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Abstract

Context: The growing complexity of software systems continually correlates with

increasing vulnerabilities, necessitating effective mitigation strategies, such as vul-

nerability prediction. This Artificial Intelligence (AI)-driven approach aims to im-

prove Secure Software Development Life Cycle (SSDLC) practices by proactively

identifying potential security flaws. While various prediction approaches have been

proposed, opportunities for further research remain, particularly in leveraging Infor-

mation Retrieval (IR)’s pattern-matching capabilities to enhance prediction models.

Objective: This thesis advances secure software engineering methodologies by in-

troducing IR-driven feature engineering methods for predicting software vulner-

abilities. We develop granular method-level vulnerability prediction models that

leverage novel IR-driven security-relevant metrics and evaluate their predictive per-

formances.

Methodology: We developed two varieties of sixteen IR-driven security-relevant

features using token-based and Abstract Syntax Tree (AST)-based source code rep-

resentations. Then, we utilised these features to develop models with various ma-

chine learning classifiers using Python and evaluated them on Java open-source soft-

ware systems, starting with a Within-Project (release-by-release dataset). Finally,

we conducted a stress test in a Mixed-Project (multi-software systems dataset) set-

ting to assess the generalisability of our models across software systems.

Results: Our Within-Project token-based IR-driven approach reached a post-

hyperparameter tuning precision of 0.73, a recall of 0.60, and an F1 score of 0.66

using a Random Forest classifier. The Within-Project AST-based approach attained
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a slightly better F1 score performance, yielding a post-hyperparameter tuning pre-

cision of 0.72, a recall of 0.62, and an F1 score of 0.67, also using Random Forest.

Conclusion: Our research indicates that IR-driven feature engineering techniques

significantly enhance prediction performance, demonstrating the effectiveness of

our approach. However, the Mixed-Project analysis indicated that data-related chal-

lenges in vulnerability prediction persist, especially regarding data heterogeneity

across software systems. Thus, system-specific vulnerability prediction models

leveraging a release-by-release dataset and knowledge of previous system-specific

vulnerabilities represent the most promising approach for practical vulnerability

prediction in real-world software systems.



Impact Statement

The research presented in this thesis has the potential to make significant contribu-

tions both within academia and beyond. In the academic sphere, this work advances

the software engineering field, particularly in software vulnerability prediction. By

integrating information retrieval techniques into vulnerability prediction models,

the research introduces a novel approach that could reshape how vulnerabilities are

detected in software systems. This could lead to more accurate and scalable predic-

tion models, which are crucial given the increasing complexity and size of modern

software systems.

Beyond academia, this research could profoundly impact on several industries,

particularly those that rely heavily on software systems. Developing more robust

software vulnerability prediction models could enhance security measures, reduc-

ing the likelihood of successful cyberattacks. This, in turn, could help maintain

public trust in digital systems by preventing reputational damage by protecting sen-

sitive data. Such advancements could have far-reaching implications for industries

such as finance, healthcare, and critical infrastructure, where software security is

paramount. They could help safeguard against more severe potential catastrophic

consequences, such as financial losses, injury, or loss of life in critical systems.

Moreover, the insights gained from this research could inform the development

of new tools and practices for software developers. By incorporating information

retrieval-driven techniques, software professionals could be better equipped to iden-

tify and mitigate vulnerabilities during the software development lifecycle. Such

development could help reduce the Time To Market (TTM) for software products
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while improving their security, benefiting end-users by providing safer and more

reliable digital environments.

The research could also influence public policy, particularly in cybersecurity-

related areas. As governments and organisations worldwide seek to strengthen their

defences against cyber threats, the methodologies and findings presented in this

thesis could serve as a foundation for new policies and regulations to improve soft-

ware security standards. This could have a wide-reaching impact, not only on the

organisational level but also on national and international cybersecurity strategies.

In summary, this thesis contributes to both the theoretical advancement of soft-

ware vulnerability prediction and its practical application in the real world. The

potential benefits of this work are far-reaching, with implications for academic re-

search, industry practices, and public policy. This research has the potential to im-

pact how vulnerabilities are managed in the digital age by addressing the pressing

issue of software security through innovative methods.
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Chapter 1

Introduction

This chapter outlines the research context of this thesis, concentrating on software

bugs and vulnerabilities, their impact, and the associated challenges. It further

details the motivation, research questions, scope, contributions, and structure of

the thesis.
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1.1 Software Bugs
Computer systems are the foundation of our digital society, empowering individuals

and companies globally [Lin et al., 2020b]. However, their ubiquity brings the pro-

liferation of software bugs, a primary concern for software professionals and users

alike. A software bug is an error, flaw, or fault in a program that leads to incorrect

or unexpected outcomes or unpredictable behaviour. Bugs can range from minor

issues to serious system failures with potentially devastating consequences. Most

bugs stem from human errors in the source code or design of a software system

[Singh, 2013]. These mistakes can occur during coding, testing, or maintenance.

Since the first documented software bug in 1945, professionals have been develop-

ing techniques to mitigate these issues [Sophia et al., 2021]. Despite these efforts,

software bugs continue to be a significant concern.

Bugs are costly to resolve and increase maintenance efforts [Sophia et al.,

2021]. The cost of fixing bugs escalates exponentially as the software develop-

ment lifecycle progresses. Additionally, they directly impact a software system’s

quality [Khan et al., 2020], leading to user inconvenience and software crashes.

Bugs can be classified based on their impact on a system’s functionality. Non-

functional bugs affect a system’s non-functional requirements. They may have a mi-

nor impact on functionality and remain undetected but can cause crashes or freezes,

leading to denial of service. In contrast, functional bugs affect a system’s functional

requirements, and performance-related bugs impair a system’s performance [Sophia

et al., 2021]. Finally, there are security-related bugs, also known as vulnerabilities.

Our research focuses on vulnerabilities. These bugs pose a significant threat

in modern society, where information systems support most daily processes. For

example, they can enable unauthorised access to a software system.
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1.2 Software Vulnerabilities

Software vulnerabilities, like other bugs, could arise from design, development,

or configuration flaws. However, unlike other bugs, malicious actors can exploit

these flaws to violate security policies [Lin et al., 2020b]. A software vulnerability

is a weakness in a system that can be exploited by threats, adversely impacting

the confidentiality, integrity, and availability of the affected systems [Spanos and

Angelis, 2018].

Vulnerabilities differ from general bugs as they represent security-related is-

sues, while traditional bugs indicate impaired or insufficient functionality [Camilo

et al., 2015]. Not all software weaknesses are exploitable or available for abuse, so

not all qualify as vulnerabilities.

Software vulnerabilities are a significant concern for professionals. Despite

countermeasures, software attacks cost up to $200 billion per year. The Common

Vulnerabilities and Exposures (CVE) system reports that the number of vulnerabili-

ties has more than doubled in recent years, heightening security concerns due to the

potential for malicious exploitation [Gupta et al., 2021].

1.2.1 How Software Vulnerabilities Arise

Software system vulnerabilities can result from various factors, including coding er-

rors, design flaws, inadequate input validation, and improper system configuration.

Each phase of the software development lifecycle can introduce vulnerabilities.

Coding errors are a significant source of vulnerabilities. Programmers may

inadvertently introduce bugs and logic errors that attackers can exploit, known as

vulnerability-inducing changes. For example, an input validation flaw in a web

application may allow an attacker to inject malicious code, or a buffer overflow can

enable arbitrary code execution [Gujral et al., 2015].

Design flaws can also introduce vulnerabilities. Poor system design can make

it easier for attackers to exploit weaknesses [Igure and Williams, 2008]. For in-

stance, storing passwords in plain text instead of encrypting them allows an attacker

who gains access to the database to steal all the passwords. Similarly, weak authen-
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tication mechanisms, such as simple passwords, make it easy for an attacker to

guess or crack them, thereby gaining access to the system [Nandy et al., 2019].

Lack of input validation is another common source of vulnerabilities. Unval-

idated user input can allow attackers to inject malicious code into the system. For

example, SQL injection attacks occur when an attacker uses unvalidated input to

modify or extract data from a database [Fadlalla and Elshoush, 2023].

Poor system configuration can lead to vulnerabilities. Misconfigured systems

can have open ports, unsecured databases, or other weaknesses that attackers can

exploit. For example, leaving the default password on a database or server makes

it easy for an attacker to access the system, as default passwords are often easily

found in documentation or online sources [OWASP, 2021].

Human error is often a significant factor in creating vulnerabilities [Pollock,

2017]. To address these errors, it is essential to identify and proactively miti-

gate vulnerabilities. Changes made to fix these vulnerabilities are referred to as

vulnerability-fixing changes [Bhandari et al., 2021].

1.2.2 The Ever-Present Threat of Software Vulnerabilities

In 2013, Apple’s Developer portal suffered an information theft breach1. In 2018,

British Airways faced a £183 million penalty after a data breach compromised

380,000 customers’ transaction details2 3. In 2020, the US government suffered

multiple data breaches at top federal agencies, attributed to a cyberattack suspected

to have been orchestrated by Russia4. In 2021, Microsoft reported an exploit by

a hacker group allegedly working for China, targeting Microsoft Exchange servers

via zero-day vulnerabilities5. In mid-2023, the Superannuation Arrangements of

the University of London (SAUL) experienced a data breach due to a cyber incident

1https://www.theguardian.com/technology/2013/jul/22/apple-devel
oper-site-hacked

2https://www.reuters.com/article/us-iag-cybercrime-british-airwa
ys/ba-apologizes-after-380000-customers-hit-in-cyber-attack-idUSK
CN1LM2P6

3https://www.bbc.co.uk/news/business-48905907
4https://edition.cnn.com/2020/12/16/tech/solarwinds-orion-hack-e

xplained/index.html
5https://www.nbcnews.com/tech/security/u-s-issues-warning-after

-microsoft-says-china-hacked-its-n1259522

https://www.theguardian.com/technology/2013/jul/22/apple-developer-site-hacked
https://www.theguardian.com/technology/2013/jul/22/apple-developer-site-hacked
https://www.reuters.com/article/us-iag-cybercrime-british-airways/ba-apologizes-after-380000-customers-hit-in-cyber-attack-idUSKCN1LM2P6
https://www.reuters.com/article/us-iag-cybercrime-british-airways/ba-apologizes-after-380000-customers-hit-in-cyber-attack-idUSKCN1LM2P6
https://www.reuters.com/article/us-iag-cybercrime-british-airways/ba-apologizes-after-380000-customers-hit-in-cyber-attack-idUSKCN1LM2P6
https://www.bbc.co.uk/news/business-48905907
https://edition.cnn.com/2020/12/16/tech/solarwinds-orion-hack-explained/index.html
https://edition.cnn.com/2020/12/16/tech/solarwinds-orion-hack-explained/index.html
https://www.nbcnews.com/tech/security/u-s-issues-warning-after-microsoft-says-china-hacked-its-n1259522
https://www.nbcnews.com/tech/security/u-s-issues-warning-after-microsoft-says-china-hacked-its-n1259522


1.2. Software Vulnerabilities 28

involving MOVEit software6. In early 2023, T-Mobile discovered an API vulnera-

bility that led to the theft of personal data belonging to 37 million customers7. In

June 2024, a ransomware attack targeted NHS hospitals, disrupting medical services

and necessitating an urgent appeal for blood donations8 9.

These examples illustrate the indiscriminate nature of cyberattacks, affecting

governmental, commercial, non-profit, and individual entities. Exploitation of vul-

nerabilities is a common theme in all these cases, highlighting the severe conse-

quences of neglecting software system vulnerabilities. Consequences range from

minor inconveniences, such as denial of service, to significant issues, including rep-

utational damage, financial loss, or even injury and death in safety-critical systems.

Therefore, it is crucial to identify and mitigate vulnerabilities before they can be

exploited by attackers.

Despite the importance of identifying and eradicating vulnerabilities, devel-

opers must balance the cost of remediation, the potential impact of the vulnera-

bility, and the overall software development lifecycle. An automated process that

effortlessly identifies and prioritises security weaknesses can be invaluable. Such

a solution can help developers to focus on the most critical vulnerabilities, reduc-

ing remediation time and cost while ensuring a productive software development

lifecycle.

6https://www.ucl.ac.uk/human-resources/news/2023/jun/saul-respo
nse-cyber-incident-and-data-breach

7https://techcrunch.com/2023/01/19/t-mobile-data-breach/
8https://news.sky.com/story/nhs-issues-urgent-blood-donation-a

ppeal-after-it-cyber-attack-leaves-hospitals-struggling-to-match
-patients-13150509

9https://news.sky.com/story/nhs-cyber-attack-sensitive-data-sto
len-from-blood-test-provider-in-cyber-attack-by-criminal-group-p
ublished-online-13154539

https://www.ucl.ac.uk/human-resources/news/2023/jun/saul-response-cyber-incident-and-data-breach
https://www.ucl.ac.uk/human-resources/news/2023/jun/saul-response-cyber-incident-and-data-breach
https://techcrunch.com/2023/01/19/t-mobile-data-breach/
https://news.sky.com/story/nhs-issues-urgent-blood-donation-appeal-after-it-cyber-attack-leaves-hospitals-struggling-to-match-patients-13150509
https://news.sky.com/story/nhs-issues-urgent-blood-donation-appeal-after-it-cyber-attack-leaves-hospitals-struggling-to-match-patients-13150509
https://news.sky.com/story/nhs-issues-urgent-blood-donation-appeal-after-it-cyber-attack-leaves-hospitals-struggling-to-match-patients-13150509
https://news.sky.com/story/nhs-cyber-attack-sensitive-data-stolen-from-blood-test-provider-in-cyber-attack-by-criminal-group-published-online-13154539
https://news.sky.com/story/nhs-cyber-attack-sensitive-data-stolen-from-blood-test-provider-in-cyber-attack-by-criminal-group-published-online-13154539
https://news.sky.com/story/nhs-cyber-attack-sensitive-data-stolen-from-blood-test-provider-in-cyber-attack-by-criminal-group-published-online-13154539
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1.3 Motivation
Our research is driven by the increasing threat of software vulnerabilities and the

urgent need for effective vulnerability prediction methods. In recent years, the Na-

tional Vulnerability Database (NVD)10 has reported a steady increase in disclosed

security vulnerabilities. Software vulnerabilities can have severe consequences if

exploited, making it essential to identify and mitigate them proactively. Tradi-

tional vulnerability prediction methods, such as static code analysis and dynamic

code analysis, face limitations, particularly in large-scale software systems, due to

high computational costs [Shin and Williams, 2013]. Furthermore, these methods

rely heavily on manual feature definition and code audits, which are both time-

consuming and prone to errors [Kaur and Nayyar, 2020, Lipp et al., 2022]. The

increasing complexity and variety of software systems further complicate vulnera-

bility identification using these conventional techniques [Zhang et al., 2023c]. As

a result, researchers are now focusing on automated, AI-driven methods, using ma-

chine learning and deep learning to enhance the efficiency and accuracy of vulner-

ability prediction.

However, while machine learning techniques offer promise, they face chal-

lenges that impact their performance. A fundamental limitation in existing machine

learning-driven vulnerability prediction models is the quality of features used for

training. Most models rely on features extracted from source code, such as metrics

of complexity and structure. However, these features often lack security context,

which is critical for capturing the full implications of the code [Lin et al., 2020a].

For example, a complex code snippet might not be vulnerable if inaccessible to

an attacker, yet traditional features may not capture this information. Therefore,

incorporating security context into feature extraction is vital for improving vulnera-

bility prediction. High false positive rates are another significant issue with current

machine learning models [Shin and Williams, 2013]. False positives, where non-

vulnerable code is incorrectly flagged as vulnerable, waste time and resources. Re-

ducing false positives is crucial to making these models more effective in practice.

10https://nvd.nist.gov/general/visualizations/vulnerability-visua
lizations/cvss-severity-distribution-over-time

https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
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To address these limitations—namely, the lack of security context in features

and high false positive rates—we propose a novel approach that utilises supervised

machine learning techniques for vulnerability prediction, enhanced by information

retrieval methods.

Information retrieval, widely used in search engines and text mining, involves

retrieving relevant information from extensive data collections [Chowdhury, 2010].

Our research adapts this concept for vulnerability prediction, aiming to improve

the quality of training features and reduce false positives. The core of information

retrieval is pattern matching. Given a query, an information retrieval system re-

trieves relevant documents from a collection based on the query’s similarity to the

documents. In our context, the ‘query’ is a code element from a software system

being analysed for vulnerabilities, and the ‘documents’ are known vulnerable code

samples from a dataset. Our system retrieves relevant documents based on their

similarity to the query, extracting features that encapsulate the security context of

the code element. We then use these features to train machine learning models.

By ‘code element’, we refer to a unit of analysis in the source code, also known

as ‘granularity.’ In modern object-oriented programming languages like Java, this

could be a method or a class. For instance, in method-scoped analysis, the code

element is a method, and the information retrieval system retrieves relevant docu-

ments, i.e., vulnerable methods, based on their similarity to the method under anal-

ysis. Similarly, in class-scoped analysis, the code element is a class, and the system

would retrieve relevant documents, i.e., vulnerable classes, based on their similarity

to the class under analysis. Our research focuses on method-level granularity, pre-

dicting whether a method is vulnerable based on its source code. Consequently, the

resulting features are method-level.

By matching queries to documents, we extract quantitative attributes that cap-

ture the security context of the methods we analyse relative to the known vulnerable

methods in the vulnerability dataset. These attributes, derived using novel similar-

ity metrics, serve as features for training machine learning models. This process

embeds the security posture of the methods we analyse into the features relative to
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the comprehensiveness of the vulnerability dataset, enhancing the model’s ability to

predict vulnerabilities in unseen, similar code.

In summary, our research introduces a novel approach to vulnerability pre-

diction by integrating information retrieval techniques and a dataset of known vul-

nerable code samples. This approach integrates security context into the training

features, aiming to reduce false positives and ultimately enhance the performance

of machine learning models in vulnerability prediction.

By addressing these limitations, our research aims to provide software devel-

opers with a more practical and effective method for identifying vulnerability-prone

components in software systems before they can be exploited.
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1.4 Research Questions
The research questions guiding this thesis are as follows:

1. How well does the information retrieval-driven software vulnerability predic-

tion technique perform on a single, multi-release software system dataset for

token-based source code representations?

2. How well does the information retrieval-driven software vulnerability predic-

tion technique perform on a single, multi-release software system dataset for

Abstract Syntax Tree (AST)-based source code representations?

3. How well does the information retrieval-driven software vulnerability predic-

tion technique generalise across multiple software systems?

The first and second research questions evaluate the performance of our in-

formation retrieval-driven software vulnerability prediction technique on a single,

multi-release software system dataset using different source code representations.

These evaluations will offer insights into the technique’s effectiveness in predicting

vulnerabilities.

The third research question examines the generalisation capabilities of the in-

formation retrieval-driven software vulnerability prediction technique across mul-

tiple software systems, as a form of stress test, providing insights into its ability

to predict vulnerabilities in within-project and mixed-project datasets. A ‘within-

project’ dataset contains data from a single software system, whereas a ‘mixed-

project’ dataset contains data from multiple software systems.
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1.5 Research Scope
1. This research focuses on predicting software vulnerabilities using supervised

machine learning techniques.

2. The study develops a novel approach leveraging information retrieval tech-

niques and a dataset of known vulnerable code samples to extract features

and train machine learning models. Other machine learning techniques, such

as unsupervised machine learning, reinforcement learning, and deep learning,

are not considered.

3. The study evaluates the performance of the approach on Java-based software

systems.

4. The unit of analysis is the method in the source code of software systems.

5. Only code-related vulnerabilities occurring within methods are considered.

We do not consider configuration-related, design-related, or other types of

vulnerabilities.

6. The study focuses on binary classification tasks to predict whether a method

is vulnerable rather than considering multi-class classification tasks, which

focus on predicting the type of vulnerability.
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1.6 Research Contributions
Information retrieval is a well-established technique for extracting relevant infor-

mation from large text corpora. However, its application to software vulnerability

prediction has been largely unexplored. This research demonstrates the feasibility

of repurposing information retrieval techniques for practical vulnerability predic-

tion. By harnessing the pattern-matching capabilities of information retrieval, we

develop novel security-related software metrics (features) that facilitate encoding

security context into machine learning features to enhance the effectiveness of ma-

chine learning models in identifying vulnerable code.

The primary contributions of this research are as follows:

1. A novel approach to software vulnerability prediction that applies information

retrieval techniques to extract security-relevant features from source code by

leveraging known vulnerable code samples.

2. A comprehensive evaluation of this approach using a multi-release dataset

of a single software system, incorporating both token-based and AST-based

representations of source code.

3. An assessment of the generalisability of this approach across multiple soft-

ware systems, offering insights into its performance on both within-project

and mixed-project datasets.

4. A comparative analysis of this approach against existing machine learning-

based software vulnerability prediction models.

5. A discussion of the research findings’ implications for software developers

and the broader software security community, providing insights into its prac-

tical applications and potential impact on vulnerability prediction.

6. A set of recommendations for future research in software vulnerability pre-

diction, outlining potential areas for further investigation and development.
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1.7 Thesis Outline
The rest of this thesis is structured as follows:

• Chapter 2 provides background information on the concepts and techniques

used in our research.

• Chapter 3 reviews the literature on software vulnerability prediction and re-

lated topics.

• Chapter 4 presents a study on information retrieval-driven software vulnera-

bility prediction using token-based representations.

• Chapter 5 presents a study on information retrieval-driven software vulnera-

bility prediction using AST-based representations (Code2Vec).

• Chapter 6 examines the generalisability of information retrieval-driven soft-

ware vulnerability prediction across multiple software systems.

• Chapter 7 concludes the thesis, summarising the research contributions and

discussing future work.

• Appendix A investigates the co-evolution of bug-fixing change and bug-

inducing change artefacts.

• Appendix B explores using Large Language Models for vulnerability predic-

tion.

• Finally, the thesis features a comprehensive glossary of the most relevant

terms defined in the context of this research. Each term in the glossary fea-

tures a page number reference to the first occurrence of the term in the thesis.

Note that terms that appear in the Literature Review chapter or any other

parts of the thesis discussing other scholars’ work do not qualify as first oc-

currences to avoid misdefining them in ways that are not aligned with the

original authors’ definitions.



Chapter 2

Background

This chapter covers the background of software vulnerabilities, mitigation tech-

niques, vulnerability prediction, and representations of source code. We explore the

granularity and features of vulnerability prediction models, as well as the source

code representations employed in our research. Additionally, we introduce infor-

mation retrieval concepts and their relevance to vulnerability prediction in our re-

search.
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2.1 Software Vulnerability Mitigation Techniques

Attacks exploiting software vulnerabilities can take various forms, such as Denial-

of-Service (DoS) attacks or privilege escalation. One trusted mitigation method is

adhering to secure programming practices during development. This reduces the

risk of introducing vulnerabilities and simplifies their management. Despite efforts,

including Microsoft reportedly spending 100 machine years annually addressing

software flaws [Chernis and Verma, 2018], many flaws still reach production.

Researchers have proposed various methods to tackle vulnerabilities, includ-

ing static analysis, dynamic analysis, hybrid analysis, penetration testing, patching,

and program transformation. Recently, AI-driven methodologies, primarily ma-

chine learning and deep learning approaches, have been the focus [Ghaffarian and

Shahriari, 2017]. Before these machine learning-driven techniques, static and dy-

namic analysis techniques were standard. Static analysis examines source code

without executing it to identify potential vulnerabilities, analysing code structure,

data flow, and control flow [Ghaffarian and Shahriari, 2017]. Techniques include

code metrics analysis, pattern matching, and symbolic execution [Zhou et al., 2021,

Chen et al., 2017, Luckow et al., 2020]. Dynamic analysis involves executing code

to observe its behaviour and identify vulnerabilities during runtime. Techniques in-

clude fuzz testing and taint analysis [Chen et al., 2017, Liu et al., 2008, Tang et al.,

2010]. Hybrid approaches combine static and dynamic techniques [Liu et al., 2008].

Machine learning and deep learning techniques now dominate research in vul-

nerability prediction. These methods predict software vulnerabilities based on his-

torical data and source code characteristics. Supervised learning, which involves

training algorithms on labelled data, is a common approach in vulnerability pre-

diction. Some common supervised learning algorithm examples include Decision

Trees, Support Vector Machines (SVM), and Random Forests. Building a machine

learning-based vulnerability prediction model involves collecting data, preparing

the data, developing the model, and testing and evaluating it [Lin et al., 2020b].

Performance is typically evaluated using precision, recall, F1 score, and accuracy

metrics. Challenges include the abundance of software bugs compared to vulnera-
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bilities, making it difficult to find enough training data to effectively train models

[Lin et al., 2020b, Ghaffarian and Shahriari, 2017]. Despite this, AI-driven tech-

niques have outperformed rule-based methods, placing them at the forefront of vul-

nerability prediction research [Wang et al., 2021a]. Unsupervised learning, which

identifies anomalies or outliers in unlabelled data, also plays a role, with exam-

ples including k-means clustering and anomaly detection algorithms [Ghaffarian

and Shahriari, 2017]. Deep learning techniques, such as Convolutional Neural Net-

works (CNN), Recurrent Neural Networks (RNN), and Long Short-Term Memory

(LSTM) networks, have also gained traction in recent years [Lin et al., 2020a].

The following section delves into software vulnerability prediction, exploring

the concept of granularity, vulnerability predictors (i.e., features or metrics), and

source code representations used in vulnerability prediction research.
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2.2 Software Vulnerability Prediction

Vulnerability prediction is a promising methodology in secure software engineer-

ing that identifies vulnerabilities before they can be exploited. Its primary goal is

to help software testers allocate their limited resources efficiently by automatically

identifying the most vulnerable components of a software system [Shen and Chen,

2020]. The main idea is to preemptively pinpoint software components that could be

susceptible to security threats, thereby mitigating risks before attackers can exploit

them. This research area has gained significant traction over the past decade [Hov-

sepyan et al., 2016]. Predicting which software components are likely to contain

vulnerabilities promotes the early identification and mitigation of potential security

issues during the development cycle [Shin et al., 2010].

Vulnerability prediction models are typically built using supervised machine

learning techniques. These models utilise software attributes to differentiate be-

tween vulnerable and clean (or neutral) software components [Kalouptsoglou et al.,

2023]. Recently, there has been a surge of interest in applying deep learning tech-

niques to vulnerability prediction research [Lin et al., 2020a]. These models’ pri-

mary goal is to identify software components more likely to contain vulnerabili-

ties, enabling developers to concentrate on securing these critical areas [Shin et al.,

2010].

A key aspect of vulnerability prediction is discerning the characteristics that

differentiate vulnerable code components from non-vulnerable ones and other bugs.

However, this task is challenging due to the inherent complexity of software sys-

tems. Coding-related vulnerabilities are often subtle and context-dependent, mak-

ing them difficult to detect by casual observation. To overcome this challenge,

vulnerability prediction approaches leverage machine learning techniques to iden-

tify vulnerable code patterns in software code. These patterns, often not apparent to

human observers, make machine learning an ideal automated solution for detecting

such subtle indicators. By employing machine learning, researchers aim to enhance

the accuracy of vulnerability prediction and reduce the incidence of false positives.
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2.2.1 Software Vulnerability Prediction Granularity

Artificial intelligence has been applied to vulnerability prediction to enhance soft-

ware quality and reliability. The scarcity of testing and verification resources has

driven security testers to develop methods to prioritise critical components, making

vulnerability predictions essential for efficient resource allocation [Morrison et al.,

2015].

Computational models for vulnerability prediction utilise historical software

data and labelled vulnerable software artefacts. These models operate on source

files to identify potentially vulnerable components. However, identifying vulner-

abilities at the source code file level can be challenging, particularly with large

files, as it complicates pinpointing the exact location of vulnerabilities. To address

this issue, researchers have explored more granular prediction methods, such as

method-level prediction, which allows for finer granularity in identifying vulnera-

bilities within software systems [Ghaffarian and Shahriari, 2017].

Besides source file-level and method-level granularity, other levels include

binary-level, class-level, and change-level granularity [Kim et al., 2008]. Binary-

level predictions are impractical due to the large number of files that require manual

inspection after prediction. Source file-level granularity presents challenges with

large files containing thousands of lines of code. Similarly, large classes with nu-

merous methods pose difficulties at the class-level granularity. Change-level gran-

ularity, focusing on codebase changes, often lacks context, involving only code

snippets. Consequently, method-level predictions are considered the most practical

option [Morrison et al., 2015].

Giger et al. [2012] proposed a method-level bug prediction approach to re-

duce manual inspection steps. Method-level vulnerability prediction is analogous

to method-level bug prediction, aiming to identify methods likely to contain vulner-

abilities. Method-level vulnerability prediction in software security involves exam-

ining and assessing vulnerabilities at the level of individual methods or functions

within a software codebase. This analysis focuses on scrutinising specific meth-

ods or functions to identify potential risks, using various techniques to predict the
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likelihood of vulnerabilities. This proactive approach aims to identify potential vul-

nerabilities at the method level before they manifest as security issues.

Method-level granularity in vulnerability prediction refers to the detailed anal-

ysis of potential security weaknesses at the level of individual methods within a

codebase. Unlike coarser assessment levels, such as binary, file, or class levels,

method-level granularity examines each method independently for vulnerabilities.

Since methods are typically smaller than classes or source files, this approach en-

ables more precise targeting of specific code sections where vulnerabilities may

reside. It provides a more detailed understanding of potential risks associated with

each method, facilitating localised identification of vulnerabilities and offering bet-

ter insights into each method’s security posture [Croft et al., 2022].

A detailed understanding of vulnerabilities at the method level would enable

software professionals to develop more targeted security measures and remediation

strategies. Such an approach could lead to more efficient resource allocation, ensur-

ing that security efforts are concentrated where they are most needed at a much finer

granularity, optimising the vulnerability mitigation process. Additionally, method-

level vulnerability prediction could provide insights into the specific characteristics

of vulnerable methods, aiding in the development of preventive measures and best

practices to mitigate vulnerabilities in the future.

By incorporating method-level vulnerability prediction into the development

workflow, software professionals can ensure the early identification of potential se-

curity issues, making the process more efficient than waiting until an entire class or

source file is written. This strategy enables the more accurate identification of vul-

nerability sources, facilitating timely and effective remediation [Giger et al., 2012,

Morrison et al., 2015, Sultana et al., 2023].

2.2.2 Software Vulnerability Prediction Features

The features used in vulnerability prediction models are crucial for their perfor-

mance. These features are characteristics of software components that enable the

model to distinguish between vulnerable and non-vulnerable components. As in-

put to the machine learning model, features enable it to learn patterns indicative of
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vulnerabilities, making the careful selection of these features essential for accurate

predictions.

Many studies have utilised traditional software metrics as features. These met-

rics, both product and process metrics, measure various aspects of software engi-

neering products and processes. Product metrics quantify attributes such as code

size and complexity, while process metrics measure factors like developers’ pro-

ductivity. When applied correctly, these metrics can define the success or failure of

a software product or process, providing valuable information for making business

decisions and improving software systems [Chhabra and Gupta, 2010].

Traditional software metrics are often calculated from components such as

classes and methods. In the context of vulnerability prediction research, the goal

is to leverage these metrics to identify components prone to vulnerabilities based

on observations that vulnerable code components often exhibit specific characteris-

tics. Therefore, careful selection of metrics can enhance the predictive performance

of vulnerability prediction models [Singh et al., 2011].

There are two broad categories of software metrics:

• Product Metrics: These metrics quantify source code attributes, such as code

size and complexity. Examples include Lines of Code (LOC) and McCabe’s

Cyclomatic Complexity.

• Process Metrics: These quantify software-related processes, such as the

number of code changes (churn) or developer characteristics.

There has been a longstanding debate about which metric category performs

better in vulnerability prediction [Rahman and Devanbu, 2013] and whether tra-

ditional software metrics alone are sufficient for accurate vulnerability prediction.

Researchers have observed that vulnerable code tends to have specific character-

istics: it is often large, complex, tightly coupled, and frequently churned [Giger

et al., 2012, Morrison et al., 2015, Pascarella et al., 2018, Du et al., 2019]. These at-

tributes can be measured using product software metrics. Traditional metrics, such

as McCabe’s Cyclomatic Complexity, Lines of Code, Code Churn, and Dependency
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metrics (Fan-In and Fan-Out), are commonly used as features in vulnerability pre-

diction models. However, these metrics face several challenges that can limit their

effectiveness in accurately predicting vulnerabilities.

The primary challenge is their limited ability to capture security-specific code

characteristics. Traditional software metrics were initially designed to measure soft-

ware quality and productivity, not security. Consequently, they may miss security-

specific aspects, such as input validation, authentication, and authorisation. For

instance, traditional metrics might deem a codebase with low complexity and churn

secure, but in reality, it could contain vulnerabilities due to insufficient input valida-

tion. While traditional software metrics can be valuable as supplementary features,

they may be insufficient for accurately predicting vulnerabilities. Therefore, vul-

nerability prediction models must incorporate features that capture security-relevant

code attributes. Researchers argue that the inadequacy of traditional metrics arises

from their reliance on syntactic code characteristics, which often lack semantic

depth [Lin et al., 2020a]. Traditional metrics do not convey the underlying mean-

ing of the code. This limitation is why many contemporary studies employ source

code representation-based features, as they provide a more nuanced view of the

code’s syntax and semantics [Xiao et al., 2024]. Such features are more likely to

identify subtle patterns distinguishing vulnerable code from non-vulnerable code.

Consequently, studies using only traditional metrics often report poor results in vul-

nerability prediction [Ghaffarian and Shahriari, 2017].

In the next section, we delve into source code representations, examining the

token-based and Abstract Syntax Tree (AST)-based representations employed in

our research.
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2.3 Source Code Representations
To accomplish different software engineering goals and improve software develop-

ment and maintenance, practitioners have developed many methods, such as source

code classification [Frantzeskou et al., 2008, Mou et al., 2016], code clone detection

[Kamiya et al., 2002, Sajnani et al., 2016, White et al., 2016, Wei and Li, 2017], bug

prediction [D’Ambros et al., 2012, Tantithamthavorn et al., 2016], and code sum-

marisation [Haiduc et al., 2010, Jiang et al., 2017]. However, a primary challenge

common to these methods is effectively representing source code to capture its syn-

tactical and semantic information.

Source code representation abstracts low-level details, providing a higher-level

view. It transforms text-based source code into a more abstract and structured form,

capturing syntactical and semantic information [Zhang et al., 2019]. This new form

finds applications in various software engineering tasks. The abstraction enables

tasks that are difficult or impossible to perform directly on text-based source code,

including machine learning and deep learning tasks. These algorithms typically

require numerical inputs, and source code representation facilitates converting tex-

tual source code into a format they can process [Hancock and Khoshgoftaar, 2020].

Many machine learning tasks require transforming raw data into a processable for-

mat, known as feature engineering. Effective source code representation captures

embedded syntactical and semantic information. Each representation method has

its advantages and disadvantages. The choice of representation depends on the spe-

cific task and the desired level of abstraction. Notably, no single representation is

suitable for all tasks, as different representations capture different aspects of source

code [Samoaa et al., 2022].

The following subsections discuss the source code representation approaches

used in our research, including token-based and AST-based representations.

2.3.1 Token-based Representations

Token-based representations are among the most common methods for represent-

ing source code. They involve tokenising source code into a sequence of tokens,

where each token represents a specific syntactic element, such as keywords, iden-
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tifiers, literals, and operators [Zhou et al., 2020]. Token-based representations are

widely used in tasks such as code clone detection [Li et al., 2017], bug prediction

[Choudhary and Singh, 2017], and code summarisation [Fowkes et al., 2017]. These

representations are relatively simple and easy to generate, making them convenient

for many software engineering tasks.

For example, consider the following Java code snippet:

Listing 2.1: A Simple Java Main Method

3 public static void main(String[] args) {

4 System.out.println("Hello, World!");

5 }

Tokenising this code snippet would result in the following sequence of tokens:

public static void main ( String [ ] args ) { System .
↪→ out . println ( " Hello , World ! " ) ; }

Figure 2.1: Token Representation of the Method in Listing 2.1

2.3.1.1 N-Grams

N-grams are a common feature representation technique in Natural Language Pro-

cessing (NLP). An N-gram is a contiguous sequence of N items from a given sample

of text or speech. In NLP, these items are typically words, characters, or tokens. N-

grams capture the local context of words in a text, providing information about the

relationships between adjacent words.

Character-based N-grams help capture morphological information, while

word-based N-grams help capture semantic information [Abdolahi and Zahedh,

2017, Dogra et al., 2022].

For instance, the character-based 2-gram representation of the sentence "Hello,

World!" would be ["He", "el", "ll", "lo", "o,", ", ", " W",

"Wo", "or", "rl", "ld", "d!"].

Its 3-gram representation would be ["Hel", "ell", "llo", "lo,",

"o, ", ", W", "Wor", "orl", "rld", "ld!"].
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2.3.1.2 Shingles (Word N-Grams)

Shingles, also known as word N-grams, are a common feature representation tech-

nique in text processing. A shingle is a sequence of N words from a given text

sample. Shingles capture the local context of words in a text, providing information

about the relationships between adjacent words. For instance, a 2-shingle (bigram)

captures the relationship between two adjacent words, while a 3-shingle (trigram)

captures the relationship between three adjacent words.

To illustrate, the sentence "The quick brown fox jumps over the lazy dog" can

be represented as 2-grams: ["The quick", "quick brown", "brown fox", "fox jumps",

"jumps over", "over the", "the lazy", "lazy dog"].

Its 3-gram representation would be: ["The quick brown", "quick brown fox",

"brown fox jumps", "fox jumps over", "jumps over the", "over the lazy", "the lazy

dog"].

In the context of source code, N-grams can capture the local context of tokens

within a code snippet. For example, a 3-gram representation of the Java code snippet

in Listing 2.1 would be:

public static void↔static void main↔void main (↔main (
↪→ String↔( String [↔String [ ]↔[ ] args↔] args )↔
↪→ args ) {↔) { System↔{ System .↔System . out↔.
↪→ out .↔out . println↔. println (↔println ( "↔( "
↪→ Hello↔" Hello ,↔Hello , World↔, World !↔World !
↪→ "↔! " )↔" ) ;↔) ; }

Figure 2.2: 3-Gram Representation of the Method in Listing 2.1

As shown in Figure 2.2, the 3-gram representation captures the local context of

tokens in the code snippet, providing information about the relationships between

adjacent tokens and encoding the syntactical structure of the code.

2.3.2 Abstract Syntax Tree-Based Representations

An AST represents the abstract syntactic structure of source code [Baxter et al.,

1998]. This tree-like structure captures the hierarchical relationships between syn-

tactic elements, such as statements, expressions, and declarations. In ASTs, nodes

represent syntactic constructs, such as method declarations, expressions, or state-
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ments, while edges represent relationships between nodes, including parent-child

or sibling relationships [Fluri et al., 2007]. These nodes and edges form paths rep-

resenting the code’s syntactic structure.

ASTs are widely used in programming languages and software engineering

tools. Compared to plain source code, ASTs are more abstract and do not include

all details, such as punctuation and delimiters, thus not representing every aspect

of the code’s syntax [Veeramani et al., 2014]. However, ASTs describe the lex-

ical information and syntactic structure, such as method names and control flow

structures. ASTs play essential roles in tasks like source code search [Paul and

Prakash, 1994], program repair [Weimer et al., 2009], and source code differenc-

ing [Falleri et al., 2014]. ASTs also play essential roles in various program analysis

tasks, such as type checking, code generation, and refactoring, as well as in machine

learning-based software engineering tasks like code completion and recommenda-

tion [Miller, 1995, Jiang et al., 2021, Sommerlad et al., 2008, Liu et al., 2022a].

To illustrate how ASTs represent source code, Figure 2.3 shows the AST of

the method in Listing 2.1. The AST captures the hierarchical relationships between

syntactic elements in the source code, providing a more abstract view of the code’s

syntactic structure. Each node in the tree represents a syntactic construct, such as

a method declaration, an expression statement, or a string literal, in the code being

represented.

The CompilationUnit node represents the entire code snippet, while the Type-

Declaration node represents the class containing the Main method. The Method-

Declaration node represents the Main method, with child nodes representing the

method’s modifiers, return type, name, parameters, and body. The Block node rep-

resents the method’s body, containing an ExpressionStatement node representing

the println statement. The MethodInvocation node represents the println method in-

vocation, with child nodes representing the method’s target, name, arguments, and

string literal argument.
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CompilationUnit

TypeDeclaration

MethodDeclaration

Block

ExpressionStatement

MethodInvocation

StringLiteral:

World!""Hello,

SimpleName:

println

SimpleName:

out

SimpleName:

System

SingleVariableDeclaration

SimpleName:

args

ArrayType

SimpleType:

String

SimpleName:

main

PrimitiveType:

void

Modifier:

static

Modifier:

public

Figure 2.3: AST of the Method in Listing 2.1

ASTs form the foundational concept for AST-based representations, including

Code2Vec, which utilises AST paths to represent source code. In this research, we

use Code2Vec in our AST-based vulnerability prediction analyses.

2.3.2.1 Code2Vec Representation

Code2Vec is a source code embedding technique that extracts paths from the AST

of the source code. It represents these paths as triples, comprising start nodes, end

nodes, and internal path sequences. Code2Vec has been applied in various contexts

since its introduction, notably in method name recommendation1, as demonstrated

by Alon et al. [2019].

1https://code2vec.org/

https://code2vec.org/
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Listing 2.2: getName Method

13 @Override

14 public String getName() {

15 return fileItem.getFieldName();

16 }

4494,2,5136 2307,1065,154 2307,1066,25 2307,1067,140 154,15,25 154,12,140 25,639,140

Path contexts

Path context

Figure 2.4: Code2Vec Representation for the Method in Listing 2.2

Listing 2.2 shows the source code of the getName method, and Figure 2.4

illustrates its Code2Vec (path-based) representation as extracted from the AST.

2.3.2.2 The Path Context Concept

Path-based representation models code snippets as collections of paths between

AST nodes [Kovalenko et al., 2019]. The Code2Vec representation in Figure 2.4 in-

cludes seven whitespace-separated path contexts, a central innovation of Code2Vec.

path_context
method_id

Path Context

token_vocabulary
token_id

Token

node_type_vocabulary
node_type_id

Node Type

path_vocabulary
path_id

Path

Each path context in a collection
of path contexts representing a

method may reference any two token_ids
as its start and end tokens.

Each path context in a collection
of path contexts representing a

method may reference
 any path_id as its target path.

Each referenced path_id in a
path context may reference

 a sequence of node_type_ids
 of an arbitrary length,
which forms a path.

Figure 2.5: Path-Contexts: Representation of the Relationships among the Subcomponents
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An ideal analogy to illustrate the path context concept is the Entity-

Relationship Model (ERD). Figure 2.5 shows an ERD-like representation of the

relationships among the path context subcomponents.

Suppose we have four entities (data files) representing the components of the

path context concept:

1. path_context: This data file holds the Code2Vec representation (comprising

path contexts) of methods, with a method_id column featuring unique nu-

meric IDs that map to the path context of a method.

2. token_vocabulary: This data file holds tokens extracted from the source code,

with a token_id column featuring unique numeric IDs that map to each token.

3. node_type_vocabulary: This data file holds the node types in the ASTs of the

methods, with a node_type_id column featuring unique numeric IDs that map

to each node type.

4. path_vocabulary: This data file holds sequences of node types forming paths

in a method’s AST, with a path_id column featuring unique numeric IDs that

map to each path.

In this context, a path is a sequence of node types that indicates a traversal

direction in an AST. A path context comprises a path enveloped by a start and end

token, as shown in Figure 2.4.

Code2Vec captures the hierarchical structure and relationships within the

source code by considering the code’s context through path contexts. It learns con-

nections between nodes within a path and relationships between nodes in different

paths. This enables Code2Vec to effectively encode source code semantics, yielding

robust representations for various software engineering tasks.

