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Electrical Impedance Tomography Based
Finger-Shaped Soft Artificial Skin

Yungi Huang!, and Thomas George Thuruthel!

Abstract—Obtaining dense contact information for feedback
control is vital for robotic manipulation. However, existing tactile
sensing technologies have a large footprint, making seamless
integration with current robotic devices difficult. This paper
presents a novel multi-layer Electrical Impedance Tomography
(EIT) sensor architecture designed to provide distributed, high-
density tactile sensing with a small form factor. Using our
multilayer structure, we address a common issue in other EIT-
based tactile skins that prevents electrodes from being placed
distally from the sensing surface. OQur innovative multi-layer
design enables the development of complex-shaped soft sensing
skins without any electronic components on the sensing sur-
face, achieving very high accuracy. To demonstrate practical
applications, we fabricated a finger-shaped three-dimensional
(3D) skin and conducted experiments to collect real-world data.
We developed a perception model for the tactile sensor by
employing data-driven machine learning methods to predict press
localization and force with high accuracy based on EIT signals.
Our work presents a significant step towards developing whole
body full soft tactile sensors with a small form factor.

Index Terms—Soft Sensors and Actuators, Force and Tactile
Sensing.

I. INTRODUCTION

N recent years, the deployment of robots has expanded sig-

nificantly beyond traditional industrial applications. Robots
are now increasingly utilized in diverse interactive tasks
involving humans, real-world objects and complex environ-
ments. The sense of touch is going to play a central role in
this advancement [1].

Tactile sensing, including the detection of pressure, strain,
and slip, is a crucial perception mode for robots to perceive
and navigate complex, unstructured environments [2]. Much
like how human skin perceives external physical stimuli,
flexible and stretchable electronic skins (or tactile skins) offer
promising solutions to robotic sensing challenges [3], [4], [5].

Typically, tactile skins are developed using piezoresistive
materials arranged in a grid structure [6], [7], [8], [9]. Sim-
ilarly, discrete tactile units (taxels) can be created and dis-
tributed using capacitance-based sensors [10], [11] or pressure-
based sensors [12], [13]. However, technologies based on
individual taxel units present several challenges. First, due
to their grid-like structure, wiring becomes complicated, with
the number of electrodes scaling linearly with the number of
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Fig. 1. Design and working principle of the multi-layer EIT-based finger-
shaped soft artificial skin. The three-layer structure with 16 electrodes
mounted at the base allows a convex shape of the skin. In the single-layer
design (left), conductivity is uniform throughout the structure, resulting in poor
pressure response. The multi-layer design (right) features varying conductivity
with a low-conductivity middle layer, making the overall structure more
sensitive to external pressure stimuli and improving tactile sensing capabilities.

taxels. This also reduces their stretchability, conformability,
and robustness. Second, their spatial resolution is limited to
the number of taxels, making scaling to large areas difficult.

Vision-based tactile skins are a promising route to address
these issues [14], [15], but they still require a housing unit for
the cameras near the skin. This increases their form factor
and reduces their applicability. These challenges have led
researchers to explore alternative approaches, among which
Electrical Impedance Tomography (EIT) has gained significant
attention [16], [17], [18].

EIT is a non-invasive medical imaging technique that pro-
vides continuous images of internal tissue conductivity by
applying small currents and measuring voltages at the body
surface [19]. It is well-suited for electronic skin and tactile
sensing applications due to its ability to detect conductivity
changes caused by physical interactions over large, flexible ar-
eas using only boundary and sparse electrodes [20], [21]. EIT-
based tactile sensors offer several advantages including dura-
bility, large-area scalability, ease of fabrication, and a small
form factor [17], [18]. The potential of EIT-based sensors have
been demonstrated in various applications. These include soft
robotic skins using ionically conductive hydrogels [18], and
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large-area flexible tactile sensors made from porous elastic
polymers filled with ionic liquids [22] that can achieve tactile
information reconstruction and ultrathin wearable electronics
fabricated with hybrid materials and carbon nanotubes for
human-machine interface [16]. Despite these advancements,
ElIT-based sensors still face challenges when implemented in
complex morphologies, particularly in achieving high spatial
resolution and optimal electrode placement in non-planar
shapes [23].

