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Abstract 

Background  Cardiovascular disease has been associated with an increased dementia risk, but the underlying mech‑
anisms for this heart-brain link are unclear. This study sought to examine associations between aortic and carotid 
artery structure with cerebrovascular reactivity (CVR), white matter hyperintensities (WMHs), and cognition in later-life.

Methods  One hundred sixty three participants (25.8% female) from the Whitehall II Imaging cohort completed two 
examinations (M ± SD age 68.2 ± 4.4 at Wave-1 and 76.9 ± 4.5 at Wave-2) of neuropsychological assessments and 3T 
brain magnetic resonance imaging (MRI) FLAIR scans to quantify WMHs. Wave-2 additionally included vascular 
sonography of the aorta and carotid artery, and 3T functional MRI scans to measure CVR (mean % change BOLD signal 
change during a CO2 challenge). Wave-2 factor scores of aortic and carotid arterial diameters, stiffness, and compli‑
ance were the exposure variables. Midlife Framingham Cardiovascular Risk Score (FRS) measured before Wave-1 
was a potential effect modifier. WMH volume, grey matter CVR, cognitive factor scores (episodic memory, working 
memory, executive function, visuospatial memory, fluency, lexical retrieval) at Wave-2, and changes in WMH and cog‑
nition between Wave-1 and Wave-2 were used as outcome variables.

Results  Larger aortic diameter (ß = 0.38, SE = 0.11) and greater aortic stiffness (ß = 0.27, SE = 0.10) were associ‑
ated with larger carotid diameter, independently of body size. Higher midlife FRS was associated with larger aortic 
and carotid diameters and increased carotid stiffness in old age. We observed notable artery-brain associations, such 
that larger aortic (ß = 0.17, SE = 0.06) and carotid diameters (ß = 0.11, SE = 0.05) were associated with larger WMH lesion 
volumes at Wave-2. Larger aortic diameter (ß = 0.08 SE = 0.03) and lower carotid compliance (ß = − 0.06, SE = 0.02) 
at Wave-2 were also associated with greater longitudinal increases in WMH volumes over the preceding 9 years. 
Higher stiffness and lower compliance of the aorta and carotid were associated with worse cognitive outcomes 
across a range of domains, and these associations were moderated by midlife FRS. Larger carotid diameter was associ‑
ated with higher cerebrovascular reactivity (ß = 0.02, SE = 0.01), suggesting a potential compensatory pathway.
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Conclusions  Adverse structural and functional changes in the aorta and carotid artery were inter-related and associ‑
ated with vascular brain lesions, cerebrovascular reactivity, and poorer cognitive outcomes in older age.

Keywords  Dementia, Carotid, Aorta, Cognition, Ultrasound, Magnetic resonance imaging, Cardiovascular risk factors, 
Longitudinal cohort

Background
Dementia and cardiovascular disease (CVD) pose signifi-
cant healthcare challenges. Given the shared vascular risk 
factors for both conditions, and the evidence pinpointing 
midlife as a critical period to reduce cardiovascular risk 
for dementia [1], exploring heart-brain links during mid-
to-old age has become an important area of research [2]. 
The heart and brain are connected via complex arterial 
pathways, with the brain receiving part of its blood sup-
ply from the common carotid and vertebral arteries in the 
neck, which are in turn supplied by the aorta leaving the 
heart [3]. Existing research has focused on aorta-brain 
links, revealing associations between lower aortic disten-
sibility (elasticity) and larger volumes of cerebral white 
matter hyperintensities (WMHs) [4–6], with the latter 
increasing risk of cognitive impairment and dementia [7]. 
Lower aortic distensibility has also been associated with 
greater longitudinal increases in WMHs [8, 9] and faster 
conversion from mild cognitive impairment to demen-
tia [10–12]. Aortic stiffening, in turn, has been linked to 
poorer cerebral blood flow and cognition [13], as well as 
faster long-term decline in cognitive functioning [14]. 
The mechanistic underpinnings of these associations are 
unclear, but it is likely that loss of vessel elasticity and a 
resultant increase in pulse wave velocity across the car-
diac cycle can contribute to higher wave pressure dur-
ing perfusion of the brain. This can damage the delicate 
cerebral microvasculature and contribute to the buildup 
of vascular lesions (white matter hyperintensities) and 
neuronal damage. Cerebral autoregulatory mechanisms, 
such as cerebrovascular reactivity (CVR), could help pro-
tect against pressure variability from the heart by dilating 
or contracting the brain’s blood vessels to meet meta-
bolic demands [15]. However, while impairments in CVR 
are known to contribute to cerebral damage, cognitive 
decline, and dementia [16–21], we know little about how 
CVR is affected by age-related changes in aorta and large 
artery physiology.

Moreover, very few studies have investigated asso-
ciations between the carotid artery and later-life brain 
and cognitive outcomes [22, 23], despite these arter-
ies directly supplying the brain [3]. For example, carotid 
plaques have been linked with higher WMHs and poor 

memory performance [24, 25], and carotid wave intensity 
with cognitive decline [22]. But almost no neuroimag-
ing studies have examined the aorta and carotid arteries 
together. It is possible that any carotid-brain associations 
may derive from damage to the aorta, but it may also be 
that the transmission of pulsatile load from the carotids 
to the brain is independent of aortic stiffness, given evi-
dence suggesting that aortic and carotid artery distensi-
bility may not necessarily correlate [26, 27]. Examining 
aortic and carotid phenotypes together would therefore 
enable better understanding of how peripheral circula-
tion relates to cerebrovascular and cognitive function.

