
1

A General Framework for Probabilistic Relay
Selection in Asymmetric Buffer-Aided

Cooperative Relaying Systems
Peng Xu, Member, IEEE, Chenghong Luo, Chong Huang, Member, IEEE, Gaojie Chen, Senior

Member, IEEE, Yuanzhi He, Yong Li, Member, IEEE and Kai-Kit Wong, Fellow, IEEE

Abstract—This paper presents a general framework for
probabilistic relay selection (RS) in asymmetric buffer-
aided cooperative relaying systems, which caters to s-
cenarios with both perfect and imperfect channel state
information (CSI) during the RS process. The framework
extends and generalizes many existing buffer-aided RS
schemes. In particular, we introduce an auxiliary stochastic
process which assigns varying selection probabilities to
different links, considering the dynamic wireless channel
and buffer states. Subsequently, we leverage the obtained
outage probability and average packet delay (APD) to
formulate outage optimization problems while adhering to
APD. To address the intricate high-dimensional optimiza-
tion problems, we employ a deep learning (DL) approach,
which involves designing probability mass functions for the
auxiliary stochastic process and developing an effective loss
function to update the neural network. Simulation results
unequivocally demonstrate the superior performance of
the proposed DL-based probabilistic RS scheme compared
to benchmark schemes, particularly in scenarios involving
imperfect CSI.

Index Terms—Buffer-aided relaying systems, probabilis-
tic relay selection, outage probability, APD, imperfect CSI

I. INTRODUCTION

With the rapid proliferation of new technologies for
future networks, the escalating demand for high-speed
mobile data traffic has intensified the need for the
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development of advanced communication technologies.
Cooperative relaying, as a promising technology, can
enhance the reliability of wireless communication sys-
tems [1], and buffer-aided cooperative relaying is widely
considered as a solution that can achieve favourable
tradeoffs between reliable connectivity and low delay
[2], [3]. The buffer-aided relay selection (RS) tech-
nology has also been integrated with other emerging
technologies, such as physical layer security [4]–[6],
non-orthogonal multiple access technology [7]–[9], and
free space optical (FSO) communication [10], [11].

Numerous research efforts have focused on designing
deterministic buffer-aided RS schemes that rely solely on
perfect channel state information (CSI) and buffer state
to make selection decisions. One fundamental concept
driving the development of deterministic RS schemes
is mainly leveraging the instantaneous wireless channel
conditions (e.g., [12]–[18]). The max-max RS scheme
is an earlier buffer-aided RS scheme based on instan-
taneous perfect CSI [12], which achieved a diversity
order equivalent to the number of relays, denoted as K.
In [13], a max link RS scheme based on decode-and-
forward (DF) was proposed to realize the full diversity
order of 2K. Then, the authors of [14] proved that
the average packet delay (APD) of the max link RS
scheme based on amplify-and-forward (AF) is KL+ 1,
where L represents the buffer size. Additionally, various
modified max-link RS schemes were introduced in [15]–
[18], with the primary goal of improving outage or
delay performance compared to the traditional max-link
scheme. Conversely, in the pursuit of minimizing delays
while ensuring high diversity, buffer-state-based (BSB)
RS methods have garnered significant attention in buffer-
aided cooperative relaying systems (e.g., [19]–[24]). The
authors of [19] first demonstrated that a buffer size of 3
is sufficient to achieve the full diversity, and the APD of
[19] does not increase rapidly as the buffer size increases.
To further reduce the APD and overcome the drawback
of increasing APD with an increasing number of relays,
a threshold-based buffer-aided RS scheme was proposed
in [21], which adjusts K threshold levels to balance the
outage probability and APD.
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For each of the aforementioned deterministic RS
schemes, the selection outcome is a deterministic func-
tion of the buffer and channel states, which may re-
sult in unbalanced data flows for both receiving and
transmitting at each relay. In contrast, several studies
have focused on probabilistic relay or link selection in
both single-relay and multi-relay buffer-aided systems
[25]–[29]. These probabilistic schemes differ from deter-
ministic approaches by incorporating additional auxiliary
random variables that influence the selection outcomes.
This allows for improved control over queue lengths
at the buffers and enhances the balance of data flows
for both source-to-relay (S2R) and relay-to-destination
(R2D) links. For instance, in a single-relay scheme, if
the S2R link is in poor condition while the R2D link is
in good condition, a deterministic RS scheme is likely
to frequently select the R2D link, resulting in the buffer
tending to be empty. In contrast, using a PRS scheme
allows the S2R link to have a non-zero probability of
being selected across nearly all buffer states, enabling
better control of the queue length by adjusting the
selection probabilities. The authors of [27] and [28]
proposed max-link-based (MLB) and BSB probabilis-
tic relay selection (PRS) schemes for quasi-symmetric
multi-relay systems1, respectively. The basic idea is to
initially identify a candidate from the S2R and R2D links
separately. Subsequently, one of the two candidate links
is chosen probabilistically. The PRS scheme, introduced
in [29], strategically alternated between half-duplex and
full-duplex modes using a probabilistic approach.

The RS schemes mentioned earlier operate under the
assumption that centralized decision nodes have access
to perfect CSI. Nevertheless, achieving perfect CSI in
practical wireless systems poses challenges due to the
dynamic nature of wireless channels and the presence
of estimation errors. Motivated by this consideration,
the authors of [30] proposed a single-relay buffer-aided
adaptive link selection scheme for scenarios with imper-
fect CSI. Their numerical results demonstrated that this
scheme can yield more significant coding gains when
compared to traditional DF RS. In [31], the authors
addressed the problem of maximizing throughput in a
single-relay system with imperfect CSI. Their research
revealed an optimal trade-off between the overhead re-
quired for CSI acquisition and the quality of the obtained
CSI. Furthermore, in [32], the authors introduced the
concepts of S2R broadcasting and distributed decision-
making to overcome the challenge of outdated CSI in
quasi-symmetric multi-relay systems.

In this paper, we investigate the problem of buffer-

1In a quasi-symmetric multi-relay system, either the S2R links or
R2D links are independent and identically distributed (i.i.d.). However,
it is important to note that the S2R links and R2D links have different
channel gains.

aided RS in cooperative relaying systems with K relays
and asymmetric channel configurations, where all links
are independent but non-identically distributed (i.n.i.d).
The decision process takes into account both perfect and
imperfect CSI. It is important to note that existing PRS
schemes, such as those in [27], [28], were specifically
designed for quasi-symmetric systems and focused on
allocating selection probabilities for only two candidate
links, which may not be suitable for the asymmetric
relaying systems under consideration. The MLB and
BSB candidate selection processes outlined in [27],
[28] could result in significant performance degradation
in asymmetric scenarios. To address the requirements
of the asymmetric buffer-aided relaying systems, this
paper presents a general framework for PRS by in-
tegrating an auxiliary stochastic process. This process
assigns varying selection probabilities to all the 2K
links, taking into account the dynamic wireless channel
and buffer states. Moreover, unlike previous works on
PRS schemes, which have not considered imperfect CSI
scenarios (e.g., [27]–[29]), the framework proposed in
this paper encompasses PRS schemes in both perfect and
imperfect CSI scenarios. It is crucial to acknowledge that
the uncertainty associated with the channels introduces
complexity to the design of PRS schemes in imperfect
CSI scenarios, thereby heightening the challenge of the
task.