In Figure 2.4, each path context consists of a triplet: a path in the method’s

AST, surrounded by start and end tokens and separated by commas. The first num-

ber in each triplet is the start token, the second is the path, and the third is the end

token.
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For example, the annotated path context 4494, 2, 5136 means the start to-

ken references token_id 4494 in the token_vocabulary, the end token references

token_id 5136, and the path references path_id 2 in the path_vocabulary, which in

turn references a sequence of node types in the node_type_vocabulary.

token_id token
4494 file|item
5136 get|field|name

(a) token_vocabulary

path_id path
2 1 5 6 4

(b) path_vocabulary

node_type_id node_type
1 SimpleName UP
4 SimpleName DOWN
5 METHOD_INVOCATION_RECEIVER UP
6 MethodInvocation TOP

(c) node_type_vocabulary

Figure 2.6: token_vocabulary, path_vocabulary and node_type_vocabulary Values for
Path Context: 4494, 2, 5136

Figure 2.6 contains three subtables detailing the interconnections among the

components of the annotated path context in Figure 2.4, as derived from our data

files. Other path contexts in Figure 2.4 and in other methods also exhibit similar in-

terconnections, with the data files providing extensive information on tokens, paths,

and node types, encompassing all source code elements within a software system or

codebase.

2.3.3 Other Source Code Representations

Besides token-based and AST-based representations, other source code represen-

tations have been proposed for various software engineering tasks. For example,

Control Flow Graphs (CFGs) represent a program’s control flow in terms of ba-

sic blocks and their interconnections. CFGs are helpful in program analysis tasks

involving reasoning about the program’s execution behaviour, such as program slic-

ing, optimisation, and program comprehension [Zhao et al., 2022, Anju et al., 2010].

Program Dependence Graphs (PDGs) are another technique for representing

programs. They represent the data and control dependencies among program state-

ments [Czech et al., 2017, Horwitz and Reps, 1992].
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Many code representation techniques exist, and this section, by no means,

covers all of them. As mentioned, each representation has advantages and disad-

vantages and is suitable for different tasks. Our research focuses on token-based

and AST-based representations, which we use to construct features for vulnerability

prediction models.

In the subsequent sections, we discuss the information retrieval techniques we

employ to leverage these representations for vulnerability prediction.
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2.4 Information Retrieval (IR)
The common idea behind the representations discussed in Section 2.3 is transform-

ing source code into structured formats. These formats enable complex analyses

and computations that would be challenging or impossible on raw data. They facil-

itate activities such as extracting meaningful features, applying machine learning,

and measuring similarity and relevance for efficient searching, analysis, and com-

prehension. These applications are integral to our vulnerability prediction work.

We combine source code representations with information retrieval techniques to

implement these effectively. These techniques allow us to leverage these represen-

tations to retrieve relevant source code components, identify patterns, and measure

similarity, which we use to construct features for our vulnerability prediction mod-

els.

2.4.1 Introduction to Information Retrieval

Information retrieval encompasses activities related to the organisation, processing,

and accessing of information in various forms and formats. An information retrieval

system enables a user to interact with an information system or service to find in-

formation, such as text, graphic images, sound recordings, or video, that meets their

needs [Chowdhury, 2010].

Information retrieval is crucial for accessing information efficiently in the vast

digital landscape. It facilitates decision-making, research, knowledge discovery,

and numerous other applications across various fields and industries. It has appli-

cations in search engines, digital libraries, recommendation systems, e-commerce

platforms, and other domains where accessing and retrieving relevant information

is essential [Dong and Wang, 2008, Herrera-Viedma et al., 2008]. While web-based

information retrieval is not the primary focus of our work, it remains the most visi-

ble application today because of search engines like Google, Bing, and Yahoo.

Many modern information retrieval systems handle multimedia information,

including text, audio, images, and video. While features of conventional text re-

trieval systems apply to multimedia information retrieval, the unique nature of au-

dio, image, and video information has necessitated the development of new tools
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and techniques. Modern information retrieval encompasses the storage, organisa-

tion, and access to text and multimedia resources [Chowdhury, 2010].

Despite its extensive applications, information retrieval remains a largely un-

explored area in software security. We address this gap by applying information re-

trieval techniques to software security, with a specific focus on vulnerability predic-

tion. Our information retrieval application primarily involves textual data, specifi-

cally data related to source code representation.

2.4.2 Information Retrieval System Features

Several features characterise information retrieval systems, essential for effectively

organising, processing, and accessing information. The primary features include:

• Indexing: Information retrieval systems index documents to facilitate effi-

cient searching. Indexing involves creating an index of terms extracted from

the documents, allowing users to search for specific terms or phrases. This

index provides a quick way to locate documents containing the desired infor-

mation [Maron and Kuhns, 1960, Maron, 1977].

• Querying: Users interact with information retrieval systems by submitting

queries. Queries are requests for information that users want to retrieve from

the system. The system processes the queries and returns relevant documents

based on the search criteria [Manning, 2008, Kobayashi and Takeda, 2000].

• Ranking: Information retrieval systems rank documents based on their rel-

evance to the query. The ranking algorithm determines the order in which

documents are presented to the user, with the most relevant documents ap-

pearing at the top of the search results [Pang et al., 2017, Jin et al., 2008].

• Relevance Feedback: Relevance feedback allows users to provide feedback

on the relevance of search results. Users can indicate which documents are

relevant or irrelevant, and the system uses this feedback to refine subsequent

searches. This helps improve the accuracy of search results by incorporating

user feedback [Lv and Zhai, 2009, Chang and Hsu, 1999].
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• Retrieval Models: Information retrieval systems use retrieval models to de-

termine the relevance of documents to a query. Retrieval models define how

documents are scored and ranked based on their similarity to the query. Some

standard retrieval models include vector space models, probabilistic models

[Singhal et al., 2001], and language models [Song and Croft, 1999].

• Evaluation: Information retrieval systems are evaluated based on their abil-

ity to retrieve relevant information effectively. Evaluation metrics assess the

system’s effectiveness in retrieving relevant documents for users. Some stan-

dard evaluation metrics include precision, recall, F1 score, and mean average

precision [Saracevic, 1995, Kobayashi and Takeda, 2000].

2.4.3 How We Use Information Retrieval in Our Research

Information retrieval plays a core role in our feature engineering process for vulner-

ability prediction. This thesis experiments with two types of source code represen-

tations, token-based and AST-based representations, to capture both the syntactical

and semantic information of the source code we analyse. These representations en-

able us to extract meaningful features from source code for building models that

predict vulnerabilities. By applying information retrieval techniques, we identify

patterns in source code, quantitatively measure similarity between code components

and retrieve relevant code snippets for analysis. These features help us predict vul-

nerabilities in software systems more accurately and efficiently.

2.4.3.1 Mapping Information Retrieval Features to Our Setup

Subsection 2.4.2 outlined the primary features of information retrieval systems, in-

cluding indexing, querying, ranking, relevance feedback, retrieval models, and eval-

uation. Indexing, querying, and ranking are the most relevant to our research.

We use indexing to create an index of terms comprising elements from our

code representations, as extracted from source code, enabling efficient searching.

Querying is employed to process queries and retrieve relevant source code compo-

nents. Ranking determines the relevance of these components to a query, ensur-

ing that the most relevant components are prioritised. Our work does not involve
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relevance feedback and retrieval models. Additionally, while we evaluate the per-

formance of our vulnerability prediction models, we do not assess our information

retrieval setup, as it serves only as a means to an end rather than the primary focus

of our research. Therefore, our work does not involve evaluation in the context of

information retrieval systems.

Our datasets comprise a target software system, where we aim to predict vul-

nerabilities, and a vulnerability dataset, comprising known vulnerable code sam-

ples. These two datasets comprise source code representations of methods from the

datasets. These representations are token-based and AST-based data derived from

the source code of the methods. We index the source code representations of the

methods in the vulnerability dataset to create an index of terms, allowing efficient

searching of source code representation components. We then use the source code

representations of the methods in the target software system as queries to retrieve

relevant components from the vulnerability dataset. Finally, we rank the retrieved

source code representation components based on their relevance to the query, ensur-

ing that the most relevant components are presented first. The returned results and

the top-ranked components are then used to construct features for our vulnerability

prediction models.

The primary goal of our information retrieval setup is pattern matching and

similarity measurement between source code components across the target soft-

ware system and the vulnerability dataset. We aim to identify patterns in our target

software system’s source code that are consistent with known vulnerable code sam-

ples in the vulnerability dataset. These patterns indicate potential vulnerabilities

consistent with the known vulnerabilities in the vulnerability dataset, enabling us to

predict vulnerabilities more accurately and efficiently in the target software system.

2.4.3.2 Feature Engineering

Feature engineering is pivotal in machine learning and data science. It involves

transforming raw data into meaningful features for predictive modelling. We em-

ployed information retrieval techniques to extract features from source code repre-
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sentations for vulnerability prediction, capturing syntactical and semantic informa-

tion to enhance prediction accuracy.

Our work focuses on two primary feature types: token-based and AST-based,

each of which is subdivided into two categories. The first, hit-independent metrics,

consists of features derived directly from the intrinsic attributes of source code rep-

resentations. The second, hit-dependent metrics, relies on information retrieval to

measure the similarity between a method in the target software system and the most

similar methods in a vulnerability dataset.

In our context, a hit occurs when a method in the target software system

matches at least one method in the vulnerability dataset. Following a hit, features

are used to quantify the similarity between the target software system method and

the most similar method in the vulnerability dataset, as well as the general distribu-

tion of similarities between the target software system method and all methods in

the vulnerability dataset.

Subsequent chapters will elaborate on our information retrieval-driven ap-

proach, detailing the extraction of source code representations, feature construction,

and their application in machine learning models for vulnerability prediction. The

immediate chapter, however, will review relevant literature, focusing on vulnerabil-

ity prediction, general bug prediction and other related topics.



Chapter 3

Literature Review

This chapter presents a literature review on software vulnerability and bug pre-

diction methodologies. It discusses critical studies that influenced our work and

emphasises the role of machine learning and deep learning in improving predic-

tive capabilities. The chapter concludes by discussing our observations in the field,

identifying gaps in the literature, and laying the groundwork for the subsequent

chapters.
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3.1 Introduction

Previous chapters have highlighted the importance of understanding the adverse

impact of software vulnerabilities in modern development. As reliance on digi-

tal infrastructure grows, so do the risks associated with software vulnerabilities.

This chapter presents a comprehensive literature review, which is essential for con-

textualising current research, identifying critical methodologies, and highlighting

significant findings in software vulnerability and bug prediction.

The proliferation of software vulnerabilities presents an ongoing challenge in

maintaining secure systems. The increasing complexity of software and rapid de-

velopment have made identifying and mitigating vulnerabilities more challenging.

Traditional detection methods, such as static and dynamic analysis, provide valu-

able insights but face limitations in terms of accuracy and scalability, particularly in

modern systems. These challenges have driven interest in advanced methodologies,

notably those using machine learning, to enhance predictive capabilities.

Predicting software vulnerabilities is a proactive approach to identifying po-

tential threats before they can be exploited. It involves analysing historical data

and source code characteristics to detect patterns indicative of vulnerabilities. The

literature reveals various techniques, ranging from simple to sophisticated, that col-

lectively enhance our understanding of how vulnerabilities manifest and propagate,

ultimately leading to the development of innovative mitigation strategies.

The advent of machine learning and deep learning has transformed vulner-

ability prediction. Supervised learning techniques show promise in identifying

vulnerability-prone components by learning from labelled datasets. These tech-

niques use various features from the source code, including syntactic and semantic

information, to train predictive models. Deep learning further enhances these capa-

bilities by capturing complex patterns within the code.

Despite advancements, challenges remain. High false positive rates in many

predictive models lead to inefficiencies in vulnerability prediction. Additionally, the

scarcity of comprehensive labelled datasets hinders the development and evaluation

of robust models.
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This literature review highlights the critical need for innovative approaches in

secure software development. It sets the stage for subsequent chapters, which delve

deeper into specific methodologies and experimental evaluations undertaken in this

research. The findings highlight the dynamic nature of the field and ongoing efforts

to enhance software security through predictive analytics.

This chapter organises the reviewed literature into two main themes: software

vulnerability prediction and software bug prediction. The first theme focuses on

studies of software vulnerabilities and prediction methodologies, with an emphasis

on machine learning and deep learning techniques. The second theme explores

general (non-security-relevant) software bug prediction methodologies, providing a

broader context for understanding software quality and reliability.

We highlight studies that significantly influenced our work within each theme

and also review relevant systematic reviews and comparative studies to provide a

comprehensive overview of the field.

The chapter concludes with a discussion of our observations and emphasises

the importance of identifying gaps in the literature. These gaps present opportu-

nities for future research and highlight the novelty and significance of our work in

predicting software vulnerabilities.
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3.2 Software Vulnerability Prediction

This section reviews software vulnerabilities and the methodologies developed to

predict them. It discusses critical studies that have influenced our work and high-

lights the role of machine learning and deep learning in enhancing predictive capa-

bilities. It also considers systematic reviews and comparative studies to provide a

comprehensive overview of the field, placing our research within the broader con-

text of software vulnerability prediction.

3.2.1 Vulnerability Prediction Studies Influencing Work

This subsection reviews critical vulnerability prediction studies that significantly

influenced our work and laid the foundation for our research. Their innovative

methodologies, insightful findings, and contributions to the field of software vul-

nerability prediction influenced our work.

Shin et al. [2010] sought to enhance tools for security testers by exploring

the predictive potential of software metrics data, including source code characteris-

tics and historical data. They examined metrics related to complexity, code churn,

and developer activity in empirical studies of Mozilla Firefox and Red Hat Enter-

prise Linux kernel. Their results indicated that 24 out of 28 metrics effectively

distinguished between vulnerable and non-vulnerable files in both projects. Ma-

chine learning models that incorporated all three categories of metrics predicted

over 80% of the pre-identified vulnerable files, with fewer than 25% false positives

in both cases. The study concluded that these models could significantly reduce in-

spection efforts by up to 71% for Mozilla Firefox and 28% for Red Hat Enterprise

Linux.

Hovsepyan et al. [2012] critiqued traditional software vulnerability prediction

methods that rely on ‘cooked’ features, such as code complexity and churn. They

introduced an alternative approach using raw source code analysis as text to de-

velop features. Their model, tested across 18 versions of a large mobile application,

achieved an average accuracy of 0.87, a precision of 0.85, and a recall of 0.88. The

study concluded that this method is a viable complement to software metrics-based
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methods and highlighted a future research direction that combines textual source

code analysis with software metrics as features.

Meneely et al. [2013] pointed out that software security is crucial in modern

development, as vulnerabilities, often stemming from design and coding flaws, can

linger undetected, posing substantial risks. The researchers aimed to enhance secu-

rity by examining the size, churn, and community dissemination of Vulnerability-

Contributing Changes (VCCs). They employed a hybrid approach to trace 124 com-

mits that resulted in 68 known vulnerabilities in the Apache HTTPD server, some

of which dated back nearly two decades. They traced these VCCs using the ‘git

bisect’ command. The analysis revealed that VCCs are generally larger than non-

VCCs and that vulnerabilities are more likely to be introduced by new developers

working on specific sections of the code. The findings suggest that understanding

these patterns can help developers reduce the risk of introducing vulnerabilities.

Shin and Williams [2013] explored whether fault prediction models could

effectively predict vulnerabilities or if dedicated Vulnerability Prediction Models

(VPMs) were necessary. Their study, which used traditional software metrics such

as complexity, code churn, and fault history, focused on the Mozilla Firefox web

browser. They found that while 21% of the source code files contained faults, only

3% contained vulnerabilities. Their analysis showed that fault and vulnerability

prediction models performed comparably at various classification thresholds. For

instance, at a threshold of 0.6, the fault prediction model achieved a recall of 83%

and a precision of 11%; similarly, the VPM reached a recall of 83% and a preci-

sion of 12% at a threshold of 0.5. They concluded that software metrics-based fault

prediction models could also serve as effective VPMs. However, both model types

require further refinement to decrease false positives and enhance recall.

Morrison et al. [2015] explored the challenges of implementing VPMs in large-

scale systems, such as the Windows Operating System, highlighting their role in

helping software engineers prioritise verification resources. The study evaluated

the accuracy and actionability, which is defined as the inspection effort required to

assess the results of VPMs constructed using standard recommendations. The re-
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searchers replicated a VPM for two Windows releases, adjusting model granularity

and statistical learners, and assessed the models’ precision, recall, and required in-

spection effort for security reviews. The findings indicated that while binary-level

predictions offered high precision (0.75), they required an impractically high in-

spection effort due to low recall (approximately 0.20). On the other hand, source

file-level models showed lower precision (less than 0.5) and recall (less than 0.2).

These outcomes suggest that VPMs need further refinement to become actionable,

possibly by integrating security-specific metrics. The study concluded that although

VPMs are promising, significant enhancements are necessary to improve their pre-

cision and recall. It recommended further research and the inclusion of security-

specific metrics.

Al Debeyan et al. [2022] highlighted the criticality of the Log4jshell vulner-

ability1 to highlight the importance of effective vulnerability detection in software

systems. They critiqued traditional vulnerability prediction models for their binary

classification approach, which only identifies if a code component is vulnerable.

They argued that these models should also inform developers about the nature of

the vulnerabilities they detect. To enhance this, they developed a multiclass classifi-

cation model that categorises vulnerabilities by type. They analysed vulnerable and

non-vulnerable methods, extracting vulnerability types and decomposing the code’s

Abstract Syntax Trees (ASTs) into n-grams. This data was used to train classifiers,

and their random forest model achieved an F measure of 75% and a Matthews Cor-

relation Coefficient (MCC) of 74%. The study concluded that using n-grams from

ASTs to train classifiers offers a more insightful approach to vulnerability predic-

tion, as it provides detailed information on vulnerability types.

3.2.2 Machine Learning-Based Vulnerability Prediction

Machine learning has revolutionised vulnerability prediction by utilising historical

data and source code features to develop predictive models. This subsection re-

1https://www.ncsc.gov.uk/information/log4j-vulnerability-what-e
veryone-needs-to-know

https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
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views studies that applied machine learning techniques, including supervised, semi-

supervised, and unsupervised learning, to vulnerability prediction.

3.2.2.1 Supervised Learning-Based Vulnerability Prediction

Although in-code vulnerabilities can be complex, context-dependent, and challeng-

ing to detect, they inherently conform to finite patterns because they are based on

specific code structures. Therefore, supervised learning techniques are well-suited

to predict vulnerabilities by learning from labelled data. This subsubsection reviews

studies that have applied supervised learning to predict software vulnerabilities.

Younis and Malaiya [2014] emphasised the growing risk posed by the increas-

ing number of software vulnerabilities and the shrinking timeframe between their

public disclosure and exploitation. They stated that traditional methods for assess-

ing vulnerability exploitability often rely on subjective judgment and are not scal-

able, underscoring the need for automated, scalable, and objective methods. To

address this, the study proposed a new metric based on software structure prop-

erties such as attack entry points, vulnerability locations, dangerous system calls,

and reachability. Their research aimed to introduce and evaluate this new metric,

which they designed to reduce subjectivity and enhance scalability in assessing ex-

ploitation risks. Additionally, they developed a Support Vector Machines (SVM)

model using this metric to automatically predict the risk of vulnerability exploita-

tion. The model’s effectiveness was tested using data from the National Vulnera-

bility Database and various exploit databases. Preliminary results suggest that fac-

tors such as reachability and the presence of dangerous system calls strongly pre-

dict exploitability. The model showed promising results in distinguishing between

exploitable and non-exploitable vulnerabilities, outperforming traditional methods.

The study highlighted the potential of integrating software structure properties and

machine learning to automate and improve the accuracy of vulnerability exploita-

tion assessments. The study concluded that their approach could significantly help

prioritise vulnerabilities and allocate resources more effectively, offering a valuable

direction for future research in vulnerability assessment.
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Perl et al. [2015] stated that security experts recognise the exponential increase

in vulnerabilities despite intensified efforts to mitigate them. They pointed out that

pre-deployment security audits struggle with the impracticality posed by the vast

volume of code. In contrast, tools like Flawfinder, a Python-based tool that helps

identify vulnerabilities in C/C++ source code, although helpful in identifying vul-

nerabilities, suffer from high false positive rates. To improve this, the researchers

introduced VCCFinder, a tool designed to identify vulnerable code in repositories

with significantly lower false positive rates. They linked Common Vulnerabilities

and Exposures (CVE) entries to corresponding GitHub commits, creating a database

comprising 66 C and C++ projects with 170,860 commits. They used a crawler to

identify vulnerable commits by searching for CVE IDs in commit messages and val-

idated their accuracy through manual analysis of a 10% random sample. A Support

Vector Machines model trained using this database classified vulnerable commits.

The study reported that VCCFinder dramatically reduced the false positive rate

by up to 99% compared to Flawfinder, producing only 36 false positives against

Flawfinder’s 5,460. The research highlighted the potential for further research to

generalise their findings and develop recommendations for reducing vulnerabilities

in deployed software systems.

Li et al. [2016] stated that the rapid increase in software vulnerabilities poses

significant challenges in cybersecurity, as these vulnerabilities are often exploited

in various types of attacks. The researchers stated that patching vulnerabilities is

crucial, but reusing vulnerable code across different software versions and libraries

complicates vulnerability tracking and patching efforts. Existing tools frequently

fail to identify all instances of a vulnerability, highlighting the need for more effec-

tive automated detection systems. They introduced VulPecker, an automated sys-

tem that detects software vulnerabilities using code similarity analysis. This system

aims to overcome the limitations of current detection methods by identifying vul-

nerable code fragments across diverse software products and versions. VulPecker

utilises a Vulnerability Patch Database (VPD) and a Vulnerability Code Instance

Database (VCID), which store information about known vulnerabilities and their
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code instances. It characterises patches using defined features and applies various

code similarity algorithms to detect vulnerabilities. Classifiers are built to determine

the most effective algorithm for each vulnerability type. The researchers evaluated

VulPecker, demonstrating its ability to detect 40 vulnerabilities not recorded in the

National Vulnerability Database (NVD), including 18 previously unknown vulnera-

bilities and 22 vulnerabilities that were silently patched in subsequent releases. The

system significantly improved detection accuracy, achieving high precision and re-

call. The researchers attributed its success to selecting appropriate code similarity

algorithms for different types of vulnerabilities. They then suggested that future

research could extend its application to additional programming languages and ex-

plore scalability for larger software systems. This study highlighted the potential of

automated systems to enhance cybersecurity by enabling more thorough and accu-

rate detection of vulnerabilities and patching.

Sultana [2017a] emphasised the crucial role of software security in maintain-

ing overall software quality, noting the rising number of vulnerabilities and the so-

phistication of attacks. They critiqued traditional software metrics for their high

false negative rates and lack of specific guidance on secure coding. To overcome

these limitations, the study aimed to develop a more effective software vulnerabil-

ity prediction model by introducing the concept of traceable patterns, which can

be automatically recognised and extracted from source code. The research ex-

plored whether traceable patterns could more accurately predict vulnerable code

than traditional metrics by analysing class-level and method-level patterns. Data

from projects like Apache Tomcat and various Java web applications were used.

Machine learning and statistical methods were employed to predict vulnerabilities

using features derived from traceable patterns and traditional metrics. The findings

revealed that traceable patterns yielded a lower false negative rate and higher recall

compared to traditional metrics. Patterns like CompoundBox and Immutable indi-

cated secure code, whereas Outline and AugmentedType were associated with vul-

nerability. Their Support Vector Machines models demonstrated enhanced perfor-

mance in predicting vulnerabilities when trained with traceable patterns, presenting
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a substantial advancement in predicting software vulnerabilities. The study advo-

cated for integrating traceable patterns in vulnerability assessments to give develop-

ers better tools for prioritising code reviews and testing efforts. They recommended

that future research focus on refining these patterns and testing their applicability in

different programming languages and development environments.

Sultana and Williams [2017] focused on enhancing the early detection of vul-

nerable code to improve the cost-effectiveness and efficiency of software testing.

They explored the utility of class-level traceable patterns, known as micropatterns,

which can be automatically mined from source code. The study hypothesised that

micropatterns could outperform traditional software metrics in vulnerability predic-

tion. To verify this, they compared the effectiveness of micropatterns against con-

ventional class-level metrics in predicting vulnerabilities. Machine learning tech-

niques were applied using data from Java-based systems, such as Apache Tomcat

7 and Apache Camel, with micropatterns and class metrics as features. The results

demonstrated that micropatterns achieved higher recall in identifying vulnerable

classes than traditional metrics. Specifically, while class metrics showed precision

values ranging from 0.693 to 0.995 and recall values ranging from 0.250 to 0.786,

micropatterns, analysed using a Decision Tree algorithm, achieved precision values

between 0.604 and 0.705 and recall values between 0.875 and 0.923. The study

concluded that micropattern-based models are more effective at predicting vulner-

able Java classes than models based on traditional class-level metrics, suggesting a

significant potential for improving vulnerability detection methodologies.

Yang et al. [2017] stated that predicting software vulnerabilities before code

audits is ideal. However, many models lack granularity because they typically oper-

ate at file or component levels, which can be costly and impractical. To address this,

they introduced VulDigger, a code review tool for identifying potentially vulnera-

ble commits in software systems’ commit histories at the change level. The study

developed a dataset from Mozilla Firefox and used a classification tool that lever-

ages metrics from bug and vulnerability detection. They adopted a unique approach

similar to Perl et al. [2015]’s work (also reviewed) for semi-automatically mapping
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vulnerabilities to contributing changes. Their approach achieved a high precision of

0.92 but a low recall of 0.14. The study concluded that this method supports con-

tinuous security inspection by providing instant feedback on code changes, aiding

in more targeted and efficient vulnerability management.

Sultana et al. [2018a] aimed to enhance early vulnerability detection in soft-

ware development, noting the limitations of traditional metrics in accurately locat-

ing vulnerabilities. They investigated the efficacy of method-level traceable patterns

(nano-patterns) compared to traditional software metrics in vulnerability detection.

Their research involved experiments using Apache Tomcat 6 and 7, Apache CXF,

and two standalone Java web applications. They employed three machine learning

techniques to evaluate nano-patterns and method-level metrics. The results indi-

cated that nano-patterns provided lower false-negative rates and higher recall val-

ues than traditional metrics, making them more effective for identifying vulnerable

code. Specifically, nano-patterns achieved precision between 0.676 and 0.812 and

recall between 0.689 and 0.897, while traditional metrics showed higher precision

between 0.775 and 0.871 but lower recall between 0.500 and 0.776. The study

concluded by recommending that developers integrate nano-patterns as features in

vulnerability prediction models to improve detection accuracy.

Jimenez et al. [2019] critiqued the common assumption in vulnerability pre-

diction research that models are trained with sufficient and accurate labelling. They

noted that this idea does not reflect real-world scenarios, where data is often partial

and mislabelled, pointing out that this discrepancy can lead to promising empiri-

cal results that diminish under realistic conditions. To explore this, they analysed

1,898 real-world vulnerabilities across 74 releases of Linux Kernel, OpenSSL, and

Wireshark, evaluating the effectiveness of three vulnerability prediction approaches,

both with and without the unrealistic labelling assumption. Their findings showed

that unrealistic labelling could significantly skew results, with Matthews Correla-

tion Coefficient values of 0.77, 0.65, and 0.43 for Linux Kernel, OpenSSL, and

Wireshark, respectively, under unrealistic conditions. When using more realistic

labelling, these values fell to 0.08, 0.22, and 0.10. The study concluded that vulner-
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ability prediction research needs to improve experimental and empirical methods to

ensure the robustness and practical applicability of the findings.

Chong et al. [2019a] discussed the escalating threat posed by the quick transi-

tion from discovery to exploitation of software vulnerabilities. They highlighted the

inefficiencies of traditional vulnerability detection methods and explored the use of

software metrics as predictors for vulnerable code components in open-source Java

and Python projects. The aim was to assess the predictive capability of these metrics

and compare their effectiveness across these programming languages. The study fo-

cused on function-level metrics like Cyclomatic Complexity, Lines of Code (LOC),

and Nesting Levels. The research employed machine learning classifiers, including

Support Vector Machines and Logistic Regression (LR), to analyse vulnerabilities

in three Java projects (Apache Tomcat 6, Tomcat 7, and Apache CXF) and two

Python projects (Django and Keystone). The models were evaluated based on pre-

cision, recall, and false positive rates. The findings indicated that software metrics

were more effective in predicting vulnerabilities in Java projects, with SVM models

achieving a recall of 70-73% and LR models about 67-71%. In contrast, Python

projects saw lower recall rates, with SVM at 42-50% and LR at 40-46%. This

suggests that while software metrics are reliable predictors for Java, their effective-

ness in Python requires enhancement. The study concluded that software metrics

hold significant potential as predictors of vulnerable code components, especially in

Java. However, the varied performance across programming languages indicates a

need for further research to optimise the use of software metrics in different coding

environments. The researchers recommended investigating additional metrics and

advanced machine learning techniques to improve vulnerability prediction across

all domains.

Sultana et al. [2021] stated that maintaining software systems to mitigate vul-

nerabilities is crucial, especially as some vulnerabilities can remain dormant for

years and persist across software releases. In this context, the researchers focused

on how effectively software metrics can predict vulnerabilities at different granu-

larities. They conducted a comparative study using class-level and method-level
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metrics across four Java projects to train supervised learning models. These metrics

included traditional process indicators such as code size, complexity, and nesting.

The study found that class-level granularity achieved a recall of over 70% and a

precision of over 75%, while method-level metrics yielded recall and precision val-

ues of over 65% and 80%, respectively. These results suggest that targeted testing

based on these metrics can effectively mitigate the risks associated with dormant

vulnerabilities. The researchers highlighted the potential of using such metrics to

guide development teams in focusing their testing efforts on the most susceptible

areas of the code.

Zhou et al. [2021] highlighted the importance of secure programming practices

in mitigating vulnerabilities during software development. They stated that while

many studies have developed vulnerability prediction models using software met-

rics, the impact of vulnerability fixes on these metrics has been less explored. The

researchers examined how specific metrics change following vulnerability fixes,

using static analysis to compare metrics before and after fixes for 250 vulnerable

files from Apache Tomcat and Apache CXF. The analysis focused on metrics such

as class and method counts, variable instances, maximum nesting, lines of code,

and complexity. They observed a minimum increase of 2% in metrics including

CountDeclClass, CountDeclClassMethod, CountDeclClassVariable, CountDeclIn-

stanceVariable, CountDeclMethodDefault, CountLineCode, MaxCyclomaticStrict,

and MaxNesting post-fix. The findings suggest that understanding the effect of fixes

on these metrics could guide the development of more effective vulnerability pre-

diction models.

Recognising the need for secure software development, Medeiros et al. [2021]

conducted two experiments to enhance software security early in the development

lifecycle. The first experiment focused on developing vulnerability prediction mod-

els using software metrics calculated from the Linux Kernel and Mozilla Firefox,

including McCabe’s Cyclomatic Complexity, Lines of Code, Coupling Between

Objects, and Lack of Cohesion. They trained five different machine learning models

using these metrics for vulnerability detection. The second experiment introduced a
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consensus-based decision-making approach to categorise code components by their

perceived vulnerability into four categories: ‘Highly Critical’, ‘Critical’, ‘Low Crit-

ical’, and ‘Non-Critical ’. This method combined the classification results from the

first experiment to assess the potential vulnerability of code components. The study

found that the consensus-based method was more effective across various develop-

ment scenarios than standalone vulnerability prediction models. It concluded that

while software metrics alone may not be sufficient to identify vulnerable code due

to high false positives, they are valuable in scenarios where precise vulnerability

detection is crucial.

Ganesh et al. [2021] stated that organisations often deploy open-source systems

to manage sensitive data, necessitating rigorous security checks early in develop-

ment to prevent cyberattacks. Recognising the need for tools that enable developers

to identify vulnerabilities during coding, they assessed the utility of machine learn-

ing algorithms in detecting potentially vulnerable software components via source

code analysis. They sourced security vulnerability data and source code for Apache

Tomcat versions 4 to 10 to compute 43 object-oriented metrics, such as coupling,

cohesion, and complexity, which formed the basis of their model features. The

research utilised Naïve Bayes, Decision Tree, K-Nearest Neighbors (KNN), and

Logistic Regression. It found that the KNN algorithm achieved the highest accu-

racy at 80%. However, the researchers cautioned that these promising results are

specific to Apache Tomcat and may not apply universally across different software

systems.

Pereira et al. [2021] highlighted the unreliability of many vulnerability detec-

tion methods used by software developers, noting exceptionally high false-positive

rates. They proposed a combined approach using static analysis tool (SAT) alerts

and software metrics to enhance vulnerability detection in the Firefox Mozilla

project, which is written in C and C++. They constructed datasets incorporating

SAT alerts, software metrics, and their combination. After that, they conducted sev-

eral classification experiments, including binary classification, binary per category,

and multiclass classification using Decision Trees, Random Forests, Extreme Gra-
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dient Boosting, and Bagging algorithms. The results demonstrated that the Bagging

algorithm, utilising software metrics data, achieved the highest precision of 0.94,

while the combination of SAT alerts and software metrics reached the highest re-

call of 0.90. The best F1 measure was 0.36, using software metrics with Bagging.

The findings indicated that software metrics generally outperform SAT alerts in

machine learning models and highlighted the difficulty of simultaneously achieving

high precision and recall. The research revealed that vulnerable and non-vulnerable

files often have similar attributes, complicating the differentiation process.

Hocking et al. [2022] highlighted the crucial role of computers in modern so-

ciety but emphasised the growing threat of cyberattacks exploiting vulnerabilities,

thereby highlighting the need for practical vulnerability prediction tools. Their re-

search focused on methods that treat source code as text files, particularly inter-

pretability analysis, to identify the most critical features in predicting vulnerabil-

ities. The study involved developing features from over 2.4 million C and Java

components to predict vulnerability proneness. They employed an L1-regularised

logistic regression model, known for its interpretability due to the Lasso/L1 regu-

larisation technique, and used a Gradient Boosting algorithm as a non-linear base-

line. They also explored combining neural network embedding features with L1-

regularised models. A 10-fold cross-validation revealed that linear models with

interpretable features outperformed those relying solely on neural network embed-

dings. The study concluded that combining interpretable and neural network em-

bedding features is essential for optimal prediction performance. However, they

acknowledged the study’s limitation in considering only one interpretable feature,

code complexity, and suggested expanding the feature set to include code churn and

developer activity in future research.

Le and Babar [2022] noted that while many researchers have explored vulner-

ability detection in program functions and fine-grained code statements, few have

focused on using the output of these methods to assess vulnerabilities and gain

deeper insights into their nature, which is critical for vulnerability prioritisation.

To address this gap, they investigated automating function-level vulnerability as-
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sessment. Their dataset included 1,782 functions with 429 vulnerabilities from 200

real-world software systems. They gathered vulnerable and non-vulnerable code

statements from vulnerability-fixing commits sourced from the National Vulnerabil-

ity Database, GitHub Advisory Database, and VulasDB. The researchers extracted

the context of these vulnerable statements to generate features, which were then

input into six classifiers to develop models for predicting Common Vulnerability

Scoring System (CVSS) metrics. The study achieved a maximum performance of

0.64 Matthews Correlation Coefficient and 0.75 F1 score. The authors concluded

that further research is needed in function-level vulnerability assessment, with a

primary focus on techniques that effectively capture the relationships between vul-

nerable and non-vulnerable code statements.

Napier et al. [2023] highlighted the increasing difficulty of resolving software

vulnerabilities due to their growing complexity and severity. They added that while

traditional vulnerability detection methods are valuable, machine learning-based

approaches are gaining prominence. To evaluate the effectiveness of these methods,

the researchers conducted a study focusing on text-based machine learning models.

The study utilised a dataset of 344 open-source projects comprising 2,182 vulner-

abilities and 38 vulnerability types. To address the class imbalance, they extracted

functions from the source code and applied a pairing technique between fixed and

vulnerable versions of the same code samples. They tested seven machine learning

models and various Natural Language Processing and data processing techniques.

The experiments detected vulnerabilities within and across the top 10 projects and

the top 10 CWE vulnerability types based on the number of extracted function pairs.

After statistical analysis, the average precision ranged from 52.07% to 63.36%

within and across the top 10 projects and from 55.19% to 61.61% within and across

the top 10 CWE types. The study concluded that text-based machine learning vul-

nerability detectors are ineffective for detecting vulnerabilities across projects and

CWE types.
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3.2.2.2 Semi-Supervised Learning-Based Vulnerability Prediction

Semi-supervised learning is less explored in vulnerability prediction compared to

supervised learning. This subsubsection reviews a study that revisits a prior super-

vised learning-based approach using a semi-supervised technique.

VCCFinder, introduced by Perl et al. [2015] (also reviewed), is a machine

learning-based methodology for detecting vulnerabilities through code change anal-

ysis. Timothé et al. [2021] attempted to replicate VCCFinder’s supervised learning

approach but faced challenges due to the unavailability of the original resources.

Consequently, they developed an alternative method using a semi-supervised learn-

ing technique and a different set of features; their study also explored the difficulties

in identifying vulnerability-contributing commits, which often lack explicit tags or

messages. The alternative approach did not yield the same results as VCCFinder,

indicating a gap in replicability and effectiveness. Despite this, the authors regarded

their findings as a constructive baseline for future research in vulnerability predic-

tion, highlighting the field’s ongoing challenges.

3.2.2.3 Unsupervised Learning-Based Vulnerability Prediction

Like semi-supervised learning, unsupervised learning is less commonly used in vul-

nerability prediction. This subsubsection reviews studies that explore unsupervised

approaches, particularly anomaly detection-based vulnerability prediction.

To enhance security testing, Yamaguchi et al. [2013] developed Chucky, an

anomaly detection tool designed to identify missing checks in source code. Recog-

nising that many vulnerabilities stem from insufficient input validation, they used

Chucky to statically analyse the code for omitted conditions related to security-

relevant objects. The tool was tested on projects including Firefox, Linux, LibPNG,

LibTIFF, and Pidgin, discovering 12 previously unknown vulnerabilities in the lat-

ter two. The researchers also suggested that Chucky could be integrated with tech-

niques like fuzzing or symbolic execution to further analyse and rank the severity

of these vulnerabilities. Using anomaly detection to identify vulnerabilities, this ap-

proach marked a notable advancement in unsupervised vulnerability identification

approaches.
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In response to increasing cyberattacks targeting the Google Android platform,

Malik et al. [2019] conducted a study to detect anomalies in system calls within An-

droid applications, aiming to distinguish between benign and malicious behaviours.

The study hypothesised that the type, frequency, and sequence of system calls linked

to vulnerabilities exhibit distinct patterns. Using machine learning techniques, they

employed several metrics and parameters to monitor system processes and differen-

tiate between normal and harmful activities. Their K-Nearest Neighbours algorithm

achieved a precision of 0.852, a recall of 0.839, and an F1 score of 0.846. The Long

Short-Term Memory (LSTM) algorithm demonstrated a precision of 0.786, a recall

of 0.946, and an F1 score of 0.856. Additionally, an enhanced LSTM Genetic Algo-

rithm achieved a precision of 0.752, a recall of 0.988, and an F1 score of 0.854. The

study concluded that these machine learning approaches could effectively predict

bugs and vulnerabilities, with an F score of around 85%. This study also prioritised

anomaly detection techniques, similar to Yamaguchi et al. [2013] (also reviewed).

3.2.3 Deep Learning-Based Vulnerability Prediction

This subsection reviews studies that have applied deep learning techniques, includ-

ing Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN),

and LSTM networks, to predict software vulnerabilities.

Lin et al. [2018] stated that security testers increasingly rely on machine learn-

ing tools to detect software vulnerabilities before release; however, the lack of high-

quality training data often hinders their efforts. Addressing this, they aimed to de-

velop an approach that generalises across similar projects by learning high-quality

features. They employed a serialised AST and Continuous Bag of Words (CBOW)

neural embedding to capture code semantics. These were processed using a deep

learning algorithm to generate representations aligned with software vulnerabilities.

This neural representation, derived from existing software projects, was then trans-

ferable to new projects, facilitating vulnerability detection even with limited train-

ing data. To evaluate their model, the researchers manually labelled 457 vulnerable

functions and sourced over 30,000 non-vulnerable methods from six open-source

projects. Their results indicated that the model could accurately identify vulnera-
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bilities and adapt to various projects, outperforming traditional software metrics in

both in-project and cross-project scenarios.

Russell et al. [2018] developed a vulnerability detection tool in response to

the increasing emergence of new vulnerabilities, which heighten the risk of cy-

berattacks. They collected millions of C/C++ function-level code samples from

the SATE IV Juliet Test Suite, Debian Linux Distribution, and GitHub. Using a

custom lexer, they generated features from the source code, focusing on capturing

the most relevant tokens to reduce the overall token vocabulary size. They imple-

mented a CNN that interpreted the lexed source code for vulnerability detection.

They achieved a Precision-Recall Area Under the Curve (PR AUC) of 0.944, an

Area Under the Receiver Operating Characteristic Curve (ROC AUC) of 0.954, a

Matthews Correlation Coefficient of 0.698, and an F1 score of 0.840. The study

affirmed the effectiveness of deep feature representation learning on source code

for vulnerability detection, suggesting it is a promising research direction.

Li et al. [2019] addressed the pressing issue of software security by introduc-

ing a method to efficiently detect vulnerabilities amidst rising software complex-

ity and cyber threats. The study proposed a lightweight-assisted vulnerability dis-

covery method using deep neural networks (LAVDNN) designed to identify weak

functions in large-scale open-source software. This approach involved extracting

function names as semantic features from source code and employing deep neural

networks to differentiate between weak and benign functions. The research elabo-

rated on the construction of deep neural networks and evaluated their performance

across different models. The study found that LAVDNN effectively detected vul-

nerabilities in C/C++ and Python programs, achieving high F2 scores from 0.91 to

0.915, demonstrating the method’s precision. Moreover, the approach significantly

reduced false positive rates and efficiently pinpointed functions that required fur-

ther analysis. In conclusion, the paper endorsed LAVDNN as a valuable tool for

aiding manual code audits and enhancing the efficiency of vulnerability detection,

noting its minimal need for preprocessing and reduced human intervention. Signif-
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icant benefits were also highlighted, including the method’s adaptability to various

programming languages and its ability to identify vulnerabilities.

Feng et al. [2020a] emphasised the importance of automatic vulnerability de-

tection in source code, highlighting the role of AI and deep learning. They cri-

tiqued existing methods that treat source code as plain text for not fully utilising

syntax structure, which leads to redundancy and potential data loss from truncation

techniques used for variable-length data. To overcome these limitations, they pro-

posed a novel data processing approach using ASTs to capture all syntax-related

features, thereby reducing redundancy. Their method involved parsing source code

into ASTs to maintain syntax information and prevent data redundancy. They em-

ployed a pack-padded approach to handle variable-length data without truncation or

padding. The model was evaluated on over 260,000 functions covering 118 CWE

vulnerability types from the Juliet Test Suite in the National Institute of Standards

and Technology (NIST) Software Assurance Reference Dataset (SARD). They re-

ported F1 scores of 82.43 for buffer overflow vulnerabilities (CWE-121), 82.79 for

types with over 5,000 samples (‘5k’), and 82.76 for the entire dataset (‘ALL’). The

study concluded that while their approach significantly improved handling syntax-

related features in vulnerability detection, the challenges necessitate further inves-

tigation.