This study examined the association between aortic 
and carotid artery structure with brain and cognitive out-
comes, using data from the Heart and Brain Study on the 
Whitehall II cohort participants [28]. We conducted com-
prehensive ultrasound imaging, brain magnetic resonance 
imaging (MRI), and cognitive assessments at two waves. 
At MRI-Wave-1 (age 68.2 ± 4.4 years), we measured 
WMHs and cognitive performance. At MRI-Wave-2 (age 
76.9 ± 4.5 years), we acquired repeat measures of WMH 
and cognition, as well as CVR scans and three summary 
measures for the aortic and carotid arteries: distensibil-
ity (expansion ability with increasing transmural pres-
sure), stiffness (rigidity), and diameter (distance between 
opposing vessel walls). We examined cross-sectional 
associations of artery measures at Wave-2 with (1) cer-
ebrovascular reactivity (CVR), WMH volume, and cogni-
tion at Wave-2 and (2) changes in WMHs and cognitive 
function during the preceding 9  years (between Waves 
1 and 2). Our objective was to determine whether arte-
rial measures were associated with 1) better concurrent 
brain and cognitive function and (2) better preservation of 
brain function during the past decade. We hypothesised 
that structural decline of the major arteries connecting 
the heart and brain would be linked to poorer neuro-
cognitive outcomes. Given the growing emphasis on early 
prevention and vascular risk reduction in midlife, we also 
measured the Framingham Cardiovascular Disease Risk 
Score (FRS, which combines CVD and dementia risk fac-
tors) at 40–60 years old [29, 30] and examined whether 
overall cardiovascular risk in midlife, as assessed with this 
score, may modify later-life artery-brain associations.
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Methods
Participants
This study used data from the Heart and Brain Study 
[28], and involved 163 participants from the Whitehall 
II cohort [31]. Data were collected at the University 
of Oxford’s Wellcome Centre for Integrative Neuro-
imaging (MRI-Wave-1 at the Centre for Functional 
Magnetic Resonance Imaging of the Brain (2012–
2016, MSD/IDREC/2010/P17.2; detailed study proto-
col: [32]) and MRI-Wave-2 at the Oxford Centre for 
Human Brain Activity (2019–2023; R57135/RE006; 
detailed study protocol: [28]). MRI-Wave-1 included 
cognitive assessments and 3T MRI scans to meas-
ure WMHs. MRI-Wave-2 included repeated cognitive 
and WMHs measures from Wave 1, as well as addi-
tional vascular ultrasound scans (aorta and carotid), 
and an MRI scan to measure cerebrovascular reactiv-
ity (CVR). CVR and vascular ultrasound scans were 
acquired at Wave-2, but not at Wave-1. The Framing-
ham risk score was assessed at Whitehall II UCL clinic 
in 1991–1994 and 1997–1999. In the current analyses, 
MRI-Wave-I is used as baseline and MRI-Wave-2 is 
used as follow-up.

Participants for MRI-Wave-2 were included in the 
analyses if they participated in the 2019 wave of the 
Whitehall II Study, had good-quality scans without sig-
nificant incidental findings at MRI-Wave-1, had no MRI 
contraindications, no contraindications to the hypercap-
nia challenge, and no diagnosis of dementia (Additional 
file 1: Figure S1).

Vascular sonography
Aortic scans (Additional file 1: Method S1) of the proxi-
mal ascending aorta used a 4-MHz cardiac transducer 
on a GE VIVID 7 system (November 2019–January 
2023, n = 112). Carotid scans (Additional file 1: Method 
S2) used a 13-MHz linear transducer on a GE VIVID 7 
system (November 2019–January 2023, n = 112) and 
Zonare Z.One System (January 2023–May 2023, n = 
51). Aortic and left and right carotid measures included 
arterial diameter (mm), pulse wave velocity (m/s), arte-
rial compliance (mm2/kPA), distensibility (10−3  kPa), 
and beta stiffness index (equations in Additional file  1: 
Method S3). All participants underwent scanning of 
the left and right common carotid arteries, and due to 
a scanner change partway through the study, only a sub-
set of participants underwent additional scanning of the 
ascending aortic artery. Left and right carotid measures 
were averaged to provide a single overall measure for the 
carotids. Summary measures were derived using princi-
pal component analysis (PCA, see details in Additional 
file 1: Figure S2).

Brain MRI
MRI-Wave-1 scans (3T Siemens Magnetom Verio, 
Apr 2012–Dec 2015, 32-channel head coil) and MRI-
Wave-2 scans (3T Siemens Prisma, Nov 2019–May 2023, 
64-channel head coil) had closely matched protocols. 
This study used CVR scans from MRI-Wave-2 and fluid 
attenuated inversion recovery (FLAIR) scans from both 
MRI-Waves-1 and 2. T1 MPRAGE scans (1 mm3, TR 
= 1900 ms, TE = 3.97 ms, TI = 904 ms, flip angle = 8°) 
from both waves were used for registration and image 
processing. Data were pre-processed using FMRIB Soft-
ware Library (FSL) tools [33] and visually inspected using 
FSLeyes [34]. For details of the brain measures, see Addi-
tional file 1: Method S4.

Cerebrovascular reactivity (CVR)
CVR, measured as the blood-oxygen-level-dependent 
(BOLD) response to 5% carbon dioxide (CO2), involved 
participants wearing a mask supplying normocapnic air 
(0.04% CO2, 60 s), followed by two 75-s blocks of hyper-
capnic air (5% CO2), interleaved with two 75-s blocks 
of normocapnic air (0.04% CO2) [28]. This block design 
has been extensively piloted and validated and has been 
described in detail in the study protocol paper [28]. The 
mask was connected to a PowerLab 4/35 data system and 
ML206 gas analyser to measure inspired and expired gas 
concentrations (ADInstruments, New Zealand). BOLD 
gradient-echo echoplanar imaging sequences were 
acquired (2.4 mm3 resolution, TR = 800 ms, TE = 30 
ms, 450 volumes, flip angle = 52°). Processing included 
motion correction, spatial smoothing (4 mm kernel), 
and high-pass temporal filtering with FSL-FEAT (210 
Hz) [33]. A MATLAB script extracted the end-tidal CO2 
(EtCO2; exhaled CO2 concentrations) from participants’ 
CO2 traces, yielding a normalised value per fMRI vol-
ume that was aligned to the BOLD time-course. For each 
participant, mean %BOLD signal change was extracted 
from the whole-brain grey matter as well as the frontal, 
temporal, parietal, and occipital lobe grey matter using 
Featquery. CVR (% BOLD per mmHg) was calculated by 
dividing the mean %BOLD signal change by the change 
in EtCO2 (average maximum EtCO2 across two hyper-
capnic blocks minus average baseline EtCO2).