Furthermore, to evaluate the performance of the pro-
posed framework for PRS, the outage probability and
APD are derived based on Markov chains of buffer
states. Additionally, outage optimization problems with
delay constraints are formulated for both perfect and
imperfect CSI. These optimization problems are highly
challenging due to the involvement of a large number
of time-varying selection probability parameters. Re-
inforcement learning has been shown to handle high-
dimensional and time-varying problems in wireless com-
munications [33], [34]. However, reinforcement learning
has drawbacks such as inefficient sample collection and
slow convergence rate, which limits its wide use in prac-
tical applications. To solve the formulated optimization
problems, we use a deep learning (DL) approach, which
employs a neural network to design conditional proba-
bility mass functions (PMFs) for the auxiliary stochastic
process and designs an effective loss function to update
the neural network using back propagation algorithm to
improve the outage performance with APD constraints.
The main contributions of this paper are summarized as
follows:

• Proposing a general framework for PRS in the
asymmetric buffer-aided cooperative relaying sys-
tems, which assigns varying selection probabilities
for different links, according to the time-varying
wireless channel and buffer states. This framework
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encompasses PRS schemes in both perfect and
imperfect CSI scenarios, and it generalizes many
existing deterministic and probabilistic buffer-aided
RS schemes.

• Formulating outage optimization problems with
APD constraints for both perfect and imperfect CSI,
based on the derivations of the outage probability
and APD.

• Using a DL approach to tackle high-dimensional
optimization problems, which involves designing
PMFs for the auxiliary stochastic process condi-
tioned on the channel and buffer states, and devel-
oping an effective loss function to update the neural
network.

• Providing simulation results to demonstrate the
performance improvement of the proposed PRS
scheme compared to benchmark schemes. Notably,
the advantage of the proposed scheme is more
pronounced in scenarios with imperfect CSI.

The surge in emerging applications of mobile de-
vices such as the Internet of Things (IoT), Vehicle-
to-Everything (V2X) and Machine-to-Machine (M2M)
communications has led to a significant increase in
mobile traffic within Beyond Fifth Generation (B5G) and
Sixth Generation (6G) networks. To meet the demands
for Quality of Service (QoS) with enhanced network
throughput, reduced network latency, and heightened
network reliability, buffer-aided relaying has emerged as
a promising technique. This approach offers increased
flexibility in system scheduling of network resources.
Designing an effective RS scheme for buffer-aided coop-
erative networks necessitates the consideration of various
dynamic factors such as channel conditions, buffer states,
delay performance, selection probabilities, and more.
This paper introduces a general framework for PRS and
presents a DL approach to address high-dimensional op-
timization challenges in buffer-aided relaying schemes.
This approach shows promise in achieving the desired
QoS levels in B5G and 6G networks. For instance, in
IoT systems with extensive connections, buffer-aided
relaying can pre-store shared information at the decider,
facilitating data transmission between remote IoT nodes.
By utilizing the proposed buffer-aided DL-PRS scheme,
a more attractive high-reliability and low-latency method
can be employed for delivering past or real-time infor-
mation.

In this paper, [K1 : K2] denotes the set
{K1,K1 + 1, . . . ,K2}, where K1 ≤ K2 and
both K1 and K2 are integers; 1ξ denotes the
indicator function that takes the value 1 if the
event ξ is true and 0, otherwise; P{ξ} denotes
the probability of the event ξ; E{X} denotes the
expectation of the random variable X . Moreover,
pX(x) = P{X = x}, pY |X(y|x) = P{Y = y|X = x}
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Fig. 1: Asymmetric buffer-aided relaying network.

and EX [P{Y = y|X}] =
∑

x∈X pX(x)pY |X(y|x).

II. SYSTEM MODEL

Consider a buffer-aided RS system, as shown in Fig.
1, which consists of a source node S, K half-duplex2 DF
relays Rk (k ∈ [1 : K]), and a destination node D. Each
relay has a buffer of size L to store information packets
from S if an S2R link is selected and forward them to
D if a R2D link is selected. Due to the path loss and
shadowing effects, We assume that there is no direct link
between S and D. Therefore, S can only communicate
with D through K relays. All links are modelled as in-
dependent Rayleigh block fading channels, with channel
coefficients remaining constant within a time slot but
being independent for different time slots. During each
time slot, the number of packets stored in the buffer of
relay Rk is denoted by Lk, where 0 ≤ Lk ≤ L. Relay Rk

can receive a packet if its buffer is not full, i.e., Lk < L,
and can send a packet if its buffer is not empty, i.e.,
Lk > 0. Consistent with most existing related works
(e.g., [13]–[21]), the source node S is assumed to be
saturated, ensuring it consistently maintains an infinite
data backlog ready for transmission to the relay in each
time slot. If all K relays are full or if no S2R links are
selected during a particular time slot, S does not transmit
any packets, and the queued packets at S will remain
pending for transmission in subsequent time slots when
the S2R links are selected.

Let LAB denote the link from node A to node B, where
A ∈ {S} and B ∈ {R1, . . . ,RK}, or A ∈ {R1, . . . ,RK}
and B ∈ {D}. If link LAB is selected to transmit a packet
within a time slot t, the received signal at B is written

2This paper assumes that each relay operates under a half-duplex
constraint, which provides benefits such as cost reduction and the
prevention of self-interference in comparison to full-duplex relays.
However, a drawback of employing a half-duplex configuration for the
relays is the reduced transmission efficiency, given that each packet
transmission consumes two time slots.
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as3

r(t) =
√
PhAB(t)xA(t) + nB(t), (1)

where P is the transmit power of each transmitter, which
is a constant, hAB = gABd

−β/2
AB denotes the channel

coefficient of link LAB, xA is the data signal from A,
nB is the additive Gaussian white noise with power σ2

n,
gAB is a complex Gaussian random variable with zero
mean and unit variance, dAB denotes the distance of the
link LAB, and β is the path loss exponent. Thus, the
instantaneous channel capacity of the link LAB can be
expressed as

CAB = log2 (1 + γAB) , (2)

where γAB = γtxd
−β
AB |gAB|2, which denotes the received

signal-to-noise ratio (SNR) and γtx = P
σ2
n

is the average
transmit SNR. Moreover, the target rate is denoted as
r0 in bits per time slot. Since the transmission of each
packet consumes two time slots, each packet includes
2r0 bits of data. If CAB < 2r0, the link LAB is in outage,
i.e., the link LAB is in outage if γAB < γth, where γth =
22r0 − 1.

In addition, S is assumed to be the centralized decision
node responsible for selecting either an S2R or R2D link
at the beginning of each time slot. This decision is made
based on the CSI and buffer length at each relay. While
obtaining the buffer state is relatively straightforward by
tracking the transmissions in each time slot, accessing
the perfect CSI for each link at the decision node is chal-
lenging. This challenge arises from potential estimation
errors that may occur during the CSI acquisition process.
In this paper, we consider both scenarios: 1) perfect
CSI, where the decision node has accurate knowledge
of the CSI, and 2) imperfect CSI, where the decision
node has to contend with estimation errors in the CSI
measurements.

The estimated channel coefficient and the actual chan-
nel coefficient of link LAB are denoted as ĥAB and
hAB, respectively. In the perfect CSI scenario, the actual
channel coefficient and the estimated channel coefficient
are equal, i.e. hAB = ĥAB. In the imperfect CSI scenario,
hAB conditioned on ĥAB follows a Gaussian distribution
[35]

hAB

∣∣∣ĥAB ∼ CN
(
ρABĥAB,

(
1− ρ2AB

)
σ2

AB

)
, (3)

where ρAB ∈ [ 0, 1) denotes the correlation coefficient
between the envelopes of hAB and ĥAB, and σ2

AB = d−β
AB

denotes the variance of the channel coefficient of link
LAB. The parameter ρAB is assumed to be the same for
all links for the sake of brevity (i.e. ρAB = ρ, ∀AB).

3For the sake of brevity, the time index t will be removed from any
stochastic process for the remainder of this paper, as long as it does
not cause any confusion.

