The Impact of Active Learning on Availability Data Poisoning
for Android Malware Classifiers

Shae McFadden %, Zeliang Kan'*, Lorenzo Cavallaro*, Fabio Pierazzitt
YKing’s College London, * University College London, $The Alan Turing Institute

Abstract—Can a poisoned machine learning (ML) model pas-
sively recover from its adversarial manipulation by retraining
with new samples, and regain non-poisoned performance? And
if passive recovery is possible, how can it be quantified? From
an adversarial perspective, is a small amount of poisoning
sufficient to force the defender to retrain more over time?

This paper proposes the evaluation of passive recovery
from “‘availability data poisoning” using active learning in the
context of Android malware detection. To quantify passive
recovery, we propose two metrics: intercept to assess the
speed of recovery, and recovery rate to quantify the stability
of recovery. To investigate passive recovery, we conduct our
experiments at different rates of active learning, in conjunction
with varying strengths of availability data poisoning. We per-
form our evaluation on 259,230 applications from AndroZoo,
using the DREBIN feature representation, with linear SVM,
DNN, and Random Forest as classifiers. Our findings show
the convergence of the poisoned models to their respective
hypothetical non-poisoned models. Therefore, demonstrating
that through the use of active learning as a concept drift
mitigation strategy, passive recovery is feasible across the three
classifiers evaluated.

Index Terms—supervised learning, malware detection, poison-
ing, active learning, passive recovery.

1. Introduction

Malware evolution and challenges in abstracting mal-
ware semantics affect the performance of learning-based
algorithms over time, due to non-stationarity and concept
drift [1], [2], [3], [4]. Therefore, it has become common
practice to mitigate concept drift by retraining or updating
models whenever new ground-truth labels become available.
The quality of new ground-truth labels can be challenged
by label instability [5], the use of unvetted datasets, and the
intensive costs of labeling whenever pseudo-labels cannot be
trusted [6]. A questionable ground-truth may, unfortunately,
facilitate data poisoning [7], [8]. The literature on data and
backdoor poisoning attacks is abundant in computer vision
tasks, and recent work shows that the same threat also
applies to malware classifiers [7], [8]. Current defenses aim
to identify poisoned models [9], [10], or trace data poisoning
attacks in specific settings under a forensic lens [11], [12].
However, understanding the temporal effects of concept

drift mitigation strategies on data poisoning attacks in non-
stationary contexts remains largely unexplored.

This paper investigates whether and how concept drift
mitigation strategies help to passively recover model com-
promise induced by availability data poisoning attacks.! We
propose the formalization of “recovery” as the convergence
of the poisoned model performance with that of the hy-
pothetical performance of the same model if it were not
poisoned (which we refer to as the hypothetical model).
We distinguish passive recovery as the recovery process
that results as a by-product of the complete classification
system, as opposed to active recovery that specifically seeks
to mitigate the impact of poisoning through directed meth-
ods. We quantify passive recovery by introducing two new
metrics: intercept and recovery rate. The intercept aims to
determine when the performance of the poisoned model
begins to converge with the performance of the hypothetical
model. Since model performance exhibits fluctuations in
non-stationary contexts [1], [2], the recovery rate aims to
quantify the percentage of time that the poisoned model
has a performance equal to or greater than the hypothetical
model. Since exact recovery is unlikely, we introduce the
concept of the tolerance margin, which defines how much
approximation is tolerated when assuming that the model
has at least the same performance as the hypothetical model.
Then, we consolidate these metrics and methodologies to
propose RPAL, an extensible framework to aid in the in-
vestigation of passive recovery for other ML classification
systems given a set of parameters, classifiers, concept drift
mitigations and poisoning strategies.

We evaluate RPAL in the context of Android mal-
ware detection to quantify passive recovery from dirty label
(label-flip) and clean label (feature-flip) poisoning by using
active learning (uncertainty sampling). We used the 5-year
dataset from Barbero et al. [2], additionally used by Kan et
al. [14], which is crawled from AndroZoo [15]. The dataset
adopts the DREBIN [16], [1], [17] feature space, one of
the most popular feature representations. This dataset allows
for comparability with previous temporal-evaluation work,
as well as allows us to evaluate the stability of passive
recovery over a four-year test period. In our evaluation,
we investigate the following three research questions. RQ-
INTERCEPT investigates the impact of active learning and
poisoning rates on the intercept, and shows the diminishing

1. This paper extends our previously published poster [13].

returns of increasing active learning rates against availability
data poisoning during passive recovery. RQ-RECOVERY-
RATE evaluates the overall stability of the recovery rate for
passive recovery after the intercept, and shows that—when
comparing across all settings—the classifiers evaluated are
capable of passive recovery. RQ-CLASSIFIER determines
the impact of how different classifiers using the same
features affect passive recovery, and shows that—despite
all classifiers being capable of passive recovery—their F}
score and overall performance are affected by the classifier
chosen.
Overall, we make the following key contributions:

o We identify passive recovery as a hidden factor that
would impact the performance of an availability data
poisoning attack in practice on a real system.

o We discover the trend of convergence in performance
between poisoned models and their hypothetical non-
poisoned counterparts.

o We create an extensible evaluation framework, RPAL,
through which we demonstrate the feasibility of passive
recovery from availability data poisoning in the context
of Android malware detection. We openly release the
code to foster future research (see Section 7).

Distinction between Passive and Active Recovery. We
define recovery as the act of converging the performance of
a poisoned model with that of the hypothetical model, which
was never poisoned. Specifically, passive recovery refers to
recovery achieved by an approach which is implemented for
another purpose such as uncertainty sampling active learning
for concept drift mitigation in the case of this paper. In
contrast, the active recovery common in the existing litera-
ture refers to recovery achieved by an approach specifically
designed to reduce or eliminate the effects of data poisoning.
We focus on passive recovery because the temporal effects
of passive approaches on classifiers are overlooked in exist-
ing poisoning research. To our knowledge, we are the first
to evaluate the passive recovery of traditional ML and DNN
systems from availability data poisoning in the context of
malware detection.