FLAIR
T2-weighted FLAIR scans (0.4 × 0.4 × 3 mm, TR = 9000 
ms, TE = 73 ms, flip angle = 150°) at both waves under-
went automated WMH segmentation and quantifica-
tion using FSL-BIANCA [35]. WM masks in T1 space 
were registered to FLAIR space, and FSL-BIANCA was 
run on masked FLAIR and brain-extracted T1 images, 
and a FLAIR-to-MNI matrix as inputs. Probability maps 
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were thresholded at 0.9 to extract WMH volumes (mm3). 
Volumes were normalized as a percentage of total brain 
volume and log-transformed because of skewness (log-
WMH) [35]. Longitudinal change in WMH volumes 
between the two timepoints was calculated as the dif-
ference in logWMH between waves (ΔlogWMH). We 
also repeated our analyses without log transforming the 
WMH values and observed similar results. Given previ-
ous research on this cohort has used log-transformed 
WMH%, we present results below using transformed 
data only [35].

Cognition
We administered the same battery of cognitive tests at 
both study Waves: Trail Making Test Versions A and B 
(assessing speed of processing and executive function) 
[36], Hopkins Verbal Learning Test-Revised (assessing 
verbal episodic memory) [37], Digit Span Test (assessing 
short-term memory) [38], Digit Coding Test (assessing 
short-term memory and executive function) [38], Ver-
bal Fluency Test [39], Rey Complex Figure Test (used to 
assess visuospatial memory, planning, attention) [40], 
Boston Naming Test (used to assess semantic retrieval) 
[41], and the Test of Premorbid Functioning scaled to 
full scale IQ (assessing premorbid intellectual ability and 
lexical retrieval) [42]. These tests are part of standard 
neuropsychological batteries, have been extensively vali-
dated, and show sensitivity for cognitive changes in this 
age range. Details of the tests are presented in the pro-
tocol papers for MRI-Wave-1 [32] and MRI-Wave-2 [28], 
as well as in Additional file 1: Method S5. We performed 
a principal component analysis (PCA) to combine large 
quantities of data from the cognitive tests and subscales 
into meaningful cognitive domains and reduce the 
dimensionality (detailed derivations are described below 
and in Additional file 1: Figure S2).

Framingham risk score
Midlife FRS was calculated at age 40–65 (from the 1991–
1994 wave, or, 1997–1999 wave of the Whitehall II Study) 
[43]. This estimates cardiovascular disease risk based on 
age, sex, smoking, cholesterol (total and high-density 
lipoprotein; HDL), systolic blood pressure, and anti-
hypertensive treatment. Validated in the Whitehall II 
study [44], FRS has been shown to predict both cognitive 
decline [45] and dementia progression [46], and in these 
analyses, participants were dichotomized as low risk 
(FRS < 10) or moderate-high risk (FRS ≥ 10) [44]. Moder-
ate and high risk were combined as only 3 participants 
were in the high risk group (i.e., scoring FRS > 20).

Statistical analysis
Analyses were performed in RStudio. Outliers were 
removed based on values > 6 * median absolute devia-
tion. PCAs with oblimin rotation (i.e., an oblique rota-
tion method that permits factors to be intercorrelated) 
were conducted using psych v2.3.6 [47] to derive fac-
tors for aortic and carotid measures and cognitive tests. 
Five artery measures were entered into separate PCAs 
for the aortic and carotid arteries and sixteen cognitive 
measures were entered into a PCA for cognition. Based 
on factor loadings, scree plots, eigenvalues, and cumula-
tive explained variance, we derived three factors each for 
the carotid and aorta: stiffness (comprising beta stiffness 
index and pulse wave velocity), diameter (systolic and 
diastolic diameter), compliance (comprising distensibility 
and compliance) (Additional file 1: Figure S2).

We derived six cognitive factors: episodic memory, 
working memory, executive function, visuospatial mem-
ory, verbal fluency, and lexical retrieval (Additional 
file 1: Figure S2). Factor weights from MRI-Wave-2 were 
applied to the MRI-Wave-1 cognitive scores, assuming 
factor loadings are time-independent [48]. Longitudinal 
change in each factor (Δ of the six cognitive domains) 
was measured as the difference between the respective 
factors derived at MRI-Wave-1 and MRI-Wave-2. For 
executive function and visuospatial memory, higher fac-
tor  values represent poorer performance, whereas for 
episodic memory, working memory, and lexical retrieval, 
lower values represent poorer performance.

We used ANCOVAs to compare aortic and carotid 
factors between FRS groups, correcting for age, sex, 
and height. Longitudinal changes in WMH volume and 
cognition were assessed using paired t-tests. We used 
linear regression to examine associations between expo-
sures (aortic or carotid factors) and outcomes (logWMH 
at MRI-Wave-2, ΔlogWMH (Wave-2 – Wave-1), CVR 
at MRI-Wave-2, cognitive factors at MRI-Wave-2, and 
Δcognition (Wave-2 – Wave-1). Based on the number 
of exposures and outcomes, multiple comparisons were 
corrected using the Benjamini-Hochberg (BH) correc-
tion, defining significance as pcorr < 0.05. We also pre-
sent significant results (p < 0.05) that did not survive this 
correction.