The estimated received SNR and the actual received
SNR coefficient of link LAB are denoted as γ̂AB and
γAB, respectively. In the perfect CSI scenario, the actual
received SNR and the estimated received SNR are equal,
i.e. γAB = γ̂AB. In the imperfect CSI scenario, γAB obeys
a non-central chi-square distribution with 2 degrees of
freedom conditional on the estimated SNR γ̂AB, and the
expression of its conditional probability density function
(PDF) is as follows [36]

fγAB|γ̂AB (γAB |γ̂AB ) =
1

γ̄AB (1− ρ2)
×

exp

(
−γAB + ρ2γ̂AB

γ̄AB (1− ρ2)

)
× I0

(
2
√
γABρ2γ̂AB

γ̄AB (1− ρ2)

)
,

(4)

where γ̄AB = γtxd
−β
AB is the average received SNR of

link LAB, and I0 (·) represents the zero-order modified
Bessel function of the first kind.

III. GENERAL FRAMEWORK FOR PROBABILISTIC
RELAY SELECTION

A general framework for PRS is summarized in three
steps.

1) Determining the available links: An available link
refers to an S2R link when its associated buffer is not
full, or a R2D link when its associated buffer is not
empty. Clearly, only the available links have non-zero
probabilities of being selected. Therefore, the set of
available links can be determined by the buffer state,
which can be expressed as

A = {LSRk
|Lk < L, ∀k } ∪ {LRkD |Lk > 0, ∀k } , (5)

where Lk denotes the number of stored packets in the
buffer of relay Rk in a certain time slot.

2) Determining the qualified links: A qualified link
refers to a link for which the estimated received SNR
exceeds a certain threshold γth. Hence, the set of qual-
ified links can be identified based on either perfect or
imperfect estimated CSI, which can be expressed as

Q = {LAB |γ̃AB ≥ γth, ∀AB} , (6)

where γ̃AB = γAB in the perfect CSI scenario and
γ̃AB = γ̂AB in the imperfect CSI scenario. It is important
to note that the set Q defined in (6) is a stochastic
set that is dependent on the time-varying channel state,
introduced for ease of explanation. In the scenario with
perfect CSI, we can initially ascertain which links are
capable of successfully transmitting a packet of 2r0 bits.
Subsequently, we can formulate the qualified set of links
Q. Consequently, no outages are observed for the links
within the set Q, while outages are encountered for all
links outside of Q. In contrast, in the imperfect CSI
scenario, for any link LAB ∈ Q, there still exists a non-
zero probability that it may result in an outage.
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3) Probabilistically selecting a link: We introduce
an auxiliary discrete stochastic process, denoted as Y ,
with possible integer outcomes from 0 to 2K, i.e.,
Y ∈ [0 : 2K]. In each time slot, the decision maker
S utilizes a random number generator to stochastically
generate a realization of Y based on the predetermined
PMF conditioned on the buffer and channel states. The
conditional PMF of Y for each pair of the buffer and
channel states will be designed later in Section V. Sub-
sequently, a link is selected according to the following
PRS scheme:

L∗ =


LSRk

, if LSRk
∈ A ∩Q and Y = k,

LRkD, if LRkD ∈ A ∩Q and Y = K + k,

∅, otherwise,
(7)

where k ∈ [1 : K] and ∅ denotes the empty set, i.e., no
link is selected.

Remark 1: According to the general framework for
PRS, the link selection outcome in each time slot is
determined by the instantaneous channel state, the buffer
state, and the realization of the introduced auxiliary
stochastic process Y . Note that the probabilities of the
events Y = k and Y = K+k may be assigned different
values, influencing the selection probabilities of the S2R
link LSRk

and the R2D link LRkD, respectively.
Remark 2: The design of the conditional PMF of Y

in each time slot is crucial for the system performance
of the proposed framework for PRS. For example, by
increasing P{Y ≥ K + 1}, the probability of selecting
a R2D link can be increased, and the APD can be
decreased. However, The conditional PMF of Y in each
time slot needs to adapt to the instantaneous wireless
channel conditions and buffer state.

Remark 3: The proposed framework for PRS offers
a generalization of several related existing buffer-aided
PRS schemes. This can be demonstrated through sim-
plification of the considered asymmetric system into a
quasi-symmetric system, along with the assignment of
specific values to the conditional PMFs of Y . Such sim-
plification leads to a reduction of the proposed scheme
to the existing PRS schemes presented in works such as
[27], [28].

Remark 4: For each given pair of the buffer and
channel states, if we assign a probability of 1 to a specific
realization of Y while assigning a probability of 0 to
all other realizations, the proposed framework for PRS
simplifies to a series of existing deterministic buffer-
aided RS schemes (e.g., [12]–[16], [19]–[21]).

A. Retransmission Mechanism

In the perfect CSI scenario, the selected link L∗

guarantees a reliable transmission without any outage
events. Consequently, there is no need for a retransmis-
sion mechanism, as the receiver can successfully decode

the transmitted information. However, in the imperfect
CSI scenario, the transmission over the selected link L∗

does not assure a successful decoding at the receiver.
Recognizing this limitation, it becomes necessary to
develop a retransmission mechanism.

The retransmission process operates on the
principle of the Acknowledgement (ACK)/Negative-
Acknowledgement (NACK) mechanism. This
mechanism allows the receiver associated with LAB to
provide feedback to the transmitter over a separate and
error-free channel4 (e.g. [13], [37]). For instance, in the
case where the receiver is a relay Rk, if it successfully
decodes a packet, the packet is stored in the buffer,
and an ACK is sent back to S. On the other hand, if
the decoding is unsuccessful, the buffer state remains
unchanged, and a NACK is transmitted back to S.

The retransmission mechanism operates instanta-
neously for each packet transmission within each time
slot. Additionally, because a short-length packet is used
for each retransmission, only a brief phase is required,
which is negligible in comparison to the transmission
phase of each data packet. Consequently, the retrans-
mission mechanism has an insignificant impact on the
packet delay.

B. The Conditional PMFs of Y

The PMFs of the auxiliary stochastic process Y are
conditioned on the buffer and channel states. The number
of packets stored in the buffer is defined as the buffer
state SB, which can be determined by following equation

SB = [L1, . . . , LK ] . (8)

In the perfect CSI scenario, our main concern is
assessing whether the links are qualified or not. This
information is crucial in determining whether these links
are experiencing an outage or not. Thus, the channel state
vector in the perfect CSI scenario is defined as

SPCSI=
[
1LSR1∈Q, . . . , 1LSRK∈Q, 1LR1D∈Q, . . . , 1LRKD∈Q

]
.

(9)
In the imperfect CSI scenario, there is a non-zero

outage (resp. not outage) probability for link LAB, even if
1LAB∈Q = 1 (resp. 1LAB∈Q = 0). In other words, we can-
not determine whether a link is in outage. However, the
probability that link LAB is in outage generally decreases
with the value of γ̂AB. Thus, we need to consider the
continuous value of γ̂AB to design the conditional PMFs
of auxiliary stochastic process Y . Thus, the channel state
vector in the imperfect CSI scenario is defined as

SICSI = [γ̂SR1 , . . . , γ̂SRK
, γ̂R1D, . . . , γ̂RKD] . (10)

4This paper focuses on investigating the performance of the PRS
in buffer-aided cooperative relaying systems under perfect/imperfect
CSI assumptions. Therefore, implementation issues (CSI acquisition,
feedback implementation, etc.) are beyond the scope of this paper.
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Let pY |SB,S∆
(y |sB, s∆ ) denote the probability of the

event Y = y given that the buffer state is sB and the
channel state is s∆, where ∆ ∈ {PCSI, ICSI}. Note that
the terms “PCSI" and “ICSI" denote perfect CSI and
imperfect CSI, respectively. To simplify the constraints
in equation (7), suitable constraints are added to the
PMFs of Y such that when the event Y = k (resp.
Y = K + k) occurs, the constraint LSRk

∈ A ∩ Q
(resp. LRkD ∈ A ∩ Q) always holds. Therefore, for
a given state pair (sB, s∆), pY |SB,S∆

(k |sB, s∆ ) and
pY |SB,S∆

(K + k |sB, s∆ ) need to satisfy the following
constraints{

pY |SB,S∆
(k |sB, s∆ ) 1LSRk /∈A∩Q = 0,

pY |SB,S∆
(K + k |sB, s∆ ) 1LRkD /∈A∩Q = 0,

(11)

∀k ∈ [1 : K], where sB and s∆ are two arbitrary realiza-
tions of SB and S∆, respectively. Based on (11), it can be
inferred that when A∩Q = ∅, pY |SB,S∆

(0 |sB, s∆ ) = 1,
and in this case, the value of Y must be 0.