Wang et al. [2021b] observed that despite ongoing efforts in vulnerability de-

tection, the number of reported vulnerabilities continues to increase annually. They

stated that traditional methods transform source code into an intermediate repre-

sentation for machine learning or deep learning analysis. Still, this approach often

leads to high false positive and false negative rates due to the representation’s inabil-

ity to accurately capture vulnerability characteristics. To that end, they introduced a

feature extraction model using CNN to improve vulnerability detection. They anal-

ysed 65,513 code samples from the National Vulnerability Database and the NIST

Software Assurance Reference Dataset. They calculated software metrics and de-

rived secondary metrics to create a comprehensive dataset of code metrics. These

samples were classified as ‘vulnerable’ or ‘clean’, incorporating various program
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size and complexity metrics. The study effectively utilised this enriched dataset in

its CNN model, achieving precision and recall rates of approximately 80%. The re-

searchers highlighted the need for further research into characterising source code

to extract more comprehensive, high-quality features.

Dam et al. [2021] acknowledged that vulnerabilities and code flaws in software

systems can lead to severe issues like deadlocking, hacking, data loss, and system

failures. They added that traditional vulnerability detection methods rely on manu-

ally crafted features, such as complexity metrics or code token frequencies, which

may not fully capture the necessary semantic and syntactic information for an ef-

fective prediction model. To address this, the researchers introduced an approach

using the LSTM algorithm better to capture the semantic and syntactic attributes of

source code. They tested this method on an Android dataset comprising 18 applica-

tions and a Firefox dataset, parsing source code into tokens and employing a ‘code-

book’ concept from computer vision to develop features for both within-project and

cross-project predictions. Their evaluation compared this approach against tradi-

tional software metrics, Bag of Words, and Deep Belief Network using four classi-

fiers: Random Forests, Decision Tree, Naïve Bayes, and Logistic Regression. The

results showed that all metrics (precision, recall, F-measure, and AUC) exceeded

80% for the Android dataset, and similarly high results were observed for cross-

project evaluations. The study concluded that the researchers planned to extend

their approach to other application types and programming languages, aiming to

develop a comprehensive vulnerability prediction system that efficiently processes

raw input to predict vulnerabilities.

Addressing the challenge of detecting software vulnerabilities before exploita-

tion, Ziems and Wu [2021] introduced a method using Natural Language Processing

(NLP) techniques to analyse code. This approach treats source code as text repre-

sentations, utilising a database of over 100,000 C programming files identified with

123 vulnerabilities from the NIST Software Assurance Reference Dataset. They

implemented five deep learning models, including LSTM, Bidirectional LSTM,

and Bidirectional Encoder Representations from Transformers (BERT) The BERT
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models incorporate a transfer learning component trained in natural English. The

hybrid model, which combines BERT and LSTM, achieved an accuracy of 93.19%,

while the combination of BERT and BiLSTM recorded a slightly higher accuracy

of 93.49%. The study highlighted the effectiveness of maintaining contextual in-

formation in NLP-based methods for vulnerability detection, suggesting that these

techniques can significantly enhance the identification of potential security breaches

in software.

Zou et al. [2021] acknowledged that granular vulnerability detection is crucial

yet challenging. They stated that an ideal solution needs to detect vulnerabilities and

identify their types. They pointed out that existing deep learning solutions can de-

tect vulnerabilities but often fail to specify their types, a critical shortcoming given

the need to quickly pinpoint vulnerabilities in large source files. The researchers in-

troduced µVulDeePecker, a multiclass vulnerability detection system utilising deep

learning, which addresses this gap by incorporating the ‘Code Attention’ concept.

This concept builds upon the ‘Code Gadget’ idea to enhance the capture of semantic

details in program analysis. This system comprises three main modules: a parser

that transforms programs into Code Gadgets and Code Attentions, a vector rep-

resentation extractor, and a detector module that utilises the LSTM algorithm for

multiclass vulnerability detection. µVulDeePecker demonstrated impressive accu-

racy, achieving a false-positive rate of only 0.02%, a false negative rate of 5.73%,

and an F1 measure of 94.22%. The research concluded that despite its success, the

ongoing challenges in accurately classifying vulnerability types present significant

opportunities for future research in vulnerability detection.

Zhuang et al. [2021] tackled the challenge of detecting software vulnerabil-

ities, a crucial component of software security. The researchers stated that tradi-

tional methods, such as static and dynamic analyses, often suffer from high false

positives and incomplete coverage, leading researchers to explore AI models for

vulnerability detection. The study introduced a deep learning approach that auto-

matically learns insecure patterns from code corpora, utilising a novel Graph Neural

Network (GNN) architecture called 3GNN. The 3GNN model operates on disaggre-
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gated code graph representations, including ASTs, Data Flow Graphs (DFGs), and

Control Flow Graphs (CFGs). It synthesises these representations and incorporates

a new training loss metric that leverages the fine granularity of labelling. Tested

on two real-world datasets, Draper and QEMU+Ffmpeg, 3GNN outperformed text,

image, and graph-based approaches, achieving F1 scores between 0.54 and 0.62 and

MCC scores between 0.25 and 0.52. The model’s F1 score was 6.9% higher than

that of the compared model, highlighting its effectiveness in capturing vulnerability

signals. The study concluded with plans to explore the model’s explainability and

its application to new vulnerability detection datasets in future research.

Li et al. [2021] observed that most AI-driven vulnerability detection ap-

proaches only determine whether a piece of code is vulnerable without specify-

ing which part of the code is at risk. To address this limitation, they developed

IVDetect, an AI-driven tool to provide more detailed information on vulnerable

statements. IVDetect consists of two main modules: a graph-based vulnerabil-

ity detection model that takes the source code of a software system’s methods as

input and classifies them as vulnerable or non-vulnerable and a graph-based inter-

pretation module that identifies and ranks the relevant vulnerable statements within

these methods. The results showed significant improvements in top-10 nDCG and

MAP ranking scores, ranging from 43% to 84% and 105% to 255%, respectively,

compared to similar tools. IVDetect successfully identified the correct vulnerable

statements in 7% of cases within a top-5 ranked list, with accuracy improvements

ranging from 12.3% to 400% over other interpretation models. The study concluded

by comparing IVDetect’s performance with other AI-driven vulnerability detectors.

The researchers planned to evaluate its performance against static analysis tools in

future research.

Wartschinski et al. [2022] highlighted that identifying vulnerable code is cru-

cial for enhancing software security, yet manual detection is time-consuming, re-

quires expertise, and is inefficient. They asserted that automated vulnerability de-

tection should meet critical criteria: high accuracy with granular identification, ap-

plicability across various software systems, and ease of use with minimal setup.
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They developed VUDENC (Vulnerability Detection with Deep Learning on a Nat-

ural Codebase) to address these needs. This deep learning-based tool learns the

features of vulnerable code from a real-world Python codebase. The researchers

compiled a dataset of Python project commit histories from GitHub, focusing on

seven OWASP Top 10 vulnerability types. Using the Word2Vec concept, they cre-

ated vector representations of the code and trained their model with an LSTM algo-

rithm. The model achieved recall rates of 78%–87%, precision rates of 82%–96%,

and F1 scores of 80%–90%. The study emphasised the importance of understand-

ability and actionability in making such tools practical for developers. The authors

also suggested that future research could explore replacing their Word2Vec-based

approach with more programming language-specific models, such as Code2Vec,

which incorporate detailed AST-like features.

Binkley et al. [2022] argued that effective vulnerability prediction helps de-

velopers prioritise efforts by targeting the most at-risk software components. They

critiqued Li et al. [2019]’s approach (also reviewed), which used deep learning to

predict vulnerabilities based on function names, for its limited ability to identify

and rank "dangerous" words. To address these shortcomings, the researchers pro-

posed an improved method that systematically splits function names into constituent

words, analysing the "danger" associated with each word. They defined a "danger-

ous" word as one whose presence in a function’s name correlated with a higher

likelihood of vulnerability. For instance, functions involving user input, which are

often vulnerable to stack attacks, typically contain words like "read" or "input,"

which they classified as "dangerous." Functions with these terms were flagged as

potentially vulnerable. The study analysed 73,000 vulnerable and 950,000 non-

vulnerable functions, finding that the deep learning model heavily relied on individ-

ual words for classification, especially in datasets with a homogeneous vocabulary.

The researchers concluded their approach could be efficient in within-project vul-

nerability prediction, where such vocabulary consistency is typical.
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Hanif and Maffeis [2022] noted the steady rise in vulnerabilities since 2016,

as reported by MITRE2, which has driven increased research in vulnerability de-

tection. They observed that deep learning techniques, particularly Bidirectional-

LSTM and Graph Neural Networks, have shown promising results due to their abil-

ity to capture syntactic and semantic code information. Building on this success,

the authors developed VulBerta, a transformer-based neural architecture. They pre-

trained a RoBerta model using a custom tokenisation pipeline on functions from

open-source C/C++ software projects. This deep knowledge representation, rich in

syntactic and semantic information, was then used to train their vulnerability detec-

tion classifiers. A key aspect of their approach was its simplicity, which they at-

tributed to achieving a slightly higher Matthews Correlation Coefficient of 55.86%

compared to 52% in a related study by Zhuang et al. [2021] (also reviewed). The au-

thors concluded that its conceptual simplicity and low complexity distinguish their

research.

Luo et al. [2022] highlighted the significance of source code representation

in AI-driven vulnerability detection. They introduced a programming language-

agnostic technique called Compact Abstract Graphs (CAGs), designed for use with

Graph Neural Network models. They derived CAGs from compact representations

of abstract graphs built from the source code’s ASTs. The performance of CAGs

was evaluated on C and Java datasets from NVD and SARD. On the C dataset,

they achieved a maximum accuracy of 93.21%, a precision of 92.51%, a recall of

93.47%, and an F1 score of 92.90%. For the Java dataset, the maximum values were

94.09% accuracy, 92.29% precision, 94.77% recall, and an F1 score of 93.40%. The

study concluded that CAGs outperform traditional representations, such as ASTs,

CFGs, and PDGs.

Zhang et al. [2022] highlighted the importance of vulnerability detection in

information security, noting the limitations of existing approaches that rely on vari-

ous code representation methods and deep learning algorithms. To overcome these

challenges, they proposed a weight graph deep learning-driven approach. Their

2https://www.cvedetails.com/browse-by-date.php

https://www.cvedetails.com/browse-by-date.php
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method involved five key steps: data collection, static analysis, vector input, Weight

Function Graph (WFG) transformation, and graph comparison, where the input is

the source code and the output is identified as potential vulnerabilities. Using data

from four programs, their tool, VDBWGDL, achieved a maximum F1 score of ap-

proximately 0.87. The study concluded that their approach outperformed existing

vulnerability detection methods.

Fu and Tantithamthavorn [2022] highlighted the significant issues caused by

vulnerabilities in software systems, such as deadlocks, information loss, and sys-

tem failures, emphasising the importance of early vulnerability prediction during

software development. They noted that IVDetect by Li et al. [2021] (also reviewed)

and similar AI-driven approaches suffer from inaccuracies and lack precision. To

address these shortcomings, they developed LineVul, designed to improve IVDe-

tect by predicting vulnerable functions and pinpointing vulnerable lines. LineVul

achieved a 91% F1 score in function-level prediction, surpassing IVDetect’s per-

formance. It also achieved a top-10 accuracy of 0.65 in line-level vulnerability

localisation and a recall value of 0.75 for cost-effectiveness. The study concluded

that LineVul is expected to assist security analysts in identifying vulnerable lines

more cost-effectively.

Cheng et al. [2022] noted the increasing role of machine learning and deep

learning across various fields, particularly in developing new static deep learning

techniques for vulnerability detection as alternatives to traditional methods. They

explained that current methods often abstract source code into graphs to train classi-

fication models that distinguish between vulnerable and non-vulnerable code frag-

ments. However, they criticised this approach for focusing on classification rather

than understanding the underlying vulnerability semantics. They introduced Con-

traFlow, a contrastive value-flow embedding approach designed for precise static

software vulnerability detection to address this limitation. ContraFlow involves

both a training and prediction process. The training phase includes contrastive

value flow embedding, value-flow path selection, and model training. It takes

value-flow paths extracted from unlabelled source code as input and produces a
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trained model. The prediction phase then applies this model to unseen code arte-

facts for vulnerability detection. Their results showed that the ContraFlow-Method

achieved an F1 score of 75.3%, while the ContraFlow-Slice reached 82.8%. The

study concluded that their approach outperformed similar methods developed in

related works.

Tang et al. [2023] emphasised the importance of identifying and addressing

potential vulnerabilities to secure software systems. They noted that traditional

static vulnerability detection methods rely heavily on developer expertise. Further-

more, they added that most deep learning approaches typically use a single sequence

or graph embedding method, often overlooking the structured information in the

source code. To address these limitations, they developed a deep learning-based

approach called Combining Sequence and Graph embedding for Vulnerability De-

tection (CSGVD). This approach models function-level vulnerability detection as a

graph binary classification task. The approach has two phases: feature extraction

and neural network model development. They introduced the PE-Bl module using

the CodeXGLUE dataset, which includes over 27,000 samples from two sizeable

open-source C projects. This module uses sequence embedding to extract seman-

tic information from a code’s control flow graph as node embeddings. They then

utilised CSGVD’s graph neural networks to capture the structural information of

the control flow graph. Combining these elements, they developed feature repre-

sentations for their neural model. Their approach achieved a maximum precision of

65.49% and a recall of 58.99%. The study concluded with the researchers express-

ing interest in further exploring node and graph embedding in future research.

3.2.4 Systematic Literature Reviews on Vulnerability Prediction

This subsection provides a concise overview of the field’s trends and directions,

reviewing systematic literature reviews on vulnerability detection and prediction.

By juxtaposing the findings in this subsection with the literature discussed earlier,

we aim to validate our conclusions on the state of the art in vulnerability detection

and prediction and suggest future research directions.
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Ghaffarian and Shahriari [2017] tackled the pressing issue of software secu-

rity vulnerabilities, emphasising their significant impact on computer security. The

study reviewed the increasing use of machine learning and data mining techniques

for vulnerability analysis, categorised the existing works, discussed their benefits

and limitations, and identified gaps in the research. The authors emphasised the im-

portance of feature engineering and the need for novel machine learning algorithms

specifically designed for software vulnerability analysis. They concluded that the

field remains underdeveloped and lacks standard benchmark datasets. They rec-

ommended that future research focus on developing robust features, designing new

algorithms, and establishing standard benchmarks for evaluation and comparison.

Jin and Yu [2018] noted that as software systems grow, so do the vulnera-

bilities they contain, making detection increasingly crucial. The researchers re-

viewed machine learning-driven methods for vulnerability prediction, focusing on

program representation and vectorisation techniques. They discussed four primary

code representation approaches often used in vulnerability prediction: software

metrics, language models, and tree and graph representations. The study high-

lighted that supervised learning methods, particularly CNN and Bidirectional Long

Short-Term Memory (BiLSTM) networks, are the most effective and are likely to

dominate future research. The study concluded that current methods often operate

at a coarse-grained level, highlighting the need for granular vulnerability prediction

approaches.

Lin et al. [2020b] reviewed vulnerability detection methods leveraging deep

learning. They observed that the rapid expansion of open-source software projects

has created vast data opportunities for machine learning. The study highlighted how

recent advances in deep learning, particularly in Natural Language Processing, have

enabled neural models to better understand and identify vulnerable code patterns.

The researchers focused on evaluating how these deep learning methods utilise neu-

ral networks to comprehend code semantics and identify vulnerabilities. They also

identified key challenges in the field and proposed several promising future research

directions.
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Croft et al. [2022] emphasised that software vulnerability prediction relies

heavily on data. They added that despite its growing popularity in software en-

gineering, data preparation challenges hinder the widespread adoption of this ap-

proach in the industry. To address this, they systematically reviewed 61 peer-

reviewed papers focusing on data preparation techniques and challenges in vul-

nerability prediction. The study identified 16 key challenges, including data gen-

eralisability, accessibility, scarcity, label noise, and data noise. The authors recom-

mended consolidating these findings into a comprehensive resource to enhance data

preparation efforts in vulnerability prediction research.

Nazim et al. [2022] emphasised the rising number of software vulnerabilities

driven by the proliferation of new applications, highlighting the need for advanced

detection methods to counter cyberattacks. They noted that AI-driven vulnerability

detection is becoming increasingly important as human efforts alone are insuffi-

cient to manage these threats. They conducted a systematic literature review on

deep learning-based vulnerability prediction methods to gain a deeper understand-

ing of the field. Using five scientific databases, they identified 303 studies published

between 2017 and 2022 and filtered them down to the ten most relevant papers. The

review highlighted fundamental source code representation techniques, including

ASTs, code gadgets, code property graphs, lexed representations, and semantics-

based vulnerability candidates. Convolutional and recurrent neural networks were

noted as the most prevalent models. Popular datasets mentioned were NVD, SARD,

Draper VDISC, REVEAL, and FFMPeg+Qemu. The study concluded by acknowl-

edging challenges, particularly the nascent stage of deep learning-based vulnerabil-

ity prediction and the numerous unexplored areas in the field.

3.2.5 Comparative Studies on Vulnerability Prediction

This subsection reviews recent comparative studies on vulnerability detection and

prediction, aiming to validate their conclusions by comparing their findings with the

literature discussed earlier. These studies evaluate the effectiveness of deep learning

versus traditional machine learning, assess the performance of various detection and

prediction methods, and examine the factors that influence these approaches.
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Theisen and Williams [2020] noted that the widespread adoption of vulnera-

bility prediction remains limited despite extensive research using various metrics.

They highlighted the need for software developers to have clear insights into the

predictive power, data, and resource requirements of these models, which is es-

sential for informed project decision-making. They also added that compared to

traditional bugs, the relative rarity of vulnerabilities further hampers broader accep-

tance. To aid in selecting the most predictive features, the researchers conducted

a comparative study of vulnerability prediction models. They replicated four mod-

els at the source file level on Mozilla Firefox, analysing 28,750 source code files

with 271 vulnerabilities using software metrics, text mining, and crash data. They

then examined the impact of combining features from these models on prediction

performance. By integrating features from three models, they improved their best

model’s F1 score from 0.20 to 0.28. Their findings revealed that crash data, the

FanOut dependency metric, and the string ‘nullptr’ (from their text mining model)

were among the most predictive features. The study highlighted the importance of

developing new features with strong predictive capabilities and suggested explor-

ing novel analytical approaches to address the challenge of vulnerability scarcity in

software systems.

Zheng et al. [2020] highlighted that despite numerous studies on vulnerabil-

ity detection, theirs was the first to identify and evaluate the influence of four key

factors on detection performance. These four factors were dataset quality, classi-

fication models, vectorisation techniques, and function or variable name changes.

They emphasised that dataset quality, classification models, and vectorisation tech-

niques directly impact detection outcomes. Additionally, they noted that changes

in function or variable names could indirectly affect detection features and per-

formance. The researchers conducted a comparative study to assess these factors,

utilising two datasets: the National Vulnerability Database and the NIST Software

Assurance Reference Dataset, and examining three vulnerability types: CWE-119,

CWE-399, and CWE-664. Their most significant finding was that deep learning

models, particularly Bidirectional LSTM, outperformed traditional machine learn-
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ing models. This result aligns with findings from Hanif and Maffeis [2022] (also

reviewed) and Jin and Yu [2018] (also reviewed), which support the effectiveness

of Bidirectional LSTM. The study concluded by identifying areas for improvement,

such as incorporating more vulnerability types and conducting a deeper analysis of

dataset attributes, as the two datasets used exhibited different characteristics that

influenced the results. They also stressed the need for more accurate and stable

evaluation models.

Mazuera-Rozo et al. [2021] discussed the increasing use of deep learning tech-

niques in software engineering, particularly in the context of vulnerability detec-

tion. However, they pointed out that the evidence supporting the superiority of

deep learning over traditional machine learning remains inconclusive. To explore

this further, they conducted an empirical study comparing the effectiveness of deep

learning models with traditional machine learning techniques. The study evalu-

ated two deep learning models, CNN and RNN, against a shallow machine learning

model, specifically a Random Forest classifier. The evaluation focused on binary

and multi-class classification of vulnerabilities using three C/C++ datasets, which

contained 1.8 million functions, of which 400,000 were vulnerable. Additionally,

they established a baseline with Google Cloud Platform’s AutoML. Their findings

revealed that the traditional Random Forest algorithm performed competitively with

the deep learning models. This outcome suggests that traditional machine learning

classifiers still provide a robust baseline against more advanced deep learning tech-

niques. The study concluded that achieving reliability in vulnerability detection

remains challenging and that current methods still have considerable room for im-

provement.

This section reviewed several vulnerability prediction studies, including those

using supervised, semi-supervised, unsupervised, and deep learning techniques.

The studies highlighted the importance of feature engineering, data preparation, and

model selection in vulnerability prediction. They also identified key challenges, in-

cluding data-related issues, various feature engineering approaches, and model per-

formance, and suggested future research directions to address these challenges. In
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the following section, we review studies on general software bug prediction, which

encompasses a broader perspective on vulnerabilities.
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3.3 Software Bug Prediction

This section reviews studies on software bug prediction, focusing on bug prediction

studies that influenced our work, machine learning-based bug prediction studies,

and related topics. Since bugs are a superset of vulnerabilities, the studies reviewed

in this section do not necessarily address bugs with security implications, like those

in the preceding section.

3.3.1 Bug Prediction Studies Influencing Work

This subsection reviews studies that have significantly influenced our work, specif-

ically in terms of our method-level granularity choice to vulnerability prediction.

Giger et al. [2012] stated that predicting bugs at a higher granularity than the

method level is challenging, as it requires developers to examine thousands of lines

of code to find predicted bugs. At the same time, extensive source code files are also

more likely to be bug-prone. They proposed a method-level bug prediction tech-

nique to reduce developers’ manual efforts and increase bug elimination efficiency.

They utilised code change metrics and source code metrics from 21 open-source

Java projects to develop bug prediction models, achieving a maximum precision of

84% and a recall of 88%. The study found that code change metrics significantly

outperformed source code metrics. The researchers expressed interest in further

exploring time-based code changes and expanding features for future prediction

models.

Pascarella et al. [2018] pointed out that bug prediction aims to identify po-

tentially defective software components, adding that researchers have found that

combining product and process metrics yields the best results. In re-evaluating

method-level bug prediction, they replicated Giger et al. [2012]’s study (also re-

viewed) across different systems and periods. They developed a method-level bug

prediction model using the same features as Giger et al. [2012] and assessed its

performance on 13 projects using 10-fold cross-validation. Notably, they did not

use the SZZ algorithm, a popular algorithm for identifying bug-inducing changes,

citing concerns about its reliability. Their results indicated that the models under-
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performed under rigorous evaluation, highlighting persistent challenges in method-

level bug prediction.

3.3.2 Other Bug Prediction Studies

This subsection reviews other notable studies on bug prediction that have con-

tributed to the advancement of the broader software bug prediction field.

Kim et al. [2008] asserted that the software development process would ben-

efit significantly if developers could quickly identify defective changes. The re-

searchers introduced change classification for bug prediction to address this need.

They highlighted its advantages: granular prediction, no need for semantic source

code information, applicability across languages and projects, and fast performance.

They identified bug-introducing changes in 12 open-source projects, extracting fea-

tures from metadata, change logs, source code, file names, and complexity metrics.

Their classifier, which distinguishes between buggy and clean changes, achieved

an accuracy of 78% and a recall of 60%. The researchers emphasised the impor-

tance of real-time assessment tools within IDEs and highlighted several unresolved

challenges in this field.

Ferzund et al. [2009] asserted that managing software changes is challenging

yet essential, as changes can introduce errors that lead to failures. They pointed

out that these changes often occur in small code units and hunks across several

source files. The researchers proposed a hunk classification technique using hunk-

related metrics for granular bug prediction. They introduced various hunk metrics,

processed revision histories to extract hunks, and identified bug-inducing ones. Us-

ing Logistic Regression and Random Forest algorithms, they developed models to

classify hunks as either ‘buggy’ or ‘not buggy’ across seven open-source projects,

achieving an accuracy of up to 81%, a precision of 77%, and a recall of 67%. The

study also highlighted the varying effectiveness of individual metrics and suggested

future research to refine these metrics further and explore different machine learning

techniques.

Shivaji et al. [2009] stated that machine learning classifiers are widely used to

predict buggy changes in source files. However, they often suffer from performance
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issues due to the inclusion of multiple features, which can slow down prediction

times and hinder practical application. The researchers explored feature selection

techniques in classification-based bug prediction to enhance performance by re-

moving less essential features. They first identified bug fixes using log messages

across 11 software projects and identified the related bug-inducing changes. After

streamlining the features, they trained Naïve Bayes and Support Vector Machines

classifiers with the reduced feature set. The study found that the Naïve Bayes clas-

sifier improved by 21% compared to Kim et al. [2008] (also reviewed), while the

SVM classifier showed a 9% increase in F-measure. The researchers suggested that

these improvements could facilitate the real-world adoption of classifier-based bug

prediction by optimising performance and precision.

Yamada and Mizuno [2014] stated that many studies have focused on identi-

fying and mitigating fault-prone software modules. They proposed a text filtering-

based fault detection technique, hypothesising that bugs are related to specific words

and contexts within a component. They used Git to obtain bug-fixing changes

from two projects, Apache OpenJPA and Apache MINA and identified related

bug-inducing changes. A text-filtering technique was then used to classify these

changes. Their predictions for fault-prone modules in Apache OpenJPA achieved a

recall of 0.97, a precision of 0.42, and an F1 measure of 0.60. For Apache MINA,

the recall was 0.99, with a precision of 0.47 and an F1 measure of 0.64. The re-

searchers expressed interest in testing their technique on more projects to compare

its effectiveness.

An and Khomh [2015] stated that organisations are cautious about software

crashes, often relying on automatic crash reporting tools to triage crash types and

related bugs. They added that while these tools improve debugging efficiency, they

act reactively after a crash occurs. To that end, the authors sought a more proac-

tive approach by studying crash-inducing commits in Mozilla Firefox. They linked

Firefox’s crash reports to associated bugs and mapped these to relevant commits.

From commit logs and source files, they extracted 24 metrics to develop predictive

models for crash likelihood. Using algorithms such as GLM, Naïve Bayes, C5.0,
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and Random Forest, the classifiers achieved a precision of up to 61.4% and a recall

of 95.0%. The study found that crash-inducing commits account for over 25% of all

Firefox commits, often involving novice developers and significant code changes.

Ray et al. [2016] posited that real-life code resembles natural language, being

repetitive and predictable. They suggested that various tools, such as suggestion

engines and coding standard checkers, exploit the ‘naturalness of software.’ Code

that seems improbable or ‘surprising’ to these models may be considered ‘unnat-

ural’ and potentially faulty. The researchers analysed bug-fixing commits from 10

Java projects and traced corresponding bug-inducing commits using tools such as

‘git-diff’ and ‘git-blame.’ They assessed the naturalness of buggy code and its fixes,

finding that it is typically more unnatural or entropic but becomes more natural af-

ter fixes. The study concluded that code entropy scores are a valuable indicator for

defect prediction.

Despite extensive research in bug prediction, Bowes et al. [2016] noted that

exploiting mutation testing by-products was still underexplored. They proposed

a novel ‘mutation-aware’ fault prediction approach that combines traditional soft-

ware metrics with mutation testing-related metrics to enhance bug prediction mod-

els. The effectiveness of this technique relies on the test suite’s capability to de-

tect bugs. They gathered mutation and traditional metrics from three substantial

open-source and closed-source systems, encompassing over 220,000 lines of code.

They applied Naïve Bayes, Logistic Regression, J48, and Random Forest models,

cross-validated their approach, and evaluated them using the Matthews Correlation

Coefficient. Their results demonstrated an improvement, with static code metrics

achieving an MCC of 0.447, a 0.035 increase over similar studies. The combina-

tion of static and dynamic mutation metrics provided the best prediction perfor-

mance, suggesting significant potential benefits for bug prediction and mutation

testing fields.

Moussa et al. [2022] highlighted that software defects pose a significant chal-

lenge in the software industry, necessitating effective prediction methods to enhance

software reliability. They added that traditional defect prediction models, which
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frame the task as a two-class classification problem, often suffer from performance

issues due to the imbalance between defective and non-defective instances. Then,

they pointed out that recent studies have considered one-class classifiers, such as

the One-Class Support Vector Machines (OCSVM), which trains using only non-

defective instances. To this end, they explored the efficacy of OCSVM across vari-

ous defect prediction scenarios, including within-project, cross-version, and cross-

project contexts. Then, they compared its performance with that of traditional clas-

sifiers such as Random Forest and Support Vector Machines. The study utilised

empirical data from NASA and realistic datasets to evaluate OCSVM in three sce-

narios against classifiers such as Random Forest, Naïve Bayes, and Logistic Regres-

sion. Their evaluation metrics included the Matthews Correlation Coefficient and

statistical tests such as the Wilcoxon Signed-Rank Test and Vargha and Delaney’s

A12 effect size. Their results showed that OCSVM often outperformed the Ran-

dom Forest classifier in some cases, particularly in cross-version and cross-project

predictions. Interestingly, they found that OCSVM sometimes surpassed Support

Vector Machines, especially with heterogeneous data. A hyper-parameter-tuned

version of OCSVM (OCSVMT) improved performance, suggesting its suitability

for diverse datasets. Their findings also showed that while OCSVM showed po-

tential in defect prediction, especially when defective instances are scarce, Random

Forest remained the most reliable classifier across scenarios. The study suggested

further refining one-class classifiers and exploring their broader application to max-

imise their utility in defect prediction.

Shailee et al. [2024] emphasised the significance of tools for early defect de-

tection in contemporary software systems. They utilised the NASA-curated JM1

dataset to evaluate various machine learning algorithms for predicting software

bugs, aiming to enhance software quality and reduce maintenance costs. The study

evaluated the effectiveness of various algorithms, including Naïve Bayes, Decision

Trees, Random Forest, Support Vector Machines, Logistic Regression, Artificial

Neural Networks, and K-Nearest Neighbors, using the JM1 dataset, which com-

prises 10,885 instances and 22 attributes. The dataset was divided into an 80%



3.3. Software Bug Prediction 95

training set and a 20% testing set. The researchers utilised Python-based machine

learning libraries and evaluated the performance of their algorithms using precision,

recall, F1 score, accuracy, and Root Mean Squared Error (RMSE) metrics. Random

Forest emerged as the top performer, achieving an accuracy of 81%, the highest

precision and recall rates, and the lowest RMSE, indicating its effectiveness in pre-

dicting software defects. Logistic Regression also performed well, with an accuracy

of 80%. Other models exhibited varied performance levels but were generally less

effective. The results confirm that Random Forest is an effective tool for early

bug detection, suggesting its potential for broader application in software develop-

ment. The study recommends further research on advanced feature engineering and

applying these models to different datasets and software projects to enhance their

generalisability and effectiveness.

Chowdhury et al. [2024] addressed the challenges posed by software bugs,

noting the limited practical adoption of existing bug prediction models due to their

coarse granularity at class or file levels. Their study focused on method-level bug

prediction (MLBP), aiming to provide more precise and actionable insights for the

early detection and resolution of bugs. The research evaluated the efficacy of MLBP

models in realistic, time-sensitive scenarios to identify limitations and propose im-

provements. They used three publicly available datasets and a new dataset com-

prising 774,051 Java methods from 49 open-source projects. The study assessed

MLBP models under realistic conditions, rather than using traditional k-fold cross-

validation, to prevent incorporating future data into the training process. They

introduced a more accurate bug labelling approach to reduce noise, investigated

method age as a predictor for concept drift, and explored the effectiveness of se-

lecting optimal training projects. The research also evaluated the benefits of using

separate models for small and large methods. Their findings indicated that existing

MLBP models underperform in realistic scenarios due to issues such as noisy data

and the misuse of future information during training. The study showed improved

prediction accuracy with a refined bug labelling approach, confirmed that method

age could effectively capture concept drift, and highlighted that tailored models for
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different method sizes could enhance accuracy. The study concluded that while

MLBP is an open research area, addressing issues such as data noise, concept drift,

and project selection for training could significantly enhance the models’ practi-

cal applicability. The study recommended that future research focus on refining

labelling techniques, leveraging method age, and developing tailored models to en-

hance MLBP effectiveness in software engineering.

This section concludes our literature review, summarising the key findings

from vulnerability and bug prediction studies. The subsequent section will present

our observations from the reviewed literature, highlighting trends, challenges, and

future research directions in the field.
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3.4 Observations in the Literature
This section summarises our observations from the reviewed literature, cover-

ing datasets, methodologies, evaluation metrics, outcomes, and emerging research

trends.

3.4.1 Dominance of Deep Learning Techniques

Deep learning techniques have dominated vulnerability prediction research for the

better part of the last decade. However, Mazuera-Rozo et al. [2021] challenges the

assumed superiority of deep learning, demonstrating that traditional machine learn-

ing can achieve comparable results. Regardless, deep learning remains favoured,

possibly due to trends, perceived sophistication, or technical familiarity.

3.4.2 Success Stories of the Long Short-Term Memory Algo-

rithm

Recent studies consistently highlight the LSTM algorithm and its variants as the

leading methods for vulnerability prediction based on code representation.

3.4.3 Random Forest as a Reliable Baseline

Random Forest has emerged as a reliable baseline for both vulnerability and bug

prediction, often consistently outperforming many other traditional machine learn-

ing algorithms. This performance could be attributed to the Random Forest clas-

sifier’s ability to handle high-dimensional data and complex relationships between

features.

3.4.4 Challenges in Adopting Vulnerability Prediction

Vulnerability prediction faces considerable barriers to widespread adoption, with

several factors hindering broader implementation. These challenges include techni-

cal issues such as data quality and availability, the complexity of modern software

systems, and the absence of standardisation. We briefly explore these factors below.

3.4.4.1 Data Challenges

A key challenge in developing effective vulnerability prediction models is the lim-

ited availability of large, diverse, and representative datasets. Accurate models rely
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on comprehensive data about past vulnerabilities, their characteristics, and corre-

sponding fixes. However, such datasets are often scarce or inaccessible, complicat-

ing the training and evaluation of prediction models.

3.4.4.2 Complexity of Modern Software Systems

Modern software systems are inherently complex, with numerous dependencies,

libraries, and components. This complexity makes it challenging to develop a vul-

nerability prediction solution that effectively addresses these diverse elements. Vul-

nerabilities may emerge from interactions between components or unexpected be-

haviours between software layers. Additionally, the continuous evolution of soft-

ware, with frequent updates, patches, and new features, further complicates predic-

tion efforts.

3.4.4.3 Lack of Standardisation

A standardised approach is crucial for the widespread adoption of AI-driven vul-

nerability prediction. While there is consensus in the literature on the rapid growth

of software vulnerabilities and the relevance of AI techniques, there is significant

disharmony on the steps required to implement practical solutions. This lack of

standardisation hinders software professionals from adopting these methods outside

the research community.
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3.5 Future Research Directions
This section outlines future research directions based on the reviewed literature.

Based on the identified challenges and opportunities, we provide recommendations

for advancing vulnerability prediction research and highlight areas for further ex-

ploration.

3.5.1 Real-Time Prediction

As Kim et al. [2008] suggested, integrating real-time bug prediction tools within

IDEs could greatly benefit developers. Future research should explore more effi-

cient and seamless integration methods.

3.5.2 Granular Prediction and Contextual Information

Research by Giger et al. [2012] and Ferzund et al. [2009] has shown the benefits of

method-level and hunk-level prediction. Future studies should continue to explore

these granular techniques to enhance their performance.

3.5.3 Leveraging Large Language Models (LLMs) for Vulnera-

bility Prediction

With the rise of Large Language Models, future research should explore leveraging

these models for vulnerability prediction.

3.5.4 Data Preparation and Standardisation

Data-related challenges and the lack of standardisation are major obstacles in vul-

nerability prediction research. Future work should aim to develop standardised

datasets and data preparation techniques to improve model training and evaluation.

Creating benchmark datasets that cover various vulnerabilities, software systems,

and programming languages is crucial for advancing the field. Additionally, de-

veloping comprehensive datasets that mirror real-world software development con-

ditions is essential. Future research should prioritise creating and using realistic

datasets for more accurate evaluation of vulnerability prediction models.
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3.6 Conclusion
We have reviewed the vulnerability and bug prediction literature, summarising key

findings and offering insights for future research. Our review highlights the growing

focus on developing more effective prediction models, mainly through AI-driven

techniques. This shift has spurred innovation in feature engineering, which is now a

central focus in the field. Notable techniques include the codebook method by Dam

et al. [2021], the mutation-aware approach by Bowes et al. [2016], and the concept

of the ‘naturalness of software’ by Ray et al. [2016]. We contribute to this area

by proposing a novel feature engineering technique that uses information retrieval

methods to build features encoding vulnerability code semantics from known vul-

nerable code samples. This technique represents a novel contribution to the field

of vulnerability prediction. To our knowledge, it is the first information retrieval-

driven technique in the field of vulnerability prediction research. We are confident

that it will significantly advance vulnerability prediction and aid researchers in de-

veloping more effective models, whether from scratch or as a data augmentation

technique for existing models, as well as for the newly emerging Large Language

Models. In the following two chapters, we will present our proposed feature en-

gineering technique and evaluate its effectiveness in predicting vulnerabilities in

real-world software systems.



Chapter 4

Token-Based Vulnerability

Prediction

This chapter introduces a novel Information Retrieval-driven technique for predict-

ing software vulnerability. It uses token-based source code representations to de-

velop novel predictive software metrics. The chapter presents the methodology,

results, and discussion of the technique’s performance in a Within-Project setting,

addressing the first research question of this thesis.
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4.1 Introduction

As software systems have become increasingly integral to our daily lives, their com-

plexity and interconnectedness have also grown. These systems typically comprise

multiple software components that communicate with each other and other systems

over a network. Unfortunately, this complexity and interconnectivity create a fer-

tile ground for bugs and vulnerabilities. Gujral et al. [2015] described a bug as a

software flaw that causes the system to deviate from its specification. Al Debeyan

et al. [2022] defined a vulnerability as a weakness in a software system that can

be exploited to compromise its security. Thus, vulnerabilities are a subset of bugs

characterised by their security implications.

The increasing complexity of software systems makes identifying vulnerabil-

ities more challenging, necessitating the development of advanced techniques and

tools. These new methods must go beyond traditional approaches to identify vulner-

abilities early in the software development lifecycle. In this chapter, we detail our

novel technique for identifying vulnerabilities. Our approach leverages information

retrieval-driven techniques to enhance the effectiveness of vulnerability prediction.

4.1.1 Chapter Motivation

The need for advanced techniques to identify vulnerabilities in software systems

has spurred numerous studies proposing innovative prediction methods. However,

many of these approaches fail to yield satisfactory results.

These methods face two main issues. Firstly, they often lack the performance

required for practical use. Secondly, they typically operate at a granularity level

that is too coarse, making them impractical. This concern is noted by Morrison

et al. [2015] and Al Debeyan et al. [2022]. By granularity, we mean the unit of

analysis within the software system. For instance, a class-level prediction approach

identifies vulnerable classes in the software system, and a method-level prediction

approach identifies vulnerable methods.
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4.1.2 Research Question

The growing interest in vulnerability prediction has led to numerous studies propos-

ing innovative approaches with varying degrees of success. Researchers have ap-

plied diverse concepts from other fields of computer science to vulnerability pre-

diction. However, significant unexplored areas remain, particularly the application

of information retrieval techniques to vulnerability prediction. We address this gap

by proposing an information retrieval-driven software vulnerability prediction tech-

nique.

Information retrieval involves finding relevant information from extensive data

collections to help users locate the information they need quickly and efficiently. In-

formation retrieval techniques are widely utilised in search engines, digital libraries,

and data mining applications. They primarily focus on text-based data but can also

operate on images, audio, and video. The information retrieval process typically in-

cludes document collection, indexing, query processing, ranking, and information

presentation [Schütze et al., 2008, Salton, 1983].

Pattern matching, a core characteristic of information retrieval, involves identi-

fying similarities between a query and documents within a collection. This capabil-

ity can be leveraged to encode patterns indicative of software vulnerabilities, aiding

in the development of security-focused predictive metrics for machine learning-

based vulnerability prediction.

In this chapter, we address the following research question:

How well does the information retrieval-driven software vulnerability

prediction technique perform on a single, multi-release software system

dataset for token-based source code representations?

4.1.3 Research Scope

This study focuses on the following areas:

• Programming Language: The datasets used are written in Java, and the

vulnerabilities are within Java methods. Vulnerabilities from other sources,
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such as web services, annotations, and configuration files, are not taken into

consideration.

• Method-Level Vulnerability Prediction: The focus is on predicting vulner-

abilities at the method level rather than at the class or file level.

• Within-Project Vulnerability Prediction: The study predicts vulnerabilities

within a single software system across multiple releases.

• Binary Classification: The study employs binary classification using ma-

chine learning to predict whether a method is vulnerable without considering

multi-class classification, i.e., predicting the type of vulnerability.

4.1.4 Significance and Contributions

This chapter proposes an information retrieval-based technique for developing soft-

ware metrics that predict vulnerabilities, leveraging the pattern-matching capabili-

ties of information retrieval to construct security-relevant metrics from source code

structures.

4.1.4.1 Significance of the Study

The study demonstrates the feasibility of repurposing information retrieval tech-

niques for vulnerability prediction. These techniques effectively develop security-

relevant predictive software metrics, potentially increasing their adoption for effi-

ciently identifying and mitigating software vulnerabilities.

4.1.4.2 Contributions

This study introduces several novel information retrieval-driven software metrics

for vulnerability prediction.

4.1.5 Structure of the Chapter

The rest of this chapter is structured as follows: Section 4.2 provides the back-

ground for this chapter. Section 4.3 introduces our new information retrieval-driven

software metrics for vulnerability prediction. Section 4.4 outlines the methodology

used in this chapter. Section 4.5 presents the chapter’s results. Section 4.6 discusses



4.1. Introduction 105

the findings and their implications. Section 4.7 addresses the threats to the chapter’s

validity. Finally, Section 4.8 answers the first research question of this thesis.
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4.2 Background

The rapid adoption of technology has brought significant privacy and security chal-

lenges [Al Debeyan et al., 2022]. Software vulnerabilities are security weaknesses

in code that can be exploited to gain unauthorised control of a system, steal or

manipulate sensitive data, or deny system services [Liu et al., 2019]. Detecting,

mitigating, and eradicating vulnerabilities are critical for software security and reli-

ability [Riom et al., 2021]. Identifying vulnerable components early in development

enables developers to prioritise efforts on critical areas, thereby improving security,

reducing remediation costs, and shortening the time-to-market for software prod-

ucts.

Various approaches exist for identifying vulnerabilities, including penetration

testing, static code analysis, and dynamic analysis. Modern vulnerability prediction,

utilising machine learning, deep learning, and data mining, aims to identify vulnera-

bilities before they are exploited, addressing the limitations of traditional techniques

[Ghaffarian and Shahriari, 2017]. These methods typically involve classification

models to predict vulnerable code areas, enabling developers to target their security

auditing efforts more effectively. However, current methods often underperform

and offer coarse-grained predictions [Chakraborty et al., 2021, Al Debeyan et al.,

2022].

Several factors influence the performance of vulnerability prediction models,

with code representation being a crucial factor. Previous models have used static

code metrics [Shin and Williams, 2008b, Sultana et al., 2021], literal text tokens

[Zou et al., 2021, Scandariato et al., 2014], and graph representations such as Con-

trol Flow Graphs, Data Dependency Graphs, or Abstract Syntax Trees (ASTs) [Bil-

gin et al., 2020, Cao et al., 2021, Liu et al., 2019, Partenza et al., 2021, Zhou et al.,

2019b]. These representations serve as input features for machine learning or deep

learning models.

Contemporary approaches transform source code into a format compatible

with machine learning or deep learning algorithms, often numerical. This chapter

uses token-based source code representation and shingling to develop novel infor-
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mation retrieval-driven metrics for vulnerability prediction. Background on source

code representation, particularly token-based, is provided in Section 2.3 and Sub-

section 2.3.1. However, given its central role in this thesis, we briefly reiterate the

relevant techniques in the following subsection.