All models included sex, years of education, age, and 
body size (height in m) at MRI-Wave-2 as covariates. 
Arterial phenotypes such as diameter are known to be 
associated with body size [49], and so we used height to 
control for taller people having larger arteries. We also 
repeated the analysis correcting for BMI instead of height 
and this made no difference to our results. Longitudinal 
analyses also included time between waves as a covariate. 
Carotid analyses additionally included ultrasound scan-
ner model as a covariate. Midlife FRS (moderate versus 
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low risk) was used as a moderator to stratify the regres-
sion analyses.

Results
Participant characteristics
Among the 163 participants, 42 (25.8%) were women, 
and the mean (SD) age was 68.2 (4.4) years at MRI-
Wave-1 and 76.9 (4.5) years at MRI-Wave-2 (Additional 
file 1: Figure S1 and demographics in Table 1). The mean 
(SD) time between MRI-Wave-1 and MRI-Wave-2 testing 
was 8.7 (1.3) years. Aorta scans were available for 89 par-
ticipants due to change in equipment during the study, 
and carotid scans for 153 participants (Additional file 1: 
Figure S1 and demographics in Table 1). For a summary 
of demographic variables across the low FRS and moder-
ate-high FRS risk groups, see Additional file 1: Table S1.

T-tests showed between-wave increases in WMH 
volume (t = − 19.07, Cohen’s d = 1.5, p < 0.001) and 
decreases in episodic memory (t = − 27.17, p < 0.001, 

Cohen’s d = − 2.1), visuospatial memory (t = 4.48, p < 
0.001, Cohen’s d = 0.36), fluency (t = − 2.15, p = 0.03, 
Cohen’s d = − 0.17), executive function (t = 15.00, p < 
0.001, Cohen’s d = 1.2), working memory (t = − 13.32, p < 
0.001, Cohen’s d = − 1.0), and lexical retrieval (t = − 13.26, 
p < 0.001, Cohen’s d = − 1.0; Additional file 1: Table S2). 
Decreases in performance are represented as increased 
scores for visuospatial memory and executive function 
memory from Wave 1 to 2 but decreased scores for the 
other cognitive domains.

Larger aorta diameter (ß = 0.38, 95% CI [0.17 0.61], 
p < 0.001, pcorr < 0.05) and higher aortic stiffness (ß 
= 0.27, 95% CI [0.08 0.47], p = 0.006, pcorr < 0.05) were 
associated with larger carotid diameter (Additional 
file 1: Figure S3).

Participants with higher Framingham scores (FRS) 
in midlife had larger aortic diameter (η2 = 0.03, F(1,83) 
= 7.13, p = 0.009), larger carotid diameter (η2 = 0.003, 
F(1,146) = 6.77, p = 0.010), and higher carotid stiffness 

Table 1  Demographic characteristics and exposures for the overall study sample (n = 163) and subsamples included in the aortic (n = 
89) and carotid (n = 153) analyses

Values were obtained at MRI-Wave-2 unless otherwise specified

Variable Overall sample
N = 163

Aorta subsample
N = 89

Carotid subsample
N = 153

Gender, N (%)

  Female 42 (25.8) 21 (23.6) 41 (26.8)

  Male 121 (74.2) 68 (76.4) 112 (73.2)

Age at MRI-Wave-2 (years), M (SD) 76.9 (4.5) 76.7 (4.7) 76.7 (4.5)

Education (years), M (SD) 15.0 (3.6) 14.7 (3.5) 15.08 (3.6)

Time between MRI-Wave-1 and MRI-Wave-2 (years), M 
(SD)

8.67 (1.27) 8.26 (1.17) 8.69 (1.24)

BMI at MRI-Wave-2 (kg/m2), M (SD) 25.9 (4.3) 26.0 (4.2) 25.7 (4.3)

FRS (1991–1994, or 1997–1999), N (%)

  Low 124 (76.1) 65 (73) 118 (77.1)

  Moderate-high 38 (23.3) 24 (27) 34 (22.2)

Systolic BP (mmHg), M (SD) 149.6 (19.2) 149.8 (19.9) 149.5 (18.9)

Diastolic BP (mmHg), M (SD) 78.34 (10.9) 78.66 (11.7) 78.42 (10.9)

Pulse pressure, M (SD) 71.29 (16.0) 71.09 (15.8) 71.05 (15.6)

Ultrasound scanner, N (%)

  GE VIVID 7 111 (68.1) 89 (100) 103 (67.3)

  ZONARE Z.One 52 (31.9) 0 (0) 50 (32.7)

Aortic diameter (mm), M (SD) 34.1 (3.7) 34.1 (3.7) 34.1 (3.7)

Aortic pulse wave velocity (m/s), M (SD) 12.8 (3.6) 12.9 (3.5) 12.92 (3.6)

Aortic compliance (mm2/kPA), M (SD) 6.4 (3.8) 6.4 (3.8) 6.17 (3.7)

Aortic distensibility coefficient, M (SD) 7.1 (3.9) 7.1 (3.9) 7.0 (3.9)

Aortic beta stiffness index, M (SD) 25.3 (14.3) 25.6 (14.2) 25.8 (14.2)

Carotid diameter (mm), M (SD) 8.0 (0.9) 8.0 (0.9) 8.0 (0.9)

Carotid pulse wave velocity (m/s), M (SD) 9.6 (1.5) 9.7 (1.6) 9.6 (1.5)

Carotid compliance (mm2/kPA), M (SD) 0.6 (0.2) 0.6 (0.2) 0.6 (0.2)

Carotid distensibility coefficient, M (SD) 11.4 (3.5) 11.1 (3.5) 11.4 (3.5)

Carotid beta stiffness index, M (SD) 13.7 (4.2) 14.0 (4.5) 13.7 (4.2)
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(η2 = 0.01, F(1,146) = 10.44, p = 0.001) at MRI-Wave-2 
after covarying for age, sex, and height (Fig. 1).

Summary statistics for associations of aorta-carotid 
measures (Table  2), artery-brain measures (Table  3), 
and artery-cognitive measures (Table  4) are below. A 
supplementary analysis to determine the reproducibil-
ity of the results with a consistent sample size can be 
found in Additional file 1: Table S3.