IV. OUTAGE OPTIMIZATION PROBLEM WITH APD
CONSTRAINTS FORMULATION

In this section, we first analyze the performance of the
proposed general framework for PRS in terms of outage
probability and APD. Then, we formulate the optimiza-
tion problem of minimizing the outage probability with
APD.

A. Outage and Delay Performance

Markov chain is used to analyze the steady-state
distribution, outage probability and APD of the proposed
scheme. The j-th buffer state of the Markov chain is
denoted by

s
(j)
B =

[
l
(j)
1 , . . . , l

(j)
K

]
, (12)

where l
(j)
k denotes the number of packets stored in the

buffer of relay Rk at buffer state s
(j)
B . Given that l(j)k ∈

[0 : L], the relationship between the index j and l
(j)
k

is defined as j = 1 +
∑K

k=1 l
(j)
k (L + 1)k−1. Therefore,

there are a total of NB = (L+ 1)
K states involved in

the Markov chain, i.e. 1 ≤ j ≤ NB.
The transition matrix of the Markov chain with

(L + 1)K states is represented by F . The (i, j)-th
element of F , denoted by Fi,j , corresponds to the
probability of transitioning from buffer state s

(j)
B at time

t to s
(i)
B at time t + 1. In other words, Fi,j denotes

P
{
SB (t+ 1) = s

(i)
B

∣∣∣SB (t) = s
(j)
B

}
, where SB (t) de-

notes the buffer state at time slot t.

The formula for each element of the transition matrix
can be expressed by the following equation

Fi,j =



pout

(
s
(j)
B

)
, if s(i)B = s

(j)
B ,

psel

(
s
(j)
B ,LSRk

)
, if s(i)B = s

(j)
B + Ik,

psel

(
s
(j)
B ,LRkD

)
, if s(i)B = s

(j)
B − Ik,

0, otherwise,

(13)

where Ik denotes the k-th row of the identity matrix
of size K; pout

(
s
(j)
B

)
denotes the outage probability at

buffer state s
(j)
B ; psel

(
s
(j)
B ,LSRk

)
and psel

(
s
(j)
B ,LRkD

)
denote the probabilities of selecting links LSRk

and
LRkD at the buffer state s

(j)
B , respectively. There-

fore, the transition probabilities of psel

(
s
(j)
B ,LSRk

)
and

psel

(
s
(j)
B ,LRkD

)
are given by

psel

(
s
(j)
B ,LSRk

)
= P

{
L∗ = LSRk

, γSRk
≥ γth

∣∣∣SB = s
(j)
B

}
= P

{
Y = k, γSRk

≥ γth

∣∣∣SB = s
(j)
B

}
,

(14)

psel

(
s
(j)
B ,LRkD

)
= P

{
L∗ = LRkD, γRkD ≥ γth

∣∣∣SB = s
(j)
B

}
= P

{
Y = K + k, γRkD ≥ γth

∣∣∣SB = s
(j)
B

}
.

(15)

Let πj denote the steady-state probability that the
buffer state is s

(j)
B . It can be proven that the Markov

chain is column stochastic, irreducible, and aperiodic.
Hence, the stationary probability vector can be computed
by [13]

π = (F − I +B)
−1

b, (16)

where π = [π1, . . . , πNB
]T ; I denotes the identity

matrix of size NB; B denotes the all-ones matrix of size
NB; b denotes the all-ones vector of length NB.

The system is considered to be in outage when the
relays are unable to receive or forward a packet suc-
cessfully. By considering all buffer states, the outage
probability of the proposed scheme can be expressed as

Pout =

(L+1)K∑
j=1

πjpout

(
s
(j)
B

)
. (17)

On the other hand, the packet delay consists of two
parts: the delay at the source and the delay at the
relay. According to [19], the delay at the source node is
determined by the outage probability, while the delay at
the relay is jointly determined by the outage probability
and the average queue length of data packets. The APD
can be calculated as follows [19]

D̄ = D̄S + D̄R, (18)
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where D̄S = 1+Pout
1−Pout

and D̄R = 2KL̄
1−Pout

denote the
delay at the source node and the delay at the relay

node, respectively; L̄ = 1
K

NB∑
j=1

πj

K∑
k=1

l
(j)
k represents the

average queue length of the data packets for each buffer.
Remark 5: The expression of D̄ in (18) is derived

primarily based on Little’s law [38] and the calculations
of the average queue lengths and average throughputs
at S and the relays. It is evident that D̄S and D̄R
have distinct expressions due to the different packet
storage and delay measurement mechanisms at S and the
relays. Specifically, S is assumed to always have packets
ready for transmission, and thus, the queue length at
S is influenced by how frequently it is selected for
transmission, which, in turn, hinges on the probability of
selecting an S2R link. In contrast, the delay of a packet
at a relay is defined as the duration between its arrival
at the relay and its departure from the relay.

Remark 6: Analyzing explicit expressions regarding
the trade-off between the APD and outage probabili-
ty presents significant challenges due to the complex
implicit nature of the stationary probability vector, as
shown in (16). To the best of the authors’ knowledge,
only the authors of [21] and [24] have derived asymptotic
explicit expressions for the trade-offs between the APD
and diversity order, based on simple selection rules.
However, the proposed PRS scheme involves a series of
conditional PMFs for Y , which are associated with the
buffer and channel states. As a result, deriving the trade-
off between the APD constraint and outage probability
becomes intractable, presenting an interesting issue for
future research.

B. Analysis of the Transition Probabilities

1) Analysis for perfect CSI: In the perfect CSI s-
cenario, ΩPCSI is used to represent the set of possible
values for the channel state vector SPCSI defined in
(9). The m-th element in ΩPCSI is denoted by s

(m)
PCSI =[

δ
(m)
1 , δ

(m)
2 , . . . , δ

(m)
2K

]
, where δ

(m)
µ signifies a realiza-

tion of the random variable 1LSRµ∈Q (for µ ∈ [1 : K]) or
1LRµ−KD∈Q (for µ ∈ [K +1 : 2K]) at state s

(m)
PCSI. Given

that δ(m)
µ ∈ {0, 1}, the relationship between the index m

and δ
(m)
µ is defined as m = 1 +

∑2K
µ=1 2

µ−1δ
(m)
µ .