4.2.1 Token-Based Source Code Representation

As discussed in Section 2.3, source code representation is vital in modern software

engineering, including vulnerability prediction. It transforms text-based source

code into a more abstract, structured form, effectively retaining syntactical and se-

mantic information [Zhang et al., 2019]. This abstraction aids various tasks, such

as program analysis, transformation, and optimisation, by converting source code

into formats suitable for machine learning and deep learning algorithms [Hancock

and Khoshgoftaar, 2020].

Source code representations can be token-based, tree-based, or graph-based

[Samoaa et al., 2022]. These approaches abstract away low-level details, focusing

instead on high-level code structures, making complex tasks more manageable. A

common technique, tokenisation, breaks down text into smaller units called tokens,

such as keywords, identifiers, literals, and operators.

Shingling, another related concept, breaks text into overlapping subsequences

called shingles, capturing local text structure. For example, the sentence ‘The quick

brown fox jumps over the lazy dog’ yields the following 3-gram shingles: ‘The

quick brown’, ‘quick brown fox’, ‘brown fox jumps’, ‘fox jumps over’, ‘jumps over

the’, ‘over the lazy’, ‘the lazy dog’. Shingling can help capture the context of code

elements in a method.

Our contributions to vulnerability prediction research involve leveraging

token-based source code representation and shingling to develop novel informa-

tion retrieval-driven metrics. These metrics translate the structure of methods into

a numerical form that machine learning algorithms can understand. Some of our

developed metrics capture method attributes directly, while others use patterns

consistent with code vulnerabilities to enhance predictive power.
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We focus on method-level granularity, predicting vulnerabilities within meth-

ods of a software system. Granularity refers to the level of detail in vulnerability

predictions [Lomio et al., 2022], and many researchers have highlighted its impor-

tance [Al Debeyan et al., 2022, Morrison et al., 2015]. We had previously discussed

granularity levels in Subsection 2.2.1. However, in the following subsection, we

reiterate the importance of method-level granularity to set the context for under-

standing our metrics.

4.2.2 Granularity Levels in Software Vulnerability Prediction

The most common granularity levels in modern object-oriented programming lan-

guages are binary, source code file, class, and method. For example, a class-level

vulnerability prediction solution identifies vulnerable classes, while a method-level

solution identifies vulnerable methods within a software system.

Among these, binary level granularity is the coarsest, and method level is the

finest. Additionally, recent studies have explored code-change level granularity,

which is even more granular than method level [Şahin et al., 2022, Giger et al., 2011,

Shivaji et al., 2012, Yang et al., 2023]. However, as Russell et al. [2018] noted,

method-level granularity captures a subroutine’s flow more completely, providing

better context than code-change level granularity.

Identifying vulnerabilities in binary or source code files can be relatively

straightforward. However, this coarse granularity requires developers and security

testers to invest significant time and effort in pinpointing the exact location of the

vulnerability, which may not be immediately apparent within a significant software

component [Morrison et al., 2015].

Method-level vulnerability prediction involves identifying potentially vulnera-

ble methods within a software system. Unlike coarser granularities, such as binary

and source code file levels, analysing individual methods can be more complex.

However, remediating vulnerabilities at the method level is usually more straight-

forward once identified due to the methods’ smaller size compared to classes and

source code files, which reduces the effort required for inspection.
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Our study focuses on method-level vulnerability prediction. We use token-

based source code representation and shingling to develop novel information

retrieval-driven software metrics. Therefore, the metrics introduced in the next sec-

tion have a method-level scope.
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4.3 Token-Based Software Metrics

This section highlights the novelty of our study. We developed sixteen custom soft-

ware metrics, driven by information retrieval, that leverage token representations in

our datasets. These metrics are used as machine learning classification features to

predict the vulnerability proneness of software components. Our datasets include

a target software system and a vulnerability dataset. The target software system

is the software for which we predict vulnerabilities, while the vulnerability dataset

contains known software vulnerabilities used to develop specific metrics.

Vulnerable and non-vulnerable software artefacts often have similar attributes,

which can complicate the differentiation process [Pereira et al., 2021], particularly

in machine learning-based vulnerability prediction. So, to enhance predictive power

in recognising patterns consistent with code vulnerabilities, we integrated thousands

of known software vulnerabilities from the vulnerability dataset to develop metrics

that capture patterns consistent with code vulnerabilities. These metrics are used to

predict the vulnerability proneness of software components in the target software

system.

The Methodology section will provide further details on our target software

system and vulnerability dataset. Meanwhile, the rest of this section will elaborate

on the metrics, categorised into hit-independent and hit-dependent metrics.

A ‘hit’ refers to code fragments in the target software system that match frag-

ments in the vulnerability dataset, represented as shingles. In this chapter, a hit

refers to the intersection of shingles from a target software system method under

consideration and those from a vulnerable method in the vulnerability dataset.

For instance, if the shingles of a method in our vulnerability dataset share

one or more shingles with the printHelloWorld method in Listing 4.1 whose

token representation and shingles (separated by ‘↔’) are shown in Figures 4.1 and

4.2 respectively, we say that the printHelloWorld method has a hit with the

vulnerability dataset method.
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Listing 4.1: printHelloWorld Method

5 public void printHelloWorld() {

6 System.out.println("Hello, World!");

7 }

public void printHelloWorld ( ) { System . out . println
↪→ ( " Hello , World ! " ) ; }

Figure 4.1: Token Representation of the Method in Listing 4.1

public void printHelloWorld ( )↔void printHelloWorld ( )
↪→ {↔printHelloWorld ( ) { System↔( ) { System .↔)
↪→ { System . out↔{ System . out .↔System . out .
↪→ println↔. out . println (↔out . println ( "↔.
↪→ println ( " Hello↔println ( " Hello ,↔( " Hello ,
↪→ World↔" Hello , World !↔Hello , World ! "↔, World
↪→ ! " )↔World ! " ) ;↔! " ) ; }

Figure 4.2: 5-gram Shingles of the Method in Listing 4.1

We use the term hit-independent metrics for metrics that are calculated based

on concrete attributes (such as code churn, size, and complexity) discernible from a

target software system method’s token representation without relying on hits. Con-

versely, hit-dependent metrics refer to metrics that rely on the concept of hit for

their calculation. The following subsections will provide more details on both hit-

independent and hit-dependent metrics.

4.3.1 Token-Based Hit-Independent Metrics

Table 4.1: Token-Based Hit-Independent Metrics

Token-Based Hit-Independent Metric Abbr.

Number of Target Software System Tokens NTT
Number of Distinct Target Software System Tokens NDTT
Token-Based Instantaneous Code Churn TICC
Token-Based Relative Instantaneous Code Churn TRICC
Number of Target Software System Diff Tokens NTDT
Number of Target Software System Distinct Diff Tokens NTDDT
Token Relative Uniqueness TRU
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Table 4.2: Token-Based Hit Independent Metrics Code Attributes of Concern

Token-Based Hit-Independent Metric Abbr. Attributes of Concern

Churn Intricacy Size

NTT ✓
NDTT ✓ ✓
TICC ✓
TRICC ✓
NTDT ✓
NTDDT ✓ ✓
TRU ✓

Table 4.1 presents the seven hit-independent metrics we developed. Table 4.2

shows the code attributes each metric captures.

4.3.1.1 Number of Target Software System Tokens (NTT)

A target software system method’s NTT is the total number of tokens in its token

representation. This straightforward metric indicates the size of a method. For

example, the NTT of the method shown in Figure 4.1 is 20. The hypothesis is that

more extensive methods are more likely to contain vulnerabilities.

For a target software system method mt with a multiset of tokens Tt(mt), NTT

is expressed as:

NTT = |Tt(mt)|

The NTT metric’s hypothesis was inspired by several studies, including Shin

et al. [2010], Giger et al. [2012], Morrison et al. [2015], Pascarella et al. [2018],

and Du et al. [2019]. However, we conceptualised its information retrieval-based

design and implementation.

4.3.1.2 Number of Distinct Target Software System Tokens (NDTT)

A target software system method’s NDTT is the count of unique tokens in its token

representation. Unlike NTT, which indicates size, NDTT measures both the size and

diversity of code elements. A higher NDTT suggests a more diverse and intricate

method. For example, the NDTT of the method shown in Figure 4.1 is 16. The

hypothesis is that intricate methods are more likely to contain vulnerabilities.
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For a target software system method mt with a set of tokens T ′t (mt), NDTT is

expressed as:

NDTT = |T ′t (mt)|

The NDTT metric was inspired by the NTT metric, which in turn was inspired

by several studies, including Shin et al. [2010], Giger et al. [2012], Morrison et al.

[2015], Pascarella et al. [2018], and Du et al. [2019]. However, we conceptualised

its information retrieval-based design and implementation.

4.3.1.3 Token-Based Instantaneous Code Churn (TICC)

A target software system method’s TICC is the number of times its token represen-

tation has changed throughout its history. Code churn quantifies the frequency of

code rewrites over time, measured by version control check-ins or changes in lines

of code [Shin et al., 2010]. This metric is commonly used in vulnerability predic-

tion, based on the hypothesis that higher churn correlates with higher vulnerability

proneness [Zimmermann et al., 2010, Shin et al., 2010, Shin and Williams, 2013,

Meneely et al., 2013, Morrison et al., 2015].

In our work, any code change, however minor, alters the token representation,

so TICC is incremented for each release where the method’s token representation

changes. Thus, TICC counts the number of changes to a method’s source code

across the software system’s history. The hypothesis is that methods that undergo

frequent modifications are more likely to contain vulnerabilities, possibly indicating

problematic code.

For a method mt in a target software system, with δ (mt) representing the set of

releases where mt’s token representation changed, TICC is evaluated as:

TICC(mt) = |δ (mt)|

The TICC metric’s hypothesis was inspired by several studies, including Shin

et al. [2010], Giger et al. [2012], Morrison et al. [2015], Pascarella et al. [2018],

and Du et al. [2019]. However, we conceptualised its information retrieval-based

design and implementation.
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4.3.1.4 Token-Based Relative Instantaneous Code Churn (TRICC)

A target software system method’s TRICC is the ratio of its token representation

change count to the total number of releases in which it appears. TRICC is similar

to TICC, but it is a relative value that better indicates how frequently each method

has evolved compared to others.

For a method mt in a target software system, and N representing the total num-

ber of releases where mt appears, TRICC is calculated as:

TRICC(mt) =
T ICC(mt)

N

In a later section, we will discuss the design of the TRICC metric further, par-

ticularly how N could threaten the validity of a machine learning analysis through

data leakage, depending on the context of the analysis.

Method A

Method B

Method C

Method D

Method E

Release 1 Release 2 Release 3 Release 4 Release 5

Figure 4.3: Method Evolution: An Infographic Representation

To illustrate TRICC, Figure 4.3 shows the evolution of methods A, B, C, D,

and E over releases 1 to 5 of a target software system.

- Method A first appeared in Release 1 and remained unchanged.

- Method B first appeared in Release 1 and was modified in Releases 2 and 4.
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- Method C first appeared in Release 1 and was modified only in Release 3.

- Method D first appeared in Release 2 and remained unchanged thereafter.

- Method E first appeared in Release 2, was modified in Release 3, and was

removed in Release 4.

Table 4.3: TICC and TRICC Illustration

Method Release 1 Release 2 Release 3 Release 4 Release 5

A TICC:0/RICC:0 TICC:0/RICC:0 TICC:0/RICC:0 TICC:0/RICC:0 TICC:0/RICC:0
B TICC:0/RICC:0 TICC:1/RICC:0.20 TICC:1/RICC:0.20 TICC:2/RICC:0.40 TICC:2/RICC:0.40
C TICC:0/RICC:0 TICC:0/RICC:0 TICC:1/RICC:0.20 TICC:1/RICC:0.20 TICC:1/RICC:0.20
D NA TICC:0/RICC:0 TICC:0/RICC:0 TICC:0/RICC:0 TICC:0/RICC:0
E NA TICC:0/RICC:0 TICC:1/RICC:0.33 TICC:1/RICC:0.33 NA

Table 4.3 illustrates the TICC and TRICC metrics for the methods in Fig-

ure 4.3.

• Method A: First introduced in Release 1 and remained unchanged in subse-

quent releases. TICC and TRICC values are 0 throughout the five releases.

• Method B: First appeared in Release 1, modified in Release 2 and 4. TICC

is 1 in Release 2 and 3, and 2 in Release 4 and 5. TRICC is 0.20 in Release 2

and 3, and 0.40 in Release 4 and 5.

• Method C: First appeared in Release 1, modified only in Release 3. TICC is

1 in Release 3, 4, and 5. TRICC is 0.20 in Releases 3, 4, and 5.

• Method D: First introduced in Release 2 and remained unchanged in subse-

quent releases. TICC and TRICC values are 0 throughout the four releases.

• Method E: First appeared in Release 2, modified in Release 3, and removed

in Release 4. TICC is 1 in Release 3 and 4. TRICC is 0.33 in Release 3 and

4.

The TRICC metric was inspired by the TICC metric, which in turn was inspired

by several studies, including Shin et al. [2010], Giger et al. [2012], Morrison et al.

[2015], Pascarella et al. [2018], and Du et al. [2019]. However, we conceptualised

its information retrieval-based design and implementation.
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4.3.1.5 Number of Target Software System Diff Tokens (NTDT)

A target software system method’s NTDT is the count of tokens in the symmetric

difference between its tokens and those of its previous release. As discussed for

TICC, any code changes alter the token representation. The NTDT metric measures

the magnitude of changes between two contiguous releases by counting the tokens

in the difference.

The hypothesis is that developers are more likely to introduce vulnerabilities

when making significant and intricate changes to a method.

For a method mt in a target software system, and mt−1 representing its previous

release, NTDT is expressed as:

NTDT(mt) = |Tt(mt)∆ Tt−1(mt−1)|

Here, ∆ is the symmetric difference operator that returns a multiset of elements

in either of the two sets but not in both, and Tt(mt) and Tt−1(mt−1) are the token

representations of mt and mt−1, respectively.

The NTDT metric’s hypothesis was inspired by several studies, including Shin

et al. [2010], Giger et al. [2012], Morrison et al. [2015], Pascarella et al. [2018],

and Du et al. [2019]. However, we conceptualised its information retrieval-based

design and implementation.

4.3.1.6 Number of Target Software System Distinct Diff Tokens

(NTDDT)

A target software system method’s NTDDT is the count of unique tokens in the

symmetric difference between its tokens and those of its previous release. NTDDT

is similar to NTDT, but while NTDT measures the magnitude of changes between

two contiguous releases, NTDDT measures the diversity of the code elements in-

volved in those changes.

For a method mt and its previous release mt−1, NTDDT is expressed as:

NTDDT(mt) = |T ′t (mt)∆ T ′t−1(mt−1)|
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Here, ∆ is the symmetric difference operator that returns a set of elements in

either of the two sets but not in both, and T ′t (mt) and T ′t−1(mt−1) represent the set

of tokens in the token representations of mt and mt−1, respectively.

The NTDDT metric was inspired by the NTDT metric, which in turn was in-

spired by several studies, including Shin et al. [2010], Giger et al. [2012], Morrison

et al. [2015], Pascarella et al. [2018], and Du et al. [2019]. However, we conceptu-

alised its information retrieval-based design and implementation.

4.3.1.7 Token Relative Uniqueness (TRU)

The TRU metric analyses the individual tokens in a method’s token representa-

tion. It is inspired by the Term Frequency-Inverse Document Frequency (TF-IDF)

technique from information retrieval and is used for method-level vulnerability pre-

diction. The idea is that within the context of a given software system or codebase,

the developers working on it are more likely to write vulnerable code when using

complex programming features that the team rarely uses. The TRU metric reflects

a method’s intricacy based on the rarity of its code elements compared to other

methods in the software system or codebase.

TF-IDF measures a word’s importance in a document relative to its rarity

across a corpus. Similarly, TRU assesses the uniqueness of tokens within meth-

ods in a target software system.

In our context, a word corresponds to a token, a document to a method, and a

corpus to the target software system. We apply the TF-IDF technique for method-

level vulnerability prediction to assign weightings to each method’s token, indicat-

ing how unique a token is compared to those in other methods.

To illustrate, given a software system, the Java keyword ‘void’ commonly ap-

pears in standard methods that do not return a value. In contrast, the keyword ‘syn-

chronized’ is more likely to appear in intricate methods that handle threading. We

will observe that in a synchronized void method, the ‘synchronized’ keyword will

likely have a higher TF-IDF weighting than ‘void’ because ‘void’ is more frequently

used across methods in the software system.
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If we compare a void method and a synchronized void method of similar size

and standard code elements, the synchronized void method will have a higher TRU.

This suggests that methods containing the ‘synchronized’ keyword are more com-

plex than average void methods, making them more prone to vulnerability-inducing

changes.

The TRU metric indicates a method’s uniqueness compared to other methods.

It is calculated as the harmonic mean of all TF-IDF weightings for a method’s to-

kens. Thus, TRU measures the relative obscurity of a method compared to others. A

method with a high TRU value is likely to feature advanced, specialised, and rarely

used programming language concepts in the software system. The hypothesis is

that developers working on a given software system or codebase are more likely to

introduce vulnerabilities when working with advanced and complex programming

language features that are rarely used by the development team.

Suppose t represents a token in a target software system’s method, and m repre-

sents a multiset of tokens in the method. The term frequency, tf(t,m), is the relative

frequency of token t within the method m. It is expressed as:

tf(t,m) =
ft,m

∑t′∈m ft′,m

Here, ft,m represents the raw count of token t in the method’s representation,

and ∑t ′∈m ft ′,m denotes the total number of tokens in m.

Suppose M represents a multiset of all method tokens in our target software

system. We express the inverse document frequency, idf(t,M), for token t in method

m as:

idf(t,M) = log N
|m∈M : t∈m|

Here, N is the total number of methods in the target software system, N = |M|,

and |m ∈M : t ∈ m| is the total number of methods that include t.

The TF-IDF for token t is then calculated as:

tfidf(t,m,M) = tf(t,m) · idf(t,M)

Finally, the TRU for method m, TRU(m,M), is evaluated by calculating the

harmonic mean of the TF-IDF values of all its tokens:
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TRU(m,M) =
ft,m

∑t′∈m
1

tfidf(t,m,M)

As before, ft,m is the raw count of token, t, in the method’s representation.

∑t ′∈m
1

tfidf(t,m,M) is the sum of the inverse TF-IDF values for all tokens in m.

We exclusively developed the TRU metric’s conceptualisation, software vul-

nerability prediction contextualisation, hypothesis, design, and implementation,

drawing inspiration from how the TF-IDF technique tends to assign higher weight-

ings to rare words in information retrieval.

4.3.2 Token-Based Hit-Dependent Metrics

Table 4.4: Token-Based Hit-Dependent Metrics

Token-Based Hit-Dependent (Security-Relevant) Metric Abbr.

Number of Hit Shingles NHS
Number of Distinct Hit Shingles NDHS
Number of Vulnerability Dataset Tokens NVT
Number of Distinct Vulnerability Dataset Tokens NDVT
Target Software System Method-to-
↪→ Vulnerable Dataset Method Shingle Similarity Ratio TVSSR

Shingle Hits-to-Target Software System Method Similarity Ratio SHTSR
Shingle Hits-to-Vulnerable Dataset Method Similarity Ratio SHVSR
Number of Shingle Matches NUSM
Shingle Match Ratio SMR

Table 4.5: Token-Based Hit Dependent Metrics Code Attributes of Concern

Token-Based Hit-Dependent Metric Abbr. Attributes of Concern

Intricacy Similarity Size

NHS ✓ ✓
NDHS ✓ ✓ ✓
NVT ✓ ✓
NDVT ✓ ✓ ✓
TVSSR ✓
SHTSR ✓
SHVSR ✓
NUSM ✓
SMR ✓
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Many studies have utilised traditional software metrics, such as McCabe’s Cy-

clomatic Complexity, Number of Lines of Code, Code Churn, and Fan-in and Fan-

out dependency metrics, as features in vulnerability prediction models. However,

these metrics are often criticised for not adequately capturing code semantics be-

cause they are not designed with security in mind. Their primary focus is on quan-

tifying code characteristics, which many scholars believe contributes to their rela-

tively poor performance in vulnerability prediction. Recent research emphasises the

importance of using security-specific metrics for more effective vulnerability pre-

diction [Shin and Williams, 2008b,a, Morrison et al., 2015, Munaiah et al., 2017,

Sultana and Chong, 2019, Al Debeyan et al., 2022, Zimmermann et al., 2010, Shin

et al., 2010, Doyle and Walden, 2011, Shin and Williams, 2013, Moshtari et al.,

2013, Meneely et al., 2013, Walden et al., 2014, Perl et al., 2015, Younis et al.,

2016, Sultana, 2017b, Sultana et al., 2018b, Chong et al., 2019b, Kalouptsoglou

et al., 2020].

We aimed to develop security-aware metrics by leveraging the knowledge of

known vulnerability patterns, creating nine additional (hit-dependent) metrics as

presented in Table 4.4. Table 4.5 details the code attributes each metric captures.

All hit-dependent metrics except NUSM and SMR measure the similarity between

a target software system method and a known vulnerable method. For example,

the NHS metric measures the similarity and size between a target software system

method and a known vulnerable method, while the NDHS metric captures the di-

versity of code elements within this similarity. NUSM and SMR, on the other hand,

measure the general distribution of similarities between a target software system

method and known vulnerable methods.

A hit refers to the intersection of shingles between a target and vulnerable

methods in a dataset. Unlike the hit-independent metrics, these nine hit-dependent

metrics are pattern-based. Their evaluation depends on the patterns found in the

shingles of a target software system method and a known vulnerable method, as

facilitated by the hits.
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Because vulnerable and non-vulnerable code elements often have similar at-

tributes, which complicates their differentiation [Pereira et al., 2021], these hit-

dependent metrics facilitate this differentiation by focusing on the patterns found

in vulnerable code, making them security-relevant.

These security-relevant metrics aim to quantify the similarity of code compo-

nents in the target system to those in a dataset of known vulnerabilities. These met-

rics are termed ‘security-relevant’ because they encode patterns found in vulnerable

code rather than directly indicating the presence of vulnerabilities.

4.3.2.1 Number of Hit Shingles (NHS)

A target software system method’s NHS is the number of shingles shared between

it and the most similar known vulnerable method in a vulnerability dataset. This

metric is straightforward, simply counting the shared shingles.

The hypothesis is that the more code representation elements a target software

system method shares with a known vulnerable method, the more likely it is to ex-

hibit the same vulnerability.

For a target software system method mt with a multiset of shingles St(mt) and a

matching method mv from a vulnerability dataset with a multiset of shingles Sv(mv),

NHS is expressed as:

NHS = |h|

Here, h represents the hits between St(mt) and Sv(mv), where h = St(mt) ∩

Sv(mv).

The hits are shingles instead of tokens because shingles encode the structure

of the source code, capturing the context more effectively.

We exclusively conceptualised the NHS metric, contextualised it within soft-

ware vulnerability prediction and developed its hypothesis, design and implemen-

tation.

4.3.2.2 Number of Distinct Hit Shingles (NDHS)

A target software system method’s NDHS is the count of unique shingles shared

between the method and the most similar known vulnerable method in a vulnera-
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bility dataset. NDHS is similar to NHS, but it measures the diversity of the shared

shingles rather than their total number.

For a target software system method mt with a set of shingles S′t(mt) and a

matching method mv from a vulnerability dataset with a set of shingles S′v(mv), let

h′ represent the hits between S′t(mt) and S′v(mv), where h′= S′t(mt)∩ S′v(mv). NDHS

is expressed as:

NDHS = |h′|

We exclusively conceptualised the NDHS metric, contextualised it within soft-

ware vulnerability prediction and developed its hypothesis, design and implemen-

tation.

4.3.2.3 Number of Vulnerability Dataset Tokens (NVT)

A target software system method’s NVT is the count of tokens in its most similar

known vulnerable method from a vulnerability dataset. The NVT metric is similar

to the NTT metric introduced in Subsubsection 4.3.1.1, which measures the number

of tokens in a target software system method. However, while NTT measures the

tokens of the target software system method, NVT measures the tokens of the most

similar known vulnerable method. NTT is hit-independent, whereas NVT is hit-

dependent because it requires a match with a known vulnerable method.

The hypothesis is that a method matching with a large and complex known

vulnerable method is likely to be complex and potentially vulnerable.

NVT is expressed as:

NVT = |Tv(mv)|

We exclusively conceptualised the NVT metric, contextualised it within soft-

ware vulnerability prediction and developed its hypothesis, design and implemen-

tation.

4.3.2.4 Number of Distinct Vulnerability Dataset Tokens (NDVT)

A target software system method’s NDVT is the count of unique tokens in its most

similar known vulnerable method from a vulnerability dataset. The NDVT metric is
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similar to the NDTT metric. While NDTT measures the number of distinct tokens

in a target software system method, NDVT measures the number of distinct tokens

in the most similar known vulnerable method. NDTT is hit-independent, whereas

NDVT is hit-dependent because its calculation requires a match with a known vul-

nerable method.

NDVT is expressed as:

NDVT = |T ′v (mv)|

The NDVT metric was inspired by the NDTT metric, which in turn was in-

spired by several studies, including Shin et al. [2010], Giger et al. [2012], Morrison

et al. [2015], Pascarella et al. [2018], and Du et al. [2019]. However, we conceptu-

alised its information retrieval-based design and implementation.

4.3.2.5 Target Software System Method-to-Vulnerable Dataset

Method Shingle Similarity Ratio (TVSSR)

A target software system method’s TVSSR is the Jaccard Similarity of its shingles

to those of the most similar known vulnerable method in a vulnerability dataset.

The TVSSR metric measures the extent to which a target software system

method shares code elements with a known vulnerable method. It evaluates the

distinct shingles appearing in both methods relative to the total number of distinct

shingles between them. While the metric does not directly consider order and fre-

quency, the shingles inherently encode these aspects.

Jaccard Similarity is the ratio of the intersection to the union of two sets. In

this context, it refers to the ratio of shared distinct shingles between mt and mv to

the total distinct shingles in both methods.

The hypothesis is that the more unique code representation elements a method

shares with a known vulnerable method, the more likely it is to exhibit the same

vulnerability.

For a target software system method mt with a set of shingles S′t(mt) and a

matching method mv from a vulnerability dataset with a set of shingles S′v(mv),
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let h′ represent the hits between S′t(mt) and S′v(mv), where h′ = S′t(mt) ∩ S′v(mv).

TVSSR is expressed as:

TVSSR = |h′|
|S′t(mt)∪S′v(mv)|

Or, more derivatively:

TVSSR = NDHS
(NDT S+NDV S)−NDHS

NDT S and NDV S are temporary variables representing the number of distinct

shingles in the target and known vulnerable methods, respectively.

We exclusively developed the TVSSR metric’s conceptualisation, software

vulnerability prediction contextualisation, hypothesis, design, and implementation,

drawing inspiration from the Jaccard Similarity technique used in string metrics.

4.3.2.6 Shingle Hits-to-Target Software System Method Similarity

Ratio (SHTSR)

The SHTSR of a target software system method is the ratio of shared shingles be-

tween its shingles and those of the most similar known vulnerable method to the to-

tal number of shingles in the target software system method. This metric measures

the extent to which a target software system method comprises shingles shared with

a known vulnerable method.

The hypothesis is that the more a target software system method includes code

representation elements present in a known vulnerable method, the more likely it is

to exhibit the same vulnerability.

For a target software system method mt with a set of shingles S′t(mt) and a

matching method mv from a vulnerability dataset with a set of shingles S′v(mv),

let h′ represent the hits between S′t(mt) and S′v(mv), where h′ = S′t(mt) ∩ S′v(mv).

SHTSR is expressed as:

SHTSR = |h′|
|S′t(mt)|

Or, more derivatively:

SHTSR = NDHS
NDT S
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NDT S is a temporary variable representing the number of distinct shingles in

the target software system method.

We exclusively conceptualised the SHTSR metric, contextualised it within

software vulnerability prediction and developed its hypothesis, design and imple-

mentation.

4.3.2.7 Shingle Hits-to-Vulnerable Dataset Method Similarity Ratio

(SHVSR)

A target software system method’s SHVSR is the ratio of the shared shingles be-

tween its shingles and those of the most similar known vulnerable method to the

total number of shingles in the vulnerable method. This metric measures how much

a known vulnerable method comprises shingles shared with a target software system

method.

SHVSR is similar to SHTSR, with the difference being that SHVSR evaluates

the vulnerable method, while SHTSR evaluates the target software system method.

When evaluating SHTSR, the question is: "To what extent do the unique shin-

gles in our hits constitute the unique shingles in our target software system method?"

For SHVSR, the question is: "To what extent do the unique shingles in our hits con-

stitute the unique shingles in the vulnerable method?"

The hypothesis is that the more a vulnerable method comprises code represen-

tation elements present in a target software system method, the more likely it is that

the target software system method’s components will exhibit the same vulnerability.

For a target software system method mt with a set of shingles S′t(mt), and a

matching method mv from a vulnerability dataset with a set of shingles S′v(mv),

let h′ represent the hits between S′t(mt) and S′v(mv), where h′ = S′t(mt) ∩ S′v(mv).

SHVSR is expressed as:

SHVSR = |h′|
|S′v(mv)|

Or, more derivatively:

SHVSR = NDHS
NDV S
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NDV S is a temporary variable representing the number of distinct shingles in

the known vulnerable method.

We exclusively conceptualised the SHVSR metric, contextualised it within

software vulnerability prediction and developed its hypothesis, design and imple-

mentation.

4.3.2.8 Number of Shingle Matches (NUSM)

A target software system method’s NUSM is the count of known vulnerable meth-

ods in a vulnerability dataset that share at least one shingle with the method in

question. This metric measures the number of known vulnerable methods that share

shingles with a target software system method.

The hypothesis is that the more vulnerable methods that share at least one

code representation element with a target software system method, the more likely

the target software system method is to be vulnerable.

For a target software system method mt with a set of shingles S′t(mt) and a

vulnerability dataset V containing n known vulnerable methods mv1 ,mv2 , . . . ,mvn ,

each with sets of shingles S′v1
(mv1),S

′
v2
(mv2), . . . ,S

′
vn
(mvn), NUSM is expressed as:

NUSM = |{mvi ∈V : S′t(mt) ∩ S′vi
(mvi) ̸= /0}|

We exclusively conceptualised the NUSM metric, contextualised it within soft-

ware vulnerability prediction and developed its hypothesis, design and implemen-

tation.

4.3.2.9 Shingle Match Ratio (SMR)

A target software system method’s SMR is the ratio of known vulnerable methods

in a vulnerability dataset that share at least one shingle with the method to the total

number of vulnerable methods in the dataset. The SMR metric is similar to the

NUSM metric but focuses on the ratio rather than the absolute number. In other

words, a method’s SMR is its NUSM divided by the total number of vulnerable

methods in the dataset.
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For a target software system method mt with a set of shingles S′t(mt) and a

vulnerability dataset V containing n known vulnerable methods mv1 ,mv2 , . . . ,mvn ,

each with sets of shingles S′v1
(mv1),S

′
v2
(mv2), . . . ,S

′
vn
(mvn), SMR is expressed as:

SMR =
|{mvi∈V : S′t(mt)∩S′vi

(mvi )̸= /0}|
n

Or, more derivatively:

SMR = NUSM
n

We exclusively conceptualised the SMR metric, contextualised it within soft-

ware vulnerability prediction and developed its hypothesis, design and implemen-

tation.

The following subsection illustrates how these metrics are calculated using a

hypothetical target software system and a hypothetical vulnerable method.

4.3.3 Token-Based Metrics Calculation: An Illustration

We illustrate the calculation of the metrics developed in this study using one of the

most well-known software vulnerabilities: SQL Injection1 2.

SQL Injection is a code injection technique exploiting vulnerabilities in an

application’s software layer. It occurs when user input is not correctly filtered for

string literal escape characters embedded in SQL statements, allowing an attacker

to execute arbitrary SQL commands. This vulnerability is common and poses a

significant risk to web applications, potentially leading to data breaches, loss, and

other security incidents.

We use two code snippets to illustrate the calculation of the token-based met-

rics: a hypothetical target software system method and a hypothetical known vul-

nerable method from a vulnerability dataset.

For simplicity, we exclude specific metrics requiring more extensive informa-

tion than what is representable within a method body. These metrics include TICC,

TRICC, NTDT, NTDDT, TRU, NUSM, and SMR. For example, TICC, TRICC,

NTDT, and NTDDT require information on an entire method’s change history,

1https://owasp.org/www-community/attacks/SQL_Injection
2https://cwe.mitre.org/data/definitions/89.html

https://owasp.org/www-community/attacks/SQL_Injection
https://cwe.mitre.org/data/definitions/89.html
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which is neither representable within a method body nor in its token representa-

tion and shingles.

The target software system method in Listing 4.2 is a simple Java method that

prompts the user to enter a username, constructs a SQL query using the username,

and processes the query. This method is vulnerable to SQL Injection. It constructs

an SQL query using user input without proper filtering, allowing an attacker to enter

a malicious username containing SQL commands.

Similarly, the vulnerability dataset method in Listing 4.3 is another simple Java

method that constructs a SQL query using a username parameter and then executes

the query. Like the target software system method, it is vulnerable to SQL Injection

due to the lack of proper input filtering, allowing an attacker to execute malicious

SQL commands.
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Listing 4.2: processUsername Method

76 public void processUsername() throws SQLException {

77 Scanner scanner = new Scanner(System.in);

78 System.out.println("Enter your username:");

79 String username = scanner.nextLine();

80 String q = "SELECT * FROM users WHERE username = ’

" + username + "’";

81 processQuery(q);

82 scanner.close();

83 }

public void processUsername ( ) throws SQLException {
↪→ Scanner scanner = new Scanner ( System . in ) ;
↪→ System . out . println ( " Enter your username : "
↪→ ) ; String username = scanner . nextLine ( ) ;
↪→ String q = " SELECT * FROM users WHERE username = ’
↪→ " + username + " ’ " ; processQuery ( q ) ;
↪→ scanner . close ( ) ; }

Figure 4.4: Single Whitespace-Separated Token Representation of the Method in List-
ing 4.2

Figure 4.4 shows the single whitespace-separated token representation of the

processUsernamemethod in Listing 4.2. Some vulnerabilities can occur within

a string literal, such as the SQL Injection vulnerability in the target software sys-

tem method or even within a single token, such as a hardcoded password or API

key. For this reason, we aimed for ultimate granularity in our token representation

by disintegrating code elements, including strings, into simple individual tokens to

optimise token retrieval (i.e., using information retrieval) and analysis.
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Table 4.6: Shingles of the Method in Listing 4.2

public void processUsername ( ) = scanner . nextLine (
void processUsername ( ) throws scanner . nextLine ( )
processUsername ( ) throws SQLException . nextLine ( ) ;
( ) throws SQLException { nextLine ( ) ; String
) throws SQLException { Scanner ( ) ; String q
throws SQLException { Scanner scanner ) ; String q =
SQLException { Scanner scanner = ; String q = "
{ Scanner scanner = new String q = " SELECT
Scanner scanner = new Scanner q = " SELECT *
scanner = new Scanner ( = " SELECT * FROM
= new Scanner ( System " SELECT * FROM users
new Scanner ( System . "SELECT * FROM users WHERE
Scanner ( System . in * FROM users WHERE username
( System . in ) FROM users WHERE username =
System . in ) ; users WHERE username = ’
. in ) ; System WHERE username = ’ "
in ) ; System . username = ’ " +
) ; System . out = ’ " + username
; System . out . ’ " + username +
System . out . println " + username + "
. out . println ( + username + " ’
out . println ( " username + " ’ "
. println ( " Enter + " ’ " ;
println ( " Enter your " ’ " ; processQuery
( " Enter your username ’ " ; processQuery (
" Enter your username : " ; processQuery ( q
Enter your username : " ; processQuery ( q )
your username : " ) processQuery ( q ) ;
username : " ) ; ( q ) ; scanner
: " ) ; String q ) ; scanner .
" ) ; String username ) ; scanner . close
) ; String username = ; scanner . close (
; String username = scanner scanner . close ( )
String username = scanner . . close ( ) ;
username = scanner . nextLine close ( ) ; }

Table 4.6 shows the shingles (5-grams) derived from the token representation

of the target software system method in Figure 4.4.

Shingles typically exclude punctuation and whitespace characters in natural

language processing, focusing only on words. However, in our source code context,

we include all code elements (except comments and whitespaces), such as brackets,

parentheses, and semicolons, to capture the code’s structure and syntax.
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Listing 4.3: getUserData Method

850 public ResultSet getUserData(String username) {

851

852 String dbUrl = getDatabaseUrl();

853 ResultSet resultSet = null;

854

855 try (Connection conn = DriverManager.getConnection

(dbUrl);

856 Statement statement = conn.createStatement())

{

857

858 String query = "SELECT * FROM users WHERE

username = ’" + username + "’";

859 resultSet = statement.executeQuery(query);

860

861 } catch (SQLException e) {

862 e.printStackTrace();

863 }

864 return resultSet;

865 }

public ResultSet getUserData ( String username ) { String
↪→ dbUrl = getDatabaseUrl ( ) ; ResultSet resultSet =
↪→ null ; try ( Connection conn = DriverManager .
↪→ getConnection ( dbUrl ) ; Statement statement =
↪→ conn . createStatement ( ) ) { String query = "
↪→ SELECT * FROM users WHERE username = ’ " + username
↪→ + " ’ " ; resultSet = statement . executeQuery (
↪→ query ) ; } catch ( SQLException e ) { e .
↪→ printStackTrace ( ) ; } return resultSet ; }

Figure 4.5: Single Whitespace-Separated Token Representation of the Method in List-
ing 4.3
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Table 4.7: Shingles of the Method in Listing 4.3

public ResultSet getUserData ( String query = " SELECT *
ResultSet getUserData ( String username = " SELECT * FROM
getUserData ( String username ) " SELECT * FROM users
( String username ) { "SELECT * FROM users WHERE
String username ) { String * FROM users WHERE username
username ) { String dbUrl FROM users WHERE username =
) { String dbUrl = users WHERE username = ’
{ String dbUrl = getDatabaseUrl WHERE username = ’ "
String dbUrl = getDatabaseUrl ( username = ’ " +
dbUrl = getDatabaseUrl ( ) = ’ " + username
= getDatabaseUrl ( ) ; ’ " + username +
getDatabaseUrl ( ) ; ResultSet " + username + "
( ) ; ResultSet resultSet + username + " ’
) ; ResultSet resultSet = username + " ’ "
; ResultSet resultSet = null + " ’ " ;
ResultSet resultSet = null ; " ’ " ; resultSet
resultSet = null ; try ’ " ; resultSet =
= null ; try ( " ; resultSet = statement
null ; try ( Connection ; resultSet = statement .
; try ( Connection conn resultSet = statement . executeQuery
try ( Connection conn = = statement . executeQuery (
( Connection conn = DriverManager statement . executeQuery ( query
Connection conn = DriverManager . . executeQuery ( query )
conn = DriverManager . getConnection executeQuery ( query ) ;
= DriverManager . getConnection ( ( query ) ; }
DriverManager . getConnection ( dbUrl query ) ; } catch
. getConnection ( dbUrl ) ) ; } catch (
getConnection ( dbUrl ) ; ; } catch ( SQLException
( dbUrl ) ; Statement } catch ( SQLException e
dbUrl ) ; Statement statement catch ( SQLException e )
) ; Statement statement = ( SQLException e ) {
; Statement statement = conn SQLException e ) { e
Statement statement = conn . e ) { e .
statement = conn . createStatement ) { e . printStackTrace
= conn . createStatement ( { e . printStackTrace (
conn . createStatement ( ) e . printStackTrace ( )
. createStatement ( ) ) . printStackTrace ( ) ;
createStatement ( ) ) { printStackTrace ( ) ; }
( ) ) { String ( ) ; } return
) ) { String query ) ; } return resultSet
) { String query = ; } return resultSet ;
{ String query = " } return resultSet ; }
String query = " SELECT

Table 4.7 shows the shingles (5-grams) derived from the token representation

in Figure 4.5 of the getUserData method in Listing 4.3. Again, the shingles

include every code element (except comments and whitespaces), such as brackets,

parentheses, and semicolons, to capture the code’s structure and every low-level

syntactic detail.
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Table 4.8: Example Token-Based Metrics Calculation

Hit-Independent Metrics Metric Value

NTT 74
NDTT 35

Hit-Dependent Metrics Metric Value

NHS 14
NDHS 14
NVT 89
NDVT 37
TVSSR 14

141
SHTSR 14

70
SHVSR 14

85

Table 4.8 presents the calculated values of the metrics for the processUsername

Method and the hypothetical vulnerable method, as derived from a vulnerability

dataset. The full names of the metrics are in Table 4.1 and Table 4.4.

The NTT metric, the number of tokens in the target software system method, is

74, obtained by counting the tokens in the token representation of the target software

system method (Figure 4.4).

The NDTT metric, the number of distinct tokens in the target software system

method, is 35, obtained by counting the distinct tokens in the token representation

of the target software system method (Figure 4.4).

The NHS metric, the number of shared shingles between the target software

system method and the vulnerable method, is 14, determined by counting the shin-

gles that appear in both methods (Tables 4.6 and 4.7). For clarity, these shared

shingles are emboldened in both tables.

The NDHS metric, the number of distinct shared shingles between the target

and vulnerable methods, is also 14.

The NVT metric, the number of tokens in the vulnerable method, is 89, ob-

tained by counting the tokens in the token representation of the vulnerable method

(Figure 4.5).
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The NDVT metric, the number of distinct tokens in the vulnerable method,

is 37, obtained by counting the distinct tokens in the token representation of the

vulnerable method (Figure 4.5).

The TVSSR metric, the Jaccard Similarity of the target software system

method’s shingles and the vulnerable method’s shingles is 14
(70+85)−14 or 14

141 , where

70 and 85 are the number of distinct shingles in the target and vulnerable methods,

respectively (Tables 4.6 and 4.7).

The SHTSR metric, which is the ratio of the number of distinct shared shingles

to the number of distinct shingles in the target software system method, is 14
70 .

The SHVSR metric, which is the ratio of the number of distinct shared shingles

to the number of distinct shingles in the vulnerable method, is 14
85 .

This example illustrates how we calculate the metrics developed in this study

using a hypothetical target software system and a hypothetical vulnerable method.

The following section details our methodology, including how these metrics are

leveraged in our machine learning classification.
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4.4 Methodology
This section presents the chapter’s methodology. We provide preliminary infor-

mation on our approach, followed by detailed information on our datasets, data

preprocessing, information retrieval techniques, and machine learning analysis.

4.4.1 Overview of the Methodology

Figure 4.6: Token-Based Vulnerability Prediction Methodology Overview (Within-
Project)

Figure 4.6 provides a high-level summary of our approach, grouped into six

main phases: source code preprocessing, token representation extraction, word n-

grams (shingles) generation, information retrieval, metrics development, and ma-

chine learning analysis.

4.4.1.1 Source Code Preprocessing

Following the acquisition of the dataset, we began by preprocessing the source code

of our target software system and the vulnerability dataset. The target software

system is the program in which we want to predict vulnerabilities.
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This phase involved several preparatory steps, including identifying and filter-

ing out irrelevant code artefacts, such as abstract and test methods. We also removed

source code comments from all files to ensure they did not influence the analysis.

4.4.1.2 Source Code Token Representation Extraction

After preprocessing, we parsed each source code file in our target software system

and the vulnerability dataset. We used JavaParser3 to extract the token represen-

tations of methods from both software systems. JavaParser is a Java library that

parses Java source code and generates ASTs from the parsed code.