Association of aortic measures with cerebrovascular 
and cognitive outcomes
Larger aortic diameter at MRI-Wave 2 was associated 
with greater volume of WMHs at MRI-Wave-2 and 
a greater increase in WMH volume between MRI-
Wave-1 and 2 (ß = 0.08, 95% CI [0.02 0.13], p = 0.008, 
pcorr < 0.05; Table  3 and Fig.  2). There were no signifi-
cant associations between aorta structure and grey 
matter CVR at Wave 2.

Fig. 1  Association of aorta and carotid phenotypes with midlife Framingham risk (blue: low risk group, orange: moderate-high risk). *indicates 
pcorr < 0.05, corrected for multiple comparisons

Table 2  Summary statistics for associations between aortic and carotid factors at MRI-Wave-2 (n = 86)

Note. Arterial compliance (mm2/kPA). Arterial diameter (mm)

All models were adjusted for sex, years of education, age, and height at MRI-Wave-2. ß Unstandardised regression coefficients, SE Standard errors. *indicates pcorr < 
0.05, corrected for multiple comparisons. Uncorrected significant associations are emboldened

Aorta

Compliance Diameter Stiffness

Carotid Compliance β = 0.07, SE = 0.11, p = 0.54 β = 0.19, SE = 0.13, p = 0.13 β = 0.07, SE = 0.11, p = 0.54

Stiffness β = − 0.10, SE = 0.11, p = 0.37 β = − 0.08, SE = 0.13, p = 0.51 β = 0.05, SE = 0.11, p = 0.65

Diameter β = − 0.07, SE = 0.10, p = 0.48 β = 0.38, SE = 0.11, p = 0.001* β = 0.27, SE = 0.10, p = 0.01*
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Table 3  Summary statistics for associations between aortic and carotid factors with brain outcomes

Note. Arterial compliance (mm2/kPA). Arterial diameter (mm). WMH volume (mm3). CVR (% BOLD per mmHg)

All models were adjusted for sex, years of education, age, and height at MRI-Wave-2. Carotid models were also adjusted for ultrasound scanner type. Models 
investigating change in WMH volume between MRI-Wave-1 and MRI-Wave-2 were also adjusted for time between the two testing sessions. Measures refer to MRI-
Wave-2 unless otherwise stated. ß Unstandardised regression coefficients, SE Standard errors p, p values prior to multiple comparisons correction. Uncorrected 
significant associations are present in bold. *indicates pcorr < 0.05, corrected for multiple comparisons

Aorta
Compliance Diameter Stiffness

WMH β = − 0.02, SE = 0.05, p = 0.70 β = 0.17, SE = 0.06, p = 0.005* β = 0.01, SE = 0.05, p = 0.83

Δ WMH β = − 0.03, SE = 0.03, p = 0.31 β = 0.08, SE = 0.03, p = 0.008* β = 0.02, SE = 0.03, p = 0.38

CVR β = 0.02, SE = 0.01, p = 0.06 β = 0.02, SE = 0.01, p = 0.05 β = − 0.02, SE = 0.01, p = 0.10

Carotid
Compliance Diameter Stiffness

WMH β = − 0.06, SE = 0.05, p = 0.24 β = 0.11, SE = 0.05, p = 0.03 β = 0.06, SE = 0.05, p = 0.25

Δ WMH β = − 0.06, SE = 0.02, p = 0.02* β = 0.03, SE = 0.02, p = 0.18 β = 0.04, SE = 0.02, p = 0.06

CVR β = 0.001, SE = 0.01, p = 0.92 β = 0.02, SE = 0.01, p = 0.04 β = − 0.001, SE = 0.01, p = 0.94

Table 4  Summary statistics for associations between aortic and carotid factors with cognitive outcomes

Note. Arterial compliance (mm2/kPA). Arterial diameter (mm)

All models were adjusted for sex, years of education, age, and height at MRI-Wave-2. Carotid models were also adjusted for ultrasound scanner. Models investigating 
change in cognitive measures between MRI-Wave-1 and MRI-Wave-2 were also adjusted for time between the two testing sessions. Measures refer to MRI-Wave-2 
unless otherwise stated. ß, Unstandardised regression coefficients, SE Standard errors, p, p values prior to multiple comparisons correction. Uncorrected significant 
associations are present in bold. *indicates pcorr < 0.05, corrected for multiple comparisons

Aorta
Compliance Diameter Stiffness

Episodic Memory β = − 0.58, SE = 0.84, p = 0.49 β = − 1.31, SE = 0.99, p = 0.18 β = − 0.34, SE = 0.87, p = 0.69

Visuospatial Memory β = − 1.01, SE = 1.5, p = 0.50 β = − 0.5, SE = 1.75, p = 0.78 β = − 0.22, SE = 1.54, p = 0.89

Working Memory β = 0.42, SE = 0.54, p = 0.44 β = 0.72, SE = 0.62, p = 0.25 β = − 0.23, SE = 0.55, p = 0.68

Lexical Retrieval β = 1.21, SE = 0.88, p = 0.18 β = − 1.4, SE = 1.03, p = 0.18 β = − 2.68, SE = 0.86, p = 0.003 *

Verbal Fluency β = 1.2, SE = 0.91, p = 0.19 β = 0.38, SE = 1.06, p = 0.72 β = − 1.23, SE = 0.93, p = 0.19

Executive Function β = 0.7, SE = 3.81, p = 0.86 β = 2.66, SE = 4.42, p = 0.55 β = − 2.3, SE = 3.87, p = 0.56

Δ Episodic Memory β = − 0.97, SE = 0.8, p = 0.23 β = − 1.27, SE = 0.94, p = 0.18 β = 0.19, SE = 0.81, p = 0.81

Δ Visuospatial Memory β = − 0.98, SE = 1.45, p = 0.50 β = − 2.48, SE = 1.71, p = 0.15 β = − 0.29, SE = 1.48, p = 0.85