Now, let pPCSI
sel

(
s
(j)
B ,LSRk

)
denote the value of the

transition probability psel

(
s
(j)
B ,LSRk

)
in the perfect CSI

scenario. In the perfect CSI scenario, according to (6)
and (11), it can be inferred that γSRk

≥ γth if Y = k,
where k ∈ [1 : K]. At the buffer state s

(j)
B , the event of

selecting link LSRk
and this link not being in outage is

equivalent to the event Y = k. Applying the law of total

probability at (14), it yields

pPCSI
sel

(
s
(j)
B ,LSRk

)
= P

{
Y = k

∣∣∣SB = s
(j)
B

}
=

NPCSI∑
m=1

P
{
Y = k

∣∣∣SB = s
(j)
B ,SPCSI = s

(m)
PCSI

}
× P

{
SPCSI = s

(m)
PCSI

}
=

NPCSI∑
m=1

pY |SB,SPCSI

(
k
∣∣∣s(j)B , s

(m)
PCSI

)
P
{
SPCSI = s

(m)
PCSI

}
,

(19)

where NPCSI = 22K represents the total number of
elements in SPCSI; s

(m)
PCSI denotes the m-th element in

SPCSI; pY |SB,sPCSI

(
k
∣∣∣s(j)B , s

(m)
PCSI

)
is a conditional PMF

of Y ; P
{
SPCSI = s

(m)
PCSI

}
can be determined by the

following equation

P
{
SPCSI = s

(m)
PCSI

}
= P

{
Q = Q

(
s
(m)
PCSI

)}
=

∏
LAB∈Q

(
s
(m)
PCSI

) (1− qLAB)
∏

LAB /∈Q
(
s
(m)
PCSI

) qLAB ,

(20)

where Q
(
s
(m)
PCSI

)
represents the set of qualified links at

channel state s
(m)
PCSI; the random set Q is defined in (6);

qLAB represents the outage probability of link LAB, which
can be expressed as

qLAB = P{γAB < γth}

= P
{
γtxd

−β
AB |gAB|2 < γth

}
= 1− exp

(
− γth

γtxd
−β
AB

)
.

(21)

Furthermore, let pPCSI
sel

(
s
(j)
B ,LRkD

)
denote the value

of the transition probability psel

(
s
(j)
B ,LRkD

)
in the

perfect CSI scenario. By following similar derivation
steps of pPCSI

sel

(
s
(j)
B ,LSRk

)
, pPCSI

sel

(
s
(j)
B ,LRkD

)
can be

obtained as

pPCSI
sel

(
s
(j)
B ,LRkD

)
=

NPCSI∑
m=1

pY |SB,SPCSI

(
K+k

∣∣∣s(j)B , s
(m)
PCSI

)
P
{
SPCSI=s

(m)
PCSI

}
.

(22)

In addition, let pPCSI
out

(
s
(j)
B

)
denote the value of the

transition probability pout

(
s
(j)
B

)
in the perfect CSI s-

cenario. In the perfect CSI scenario, an outage event
occurs only if L∗ = ∅. In other words, an outage event
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occurs only if all available links are in outage. Therefore,
pPCSI

out

(
s
(j)
B

)
can be expressed as

pPCSI
out

(
s
(j)
B

)
=

∏
LAB∈A

(
s
(j)
B

) qLAB , (23)

where A
(
s
(j)
B

)
represents the set of available links at

buffer state s
(j)
B .

2) Analysis for imperfect CSI: Let pICSI
sel

(
s
(j)
B ,LSRk

)
denote the value of the transition probability
psel

(
s
(j)
B ,LSRk

)
in the imperfect CSI scenario. In

the imperfect CSI scenario, it exists a non-zero
probability that the link LSRk

is in outage even if
Y = k. Conditioned on the imperfect channel state
SICSI, applying the law of total probability at (14) yields

pICSI
sel

(
s
(j)
B ,LSRk

)
= ESICSI

[
P
{
Y = k, γSRk

≥ γth

∣∣∣SB = s
(j)
B ,SICSI

}]
= ESICSI

[
P
{
Y = k

∣∣∣SB = s
(j)
B ,SICSI

}
× P{γSRk

≥ γth |γ̂SRk
}
]

=ESICSI

[
P
{
Y =k

∣∣∣SB=s
(j)
B ,SICSI

}(
1−qSRk|γ̂SRk

)]
,

(24)

where qSRk|γ̂SRk
represents the outage probability of link

LSRk
conditioned on that the estimated SNR is γ̂SRk

,
which can be calculated as

qSRk|γ̂SRk

= P{γSRk
< γth |γ̂SRk

}

=

∫ γth

0

fγSRk |γ̂SRk
(γSRk

|γ̂SRk
) dγSRk

= 1−Q1

(√
2ρ2γ̂SRk

γ̄SRk
(1− ρ2)

,

√
2γth

γ̄SRk
(1− ρ2)

)
,

(25)

where Q1 (·) stands for the first-order Marcum Q-
function.

The closed-form expression for the expectation in (24)
is intractable, since it contains the Marcum Q-function.
Alternatively, we employ the Monte Carlo estimation
method for approximating this complicated computa-
tional problem through random sampling. Therefore,

applying the Monte Carlo estimation at (24) yields

pICSI
sel

(
s
(j)
B ,LSRk

)
≈ 1

NICSI

NICSI∑
n=1

P
{
Y = k

∣∣∣sB = s
(j)
B ,SICSI = s

(n)
ICSI

}
×
(
1− q

SRk

∣∣∣γ̂(n)
SRk

)
=

1

NICSI

NICSI∑
n=1

pY |SB,sICSI

(
k
∣∣∣s(j)B , s

(n)
ICSI

)(
1−q

SRk

∣∣∣γ̂(n)
SRk

)
,

(26)

where NICSI is the total number of samples; s
(n)
ICSI de-

notes the n-th random sample; γ̂
(n)
SRk

denotes the esti-
mated SNR of link LSRk

for the n-th random sample;
pY |SB,sICSI

(
k
∣∣∣s(j)B , s

(n)
ICSI

)
is a conditional PMF of Y .

Furthermore, let pICSI
sel

(
s
(j)
B ,LRkD

)
denote the value

of the transition probability psel

(
s
(j)
B ,LRkD

)
in the

imperfect CSI scenario. By following similar derivation
steps of pICSI

sel

(
s
(j)
B ,LSRk

)
, pICSI

sel

(
s
(j)
B ,LRkD

)
can be

obtained as

pICSI
sel

(
s
(j)
B ,LRkD

)
≈ 1

NICSI

NICSI∑
n=1

pY |SB,sICSI

(
K + k

∣∣∣s(j)B , s
(n)
ICSI

)
×
(
1− q

RkD
∣∣∣γ̂(n)

RkD

)
.

(27)

In addition, let pICSI
out

(
s
(j)
B

)
denote the value of the

transition probability pout

(
s
(j)
B

)
in the imperfect CSI

scenario. Since the sum of the elements of the columns
of the transition matrix is equal to 1, pICSI

out

(
s
(j)
B

)
can be

given by

pICSI
out

(
s
(j)
B

)
= Fj,j = 1−

NB∑
i=1,i ̸=j

Fi,j

= 1−
K∑

k=1

(
pICSI

sel

(
s
(j)
B ,LSRk

)
+ pICSI

sel

(
s
(j)
B ,LRkD

))
.

(28)

Remark 7: In the imperfect CSI scenario, pICSI
out

(
s
(j)
B

)
depends on a finite sample of random channels, and
thus the outage probability and APD are only estimated
values. Furthermore, it can be concluded that the outage
probability is low if the random channel sample has
a high average gain, and conversely, it is high if the
average gain is low.
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C. Problem Formulation

In this paper, we consider a constraint on the APD,
and aim to minimize the outage probability in buffer-
aided relay systems. The optimization problem can be
formulated as

min
G

Pout (G) (29)

s.t. D̄ (G) ≤ D̄c, (29a)

1LSRk /∈A
(
s
(j)
B

)
∩Q

(
s
(i)
∆

)pY |SB,S∆

(
k
∣∣∣s(j)B , s

(i)
∆

)
=0,

(29b)

1LRkD /∈A
(
s
(j)
B

)
∩Q

(
s
(i)
∆

)pY |SB,S∆

(
K+k

∣∣∣s(j)B , s
(i)
∆

)
=0,

(29c)

0 ≤ pY |SB,S∆

(
y
∣∣∣s(j)B , s

(i)
∆

)
≤ 1, ∀y ∈ [0 : 2K] ,

(29d)
2K∑
y=0

pY |SB,S∆

(
y
∣∣∣s(j)B , s

(i)
∆

)
= 1, (29e)

where G is a three-dimensional matrix of size NB×N∆×
(2K + 1), the (j, i, y)-th element of matrix G is denoted
by Gj,i,y , Gj,i,y = pY |SB,S∆

(
y
∣∣∣s(j)B , s

(i)
∆

)
represents

the variable to be optimized, referred to as the decision
matrix G; Pout (G) and D̄ (G) represent the outage
probability and average packet delay, respectively, as
functions of the conditional PMFs of Y ; D̄c denotes the
APD upper bound. (29a) ensures that the APD does not
exceed the set upper bound, (29b) and (29c) ensure that
each PMF of Y satisfies equation (11). This paper mainly
focuses on solving the complex high-dimensional opti-
mization problem in (29), where the conditional PMFs
for Y are associated with the buffer and channel states,
which do not have explicit expressions. Consequently,
deriving the scaling behaviors for the performance of
the proposed RRS scheme is currently a complex and
unresolved task, presenting an interesting area for future
research.