2. Passive Recovery

The evaluation of passive recovery requires the selection
of a classification system that contains the candidate passive
recovery mechanism that is being evaluated. Any candidate
passive recovery mechanism must have the ability to adapt
or modify the model throughout a time-aware evaluation
and remain within realistic operational constraints—such
as a labeling budget. Subsequently, the poisoning strategy
selected is dependent on the threat model of the system
using the selected passive recovery strategy.

2.1. Parameters and Metrics

In this research, we define recovery as the convergence
of the poisoned model performance with that of the hy-
pothetical performance of the same model if it were not

Recovery Rate

=

Intercept

Vanilla Model

Tolerance Margin

score

= POjSoned Model

time

Figure 1: A visual example of the tolerance margin as well
as the intercept and recovery rate metrics described.

poisoned, which we refer to as the hypothetical model. In
the remainder of this section, we provide the definitions
and descriptions of the parameters (tolerance margin) and
metrics (intercept and recovery rate) required for the passive
recovery evaluation. A visual example can be found in
Figure 1. Although this research focuses on the evaluation
of a passive recovery strategy, the proposed metrics can also
be used to evaluate the speed and stability of recovery over
time for other approaches.

Notation. Model updates occur periodically according to a
predefined temporal granularity, with a monthly granularity
being used in this research. 7 and IV represent the current
and total number of updates, respectively. Mp and M
represent the poisoned model and its respective hypothetical
model with faq, and faq as the decision functions of the
models. X, and y, represent the feature vectors and ground-
truth labels of the samples within the period 7, respectively.
P is a performance metric function that takes the predicted
labels from faq,(X,) and the ground-truth labels y,. We
use Fy-Score (I = %) as our performance
metric in this research therefore, P(fa1, (X7), y-) computes
the Fi-Score for the samples in period 7.

Definition 2.1 (Tolerance Margin). The tolerance margin §
(0 € R,0 < 4 < 1) is a hyperparameter of the recovery
evaluation that is subtracted from the performance of the
hypothetical model M, such that P(faq, (X;),y,) is com-
pared against P(fa(X;),yr) — 9.

The tolerance margin represents how strict the definition
of recovery is in the evaluation. A tolerance margin of 0.05
will report better recovery results, compared to a tolerance
margin of 0.01, but will tolerate more errors. Visually, this
means that the performance of the poisoned model must
overcome a “lower version” of the performance of the
hypothetical model.

Definition 2.2 (Intercept). Given a tolerance margin ¢, the
intercept I is a metric defined as the first period 7 where:

]P)(fM‘P(XT)7yT) >]P(fM(XT)ayT) -9

The intercept reports the month in which a model is initially
deemed recovered. However, it is insufficient on its own as
performance can fluctuate over time due to statistical noise,
residual poisoning, and residual drift.

Definition 2.3 (Recovery Rate). The recovery rate metric
R is defined as:

N

1 1,
720
The recovery rate reports the stability of recovery, as it is

the percentage of months in which the model maintained
recovery after the initial intercept I.

P(fMP (XT)>yT) > P(fM(X‘r)yy'r) -4,
otherwise.

Comparing Recovery. To compare the recovery of two
models for a specific set of settings, both the intercept rate
and the recovery rate should be considered. The results of
those direct comparisons are then used to deem one of the
models superior or that it is a mixed result.

e Intercept Comparison: Lower intercepts are better as
the model reaches the tolerance margin earlier.

e Recovery Rate Comparison: Higher recovery rates are
better, as they imply that the model maintains recovered
performance more consistently.

To deem one of the models superior or for it to be a mixed
result, the aforementioned comparisons are then evaluated
together. The distinction between superior recovery perfor-
mance and a mixed result is decided as follows.

o Superior Recovery: a model’s recovery is deemed supe-
rior to another model’s recovery if either both metrics
(intercept and recovery rate) are (i) strictly better than
the other model’s metrics, or (ii) one metric is better
and the other metric is equal to the other model’s.

e Mixed Result: the comparison is deemed mixed if (i)
both metrics are equal, or (ii) each model is better in
one of the two metrics.

To the best of our knowledge, the metrics defined in this
subsection are the first temporally-aware poisoning recovery
metrics for malware detection.

2.2. Classification System

This subsection presents the time-aware evaluation and
classification systems that we used in our passive recovery
evaluation. This base system is then augmented with the pas-
sive recovery mechanism and poisoning strategy discussed
in subsequent subsections.

Time-aware Evaluations. TESSERACT is a framework
proposed by [1] which implements a time-aware evaluation
while removing spatial and temporal bias. Spatial bias is
the result of an unrealistic test-time class distribution and
can be prevented in the Android malware domain by using
a realistic 10% malware distribution [1]. Temporal bias is
the incorporation of future knowledge into the model and
is prevented by the use of time-stamped data to ensure that
training data precedes testing data. Finally, concept drift is
the divergence of testing data from training data as a result
of non-stationarity within the domain, which causes the
performance of a model to decay over time [1], [18], [2]. Our
time-aware evaluation follows both key recommendations
from TESSERACT to ensure that the results presented are

TABLE 1: Breakdown of training and testing splits of the
dataset used followed by the rounded number of samples
included per year for different active learning rates.

Breakdown of D1418
Years Training Testing
) 2014 2015 [2016 [2017 [2018

Goodware 52,043 28,169 | 36,782 | 60,000 | 55,849
Malware 5,697 3,065 3,973 7,201 6,451
Total 57,740 31,234 | 40,755 | 67,201 | 62,300
2% 625 815 1,344 1,256
Sampling 4% 1,249 1,630 2,688 2,492
8% 2,499 3,260 5,376 4,984
16% 4,997 6,521 | 10,752 9,968

not spatially or temporally biased and mitigates concept drift
through techniques discussed in Subsection 2.3.

Dataset. We use the dataset from Barbero et al. [2], which
was downloaded from AndroZoo [15] and also used in Kan
et al. [14]. The dataset considers the popular DREBIN [16]
feature representation. We use a feature selection of the top
10,000 features as performed in Kan et al. [14]. In the
rest of this paper, we refer to this dataset as D1418. The
dataset consists of 259,230 applications covering the five-
year period of 2014 to 2018. As in related works [1], [14],
we use data from 2014 to train the classifiers. The remaining
four years of data are used for our test period to evaluate
the long-term stability of passive recovery. Although the
samples from the dataset are several years old, this is not an
issue for our evaluation for two main reasons. Firstly, the
trends being investigated are a result of the non-stationarity
at the core of the domain. Therefore, the trends found on
this data should continue to hold on newer data. Secondly,
labels take at least a year to stabilize [5]; therefore, the
use of older samples with new labels enables higher quality
ground-truth, which is crucial for our evaluation. The first
section of Table 1 reports the details of the train-test splits
in the D1418 dataset followed by the number of additional
samples included in retraining per year for different active
learning rates.