To address these limitations, we present a novel multi-layer
design for EIT-based artificial skin [23]. This design achieves
enhanced sensitivity across three-dimensional (3D) geometries
through its varying conductivity layers, generating distinct
and robust signals throughout the sensing area that enable
effective machine learning analysis. Based on this innovative
approach, we have developed a finger-shaped artificial skin
that is both soft and stretchable. The 3D skin has no electrodes
on the sensing surface, offering high spatial resolution and the
capability to detect contact locations and forces. Our extensive
testing demonstrates the skin’s stability and high sensitivity.

II. THEORY

In the EIT-based tactile sensing skin system, the EIT tech-
nique is applied to a thin, soft, and stretchable conductive layer
whose internal resistance responds to its physical deformation
[24]. In the tactile skin system, a known current is injected
through a pair of electrodes (source and sink), while volt-
ages (electric potentials) are measured between non-current
electrode pairs. This injected current generates an electrical
potential distribution u# across the conductive body . The
relationship between the potential distribution # and the body’s
internal impedance distribution ¢ is governed by the equation:

V. (0-Vu)=0 in Q (1)

When external forces are applied to the skin, its internal
impedance distribution o changes as a function of contact
information: position (x,y) and force magnitude F. The volt-
age measurements # from the remaining electrodes can be
used to reconstruct this impedance distribution by solving the
nonlinear inverse problem. A complete measurement cycle
requires using all electrode combinations for current injec-
tion and voltage measurement. There are two main injection
modes: adjacent and opposite [25]. In the adjacent mode,
two injection electrodes are next to each other, while in the
opposite mode, the two injection electrodes are separated
by half the electrodes. The choice affects the measurement
count per driving pair. For n electrodes skin, there are (n—3)
measurements for the adjacent mode and (n—4) measurements
for the opposite mode. This work employed adjacent current
injections and adjacent measurements. By using the learning-
based methods, this inverse problem can be formulated as a
mapping function between the electrical measurements and
contact information:

u=f(o(x,y,F)) )

where f(o()) represents the nonlinear relationship that can be
learned through data-driven methods.
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Fig. 2. Fabrication process of the finger-shaped soft artificial skin. (a) Cutting
the conductive rubber sheet into the desired shape with eight elongated
electrodes. (b) Placing the prepared inner conductive layer on the 3D-printed
stand. (c) Preparing the hydrogel mixture in a 55°C water bath. (d) Pouring
the hydrogel into the 3D-printed mold and carefully inserting the stand with
the inner layer, ensuring even distribution of hydrogel on the surface. (e) After
curing, removing the mold and applying the outer conductive layer over the
hydrogel surface to complete the three-layer structure.

The sensitivity of the skin at different locations is deter-
mined by changes in electrical potential distribution upon
touch. In single-layer EIT-based skins, the region of sensitivity
diminishes as the distance from the injection and measurement
electrodes increases, limiting their applicability to simple
skin shapes with distributed electrodes. Scaling EIT-based
technologies for complex skin surfaces with distal electrodes is
feasible using multilayer architectures [23]. The key concept
is to induce significant impedance changes upon contact by
layering a high-impedance layer between two low-impedance,
electrode-carrying layers (Fig. 1). Since the overall impedance
of the multi-layer structure is high, determined primarily by
the thin middle layer, any change in this layer (caused by
touch) can significantly alter the current pathway. This enables
the creation of complex-shaped, EIT-based tactile skins with
distal electrodes.