This problem involves numerous conditional PMFs
of the auxiliary stochastic process Y varying with the
buffer and channel states, making it a complex high-
dimensional optimization problem. The key to solving
the optimization problem (29) lies in finding a function
that maps the buffer and channel states to the conditional
PMFs of Y . A simple approach is to use a table
with NB rows and N∆ columns to record the mapping
relationship, and then use gradient descent to update the
elements in the table. However, when the number of
buffer and channel states is large, the table becomes very
large, which makes convergence difficult. Furthermore,
although the number of channel states in the optimization
problem (29) is limited, the number of imperfect channel
states in practice is infinite. Therefore, it is necessary to

use interpolation to determine the conditional PMFs of
Y corresponding to the imperfect channel states that are
not in the table, which can lead to issues related to the
curse of dimensionality and overfitting. DL can learn
the distribution of the channel, use neural networks to
accomplish complex nonlinear mapping, and has strong
generalization capabilities. Therefore, to overcome the
challenges posed by the high-dimensional of this op-
timization problem and the infinite number of system
states in the imperfect CSI scenario, we are motivated to
explore the application of DL-based solutions for solving
the optimization problem described in (29).

V. SOLVING THE OPTIMIZATION PROBLEM IN (29)
A DL approach is adopted in this section to solve the

problem in (29), since it has emerged as a highly promis-
ing tool for tackling high-dimensional problems with a
bulk of time-varying selection probability parameters.
With their parallel computing capabilities and efficient
training algorithms, these networks offer faster conver-
gence rates compared to traditional heuristic algorithms.
One of the key advantages of neural networks lies in their
ability to learn intricate relationships between input and
output data, enabling them to approximate functions even
with limited data points. By leveraging neural networks,
it becomes feasible to overcome the constraints imposed
by numerous variables and imperfect CSI. These net-
works provide a more efficient and accurate approach to
solving the optimization problem in (29).

To solve the optimization problem in (29), a DL-
based algorithm is designed, involving utilizing a neural
network to formulate the conditional PMFs of the auxil-
iary stochastic process Y and designing an effective loss
function for updating the neural network to enhance the
outage performance with APD constraints.
A. Design of the Conditional PMFs for Y

Based on whether the intersection between sets A
and Q is empty, we will discuss the conditional PMFs
of auxiliary stochastic process Y separately for the
following two cases.

1) The case of A ∩ Q = ∅: If A ∩ Q = ∅ in a time
slot, according to (11), it is known that the value of Y
must be 0. Therefore, the conditional PMFs of Y in this
case can be determined by the following equation

pY |SB,S∆
(y |sB, s∆ ) =

{
1, y = 0,

0, y ∈ [1 : 2K] .
(30)

2) The case of A∩Q ≠ ∅: If A∩Q ≠ ∅ in a time slot,
a neural network and an activation function are employed
to determine the conditional PMFs of Y , referred to
as the decision network. The system state consisting of
buffer and channel states is defined as follows

s = [sB, s∆] . (31)
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Algorithm 1: DL-based algorithm for solving the
optimization problem in (29)

1 Generate NB buffer states;
2 Generate NT,∆ channel states;
3 Randomly select N∆ channel states from the

generated channel states without replacement;
4 First, construct NB ×N∆ system states using all

buffer states and the selected N∆ channel
states, then initialize the decision matrix using
(30) and (32);

5 repeat
6 Randomly select MC channel states from

the generated channel states without
replacement;

7 First, construct NB ×MC system states
using all buffer states and the selected MC
channel states, then update the decision
matrix using (30) and (32);

8 if CSI is perfect then
9 The transition matrix is computed using

(13), (19), (22) and (23);
10 else
11 The transition matrix is computed using

(13), (26), (27) and (28);
12 end
13 The stationary probability is computed

using (16);
14 The outage probability and APD are

calculated using (17) and (18), respectively;
15 The loss function is determined using (34);
16 Update the decision network based on (34);
17 until the end of learning;

The decision network used in the DL-based algorithm
is a neural network with an input feature size of 3K and
an output feature size of 2K. The output of the decision
network is transformed into the conditional PMFs of Y
using the Softmax activation function. Considering the
constraint of the conditional PMFs of Y as specified in
(11), not all neurons in the decision network output layer
need to be activated.

Therefore, the conditional PMFs of Y in this case can
be determined by the following equation

pY |SB,S∆
(y |sB, s∆ ) =

exp {fDN (s, k;θ)}
ξ

, y = k,LSRk
∈ A ∩Q,

exp {fDN (s,K+k;θ)}
ξ

, y=K+ k,LRkD∈A ∩Q,

0, otherwise,
(32)

where fDN (s, k;θ) and fDN (s,K + k;θ) represent the

values of the k-th and (K + k)-th neurons in the output
layer of the decision network, respectively, when the
input is s; θ denotes the vector of parameters of the
decision network; and ξ is used to ensure that the sum
of probabilities is always equal to 1, which can be
determined as

ξ =
∑

LSRk∈A∩Q

exp (fDN (s, k;θ))+

∑
LRkD∈A∩Q

exp (fDN (s,K + k;θ)).
(33)

B. Training of the Decision Network

(30) and (32) transform the variables of the optimiza-
tion problem in (29) from the decision matrix G to the
parameters of the decision network θ. Therefore, the
parameters of the decision network can be adjusted to
improve the outage performance with APD constraints
of the buffer-aided relaying systems. The DL-based
algorithm is described by Algorithm 1.

1) Generation of the training data: First, generate
NB buffer states according to (8). Then, in the perfect
CSI scenario, generate NT, PCSI channel states according
to (9), where NT, PCSI = NPCSI; in the imperfect CSI
scenario, generate NT, ICSI channel states based on the
channel model and (10), where NT, ICSI > NICSI, ensur-
ing sufficient data for computing transition probabilities
in the imperfect CSI scenario.

2) Initialization of the decision matrix: Before updat-
ing the decision network, it is necessary to initialize the
decision matrix because it is used to compute the transi-
tion matrix, which determines the loss function. First,
for any buffer state, N∆ channel states are extracted
from the generated channel states to compose the system
state used for initializing the decision matrix. Then, the
decision matrix G is initialized according to formulas
(30) and (32).

3) Update of the decision network: We divide the pro-
cess of updating the decision network into the following
sub-steps.
a) Only some of the elements of the decision matrix

need to be updated in each iteration, which helps to
reduce the consumption of computational resources,
and the whole decision matrix can be optimized in
several iterations. First, for each buffer state, MC
(MC ≤ NT,∆) channel states are extracted from the
training data. Then, according to (30) and (32), the
extracted states are used to update the elements of
the corresponding decision matrix.

b) In the perfect CSI scenario, the transition matrix
is computed using (13), (19), (22) and (23). In
the imperfect CSI scenario, the transition matrix is
computed using (13), (26), (27) and (28).

c) The stationary probability is computed using (16).
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d) The outage probability and APD are calculated using
(17) and (18), respectively.

e) APD is optimized if APD does not satisfy the
constraints, and the probability of interruption is
optimized otherwise. Considering that the outage
probability is often a very small value (e.g., 10−4),
a logarithm is taken when optimizing the outage
probability in this paper. Hence, the loss function is
determined as follows

O (θ) =

{
log (Pout (θ)) , if D̄ (θ) ≤ D̄c,

D̄ (θ) , otherwise.
(34)

f) Update the neural network using back propagation
based on the loss function (34). In particular, we
use the Adam algorithm to update the parameters for
better convergence [39], [40].