Classifiers. The three classifiers used in our evaluation are
Linear Support Vector Machines, Deep Neural Networks,
and Random Forests. Linear Support Vector Machines, re-
ferred to as SVM, was chosen as it was the classifier initially
used in DREBIN [16]. Deep Neural Networks, referred to as
DNN, are another common approach for malware classifi-
cation, with the specific implementation of DNN used being
based on [19]. Finally, Random Forests, referred to as RF,
are an alternative approach used by [20], [17]. We use the
same RF settings of 101 decision trees and a maximum
depth of 64 as [20]. The hyperparameters used for each
classifier can be found in Table 6. To show the impact
of concept drift on performance and underpin the need
for mitigation strategies (such as active learning), Figure 2
displays the baseline performance (without poisoning or
active learning) of the three classifiers on the D1418 dataset.

—— SVM - 8% Active Learning
0.9 —=— SVM - Base Classifier
—— SVM - 8% Poisoning

0.8 Y

F1 Score
L
F1 Score

0.4

0.3

0.2

0.14

0.0+

—+— DNN - 8% Active Learning

|

—=— DNN - 8% Poisoning

F1 Score
f=1
o
|

0.34

0.24

0.14

0.0~

1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 T 47 101316 19 22 25 28 31 34 37 40 43 46 1 4 7 101316 19 22 25 28 31 34 37 40 43 46

Testing period (Months)

(a) SVM Classifier

Testing period (Months)

(b) RF Classifier

Testing period (Months)

(c) DNN Classifier

Figure 2: Baseline performance of the three classifiers under the effects of concept drift (black), active learning (green),

and poisoning (red).

2.3. Passive Recovery Mechanism

A passive recovery mechanism is a method that allows
the model to be adapted or modified over time and typically
comes with its own operational costs. When deciding on
a candidate passive recovery mechanism, it is important to
consider a realistic labeling budget, with the cost of labeling
being the number of testing objects that must be labeled
periodically.

Active Learning. One of the most common forms of
concept drift mitigation, active learning is a field of machine
learning literature that studies the continuous improvement
of models through the selection of new samples to be
manually labeled and included in retraining. The candidate
passive recovery mechanism in this paper is uncertainty
sampling, a type of active learning, which selects samples
where the classifier is less certain, as these samples are likely
the most informative to adjust the decision boundary [21],
[22], [23]. To measure uncertainty, we use two different
methods based on the classifier. Firstly, for RF and DNN we
use probabilistic uncertainty which selects the samples with
the lowest probability for its predicted label [21]. Secondly,
since SVM does not have probabilities, we use the absolute
distance to the hyperplane to measure the uncertainty and
select the samples that are closest (most uncertain) [22],
[23]. Once samples are selected in a test period, they are
then manually labeled and added to the rest of the training
set for model retraining. The impact of uncertainty sampling
on mitigating concept drift can be seen in the performance
improvement over the base classifier in Figure 2.

Operational Cost. For the passive recovery evaluation,
the uncertainty sampling of 2%, 4%, 8%, and 16% of the
monthly samples was used. The granularity of the sampling
settings was chosen because it has a higher concentration
in lower, more realistic percentages, while maintaining siz-
able changes to allow variance in the scenarios evaluated.
The consequence of using higher percentages is increased

manual labeling requirements that may exceed a realistic
labeling budget. Miller et al. [5] suggested two possible
labeling budgets of 10 and 80 samples per day; assuming an
approximate 250 working days per year, the yearly manual
labeling budgets would be 2,500 and 20, 000, respectively.
The second section of Table 1 displays the number of new
samples included in retraining that must be labeled for a
given active learning rate and year of testing. Given the
aforementioned yearly labeling budgets and the sampling
requirements for our approach, barring one year, 4% active
learning fits into the 10 sample a day budget, and all fall
well within the 80 sample a day budget.

Tolerance Margin. The parameter § for the experiments
in this research was set to 0.05, 0.01 and 0.00, to show
a varying level of strictness—including 0.00 tolerance for
absolute recovery.

2.4. Threat Model

Adversarial machine learning investigates the possible
routes of attack in a machine learning system to discover
novel threats and propose ways to mitigate them. The threat
in our research is data poisoning, which is the most common
adversarial machine learning training-time attack and aims
to affect a classifier by adding specially designed data to
the training set [24]. Our threat model was defined taking
into account existing threat models [25], [24] as well as the
guidelines of [26] to avoid inappropriate threat models for
the given scenario.

Availability Data Poisoning. Specifically, data poisoning
attacks can be used to impact the availability of a model
through deliberate performance degradation or the integrity
of a model via the creation of backdoors. Availability data
poisoning further exacerbates concept drift as it causes the
divergence of training data from accurate data acting as a
pre-test-time drift. Our research therefore focuses on the

TABLE 2: Presents the number of samples, overall features
changed as well as the average per-sample features changed
needed to perform the clean-label poisoning mimicry of the
dirty-label attack.

Features Flipped by Clean-Label Poisoning
Poisoning Rate [[Samples [Overall | Per-Sample

2% 1,156 54,658 47
4% 2,312 | 106,802 46
8% 4,626 | 214,254 46
16% 9,252 | 421,054 46

threat of availability data poisoning attacks as a result of
its close connection with concept drift.