III. FABRICATION AND EXPERIMENT
A. Skin Design and Fabrication

The fabrication of the finger-shaped soft artificial skin
involves a multistep process, as illustrated in Fig. 2. This skin
design consists of three primary layers: two conductive rubber
sheets and one hydrogel layer sandwiched between them. The
top and bottom layers are made of commercially available con-
ductive rubber sheets (The Pi Hut, Conductive Rubber Sheet /
Stretch Sensor). These sheets have high electrical conductivity,
with a bulk sheet resistivity of approximately 70 ohm-mm in
their relaxed state. The middle hydrogel layer is crafted by
combining gelatin (sourced from pork), glycerol, and water in
a precise ratio of 1:1.5:2.5 by weight, following the method
described by Hardman et al. [26]. This mixture is heated in a
water bath maintained at 55 °C. The assembly process utilizes
custom 3D-printed polylactic acid (PLA) molds to place and
shape the skin. The inner conductive layer is placed on a
support, followed by pouring and curing the hydrogel middle
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Fig. 3. (a) Experimental setup showing the finger-shaped soft skin pressed by a robotic arm equipped with force sensors. Key components include the EIT
board and Arduino Mega 2560 for data collection. The sensor uses a cylindrical coordinate system (6,4) (b) Raw EIT signals across 208 channels for presses
on two different points (A and B) with varying forces. (c) Colored map showing the normalized difference from the baseline for different press localizations
and forces. It corresponds to the raw signals shown in (b), with each row representing a different press condition. (d) Temporal visualization of EIT signals
from selected channels during repeatable presses on point A, where 'P’ indicates press and 'R’ indicates release.

layer in the mold and finally applying the outer conductive
layer. The finalized skin remains attached to the support for
subsequent experimental tests. After assembly, the skin was
wrapped with plastic tape to ensure consistent contact between
the outer conductive layer and the middle hydrogel layer, as
the hydrogel’s adhesive properties degrade after thousands of
press cycles.

The artificial skin’s electrode configuration is designed to
optimize sensing capabilities across its entire surface. Each
conductive layer features 8 long strips that serve as electrodes,
resulting in a total of 16 electrodes for the entire skin structure.
Furthermore, the electrodes on the upper and lower conductive
layers are positioned in an interlaced pattern. This arrangement
guarantees that the whole skin is effectively *wrapped’ by
the conductive layers, creating a continuous sensing field
throughout the structure. By placing all the electrodes at the
base of the artificial skin, this design allows for the creation
of more complex and diverse skin shapes. The base-mounted
electrodes leave the rest of the skin’s surface free from rigid
components, it can bend, stretch, and compress freely. This
conformability is essential for applications where the sensor
needs to wrap around robots’ joints or cover irregular surfaces.

B. Hardware Setup

The experimental hardware setup is illustrated in Fig. 3
(a). The fabricated finger-shaped artificial skin, secured in its
custom 3D-printed support, is fixed to a flat table. A URS
robotic arm is used to apply precise pressure at various points
on the skin’s surface. Attached to the end-effector are force
sensors (Sparkfun TAL220 Series Parallel Beam Load Cell) to
measure the applied force accurately. Besides, an M4 screw is

affixed to the bottom of the force sensor as the press probe,
providing a 4 mm diameter pressing surface.

The electrodes of the artificial skin are connected to a
specialized EIT board [27], which is capable of injecting
alternating current (AC) into the skin and measuring the volt-
ages between electrode pairs. The board provides adjustable
AC current injection using a signal generator (AD5930) with
output voltages ranging from —5 V to 5 V at a frequency of
20 KHz. An ADC converter performs voltage measurements
at a 20 MHz sampling rate. We oversampled the impedance
measurements to reduce noise. Each frame was obtained at
2.2 Hz

The electrodes on the upper conductive layer are connected
to odd-numbered pins on the EIT board, while those on
the lower layer are connected to even-numbered pins. This
alternating connection ensures that adjacent voltage measuring
pairs on the EIT board always span the entire three-layer struc-
ture of the artificial skin. In this way, each measurement can
capture the conductivity changes across all layers, including
the middle hydrogel layer. This design significantly enhances
the sensor’s sensitivity to impedance variations throughout the
entire structure. The force sensors are connected to an Arduino
Mega 2560 microcontroller via the amplifier (SparkFun Load
Cell Amplifier - HX711). This setup allows for real-time force
data collection alongside the EIT measurements.