4.4.1.3 Word N-grams (Shingles) Generation

We generated shingles for each method using the token representations of methods

in our target software system and the vulnerability dataset with Apache Lucene’s

ShingleFilter4. These shingles were then utilised in the next phase of our experi-

ment, which involved information retrieval. Apache Lucene is a Java-based, high-

performance, full-featured text search engine library, which we will discuss in more

detail later in this section.

4.4.1.4 Information Retrieval

This phase involved constructing a document index and querying it. The aim was to

apply information retrieval techniques to the shingles generated from the extracted

source code token representations of the methods in our target software system and

the vulnerability dataset.

1. Document Index Construction: We used the shingles generated from the vul-

nerability dataset methods to build an information retrieval document index.

This index serves as a data repository, facilitating the efficient storage and

retrieval of relevant information, where a ‘document’ refers to the shingles

generated from a method’s token representation.

3https://javaparser.org/
4https://lucene.apache.org/

https://javaparser.org/
https://lucene.apache.org/


4.4. Methodology 137

2. Document Index Querying: We used the shingles from each target software

system method to query and retrieve the most similar methods from the doc-

ument index.

4.4.1.5 Metrics Data Development

This experiment phase embodies our core contribution: the sixteen metrics we de-

veloped using our novel information retrieval-driven approach to vulnerability pre-

diction. This phase had two subphases:

1. Metrics Calculation and Feature Engineering: In this subphase, we generated

the metrics data for each method in our target software system. This involved

leveraging the attributes from the source code token representations and shin-

gles of the methods, as well as the results from the information retrieval phase.

The metrics data included two categories: hit-independent (seven metrics)

and hit-dependent (nine metrics). The hit-independent metrics were calcu-

lated using only the attributes of the target software system methods. In con-

trast, the hit-dependent metrics used attributes from the target software sys-

tem methods and their most similar methods in the vulnerability dataset. Hit-

independent metrics communicated the methods’ structural and evolutionary

details, while hit-dependent metrics provided security-aware data by leverag-

ing the vulnerability dataset. This process constituted the feature engineering

for our machine learning classification.

2. Ground Truth Data Appendation: This subphase involved supplementing the

metrics data with ground truth information for each method in our target soft-

ware system. The ground truth data, comprising vulnerability fix information

from the official security reports, was crucial for evaluating the performance

of our machine learning classification.

4.4.1.6 Machine Learning Analysis

This phase aimed to:

i identify the best-performing machine learning classifier for vulnerability pre-

diction;
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ii identify the best-performing combination of metrics for vulnerability predic-

tion.

We completed several subphases to achieve these aims:

1. Metrics Data Deduplication: This subphase aimed to eliminate data leakage,

which can cause overfitting and inflated performance metrics.

2. We removed duplicate data by ensuring a unique token representation per

method per release.

3. Feature Scaling: We normalised the metrics data using the Min-Max feature

scaling technique to ensure all metrics values were on the same scale and

contributed equally to the machine learning classification.

4. Class Imbalance Mitigation: Due to the class imbalance between vulnerable

and non-vulnerable code artefacts, we applied the Synthetic Minority Over-

sampling Technique (SMOTE) to balance the metrics data before training.

5. Correlation Analysis: This subphase identified correlations among the met-

rics (independent variables) and between the metrics and the ground truth

(dependent variable).

6. Feature Selection: We applied the Sequential Feature Selection (SFS) feature

selection technique to identify the best-performing combination of metrics

for vulnerability prediction.

7. Classification: We trained ten machine learning classifiers using the metrics

data as independent variables, and the vulnerability fix information as the

dependent variable. The goal was to predict whether each method in our

target software system was vulnerable or non-vulnerable.

8. Performance Evaluation: We evaluated the classifiers’ performance using the

ground truth data, calculating precision, recall, and F1 score.

9. Model Selection: We selected the best-performing classifier based on the

highest F1 score.
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10. Model Optimisation (Hyperparameter Tuning): Using the Grid Search hy-

perparameter tuning technique, we tuned the hyperparameters of the best-

performing classifier to improve its performance.

The above enumeration summarises the methodology used in this study. The

following subsections provide detailed information on each overviewed item.

4.4.2 Dataset

Our analysis involved a target software system and vulnerability datasets. The tar-

get software system dataset was the focus of our vulnerability prediction analysis.

In contrast, the vulnerability dataset was crucial for assessing the likelihood of vul-

nerability of the methods in the target system.

Our target software system was Apache Tomcat 75, acquired in the fourth quar-

ter of 2021. The vulnerability dataset was the National Institute of Standards and

Technology (NIST) Software Assurance Reference Dataset (SARD)6, obtained in

the fourth quarter of 2022. We used SARD to evaluate whether methods in various

Apache Tomcat 7 releases exhibited the same vulnerable patterns as those in the

vulnerability dataset.

4.4.2.1 Target Software System

We used Apache Tomcat 7 as our target software system. Tomcat is an open-source

implementation of Java Servlet, JavaServer Pages, Java Expression Language, and

WebSocket technologies. It provides a fully Java-based HTTP web server environ-

ment for running Java code. The project is developed by an open-source community

with support from the Apache Software Foundation and is licensed under Apache

License 2.0.

We chose this software system for several reasons, including access to its com-

plete source code, security reports, and information on vulnerability fixes. These

resources, available on the Apache Tomcat website, are essential for evaluating pre-

dictions.

5https://archive.apache.org/dist/tomcat/tomcat-7/
6https://samate.nist.gov/SARD/

https://archive.apache.org/dist/tomcat/tomcat-7/
https://samate.nist.gov/SARD/
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We analysed several releases of Apache Tomcat 7, between 7.0.0 and 7.0.108.

We excluded a few source code files that we could not parse and test or other non-

conventional methods due to their irrelevance in our context.

4.4.2.2 Ground Truth Data

We used Apache Tomcat 7 fixed vulnerabilities data7, spanning releases 7.0.2 to

7.0.108, as our ground truth.

We filtered out two groups of components from our ground truth data:

1. Test-related methods that are modified as part of a vulnerability fix since they

do not directly define a system’s functionality or contribute to its vulnerability

proneness.

2. Methods added from scratch as part of a vulnerability fix, as they did not exist

before the fix and could not have contributed to pre-existing vulnerabilities.

While such methods could introduce new vulnerabilities, our analysis did not

consider this risk category. We focused solely on the threats posed by partially

fixed, pre-existing methods.

4.4.2.3 National Institute of Standards and Technology (NIST) Soft-

ware Assurance Reference Dataset

The SARD vulnerability dataset provided numerous vulnerable code samples. It

contained over 450,000 test programs with documented weaknesses, ranging from

small synthetic to large applications at the time of acquisition. While we focused

on Java-based programs, the dataset includes C, C++, Java, PHP, and C#, covering

over 150 Common Weakness Enumeration (CWE)8 classes.

A typical SARD test case comprises one or more source code files with at-

tributes such as ‘type’, ‘author’, ‘language’, ‘state’, ‘status’, and ‘submission date.’

In our experiment, the ‘type’ was ‘source code’, and the ‘language’ was ‘Java.’

7https://tomcat.apache.org/security-7.html
8https://cwe.mitre.org/

https://tomcat.apache.org/security-7.html
https://cwe.mitre.org/
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The ‘state’ attribute options are ‘good’, ‘bad’, and ‘mixed.’ A ‘good’ test case

is non-vulnerable (false positive), a ‘bad’ test case is vulnerable (true positive), and

a ‘mixed’ test case contains both vulnerable and non-vulnerable code.

The ‘status’ attribute options are ‘candidate’, ‘accepted’, and ‘deprecated.’

Test cases start as ‘candidate’ and, if they pass a review by a SARD librarian, be-

come ‘accepted.’ Accepted test cases meet quality standards, are well-documented,

represent specific weaknesses, are easy to understand, and are free of ambiguities.

We prioritised ‘accepted’ test cases due to their quality and credibility. How-

ever, due to data scarcity, availability and accessibility-related challenges in soft-

ware vulnerability research, we also included ‘candidate’ test cases to increase the

number of vulnerable samples. We excluded ‘deprecated’ test cases as SARD dis-

courages their use.

Also, we only used test cases from the ‘bad’ and ‘mixed’ categories for the

‘state’ attribute. We extracted the vulnerable methods from the ‘mixed’ category

and skipped the non-vulnerable counterparts.

Table 4.9: Token-Based Single Software System Dataset Details

Description Value

Total Number of Analysed Target Software System Releases 76
Total Number of Analysed Vulnerability Fixes 261
Total Number of Indexed Vulnerability Dataset Methods 20,692

Table 4.9 presents the details of our target software system and vulnerability

dataset. We analysed 76 releases of Apache Tomcat 7 and 261 vulnerability fixes.

The SARD vulnerability dataset comprised 20,692 methods.

4.4.3 Data Preprocessing

We parsed and extracted source code tokens using JavaParser and generated shin-

gles from these tokens using Apache Lucene’s ShingleFilter. Using information

retrieval techniques, we developed features (metrics) for machine learning classifi-

cation from the extracted tokens and generated shingles.
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4.4.3.1 Source Code Token Extraction

Source code tokenisation involves converting source code into a sequence of tokens

that represent its structure. We extracted tokens from all analysed methods in our

target software system and the vulnerability dataset.

4.4.3.2 Shingle Generation

We generated shingles for each method in our target software system and the vul-

nerability dataset following token extraction.

Shingling breaks down code into smaller, overlapping fragments called shin-

gles. This technique is employed in text analysis for detecting plagiarism and

analysing code similarity.

The ideal shingle size depends on the context and nature of the analysis.

Smaller shingles capture fine details but may produce noise and be computation-

ally expensive. Larger shingle sizes reduce noise but may miss subtle details. We

conducted preliminary experiments and found that a shingle size of ‘5’ was ideal

for our analysis.

After token extraction and shingle generation, we applied information retrieval

techniques and machine learning classification, which were discussed later in this

section. Before that, we describe additional steps in preparing our data: deduplica-

tion, ground truth evaluation, feature scaling and class imbalance mitigation.

4.4.3.3 Data Deduplication

We deduplicated the Tomcat (training) dataset to avoid data leakage9 during ma-

chine learning classification. Data leakage occurs when a classifier inadvertently

uses test data during training, which can happen if duplicates are not removed, mak-

ing some data points appear in both the training and test sets.

Our deduplication strategy retained only the first release of each method in

the dataset and all subsequent releases where its token representation changed.

Figure 4.3 and Table 4.10 illustrate this strategy. Table 4.11 presents the post-

9https://scikit-learn.org/stable/common_pitfalls.html#data-leaka
ge

https://scikit-learn.org/stable/common_pitfalls.html#data-leakage
https://scikit-learn.org/stable/common_pitfalls.html#data-leakage
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deduplication figures of our target software system dataset, Apache Tomcat 7, show-

ing a highly imbalanced class distribution.

Table 4.10: Deduplication Strategy

Method Release 1 Release 2 Release 3 Release 4 Release 5

A Include Remove Remove Remove Remove
B Include Include Remove Include Remove
C Include Remove Include Remove Remove
D NA Include Remove Remove Remove
E NA Include Include Remove NA

Table 4.11: Apache Tomcat 7 Post-Deduplication Dataset Details

Description Value %

Number of Non-Vulnerable Methods Post-Deduplication 25,166 98.52
Number of Vulnerable Methods Post-Deduplication 378 1.48

Total Number of Methods Post-Deduplication 25,544

4.4.3.4 Ground Truth: Affected Methods Estimation

To measure the number of affected methods for each vulnerability fix, we assume

that each fixed method reported in the ground truth was vulnerable in its earlier

releases before the fix.

A vulnerability fix can affect multiple methods in a file and multiple files in

a software system. The value 378 in Table 4.11 represents the number of affected

methods, calculated from the 261 vulnerability fixes reported in Table 4.9.

4.4.3.5 Feature Scaling

Feature scaling is an essential preprocessing step in machine learning classification.

It ensures that all features have a uniform scale, preventing model bias towards

features with larger values.

We applied Min-Max scaling to standardise our metrics data. This technique

transforms each feature into a fixed range of [0,1] by subtracting the minimum value

and dividing by the feature’s range, as defined by:

Xscaled =
X−Xmin

Xmax−Xmin
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Where X is the original value, Xmin is the minimum value of the feature, and

Xmax is the maximum value of the feature.

This normalisation ensures that all feature values contribute equally to the

learning process, improving model convergence and stability.

4.4.3.6 Software System Vulnerabilities and Data Imbalance

We addressed the class imbalance in our target software system dataset after dedu-

plication.

Typically, a software system has far fewer vulnerable artefacts than non-

vulnerable ones because the number of known vulnerabilities is usually low at any

given time. This imbalance creates a skewed class distribution when comparing

vulnerable artefacts to non-vulnerable ones [Ban et al., 2019, Shu et al., 2022, Liu

et al., 2019]. In our case, the imbalance between vulnerable and non-vulnerable

methods was extreme, as shown in Table 4.11. We addressed this imbalance before

applying machine learning classification to ensure fairness and avoid model bias.

Chawla et al. [2002] introduced SMOTE to address the class imbalance prob-

lem by oversampling the minority class. SMOTE generates synthetic minority-class

samples by interpolating between them, effectively balancing the class distribution.

We applied SMOTE to our dataset, oversampling the minority class (vulnerable

methods) to balance the class distribution before proceeding to the machine learning

classification phase.

4.4.4 Information Retrieval

Following source code token extraction and shingle generation, as described in Sub-

subsections 4.4.3.1 and 4.4.3.2, we applied information retrieval to the generated

shingles to identify the best-matching methods in the vulnerability dataset for each

method in the target software system. By ‘best-matching’, we mean shingle matches

shared between the target software system method and the SARD methods shingles.

To find these matches, we used Apache Lucene.

Apache Lucene is a Java-based open-source information retrieval library. It is a

high-performance, full-featured text search engine that indexes and searches the en-
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tire text of a document. Lucene is mature, well-established, and highly scalable. It

is capable of efficiently indexing and searching hundreds of millions of documents.

It is highly configurable and extensible, supporting multiple platforms, including

Windows, Linux, and macOS.

4.4.4.1 Apache Lucene Document Index Construction

Our Lucene index comprised 20,692 documents, each representing a method in the

SARD dataset. The documents in the index were the shingles obtained from the

token representation of the methods in the SARD dataset, as shown in Table 4.9.

The index structure maps each method’s custom ID to its shingles.

4.4.4.2 Apache Lucene Query Construction (BooleanQuery)

Our queries comprised shingles generated from the token representations of the tar-

get software system (Tomcat) methods. Each query included the method’s shingles

separated by the ‘OR’ Boolean logical operator.

Listing 4.4: getChannelSendOptions Method

47 public int getChannelSendOptions() {

48 return channelSendOptions;

49 }

public int getChannelSendOptions ( ) { return
↪→ channelSendOptions ; }

Figure 4.7: Token Representation of the Method in Listing 4.4

public int getChannelSendOptions ( )↔int
↪→ getChannelSendOptions ( ) {↔getChannelSendOptions
↪→ ( ) { return↔( ) { return channelSendOptions↔) {
↪→ return channelSendOptions ;↔{ return
↪→ channelSendOptions ; }

Figure 4.8: Shingle Representation of the Method in Listing 4.4

For example, Listing 4.4 presents a method from our target software system.

Figure 4.7 shows the token representation of the method. Figure 4.8 presents the

shingles of the method, with a shingle size of five, and each shingle separated by

↔.
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"public int getChannelSendOptions ( )" OR "int
↪→ getChannelSendOptions ( ) {" OR "
↪→ getChannelSendOptions ( ) { return" OR "( ) {
↪→ return channelSendOptions" OR ") { return
↪→ channelSendOptions ;"

Figure 4.9: Query String for the Method in Listing 4.4

Figure 4.9 shows the query string for the method in Listing 4.4. The ‘OR’ op-

erator in our query strings makes each shingle optional, allowing Lucene to flexibly

retrieve the best matching methods from the vulnerability dataset for any target soft-

ware system method. The more ORs that match between a target software system

method and a SARD method, the more relevant the SARD method is to the target

software system method. We used the query results to calculate the hit-dependent

metrics described in Subsection 4.3.2.

Table 4.12: Percentage of Vulnerable versus Non-Vulnerable Methods with Hits

Number of Vulnerable Methods 378
Number of Vulnerable Methods with Hits 361
% of Vulnerable Methods with Hits 95.50

Number of Non-Vulnerable Methods 25,166
Number of Non-Vulnerable Methods with Hits 15,201
% of Non-Vulnerable Methods with Hits 60.40

Table 4.12 extends Table 4.11, detailing the numbers and percentages of vul-

nerable and non-vulnerable methods with hits. The table shows that vulnerable

methods are likelier to share patterns with known vulnerable methods in the dataset

than non-vulnerable methods.

4.4.5 Machine Learning Analysis

After processing the token representations and shingles and calculating the metrics

data, we fed the data into several machine learning classification algorithms (see

Subsection 4.4.3). This part of the experiment utilised metrics derived from tokens

and shingles to classify the methods in our target software system as either vulner-

able or non-vulnerable.
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After classification, we evaluated the performance of each algorithm using the

ground truth data (see Subsubsections 4.4.2.2 and 4.4.3.4).

4.4.5.1 Nominated Classification Algorithms

We selected ten classifiers for our experiment based on their applicability, suitability

for our dataset, and prevalence in the literature to facilitate comparability between

studies. The classifiers include:

• AdaBoost classifier10

• Decision Tree classifier11

• Gaussian Naïve Bayes12

• Gradient Boosting classifier13

• K-Nearest Neighbors classifier14

• LightGBM classifier15

• Linear Support Vector classifier16

• Logistic Regression17

• Random Forest classifier18

10https://scikit-learn.org/stable/modules/generated/sklearn.ense
mble.AdaBoostClassifier.html

11https://scikit-learn.org/stable/modules/generated/sklearn.tree
.DecisionTreeClassifier.html

12https://scikit-learn.org/stable/modules/naive_bayes.html#gauss
ian-naive-bayes

13https://scikit-learn.org/stable/modules/generated/sklearn.ense
mble.GradientBoostingClassifier.html

14https://scikit-learn.org/stable/modules/generated/sklearn.neig
hbors.KNeighborsClassifier.html

15https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.L
GBMClassifier.html

16https://scikit-learn.org/stable/modules/generated/sklearn.svm.
LinearSVC.html#sklearn.svm.LinearSVC

17https://scikit-learn.org/stable/modules/generated/sklearn.line
ar_model.LogisticRegression.html

18https://scikit-learn.org/stable/modules/generated/sklearn.ense
mble.RandomForestClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/naive_bayes.html#gaussian-naive-bayes
https://scikit-learn.org/stable/modules/naive_bayes.html#gaussian-naive-bayes
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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• XGBoost classifier19

4.4.5.2 Repeated Stratified k-fold Cross-validation

The fundamental idea behind supervised learning is that a machine learning algo-

rithm ‘learns’ from data and then uses the learned model to predict unseen data.

Typically, practitioners split their data into training and test sets. The training set

trains the model in isolation from the test set, which then evaluates the model’s per-

formance. Since the model did not access the test set during training, we consider

the test set ‘unseen data.’ However, this approach can lead to a model that does not

generalise well, as it is possible to overfit during training without a chance to cor-

rect it. Overfitting occurs when a model learns the training data patterns too well,

resulting in poor performance on unseen data [Yang et al., 2022].

Cross-Validation20 addresses this issue by improving generalisation, the ability

of a classifier to perform well across various inputs. In cross-validation, the data is

split into k subsets (folds), and the classifier is trained iteratively on k-1 folds, using

the remaining fold as a test set. This process repeats until each fold is used for

training and testing. For example, given a dataset with 200 observations and k set

to 10, 10-fold cross-validation splits the data into ten folds of 20 observations each.

It trains the model on 180 observations and tests it on 20, repeating this process

with different folds until all folds have been used. This yields a more reliable result

based on the average of the iterations, provided there is no data leakage between the

training and test sets.

Stratified K-fold Cross-Validation21 ensures that each fold maintains the same

class distribution between vulnerable and non-vulnerable methods, which is crucial

given our class distribution of 1.48 : 98.52 as shown in Table 4.11. Traditional k-

fold cross-validation does not account for class distributions, which could lead to

inaccurate results due to disproportionate class representation in some folds.

19https://xgboost.readthedocs.io/en/stable/python/index.html
20https://scikit-learn.org/stable/modules/cross_validation.html
21https://scikit-learn.org/stable/modules/generated/sklearn.mode

l_selection.StratifiedKFold.html

https://xgboost.readthedocs.io/en/stable/python/index.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
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Repeated Stratified k-fold Cross-Validation22 repeats the stratified k-fold cross-

validation n times. For example, with k set to 10 and n set to 3, it performs 10-fold

cross-validation three times, reporting the average performance metrics over the

repetitions. This averaged figure is more reliable than a single cross-validation or

train-test split figure.

To ensure reliable classification results, we performed repeated stratified k-fold

cross-validation with k and n both set to 10. Thus, we repeated the stratified 10-fold

cross-validation ten times for each of our ten classifiers and reported the average

performance metrics obtained.

4.4.5.3 Evaluation Metrics

Model evaluation23 is crucial in classification tasks to determine a classifier’s per-

formance and suitability for a given task. We evaluated our classifiers using ground

truth data (see Subsubsections 4.4.2.2 and 4.4.3.4) and three metrics: precision,

recall, and F1 score.

Binary classification involves two classes: positive and negative. The positive

class is usually the class of interest, which, in our case, is the vulnerable method.

The negative class is the opposite of the positive class, which, in our case, is the

non-vulnerable method. We used the following terms to describe the classification

results:

• True Positive (TP): Correctly predicts an observation as positive (e.g., identi-

fying a vulnerable method as vulnerable).

• True Negative (TN): Correctly predicts an observation as negative (e.g., iden-

tifying a non-vulnerable method as non-vulnerable).

• False Positive (FP): Incorrectly predicts an observation as positive (e.g., iden-

tifying a non-vulnerable method as vulnerable).

• False Negative (FN): Incorrectly predicts an observation as negative (e.g.,

identifying a vulnerable method as non-vulnerable).
22https://scikit-learn.org/stable/modules/generated/sklearn.mode

l_selection.RepeatedStratifiedKFold.html
23https://scikit-learn.org/stable/modules/model_evaluation.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RepeatedStratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RepeatedStratifiedKFold.html
https://scikit-learn.org/stable/modules/model_evaluation.html
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Precision measures the proportion of true positives among all predicted posi-

tives:

Precision = T P
T P+FP

Recall measures the proportion of true positives among all actual positives:

Recall = T P
T P+FN

F1 score is the harmonic mean of precision and recall, balancing the two:

F1 score = 2 ∗ (Precision∗Recall)
(Precision+Recall)

The F1 score is particularly suitable for imbalanced datasets [Al-Azani and El-

Alfy, 2017] like ours. We chose it as the primary evaluation metric for the following

reasons:

1. It is simple to understand and interpret.

2. It is widely used in the machine learning community, facilitating comparison

with other studies.

3. It places less emphasis on true negatives, which are less relevant in our con-

text, given that we are more interested in identifying vulnerable methods than

non-vulnerable ones.

4.4.6 Approach to Research Question 1

The experiments in this chapter addressed the first research question of this the-

sis: How well does the information retrieval-driven software vulnerability predic-

tion technique perform on a single, multi-release software system dataset for token-

based source code representations?

To address this research question, we aimed to achieve the following objec-

tives:

1. Identify the most suitable classifier for information retrieval-driven, token-

based, method-level vulnerability prediction.
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2. Determine the best-performing combination of token-based software metrics

for vulnerability prediction.

3. Evaluate the impact of hyperparameter tuning on the performance of the best-

performing classifier.

4.4.6.1 Objective 1

Identify the most suitable classifier for information retrieval-driven token-based

method-level vulnerability prediction.

We used precision and recall to evaluate classifier performance and the

F1 score to balance these two metrics for the first objective. As explained in Sub-

subsection 4.4.5.3, the F1 score combines precision and recall into a single value.

Thus, we used the metric as the primary evaluation criterion to determine the best

classifier for our prediction task.

4.4.6.2 Objective 2

Identify the best-performing token-based software metrics combination for vulner-

ability prediction.

The second objective involved analysing the best-performing combination of

software metrics for vulnerability prediction from all sixteen metrics.

Building an interpretable model in machine learning requires understanding

how different features affect its performance. Therefore, feature selection is cru-

cial, as the chosen features directly impact model performance. This is a sentiment

shared by Shivaji et al. [2009] and Theisen and Williams [2020].

With sixteen software metrics to consider, we used a feature selection tech-

nique to identify the best combination for our classification models.

Before feature selection, we conducted a correlation analysis to assess the re-

lationship between the metrics and the ground truth data. This analysis helps clarify

how each metric correlates with the target variable (ground truth) or other metrics.

A high correlation with the target variable indicates essential features, while a high

inter-metric correlation might lead to redundancy.
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In machine learning, correlation analysis helps identify redundant features that

could negatively impact model performance. However, evaluating all possible com-

binations of the sixteen metrics is impractical due to the exponential increase in

combinations. For instance, evaluating five metrics requires checking 31 com-

binations, while sixteen require checking 65,535 combinations, making this ap-

proach time-prohibitive. Thus, the time complexity of the brute-force approach

is O(2n), where n is the number of metrics, which is exponential and, therefore,

time-prohibitive. in contrast, the Sequential Forward Selection algorithm has a time

complexity of O(n2), making it more efficient.

We employed Sequential Feature Selection24, which selects features sequen-

tially to find the best-performing combination. We identified the best-performing

combination for every n number of metrics, where n ranges from 1 to 15, in ad-

dition to the baseline model that uses all 16 metrics. We then compared these to

identify the best-performing combination.

Sequential Feature Selection is a greedy search algorithm that aims to identify

the best-k-performing feature combination out of n features for a given machine

learning model, where k < n and k are specified a priori. It has two basic variants:

Forward Selection and Backward Selection. Forward Selection starts with an empty

set of features and adds one feature at a time until it reaches k features. Backward

Selection starts with all features and removes one feature at a time until it reaches k

features. We used Forward Selection, the default variant in the scikit-learn library.

To illustrate, suppose we have a dataset with four features (n = 4) and want

to identify the best three-feature combination using Sequential Feature Selection

(Forward Selection) to achieve the highest F1 score. The algorithm proceeds as

follows:

1. Start with an empty set of features.

2. Train a model using each feature in the dataset and evaluate the F1 score of

each model (k = 1).

24https://scikit-learn.org/stable/modules/generated/sklearn.feat
ure_selection.SequentialFeatureSelector.html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
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3. Identify the feature that yields the best performance.

4. Train a model using the feature identified in step 3 and each remaining feature,

then evaluate the F1 score of each model (k = 2).

5. Identify the best-performing feature duo.

6. Train a model using the feature duo identified in step 5 and each remaining

feature, then evaluate the F1 score of each model (k = 3).

7. Identify the best-performing feature trio.

8. Return the set of features identified in step 7.

In a more complex scenario, to identify the best single feature, the best-

performing feature duo, the best-performing feature trio, and the baseline perfor-

mance using all four features, we would need to run the algorithm four times. The

first three runs would have k equal to 1, 2, and 3, respectively, and the fourth would

involve training and evaluating a baseline model using all four features. Algo-

rithms 1 and 2 present the pseudocode for this more complex scenario used in our

experiment.

For simplicity, we used a small hypothetical dataset with four features in our

illustration, but the same approach applies to our sixteen-feature dataset. The al-

gorithm runs sixteen times for each k value, where k ranges from 1 to 15, plus the

baseline model training using all sixteen features.

Algorithm 1 declares the independent variables, X , on line 2, the number of

features in the dataset, n, on line 3, and the dependent variable, y, on line 4. It then

declares the cross-validation strategy, cv, on line 5. The algorithm iterates through

the number of features in the dataset, n, on line 6 and calls the run_classification

procedure on line 8. The call to the run_classification procedure includes a Boolean

flag, is_baseline, on line 7 to indicate whether the current iteration is for training

and evaluating a baseline model. is_baseline is set to true if k is equal to n, which

indicates that the current iteration is for training and evaluating a baseline model

using all features.
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Algorithm 1 Sequential Feature Selection and Classification (Part I of II)
1: features← features_in_dataset ▷ List containing CSV column names.

2: X← independent_variables ▷ CSV column data for features.
3: n← number_of_features
4: y← dependent_variable ▷ Binary vulnerability status label: ‘0’ or ‘1’

5: cv← cross_validation_object ▷ Repeated Stratified K-Fold.

6: for k← 1, n do ▷ ‘k′: number of features to select.
7: is_baseline← k = n
8: run_classi f ication(X ,y, is_baseline,k,cv)
9: end for

Algorithm 2 Sequential Feature Selection and Classification (Part II of II)
1: procedure RUN_CLASSIFICATION(X ,y, is_baseline,k,cv)

2: classi f iers← classifier_objects_list

3: for classi f ier ∈ classi f iers do

4: pl← create_pipeline() ▷ Add MinMaxScaler, SMOTE & classifier.
5: data_map← empty_map

6: if is_baseline then ▷ Run baseline classification.
7: data_map← train_and_evaluate_pipeline(pl, X, y, cv)
8: else ▷ Run classification with feature selection.
9: scoring← “F1 score”

10: best_k_features← sequential_feature_selector(pl, k, scoring, cv)
11: data_map← train_and_evaluate_pipeline(pl, best_k_features, y, cv)
12: end if

13: plot_data(data_map) ▷ Plot F1 score, Precision and Recall data.

14: end for
15: end procedure
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The run_classification procedure is declared in Algorithm 2. It takes the in-

dependent variables X , the dependent variable y, the Boolean flag is_baseline, the

number of features to select k, and the cross-validation strategy cv as parameters.

It iterates through all nominated classifiers on line 3 and calls the create_pipeline

procedure on line 4. The create_pipeline procedure creates a pipeline pl alongside

pipeline steps, comprising a MinMaxScaler (Feature Scaling) object, a SMOTE ob-

ject, and an estimator object, i.e, the classifier.

If the current iteration is for training and evaluating a baseline model, the

run_classification procedure calls the train_and_evaluate_pipeline procedure on

line 7, which trains and evaluates the classifier in the pipeline using all features. It

then calls the plot_data procedure on line 13 to plot the current classifier’s F1 score,

Precision, and Recall data.

Suppose the current iteration is not for training and evaluating a base-

line model. In that case, the run_classification procedure calls the sequen-

tial_feature_selector procedure on line 10, a scikit-learn implementation of the Se-

quential Feature Selection algorithm, to identify the best-performing features for

the current classifier. After that, it calls train_and_evaluate_pipeline on line 11,

which trains and evaluates the classifier in the pipeline using the best-performing

features identified by Sequential Feature Selection. Note that the best-performing

features best_k_ f eatures are passed on line 11, unlike the X variable used for the

baseline model on line 7.

Finally, the run_classification procedure calls the plot_data procedure on line

13 to plot the current classifier’s F1 score, Precision, and Recall data. The outputs

from plot_data then inform the best-performing software metrics combination for

each n number of metrics, addressing this objective.

4.4.6.3 Objective 3

Evaluate the impact of hyperparameter tuning on the performance of the best-

performing classifier.

For the third objective, we conducted hyperparameter tuning to determine its

impact on the predictive performance of the best classifier.
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Hyperparameter tuning is essential in machine learning as it involves selecting

the optimal hyperparameters for a model. The model does not learn directly from

hyperparameters; instead, the hyperparameters control the learning process, such as

the number of trees in a random forest classifier. Hyperparameter tuning is crucial

because it can significantly affect a model’s performance. For instance, a random

forest classifier with 100 trees might outperform one with 50 trees, but this is not

always the case. Therefore, it is often necessary to tune hyperparameters to find the

best combination for a given model.

Two popular hyperparameter tuning techniques are Grid Search and Random

Search. We used Grid Search25 in our experiment. Grid Search exhaustively

searches a manually specified subset of hyperparameter values and selects the best-

performing combination. Although computationally expensive, it is straightforward

and effective.

We combined Grid Search with Repeated Stratified k-fold cross-validation

to tune the hyperparameters of our best-performing classifier using the best-

performing metrics combination. The tuning process involved only the best-

performing software metrics combination identified for the best-performing clas-

sifier in the previous objective, not all sixteen metrics.

The hyperparameter tuning process concludes our methodology for addressing

Research Question 1. The following section presents and discusses our experimen-

tal results.

25https://scikit-learn.org/stable/modules/generated/sklearn.mode
l_selection.GridSearchCV.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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4.5 Results
This section presents our experimental results, organised according to the objectives

outlined in Subsection 4.4.6.

4.5.1 Objective 1 Results

Identify the most suitable classifier for information retrieval-driven token-based

method-level vulnerability prediction.

This objective aimed to identify the best-performing machine learning binary

classifier among the nominated classifiers in terms of predictive performance.

4.5.1.1 Evaluation Metrics Trend Analysis
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Figure 4.10: Precision Trend across all Best-k-Performing Metrics Combinations

Figure 4.10 shows the precision trend across all best-k-performing metrics

combinations for each classifier, with the highest precision nearly 0.80, achieved

by the Random Forest classifier at k = 15. The lowest precision is around 0.07,

attained by the Gaussian Naïve Bayes classifier at k = 16.
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The figure indicates that the Random Forest classifier achieved the highest pre-

cision and maintained the best precision trend across most best-k-performing met-

rics combinations. Additionally, the LGBM and XGB classifiers mostly showed

above-average precision trends in most best-k-performing metrics combinations,

with the Gradient Boosting classifier generally following the average precision trend

and achieving its best above-average precision at k = 16. The remaining classifiers

showed trends with below-average precision.

The Gaussian Naïve Bayes, Logistic Regression, and Linear Support Vec-

tor classifiers performed the worst in terms of precision. The Gaussian Naïve

Bayes consistently achieved the lowest precision across all best-k-performing met-

rics combinations. Similarly, the Linear Support Vector classifier and Logistic Re-

gression had low precision across most best-k-performing metrics combinations.
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Figure 4.11: Recall Trend across all Best-k-Performing Metrics Combinations

Figure 4.11 shows the recall trend across all best-k-performing metrics com-

binations for each classifier, with the highest recall of approximately 0.65 achieved
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by the K-Nearest Neighbors classifier at k = 11. The lowest recall is approximately

0.09, attained by the Linear Support Vector classifier at k = 16.

The figure indicates that the K-Nearest Neighbors classifier achieved the high-

est recall and maintained the best recall trend across most best-k-performing metrics

combinations. The Random Forest, Decision Tree, and Gaussian Naïve Bayes clas-

sifiers mainly showed above-average recall trends in most best-k-performing met-

rics combinations. The remaining classifiers showed below-average recall trends.

The worst-performing classifiers in terms of recall were the Linear Support

Vector classifier, Logistic Regression, and AdaBoost classifier. The Linear Support

Vector classifier consistently achieved the lowest recall across all best-k-performing

metrics combinations. Similarly, the Logistic Regression and AdaBoost classifier

had low recall across most best-k-performing metrics combinations.
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Figure 4.12: F1 score Trend across all Best-k-Performing Metrics Combinations

Figure 4.12 shows the F1 score trend across all best-k-performing metrics

combinations for each classifier, with the highest F1 score of approximately 0.65

achieved by the Random Forest classifier at k = 7.
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The figure indicates that the Random Forest classifier consistently achieves the

highest F1 score across all best-k-performing metrics combinations and the baseline

model.

It also shows that the XGB and LGBM classifiers achieved above-average

F1 score trends in most best-k-performing metrics combinations. The Decision

Tree classifier occasionally appeared along the average F1 score trend from k = 4 to

k = 8.

The worst-performing classifiers in terms of F1 score were the Linear Sup-

port Vector classifier, Gaussian Naïve Bayes, and Logistic Regression. The Linear

Support Vector classifier and Gaussian Naïve Bayes showed similar F1 score trends,

while Logistic Regression performed slightly better but was still significantly below

average.

Regarding the first objective, the Random Forest classifier achieved the best

predictive performance, with the highest F1 score among all best-k-performing met-

rics combinations.

4.5.2 Objective 2 Results

Identify the best-performing token-based software metrics combination for vulner-

ability prediction.

This objective aimed to identify the best-performing combination of software

metrics for vulnerability prediction from all sixteen metrics.

4.5.2.1 Metrics Correlation Analysis

Figure 4.13 shows the correlation matrix of all metrics and the ground truth. The

figure displays the Pearson Correlation Coefficient for the ground truth in the first

row and column, with the remaining metrics in the other rows and columns. The

matrix is organised into two levels of groupings. First, the rows and columns are

grouped into ground truth, hit-independent, and hit-dependent metrics. Then, the

latter two groups are clustered according to their respective metrics. The Pearson

Correlation Coefficient measures the linear correlation between two variables, rang-

ing from ‘-1’ (strong negative correlation) to ‘1’ (strong positive correlation), with
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Figure 4.13: Correlation Matrix of all Metrics + Ground Truth

‘0’ indicating no correlation. For interpretation, we categorise the values in the

correlation matrix as shown in Table 4.13.

Table 4.13: Pearson Correlation Coefficient Value Bands

Band No. Band Description

1 0.8 – 1 Very strong positive correlation
2 0.6 – 0.8 Strong positive correlation
3 0.4 – 0.6 Moderate positive correlation
4 0.2 – 0.4 Weak positive correlation
5 0 – 0.2 Very weak positive correlation
6 0 No correlation
7 -0.2 – 0 Very weak negative correlation
8 -0.4 – -0.2 Weak negative correlation
9 -0.6 – -0.4 Moderate negative correlation
10 -0.8 – -0.6 Strong negative correlation
11 -1 – -0.8 Very strong negative correlation



4.5. Results 162

The figure includes a scale on the right side of the matrix, featuring a diverging

colour scheme. The red-toned area (toward the top) indicates a strong positive cor-

relation, the white area (in the middle) indicates no correlation, and the teal-toned

area (toward the bottom) indicates a strong negative correlation.

We present the main observations from the correlation matrix below. For ref-

erence, the full names of the metrics are in Table 4.1 and Table 4.4.

1. Some cells in Band No. 1 feature a value of ‘1’ and values close to ‘1’,

indicating a strong positive correlation between certain metrics. Examples

include the correlation between NUSM & SMR, as well as between several

metrics and their distinct counterparts, such as NTT & NDTT. These high

correlations align with expectations as the metrics are conceptually similar.

For instance, SMR is a relative counterpart of NUSM, & NDTT is a distinct

counterpart of NTT. Such correlations suggest possible redundancy between

metrics, which may or may not adversely affect model performance.

2. Regarding negative correlation, the highest values fall within Band No. 8.

For example, the highest observed negative correlation is between TRICC

& SHTSR, around -0.037. TRICC represents the relative code churn of a

method, while SHTSR represents the ratio of the number of hit shingles to

the total number of shingles in a method. The negative correlation indicates

that the hit shingles ratio decreases as the relative code churn of a method in-

creases. However, these negative correlations are not strong, indicating cau-

tion when interpreting these values.

3. The NTT & the NVT are conceptually similar metrics, but they cater to differ-

ent datasets in our analysis, i.e., the target software system and the vulnerabil-

ity dataset. As such, these metrics exhibit a weak positive correlation at 0.23

(Band No. 4) because each metric focuses on a different dataset. However,

this positive correlation improves to 0.48 (Band No. 3) when considering hits,

as observed between SHTSR & SHVSR.
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4. SHTSR assesses a target software system’s method, while SHVSR assesses

its matching method in the vulnerability dataset. TVSSR considers the target

software system and its matching method in the vulnerability dataset. Thus,

TVSSR shares a closer bond with SHTSR & SHVSR, resulting in higher cor-

relations of 0.71 (Band No. 2) and 0.83 (Band No. 1), respectively, compared

to the correlation between SHTSR & SHVSR at 0.48 (Band No. 3).

5. While SMR is the relative version of NUSM, their relationship is more stable

than that between TRICC & TICC. This stability is due to the fact that the

denominator used in calculating SMR, i.e., the total number of matches in the

vulnerability dataset, remains constant, whereas the denominator for TRICC,

i.e., the total number of target software system releases, changes. Conse-

quently, the correlation between NUSM & SMR is higher than that between

TRICC & TICC.

6. The ground truth does not exhibit a strong correlation with any single met-

ric, with the highest correlation of 0.18 (Band No. 5) observed between the

ground truth and NDTT & TRU. This lack of strong correlation suggests that

despite the redundancy indicated by the correlation matrix, some metrics are

crucial for classifying the ground truth effectively, as shown by the above-

average performance of at least four classifiers.

7. The low correlation values between the ground truth and any of the sixteen

metrics suggest that software vulnerability prediction is a challenging task.

Since no single metric significantly correlates with the ground truth, mean-

ingful results likely arise from a combination of metrics. The low correlation

values of the ground truth highlight one of the main challenges in software

vulnerability prediction research.

Conceptually, as explained in Subsubsection 4.4.6.2, the correlation matrix

helps identify and exclude redundant metrics to improve model performance. How-

ever, in our case, excluding seemingly redundant metrics such as SMR and the ‘dis-

tinct’ metric variants (NTDDT, NDHS, NDVT, and NDT) did not improve perfor-
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mance; in many cases, it actually worsened performance across different classifiers,

albeit marginally.

We attribute this to feature interactions, where combining features yields re-

sults that differ from the sum of the individual feature results. Although the corre-

lation matrix may flag specific metrics as redundant, these features can still interact

synergistically, aiding the successful prediction of the ground truth.

Therefore, we included all metrics in our analysis to avoid inadvertently ex-

cluding those that may be beneficial. We opted to apply feature selection, an es-

sential activity in prediction analysis, as supported by Shivaji et al. [2009]’s work.

Thus, we relied on the Sequential Feature Selection algorithm to identify the best-

performing metrics combinations. For instance, SMR, NTDDT, NDHS, NDVT,

and NDTT may seem redundant due to their conceptual similarity to other met-

rics—SMR is the relative variant of NUSM, NTDDT is the distinct variant of

NTDT, NDHS is the distinct variant of NHS, NDVT is the distinct variant of NVT,

and NDTT is the distinct variant of NTT. However, the Sequential Feature Selec-

tion algorithm identified these metrics as part of the best-performing combinations,

justifying their inclusion in our analysis.

4.5.2.2 Classifier Performance Analysis

Table 4.14: Best Performance Per Classifier (Sorted by F1 score)

Classifier Best k Precision Recall F1 score

Random Forest classifier 7 0.73635 0.58345 0.64821
XGBoost classifier 10 0.69415 0.46830 0.55622
LightGBM classifier 10 0.67129 0.44188 0.52947
Decision Tree classifier 6 0.47433 0.54988 0.50878
K-Nearest Neighbors classifier 4 0.34247 0.59923 0.43471
Gradient Boosting classifier 5 0.48036 0.31356 0.37731
AdaBoost classifier 3 0.30337 0.25707 0.27521
Gaussian Naive Bayes 2 0.11818 0.33347 0.17425
Logistic Regression 8 0.16774 0.16693 0.16634
Linear Support Vector classifier 6 0.21746 0.10846 0.14320

Table 4.14 shows the best performance per classifier, sorted by descending

F1 score, our preferred metric for identifying the best-performing classifier, as it
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balances precision and recall. The ‘Best k’ column indicates the number of features

that achieved the performance.

The table shows that the Random Forest classifier had the highest F1 score.

The XGBoost, LightGBM, and Decision Tree classifiers also performed well, with

above-average F1 scores.

Conversely, the Linear SVC, Logistic Regression, and Gaussian Naïve Bayes

classifiers were among the worst performers in terms of F1 score.