Attacker’s Objective & Capabilities. There can be two
main attacker goals for availability data poisoning: hav-
ing the classifier missing threats (False Negatives); having
the classifier generating false alarms (False Positives). The
attacker would design their attack strategy to better suit
their primary target. Without loss of generality, we examine
both options by evaluating an attack which compromises
the general availability of the model. For the capability, we
assume that the attacker only has access to a portion of
the training data, reflected in the poisoning rate, and no
additional information on the classification system utilized.
Therefore, there are two potential capabilities for the at-
tacker: either (i) they have influence over the training data
labeling process, or (ii) they have the ability to modify
the prepared training data (feature vectors). In addition, the
poisoning attack strengths of 2%, 4%, 8%, and 16% of the
training samples were used in our evaluation. These levels
of attack were chosen because they fall within the strength
range of similar attacks (such as [27]) and compare fairly
with the active learning scenario.

Poisoning Strategy. When choosing a specific poisoning
strategy for evaluation, it is important that it fits the chosen
threat model and classification system. Additionally, the ad-
versarial manipulations performed should be realistic given
the proposed attacker’s capabilities.

Dirty-Label Poisoning. This attack is used for the case in
which the attacker has influence over the labeling process as
we consider a label-flip poisoning attack [24] for our dirty-
label poisoning approach. Label-flip poisoning is chosen as
it is model-agnostic, therefore requires no knowledge about
the model and does not rely on assumptions or knowledge
about the classifier like gradient-based attacks. We imple-
ment the attack to flip the labels of training data in an equal
ratio of goodware to malware so as to maintain the original
class distribution to avoid detection.

Clean-Label Poisoning. This attack is used for the case
in which the attacker can only modify the prepared training
data and not the labels; therefore, we use a feature-flip attack
as our clean-label poisoning approach [24]. We designed our
clean-label approach to mimic our dirty-label approach to
maintain the same model-agnostic property and training data
access requirements. Therefore, our clean-label poisoning

Time-aware Time-aware Recovery
Inputs split evaluation analysis
[B [[[]]]

x
v | — [[IEEEER —

o] 000000 t\»uv

? Rebalance

Outputs

Poisoning Strategy

Poisoning Setting 3 1..N

Figure 3: The evaluation of a candidate passive recovery
mechanism.

attack changes the feature values of samples to recreate
samples of the opposite class, thereby enabling the creation
of the same poisoning set as the dirty-label attack without
label modification. We minimize the number of features
required to be changed by finding goodware/malware pairs
with the least number of different benign and malicious
features. The number of features that were changed for each
poisoning rate can be found in Table 2.

Poisoning Evaluation. Since our dirty-label and clean-label
poisoning attacks are two different designs for the same
attack based on different attacker capabilities, we present
only one set of attack results to cover both cases. The
impact of data availability poisoning over time on the base
classifiers without active learning can be found in Figure 2.

2.5. Evaluation Pipeline

The pipeline of a passive recovery evaluation is pre-
sented in Figure 3. The initial input is a time-stamped dataset
consisting of a feature matrix X, labels y, and time-stamps
t. The dataset is temporally split into a training set and
testing months using the TESSERACT framework [1]. Then,
the time-aware evaluation cycle begins. First, the training
dataset is rebalanced to a realistic class distribution (e.g.,
approximately 10% in the case of Android malware [1]).
The dataset is then poisoned based on the current iteration’s
poisoning rate (starting from 0%, for the hypothetical model
baseline) and is then used to train the model. The model
predicts on the current test month data. After prediction,
the passive recovery mechanism (e.g. active learning [21])
selects new samples to be labeled, and then the model is
re-trained. The train, predict, sample, and retrain process is
then repeated for all test months. After all test months have
been evaluated, the process is repeated for all poisoning and
recovery rates in the evaluation settings. Once all setting
evaluations have been completed, the intercept and recovery
rates are extracted from the results.

3. Evaluation

In this section, we conduct experiments following the
settings discussed and motivated in Section 2, and aim to
answer the following research questions:

TABLE 3: Recovery results table for the different tolerance margins (0.05, 0.01, and 0) and classifiers (SVM, DNN, RF).
We report intercept (lower is better) and recover rate (higher is better) for each scenario, and use background gradients to
provide a visual cue. The letter “X” is used if the intercept is never reached within the specified tolerance margin.

¢ RQ-INTERCEPT: How do active learning and poisoning
rates affect the speed of passive recovery?

e RQ-RECOVERY-RATE: How stable is the passive re-
covery over time across different settings?

o RQ-CLASSIFIER: Does the type of classifier used affect
the passive recovery of the poisoned model?

Figure 4 consists of two sets of experiment results for
the performance of SVM, DNN and RF under different
settings. Figures 4a, 4c, and 4e show the time-aware eval-
uation considering a fixed active learning rate of 8%, for
varying poisoning rates. The fixed active learning rate plots
show how different rates of poisoning impact the passive
recovery of the system, with the shaded area representing
the tolerance margin. Figures 4b, 4d, and 4f represent time-
aware evaluations from a defender’s perspective, and assume
different active learning rates for a fixed 8% poisoning rate.
These plots demonstrate how different active learning rates
compare against a constant attack strength. 8% is chosen for
both fixed active learning and poisoning rates in the figures,
as it examines a moderate strength that lies at the mean of
the rates evaluated. In each plot, the dashed black line is a
baseline with the variable setting (either active learning or
poisoning) set to 0%, the X axis is the test months, the YV
axis is the F}-Score, and the remaining colored lines show
the variable setting value’s performance.

For a general overview on more combinations, Table 3
reports tables with passive recovery results of the complete

Recovery Results Table
Classifiers SVM DNN RF
Tolerance Active Learning Rate Poisoning Rate Poisoning Rate Poisoning Rate
Margin 2% 4% \ 8% \ 16% 2% 4% 8% 16% 4% \ 8% \ 16%
0% Intercept (Month) 24 X X X 24 X
Recovery Rate (%) 10% 12% 0% 0% 67% 56% 7% 0% 0%
2% Intercept (Month) 22 22 22 21
Recovery Rate (%) 67% 67% 52% 56%
Intercept (Month) 22 23 21
0.05 4% Recovery Rate (%) 67% 61%
3% Intercept (Month) 21
Recovery Rate (%)
Intercept (Month) 21
16% Recovery Rate (%)
0% Intercept (Month) X X X X 23 X
Recovery Rate (%) 0% 0% 0% 0% 20% 23% 8% 0%
2% Intercept (Month) 22 23 22 22
Recovery Rate (%) 33% 59% 46% 30% 60% 57% 52% 41%
0.01 4% Intercept (Month) 22 22 22 31
’ Recovery Rate (%) 64% 70% 59% 56% 37% 33%
8% Intercept (Month) 23 23 23 28
Recovery Rate (%) 45% 65% 65% 65% 52% 53%
16% Intercept (Month) 21 21 23
Recovery Rate (%) 67% 65%
0% Intercept (Month) X X X X 23 X
Recovery Rate (%) 0% 0% 0% 0% 16% 18% 8% 0%
29 Intercept (Month) 22 23 22 22
Recovery Rate (%) 48% 27% 22% 51% 56% 41% 30%
0 4% Intercept (Month) 22 22 22 31
Recovery Rate (%) 63% 67% 52% 46% 21% 16%
3% Intercept (Month) 23 23 23 28
Recovery Rate (%) 57% 50% 54% 56% 50% 44%
16% Intercept (Month) 23 23 23 23
Recovery Rate (%) T1% 66% 57%