C. Raw Data Visualization

The working principle of the EIT-based soft artificial skin
is illustrated in Fig. 1. This skin has a configuration of 16
electrodes and its data collection occurring in discrete frames.
For each frame, a driving current is applied to a specific
pair of electrodes, highlighted in orange. Simultaneously, the
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board measures potential differences across all other adjacent
remaining electrode pairs, denoted in red. There are two
methods for selecting the driving electrodes: adjacent and
opposite. In the adjacent mode, the driving electrodes are
next to each other, while in the opposite mode, the driving
electrodes are separated by 7 intervening electrodes in this
configuration. The choice of mode affects the number of
measurements taken per driving pair: 13 for adjacent mode
and 12 for opposite mode. In this experiment, we employed
the adjacent mode, which results in a total of 16 x 13 =208
valid measurements in each collection frame.

Fig. 3(b) shows the raw EIT signals for the soft artificial
skin at rest (baseline) and during presses at two different
points (A and B) with varying forces. The data reveals unique
signal patterns for different press localizations, demonstrating
the skin’s ability to differentiate spatial stimuli. Moreover,
for each localization, the signal deviation from the baseline
correlates with the applied force magnitude, indicating its
force sensitivity. The signal difference for these presses is
visualized as a colored map in Fig. 3(c). The contrasting
patterns for points A and B further illustrate the skin’s spatial
discrimination capability, while the increasing color intensity
with higher force applications (e.g., from Al to A3) confirms
the skin’s ability to discern force magnitudes. To evaluate
the repeatability of the skin’s response, Fig. 3(d) shows the
temporal change of signals from selected channels during
multiple press-release cycles at point A. Channels 20, 82,
and 158 exhibit clear and significant responses to the applied
pressure while channels 153 and 154 show minimal reactivity
to this localization press.

This analysis demonstrates three key properties of the
ElT-based soft artificial skin: spatial sensitivity, which can
generate unique signal patterns for different press localiza-
tions; force sensitivity, the signal deviation from the baseline
correlates strongly with the applied force; and repeatability,
which exhibits consistent signal patterns for repeated stimuli
at the same localization. Furthermore, the clear and consistent
relationship between EIT signals and both localization and
force inputs provides a solid foundation for advanced data
analysis techniques. This proves the feasibility of the subse-
quent work: collecting a comprehensive dataset for training a
neural network to predict touch location and force based on
the raw EIT signals.

D. Data Collection and Neural Network Training

The data collection process involves EIT signal acquisition,
robotic arm movement, press force measurement and their
synchronization. The objective of the process is to gather
comprehensive data on the artificial skin’s response to various
pressure stimuli on its surface. Firstly, a dedicated thread
continuously reads EIT signals from the sensor at a frequency
of 2.2 Hz through the USB connection of the EIT board and
the PC. Each reading is timestamped for later alignment. The
robotic arm control thread executes a four-state movement
cycle for each target data point.

o Move: A cylindrical coordinate of the target point (6,h)

on the sensor’s surface is generated. The arm moves the
probe to a plane just the same height as this point.
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Fig. 4. Data Collection, processing, and model training pipeline for the
finger-shaped soft artificial skin. The left side illustrates the multithreaded
data collection. The right side shows the data processing, aligning, and
transforming to a structured format for neural network training.

Press Force F, M M H
Robot State S, A\ /A\ cos@ sin®
Target Point (6, h), . . . h F

5.0Hz /

bp: before press  ap: after press

o Press: The end-effector moves horizontally, using the
probe to press on the target point. The press distance d
is randomized within a predetermined range to vary the
applied force across trials.

o Hold: The probe maintains its position for 3 seconds,
ensuring stable pressure is applied and allowing the
sensor to reach a steady-state response.

« Release: The probe is lifted from the sensor surface.

This cycle is then repeated with the opposite probe and sensor,
providing complete data collection across the entire sensor
surface. During the arm movement cycle, force readings from
the sensors (F,) are recorded at a frequency of 5 Hz. These
readings are timestamped (t) and paired with the current
robotic arm state S, (move, press, hold, or release) and the
target point coordinate (6,h),.