4.5.2.3 Metrics Combination Analysis

Table 4.15: Best Metrics Combination Per Classifier

Metric Classifiers
AB DT GNB GB KN LGBM LSVC LG RF XGB

Hit-Independent
NTT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
NDTT ✓ ✓ ✓ ✓ ✓
TICC ✓
TRICC ✓ ✓
NTDT ✓
NTDDT
TRU ✓ ✓
Hit-Dependent
NHS ✓ ✓ ✓ ✓ ✓
NDHS ✓ ✓
NVT ✓ ✓ ✓ ✓ ✓ ✓
NDVT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
TVSSR ✓ ✓ ✓ ✓ ✓
SHTSR ✓ ✓ ✓
SHVSR ✓ ✓ ✓ ✓
NUSM ✓ ✓ ✓ ✓
SMR ✓ ✓ ✓ ✓ ✓

Table 4.15 displays the optimal metrics combinations for each classifier, cate-

gorised into hit-independent and hit-dependent groups.

The table offers several insights. Notably, it shows that hit-dependent metrics

are more crucial for classifiers than hit-independent metrics, as most classifiers in-

clude more hit-dependent metrics in their best-performing combinations. This is

expected since these metrics capture vulnerable code patterns in the vulnerability



4.5. Results 166

dataset. We define the best-performing classifiers as those achieving average or

above-average F1 scores, as reported in Table 4.14.

Additionally, the table highlights the importance of individual metrics. For

instance, the NTT and NDVT metrics appear eight times in the best-performing

combinations, signifying their importance. In contrast, the TICC and NTDT metrics

appear only once, indicating lesser significance.

We also note the poor performance of code churn-related metrics, TICC and

TRICC, in the analysis. This aligns with the correlation matrix findings, show-

ing weak correlations between churn metrics, ground truth, and other metrics. As

shown in Figure 4.13, the correlation values for churn metrics are primarily lo-

cated in the lighter areas, indicating weaker correlations compared to most hit-

independent metrics.

The TRICC metric appears only twice for the Linear SVC and Logistic Re-

gression classifiers, both of which are poor performers, as shown in Table 4.14.

Similarly, the TICC metric appears only once for the Linear SVC, another poor

performer.

Thus, for the second objective, the optimal software metrics combination

for vulnerability prediction includes those used by the best-performing classifier,

the Random Forest classifier. These metrics are NDVT, NHS, NTT, NUSM, NVT,

SHVSR, and SMR.

4.5.3 Objective 3 Results

Evaluate the impact of hyperparameter tuning on the performance of the best-

performing classifier.

This objective aimed to evaluate the impact of hyperparameter tuning on the

performance of the best-performing classifier identified in the first objective.

4.5.3.1 Parameter Grid and Best Hyperparameter Values

Table 4.16 presents the parameter grid details and the best hyperparameter values for

the Random Forest classifier, which was identified as the best-performing classifier

in the first objective. The first two columns show the hyperparameters and values
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Table 4.16: Parameter Grid and Best Hyperparameter Values

Parameter Grid

Hyperparameter Values Best Value

bootstrap True*, False False
max_depth None*, 10, 20 None
max_features ‘auto’, ‘sqrt’* auto
min_samples_leaf 1*, 2, 4 1
min_samples_split 2*, 5, 10 2
n_estimators 100*, 200, 300 100

we used to tune the Random Forest classifier. The asterisk (*) denotes the default

value in the scikit-learn implementation. We focused on six hyperparameters due to

time and computational resource constraints.

The last column shows the best-performing hyperparameter values determined

by our Grid Search technique (see Subsubsection 4.4.6.3). We tuned the hyper-

parameters using the best-performing metrics combination identified in the second

objective: NDVT, NHS, NTT, NUSM, NVT, SHVSR, and SMR.

4.5.3.2 Hyperparameter Tuning Results

Table 4.17: Pre-and-Post-Hyperparameter Tuning Results for Random Forest Classifier

Metric Before After ∆%

Precision 0.73635 0.73472 -0.22
Recall 0.58345 0.59667 2.23
F1 score 0.64821 0.65741 1.42

Table 4.17 presents the pre- and post-hyperparameter tuning results for the

Random Forest classifier. Tuning the hyperparameters resulted in changes to the

classifier’s performance metrics. Precision decreased by 0.22%, recall increased by

2.23%, and the F1 score increased by 1.42%.

To address the third objective, hyperparameter tuning had a mixed impact

on the performance of the best-performing classifier, the Random Forest classi-

fier. However, the overall impact was positive, as indicated by the increase in the

F1 score metric, our preferred measure for evaluating classifier performance.
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4.6 Discussion
This chapter investigated a novel approach to vulnerability prediction using token-

based representations and information retrieval techniques. We conducted an empir-

ical analysis using the Apache Tomcat 7 software system, encompassing 76 releases

and over 20,000 vulnerable code samples from the NIST Software Assurance Ref-

erence Dataset. The objective was to assess the effectiveness of this method for

predicting method-level vulnerabilities. The Random Forest classifier emerged as

the top-performing model, achieving a precision of 0.73, a recall of 0.60, and an

F1 score of 0.66 after hyperparameter tuning. These results demonstrate the promise

of information retrieval-driven techniques for practical vulnerability prediction.

The following subsections discuss the study’s findings, key observations, and

implications and offer recommendations for practitioners and researchers.

4.6.1 The Importance of Interpretability in Prediction Models

An interpretable prediction model is crucial for understanding the relationship be-

tween predictors (independent variables) and the target variable (dependent vari-

able). Figure 4.12 illustrates a vital insight: the inclusion of more predictors does

not necessarily lead to more accurate predictions, a finding implied by Shivaji et al.

[2009]’s study. The figure shows that the F1 score trend improves with most classi-

fiers from k = 2 and peaks (and often plateaus) at any value before or after k = 8. It

then gradually declines as k approaches 16. This trend indicates that while adding

more predictors can enhance prediction performance, there is a point of diminish-

ing returns. Beyond this point, additional predictors may not significantly improve

performance and may even degrade it. Therefore, aiming for interpretability in pre-

diction models is vital. This approach can help identify the optimal balance between

the number of predictors and prediction performance.

4.6.2 The Significance of Vulnerable Code Patterns

The best-performing metrics combination—NDVT, NHS, NTT, NUSM, NVT,

SHVSR, and SMR—primarily includes hit-dependent metrics. The only hit-

independent metric in the combination is NTT. Since hit-dependent metrics fun-
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damentally measure code element similarity to vulnerable code patterns, we deduce

that code patterns, especially those consistent with vulnerable code, are crucial for

predicting vulnerabilities. Thus, the similarity measure is the most significant pre-

dictor of vulnerabilities.

Another perspective that showcases the validity of the significance of vulner-

able code pattern deduction is in the context of vulnerability types. A few related

works in the literature focused on specific vulnerability types, such as the improper

use of programming language features, API misuse, SQL injection, cross-site script-

ing, operating system command injection, and buffer overflow. These vulnerability

types are characterised by specific code patterns that, although they may vary in

complexity, are fundamentally similar across instances of the same vulnerability

type and thus finite. This similarity in code patterns across instances of the same

vulnerability type is a key factor in the success of vulnerability prediction mod-

els, as we will highlight by synthesising the findings from the works of Guo et al.

[2023], Rabheru et al. [2022], and Wu et al. [2023].

Guo et al. [2023] developed VulExplore, a novel vulnerability detection model

that combines code metrics (CMs) with a composite neural network comprising a

Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM).

The authors constructed a CM dataset from a publicly available code slice dataset

containing four types of vulnerabilities in C/C++. They also introduced two addi-

tional software engineering-related CMs: maintainability index and average number

of vulnerabilities per line. They designed a CNN-LSTM network to extract features

from these CMs and learn deep representations of the code slices. The model was

evaluated using k-fold cross-validation and compared with other tools and meth-

ods. The results demonstrated that VulExplore achieved high precision, recall, and

F1 scores (over 80%) while reducing both false negative and false positive rates

(under 20%). The authors claimed that their model outperformed existing tools and

methods in terms of accuracy and coverage. They concluded that VulExplore is

an effective and superior approach for vulnerability detection based on CMs. The

critical similarity between their work and ours lies in their use of the SARD dataset
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and similar metrics concerned with code intricacy and size. However, the primary

difference is that they employed deep learning techniques, while we used machine

learning approaches. Additionally, our study addressed a broader range of vulner-

ability types, covering a wide range across our within- and mixed-project datasets,

whereas their study focused on only four types.

Rabheru et al. [2022] developed a deep learning approach that combines Gated

Recurrent Units (GRU) and Graph Convolutional Networks (GCN) for detecting

PHP vulnerabilities. Their study aimed to develop a hybrid technique capable of

capturing both syntactic and semantic information from PHP source code, enabling

the accurate detection of SQLi, XSS, and OSCI vulnerabilities with strong gener-

alisability. The authors introduced DeepTective, a deep learning model comprising

two components: a GRU that processes token sequences and a GCN that operates

on the source code’s control flow graph. The model was evaluated against other

tools using a synthetic dataset (SARD) and a realistic dataset (GIT) from GitHub.

The results showed that DeepTective outperformed other tools on both datasets,

achieving F1 scores of 99.92% on SARD and 88.12% on GIT. Additionally, Deep-

Tective identified four novel vulnerabilities in deployed WordPress plugins. The

study concluded that DeepTective is an effective and efficient vulnerability detec-

tion method that leverages the strengths of both GRU and GCN. Like our study,

the study utilised the SARD dataset. However, they focused on PHP while we

worked with Java. Additionally, they employed deep learning techniques, whereas

we used machine learning approaches. Finally, similar to Guo et al. [2023], their

study focused on four types of vulnerabilities, while we considered a broader range

of vulnerabilities.

Wu et al. [2023] proposed a novel fine-grained code vulnerability detection

model called SlicedLocator, which can predict vulnerabilities at both the program

and statement levels. The study introduced a new code representation method,

the Sliced Dependence Graph (SDG), which preserves rich interprocedural rela-

tionships while eliminating irrelevant statements. Additionally, the authors de-

signed attention-based code embedding networks and a fusion model that combines
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LSTM and GNN to capture the semantic and structural features of SDGs. Sliced-

Locator was evaluated using a large-scale C/C++ vulnerability dataset collected

from CVE-fixes and SARD, covering 25 common vulnerabilities and 15 real-world

software projects. The model was compared with other methods, including fine-

grained approaches such as IVDETECT and LineVD, and coarse-grained meth-

ods like VulDeePecker, SySeVR, and Devign, using metrics such as Mean Average

Precision (MAP), Recall, Normalized Discounted Cumulative Gain (nDCG), First

Ranking (FR), and Average Ranking (AR). The results showed that SlicedLocator

outperformed state-of-the-art vulnerability detection and localisation methods, par-

ticularly in localisation metrics, achieving a Macro F1 score of 0.6879. The study

demonstrated that the SDG, code embedding networks, and LSTM-GNN could sig-

nificantly enhance vulnerability localisation. It also revealed that the dual-grained

training approach, which predicts vulnerabilities at both program and statement lev-

els, improves detection performance. The study concluded that SlicedLocator is an

effective fine-grained code vulnerability detection model that can assist security en-

gineers in efficiently analysing and fixing vulnerabilities. The authors suggested

future improvements, such as incorporating more types of code that can cause vul-

nerabilities, using advanced language models, and applying the model to other pro-

gramming languages. This study is comparable to ours in terms of the F score and

the use of the SARD dataset. However, they focused on C/C++, while we focused

on Java. Additionally, they employed deep learning techniques, whereas we used

machine learning approaches. Finally, they addressed 25 types of vulnerabilities,

while we considered a broader range of vulnerabilities.

A critical observation from the three studies discussed above, which all em-

ployed the SARD vulnerability dataset, is that the first two studies, which limited

their focus to a very few vulnerability types, reported higher performance. This

suggests that the number of vulnerability types considered is inversely proportional

to predictive performance. For example, Guo et al. [2023] and Rabheru et al. [2022]

only considered four vulnerabilities and reported F1 scores exceeding 80% and

99.92%, respectively. Conversely, Wu et al. [2023]’s work, which addressed 25



4.6. Discussion 172

vulnerability types, reported a lower F1 score of 0.6879. This trend suggests that

a broader range of vulnerabilities correlates with the requirement for prediction

models to recognise a more diverse set of vulnerable code patterns, which may be

more challenging. On the other hand, a narrower focus on fewer vulnerability types

may enable models to learn more specific and consistent code patterns, resulting

in higher performance. This observation highlights the significance of identifying

vulnerable code patterns in predicting vulnerabilities, as we have highlighted in our

study.

Additionally, code patterns have a significant impact on the performance of

prediction models on a broader scale in a dataset generalisability context. We will

discuss this phenomenon extensively in Chapter 6.

4.6.3 The Token-Based Relative Instantaneous Code Churn

Metric Design

The design of the TRICC metric could pose a threat to internal validity, depending

on the analysis. In Subsubsection 4.3.1.4, we defined a method’s TRICC as the ratio

of its token representation change count to the total number of releases in which it

appeared. Mathematically, we express it as the ratio of the TICC to N, where N is

the total number of releases in which the method exists within the target software

system.

This design approach encodes the ‘future knowledge’ of a method’s evolution

into the metric through N, allowing a machine learning classifier to learn from a

method’s history. This could be problematic in scenarios where future knowledge

of the evolution of a software system’s artefact leads to data leakage during machine

learning analysis, a point also highlighted in Subsection 3.3.2 by Chowdhury et al.

[2024]’s work.

We designed the TRICC metric to capture the entire evolution of a method over

time through N at any point in its history rather than an instance of its evolution at

a specific time. Our approach was based on the fact that we were more interested in

quantifying each method’s relative evolution history, as this is a more interpretable

measure of a method’s evolution.
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Regardless, we point out that depending on the nature and objectives of the

machine learning analysis, it may be necessary to make N instantaneous, where N

represents the number of releases in which the method exists at a given point in time

in the method’s evolution history, rather than the total number of releases in which

the method exists.

Nonetheless, our TRICC metric design choice does not affect the validity of

our findings. As shown in Table 4.15, the TRICC metric is not part of the best-

performing metrics combination for any of our best-performing classifiers with

above-average F1 scores. It only appears in the best-performing metrics combi-

nation for the Linear SVC and Logistic Regression, which have some of the lowest

F1 scores among the classifiers.

4.6.4 Feature Interactions: Synergism and Antagonism

Metrics can have synergistic or antagonistic effects when combined, as evidenced

by the trends in Figures 4.10, 4.11, and 4.12.

For instance, Figure 4.10 shows that the precision trend for the XGB classifier

dips after k = 6 before rising past its previous level at k = 11. This dip at k = 6 is due

to adding a seventh metric to an already effective six-metric combination, causing

an antagonistic effect. Continuous metric additions maintained this antagonistic

effect until the eleventh metric reversed it. Similarly, in Figure 4.11, the recall

trend for the Random Forest classifier dips after k = 3. It rises again after k =

5, indicating that the fourth metric had an antagonistic effect on recall, which the

fifth metric reversed, creating a synergistic effect. Figure 4.12 also shows a dip

between k = 8 and k = 10 for the LGBM classifier, suggesting an antagonistic effect

of the ninth metric on the F1 score. These examples demonstrate that interactions

between metrics can result in synergism or antagonism. Even though a metric may

have a positive or negative impact on its own, its inclusion with others can result in

different outcomes, which can be positive (synergistic) or adverse (antagonistic).

Sequential Feature Selection is designed to identify the best-performing k met-

rics combination at any point, selecting the top-performing metrics at each iteration.

Ideally, this would result in a steady increase in performance as k increases until it
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reaches a peak, after which the trend would decline as k increases further. How-

ever, Figures 4.10, 4.11, and 4.12 show that while the trends generally have upward

or downward trajectories, they are not always monotonically increasing or decreas-

ing. This variation is a consequence of the synergistic or antagonistic interactions

between metrics.

This complex interplay between metrics underscores the importance of con-

sidering feature interactions in prediction analysis and the need to employ feature

selection techniques that can identify the best-performing metrics combinations.

4.6.5 Implications

The implications of this chapter are multifaceted. Our findings offer a pathway for

software security practitioners to integrate advanced machine learning techniques

into vulnerability prediction workflows. The Random Forest classifier has demon-

strated effectiveness, an attribute it most likely possesses due to its ability to handle

high-dimensional data and non-linear relationships. Also, the identified vital met-

rics provide a practical blueprint for developing information retrieval-driven predic-

tive models.

For researchers, the study opens avenues for further exploration into the syn-

ergy between information retrieval and machine learning. Insights into feature inter-

actions and the importance of comprehensive metric inclusion highlight areas that

warrant further investigation. Additionally, the approach can be extended to other

programming languages and software systems, potentially broadening its applica-

bility.

4.6.6 Recommendations

Based on the findings and insights presented in this chapter, we offer several rec-

ommendations. Firstly, practitioners should incorporate token-based information

retrieval techniques in their vulnerability prediction efforts. Model development

should prioritise the identified key metrics (NDVT, NHS, NTT, NUSM, NVT,

SHVSR, and SMR). Secondly, hyperparameter tuning should be an integral part

of the model training process. Employing techniques such as grid search, combined
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with cross-validation, can significantly enhance model performance. Thirdly, data-

related challenges in vulnerability prediction deserve more attention. Techniques

such as transfer learning, which leverages knowledge from one dataset to another,

could mitigate this challenge and improve model generalisation. Lastly, we rec-

ommend localising the vulnerability dataset to specific vulnerable code segments

rather than entire methods. This granularity can provide classifiers with more pre-

cise information, potentially enhancing predictive performance.
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4.7 Threats to Validity
In this section, we discuss the threats to the validity of our study. We categorise the

threats into internal and external validity.

4.7.1 Internal Validity

Internal validity refers to the extent to which a study’s design, execution, and anal-

ysis support the conclusions drawn from it.

4.7.1.1 Oversampling and Undersampling Techniques

We used SMOTE to oversample the minority (‘vulnerable’) class. However, various

other techniques exist. For instance, some oversampling techniques include random

oversampling [Mohammed et al., 2020], Adaptive Synthetic Sampling (AdaSyn)

[He et al., 2008], and augmentation [Shorten and Khoshgoftaar, 2019]. Undersam-

pling techniques include cluster-based undersampling [Zhang et al., 2010], Tomek

Links [Tomek, 1976, Devi et al., 2017], and ensemble learning-based undersam-

pling [Sarkar et al., 2020]. Changing the parameters or substituting SMOTE with

these techniques may result in slightly different analysis outcomes, which can affect

internal validity.

4.7.1.2 Ground Truth Estimation: Number of Affected Methods

We estimated the number of methods affected by the 261 fixed vulnerabilities in the

ground truth data by assuming that a vulnerability has existed in a component since

the component’s implementation or the last unsuccessful attempt to fix it. While

logical and widely used, it is imperfect, as some vulnerabilities may have existed

for varying lengths of time. Different estimation approaches may yield different

results, thus threatening internal validity.

4.7.1.3 Inclusion of ‘Candidate’ Code Samples in Training Data

We included ‘candidate’ code samples in the training data because of data-related

challenges, as explained in Subsubsection 4.4.2.3. SARD had not yet confirmed

these samples as vulnerable at the time of our analysis. Although this increases the

number of vulnerable samples, it poses a risk to internal validity, as some ‘candi-

date’ samples may not be genuinely vulnerable. However, SARD does not explicitly
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discourage the use of ‘candidate’ samples, and we consider the risk posed by false

positives to be minimal.

4.7.1.4 Code Churn and Method Signatures

Our code churn detection approach uses method signatures to identify counterparts

across releases. Any refactoring that changes a method’s signature in a given release

will mean our approach no longer considers the refactored method as a counterpart,

treating it as a different method and assessing it accordingly.

4.7.1.5 Shingle Size

We extracted token representations using a shingle size of ‘5’, as preliminary ex-

periments indicated that this size yielded the best results in terms of balancing per-

formance and computational efficiency. Shingle size, a hyperparameter, determines

the number of tokens in a shingle. Changing the shingle size will result in different

token representations, which may lead to varying analysis outcomes.

4.7.2 External Validity

External validity concerns the generalisability of the study’s findings to other con-

texts.

4.7.2.1 Generalisation to other Programming Languages

We experimented with a Java-based dataset, using JavaParser to extract token repre-

sentations. While Java is a popular programming language and JavaParser a widely

used tool, generalising our approach to other programming languages may yield

different results due to syntactical and semantic differences.

4.7.2.2 Generalisability to Other Software Systems

We focused on the Apache Tomcat 7 software system, a widely used web server.

Generalising our approach to other software systems may yield different results due

to differences in software size, complexity, and data heterogeneity across systems.

Additionally, our vulnerability dataset may not accurately represent all software

systems, which could affect its generalisability.
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4.7.2.3 Generalisability to Other Vulnerability Datasets

We used the NIST Software Assurance Reference Dataset for our analysis. While

SARD is widely recognised, applying our approach to other vulnerability datasets

might produce different results.

4.7.2.4 Generalisability to Other Machine Learning Classifiers

We experimented with ten machine learning classifiers, identifying the Random

Forest classifier as the best performer. Applying our approach to other classifiers

might yield different results, as each classifier has distinct strengths and weaknesses.
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4.8 Answer to Research Question 1

Research Question 1: How well does the information retrieval-driven software vul-

nerability prediction technique perform on a single, multi-release software system

dataset for token-based source code representations?

Software industry professionals are well aware of the risks posed by soft-

ware vulnerabilities and the importance of effective mitigation strategies. Lever-

aging machine learning to predict vulnerability locations within software presents

a cutting-edge solution. This approach enhances security testing efficiency by en-

abling testers to focus on the most vulnerable components. Despite its promise,

AI-driven vulnerability prediction remains limited outside research due to techni-

cal constraints and data-related challenges. Nevertheless, concerted efforts from

software professionals interested in vulnerability prediction research could revolu-

tionise software security and safeguard our digital environment.

To contribute to advancing AI-driven vulnerability prediction, this chapter pro-

poses an information retrieval technique that leverages token-based software met-

rics to predict method-level vulnerabilities in software systems. We conducted an

empirical study on the Apache Tomcat 7 software system, comprising 76 releases

and over 20,000 vulnerable code samples from the NIST Software Assurance Ref-

erence Dataset. We extracted token representations and shingles of the methods in

the software system and the vulnerable code samples. We then calculated custom

software metrics and used them to train and evaluate ten machine learning classi-

fiers.

The results showed that the Random Forest classifier achieved the best predic-

tive performance, with a precision of 0.73, a recall of 0.60, and an F1 score of 0.66

after tuning its hyperparameters.

These findings indicate that the Random Forest classifier is an effective tool for

vulnerability prediction, which is in agreement with several other studies [Walden

et al., 2014, Scandariato et al., 2014, Kalouptsoglou et al., 2022, Amasaki et al.,

2023, Al Debeyan et al., 2022].
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Additionally, most metrics in our identified best metrics combination, NDVT,

NHS, NTT, NUSM, NVT, SHVSR, and SMR in Tables 4.1 and 4.4, encode vulner-

able code patterns, facilitated by our information retrieval-driven technique. This

suggests that creating a solution that encodes vulnerable code patterns is crucial

to effective vulnerability prediction. This observation explains why supervised ma-

chine learning techniques, which utilise knowledge of vulnerable code patterns from

training data, remain predominant in vulnerability prediction research, in contrast to

unsupervised machine learning techniques, which do not leverage such knowledge.

This study highlights the feasibility of repurposing information retrieval-based

techniques for practical vulnerability prediction analysis. These techniques con-

tribute to the development of security-specific metrics and offer insights into alter-

native metrics that capture various aspects of software quality, including code size

and complexity. We anticipate that more vulnerability researchers will adopt these

information retrieval-based techniques to enhance actionable vulnerability predic-

tion performance.

Future directions include augmenting training data with a larger vulnerabil-

ity dataset to allow classifiers to learn a broader range of vulnerable code patterns.

However, data quality and quantity-related challenges in software vulnerability re-

search remain significant obstacles, making this strategy challenging. An exten-

sion of the work in this chapter will focus on localising the vulnerability dataset

to the specific locations of the vulnerability in each method rather than the entire

method. The goal is to enhance the performance of the information retrieval-driven

vulnerability prediction technique by providing the classifiers with more granular

and targeted information about the vulnerable code patterns they need to learn.

We conclude the chapter by explicitly answering the first research question of

this thesis, stating that the information retrieval-driven software vulnerability pre-

diction technique performs well on a single, multi-release software system dataset

for source code token representation, with the Random Forest classifier achieving

the best predictive performance.



Chapter 5

Abstract Syntax Tree (AST)-Based

Vulnerability Prediction

This chapter introduces our novel AST-based metrics, specifically Code2Vec-based

metrics, for information retrieval-driven vulnerability prediction and assesses their

effectiveness. It replicates the vulnerability prediction experiment from Chapter 4

using the Code2Vec technique, comparing its effectiveness with that of the token-

based approach. This chapter addresses the second research question of the thesis.
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5.1 Introduction

In the Background chapter, we introduced source code representations, discussing

their various software engineering applications in areas such as source code clas-

sification, code clone detection, bug prediction, and code summarisation. We dis-

cussed the source code representation approaches used in our research, including

token-based and AST-based representations.

Token-based representations involve tokenising the source code into a se-

quence of tokens, each representing a specific syntactic element, such as keywords,

identifiers, literals, and operators. We explained that due to their simplicity and ease

of generation, these representations are widely used in tasks such as code clone de-

tection [Li et al., 2017], bug prediction [Choudhary and Singh, 2017], and code

summarisation [Fowkes et al., 2017]. We introduced N-grams as a token-based

representation technique involving sequences of N tokens from the source code.

We added that character-based N-grams capture morphological information, while

word-based N-grams capture semantic information. We also discussed shingling,

which involves sequences of N tokens to capture the local context of tokens in the

source code.

Following token-based representations, we introduced AST-based represen-

tations and explained that they are tree-like structures that represent a program’s

structure. They represent code elements, such as statements, expressions, and dec-

larations, as nodes, with their relationships represented as edges. ASTs are utilised

in program analysis tasks, such as type checking, code generation, and refactoring,

as well as in machine learning-based tasks, including code completion and rec-

ommendation [Miller, 1995, Jiang et al., 2021, Sommerlad et al., 2008, Liu et al.,

2022a].

We also briefly mentioned other source code representation approaches, such

as Control Flow Graphs (CFGs) [Zhao et al., 2022, Anju et al., 2010] and Program

Dependence Graphs (PDGs) [Czech et al., 2017, Horwitz and Reps, 1992], noting

that each approach has its strengths and limitations.
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Finally, we explained that machine learning and deep learning tasks benefit

significantly from these representations, as algorithms typically require numerical

inputs. Therefore, representing source code effectively for feature engineering is

crucial for converting textual source code into a format suitable for these algorithms

[Hancock and Khoshgoftaar, 2020]. Moreover, the choice of representation de-

pends on the specific software engineering task and the desired level of abstraction

because, as pointed out earlier, different representations capture various aspects of

the source code, each with its advantages and disadvantages [Samoaa et al., 2022].

In this chapter, we will explore AST representations, a technique renowned for

effectively capturing the syntax and semantics of source code. Our goal with this

technique is to leverage the advantages of AST-based representations to achieve

more accurate vulnerability prediction results.

5.1.1 Chapter Motivation

In the previous chapter, we used token-based representations for our vulnerability

prediction task. While our results were promising, with a hyperparameter-tuned

precision of 0.73, recall of 0.60, and F1 score of 0.66, we identified limitations in

the token-based approach, particularly in capturing the semantic information in the

source code. We also noted its limited ability to capture the hierarchical structure

and relationships within the code [Panichella et al., 2013, Liu et al., 2022a].

Liu et al. [2022a] emphasised that token-based representations fall short in

capturing the syntax and structure of code effectively, unlike AST-based repre-

sentations, which can capture the hierarchical structure and relationships within

the source code. Token-based representations, though more straightforward and

language-agnostic, may lack the structural and contextual richness needed for com-

plex analysis. On the other hand, AST-based representations provide a more de-

tailed and context-aware view of source code, enabling complex operations and

deeper analysis, albeit with increased complexity and resource requirements. These

advantages contribute to the popularity of AST-based representations in software

engineering research, as highlighted by Samoaa et al. [2022].
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The choice between token-based and AST-based representations is crucial, as it

significantly impacts the performance of software engineering tasks. To mitigate the

limitations of token-based representations, we suggested augmenting tokenisation

with techniques like shingling. However, this augmentation may not fully capture

the semantic information in the source code. Besides, determining the optimal shin-

gle size can be challenging and may vary depending on the software system. Even

more, computational and storage costs must be considered when generating and

storing shingles of varying sizes. Given these limitations, this chapter explores the

Code2Vec representation technique, an AST-based approach introduced by Alon

et al. [2019].

5.1.2 Research Question

In this chapter, we will reproduce the vulnerability prediction experiment from

Chapter 4 using the Code2Vec representation technique. Instead of the token-based

approach, we will use Code2Vec to represent the source code of the target software

system and the vulnerability dataset. While the overall methodology remains the

same, this change in representation necessitates adjustments in tools, data prepro-

cessing, feature engineering, and information retrieval setup. These adjustments

will be highlighted as we proceed. The goal remains to predict software vulnera-

bilities using machine learning algorithms. To this end, we will address the second

research question of this thesis:

How well does the information retrieval-driven software vulnerability

prediction technique perform on a single, multi-release software system

dataset for Abstract Syntax Tree-based source code representations?

This research question is similar to the first one, which focuses on token-based

representation. The difference lies in the representation technique used. The results

will provide a comparative analysis of the effectiveness of Code2Vec representa-

tions in predicting software vulnerabilities compared to the token-based approach

and offer insights into the adaptability of our information retrieval-driven vulnera-

bility prediction technique to different source code representations.
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5.1.3 Research Scope

This chapter covers the following scope:

• Programming Language: The datasets used are exclusively written in Java.

• Method-Level Vulnerability Prediction: This study focuses on predicting

method-level vulnerabilities within Java methods. Vulnerabilities from other

sources, such as web services, annotations, and configuration files, are not

taken into consideration.

• Within-Project Vulnerability Prediction: The aim is to predict vulnerabili-

ties within a single software system across multiple releases.

• Binary Classification: The study uses binary classification with machine

learning techniques to predict whether a method is vulnerable; multi-class

classification for specific vulnerability types is not considered.

5.1.4 Significance and Contributions

This chapter advances secure software engineering methodologies by evaluating

the effectiveness of the Code2Vec representation technique in predicting software

vulnerabilities.

5.1.4.1 Significance of the Study

This study compares the Code2Vec representation technique with the token-based

approach for vulnerability prediction, using identical parameters and setup, to pro-

vide valuable insights into the effectiveness of Code2Vec and the adaptability of our

technique to different source code representations.

5.1.4.2 Contributions

This study introduces the AST-based version of the novel security-relevant vul-

nerability prediction metrics discussed in Section 4.3. It utilises these metrics in

conjunction with an alternative representation technique and evaluates their effec-

tiveness in predicting software vulnerabilities using our information retrieval-driven

approach.
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5.1.5 Structure of the Chapter

The rest of this chapter is structured as follows: Section 5.2 provides background

information on the Code2Vec representation technique. Section 5.3 presents the

novel Code2Vec-based information retrieval-driven software metrics, comparing

them with token-based metrics where necessary. Section 5.4 details the experiment

methodology. Section 5.5 presents the experiment results. Section 5.6 presents

the discussion of the results. Section 5.7 outlines the threats to validity. Finally,

Section 5.8 answers the second research question of this thesis.



5.2. Background 187

5.2 Background

In Subsections 2.2.2 and 4.3.2, we discussed that many vulnerability prediction

studies have used traditional software product metrics as features in AI-driven vul-

nerability prediction. These metrics, derived from the source code, quantify the

software product’s characteristics and are believed to capture syntactic traits of

code, which can help predict bugs and vulnerabilities. However, the results from

these techniques are often underwhelming and not actionable [Shin and Williams,

2008b,a, Morrison et al., 2015, Munaiah et al., 2017, Sultana and Chong, 2019,

Al Debeyan et al., 2022, Zimmermann et al., 2010, Shin et al., 2010, Doyle and

Walden, 2011, Shin and Williams, 2013, Moshtari et al., 2013, Meneely et al.,

2013, Walden et al., 2014, Perl et al., 2015, Younis et al., 2016, Sultana, 2017b,

Sultana et al., 2018b, Chong et al., 2019b, Kalouptsoglou et al., 2020]. We noted

that the main criticism is that these metrics are designed to quantify the syntactic

characteristics of software products rather than specifically for vulnerability predic-

tion. Thus, they fail to capture code semantics, which are crucial for predicting

vulnerabilities. As a result, many researchers have emphasised the importance of

using code representation techniques that capture both syntax and semantics for

more actionable results [Lin et al., 2020a, Zhang et al., 2020]. This has led to a

shift from traditional software metrics to alternative methods of source code repre-

sentation that better capture code semantics for vulnerability prediction. For these

reasons and the comparative purposes stated in Chapter Motivation, we explore the

Code2Vec representation technique in this chapter.

5.2.1 Code2Vec Representation: A Revisit

In the Background chapter, we introduced the Code2Vec representation technique,

which was developed by Alon et al. [2019]. Code2Vec utilises the structured nature

of source code, precisely the finite set of node types and tokens, to represent code as

paths within abstract syntax trees. Since its introduction, Code2Vec has gained sig-

nificant traction in software engineering research, particularly for predicting method

names based on the method’s body.
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The key idea behind Code2Vec is to encode a code snippet into a fixed-length

vector that captures its semantic properties. This is achieved by decomposing the

code into a set of paths within its AST. Code2Vec introduces ‘path contexts,’ and in

this chapter, we employed astminer to extract path contexts from the source code of

our datasets.

5.2.2 astminer

astminer1 is an open-source toolkit from JetBrains Research2 for mining ASTs and

analysing software. It provides APIs for extracting, querying, and manipulating

ASTs and supports various programming languages, including Java, Kotlin, C/C++,

Python, JavaScript, and PHP. We used astminer to extract code representation data

for our analysis.

ASTs are tree-like data structures that represent the source code structure and

syntax of programming languages. The astminer toolkit parses source code into

ASTs and extracts features such as method and variable names, type information,

and control flow structures. Researchers can use these features for code compre-

hension, bug detection, and software refactoring.

astminer implements a Code2Vec output format designed to present extracted

data numerically as path contexts. This format uses an ID system to store data

efficiently by reusing IDs for different code components. It leverages the structured

nature of source code and the finite number of unique node types and tokens in ASTs

to represent code snippets as paths. This approach reduces the memory footprint and

avoids data duplication in significant mining tasks [Kovalenko et al., 2019].

The ability to manipulate path context data using information retrieval tech-

niques is crucial for implementing our information retrieval-driven vulnerability

prediction technique, as it facilitates the extraction of relevant information to pre-

dict vulnerabilities.

In this experiment, we utilise information retrieval techniques to extract rele-

vant information from the path context data generated by astminer, thereby devel-

1https://github.com/JetBrains-Research/astminer
2https://www.jetbrains.com/research/

https://github.com/JetBrains-Research/astminer
https://www.jetbrains.com/research/
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oping metrics (features) for vulnerability prediction. The following section presents

the novel Code2Vec-based software metrics for vulnerability prediction.
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5.3 Code2Vec-Based Metrics

As discussed in Chapter 4, our information retrieval-driven software metrics are a

significant contribution. We have developed sixteen custom software metrics driven

by information retrieval. These metrics serve as features in machine learning mod-

els to predict the vulnerability of software components. The primary difference be-

tween this chapter and the previous one is that it utilises Code2Vec representations

instead of the token-based representations used previously. The datasets remain

consistent, consisting of a target software system and a vulnerability dataset.

The target software system is the system in which we aim to predict vulnera-

bilities. Our vulnerability dataset comprises thousands of known software vulnera-

bilities, which we utilise for their patterns of vulnerable source code.

Like in the previous chapter, we categorise the metrics introduced in this chap-

ter into hit-independent and hit-dependent metrics. A ‘hit’ denotes fragments of

code in a target software system method that match code fragments in vulnerabil-

ity dataset methods. Specifically, these hits comprise path contexts in this chapter,

unlike the hits from the previous chapter, which comprised shingles generated from

tokenised source code.

Thus, within this Code2Vec-focused chapter, a hit refers to the intersection of

the path contexts of an arbitrary method in the target software system and the path

contexts of a vulnerable method in the vulnerability dataset. For instance, if the path

contexts of the method depicted in Figure 2.4 intersect with those of a vulnerable

method in the vulnerability dataset, it is considered a hit.

As in the previous chapter, hit-independent metrics are calculated based on

specific attributes (such as code churn, size, and complexity) discernible from the

Code2Vec representation of a method in the target software system. Conversely,

hit-dependent metrics are those whose calculation depends on the hit concept. The

following subsections provide a detailed discussion of hit-independent and hit-

dependent metrics.
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Table 5.1: Code2Vec-Based Hit-Independent Metrics

Code2Vec-Based Hit-Independent Metric Abbr.

Number of Target Software System Path Contexts NTP
Number of Distinct Target Software System Path Contexts NDTP
Path Context-Based Instantaneous Code Churn PICC
Path Context-Based Relative Instantaneous Code Churn PRICC
Number of Target Software System Diff Path Contexts NTDP
Number of Target Software System Distinct Diff Path Contexts NTDDP
Path Context Relative Uniqueness PRU

Table 5.2: Code2Vec-Based Hit-Independent Metrics Code Attributes of Concern

Code2Vec-Based Hit-Independent Metric Abbr. Attributes of Concern

Churn Intricacy Size

NTP ✓
NDTP ✓ ✓
PICC ✓
PRICC ✓
NTDP ✓
NTDDP ✓ ✓
PRU ✓

5.3.1 Code2Vec-Based Hit-Independent Metrics

In this chapter, we developed seven hit-independent metrics, detailed in Table 5.1.

The source code attributes relevant to each metric are summarised in Table 5.2.

5.3.1.1 Number of Target Software System Path Contexts (NTP)

The NTP for a method in the target software system is the total count of path con-

texts in its Code2Vec representation. NTP is the most straightforward metric we

developed, serving as an indicator of the method’s size. For example, the NTP for

the method in Figure 2.4 is 7. See Subsubsection 4.3.1.1 for the hypothesis.

For a method mt in the target software system with a multiset of path contexts

Pt(mt), NTP is defined as follows:

NTP = |Pt(mt)|

The NTP metric’s hypothesis was inspired by several studies, including Shin

et al. [2010], Giger et al. [2012], Morrison et al. [2015], Pascarella et al. [2018],
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and Du et al. [2019]. However, we conceptualised its information retrieval-based

design and implementation.

5.3.1.2 Number of Distinct Target Software System Path Contexts

(NDTP)

The NDTP for a method in the target software system is the count of unique path

contexts in its Code2Vec representation. Unlike NTP, which measures the number

of path contexts, NDTP focuses on their diversity. This metric indicates the size and

diversity of code elements within a method. More distinct path contexts suggest

greater intricacy in the method’s implementation. For example, the NDTP of the

method in Figure 2.4 is 7, as all path contexts are unique. See Subsubsection 4.3.1.2

for the hypothesis.

For a method mt in the target software system with a set of path contexts

P′t (mt), NDTP is defined as:

NDTP = |P′t (mt)|

The NDTP metric was inspired by the NTP metric, which in turn was inspired

by several studies, including Shin et al. [2010], Giger et al. [2012], Morrison et al.

[2015], Pascarella et al. [2018], and Du et al. [2019]. However, we conceptualised

its information retrieval-based design and implementation.

5.3.1.3 Path Context-Based Instantaneous Code Churn (PICC)

A target software system method’s PICC is defined as the number of times its

Code2Vec representation has changed throughout its history. The code churn metric

quantifies how often developers rewrite their code over time, measured by version

control system check-ins or the number of lines of code added, deleted, or modified

[Shin et al., 2010]. Many studies have used code churn in vulnerability prediction

and have suggested that higher churn correlates with higher vulnerability [Zimmer-

mann et al., 2010, Shin et al., 2010, Shin and Williams, 2013, Meneely et al., 2013,

Morrison et al., 2015].

Unlike the token-based analysis in the previous chapter, where any code

change affects the representation, regardless of how trivial, Code2Vec represen-
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tations do not change as frequently. Minor syntactic changes, such as making a

method ‘static’ or adding/removing an annotation, often do not affect the Code2Vec

representation. This aligns with the idea that AST-based representations do not

capture every syntactic detail.

Our PICC implementation increments a method’s PICC by one for every re-

lease in which its Code2Vec representation changes. Thus, PICC counts the num-

ber of times a method’s source code has changed throughout the target software

system’s history, as reflected in the Code2Vec representation. See Subsubsection

4.3.1.3 for the hypothesis.

Let mt represent a method in a target software system, and let δ (mt) represent

the set of releases in which mt’s Code2Vec representation changed. The PICC for

mt is evaluated as follows:

PICC(mt) = |δ (mt)|

The PICC metric’s hypothesis was inspired by several studies, including Shin

et al. [2010], Giger et al. [2012], Morrison et al. [2015], Pascarella et al. [2018],

and Du et al. [2019]. However, we conceptualised its information retrieval-based

design and implementation.

5.3.1.4 Path Context-Based Relative Instantaneous Code Churn

(PRICC)

A target software system method’s PRICC is the ratio of times its Code2Vec rep-

resentation has changed to the total number of releases in which the method has

appeared. PRICC is relative, unlike the PICC metric, which is absolute. This rel-

ative characteristic makes it more effective in indicating how frequently a method

has evolved compared to others.

Let mt represent a method in a target software system, and let N represent the

total number of releases in which mt appears. The PRICC for mt is evaluated as

follows:

PRICC(mt) =
PICC(mt)

N



5.3. Code2Vec-Based Metrics 194

The TRICC metric in Chapter 4 is the token-based equivalent of PRICC. In

that chapter, we discussed how N could threaten the validity of machine learning

analysis through data leakage, depending on the aim and context of the analysis.

This discussion is also relevant to PRICC, so refer to Subsection 4.6.3 for more

details on the implications.

For a general illustration of PRICC, see Subsubsection 4.3.1.4, Figure 4.3, and

Table 4.3.

The PRICC metric was inspired by the PICC metric, which in turn was inspired

by several studies, including Shin et al. [2010], Giger et al. [2012], Morrison et al.

[2015], Pascarella et al. [2018], and Du et al. [2019]. However, we conceptualised

its information retrieval-based design and implementation.

5.3.1.5 Number of Target Software System Diff Path Contexts

(NTDP)

A target software system method’s NTDP is the count of path contexts in the sym-

metric difference between its current and previous release’s path contexts. The

NTDP metric measures the magnitude of changes between two consecutive method

releases. See Subsubsection 4.3.1.5 for the hypothesis.

Let mt represent a method in the target software system, and let mt−1 represent

its previous release.

The NTDP metric for mt is expressed as follows:

NTDP(mt) = |Pt(mt)∆ Pt−1(mt−1)|

Here, ∆ is the symmetric difference operator that returns a multiset of elements

present in either of the two sets but not in both. Pt(mt) and Pt−1(mt−1) represent the

path contexts of mt and mt−1, respectively.

The NTDP metric’s hypothesis was inspired by several studies, including Shin

et al. [2010], Giger et al. [2012], Morrison et al. [2015], Pascarella et al. [2018],

and Du et al. [2019]. However, we conceptualised its information retrieval-based

design and implementation.



5.3. Code2Vec-Based Metrics 195

5.3.1.6 Number of Target Software System Distinct Diff Path Con-

texts (NTDDP)

A target software system method’s NTDDP is the count of unique path contexts in

the symmetric difference between its current and previous release’s path contexts.

Unlike NTDP, which measures the magnitude of changes, NTDDP measures the

diversity of code elements involved in those changes.

The NTDDP metric for mt is defined as follows:

NTDDP(mt) = |P′t (mt)∆ P′t−1(mt−1)|

Here, ∆ is the symmetric difference operator that returns a set of elements

present in either of the two sets but not in both, and P′t (mt) and P′t−1(mt−1) represent

the unique path contexts of mt and mt−1, respectively.