combination of active learning and poisoning rates for tol-
erance margins: 0.05 (5%), 0.01 (1%), 0.00 (0%). Each
table reports the results of each setting via its intercept and
recovery rate. The intercept is as defined in Definition 2.2
and is presented as the test month in which the poisoned
model performs within the tolerance margin of the hypo-
thetical model. The recovery rate is defined in Definition
2.3 and is presented as the percentage of months after the
intercept within the tolerance margin. The tables provide
insight into the numerical results of the settings displayed
in the plots along with others not included, allowing for ease
of comparison across different settings. The only difference
between the three sets of tolerance margin tables is the
margin used in the evaluation, allowing comparison between
different tolerance margins.

3.1. Speed of Passive Recovery

Through comparisons between the tables contained
within Table 3 we can evaluate the speed with which the
models recover thereby addressing the research question
RQ-INTERCEPT. When comparing the intercepts of experi-
ments with the same active learning and poisoning rates in
Table 3, we can see that the intercept increases consistently
as the rates increase. This shows that an increase in the
poisoning rate has a larger impact than the active learning
rate on the intercept. Poisoning could force substantially

1.0 9 1.0

0.9 0.9 4
0.8 0.8 4
0.7 0.7 4
@ 0.6 L 0.6
= =
8 3
0.5 wn 0.5
— —
~ 04 F~ 044

0.3 & AL- 8% 0.3
— Tolerance Margin + PL8%
0.2 - AL-8% /P -2% 0.2 P-8% /AL - 2%
& AL-8% /P-4% & P - 8%/ AL - 4%
0.1 # AL-8% /P -8% 0.1 # P-8%) AL- 8%
® AL-8% /P-16% P -8% [AL-16%
0.0 M T 0.0 = T
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46
Testing period (Month) Testing period (Month)
(a) SVM: Fixed Active Learning Rate (b) SVM: Fixed Poisoning Rate
1.0 7 1.0 7
0.9 0.9 4
0.8 0.8 4
0.7 0.7
L 0.6 © 0.6
3 3
oy 0.5 »n 0.5
i —
~ 0.4 B~ 0.4+

N

0.3 =+ AL 8% 0.3 1 :
— Tolerance Margin -18%
02 AL-8% / P - 2% 0.2 - 8%) AL- 2%
W AL-8% /P -4% - P-8% /AL - 4%
0.1 » AL-8% /P -8% 0.14 * P-8% /AL - 8%

® AL-8% /P - 16%

OP-S%/AL-lﬁ%;

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 14 7 10 13 16 19 22 25 28 31 34 37 40 43 46
Testing period (Month) Testing period (Month)
(c) DNN: Fixed Active Learning Rate (d) DNN: Fixed Poisoning Rate
1.0 7 1.0 7
0.9 - 0.9 1
0.8 wi ,"’A‘Mw NF\ 0.8
= w7/ \' |
07 T\F \¢/ | N /\ 0.7
© 0.6 v \ -P\/',' © 0.6
5 \V v/ YAl i :
A 0.5 \ R 0.5
i —
F~ 0.4 1 Y ~ 0.4
0.3 + AL - 8% 0.3
— Tolerance Margin -+ P-8%
024 AL - 8% / P - 2% 0.2 P-8% /AL - 2%
& AL-8% /P -4% & P-8% /AL - 4%
0.1 # AL-8% / P-8% 0.1 » P-8% / AL - 8%
- AL-8% /P -16% - 8% / AL -.16%
0.0 -
14 7 10 13 16 19 22 25 28 31 34 37 40 43 46 14 7 10 13 16 19 22 25 28 31 34 37 40 43 46
Testing period (Month) Testing period (Month)
(e) RF: Fixed Active Learning Rate (f) RF: Fixed Poisoning Rate

Figure 4: Recovery plots showing the impact of varying either poisoning or active learning rate for D1418. The fixed active
learning rate plots vary the strength of poisoning, and show the trend of convergence on hypothetical performance despite
the increasing impact of poisoning, as can be seen in the starting performance of the different settings. The fixed poisoning
rate plots vary the strength of active learning, and show the diminishing returns of performance gains from active learning.
The complete results plots can be found in Figure 5

4. Discussion

This section elaborates on the relevant findings of our
evaluation and acknowledges the limitations of our research.

Relevant Findings. Our evaluation shows that passive
recovery using active learning is capable of achieving an
average intercept and recovery rate, across all settings and
classifiers, of 9 months and 70%, respectively, for a toler-
ance margin of 5% given the evaluated threat model. We
examined the three key factors of RQ-INTERCEPT, RQ-
RECOVERY-RATE, and RQ-CLASSIFIER for passive recov-
ery. In RQ-INTERCEPT, we observe that poisoning does not
suffer from the same diminishing returns as active learning,
implying that passive recovery is more suitable for cases
in which lower attack strengths are used or in conjunction
with active recovery approaches to aid in overall recovery.
In RQ-RECOVERY-RATE, we evaluated the stability of pas-
sive recovery across the different rates of poisoning and
active learning. We observe a comparable average recovery
rate across the different classifiers with the same tolerance
margin. This indicates that the choice of classifier does not
have a significant impact on the average recovery rate for a
tolerance margin, therefore, all classifiers evaluated are ca-
pable of achieving passive recovery. In RQ-CLASSIFIER, we
determine the two-fold impact that the choice of classifier
has on passive recovery. Firstly, the utilized classifier does
impact the overall passive recovery, although the average
recovery rate is not largely impacted by the classifier, the
intercept denoting the start of passive recovery is impacted.
Secondly, the performance (F score) is also affected by the
choice of classifier, especially under the effects of poisoning
and active learning. As a result of the two-fold impact of
the choice of classifier, we observe that DNN is the best
recovering, when taking into account both intercept and
recovery rate, as well as the best performing classifier in
our evaluation, followed by RF then SVM. These findings
motivate the importance of taking passive recovery into con-
sideration when designing machine learning based malware
detection systems, as passive recovery is not only feasible
but could be sufficient for long-term stability of classifier
performance or a supplement to active recovery approaches
depending on the constraints.