After collection, the data undergoes several processing steps
to be prepared for model training. To align the EIT signal
with the robot movement and force readings, the force data
is first resampled to 20 Hz using linear interpolation. This
matches the frequency of the robotic arm control thread. The
EIT readings, originally collected at 2.2 Hz, are then aligned
with their nearest corresponding force measurements, target
localizations, and robotic arm states based on timestamps. The
angular component 0 of the localization element is converted
to its sine and cosine to avoid discontinuities and ambiguities
for the model training process. For each EIT data collection
cycle, the EIT board yields 256 sets of voltage measurement
data, while some measurements from electrodes serving as
current sources are set to 0. The final EIT signal frame
comprises 208 non-zero signal sets, denoted as [cy,cy, -..Cx]-
The final data frame structure, as illustrated in Fig. 4, includes
the timestamp, robot state, aligned force, transformed target
point localization, and the non-zero EIT signals.

For the neural network training, the data is organized into
input-output pairs. The input consists of 416 features, repre-
senting the EIT signals before and during the press state. The
output corresponds to the transformed target point localization
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Fig. 5. Analysis of our perception model. (a) Scatter plots comparing predicted vs. ground truth values for localization (angle and height in cylindrical
coordinates) and force, with their Mean Absolute Error (MAE) and R? values. R? ranges from O to 1, where 1 indicates a perfect fit. (b),(c) Colored maps
representing the unrolled surface of the cylindrical skin, showing the spatial distribution of distance and force prediction errors, respectively. (d) 3D visualization
of predicted (red) and ground truth (blue) points along a spiral trajectory on the skin surface. (e) Top view of the force prediction errors along the spiral
trajectory, with arrows indicating the ground truth (blue) and predicted (red) forces’ magnitude.
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and force. The neural network architecture comprises an input
layer of 416 nodes, followed by three hidden layers with 300,
50, and 20 nodes respectively, and a 4-node regression output
layer. The complete dataset consists of 1,900 presses totaling
22,858 data frames, which are split into training, validation,
and test (80%, 10%, 10%) sets. Training (using stochastic
gradient descent with momentum) begins with a learning rate
of 0.005 and a batch size of 1,024.

IV. RESULTS
A. Localization and Force Prediction

We evaluated the performance of the trained neural network
for predicting press localization and applied force magnitude.
Fig. 5(a) shows the comparison between predicted and ground
truth values for angle, height, and force. The results demon-
strate effective prediction performance, particularly in localiz-
ing press points. For localization, the high R? values for angle
and height indicate a strong correlation between the predicted
and actual values. The Mean Absolute Errors (MAE) further
confirm the high accuracy. To put the localization accuracy
into perspective, we calculated the average distance error on
the unrolled surface of the cylindrical skin is 2.74 mm. This
level of precision is particularly impressive when considering
that the pressing probe used in our experiments is an M4 screw
with a 4 mm diameter.

While force prediction accuracy is reasonably with an
average error of 0.77 N over a 10 N force range, the R? values
suggest that estimating applied force is more challenging than
determining press localization for the trained model. One
reason for this could be the complex nonlinear behaviour
of our sensing material, which would require more dynamic
data to be more informative. Hence, a higher sampling rate
is imperative for better force estimation. The comprehensive
visualizations in Fig. 5(d-e) provide additional insights into
the localization and force prediction along a spiral trajectory
on the sensor surface. These visualizations further validate the
trained neural network’s capability to accurately predict press
points and estimate forces in various locations.

B. Error Distribution Map Analysis

Fig. 5(b-c) presents unrolled surface maps of the cylindrical
skin, the interpolated colored maps illustrate the spatial distri-
bution of distance and force prediction errors. We employed
MATLAB'’s ’natural’ scatter interpolation method to get these
continuous error distribution maps. This natural-neighbor in-
terpolation method produces a C1 continuous surface except
at the sample points, offering a smooth representation of error
variation across the surface.

The distance error map shows an intriguing pattern of eight
linear regions with high prediction accuracy. These regions
correspond precisely to the locations of the eight long strip
electrodes on the outer conductive layer of the skin. This
observation reveals that the areas directly above the electrodes
probably have higher sensitivity to conductivity changes. It
also suggests that increasing the number and density of elec-
trodes could potentially enhance overall prediction accuracy
across the entire skin surface.
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Fig. 6. Comparison of force prediction errors using sensor-specific training.
The top two are individual error distribution maps for each sensor. The
bottom combined force error distribution map showing improved accuracy
and uniformity compared to the single-model approach