This metric was inspired by the NTDP metric, which in turn was inspired by

several studies, including Shin et al. [2010], Giger et al. [2012], Morrison et al.

[2015], Pascarella et al. [2018], and Du et al. [2019]. However, we conceptualised

its information retrieval-based design and implementation.

5.3.1.7 Path Context Relative Uniqueness (PRU)

The PRU metric quantifies the distinctiveness of path contexts in a method’s

Code2Vec representation within a target software system. Inspired by informa-

tion retrieval techniques, the metric is used for method-level vulnerability predic-

tion analysis based on the Term Frequency-Inverse Document Frequency (TF-IDF)

approach. The underlying premise is that developers are more prone to introduc-

ing vulnerabilities when using complex and rarely utilised programming language

features in the context of a given software system or codebase. The PRU metric

captures a method’s complexity based on its composition of rare code elements

compared to other methods in the software system or codebase.

The TF-IDF measure, commonly used in information retrieval, quantifies a

word’s significance to a document within a corpus. The TF-IDF hypothesis posits

that a word is pertinent to a specific document if it appears frequently in that docu-

ment but infrequently in other documents within the same corpus.
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We applied the TF-IDF technique analogously to method-level vulnerability

prediction to develop the PRU metric. This analogy is based on three primary com-

ponents: word, document, and corpus.

In our context, the target software system is the system in which we aim to

predict vulnerabilities. Our target software system dataset comprises methods rep-

resented using Code2Vec representations, which consist of path contexts.

In this analogy, a word corresponds to a path context, a document to a method,

and a corpus to our target software system dataset. Since the analysis pertains to

method-level (not class-level) vulnerability prediction, we disregard the classes. We

then employ the TF-IDF technique to derive weightings for each method’s path

context to ascertain their significance to the method. In this context, ‘significance’

denotes how unique a path context is to the method compared to other methods.

For example, in a given software system or codebase, the Java keyword ‘void’

will likely appear in every standard method designed not to return a value. In con-

trast, the keyword ‘synchronized’ is more likely to appear in a complex method

performing a specific operation with threads. Therefore, in a ‘synchronized’ void

method, the ‘synchronized’ keyword will have a higher TF-IDF weighting than the

word ‘void’ because more methods in the software system will feature the ‘void’

keyword than the ‘synchronized’ keyword. If we calculate the average PRU for

both a void method and a ‘synchronized’ void method, the ‘synchronized’ void

method will have a higher PRU due to its increased complexity.

The PRU signifies a method’s uniqueness compared to other methods in a soft-

ware system. Evaluating this metric is comparable to finding the harmonic mean of

all the TF-IDF weightings of the words in a document. Thus, a method’s PRU is

the harmonic mean of all TF-IDF weightings for the path contexts in its Code2Vec

representation. The PRU determines how obscure a method is compared to others.

A high PRU value suggests the method features advanced, specialised, and rarely

applied programming language concepts compared to other methods in the software

system or codebase. See Subsubsection 4.3.1.7 for the hypothesis.
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Let p represent a path context in a target software system’s method, and let m

represent a multiset of the method’s path contexts. The term frequency, tf(p,m), is

the relative frequency of path context p within method m.

It is expressed as follows:

tf(p,m) =
fp,m

∑p′∈m fp′,m

Here, fp,m represents the raw count of path context p in method m, and

∑p′∈m fp′,m denotes the total number of path contexts in m.

Let M represent a multiset of all methods’ path contexts in our target software

system.

The inverse document frequency, idf(p,M), is expressed as follows:

idf(p,M) = log N
|m∈M : p∈m|

Here, N is the total number of methods in the target software system, N = |M|,

and |m ∈M : p ∈ m| is the total number of methods that feature p.

The TF-IDF for a path context, tfidf(p,m,M), is calculated as follows:

tfidf(p,m,M) = tf(p,m) · idf(p,M)

Finally, a method’s PRU, PRU(m,M), is obtained by calculating the harmonic

mean of the TF-IDF values of all its path contexts:

PRU(m,M) =
fp,m

∑p′∈m
1

tfidf(p′,m,M)

As before, fp,m is the raw count of a path context in a method’s representation.

∑p′∈m
1

tfidf(p′,m,M) is the sum of the inverses of the TF-IDF values for all p in m.

We exclusively developed the PRU metric’s conceptualisation, software vul-

nerability prediction contextualisation, hypothesis, design, and implementation,

drawing inspiration from how the TF-IDF technique tends to assign higher weight-

ings to rare words in information retrieval.
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Table 5.3: Code2Vec-Based Hit-Dependent Metrics

Code2Vec-Based Hit-Dependent (Security-Relevant) Metric Abbr.

Number of Hit Path Contexts NHP
Number of Distinct Hit Path Contexts NDHP
Number of Vulnerability Dataset Path Contexts NVP
Number of Distinct Vulnerability Dataset Path Contexts NDVP
Target Software System Method-to-
↪→ Vulnerable Dataset Method Path Context Similarity Ratio TVPSR

Path Context Hits-to-Target Software System Method Similarity Ratio PHTSR
Path Context Hits-to-Vulnerable Dataset Method Similarity Ratio PHVSR
Number of Path Context Matches NUPM
Path Context Match Ratio PMR

Table 5.4: Code2Vec-Based Hit-Dependent Metrics Code Attributes of Concern

Code2Vec-Based Hit-Dependent Metric Abbr. Attributes of Concern

Intricacy Similarity Size

NHP ✓ ✓
NDHP ✓ ✓ ✓
NVP ✓ ✓
NDVP ✓ ✓ ✓
TVPSR ✓
PHTSR ✓
PHVSR ✓
NUPM ✓
PMR ✓

5.3.2 Code2Vec-Based Hit-Dependent Metrics

As in the previous chapter, we developed nine security-aware metrics for this chap-

ter to leverage the knowledge of known vulnerabilities in our vulnerability dataset.

Previously, we defined a hit as the intersection of the path contexts of a target soft-

ware system method and those of a vulnerable method in a vulnerability dataset.

Using this knowledge, we developed hit-dependent metrics to measure the simi-

larity between the path contexts of a target software system method and those of

vulnerable methods.

Table 5.3 presents the hit-dependent metrics developed for this chapter, while

Table 5.4 outlines their attributes of concern. All hit-dependent metrics except
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NUPM and PMR perform a similarity comparison between the path contexts of a

target software system method and those of a vulnerable method. NUPM and PMR

measure the general distribution of similarities between a target software system

method and the methods in the vulnerability dataset. These hit-dependent metrics

are security-relevant; while they do not directly measure or indicate the presence of

vulnerabilities, they encode the patterns found in vulnerable code, similar to their

token-based counterparts.

5.3.2.1 Number of Hit Path Contexts (NHP)

A target software system method’s NHP is the number of path contexts it shares

with its most similar known vulnerable method in a vulnerability dataset. The NHP

metric is straightforward: it counts the path contexts that intersect between a target

software system method and the most similar vulnerable method. See Subsubsec-

tion 4.3.2.1 for the hypothesis.

Consider a target software system method mt with a multiset of path contexts

Pt(mt), and a matching method mv from a vulnerability dataset with a multiset of

path contexts Pv(mv). Let the hits between Pt(mt) and Pv(mv) be h, where h =

Pt(mt)∩Pv(mv).

The NHP for the target software system method is expressed as follows:

NHP = |h|

The critical point is that with the token-based approach, hit constituents are

shingles, whereas with the Code2Vec-based approach in this chapter, they are path

contexts.

We exclusively conceptualised the NHP metric, contextualised it within soft-

ware vulnerability prediction and developed its hypothesis, design and implemen-

tation.

5.3.2.2 Number of Distinct Hit Path Contexts (NDHP)

A target software system method’s NDHP is the number of unique path contexts

it shares with its most similar known vulnerable method in a vulnerability dataset.
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While NHP measures the total number of shared path contexts, NDHP measures the

diversity of the code elements in that intersection.

Consider a target software system method mt with a set of path contexts P′t (mt),

and a matching method mv from a vulnerability dataset with a set of path contexts

P′v(mv). Let the hits between P′t (mt) and P′v(mv) be h′, where h′ = P′t (mt)∩P′v(mv).

NDHP is then expressed as follows:

NDHP = |h′|

We exclusively conceptualised the NDHP metric, contextualised it within soft-

ware vulnerability prediction and developed its hypothesis, design and implemen-

tation.

5.3.2.3 Number of Vulnerability Dataset Path Contexts (NVP)

A target software system method’s NVP is the number of path contexts in its most

similar known vulnerable method in a vulnerability dataset. The NVP metric is

similar to the NTP metric introduced in Subsubsection 5.3.1.1, which measures the

number of path contexts in a target software system method. The critical differ-

ence is that while NTP measures the number of path contexts in the target soft-

ware system method, NVP measures the number of path contexts in its most similar

known vulnerable method. Additionally, NTP is hit-independent, whereas NVP is

hit-dependent because it requires a hit between the target software system method

and at least one method in the vulnerability dataset to calculate the metric. See

Subsubsection 4.3.2.3 for the hypothesis.

NVP is expressed as follows:

NVP = |Pv(mv)|

We exclusively conceptualised the NVP metric, contextualised it within soft-

ware vulnerability prediction and developed its hypothesis, design and implemen-

tation.
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5.3.2.4 Number of Distinct Vulnerability Dataset Path Contexts

(NDVP)

A target software system method’s NDVP is the number of unique path contexts in

its most similar known vulnerable method within a vulnerability dataset. The NDVP

metric is similar to the NDTP metric. However, while NDTP measures the num-

ber of distinct path contexts in a target software system method, NDVP measures

the number of distinct path contexts in its most similar known vulnerable method.

Additionally, NDTP is hit-independent, whereas NDVP is hit-dependent, as it re-

quires a hit between the target software system method and at least one method in

the vulnerability dataset to calculate the metric.

NDVP is expressed as follows:

NDVP = |P′v(mv)|

The NDVP metric was inspired by the NDTP metric, which in turn was in-

spired by several studies, including Shin et al. [2010], Giger et al. [2012], Morrison

et al. [2015], Pascarella et al. [2018], and Du et al. [2019]. However, we conceptu-

alised its information retrieval-based design and implementation.

5.3.2.5 Target Software System Method-to-Vulnerable Dataset

Method Path Context Similarity Ratio (TVPSR)

A target software system method’s TVPSR is the Jaccard Similarity between its path

contexts and the most similar known vulnerable method in a vulnerability dataset.

The TVPSR metric assesses the extent to which a target software system

method shares code elements with a known vulnerable method. It considers the

distinct path contexts in both methods relative to the total number of distinct path

contexts between them. Although it does not directly account for the order and fre-

quency of path contexts, the path contexts derived from the methods’ ASTs inher-

ently encode these attributes, capturing the hierarchical structure and relationships

within the source code.

Jaccard Similarity is the ratio of the intersection to the union of two sets. In this

context, it represents the ratio of the distinct path contexts shared between mt and
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mv to the total number of distinct path contexts in both methods. See Subsubsection

4.3.2.5 for the hypothesis.

Consider a target software system method mt with a set of path contexts P′t (mt),

and a matching method mv from a vulnerability dataset with a set of path contexts

P′v(mv). Let the hits between P′t (mt) and P′v(mv) be h′, where h′ = P′t (mt)∩P′v(mv).

TVPSR is expressed as follows:

TVPSR = |h′|
|P′t (mt)∪P′v(mv)|

Or, more derivatively:

TVPSR = NDHP
NDT P+NDV P−NDHP

We exclusively developed the TVPSR metric’s software vulnerability predic-

tion contextualisation, hypothesis, design, and implementation, drawing inspiration

from the Jaccard Similarity technique used in string metrics.

5.3.2.6 Path Context Hits-to-Target Software System Method Simi-

larity Ratio (PHTSR)

The PHTSR of a target software system method is the ratio of the number of path

contexts it shares with its most similar known vulnerable method in a vulnerability

dataset to the total number of path contexts in the target software system method.

The PHTSR metric measures the extent to which a target software system method

shares path contexts with a known vulnerable method, indicating how much of the

target software system method consists of code elements also found in the vulnera-

ble method. See Subsubsection 4.3.2.6 for the hypothesis.

Consider a target software system method mt with a set of path contexts P′t (mt),

and a matching method mv from a vulnerability dataset with a set of path contexts

P′v(mv). Let the hits between P′t (mt) and P′v(mv) be h′, where h′ = P′t (mt)∩P′v(mv).

PHTSR is expressed as follows:

PHTSR = |h′|
|P′t (mt)|

Or, more derivatively:
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PHTSR = NDHP
NDT P

We exclusively conceptualised the PHTSR metric, contextualised it within

software vulnerability prediction and developed its hypothesis, design and imple-

mentation.

5.3.2.7 Path Context Hits-to-Vulnerable Dataset Method Similarity

Ratio (PHVSR)

A target software system method’s PHVSR is the ratio of the number of path con-

texts it shares with its most similar known vulnerable method in a vulnerability

dataset to the total number of path contexts in the known vulnerable method. The

PHVSR metric measures the extent to which a known vulnerable method comprises

the path contexts it shares with a target software system method. While PHTSR

evaluates the target software system method, PHVSR focuses on the known vulner-

able method.

When evaluating PHTSR, we ask, "To what extent do the unique path con-

texts in our hits constitute the unique path contexts in our target software sys-

tem method?" Similarly, when evaluating PHVSR, we ask, "To what extent do the

unique path contexts in our hits constitute the unique path contexts in the vulner-

able method?" PHVSR determines the extent to which a vulnerable method com-

prises distinct code elements of a target software system method. See Subsubsection

4.3.2.7 for the hypothesis.

Consider a target software system method mt with a set of path contexts P′t (mt),

and a matching method mv from a vulnerability dataset with a set of path contexts

P′v(mv). Let the hits between P′t (mt) and P′v(mv) be h′, where h′ = P′t (mt)∩P′v(mv).

PHVSR is expressed as follows:

PHVSR = |h′|
|P′v(mv)|

Or, more derivatively:

PHVSR = NDHP
NDV P
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We exclusively conceptualised the PHVSR metric, contextualised it within

software vulnerability prediction and developed its hypothesis, design and imple-

mentation.

5.3.2.8 Number of Path Context Matches (NUPM)

A target software system method’s NUPM is the number of known vulnerable meth-

ods in a vulnerability dataset that share at least one path context with the method in

question. This metric counts the number of vulnerable methods that share one or

more path contexts with a given target software system method. See Subsubsection

4.3.2.8 for the hypothesis.

Consider a target software system method mt with a set of path contexts

P′t (mt) and a vulnerability dataset V containing n known vulnerable methods,

mv1 ,mv2 , . . . ,mvn , each with sets of path contexts P′v1
(mv1),P

′
v2
(mv2), . . . ,P

′
vn
(mvn).

NUPM is expressed as follows:

NUPM = |{mvi ∈V : P′t (mt) ∩ P′vi
(mvi) ̸= /0}|

We exclusively conceptualised the NUPM metric, contextualised it within soft-

ware vulnerability prediction and developed its hypothesis, design and implemen-

tation.

5.3.2.9 Path Context Match Ratio (PMR)

A method’s PMR in the target software system is the ratio of known vulnerable

methods in a vulnerability dataset that share at least one path context with the

method to the total number of vulnerable methods in the dataset. The PMR metric is

similar to the NUPM metric. However, while NUPM focuses on the absolute num-

ber of known vulnerable methods that share at least one path context with a target

software system method, PMR focuses on the proportion of such methods relative

to the total number of methods in the vulnerability dataset. In other words, PMR is

NUPM divided by the total number of vulnerable methods in the dataset.

Consider a target software system method mt with a set of path contexts

P′t (mt) and a vulnerability dataset containing n known vulnerable methods,

mv1 ,mv2 , . . . ,mvn .
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PMR is expressed as follows:

PMR =
|{mvi∈V : P′t (mt)∩P′vi

(mvi )̸= /0}|
n

Or, more derivatively:

PMR = NUPM
n

We exclusively conceptualised the PMR metric, contextualised it within soft-

ware vulnerability prediction and developed its hypothesis, design and implemen-

tation.

In the following subsection, we will illustrate how we calculate the hit-

dependent metrics using an example.

5.3.3 Code2Vec-Based Metrics Calculation: An Illustration

In Subsection 4.3.3, we demonstrated how to calculate the token-based metrics us-

ing one of the most well-known software vulnerabilities: SQL Injection. In that

chapter, we used two code snippets to illustrate the calculation of the token-based

metrics: one representing a hypothetical target software system method and the

other, a hypothetical known vulnerable method from a vulnerability dataset. We

excluded specific metrics from the example that required more extensive target soft-

ware system information than what is representable within a method body, such as

TICC, TRICC, NTDT, NTDDT, TRU, NUSM, and SMR. We pointed out that met-

rics such as TICC, TRICC, NTDT, and NTDDT require information on an entire

method’s change history, and calculating the TRU metric necessitates information

on the entire target software system. Thus, we could not calculate these metrics

using only the information represented in the method bodies.

In this chapter, we will utilise the same hypothetical target software system

method and known vulnerable method (see Listings 4.2 and 4.3) to demonstrate the

calculation of Code2Vec-based metrics. However, unlike the previous chapter, we

will use the Code2Vec representations of the methods, as shown in Figures 5.1 and

5.2. We have highlighted the shared path contexts in bold in these representations.

For simplicity and brevity, we will also exclude metrics that require more ex-

tensive information about the target software system than can be represented within
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3,2,4 1,3,3 1,4,4 5,2,6 1,3,5 1,4,6 7,2,8 1,3,7 1,4,8
↪→ 32,58,33 32,59,32 32,60,33 32,3,32 25,45,26
↪→ 25,61,34 26,38,34 32,8,35 2,11,32 2,12,35 1,3,2
↪→ 16,15,17 16,16,2 16,17,10 17,18,2 17,19,10 2,20,10
↪→ 36,21,16 36,22,17 36,23,2 36,21,10 1,3,36 3,7,5
↪→ 3,7,7 5,7,7 11,8,12 11,9,3 11,9,5 11,9,7 12,10,3
↪→ 12,10,5 12,10,7 13,11,11 13,12,12 13,13,3 13,13,5
↪→ 13,13,7 13,3,13 13,8,14 15,11,13 15,12,14 15,3,15
↪→ 15,8,19 15,9,36 19,10,36 9,11,15 9,12,19 9,13,36
↪→ 9,3,9 9,31,21 9,32,10 21,33,10 9,34,22 21,35,22
↪→ 10,36,22 9,8,23 9,8,24 9,37,2 24,38,2 2,15,17
↪→ 2,39,9 2,40,24 2,41,2 17,42,9 17,43,24 17,44,2
↪→ 25,45,26 26,46,2 26,47,17 13,8,37 15,8,37 9,8,37
↪→ 32,8,37 30,62,38 30,49,39 30,48,27 30,63,22
↪→ 38,64,39 38,65,27 38,66,22 39,67,27 39,68,22

Figure 5.1: Code2Vec Representation of the Method in Listing 4.2

1,1,2 3,2,4 1,3,3 1,4,4 5,2,6 1,3,5 1,4,6 7,2,8 1,3,7
↪→ 1,4,8 9,5,10 9,3,9 9,6,10 3,7,5 3,7,7 5,7,7 11,8,12
↪→ 11,9,3 11,9,5 11,9,7 12,10,3 12,10,5 12,10,7
↪→ 13,11,11 13,12,12 13,13,3 13,13,5 13,13,7 13,14,13
↪→ 13,8,14 15,11,13 15,12,14 15,14,15 16,15,17 16,16,2
↪→ 16,17,10 17,18,2 17,19,10 2,20,10 18,21,16
↪→ 18,22,17 18,23,2 18,21,10 1,3,18 15,8,19 15,9,18
↪→ 19,10,18 9,24,20 9,25,15 9,26,19 9,27,18 20,28,15
↪→ 20,29,19 20,30,18 9,31,21 9,32,10 21,33,10 9,34,22
↪→ 21,35,22 10,36,22 9,8,23 9,8,24 9,37,2 24,38,2
↪→ 2,15,17 2,39,9 2,40,24 2,41,2 17,42,9 17,43,24
↪→ 17,44,2 25,45,26 26,46,2 26,47,17 27,1,28 28,8,29
↪→ 30,48,9 30,49,31 30,50,1 30,51,2 30,52,9 9,53,31
↪→ 9,54,2 31,55,1 31,56,2 31,57,9

Figure 5.2: Code2Vec Representation of the Method in Listing 4.3

a method body. These excluded metrics are the Code2Vec counterparts of the token-

based metrics we excluded in the previous chapter: PRICC, NTDP, NTDDP, PRU,

NUPM, and PMR.

Table 5.5 presents the calculated Code2Vec-based metrics for the hypothetical

target and the known vulnerable methods. The full names of the metrics are listed

in Table 5.1 and Table 5.3 for reference.

The NTP metric, representing the number of path contexts in the target soft-

ware system method, is 91. This value is obtained by counting the path contexts

in the Code2Vec representation of the target software system method, as shown in

Figure 5.1.
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Table 5.5: Example Code2Vec-Based Metrics Calculation

Hit-Independent Metrics Metric Value

NTP 91
NDTP 90

Hit-Dependent Metrics Metric Value

NHP 47
NDHP 47
NVP 86
NDVP 86
TVPSR 47

129
PHTSR 47

90
PHVSR 47

86

The NDTP metric, indicating the number of distinct path contexts in the target

software system method, is 90. This value is derived by counting the distinct path

contexts in the Code2Vec representation of the target software system method.

The NHP, a metric concerned with counting the number of shared path con-

texts between the target software system method and the known vulnerable method,

is 47. This value is obtained by counting the intersecting path contexts between

the Code2Vec representations of the target and vulnerable methods, as shown in

Figures 5.1 and 5.2. The matching path contexts are highlighted in bold in the

representations.

The NDHP metric, representing the number of distinct shared path contexts

between the target and known vulnerable methods, is also 47.

The NVP metric, indicating the number of path contexts in the known vul-

nerable method, is 86. This value is derived by counting the path contexts in the

Code2Vec representation of the vulnerable method.

The NDVP metric, representing the number of distinct path contexts in the

known vulnerable method, is also 86.

The TVPSR metric, which is the target software system method-to-vulnerable

method path context similarity ratio, is calculated as 47
(90+86)−47 , which simplifies to

47
129 . 90 and 86 are the number of distinct path contexts in the target software system

and known vulnerable methods, respectively.
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The PHTSR metric, representing the ratio of shared path contexts to the num-

ber of path contexts in the target software system method, is 47
90 .

The PHVSR metric, representing the ratio of shared path contexts to the num-

ber of path contexts in the known vulnerable method, is 47
86 .

This example illustrates how we calculate the Code2Vec-based metrics. In

the following subsection, we will provide a brief comparison of the token-based

and Code2Vec-based metrics to highlight the key differences between the two ap-

proaches.

5.3.4 Token-Based versus Code2Vec-Based Approaches

Chapter 4 introduced token-based and shingle-based metrics using token-based rep-

resentations to predict vulnerabilities in software systems. These metrics capture the

structural and evolutionary intricacies of methods in a target system and their simi-

larities to known vulnerable methods in a vulnerability dataset. They are categorised

into hit-independent and hit-dependent metrics. Hit-independent metrics are calcu-

lated using only the attributes of the target software system methods. In contrast,

hit-dependent metrics leverage attributes of the target software system methods and

their most relevant methods in the vulnerability dataset.

This chapter introduces AST-based metrics using Code2Vec representations

to represent source code. Similar to their token-based counterparts, these metrics

capture the structural and evolutionary intricacies of methods in a target system and

their similarities to known vulnerable methods in a vulnerability dataset. The AST-,

or more specifically, Code2Vec-based metrics, are also divided into hit-independent

and hit-dependent categories.

The primary difference between the token-based and Code2Vec-based metrics

lies in the method of representation. Token-based metrics use sequences of tokens

extracted from the source code and shingles derived from these sequences. In con-

trast, Code2Vec-based metrics utilise representations generated from the methods’

ASTs. Code2Vec representations capture the hierarchical structure and relation-

ships within the source code, providing a potentially more detailed and context-

aware method representation.
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This subsection provides a comparative summary of the token-based and

Code2Vec-based metrics, highlighting their key differences to clarify the distinc-

tion between the two approaches.

Table 5.6: Summary of Differences: Token-Based versus Code2Vec-Based Metrics

Token-Based Code2Vec-Based

Metrics Token and Shingle-based Path Context-based

Query Constituents Shingles Path Contexts
Document Index Shingles Path Contexts
Hit Constituents Shingles Path Contexts
Code Churn Sensitivity High Relatively Lower
Token Extraction Tool JavaParser Not Applicable
Shingle Generation Tool Apache Lucene Not Applicable
Code2Vec Extraction Tool Not Applicable astminer

Table 5.6 summarises the key differences between the token-based and

Code2Vec-based metrics.

Token-based metrics use tokens and shingles as query constituents, document

index, and hit constituents. They are more sensitive to code churn because they rely

on token sequences extracted directly from the source code. Even a minor change

in the raw source code can significantly affect the token sequences and shingles,

which in turn can impact the metrics. These metrics require a token extraction tool,

such as JavaParser, to extract the token sequences and a shingle generation tool, like

Apache Lucene, to generate the shingles.

In contrast, Code2Vec-based metrics use path contexts for query constituents,

document index, and hit constituents. They are less sensitive to code churn as they

do not capture every minor detail in the source code. Code2Vec representations are

generated directly from the ASTs of methods using astminer.

In summary, token-based metrics utilise token and shingle-based representa-

tions, whereas Code2Vec-based metrics employ Code2Vec representations of meth-

ods.

Following this comparison, we will proceed to the next section, which outlines

the methodology used in this chapter.
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5.4 Methodology
This section outlines the methodology used in this chapter. We begin with essential

preliminary information, followed by information on our datasets, data preprocess-

ing, information retrieval techniques, and machine learning analysis. Given the

similarity between the token-based and Code2Vec-based methodologies, this sec-

tion focuses on the unique aspects of the Code2Vec-based methodology, referring

readers to the relevant sections in Chapter 4 for shared aspects.

5.4.1 Overview of the Methodology

Figure 5.3: Code2Vec-Based Vulnerability Prediction Methodology Overview (Within-
Project)
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Figure 5.3 provides an overview of our approach, divided into five main phases:

source code preprocessing, Code2Vec representation extraction, information re-

trieval, metrics data development, and machine learning analysis.

5.4.1.1 Source Code Preprocessing

This phase is identical to the source code preprocessing phase of the token-based

methodology (see Subsubsection 4.4.1.1).

5.4.1.2 Code2Vec Representation Extraction

After preprocessing, we parsed each source code file in our target software system

and the vulnerability dataset. We then extracted the Code2Vec representations of

the methods in both systems using astminer. For more information on astminer,

refer to Subsection 5.2.2.

5.4.1.3 Information Retrieval

This phase involved constructing and querying a document index to apply infor-

mation retrieval techniques to the path contexts in the Code2Vec representations

of the methods in our target software system and vulnerability datasets. The setup

is similar to the token-based methodology’s information retrieval phase (see Sub-

subsection 4.4.1.4). The primary difference is that Code2Vec representations are

utilised in the construction and querying of the document index.

5.4.1.4 Metrics Data Development

This phase embodies our core contribution: the sixteen metrics we developed. It

comprised two subphases: generating metrics data for each method in our target

software system and supplementing this data with ground truth information for per-

formance evaluation in the machine learning analysis phase. The phase mirrors that

of the token-based methodology (see Subsubsection 4.4.1.5). The only difference

is that Code2Vec representations are used instead of token sequences and shingles.

5.4.1.5 Machine Learning Analysis

As in Chapter 4, this phase aimed to:
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i Identify the best-performing machine learning classifier for vulnerability pre-

diction.

ii Identify the best-performing combination of metrics for vulnerability predic-

tion.

To achieve these aims, several subphases were completed, including Met-

rics Data Deduplication, Feature Scaling, Class Imbalance Mitigation, Correlation

Analysis, Feature Selection, Classification, Performance Evaluation, Model Selec-

tion, and Model Optimisation, similar to the token-based methodology (see Subsub-

section 4.4.1.6). The only distinction lies in the metric data deduplication subphase:

in the token-based methodology, duplicates were removed based on the token rep-

resentation of methods, while in the Code2Vec methodology, they were removed

based on the Code2Vec representation.

The phases addressed above summarise the methodology employed in this

chapter. A comparison with the methodology presented in the previous chapter

highlights the differences between the two approaches, as illustrated in Figures 4.6

and 5.3. The following subsections provide detailed information on each step out-

lined above.

5.4.2 Dataset

This analysis used the same target software system and vulnerability datasets as in

Chapter 4. See Subsection 4.4.2 for detailed information on the datasets.

5.4.3 Data Preprocessing

We used astminer to extract Code2Vec representations from the source code in our

datasets, subsequently developing information retrieval-based features for machine

learning classification.

5.4.3.1 Source Code Path Extraction

The IDs used by the Code2Vec representation elements extracted by astminer, in-

cluding tokens, paths, and node types, are volatile, meaning that the IDs generated

for the same elements differ every time astminer is executed. Therefore, to use
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the SARD dataset with a target software system for information retrieval-driven

vulnerability prediction, it is necessary to ensure that the Code2Vec representation

elements from both datasets use IDs generated in the same execution. We designed

our setup to extract code representations from the SARD and target software system

datasets in a single execution, ensuring consistent IDs across both datasets for the

same source code elements.

After extracting source code paths, we applied information retrieval techniques

and machine learning classification, which will be discussed later in this section.

Before that, we describe the additional steps we took to prepare our data, including

data deduplication, data imbalance handling, and ground truth evaluation.

5.4.3.2 Data Deduplication

As in the previous chapter, we deduplicated the Tomcat (training) dataset to prevent

data leakage. Refer to Subsubsection 4.4.3.3, Figure 4.3, and Table 4.10 for more

details on our deduplication strategy.

To accurately compare the Code2Vec and token-based techniques, we used

the exact post-deduplication figures for the target software system dataset, Apache

Tomcat 7, as in the previous chapter, including the class distribution. See Table 4.11.

5.4.3.3 Feature Scaling

We applied Min-Max scaling to the metrics data to ensure that all features were on

the same scale, as described in Subsubsection 4.4.3.5 in the previous chapter.

5.4.3.4 Software System Vulnerabilities and Data Imbalance

Similar to the previous chapter, we employed the Synthetic Minority Oversampling

Technique (SMOTE) to address the class imbalance between vulnerable and non-

vulnerable methods in our dataset. Refer to Subsubsection 4.4.3.6 for more infor-

mation on data imbalance and SMOTE.

5.4.4 Information Retrieval

Following the extraction of Code2Vec representations, as detailed in Subsub-

section 5.4.1.2, we applied information retrieval techniques to identify the best-

matching methods in the vulnerability dataset for each method in the target software
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system. The ‘best-matching’ methods share the most path contexts with the target

software system methods, indicating a higher likelihood of the same vulnerability.

We utilised Apache Lucene, a high-performance, full-featured text search engine

library in Java.

5.4.4.1 Document Index Construction

We reused the same number of target software system releases, vulnerability fixes,

and indexed vulnerability dataset methods as in the previous chapter to ensure a

fair comparison between the Code2Vec and token-based techniques, as shown in

Table 4.9. The number of indexed methods in the vulnerability dataset was 20,692,

consistent with the previous chapter. The index structure consists of each method’s

custom ID mapped to its Code2Vec representation.

5.4.4.2 Apache Lucene Query Construction (BooleanQuery)

Our queries comprised the path contexts in the Code2Vec representation of each

method in the target software system. Each query included the path contexts of a

method, separated by the ‘OR’ boolean logical operator. For example, the query

for the Code2Vec representation shown in Figure 2.4 would be: "4494,2,5136"

OR "2307,1065,154" OR "2307,1066,25" OR "2307,1067,140" OR "154,15,25" OR

"154,12,140" OR "25,639,140".

The ‘OR’ operator in our query strings makes each path context optional, pro-

viding flexibility in the information retrieval process. This enables Lucene to re-

trieve the most relevant SARD methods from the index for any target software sys-

tem method. The more path contexts that match between a target software system

method and a SARD method, the more relevant Lucene considers it, and thus, the

higher it ranks.

We then used the results from these queries to calculate the hit-dependent met-

rics, as described in Subsection 5.3.2.

Table 5.6 summarises the differences between the token-based and Code2Vec-

based information retrieval setups.
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5.4.5 Machine Learning Analysis

Our machine learning analysis details are identical to those in the previous chapter.

To accurately compare the Code2Vec and token-based techniques, we maintained

consistency in the machine learning analysis, including the classifiers used, the met-

rics calculated, and the performance evaluation metrics.

In the machine learning part of the analysis, the representations are irrelevant;

the classifiers only use the metrics data extracted from the representations as fea-

tures.

To avoid redundancy, we will not repeat the details of the machine learning

analysis in this chapter. However, as in the previous chapter, we evaluate the classi-

fiers’ performance using precision, recall, and F1 scores.

For additional information on the machine learning analysis, refer to Subsec-

tion 4.4.5.

5.4.6 Approach to Research Question 2

This chapter addresses our second research question: How well does the information

retrieval-driven software vulnerability prediction technique perform on a single,

multi-release software system dataset for Abstract Syntax Tree-based source code

representations?

This question is similar to the first research question from the previous chapter,

differing only in that it uses Code2Vec representations instead of token-based ones.

Therefore, our approach here is largely similar, with the following objectives:

1. Identify the most suitable classifier for information retrieval-driven,

Code2Vec-based method-level vulnerability prediction.

2. Identify the best-performing combination of Code2Vec-based software met-

rics for vulnerability prediction.

3. Evaluate the impact of hyperparameter tuning on the performance of the best-

performing classifier.
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Detailed descriptions of the approach will not be repeated here to avoid re-

dundancy. Instead, references to relevant sections of the previous chapter will be

provided where necessary.

5.4.6.1 Objective 1

The first objective is to determine the most suitable classifier for information

retrieval-driven Code2Vec-based vulnerability prediction at the method level. This

aligns with the first objective of the previous chapter, where we utilised precision,

recall, and F1 score to evaluate the performance of classifiers, identifying the best-

performing classifier based on the highest F1 score (see Subsubsection 4.4.6.1).

5.4.6.2 Objective 2

The second objective is identifying the best-performing combination of Code2Vec-

based software metrics for vulnerability prediction. This is similar to the second

objective of the previous chapter, where we used Sequential Forward Selection to

identify the optimal combination of metrics. Refer to Subsubsection 4.4.6.2 for

more details.

5.4.6.3 Objective 3

The third objective is to evaluate the impact of hyperparameter tuning on the per-

formance of the best-performing classifier. This is similar to the third objective of

the previous chapter, where we used the Grid Search technique for hyperparameter

tuning (see Subsubsection 4.4.6.3).

The following section presents the results of our experiments, organised ac-

cording to the objectives detailed above. A discussion of the findings, threats to

validity, and concluding remarks follow the Results section.
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5.5 Results
This section presents the results of our experiments, focusing on the three objectives

outlined in Subsection 5.4.6. We discuss the outcomes of the machine learning anal-

ysis, focusing on classifier performance, metrics combinations, and the performance

of hyperparameter tuning.

5.5.1 Objective 1 Results

Identify the most suitable classifier for information retrieval-driven Code2Vec-

based method-level vulnerability prediction.

This objective aimed to identify the best-performing binary classifier based on

predictive performance.

5.5.1.1 Evaluation Metrics Trend Analysis
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Figure 5.4: Precision Trend across all Best-k-Performing Metrics Combinations

Figure 5.4 shows the precision trends for each classifier’s top k metrics combi-

nations. The LGBM classifier achieved the highest precision, nearly 0.80, at k = 16,
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while the Gaussian Naïve Bayes classifier had the lowest precision, around 0.07, at

k = 16.

The Random Forest classifier consistently performed well across most metrics

combinations, slightly outperformed by the Gradient Boosting and XGB classifiers

at k = 1, k = 15 and k = 16, and the LGBM classifier at k = 16.

The LGBM and XGB classifiers generally showed above-average precision

trends across most metrics combinations. The Decision Tree and Gradient Boosting

classifiers also exhibited occasional above-average precision, specifically between

k = 4 and k = 7 for the Decision Tree and between k = 10 and k = 12 for the

Gradient Boosting classifier.

The Gaussian Naïve Bayes, Logistic Regression, and Linear Support Vector

classifiers performed the worst in precision. The Gaussian Naïve Bayes had the

lowest precision across all metrics combinations, while the Logistic Regression and

Linear Support Vector classifiers showed similarly poor precision trends.
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Figure 5.5: Recall Trend across all Best-k-Performing Metrics Combinations
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Figure 5.5 shows the recall trends for each classifier’s top k metrics combi-

nations. The K-Nearest Neighbours classifier achieved the highest recall, approx-

imately 0.66 at k = 9, while the Linear Support Vector classifier had the lowest

recall, around 0.04 at k = 16.

The K-Nearest Neighbours classifier performed well across most metrics com-

binations, from k = 4 to k = 16. The Decision Tree and Random Forest classifiers

performed better between k = 1 and k = 3.

The Decision Tree and Random Forest classifiers also had above-average recall

trends from k = 2 to k = 12. The XGB classifier showed average recall trends at

k = 2 and from k = 5 to k = 12. Other classifiers mainly exhibited below-average

recall trends.

The worst-performing classifiers in terms of recall were the Linear Support

Vector and Logistic Regression classifiers. The Linear Support Vector classifier

mostly had recall values below 0.1, and Logistic Regression generally had recall

values significantly below 0.15.
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Figure 5.6: F1 score Trend across all Best-k-Performing Metrics Combinations



5.5. Results 220

Figure 5.6 shows the F1 score trends for each classifier’s top k metrics combi-

nations. The Random Forest classifier achieved the highest F1 score, approximately

0.66 at k = 9, while the Linear Support Vector classifier had the lowest, around 0.05

at k = 16.

The Random Forest classifier consistently performed well, especially from k =

1 to k = 12, but the XGB classifier outperformed it slightly from k = 13 to k = 16.

The XGB and LGBM classifiers generally achieved above-average F1 scores

across most metrics combinations, with the XGB classifier performing particularly

well across several k values, second only to the Random Forest classifier. The De-

cision Tree classifier achieved above-average F1 scores from k = 3 to k = 11 before

declining sharply from k = 12 to k = 16.

The worst-performing classifiers in terms of F1 score were the Linear Sup-

port Vector, Logistic Regression, and Gaussian Naïve Bayes classifiers. The Linear

Support Vector classifier had the lowest F1 scores, mostly around 0.1, followed by

Logistic Regression and Gaussian Naïve Bayes, with F1 scores generally below 0.2.

Based on the F1 score trends, the Random Forest classifier showed the best

predictive performance, achieving the highest F1 score across most top k metrics

combinations.

5.5.2 Objective 2 Results

Identify the best-performing Code2Vec-based software metrics combination for vul-

nerability prediction.

This objective aimed to identify the best-performing combination of software

metrics for vulnerability prediction among the sixteen available metrics.

5.5.2.1 Metrics Correlation Analysis

Figure 5.7 displays the correlation matrix of all metrics and the ground truth. The

first row and column show the Pearson Correlation Coefficient for the ground truth,

while the remaining rows and columns represent the other metrics. The matrix has

two levels of grouping: ground truth, hit-independent, and hit-dependent metrics.

The hit-independent and hit-dependent metrics are further clustered by their respec-
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Figure 5.7: Correlation Matrix of all Metrics + Ground Truth

tive constituent metrics. The Pearson Correlation Coefficient measures the linear

correlation between two variables, ranging from ‘-1’ (strong negative correlation)

to ‘1’ (strong positive correlation), with ‘0’ indicating no correlation. Values in the

correlation matrix are categorised as per Table 4.13. The figure includes a scale

on the right side, using a diverging colour scheme: red indicates a strong positive

correlation, white indicates no correlation, and teal indicates a strong negative cor-

relation.

The main observations from the correlation matrix are presented below. The

full names of the metrics are listed in Table 5.1 and Table 5.3.

1. Some cells in Band No. 1 show values close to ‘1’, indicating a strong positive

correlation between certain metrics, such as NUPM and PMR, and pairs like
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NHP and NDHP. This suggests possible redundancy, which may or may not

affect model performance.

2. Negative correlations fall within Band No. 7 and higher, but none are as

strong as the positive ones. The highest negative correlation is -0.53 between

PRU and NDTP, indicating a moderate negative correlation. PRU measures

method uniqueness, while NDTP refers to the number of unique path con-

texts, which explains the negative correlation.

3. The second-highest negative correlation is -0.52 (PRU and NUPM/PMR), in-

dicating a moderate negative correlation. NUPM counts vulnerable methods

sharing a path context, and PMR is their ratio. Methods with many matches

to vulnerable methods have lower PRU values.

4. NTP/NDTP and NVP/NDVP are conceptually similar but apply to different

datasets. The correlation between NTP and NVP is 0.088, and between NDTP

and NDVP is 0.084, both indicating very weak positive correlations. When

hits are included, the correlation improves significantly to 0.45 (PHTSR and

PHVSR).

5. The TVPSR metric, considering both target system and vulnerability dataset

methods, shares a closer bond with PHTSR (0.70) and PHVSR (0.86) than

the latter two with each other (0.45).

6. The correlation between NUPM and PMR, i.e., 1 (Band No. 1), is higher

than that between PRICC and PICC, 0.68 (Band No. 2). This is because

the PMR denominator (total matches in the dataset) is constant, while the

PRICC denominator (total system releases) changes, making PRICC values

more variable.

7. The ground truth shows no strong correlation with any metrics, with the high-

est being 0.17 (Band No. 5) with NDTP. Despite weak correlations, classifiers

can still perform well, as shown in Figure 5.6, indicating that seemingly re-

dundant metrics may contribute to overall performance.
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8. Excluding potentially redundant metrics, such as PMR, NTDDP, NDTP,

NDHP, and NDVP, did not necessarily improve classifier performance and

sometimes decreased it. Therefore, as noted in the previous chapter, we re-

tained all classification metrics, focusing on feature selection to identify the

best-performing combinations.

5.5.2.2 Classifier Performance Analysis

Table 5.7: Best Performance Per Classifier (Sorted by F1 score)

Classifier Best k Precision Recall F1 score

Random Forest classifier 9 0.73171 0.60668 0.66106
XGBoost classifier 9 0.70472 0.53556 0.60564
LightGBM classifier 9 0.66666 0.48016 0.55496
Decision Tree classifier 7 0.50839 0.58884 0.54284
K-Nearest Neighbors classifier 7 0.35246 0.64649 0.45508
Gradient Boosting classifier 12 0.51111 0.33964 0.40499
AdaBoost classifier 5 0.21772 0.22986 0.22031
Gaussian Naive Bayes 3 0.11647 0.28856 0.16568
Logistic Regression 6 0.16279 0.12250 0.13910
Linear Support Vector classifier 4 0.15780 0.08198 0.10700

Table 5.7 presents the best performance of each classifier, sorted by descending

F1 score, our primary evaluation metric. The Random Forest classifier achieved the

highest F1 score. The XGBoost, LightGBM, and Decision Tree classifiers also

performed well, with XGBoost and LightGBM outperforming the Decision Tree.

The worst-performing classifiers in terms of F1 score were the Linear SVC, Logistic

Regression, and Gaussian Naïve Bayes.

5.5.2.3 Metrics Combination Analysis

Table 5.8 shows the optimal combination of metrics for each classifier, categorised

into Hit-Independent and Hit-Dependent sections. A checkmark indicates the best-

performing metrics combination for each classifier.