Limitations. We consider a very specific domain and set-
ting: passive recovery from dirty-label (label-flip) or clean-
label (feature-flip) poisoning with uncertainty-sampling ac-
tive learning, in the context of Android malware detection.
Despite the very focused scenario, we were able to derive in-
teresting conclusions and propose a generalizable evaluation
that can open up future investigations on more poisoning and
passive recovery strategies.

5. Open Research Directions

In this section, we cover potential research directions
that expand on the concepts explored in this research.

Problem-space Attacks. In adversarial machine learning
for malware classification, the problem of poisoning is not

straightforward as a result of the challenge to make changes
to the application while maintaining functionality [28]. For
simplicity, we consider only feature-space attacks, by as-
suming that the attacker is able to poison a dataset by
flipping the labels or feature values of existing apps. Fu-
ture research to explore the impact of problem-space data
poisoning attacks on passive recovery would improve the
transferability of these findings to practitioners.

Poisoning-aware Passive Recovery Strategies. In our
recovery strategy, we use the common active learning ap-
proach of uncertainty sampling to evaluate passive recovery;
however, concept drift mitigations have not been considered
in the context of a poisoned dataset. The development of
poisoning-aware concept drift mitigation strategies will not
only improve the robustness of the system as a whole to an
attack, but also improve the passive recovery capability of
that system.

Time-aware Poisoning. In this paper, we assume the
attacker can poison the model only once at training time
(cf. Figure 3). However, it would be illuminating for future
research to explore whether there are feasible scenarios in
which the attacker may want to poison a model in a “low
and slow” fashion (similarly to advanced persistent threats),
and how that can impact the overall model performance over
time.

Relationship with Poisoning Mitigations. Existing papers
have either proposed defenses against poisoning attacks
(e.g. [10]), or investigated with forensics whether a model
was indeed poisoned [11]. Here we take an orthogonal
direction and investigate whether retraining over time can
help in forgetting poisoning, and provide an evaluation
framework and metrics for evaluating its impact. A complete
classification system should contain passive and active ap-
proaches to dealing with poisoning. Therefore, development
of passive and active approaches together would enable the
most efficient and stable defenses over time.

6. Related Work

To the best of our knowledge, this paper proposes the
first exploration of passive recovery for availability data poi-
soning in the context of malware detection. In the remainder
of this section, we comment on existing research and provide
a link for other future work in terms of feature abstractions
(representations), recovery, and poisoning strategies.

Feature Representations. This research evaluated the
feature representation DREBIN [16] as it is one of the
most common feature spaces released so far in the An-
droid malware domain. However, there are other feature
extractions yet to be explored in future work. StormDroid
is a feature extraction framework from [29] that combined
commonly used permissions and sensitive API calls features
with two novel features of sequence and dynamic behavior.
The sequence features are the number of sensitive API
calls requested by malware and goodware, respectively.
The dynamic behavior features are obtained by running

the application’s APK in DroidBox and then performing
static analysis on the log files generated by the run. Droid-
Cat is a feature extraction framework from [30] that uses
only dynamic analysis and handles both binary classifica-
tion and multiclass classification [30]. The DroidCat fea-
ture space consists of features for method calls and inter-
component communication intents instead of permissions,
app resources, or system calls like other dynamic analysis
frameworks. DroidCat outperformed both DroidSieve [31]
and Afonso [32] with and without obfuscation. Both feature
extractions could be candidates for future work to explore
the generalization of our results.

Recovery Strategies. Active learning with uncertainty
sampling was used as a recovery strategy in this research;
however, there are other potential approaches to passive
recovery. DroidEvolver++ developed by [6] is a malware
detection framework which uses pseudo labels to retrain
and update the model to prevent concept drift that impacts
performance over time. The DroidEvolver++ framework is
an extension of the DroidEvolver framework [33]. Despite
the improvements, labelless retraining has the limitation that
poor predictions can cause the model to self-poison, thereby
making it potentially unreliable. CADE [4] is a drift detec-
tion and explanation framework that relies on a contrastive
autoencoder to map to a lower dimensional feature space
which is then used to learn a distance function to measure
the similarity of samples in a class and generate a centroid
for each class. A sample is deemed to drift if the sample
is outside the distribution for all classes. Transcendent is a
framework built from Transcend designed to rectify some of
the limitations of the original framework [18], [2]. Transcen-
dent uses the same nonconformity measures and p-values
as Transcend, but introduces two new conformal evaluators
for concept drift detection: an inductive conformal evaluator
and a cross-conformal evaluator [2]. CADE or Transcendent
could be used as a selection strategy for active learning
instead of the uncertainty sampling used in this research.

Poisoning Strategies. In this paper, we use dirty-label
poisoning (label-flip) and clean-label poisoning (feature-
flip) as a first exploratory study, presenting implications and
findings on specific classifiers over a long time frame. There
are many other perturbation-based poisoning strategies. The
paper by [34] investigates the use of three different poi-
soning attacker models on a plethora of Android malware
detection frameworks. The attacked classification systems
all use support vector machines, with the evaluated fea-
ture spaces being DREBIN [16], DroidAPIMiner [35], MA-
MADROID [20], and StormDroid [29] with misclassification
rates of 80.05%, 75.20%, 68.95% and 65.35%, respectively
[34]. The paper by [7] uses explanation techniques to poison
the model, creating backdoors in the classifier in a model-
agnostic way [7]. A backdoor in malware classification
represents a set of features that, if present, will result in
a malicious application being labeled goodware. Recovery
from backdoor poisoning is an orthogonal variant of this
research, as we have focused on recovery from general
performance degradation poisoning.