Remark 8: In the proposed algorithm, we address
both perfect and imperfect CSI scenarios by utilizing an
auxiliary stochastic process to allocate selection proba-
bilities among various links based on wireless channel
conditions and buffer states. The effective loss function
in this algorithm leverages back-propagation to establish
a mapping between the system environment and the
solution. Through iterative training, the deep neural
network captures the distribution of environmental vari-
ations within the system and outputs favourable choices.
This algorithm presents a promising solution for PRS
with high reliability and low latency in future cooperative
networks.

Remark 9: The challenge of optimal link selection
has been addressed in buffer-aided single-relay systems
without delay constraints [25], [41]. However, finding
optimal solutions for buffer-aided link/relay selection
with APD constraints remains a difficult open problem,
even for buffer-aided single-relay systems [25], [26]. The
optimization problem in (29) involves APD constraints
in a buffer-aided multi-relay system, making its optimal
solution difficult to obtain. Consequently, it is chal-
lenging to theoretically prove that the obtained solution
surpasses all deterministic RS schemes. Nevertheless,
empirical evidence from simulation results regarding
existing probabilistic link/relay selection schemes con-
sistently demonstrates their superior performance over
deterministic schemes [25]–[28]. In the next section, we
will present simulation results to validate the effective-
ness of the proposed PRS scheme.

Remark 10: Based on the experimental results and
accumulated experience, we chose a five-layer structure
that achieves a good balance between performance and
efficiency. Additionally, we generated the training data
using a widely used Rayleigh distribution. By taking
advantage of the robust fitting capabilities of neural
networks, our model can be easily adapted to various
practical multipath fading models that utilize different
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Fig. 2: APD and outage probability of the proposed DL-
PRS scheme versus iteration numbers for the perfect CSI
scenario, where γtx = 25 dB.

training data distributions. Furthermore, the simulation
results presented in the following section demonstrate
that the proposed DL-PRS scheme for scenarios with im-
perfect CSI remains advantageous under rapidly varying
channel conditions.

VI. SIMULATION RESULTS

In this section, we present simulation results to com-
pare the proposed DL-PRS scheme and three benchmark
schemes: the threshold-based scheme in [21], the max-
link scheme in [13] and the max-link-based probabilistic
(MLBP) scheme in [27]. The threshold-based scheme u-
tilizes K threshold levels to adjust the outage probability
and APD5. The max-link scheme selects the strongest
available link in each time slot, which does not consider

5It should be noted that finding optimal threshold levels for the
threshold-based scheme suffers a high complexity. In particular, each
threshold level is taken from the set [0 : L− 1], and hence there are a
total of LK different threshold level combinations. In order to obtain
the minimum outage probability with APD constraints, it is necessary
to exhaustively enumerate all possible threshold level combinations.
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delay constraints. In this section, we simply adjust the
buffer size to control the APD of this scheme. The
MLBP scheme combines the concepts of the max-link
and probabilistic schemes, which control the outage and
delay performance by adjusting the selecting probability
of the S2R or R2D links. Since the APD is a type of QoS
requirement addressed in this paper, as illustrated in (29),
this section primarily concentrates on comparing the
outage performance between the proposed scheme and
existing approaches under the APD constraints. We do
not separately compare the APD performance between
the proposed scheme and existing approaches.

Several parameters for the considered buffer-aided
relay system are set as follows: Unless otherwise stated,
the number of relays is K = 5, the buffer size is
L = 3, the path loss exponent is β = 3, and the target
rate is r0 = 1 bits per time slot. Additionally, a two-
dimensional asymmetric network topology is considered,
where all nodes are located on a two-dimensional plane
measured in meters. Specifically, S is located at the
point (0, 0), and D is located at (5, 0). The positions of
the K relays are as follows: (3.51,−1.45), (2.51, 1.88),
(2.90,−2.12), (1.84, 2.30), (3.08,−1.80), (2.36,−2.30)
and (2.02, 1.73).6 Moreover, we set the learning rate to
10−3, the number of sampling updates MC = 64. In the
imperfect CSI scenario, the total number of the channel
states NT,ICSI = 104, and the total number of samples
NICSI in (26) and (27) is 1024. In addition, the decision
network in this paper is a 5-layer perceptron, where the
hidden layer size is 64. Finally, the APD upper bound
D̄c is set to either 4 or 8, unless specified otherwise. The
motivation behind this setting is to consider a relatively
small or large APD bound. Specifically, as can be ob-
served from (18), when K = 5, the APD D̄ → 1+2KL̄
as Pout → 0, indicating that the average queue length L̄
for each buffer approaches 0.3 for D̄c = 4 and 0.7 for
D̄c = 8. This implies that, on average, each relay needs
to be empty during at least 70% of the time slots to meet
the APD requirement of D̄c = 4, while each buffer is
permitted to store one packet on average during 70% of
the time slots for D̄c = 8.

A. Perfect CSI

Fig. 2 shows the APD and outage probability of the
proposed scheme versus the iteration numbers under
different APD upper bounds for the perfect CSI scenario,
where the transmit SNR γtx = 25 dB. In Fig. 2(a), it can
be observed that when the APD upper bound D̄c is 4 and
8, the APD converges to 4 and 8, respectively, indicating
that the proposed DL-PRS scheme can solve the outage
probability optimization problem with APD constraints

6If the number of relays K is less than 7, only the first K relay
points will be used for their respective positions.
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Fig. 3: Outage probability versus transmit SNR for the
perfect CSI scenario.
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Fig. 4: Outage probability of the proposed DL-PRS
scheme versus the APD upper bound D̄c for the perfect
CSI scenario.

in the perfect CSI scenario. Moreover, the APD con-
straint is satisfied with very few iteration numbers, which
is due to the fact that the APD can be reduced by simply
selecting R2D links as much as possible. It is worth that
the APD continues to descend even if it has satisfied the
constraints because Adam is a gradient descent algorithm
using momentum, which will consider the historical
gradient when updating the neural network. In Fig. 2(b),
it can be observed that convergence is achieved around
6000 iterations, with the outage probability converging
to 1.98 × 10−4 and 6.54 × 10−6 when the APD upper
bound is 4 and 8, respectively. Early in the iteration, even
if the APD constraint has been met, there is still huge
room for optimization in the outage probability, which
is due to the buffer not being fully utilized. Later in
the iteration, both the outage probability and APD have
small fluctuations, which is due to the outage probability
and APD being optimized in turn.

Fig. 3 shows the outage probability of the proposed
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Fig. 5: Outage probability of the proposed DL-PRS
scheme versus transmit SNR for the perfect CSI sce-
nario, with D̄c = 8 and different values of K and L.

scheme and the benchmark schemes versus the transmit
SNR under different APD constraints. Please note that
the starting points of the curves in Fig. 3 are not the
same. This is because each scheme may require a differ-
ent minimum SNR to meet the APD constraint. It can
be observed that the analytical results (ana.) and Monte
Carlo simulation results (sim.) of the proposed scheme
match well. It is worth noting that among the three
benchmark schemes, the threshold-based scheme exhibit-
s the best performance. However, the outage probability
of the proposed DL-PRS scheme is significantly lower
than that of the threshold-based scheme, under different
delay constraints. For instance, when the transmit SNR
is set at 25 dB and the APD constraint is defined as
Dc = 4, the outage probabilities of the proposed DL-
PRS and the threshold-based schemes are 2.03 × 10−4

and 1.39× 10−3, respectively.
Fig. 4 illustrates the relationship between the outage

probability and the delay constraint Dc for the perfect
CSI case, with transmit SNR values of 23, 25, and 27 dB.
As the delay constraint increases, the outage probability
of the proposed DL-PRS scheme decreases. Additionally,
it is worth noting that once the delay constraint surpasses
approximately 12, the outage probability of the proposed
DL-PRS scheme tends to converge to the selection
bound. This implies that for larger delay constraints,
the proposed scheme performs very close to the optimal
selection bound, which assumes ideal conditions where
all buffer queues are always neither full nor empty.