Δ Working Memory β = 0.18, SE = 0.42, p = 0.67 β = − 0.12, SE = 0.49, p = 0.80 β = − 0.08, SE = 0.42, p = 0.86

Δ Lexical Retrieval β = 0.37, SE = 0.7, p = 0.60 β = − 0.32, SE = 0.81, p = 0.70 β = − 0.44, SE = 0.71, p = 0.54

Δ Fluency β = 1.28, SE = 0.72, p = 0.08 β = 0.19, SE = 0.84, p = 0.82 β = − 0.94, SE = 0.74, p = 0.21

Δ Executive Function β = 1.23, SE = 2.97, p = 0.68 β = 3.07, SE = 3.44, p = 0.38 β = 0.55, SE = 3.02, p = 0.86

Carotid
Compliance Diameter Stiffness

Episodic Memory β = 0.74, SE = 0.73, p = 0.31 β = − 0.13, SE = 0.75, p = 0.86 β = − 0.28, SE = 0.77, p = 0.72

Visuospatial Memory β = − 1.45, SE = 1.16, p = 0.22 β = − 0.10, SE = 1.21, p = 0.93 β = 1.23, SE = 1.22, p = 0.31

Working Memory β = 0.18, SE = 0.41, p = 0.66 β = − 0.10, SE = 0.42, p = 0.81 β = − 0.27, SE = 0.43, p = 0.53

Lexical Retrieval β = 1.63, SE = 0.69, p = 0.02 β = − 0.93, SE = 0.73, p = 0.20 β = − 1.93, SE = 0.73, p = 0.01

Fluency β = 1.53, SE = 0.77, p = 0.05 β = 0.01, SE = 0.81, p = 1.00 β = − 1.72, SE = 0.8, p = 0.03

Executive Function β = − 1.69, SE = 3.28, p = 0.61 β = 0.66, SE = 3.38, p = 0.85 β = 1.12, SE = 3.44, p = 0.75

Δ Episodic Memory β = 0.33, SE = 0.68, p = 0.62 β = − 0.46, SE = 0.70, p = 0.51 β = 0.38, SE = 0.72, p = 0.59

Δ Visuospatial Memory β = − 2.09, SE = 1.19, p = 0.09 β = − 2.49, SE = 1.22, p = 0.04 β = 1.55, SE = 1.27, p = 0.22

Δ Working Memory β = − 0.55, SE = 0.32, p = 0.09 β = − 0.28, SE = 0.34, p = 0.41 β = 0.37, SE = 0.34, p = 0.27

Δ Lexical Retrieval β = 0.86, SE = 0.55, p = 0.12 β = − 0.86, SE = 0.57, p = 0.12 β = − 0.49, SE = 0.58, p = 0.40

Δ Fluency β = 1.38, SE = 0.57, p = 0.02 β = − 0.32, SE = 0.61, p = 0.60 β = − 1.28, SE = 0.60, p = 0.04

Δ Executive Function β = − 2.33, SE = 2.55, p = 0.36 β = 0.62, SE = 2.65, p = 0.82 β = 1.55, SE = 2.70, p = 0.57
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Fig. 2  Statistically significant associations between aorta structure with A white matter hyperintensities (WMHs) at MRI-Wave 2, B change 
in WMHs, and C lexical retrieval at Wave-2. Low and moderate-high midlife FRS are represented in blue and orange, respectively and there were 
no moderating effects of FRS on these associations. Solid lines represent regression lines with 95% confidence intervals. Black dashed lines 
represent mean regression lines across cardiovascular risk groups

Fig. 3  Statistically significant moderating effects of FRS on the association between A aortic compliance and change in episodic memory and B 
aortic stiffness and change in working memory. Low and moderate-high midlife FRS are represented in blue and orange, respectively. Solid lines 
represent regression lines with 95% confidence intervals
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Aortic stiffness was associated with reduced lexi-
cal retrieval at MRI-Wave 2 (ß = − 2.68, 95% CI [− 4.34 
− 0.97], p = 0.003, pcorr < 0.05; Table 4 and Fig. 2).

We observed significant moderating effects of midlife 
FRS such that the high-risk group had stronger associa-
tions between aorta structure (measured at Wave-2) and 
longitudinal cognitive decline (from Waves 1 to 2) rela-
tive to the low-risk group (Fig. 3). There was a significant 
interaction between FRS and aortic compliance (ß = 3.28, 
95% CI [0.33 6.24], p = 0.03), such that higher aortic com-
pliance was linked to less longitudinal decline in episodic 
memory only in the high-risk group, whereas the low-
risk group showed no association between compliance 
and episodic memory decline (Fig.  3). Similarly, higher 
aortic stiffness at MRI-Wave-2 was linked to greater lon-
gitudinal decline in working memory only in the high-
risk group but not the low-risk group (ß = − 2.23, 95% CI 
[− 4.30 − 0.15], p = 0.04; Fig. 3).

Associations of carotid measures with cerebrovascular 
and cognitive outcomes
Larger carotid diameter was associated with higher 
WMH volume at MRI-Wave 2 (ß = 0.11, 95% CI [0.01 
0.21], p = 0.03, pcorr > 0.05; Table  3 and Fig.  4). Lower 
carotid compliance at MRI-Wave-2 was associated with a 
greater increase in WMH volume between Waves 1 and 2 
(ß = − 0.06, 95% CI [− 0.09 − 0.01], p = 0.02, pcorr < 0.05; 
Table 3 and Fig. 4).

Larger carotid diameter was associated with higher 
global grey matter CVR at MRI-Wave-2 (ß = 0.02, 95% CI 
[0.02 0.03], p = 0.04, pcorr > 0.05; Table 3 and Fig. 4). Post 
hoc analyses of regional CVR revealed that this effect was 
present in the frontal lobe (ß = 0.02, 95% CI [0.00 0.04], 
p = 0.02; Table 3 and Fig. 4) and temporal lobe grey mat-
ter (ß = 0.02, 95% CI [0.00 0.03], p = 0.04; Table  3 and 
Fig. 4). There was no interaction with the FRS group.