7. Conclusion

We demonstrated that active learning, a concept drift
mitigation strategy, can indeed facilitate passive recovery
from availability data poisoning, and achieve convergence
with its hypothetical non-poisoned model’s performance.
The speed of passive recovery, as well as the model perfor-
mance, depend on the chosen classifier and passive recovery
parameters. Furthermore, the stability of passive recovery is
consistent between the classifiers evaluated, demonstrating
that they are capable of passive recovery.

The purpose of this research was to investigate the fea-
sibility of recovery from availability data poisoning through
the use of standard ML practices, to pave the way for future
research on this topic. We hope that the findings in this paper
will encourage the development of poisoning-aware concept
drift mitigation strategies, as well as broaden the perspective
of adversarial machine learning to the non-stationary nature
of malware classification.

Availability

We have implemented our passive recovery evaluation as
a Python library. We are releasing the framework to promote
future research on the evaluation of passive recovery of
other systems. This can also be used to replicate all the
experiments in the current paper. The repository can be
found at: https://github.com/s2labres/RPAL.

Acknowledgment

Research partially funded by: the Defence Science and
Technology Laboratory (DSTL), an executive agency of
the UK Ministry of Defence, supporting the Autonomous
Resilient Cyber Defence (ARCD) project within the DSTL
Cyber Defence Enhancement programme; Google ASPIRE
Awards; UK EPSRC Grant no. EP/X015971/1.

References

[11 F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“TESSERACT: Eliminating Experimental Bias in Malware Classifi-
cation across Space and Time,” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 729-746.

[2] F. Barbero, F. Pendlebury, F. Pierazzi, and L. Cavallaro, “Transcend-
ing Transcend: Revisiting Malware Classification in the Presence of
Concept Drift,” in 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, 2022, pp. 805-823.

[31 J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodriguez, N. V. Chawla,
and F. Herrera, “A Unifying View on Dataset Shift in Classification,”
Pattern recognition, vol. 45, no. 1, pp. 521-530, 2012.

[4] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and
G. Wang, “CADE: Detecting and Explaining Concept Drift Samples
for Security Applications,” in USENIX security symposium, 2021, pp.
2327-2344.

[5] B. Miller, A. Kantchelian, M. C. Tschantz, S. Afroz, R. Bachwani,
R. Faizullabhoy, L. Huang, V. Shankar, T. Wu, G. Yiu et al,
“Reviewer Integration and Performance Measurement for Malware
Detection,” in Detection of Intrusions and Malware, and Vulnera-
bility Assessment: 13th International Conference, DIMVA 2016, San
Sebastidn, Spain, July 7-8, 2016, Proceedings 13. Springer, 2016,
pp. 122-141.

(6]

(71

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]
[22]

(23]

Z. Kan, F. Pendlebury, F. Pierazzi, and L. Cavallaro, “Investigating
Labelless Drift Adaptation for Malware Detection,” in ACM AlSec
Workshop, 2021.

G. Severi, J. Meyer, S. E. Coull, and A. Oprea, “Explanation-
Guided Backdoor Poisoning Attacks Against Malware Classifiers,”
in USENIX Security Symposium, 2021, pp. 1487-1504.

L. Yang, Z. Chen, J. Cortellazzi, F. Pendlebury, K. Tu, F. Pier-
azzi, L. Cavallaro, and G. Wang, “Jigsaw Puzzle: Selective
Backdoor Attack to Subvert Malware Classifiers,” arXiv preprint
arXiv:2202.05470, 2022.

X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter, and B. Li,
“Detecting Al Trojans using Meta Neural Analysis,” in 2021 IEEE
Symposium on Security and Privacy (SP). 1EEE, 2021, pp. 103-120.

B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and
B. Y. Zhao, “Neural Cleanse: Identifying and Mitigating Backdoor
Attacks in Neural Networks,” in 2019 IEEE Symposium on Security
and Privacy (SP). 1EEE, 2019, pp. 707-723.

S. Shan, A. N. Bhagoji, H. Zheng, and B. Y. Zhao, “Poison Forensics:
Traceback of Data Poisoning Attacks in Neural Networks,” 2022.

T. Chow, Z. Kan, L. Linhardt, L. Cavallaro, D. Arp, and F. Pier-
azzi, “Drift forensics of malware classifiers,” in Proc. of the ACM
Workshop on Artificial Intelligence and Security (AlSec), 2023.

S. McFadden, Z. Kan, L. Cavallaro, and F. Pierazzi, “Poster: Rpal-
recovering malware classifiers from data poisoning using active
learning,” in Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, 2023, pp. 3561-3563.

Z. Kan, S. McFadden, D. Arp, F. Pendlebury, R. Jordaney, J. Kinder,
F. Pierazzi, and L. Cavallaro, “Tesseract: Eliminating experimental
bias in malware classification across space and time (extended ver-
sion),” arXiv preprint arXiv:2402.01359, 2024.

K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,”
in Proceedings of the 13th International Conference on Mining
Software Repositories, ser. MSR "16. New York, NY, USA: ACM,
2016, pp. 468-471. [Online]. Available: http://doi.acm.org/10.1145/
2901739.2903508

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and Explainable Detection of Android
Malware in your Pocket.” in Ndss, vol. 14, 2014, pp. 23-26.

X. Zhang, Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang, M. Zhang,
and M. Yang, “Enhancing state-of-the-art classifiers with api seman-
tics to detect evolved android malware,” in Proceedings of the 2020
ACM SIGSAC conference on computer and communications security,
2020, pp. 757-7170.

R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouret-
dinov, and L. Cavallaro, “Transcend: Detecting Concept Drift in
Malware Classification Models,” in 26th USENIX Security Symposium
(USENIX Security 17), 2017, pp. 625-642.

K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial examples for malware detection,” in Computer Security—
ESORICS 2017: 22nd European Symposium on Research in Computer
Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part IT
22. Springer, 2017, pp. 62-79.