The force error distribution map shows a non-uniform pat-
tern across the sensor surface, while the right half has higher
prediction accuracy. This uneven distribution can be attributed
to factors in both the fabrication process and the experimental
setup. During the skin’s fabrication, the stand is inserted into
a mold filled with hydrogel, which then cures to form the
middle layer. However, the stand is not always positioned
perfectly at the center of the mold, resulting in an uneven
distribution of the hydrogel middle layer around the surface.
This non-uniform thickness of the middle layer could lead
to variations in force sensitivity across the skin. Additionally,
the press data collections are done by two force sensors, each
covering half of the skin’s surface. The skin stand is not
perfectly centered between the two force sensors, potentially
leading to systematic differences in force measurements across
the surface.

C. Improved Force Prediction by Sensor-Specific Training

To address the non-uniform force prediction accuracy ob-
served in the initial analysis and to minimize the influence of
fabrication inconsistencies and experimental setup variations,
we implemented a sensor-specific training approach. Instead of
training a single model with combined data, we separated the
dataset based on the two force sensors (SparkFun TAL220)
used in data collection and trained individual models for
each sensor’s measurements. The results of this approach are
illustrated in Fig. 6.
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As shown in Fig. 6, Sensor 2 demonstrates better prediction
accuracy compared to Sensor 1. This difference reveals that the
area covered by Sensor 2 likely has a more uniform hydrogel
layer distribution. Our final observation of the skin after the
experiment confirmed this hypothesis, showing that this side
indeed has a thicker and even hydrogel layer. Comparing
the combined distribution map with Fig. 5(c), which was
based on a single model trained with data from both sensors,
this sensor-specific training shows a marked improvement in
overall accuracy with MAE = 0.65 N (14.7% improvement).
These results highlight the importance of considering indi-
vidual sensor characteristics and local structural variations in
the training process. By accounting for the unique properties
and positioning of each force sensor, as well as potential
inconsistencies in the skin’s fabrication, we are able to achieve
more accurate and consistent force predictions across the entire
surface of the artificial skin.

V. CONCLUSION

In this paper, we presented a novel multi-layer EIT-based
soft sensor architecture designed for distributed high-density
tactile sensing of complex shapes. Our 3D finger-shaped soft
artificial skin with innovative design demonstrates remarkable
stability and robustness over thousands of press cycles, with
the perception model achieving high accuracy in tactile in-
formation prediction. The novel multi-layer design plays a
crucial role in enhancing its sensitivity to external pressure.
By incorporating multiple layers with varying conductivity
(hydrogel and conductive rubber), the skin structure responds
more distinctly to applied forces, resulting in more complex
and informative EIT signals. Using the machine learning
method, the 3D tactile information can be extracted from the
EIT signals with much higher accuracy than existing EIT-
based tactile sensors, achieving 2.74 mm average localization
error and 0.77 N force prediction error. While the current
results were achieved using a 4 mm diameter M4 screw as
a probe, performance could be further improved via enhanced
data collection protocols, larger datasets, and refined neural
network architectures. Besides, the base-mounted electrode
placement enables a continuous and fully soft cylindrical sens-
ing area. This sensing technology has potential applications
in robotic manipulation and human-robot interaction where
precise tactile feedback is crucial. The flexible design allows
it to cover complex geometries such as robotic hands, joints
and limbs, to provide stable and accurate tactile sensing and
perception for delicate manipulation and safe interactions.

Our work faces several limitations. The hydrogel middle
layer’s susceptibility to water loss degrades the sensor’s press
response sensitivity after three months of use. Future work
will explore more stable layer materials and improved sealing
methods, such as additional silicone encapsulation, to extend
the sensor’s lifespan. The static perception model also presents
limitations. Each prediction cycle (press-response-collection-
prediction) takes approximately 3 seconds, limiting dynamic
performance in real-time tactile sensing. The insights gained
from distance and force error distribution maps point towards
specific strategies for enhancing the sensor’s performance in

future iterations. Refining the fabrication process to ensure
more uniform hydrogel distribution could enhance consistency
in force sensitivity. Additionally, exploring increased electrode
densities and alternative electrode configurations could poten-
tially lead to even higher accuracy in both localization and
force prediction.
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