using
GAAs when combining with 2k SQuAD training examples. There is no ad-
versarial QA model in the loop in this setting.

GAA Training Sampling SQuADdev DBiDAF DBERT DRoBERTa MRQA

SQuAD Likelihood 89.4 51.4 31.7 24.1 58.8

SQuAD Adversarial 88.4 50.9 31.8 23.2 59.3

SQuAD Uncertainty 89.6 53.8 31.6 25.3 59.0

AdversarialQA Likelihood 89.3 52.4 38.1 30.2 60.6
AdversarialQA Adversarial 88.8 54.0 34.5 27.0 59.3

AdversarialQA Uncertainty 88.8 54.5 39.2 30.0 58.3

Combined Likelihood 88.9 54.6 37.4 27.7 58.7

Combined Adversarial 89.0 53.2 34.9 25.7 58.3

Combined Uncertainty 88.9 54.4 35.9 26.9 57.8

Table C.4: Results for the investigation into supporting adversarial data collection using
GAAs when combining with 2k SQuAD training examples. We investigate
three different GAA training dataset sources, and three sampling strategies. The
adversarial QA model used in the annotation loop is identical for all settings.

ter than RoBERTa in this setting, suggesting that it is substantially more robust “out

of the box”.

C.4 Computational Resources
All experiments were run on single NVIDIA Tesla P100 GPUs. Models were

trained for up to 14 epochs each taking approximately 2 hours to complete training.

Best model checkpoints and hyper-parameters were tuned for each experimental

setting. The final model selected for each setting was based on validation perfor-

mance across the SQuAD and AdversarialQA development sets. The time taken

for evaluation of the final models on each of the AdversarialQA test sets and the

MRQA datasets was dependent on the number of examples.
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GAA Training Sampling SQuADdev DBiDAF DBERT DRoBERTa MRQA

AdversarialQA Likelihood 89.2 53.9 43.4 31.9 59.7

AdversarialQA Adversarial 89.1 53.4 36.4 28.0 58.8

AdversarialQA Uncertainty 88.5 55.4 37.6 27.5 59.0

Combined Likelihood 89.2 55.0 38.4 29.8 61.0
Combined Adversarial 88.6 54.7 37.7 29.4 59.4

Combined Uncertainty 88.8 53.1 32.6 26.7 57.5

Table C.5: Results for the investigation into supporting adversarial data collection using
GAAs equipped with answer prompting when combining with 2k SQuAD train-
ing examples. We investigate two different GAA training dataset sources, and
three sampling strategies. The adversarial QA model-in-the-loop is identical for
all settings.

Model Training Data SQuADdev AddSent AddOneSent

BERTLarge
SQuAD 90.3 73.7 80.3

SQuAD + AdversarialQA 93.3 80.1 85.2

RoBERTaLarge

SQuAD 93.5 82.4 86.9

SQuAD + AdversarialQA 92.5 83.4 86.7

SQuAD + AdversarialQA + SynQA 94.8 86.0 89.0

SQuAD + AdversarialQA + SynQAExt 94.9 87.1 90.1

ELECTRALarge

SQuAD 94.4 85.0 89.0

SQuAD + AdversarialQA 94.7 86.1 89.9
SQuAD + AdversarialQA + SynQA 94.8 85.7 89.2

Table C.6: Word-overlap F1 results for BERT, RoBERTa, and ELECTRA on the
SQuAD1.1 dev set and the AddSent and AddOneSent adversarial evaluation
sets (Jia and Liang, 2017).
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Margatina, Juan Ciro, Rafael Mosquera, Max Bartolo, Adina Williams, He He,

Bertie Vidgen, and Scott A. Hale. 2024. The prism alignment project: What

participatory, representative and individualised human feedback reveals about the

subjective and multicultural alignment of large language models.
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