Higher carotid stiffness and lower carotid compliance 
were associated with lower lexical retrieval and fluency 
at MRI-Wave 2 as well as greater declines in fluency 
between MRI-Waves 1 and 2. These associations did 
not survive corrections for multiple comparisons (sum-
mary statistics in Table 4; Fig. 4).

We also observed significant moderating effects of 
FRS such that some carotid-cognition associations 
were only significant in the low-risk group. For these 
associations, while the high-risk group showed the 
opposite pattern to the low-risk group, its associations 
were not significant. There was a significant interac-
tion between FRS and carotid compliance (interaction 
ß = − 2.93, 95% CI [− 5.54 − 0.32], p = 0.03), such that 
lower carotid compliance was linked to lower lexical 
retrieval at Wave-2 only in the low-risk group (Fig. 5). 
Similarly, higher carotid stiffness was linked to lower 
fluency at MRI-Wave-2 only in the low-risk group 
(interaction ß = 4.36, 95% CI [1.10 7.62], p = 0.009, 
Fig. 5). There was also a significant interaction between 

Fig. 4  Statistically significant associations between carotid measures and MRI (A–E) and neuropsychological measures (F–H). Low 
and moderate-high midlife FRS are represented in blue and orange, respectively. Solid lines represent regression lines with 95% confidence 
intervals. Black dashed lines represent mean regression lines across cardiovascular risk groups. For Delta Fluency (H): more negative values 
correspond to greater longitudinal decline 
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FRS and carotid diameter (interaction ß = 7.29, 95% CI 
[2.41 12.19], p = 0.004), such that larger carotid diam-
eter at MRI-Wave-2 was linked to greater longitudinal 
decline in visuospatial memory in the high-risk group, 
but less memory decline in the low-risk group between 
MRI-Wave-1 and 2 (Fig.  5C). Finally, higher carotid 
stiffness at MRI-Wave-2 was linked to greater longitu-
dinal decline in fluency (between MRI-Wave-1 and 2) 
only in the low-risk group (interaction ß = 3.09, 95% CI 
[0.62 5.57], p = 0.015, Fig. 5D).

Discussion
Dementia and cardiovascular diseases are major causes 
of morbidity and mortality in old age. This study makes 
several novel observations about the heart-brain associa-
tion, by relating aorta and carotid artery measures with 
cerebrovascular and cognitive outcomes. First, we found 
that wider and stiffer aortas were associated with larger 
carotid diameter, independent of body size. Second, we 
demonstrated that higher midlife Framingham cardio-
vascular risk was associated with larger aortic diameter, 
larger carotid diameter, and increased carotid stiffness in 
old age. Third, we observed notable artery-brain associa-
tions: larger aortic and carotid diameters were associated 
with larger WMH lesion volumes. Larger aortic diameter 

and lower carotid compliance at follow-up was also asso-
ciated with greater longitudinal increases in WMH vol-
umes over the preceding 9  years. Fourth, higher aortic 
stiffness was associated with poorer lexical retrieval. 
Similarly for the carotid artery, greater stiffness and lower 
compliance were linked to poor lexical retrieval and flu-
ency at Wave-2 as well as greater retrospective declines 
in fluency between Waves 1 and 2. There were also sig-
nificant moderating effects of FRS on some artery-cog-
nition associations, such that worse aortic structure at 
follow-up (lower compliance, higher stiffness) was linked 
to greater longitudinal declines in episodic and working 
memory only in the high-risk group. Worse carotid struc-
ture at follow-up (lower compliance, higher stiffness) was 
linked to poor lexical retrieval and greater retrospective 
longitudinal decline in fluency only in the low-risk group. 
Larger carotid diameter at follow-up was also associated 
with greater visuospatial memory decline in the high-risk 
group, with the opposite pattern in the low-risk group. 
Fifth, larger carotid diameter was associated with higher 
cerebrovascular reactivity, which raises the possibility of 
a compensatory physiological mechanism as described 
below. In our discussion of the carotid-CVR and carotid-
cognition results, we highlight that our findings must be 
interpreted in light of the fact that although they were 

Fig. 5  Statistically significant moderating effects of FRS on the association between A carotid compliance and lexical retrieval at follow-up, 
B carotid stiffness and fluency at follow-up, C carotid diameter and longitudinal change in visuospatial memory, and D carotid stiffness 
and longitudinal change in fluency scores. Low and moderate-high midlife FRS are represented in blue and orange, respectively. For Δ Visuospatial 
(C): more positive values correspond to greater longitudinal decline, whereas for Δ Fluency (D): more negative values correspond to greater longitudinal 
decline. Solid lines represent regression lines with 95% confidence intervals
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significant, they did not survive corrections for multiple 
comparisons.

Stiffer aortas and higher midlife FRS were associated 
with wider carotid arteries, albeit with a small effect size. 
Artery stiffening occurs as a natural part of ageing [50] 
but is accelerated by midlife vascular risk with similar 
effect sizes to those seen in this study [51, 52]. Increased 
pulsatile energy from the aorta, resulting from arterial 
stiffness, may contribute to a widening of the down-
stream carotid arteries to lower the mechanical impact of 
the pulse and, in turn, prevent neurological damage and 
cognitive impairment. Previous evidence supports such 
vascular remodelling as a mechanism to maintain con-
stant blood flow, particularly in the presence of cumula-
tive cardiovascular burden (in this case, higher FRS in 
midlife) and arterial stiffening [53, 54].