L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, G. Ross,
and G. Stringhini, “MaMaDroid: Detecting Android Malware by
Building Markov Chains of Behavioral Models (Extended Version),”
ACM Transactions on Privacy and Security (TOPS), vol. 22, no. 2,
pp. 1-34, 2019.

B. Settles, “Active learning literature survey,” 2009.

S. Tong and D. Koller, “Support vector machine active learning
with applications to text classification,” Journal of machine learning
research, vol. 2, no. Nov, pp. 45-66, 2001.

J. Kremer, K. Steenstrup Pedersen, and C. Igel, “Active learning
with support vector machines,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, vol. 4, no. 4, pp. 313-326, 2014.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

A. E. Cina, K. Grosse, A. Demontis, S. Vascon, W. Zellinger, B. A.
Moser, A. Oprea, B. Biggio, M. Pelillo, and F. Roli, “Wild Patterns
Reloaded: A Survey of Machine Learning Security against Training
Data Poisoning,” ACM Computing Surveys, 2022.

B. Biggio and F. Roli, “Wild Patterns: Ten years After the Rise of
Adversarial Machine Learning,” 2018.

D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi,
C. Wressnegger, L. Cavallaro, and K. Rieck, “Dos and Don’ts of
Machine Learning in Computer Security,” in Proc. of the USENIX
Security Symposium, 2022.

A.E. Cina, S. Vascon, A. Demontis, B. Biggio, F. Roli, and M. Pelillo,
“The hammer and the nut: Is bilevel optimization really needed to
poison linear classifiers?”” in 2021 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2021, pp. 1-8.

F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, “Intriguing
properties of adversarial ml attacks in the problem space,” in 2020
IEEE symposium on security and privacy (SP). 1EEE, 2020, pp.
1332-1349.

S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, “Stormdroid: A
Streaminglized Machine Learning-Based System for Detecting An-
droid Malware,” in Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security, 2016, pp. 377-388.

H. Cai, N. Meng, B. Ryder, and D. Yao, “Droidcat: Effective Android
Malware Detection and Categorization via App-Level Profiling,”
IEEE Transactions on Information Forensics and Security, vol. 14,
no. 6, pp. 1455-1470, 2018.

G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto,
and L. Cavallaro, “Droidsieve: Fast and Accurate Classification of
Obfuscated Android Malware,” in Proceedings of the seventh ACM
on conference on data and application security and privacy, 2017,
pp- 309-320.

V. M. Afonso, M. F. de Amorim, A. R. A. Grégio, G. B. Junquera,
and P. L. de Geus, “Identifying Android Malware using Dynami-
cally Obtained Features,” Journal of Computer Virology and Hacking
Techniques, vol. 11, pp. 9-17, 2015.

K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu, “DroidEvolver: Self-
Evolving Android Malware Detection System,” in 2019 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P). 1EEE, 2019,
pp. 47-62.

S. Chen, M. Xue, L. Fan, L. Ma, Y. Liu, and L. Xu, “How Can
We Craft Large-Scale Android Malware? An Automated Poisoning
Attack,” in 2019 IEEE Ist international workshop on artificial intel-
ligence for mobile (AI4Mobile). 1EEE, 2019, pp. 21-24.

Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-Level
Features for Robust Malware Detection in Android,” in Security
and Privacy in Communication Networks: 9th International ICST
Conference, SecureComm 2013, Sydney, NSW, Australia, September
25-28, 2013, Revised Selected Papers 9. Springer, 2013, pp. 86-103.

Appendix

This section presents the table that contains the hyperpa-
rameters of the classifiers, as well as the plots that contain
the results for every setting given a specific classifier. The
plots show the generalization of the trends discussed in
Section 3 with respect to the plots in Figure 4.

TABLE 6: Hyperparameters for Different Classifiers

Classifiers Hyper Parameters
SVM Max Iterations SQOOO
A i LinearSVC
pproac (sklearn.svm)
Decision Trees 101
RF Max Depth 64
Approach RandomForestClassifier
P (sklearn.ensemble)
Epochs 10
Batch Size 64
Learning Rate 0.05
DNN Training/Validation | 0.66/0.34
Input: 10k, ReLU, 0.5 Dropout
Approach Hidden: 200, ReLU, 0.5 Dropout
Output: 2
1.0 7
0.9
0.84
0747
0.6
&
@ 0.59 4
=
0.44
0.3 —— P —— P-8/AL-2
—e— P-2/AL-4 —%— P-8/AL-4
—— P-2/AL-8 —+— P-8/AL-8
0.24 —— P-2/AL-16 —¥ P-8/AL-16
—=— P-4/AL-2 —— P-16/AL-2
01 —=— P-4/AL-4 —— P-16/AL-4
. —=— P-4 /AL-8 —— P-16/AL-8
—=— P-4 /AL-16 —— P-16/AL-16
0.0 = T T T T T T T

1

4 7 10 13 16 19 22 25 28 31 34 37 40 43 46
Testing period (Months)

(a) SVM Results.

F1 Score
o
t

0.4 1

0.3 —— P-2/AL —*— P-8/AL-2
—— P-2/AL-4 —%— P-8/AL-4
—— P-2/AL-8 —%— P-8/AL-8

0.2 —— P-2/AL-16 —¥— P-8/AL-16
—=— P-4/AL-2 —— P-16/AL-2

014 —=— P-4/AL-4 —— P-16/AL-4
—=— P-4/AL-8 —— P-16/AL-8
—=— P-4/AL-16 —— P-16/AL-16

0.0-
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Testing period (Months)

(b) RF Results.

1.0
0.9 1
0.8 1
0.7 1 y

0.6 1

F'1 Score
S

0.3 —— P-2/AL-2 —%— P-8/AL-2
—— P-2/AL-4 —%— P-8/AL-4
—— P-2/AL-8 —%— P-8/AL-8
0.2 1 —— P-2/AL-16 —¥— P-8/AL-16
—=— P-4/AL-2 — P-16/AL-2
014 —=— P-4/AL-4 —— P-16/AL-4
—=— P-4/AL-8 —— P-16/AL-8
—=— P-4/AL-16 —— P-16/AL-16

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46
Testing period (Months)

(c) DNN Results.

Figure 5: Results plots for all settings given a classifier. The
color denotes the active learning rate and the marker denotes
the poisoning rate.