Fig. 5 illustrates the outage performance of the pro-
posed DL-PRS scheme relative to the transmit SNR, with
D̄c = 8 and different values of K and L. Observing this
figure, it is evident that the outage probability decreases
with both K and L. However, it should be noted that
the outage performance with K = 3 and L = 6 only
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Fig. 6: APD and outage probability of the proposed DL-
PRS scheme versus iteration numbers for the imperfect
CSI scenario, where D̄c = 4 and γtx = 28 dB.

slightly outperforms that with K = 3 and L = 3. On the
other hand, increasing K can notably reduce the outage
probability. For instance, substantial performance gains
can be observed between the curve with K = 5 and
L = 3 and the one with K = 6 and L = 2.

B. Imperfect CSI

Fig. 6 shows the APD and outage probability of the
proposed DL-PRS scheme versus the training iterations
under different correlation coefficients for the imperfect
CSI scenario, where the APD upper bound D̄c = 4
and the transmit SNR γtx = 28 dB. In Fig. 6(a), a
conclusion similar to that in Fig. 2(a) can be observed.
The difference is that the APD is significantly smaller
than the APD upper bound, which is due to the fact that
a stricter APD constraint to ensure that the APD satisfies
the constraint even if there is an error in the transmission
probability due to the Monte Carlo estimation used in
(30) and (32). In addition, we observed fluctuations in
the convergence plot of imperfect CSI. This is because
different random channel samples are used each time
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Fig. 7: Outage probability versus transmit SNR for the
imperfect CSI scenario, where D̄c = 4.
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Fig. 8: Outage probability of the proposed DL-PRS
scheme versus correlation coefficient ρ.

to calculate the outage probability. If the quality of the
random channel samples is higher, the outage probability
will be lower. Conversely, if the quality of the random
channel samples is lower, the outage probability will be
higher. Therefore, to ensure the accuracy of numerical
results for imperfect CSI, we will use Monte Carlo
simulation in the upcoming experiments.

Fig. 7 illustrates the outage performance of the pro-
posed DL-PRS scheme and three benchmark schemes
in the imperfect CSI case, where D̄c = 4 and different
correlation coefficients are considered. It is worth noting
that the threshold-based scheme performs poorly; the
max-link scheme outperforms the threshold-based and
MBLP schemes. In the scenario of a low correlation
coefficient of ρ = 0.1, the outage probability of the
proposed DL-PRS scheme is similar to that of the other
schemes. This can be attributed to the large variance of
the channel estimation error, which hampers effective
decision-making. However, in the scenario of a high
correlation coefficient of ρ = 0.99, the proposed DL-
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Fig. 9: Outage probability versus K and L for the
imperfect CSI scenario, where ρ = 0.99 and D̄c = 8.

PRS scheme obviously exhibits significant performance
improvement compared to the existing schemes. For
instance, when the transmit SNR is 25 dB, the outage
probabilities of the proposed DL-PRS scheme and max-
link scheme are 1.49 × 10−4 and 1.72 × 10−3, respec-
tively.

Fig. 8 illustrates the relationship between the outage
probability of the proposed DL-PRS scheme and the
correlation coefficient ρ for the imperfect CSI case,
considering different transmit SNRs. From this figure,
it can be observed that the outage probability generally
decreases as the correlation coefficient ρ increases. When
ρ is lower than 0.5, all curves exhibit a slow change as
ρ increases. However, when ρ approaches 1, the outage
probability decreases rapidly with increasing ρ. There-
fore, the relationship between the outage probability and
the correlation coefficient ρ is complex. When ρ is small,
large changes in ρ generally only result in slight changes
in the outage probability. However, when ρ is relatively
large, even slight changes in ρ can lead to significant
changes in the outage probability. This highlights the
sensitivity of the system’s performance to the correlation



15

2 3 4 5 6 7
Buffer Size (L)

2

2.5

3

3.5

4

4.5

5

5.5

6

A
PD

K = 3
K = 4

(a) APD vs L

3 4 5 6 7
Relay Number (K)

2

2.5

3

3.5

4

4.5

5

5.5

6

A
PD

L = 2
L = 3

(b) APD vs K

Fig. 10: APD versus K or L under the outage constraint,
where γtx = 27 dB, ρ = 0.99 and the outage constraint
P c

out = 10−3.

coefficient in such cases.
Fig. 9 illustrates the outage performance of the pro-

posed DL-PRS scheme in the presence of imperfect CSI,
with γtx = 25 or 27 dB, D̄c = 8, and ρ = 0.99.
Fig. 9(a) specifically depicts the outage probability as
a function of the buffer size L for K = 3. From this
figure, it is clear that the outage probability experiences
a slight decrease when L exceeds 3. This indicates that
simply increasing the buffer size beyond 3 does not lead
to significant reductions in outage probability, an obser-
vation that has been highlighted in several prior works
[19], [21], [28]. Conversely, Fig. 9(b) demonstrates a
significant decrease in outage probability as the number
of relays K increases from 2 to 7, for L = 2. Note that
simulating scenarios with larger values of K presents
challenges, as the total number of buffer states grows
exponentially with K. From Fig. 9, the optimal value
for L is determined to be 3, while the appropriate value
for K depends on the specific outage requirement.

Fig. 10 illustrates the performance of the proposed
DL-PRS scheme in terms of APD as a function of the

parameters K and L under an outage constraint, where
γtx = 27 dB, ρ = 0.99 and the constraint on the outage
probability is P c

out = 10−3. To generate this figure, the
target function in (29) is substituted with D̄ (G) and
the corresponding constraint on the APD outlined in
(29a) is modified to Pout (G) ≤ P c

out. Subsequently, the
DL-based algorithm detailed in Section V was slightly
adjusted to effectively address this APD minimization
problem. In Fig. 10(a), the APD is illustrated versus L,
for K = 3 or 4. Similar to the trends observed in outage
performance shown in Fig. 9, this figure indicates that
the APD remains nearly constant as L increases beyond
3. Meanwhile, Fig. 10(b) shows the APD as a function
of K, for L = 2 or 3. It is notable that the APD similarly
stabilizes as K surpasses 5. Thus, based on the parameter
configurations in Fig. 10, suitable values for L and K
are determined to be 3 and 5, respectively.

VII. CONCLUSIONS

This paper presents a general framework for DL-PRS
in asymmetric buffer-aided cooperative relaying systems.
The framework extends and generalizes numerous exist-
ing buffer-aided RS schemes. Both perfect and imperfect
CSI cases are considered to make selection decisions.
An auxiliary stochastic process is employed to assign
selection probabilities to different links based on the
wireless channel and buffer states. We formulated outage
optimization problems with APD constraints, including
a large number of time-varying selection probability pa-
rameters. Then, we used a DL approach which involves
a neural network to design the conditional PMFs for the
auxiliary stochastic process and to develop an effective
loss function to update the neural network, aiming to
improve the outage performance under APD constraints.
Simulation results demonstrated that the proposed DL-
PRS scheme significantly outperforms the benchmark
schemes, particularly in the imperfect CSI scenario.
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