A similar compensation mechanism, i.e., cerebrovas-
cular reactivity (CVR), exists within the brain’s micro-
vasculature, where cerebral arteries dilate to regulate the 
brain’s blood supply to meet metabolic demands [55]. 
CVR has been positioned as a process that can miti-
gate the damaging effects of aortic stiffening [56, 57]. 
For example, in a recent study, aortic stiffness was asso-
ciated with reductions in cerebral blood flow but pre-
served CVR suggesting that CVR responses may adjust 
in order to compensate for arterial damage over time 
[15]. We therefore propose that progressive stiffening of 
the aorta can contribute to increases in carotid diameter 
(vascular remodelling) and compensatory neurovascular 
mechanisms such as higher CVR, as an attempt to regu-
late constant blood flow and lessen potential neurological 
damage in the brain. More specifically, it is possible that a 
stiffer aorta is less able to buffer pulsatile flow across the 
cardiac cycle, leading to elevated pulse pressure and sub-
sequent hemodynamic stress on the downstream carotid 
and cerebral arteries. To accommodate increased pulsa-
tile flow, the carotids may remodel to reduce wall shear 
stress, so that a larger carotid diameter offers lower vas-
cular resistance and smoother flow of blood to the brain. 
Similarly, the cerebral arterioles may also dilate to main-
tain blood flow to the brain in the face of higher pulsatile 
energy, by enhancing their endothelial sensitivity to vaso-
dilatory stimuli (in this case, CO2), resulting in a higher 
CVR response. That said, it is also possible that increased 
carotid diameter represents an adaptive response to con-
comitant carotid stiffening (and alterations in carotid 
wall shear and tensile stress). Although we lacked the sta-
tistical power to test these explanations using mediation 
analysis, we provide the first evidence showing that aortic 
stiffening was linked to larger carotid diameter, which in 
turn was linked to higher CVR, particularly in the frontal 
and temporal grey matter.

Previous literature also suggests that when vascular 
remodelling is present but insufficient, high pulsatile 
pressure transmitted to the cerebral arteries can con-
tribute to microvascular damage in the brain, observable 
with typically small effect sizes on brain MRI as increased 
WMH load [58, 59]. Studies have linked aortic measures 
to WMHs [4, 6, 60] and cognitive decline [14, 61, 62], 
and here we present additional associations between 
carotid artery measures and WMH outcomes (with simi-
lar effect sizes). We observed a small association between 
larger aortic and carotid diameter with higher volume 
of WMHs. Larger aortic diameter and smaller carotid 
compliance were also associated with a greater longitu-
dinal increase in WMH volume. Compliance is the ability 
of the vessel wall to distend and regulate the volume of 
blood flow. Lower carotid compliance, or reduced ves-
sel elasticity, may progressively increase the pressure of 
blood flowing to the brain, and over time, lead to faster 
accumulation of WMH lesions.

Loss of elasticity of both the aorta and carotid arter-
ies was also associated with worse cognitive outcomes in 
the overall sample. Specifically, lower carotid compliance 
and higher aortic and carotid stiffness were associated 
with lower cross-sectional lexical retrieval and fluency 
and greater longitudinal declines in fluency. Interestingly, 
the higher and lower FRS groups tended to have opposite 
patterns for all cognitive outcomes. While these modera-
tions may be affected by small sample sizes in the higher 
FRS group (~ 23% of the sample), potentially contributing 
to greater variability in this group, it is still worth noting 
that the links between poor aortic structure (lower com-
pliance, higher stiffness) and greater longitudinal epi-
sodic and working memory decline were actually driven 
by this smaller high-risk group. This suggests that cumu-
lative exposure to cardiovascular risk factors throughout 
mid-to-old age may indeed exacerbate cognitive decline 
that stems from arterial stiffening.

Several limitations of this study should be noted. First, 
the findings may not be widely generalised as the sample 
is predominantly well-educated, healthier-than-average, 
male, and Caucasian, reflecting the demographics of the 
1985 British Civil Service, from which this cohort was 
originally drawn. Second, the study’s long duration may 
introduce survival bias. Third, due to a change in the 
ultrasound scanner partway through the study, the analy-
ses of the aorta could only be tested in a subset, leading 
to small sample sizes, especially in aorta analyses. Fourth, 
caution is needed in interpreting results that did not 
survive our strict corrections for multiple comparisons, 
which we have nonetheless reported to facilitate the test-
ing of these hypotheses in future datasets. Fifth, although 
we present plausible mechanistic explanations for our 
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results, these should be interpreted within the context of 
our cross-sectional design, which limits us from making 
any inferences about causation. Since artery metrics were 
measured at follow-up and the decline in WMH and 
cognitive performance was assessed retrospectively, we 
emphasize that artery measurements could not be used 
as a predictor of cognitive decline, but rather as a corre-
late of ongoing neurocognitive deterioration. Therefore, 
while we have suggested a directional pathway, which is 
consistent with causal models, from aorta to carotid to 
cerebrovascular and cognitive function when interpret-
ing our results in the context of current evidence, we 
emphasise that our findings are associative and hence do 
not lend themselves to any causal directions, nor do they 
preclude any reverse causation effects.

Conclusions
In summary, by combining vascular ultrasound, cerebro-
vascular MRI, and cognitive testing we observed that large 
artery measures were significantly associated with cer-
ebrovascular measures and cognition. Our findings are 
consistent with the hypothesis that higher pulsatile energy 
ascending from the aorta (presenting as higher arterial 
stiffness) may lead to the widening of upstream vessels 
(i.e., larger carotid diameter), which in turn may be linked 
to compensatory regulation of cerebral blood supply (i.e., 
higher cerebrovascular reactivity). It is likely however that 
compensatory cascades may not always be sufficient to 
counter the accumulated exposure to increased pulsatile 
energy, and loss of elasticity of the aortic and carotid vessel 
walls may also be associated with higher cerebrovascular 
lesion load, greater longitudinal increases in WMH lesions, 
and poorer cognitive performance in older age. Our study 
adds to evidence supporting the idea that structural integ-
rity of the major arteries could have beneficial effects on 
brain and cognition in later life.
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