This table reveals that hit-dependent metrics are crucial for most classifiers,

frequently appearing in the best-performing combinations. This supports the find-
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Table 5.8: Best Metrics Combination Per Classifier

Metric Classifiers
AB DT GNB GB KN LGBM LSVC LR RF XGB

Hit-Independent
NTP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
NDTP ✓ ✓ ✓ ✓ ✓ ✓
PICC
PRICC
NTDP ✓
NTDDP
PRU ✓ ✓ ✓ ✓
Hit-Dependent
NHP ✓ ✓ ✓ ✓ ✓
NDHP ✓ ✓ ✓ ✓ ✓ ✓ ✓
NVP ✓ ✓ ✓ ✓ ✓ ✓
NDVP ✓ ✓ ✓ ✓ ✓ ✓ ✓
TVPSR ✓ ✓ ✓ ✓
PHTSR ✓ ✓ ✓
PHVSR ✓ ✓ ✓ ✓ ✓ ✓
NUPM ✓ ✓ ✓ ✓ ✓ ✓ ✓
PMR ✓ ✓ ✓ ✓ ✓ ✓ ✓

ings of the previous chapter, which show that hit-dependent metrics outperform

hit-independent metrics in terms of predictive performance.

The table also highlights the usefulness of each metric by its frequency in top-

performing combinations. For instance, the NTP metric is selected for all classifiers

except AdaBoost and Decision Tree, indicating its importance. Conversely, NTDP

is only chosen for Gaussian Naïve Bayes, and the code churn metrics, PICC and

PRICC, are not selected.

In conclusion, the optimal software metrics combination for vulnerability pre-

diction, as per the second objective, includes those used by the best-performing

classifier, the Random Forest classifier. These metrics are NDHP, NDTP, NDVP,

NTP, NUPM, NVP, PHVSR, PMR, and PRU.

5.5.3 Objective 3 Results

This objective evaluated the impact of hyperparameter tuning on the performance

of the best-performing classifier from the first objective.
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5.5.3.1 Parameter Grid and Best Hyperparameter Values

Table 5.9: Parameter Grid and Best Hyperparameter Values

Parameter Grid

Hyperparameter Values Best Value

bootstrap True*, False False
max_depth None*, 10, 20 20
max_features ‘auto’, ‘sqrt’* auto
min_samples_leaf 1*, 2, 4 1
min_samples_split 2*, 5, 10 2
n_estimators 100*, 200, 300 200

Table 5.9 shows the parameter grid and best hyperparameter values for the

Random Forest classifier. As in the previous chapter, the Random Forest classifier

performed well in this Code2Vec-based analysis, so we used the same hyperparam-

eters and values.

The parameter grid includes only six key hyperparameters, as tuning all hy-

perparameters would be impractical due to time and computational resource con-

straints. The asterisk (*) denotes the default value in scikit-learn. The last column

shows the best-performing values determined by our Grid Search technique (see

Subsubsection 4.4.6.3).

We tuned the hyperparameters using the best-performing metrics combina-

tion identified in the second objective (NDHP, NDTP, NDVP, NTP, NUPM, NVP,

PHVSR, PMR, and PRU) rather than all sixteen metrics.

The parameter grid (first two columns in Table 5.9) in this chapter is identical

to the one in the previous chapter (see Table 4.16). However, the ‘max_depth’

hyperparameter has a best value of ‘20’ here compared to ‘None’ in the previous

chapter. Also, the ‘n_estimators’ hyperparameter has a best value of ‘200’ here

compared to ‘100’ in the previous chapter.

5.5.3.2 Hyperparameter Tuning Results

Table 5.10 shows the pre- and post-hyperparameter tuning results for the Random

Forest classifier.
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Table 5.10: Pre-and-Post-Hyperparameter Tuning Results for Random Forest classifier

Metric Before After ∆%

Precision 0.73171 0.72111 -1.45
Recall 0.60668 0.62261 2.63
F1 score 0.66106 0.66778 1.02

After tuning, precision decreased by 1.45%, recall increased by 2.63%, and the

F1 score increased by 1.02%.

This trend aligns with the previous chapter, where precision decreased by

0.22%, recall increased by 2.23%, and the F1 score increased by 1.42%.

Regarding the third objective, as in the previous chapter, hyperparameter tun-

ing had a mixed impact on the performance of the Random Forest classifier. Preci-

sion decreased, recall increased, and the F1 score, our primary evaluation metric,

ultimately improved slightly.
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5.6 Discussion
This section discusses our results and their implications. We examine the perfor-

mance of the Code2Vec representation technique, the impact of hit-dependent met-

rics, the evaluation metrics, and the effect of hyperparameter tuning.

5.6.1 Code2Vec Representation Performance

In this chapter, we explored the effectiveness of the Code2Vec technique for predict-

ing software vulnerabilities. We used an information retrieval-driven approach on a

multi-release software system dataset with Code2Vec representations. Our analysis

aimed to identify the best classifier for Code2Vec-based vulnerability prediction,

determine the optimal combination of metrics, and assess the impact of hyperpa-

rameter tuning on the performance of the best classifier.

As in the previous chapter, the Random Forest classifier was the best-

performing model. However, it showed slightly better improvements in the F1 score

in this chapter compared to the previous one. The token-based approach achieved

a maximum post-hyperparameter tuning precision of 0.73472, recall of 0.59667,

and F1 score of 0.65741. In contrast, the Code2Vec-based approach achieved a

precision of 0.72111, recall of 0.62261, and F1 score of 0.66778.

These results suggest that Code2Vec representations may capture syntactic and

semantic information more effectively than token-based approaches, providing a

more nuanced understanding of code structure and potential vulnerabilities. This

supports Liu et al. [2022a]’s finding about the effectiveness of AST-based represen-

tations. However, it is essential to note that the shingle size in the token-based ap-

proach may affect the results. In Subsubsection 4.4.3.2, we noted that we employed

a shingle size of ‘5’ in the token-based approach, following some experimentation,

as it provided the best balance between performance and computational efficiency

for our analysis.

Nevertheless, other studies have highlighted the effectiveness of AST-based

representations, most notably a critical study by Al Debeyan et al. [2022] that sig-

nificantly influenced this research. The study tackled the challenge of software

vulnerability prediction and detection, using AST information to represent code
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vulnerabilities for machine learning models. Their goal was to enhance the perfor-

mance of vulnerability prediction models by using AST N-grams as features, apply-

ing binary classification to detect vulnerability status, and multiclass classification

to categorise code into different vulnerability types based on Common Weakness

Enumeration (CWE) categories. The researchers used a dataset comprising 5,001

real-world vulnerable Java methods from 219 open-source projects, extracting 18

static code metrics and AST N-grams from these methods. They compared the

performance of three machine learning models (Random Forest, Naïve Bayes, and

SVM) and one deep learning model (DeepBalance) using binary classification, with

evaluation metrics including F-measure and MCC. Additionally, they proposed a

Random Forest model with multiclass classification to cluster code into different

CWE types and evaluated its performance using the same metrics. The study found

that the Random Forest model using AST N-grams outperformed the other models

in binary classification, achieving an F-measure of 75% and an MCC of 74%. The

multiclass classification model using AST N-grams also performed well, with an

average F-measure of 61% and an MCC of 63%. The authors concluded that AST

N-grams are effective features for improving the predictive performance of vulnera-

bility models and providing more detailed information on vulnerability types. They

also suggested further enhancing their approach by incorporating more CWE types,

adding code context, and applying transfer learning.

Al Debeyan et al. [2022]’s research is similar to ours in terms of methodology

and results. We achieved a comparable F1 score using the same classifier: Random

Forest. However, we utilised a different set of novel vulnerability prediction metrics

and seven additional machine learning models. Additionally, they considered binary

and multiclass classification, while we focused solely on binary classification.

While Al Debeyan et al. [2022]’s study reported impressive results, we ob-

served a data leakage issue in their binary classification analysis, which may have

impacted the model’s performance. We will address this issue in the following

chapter. Nevertheless, their study provides valuable insights into the effectiveness

of AST-based representations for vulnerability prediction. These insights support
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our findings in this chapter and those of other researchers in the field, as seen in the

study mentioned earlier by Liu et al. [2022a].

5.6.2 Hit-Dependent Metrics Performance

Another important insight uncovered in this chapter is the significance of hit-

dependent metrics, i.e., metrics that use known vulnerabilities to identify patterns

indicating security risks. As in the previous chapter, these metrics outperformed

hit-independent ones, highlighting the value of incorporating contextual informa-

tion from known vulnerabilities into a predictive model. Hit-dependent metrics sig-

nificantly enhanced predictive performance, suggesting that capturing the semantic

and syntactic nuances of vulnerable source code is crucial for accurate vulnerabil-

ity prediction. However, we emphasise that the quality of these metrics depends

on the completeness and relevance of the vulnerability dataset from which they are

derived. Therefore, comprehensive and up-to-date vulnerability datasets are crucial

for accurate vulnerability prediction. This also means that the model must be up-

dated regularly in a real-life scenario to incorporate new vulnerabilities and ensure

accurate predictions. Therefore, a CI/CD pipeline that automatically updates the

vulnerability dataset and re-trains the model would be beneficial.

5.6.3 A Closer Look at the Evaluation Metrics

Like the previous chapter, the evaluation metrics in this chapter offer a compre-

hensive view of classifier performance. The Random Forest classifier achieved the

highest F1 score, striking the best performance balance between precision and recall

in this chapter’s Code2Vec-based experiments. This balance is crucial in vulnera-

bility prediction, where false positives and negatives can have severe consequences.

The performance of the Random Forest classifier suggests it can effectively identify

vulnerabilities while minimising false positives and negatives.

Our observations indicate that the Code2Vec-based representation outper-

formed the token-based approach in terms of recall and F1 score, subject to the

shingle size used in the token-based approach. These improvements are significant

since recall and F1 score are crucial metrics in vulnerability prediction. The supe-
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rior performance of the Code2Vec-based approach in these metrics suggests it can

better identify vulnerabilities and minimise false negatives, which is essential in

security-critical applications.

However, the precision metric showed a slight decrease. This decrease is not

unexpected, as the Code2Vec-based approach may be more sensitive to false posi-

tives due to its ability to capture nuanced code semantics. This trend suggests that

while Code2Vec enhances the model’s ability to identify vulnerabilities (recall),

it also increases the number of false positives, leading to a decrease in precision.

Nonetheless, the superior recall and F1 score of the Code2Vec-based approach sug-

gest that it may be more effective at identifying vulnerabilities while maintaining

reasonable precision. However, as pointed out earlier, shingle sizes in the token-

based approach may affect the results, and further investigation is needed to deter-

mine the optimal shingle size for vulnerability prediction.

In conclusion, the Code2Vec representation may enhance the model’s under-

standing of complex code structures more effectively, resulting in improved vulner-

ability detection. This improvement is particularly evident in the recall and F1 score

metrics. The increase in recall indicates that the model is more adept at identifying

actual vulnerabilities. The improvement in the F1 score highlights the effectiveness

of the Code2Vec representation in balancing precision and recall, which is essential

for vulnerability prediction. However, the decrease in precision highlights the need

for further refinement to reduce false positives.

5.6.4 Hyperparameter Tuning Impact

The Random Forest classifier’s hyperparameters remained consistent across chap-

ters, with minor changes in ‘max_depth’ and ‘n_estimators.’ This consistency sug-

gests that, despite the differences in metrics data yielded by the Code2Vec and

token-based representations, the Random Forest classifier’s performance remains

stable, highlighting its robustness in vulnerability prediction. We also observed this

robustness in the literature, as discussed in Subsection 3.4.3 and supported by the

findings in several studies [Walden et al., 2014, Scandariato et al., 2014, Kaloupt-

soglou et al., 2022, Amasaki et al., 2023, Al Debeyan et al., 2022]. However, we
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note that different source code representation techniques may require distinct tuning

strategies for optimal performance.

Hyperparameter tuning resulted in a slight decrease in precision, an increase

in recall, and an overall improvement in the F1 score, consistent with the findings

from the previous chapter. This trend indicates that tuning can enhance the Ran-

dom Forest classifier’s performance by balancing precision and recall, improving

its vulnerability prediction capabilities.

5.6.5 Implications

Our findings have several implications for vulnerability prediction research and its

practical applications. Firstly, the improved performance with Code2Vec suggests

that future models should prioritise representations that effectively capture both

source code syntax and semantics. This can enhance the model’s ability to ac-

curately identify vulnerabilities, which is crucial for security-critical applications.

Additionally, the reliance on hit-dependent metrics highlights the need to utilise

comprehensive vulnerability datasets to inform the predictive model. Incorporating

known vulnerabilities can enhance the model’s ability to effectively identify secu-

rity risks, emphasising the importance of contextual information in vulnerability

prediction. Lastly, the changes in hyperparameter optimisation indicate that models

using advanced representations, such as Code2Vec, require tailored tuning strate-

gies for optimal results. This highlights the complexity of hyperparameter tuning

and suggests that future research should explore strategies tailored to the specific

representation used, thereby ensuring optimal performance in vulnerability predic-

tion.

5.6.6 Recommendations

Future research and applications in software vulnerability prediction should adopt

Code2Vec or similar AST-based representations that effectively capture syntac-

tic and semantic information. This approach can enhance the model’s ability to

identify vulnerabilities, thereby improving the security of software systems. Also,

combining AST-based representations with other techniques may capture a broader
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spectrum of code characteristics, potentially improving overall model performance.

Future research should explore hybrid representations to leverage the strengths of

different techniques, enhancing the model’s ability to identify vulnerabilities effec-

tively. Finally, emphasising hit-dependent metrics is crucial for enhancing predic-

tive performance. These metrics significantly boost predictive accuracy by leverag-

ing known vulnerabilities to identify security risks.
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5.7 Threats to Validity
This section discusses threats to the validity of our study, focusing on internal and

external validity, similar to the previous chapter.

5.7.1 Internal Validity

Internal validity concerns the extent to which observed effects can be attributed to

the experimental conditions rather than other factors. Several threats to internal

validity were identified.

5.7.1.1 Hyperparameter Tuning

The selection of hyperparameters for the Random Forest classifier might have in-

fluenced the outcomes. Although we used Grid Search for tuning, other hyperpa-

rameter combinations could yield different results. Future studies should explore a

broader range of settings and potentially use automated hyperparameter optimisa-

tion techniques.

5.7.1.2 Dataset Characteristics

The specific characteristics of the Apache Tomcat dataset may have impacted the

findings. This dataset is from a single software system with multiple releases, which

may not be generalisable to other systems. Similar experiments on diverse datasets

from different domains are recommended to validate the findings.

5.7.2 External Validity

External validity refers to the extent to which the results can be generalised beyond

the specific experimental conditions.

5.7.2.1 Programming Language and Dataset Generalisability

A primary threat is the generalisability to other programming languages and soft-

ware systems. This study focused exclusively on Java-based systems, specifically

the Apache Tomcat dataset. While the results are promising, it remains unclear

whether the Code2Vec technique will perform equally well on software in other

languages.
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5.8 Answer to Research Question 2

Research Question 2: How well does the information retrieval-driven software vul-

nerability prediction technique perform on a single, multi-release software system

dataset for Abstract Syntax Tree-based source code representations?

This chapter examined the effectiveness of the Code2Vec representation tech-

nique for predicting software vulnerabilities. We aimed to answer the research

question by evaluating the performance of the Code2Vec-based approach on a sin-

gle, multi-release software system dataset and comparing it with the token-based

approach used in the previous chapter.

We preprocessed Apache Tomcat’s source code, extracted Code2Vec rep-

resentations from the methods, and developed software metrics using informa-

tion retrieval techniques. Various machine learning classifiers were trained using

these metrics, and their performance was evaluated based on precision, recall, and

F1 score. Hyperparameter tuning was conducted to optimise the best-performing

classifier.

The findings indicated that the Code2Vec representation yielded a slight im-

provement in vulnerability prediction compared to the token-based approach. How-

ever, the nominated shingle size in the token-based approach may have influenced

the results. The Random Forest classifier emerged as the best-performing model,

with precision, recall, and F1 score values of 0.72111, 0.62261, and 0.66778, re-

spectively. Contrastingly, the token-based approach achieved a maximum post-

hyperparameter tuning precision of 0.73472, recall of 0.59667, and F1 score of

0.65741. While the token-based approach showed a slightly higher precision, the

Code2Vec-based approach achieved better recall and F1 score results, which are

critical for security applications. The Code2Vec representation may have captured

more detailed code semantics relative to the shingle size of ‘5’ used in the token-

based approach, leading to better vulnerability detection.

Our findings also highlighted the importance of hit-dependent metrics in vul-

nerability prediction, as they significantly enhanced predictive performance com-

pared to hit-independent metrics, as in the previous chapter.



5.8. Answer to Research Question 2 235

Additionally, the Random Forest classifier’s consistent performance across dif-

ferent representations highlights its robustness and suitability for vulnerability pre-

diction tasks.

Finally, our results showed that hyperparameter tuning generally improves pre-

dictive performance, as evidenced by the increased F1 score, at the expense of a

slight decrease in precision.

Future work should extend the approach to other programming languages, in-

tegrate Code2Vec with other representation techniques, explore the impact of differ-

ent shingle sizes in token-based approaches, conduct longitudinal studies to assess

model stability and develop real-time vulnerability prediction tools for practical

software development and maintenance applications.

To explicitly answer the second research question of this thesis, the informa-

tion retrieval-driven software vulnerability prediction technique performed well on

a single, multi-release software system dataset for Code2Vec representation, achiev-

ing slight but notable improvements in predictive performance, as measured by the

F1 score, compared to the token-based approach.



Chapter 6

A Vulnerability Prediction Dataset

Generalisability Study

This chapter evaluates the generalisability of our information retrieval-driven vul-

nerability prediction technique using a dataset of code artefacts from multiple soft-

ware systems. We assess its performance in a mixed-project setting, with a focus

on data quality and quantity limitations. The chapter addresses the third and final

research question of this thesis, examining the applicability of the technique across

projects and the impact of data-related factors on prediction accuracy.
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6.1 Introduction
We provided background on the potential of AI-driven techniques, specifically Su-

pervised Machine Learning, in predicting software vulnerabilities in Section 2.1,

stating that these methods utilise historical data from software systems to identify

patterns indicative of vulnerabilities and predict future vulnerabilities.

A machine learning-based approach typically involves training a supervised

learning model on a dataset of code artefacts labelled with known vulnerabilities.

This model can then predict vulnerabilities in other software systems, particularly

useful in the early stages of software development [Zhang et al., 2023c].

Despite their largely theoretical effectiveness, predicting vulnerabilities in

large-scale software code remains complex, time-consuming, and error-prone, even

for domain experts [Zhang et al., 2023b]. A significant challenge lies in obtain-

ing high-quality labelled data. Acquiring extensive datasets of software systems

annotated with vulnerabilities is inherently complex, limiting the effectiveness of

supervised learning techniques that require large amounts of labelled data to build

robust models. Consequently, there are relatively few labelled projects compared

to the vast number of unlabelled ones [Nguyen et al., 2024], highlighting the need

for alternative approaches to address these data-related challenges. One promising

alternative is cross-project prediction.

6.1.1 Cross-Project vs Mixed-Project Vulnerability Prediction

Cross-project or inter-project vulnerability prediction, in its simplest form, involves

predicting vulnerabilities in a target software system using a model trained on a

different source system. This is vital as it allows for predicting vulnerabilities in

projects with insufficient data for training a supervised learning model [Malhotra

and Meena, 2024]. The model’s versatility is also crucial. A model that can be ap-

plied across multiple projects (or software systems) is theoretically more adaptable

than a within-project prediction model confined to a single project (or software sys-

tem). Such a generalisable model enhances efficiency by enabling software profes-

sionals to use one model for various projects, eliminating the need to train separate

models for each project.
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In this chapter, we use the term mixed-project vulnerability prediction to de-

scribe the process of predicting vulnerabilities in a target software system using a

model trained on a dataset comprising code artefacts from multiple software sys-

tems.

We consider the conventional cross-project vulnerability prediction a straight-

forward subset of mixed-project prediction, where the training data consists of code

artefacts from one project. Mixed-project prediction, on the other hand, encom-

passes a broader range of more complex scenarios where the training data com-

prises code artefacts from an arbitrary number of projects. Due to the increased

data variability in the dataset, mixed-project prediction presents a more significant

challenge as it provides a more rigorous test of a model’s ability to generalise across

diverse software systems. Therefore, we could consider mixed-project prediction a

stress test of the model’s generalisability.

This chapter examines mixed-project vulnerability prediction and assesses the

generalisability of our information retrieval-based vulnerability prediction tech-

nique across different software systems using a dataset comprising code artefacts

from multiple projects.

6.1.2 Dataset Generalisability: An Introduction

Generalisability refers to the extent to which study findings can be applied to other

contexts or settings. In our context, it denotes the applicability of data to vari-

ous scenarios. Croft et al. [2022] noted that data generalisability measures the

external validity of an analysis. This chapter uses the term data generalisability

to describe how well a vulnerability prediction technique performs across multiple

datasets or projects. Specifically, we examine the applicability of our information

retrieval-driven vulnerability prediction technique across different projects, explor-

ing its generalisability using a dataset comprising artefacts from various software

systems.
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6.1.3 Chapter Motivation

In Chapter 4, we introduced an innovative Information Retrieval-driven vulnera-

bility prediction technique, which forms the core of our thesis. This technique

utilises information retrieval methods to generate metrics from various source code

attributes, including size, complexity, churn, and known vulnerability code patterns.

These metrics are then used to predict vulnerabilities. We evaluated this technique

using token-based code representations, achieving promising results with a Ran-

dom Forest classifier: a precision of 0.73, a recall of 0.60 and an F1 score of 0.66.

In Chapter 5, we extended the technique using Abstract Syntax Tree (AST)-based

Code2Vec representations, which, according to our results and findings from other

studies [Liu et al., 2022a, Al Debeyan et al., 2022], prove to be very effective in

capturing the hierarchical structure and relationships within the source code. This

approach slightly improved the F1 score, yielding a precision of 0.72, a recall of

0.62, and an F1 score of 0.67, again using the Random Forest classifier.

While noteworthy, these results from Chapters 4 and 5 were based on a single

project, Apache Tomcat 7, representing a within-project vulnerability prediction

setting. This chapter is motivated by the need to evaluate our technique’s perfor-

mance in a mixed-project setting to determine its generalisability across multiple

projects and gain insight into how much data-related challenges affect its perfor-

mance, in other words, a stress test of the technique’s generalisability. To achieve

this, we used a dataset comprising code artefacts from several projects to assess

the generalisability of the information retrieval-driven vulnerability prediction tech-

nique. This evaluation aims to understand how data-related factors affect the appli-

cability of supervised learning techniques in vulnerability prediction across diverse

software systems.

6.1.4 Research Question

To address the motivation outlined above, we pose the third and final research ques-

tion of this thesis:

How well does the information retrieval-driven software vulnerability

prediction technique generalise across multiple software systems?
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This research question is crucial for comprehensively evaluating our vulnera-

bility prediction technique. While Chapters 4 and 5 focus on within-project assess-

ments, this chapter examines mixed-project scenarios. This shift provides insights

into the technique’s generalisability from a stress test perspective, highlighting its

performance across diverse software systems and the impact of data on vulnerability

prediction.

6.1.5 Research Scope

The research scope of this chapter is as follows:

• Programming Language: We use a Java-based dataset.

• Method-Level Vulnerability Prediction: Our analysis focuses on method-

level vulnerabilities. Vulnerabilities at the class or file level or outside the

source code (e.g., configuration files, web services, or APIs) are not consid-

ered.

• Mixed-Project Vulnerability Prediction: We evaluate the information

retrieval-driven vulnerability prediction technique using methods from multi-

ple software projects.

• Binary Classification: The study focuses on binary classification, where a

method is classified as vulnerable or non-vulnerable. Multi-class classifica-

tion is not considered.

6.1.6 Significance and Contributions

This chapter contributes to software vulnerability prediction by evaluating the gen-

eralisability of our information retrieval-driven technique. It focuses on stress-

testing our technique in a mixed-project vulnerability prediction setting and high-

lights the impact of data quality and quantity.

The study assesses the technique’s generalisability across multiple projects,

offering insights into its ability to predict vulnerabilities beyond the initial train-

ing project. The results will help software professionals understand the technique’s
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capabilities, limitations, and applicability in within-project and mixed-project con-

texts. Additionally, it will provide insights into the impact of data quality and quan-

tity on vulnerability prediction, highlighting the challenges and opportunities in this

field.

6.1.7 Structure of the Chapter

Section 6.2 provides background information on mixed-project vulnerability pre-

diction and data-related issues in vulnerability prediction. Section 6.3 outlines the

study’s methodology, including the dataset, data preprocessing, and other relevant

aspects. Section 6.4 presents the experimental results. Section 6.5 discusses the

results and their implications. Section 6.6 outlines the threats to validity for this

chapter. Finally, Section 6.7 provides the conclusive answer to the third and final

research question of this thesis.
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6.2 Background
In the previous section, we discussed data-related issues in vulnerability predic-

tion, noting that acquiring high-quality labelled data is a significant challenge for

data-driven vulnerability prediction techniques. We mentioned how the insufficient

training data challenge has led researchers to explore cross-project vulnerability

prediction, which involves predicting vulnerabilities in a target software system us-

ing a model trained on a different source system.

This section provides some background on cross-project vulnerability predic-

tion by briefly examining existing approaches. We highlight how researchers have

approached this problem and the techniques they have used. Additionally, we ad-

dress data quality challenges in vulnerability prediction, outlining the factors con-

tributing to these challenges and their implications.

6.2.1 Cross-Project Vulnerability Prediction

Cross-project vulnerability prediction leverages data from a software project to pre-

dict vulnerabilities in another. This technique is appropriate when limited data is

available for training a model. Data from various projects can be used to develop

more robust models that predict vulnerabilities across a broader range of software

systems. However, this approach is challenging due to differences in size, complex-

ity, programming languages, and coding conventions between software projects.

These differences make it challenging to develop a model that accurately predicts

vulnerabilities across multiple projects. While within-project models have shown

promising results, cross-project models often face performance issues [Kaloupt-

soglou et al., 2020, Siavvas et al., 2018].

Researchers have developed various machine and deep learning techniques for

cross-project vulnerability prediction to address these challenges. Studies show

that deep learning techniques generally outperform traditional machine learning

methods [Kalouptsoglou et al., 2020] due to their ability to automatically construct

high-level abstract feature representations of software systems, which is crucial for

cross-project predictions [Liu et al., 2022b]. Thus, there is growing interest in deep

learning for cross-project predictions.
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Contemporary cross-project techniques often involve transferring ‘knowledge’

from one project to another to improve prediction accuracy. This involves two main

concepts: transfer learning and domain adaptation. Transfer learning enhances a

model by transferring knowledge from another domain [Weiss et al., 2016], where

‘domain’ refers to the data distribution, such as the distribution of vulnerable and

non-vulnerable code samples. Knowledge is transferred from a source project to a

target project to enhance prediction accuracy in the target project. Domain adap-

tation, a subset of transfer learning, involves adapting a model trained on a source

domain to a target domain by reducing the distribution discrepancy between the two

domains [Wilson and Cook, 2020]. It focuses on aligning the distributions of the

source and target domains to improve prediction accuracy in the target domain.

Liu et al. [2022b] introduced the CD-VulD system, which utilises deep learning

and domain adaptation to detect software vulnerabilities by learning token embed-

dings, constructing high-level representations, and mitigating domain divergence

with the Metric Transfer Learning Framework (MTLF).

Nguyen et al. [2020] proposed the Dual Generator-Discriminator Deep Code

Domain Adaptation Network (Dual-GD-DDAN). This GAN-based deep domain

adaptation method enhances transfer learning between labelled and unlabelled

projects, addressing mode collapse and improving predictive performance.

Kalouptsoglou et al. [2020] investigated the use of deep learning with soft-

ware metrics to enhance cross-project vulnerability prediction, comparing machine

learning models and assessing feature selection using a PHP dataset.

Nguyen et al. [2024] proposed a method that combines automatic representa-

tion learning and deep domain adaptation, utilising a cross-domain kernel classifier

to enhance vulnerability detection in imbalanced labelled and unlabelled projects.

Zhang et al. [2023b] introduced CPVD, a cross-domain vulnerability detection

method that utilises a code property graph and a Graph Attention Network with

Convolution Pooling to extract features alongside Domain Adaptation Representa-

tion Learning to reduce distribution discrepancies.
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Du et al. [2024] proposed CPMSVD, a method for snippet-level vulnerability

detection using snippet attention, deep feature representation (AST-based Neural

Network (ASTNN) for global, Bi-directional Gated Recurrent Unit (BiGRU) for

local), domain adaptation (CORrelation ALignment (CORAL), Semi-Supervised

Metric Transfer (SSMT)), and a K-Nearest Neighbors (KNN) classifier for vulner-

ability identification.

These methodologies demonstrate diverse and sophisticated approaches to

cross-project vulnerability prediction, highlighting the complexity of the problem.

The following subsection discusses how data quality and quantity are critical factors

in vulnerability prediction.

6.2.2 Data Quality Challenges in Vulnerability Prediction

Data quality is crucial in vulnerability prediction because models adhere to the

Garbage In, Garbage Out (GIGO) principle. While data-related issues affect

both within- and cross-project vulnerability prediction settings, they are more pro-

nounced in the latter due to the diversity of software systems. High-quality data is

essential for accurate and reliable models [Jimenez et al., 2019], requiring signifi-

cant attention to collection and processing [Zheng and Casari, 2018]. Vulnerabil-

ity prediction requires samples of both vulnerable and non-vulnerable code, which

compounds the data quality challenge [Walden et al., 2014]. Obtaining quality vul-

nerability data is difficult due to its infrequency [Zimmermann et al., 2010], in-

consistent reporting [Anwar et al., 2021], and organisations’ reluctance to share

sensitive data [Coulter et al., 2020] related to the security posture of their software

systems.

This subsection discusses critical factors contributing to data quality challenges

in vulnerability prediction based on themes identified by Croft et al. [2022]: data

generalisability, data accessibility, data preparation effort, data scarcity, label noise,

and data noise.
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6.2.2.1 Data Generalisability

Data generalisability is a significant challenge in vulnerability prediction. Real-

world relevance is crucial, as synthetic data often used in vulnerability prediction

analyses might not reflect actual vulnerabilities encountered in practice [Shahriar

and Zulkernine, 2012]. External validity is also a concern, as data are often specific

to particular programming languages, applications, or domains, limiting generalis-

ability [Shahriar and Zulkernine, 2012, Hanif et al., 2021]. Additionally, vulnerabil-

ities may span multiple components, and code representations used in predictions

may fail to capture all relevant details, leading to a lack of completeness [Sidi et al.,

2012, Shin and Williams, 2013, Tantithamthavorn et al., 2015].

6.2.2.2 Data Accessibility

Data accessibility is also a critical issue in vulnerability prediction. An aspect of this

issue is the cold-start problem, a situation where a process must start without prior

information. In our context, it refers to a situation characterised by a deficiency

in previously identified vulnerabilities required for training a model [Croft et al.,

2021]; thus, the limited data availability hinders comprehensive analyses [Neuhaus

et al., 2007]. Also, data privacy concerns further complicate accessibility, as organ-

isations may be reluctant to share sensitive data due to commercial, ethical, or legal

reasons1 2 3. Even worse, when available, the data may be vague or incomplete due

to inconsistent reporting practices [Anwar et al., 2021].

6.2.2.3 Data Preparation Effort

Collecting and labelling data is labour-intensive and requires significant human re-

sources. It also demands domain expertise, as accurately labelling vulnerabilities

requires deep knowledge of the concerned software system(s) [Zhang et al., 2023b].

1https://www.gov.uk/government/publications/data-sharing-governa
nce-framework/data-sharing-governance-framework

2https://ico.org.uk/for-organisations/advice-for-small-organisat
ions/whats-new/blogs/data-sharing-when-is-it-unlawful/

3https://www.ukri.org/wp-content/uploads/2021/08/MRC-0208212-GDP
R-lawful-basis-research-consent-and-confidentiality.pdf

https://www.gov.uk/government/publications/data-sharing-governance-framework/data-sharing-governance-framework
https://www.gov.uk/government/publications/data-sharing-governance-framework/data-sharing-governance-framework
https://ico.org.uk/for-organisations/advice-for-small-organisations/whats-new/blogs/data-sharing-when-is-it-unlawful/
https://ico.org.uk/for-organisations/advice-for-small-organisations/whats-new/blogs/data-sharing-when-is-it-unlawful/
https://www.ukri.org/wp-content/uploads/2021/08/MRC-0208212-GDPR-lawful-basis-research-consent-and-confidentiality.pdf
https://www.ukri.org/wp-content/uploads/2021/08/MRC-0208212-GDPR-lawful-basis-research-consent-and-confidentiality.pdf
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6.2.2.4 Data Scarcity

Data scarcity presents a significant challenge. There is often a significant imbal-

ance, with vulnerable code samples being much rarer than non-vulnerable ones,

which can skew analysis results. Additionally, the low sample size of vulnerable

code limits the exposure of models to a diverse range of vulnerabilities and pat-

terns, reducing the robustness of prediction models [Ban et al., 2019, Shu et al.,

2022, Liu et al., 2019]. This particular issue is demonstrated in Chapters 4 and 5,

where we had to rely on ‘Candidate’ vulnerable code samples in our vulnerability

dataset to augment the limited number of confirmed vulnerable code samples (See

Subsubsection 4.4.2.3) and also employ Synthetic Minority Oversampling Tech-

nique (SMOTE) to balance the number of vulnerable and non-vulnerable methods

(See Subsubsection 4.4.3.6).

6.2.2.5 Label Noise

Label noise has a significant impact on the quality of vulnerability prediction. In-

complete labels are prevalent, with datasets containing dormant or latent vulnera-

bilities that remain undetected, resulting in data gaps [Bosu and MacDonell, 2013].

The absence or inaccuracy of vulnerability location information complicates anal-

ysis [He and Garcia, 2009], and misclassifying vulnerabilities can cause models to

learn incorrect patterns, adversely affecting performance [Tantithamthavorn et al.,

2015, Bosu and MacDonell, 2013]. This issue is one we highlighted in Subsubsec-

tion 4.7.1.2.

6.2.2.6 Data Noise

Data noise, particularly in source code, presents substantial challenges. Irrele-

vant noise, whether stylistic or syntactic, can obscure meaningful patterns [Leicht

et al., 2017]. Redundant code elements, where identical or similar code exists

across vulnerable and non-vulnerable artefacts, also hamper model performance

[Tantithamthavorn et al., 2015]. Additionally, data heterogeneity from different

sources, varying developer styles, and differing project conventions can reduce the

versatility and effectiveness of prediction models, especially in cross-project set-
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tings [Tantithamthavorn et al., 2015, He and Garcia, 2009, Scandariato et al., 2014,

Jimenez et al., 2016, Liu et al., 2022b, Stuckman et al., 2016]. Thus, normalisation

techniques are often needed to mitigate these irregularities [Singh and Chaturvedi,

2020], which requires additional effort and expertise.

These data-related challenges adversely affect data-driven software engineer-

ing processes, such as vulnerability prediction. They emphasise the importance of

employing robust data collection and processing techniques to ensure the develop-

ment of reliable and accurate prediction models. Thus, addressing these challenges

is essential for developing effective vulnerability prediction techniques. This chap-

ter stress-tests our information retrieval-driven vulnerability prediction technique

by evaluating its generalisability across multiple software systems, focusing on data

quality and quantity limitations. The subsequent sections outline the methodology,

results, and discussion of this study.
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6.3 Methodology

This section outlines the methodology used in this chapter. We first provide an

overview of the methodology, followed by detailed descriptions of the dataset used

in the experiments, data preprocessing techniques, information retrieval strategies,

and machine learning analyses. These machine learning analyses use metrics data

developed using token-based and Code2Vec-based representations.

6.3.1 Overview of the Methodology

Figure 6.1: Token- and Code2Vec-Based Vulnerability Prediction Methodology Overview
(Mixed-Project)
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Figure 6.1 illustrates the overall methodology used in this study, divided into

three core components: dataset acquisition for target software systems, token-

based vulnerability prediction analysis, and Code2Vec-based vulnerability predic-

tion analysis.

The first eight steps of the flowchart relate to the dataset acquisition process

for the target software systems. After completing dataset acquisition (step eight),

the flowchart branches into two separate paths for token-based and Code2Vec-based

vulnerability prediction analyses, as these analyses are conducted concurrently and

independently.

This chapter’s token-based vulnerability prediction analysis comprises five

core stages: extraction of token representations, generation of n-grams (shingles)

from tokens, setup of information retrieval, development of metrics data, and ma-

chine learning analysis.

This chapter’s Code2Vec-based vulnerability prediction analysis comprises

four core stages: extraction of Code2Vec representations, setup of information re-

trieval, development of metrics data, and machine learning analysis.

For detailed token-based and Code2Vec-based vulnerability prediction

methodologies, refer to Sections 4.4 and 5.4, respectively.

6.3.1.1 Part A: Target Software Systems Dataset Acquisition

The process of acquiring the target software systems dataset involved six phases:

1. Collection of CVE and CWE IDs: The primary source paper for the dataset

used in this chapter provided several thousand samples of vulnerable and non-

vulnerable code from various software systems, identified by their associated

CVE and CWE IDs We compiled a list of these IDs to identify the vulnerable

code samples4.

2. Identification of Vulnerability-Fix Commits: The secondary reference pa-

per, from which the primary source paper obtained the dataset, contained

detailed information about the code samples, including vulnerability-fix com-

4https://cve.mitre.org/

https://cve.mitre.org/
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mits linked to the CVE and CWE IDs. We cross-referenced these IDs with

those in the dataset to identify the relevant commits in the respective version

control repositories.

3. Retrieval of Source Code: We created a ‘file-level’ dataset by retrieving Java

source code files associated with the identified vulnerability-fix commits. By

‘file-level’, we mean in the dataset context, each file represents a single code

artefact, i.e., the unit of analysis. We also retrieved previous versions of each

source code file prior to the fixes, including any files that were deleted as part

of the fixes.

4. Preprocessing of Source Code: We removed comments and other irrelevant

elements from the source code files to eliminate noise that could affect the

analysis.

5. Extraction of Ground Truth Data: Using the current and previous versions

of the source code files, we determined the ground truth for each method,

labelling them as either vulnerable or non-vulnerable.

6. Construction of the Target Software Systems Dataset: We parsed the

source code files and constructed a method-level dataset comprising meth-

ods labelled as vulnerable or non-vulnerable based on the ground truth data.

6.3.1.2 Part B: Token-Based Analysis

This part of the methodology is identical to the token-based vulnerability prediction

analysis detailed in Section 4.4, specifically from Subsubsections 4.4.1.1 to 4.4.1.6.

However, we note that churn-related metrics were excluded in this chapter due to

the dataset’s multi-system nature.

6.3.1.3 Part C: Code2Vec-Based Analysis

This part of the methodology mirrors the Code2Vec-based vulnerability prediction

analysis detailed in Section 5.4, specifically from Subsubsections 5.4.1.1 to 5.4.1.5.

Again, churn-related metrics were excluded in this chapter due to the dataset’s

multi-system nature.
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This section provided an overview of the methodology, summarising the ex-

perimental procedures used in this chapter. The upcoming sections provide more

details on the dataset and other relevant aspects of the methodology.

6.3.2 Dataset

We obtained our dataset in the first quarter of 2024 from Al Debeyan et al. [2022]’s

work (reviewed in Subsection 3.2.1). The dataset is a CSV file containing informa-

tion on several Java methods from multiple software systems. It includes columns

holding information on the project name, CVE ID, CWE ID, method name, N-

grams of AST representations, and a binary vulnerability status column indicating

whether the method is vulnerable or not.

Since our analyses required the source code of the methods, which was not

included in the dataset, we retrieved it from the software systems’ version con-

trol repositories. We referred to the study by Reis and Abreu [2021], from which

Al Debeyan et al. [2022] obtained their dataset. This secondary source study pro-

vided detailed information about the code samples, including the vulnerability-fix

commits linked to the CVE and CWE IDs. This enabled us to identify the relevant

commits in the version control repository (GitHub) and retrieve the source code of

the methods.

6.3.2.1 Target Software Systems

To retrieve the source code of the methods, we used PyDriller5, a Python framework

for extracting information from version control repositories. We cross-referenced

the CVE and CWE IDs in Al Debeyan et al. [2022]’s dataset with those in Reis and

Abreu [2021]’s dataset to identify the vulnerability-fix commits.

This allowed us to retrieve the source code of the methods associated with

the vulnerability-fix commits. We also obtained previous versions of each source

code file before the fixes. Additionally, we gathered supplementary information for

each file, including the project name, commit hash, GitHub URL, and file paths.

This enabled us to build a file-centric dataset of target software systems, primarily

5https://pydriller.readthedocs.io/

https://pydriller.readthedocs.io/
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comprising pre- and post-vulnerability-fix versions of the source code files associ-

ated with the vulnerability-fix commits for the CVE and CWE IDs obtained in our

primary source paper’s dataset.

6.3.2.2 Ground Truth Data Development

Since our vulnerability prediction analyses in this thesis focus on the method level,

we shifted from file-level to method-level analysis to determine the ground truth

data for each method.

We compared the pre- and post-vulnerability-fix versions of the source code

files to label each method as vulnerable or non-vulnerable based on the changes

made. A method was considered vulnerable if it existed in the pre-fix version but

was deleted or modified in the post-fix version. Conversely, a method was con-

sidered non-vulnerable if it remained unchanged between the two versions or was

added in the post-fix version.

Apart from dataset acquisition, this ground truth determination approach is the

only methodological similarity between our work and the primary source paper,

i.e., Al Debeyan et al. [2022]’s work. The primary source paper adopted the same

approach to determine the ground truth in their methodology.

6.3.2.3 National Institute of Standards and Technology (NIST) Soft-

ware Assurance Reference Dataset (SARD)

Building on previous chapters, this work also uses the NIST Software Assurance

Reference Dataset as a source of known Java software vulnerabilities. See Subsub-

section 4.4.2.3.

We used the same SARD artefacts as in previous chapters, totalling 20,692

known vulnerable methods (see Table 4.9). To ensure a fair comparison between

within-project and mixed-project techniques, we preprocessed the source code files

in the vulnerability dataset in the same manner as the target software systems

dataset, as described in Subsubsection 6.3.1.1. This included removing irrelevant

elements, such as comments, to reduce noise in the analysis.
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Table 6.1: Dataset Details - Multiple Software Systems

Description Value

Total Number of Software Systems 132
Total Number of Vulnerability Fixes 672
Total Number of Indexed Vulnerability Dataset Methods 20,692

Table 6.1 provides an overview of the dataset details for the multiple software

systems used in this chapter. The target software systems dataset included 132

software systems with 672 vulnerability fixes. The vulnerability dataset contained

20,692 known vulnerable methods, consistent with the number of known vulnerable

methods used in Chapters 4 and 5.

6.3.3 Data Preprocessing

We used the same data preprocessing techniques as in the previous two chapters. For

the token-based analysis, we followed the method in Chapter 4 (Subsection 4.4.3).

For the Code2Vec-based analysis, we applied the technique described in Chapter 5

(Subsection 5.4.3).

6.3.3.1 Data Deduplication

Similar to the previous two chapters, we removed duplicate methods (based on their

representations) to prevent data leakage in the machine learning analysis. Our dedu-

plication process is fully described in Subsubsection 4.4.3.3.

Failing to address data leakage in vulnerability prediction analyses adequately

can lead to overly optimistic results. This is an issue we observed in Al Debeyan

et al. [2022]’s study, the primary source paper for this chapter’s dataset. We re-

viewed the study in Subsection 3.2.1 and further discussed it in Subsection 5.6.1.

In their methodology, they stated that they removed duplicates from the dataset.

However, a closer look at their dataset revealed that their deduplication process was

flawed. Their binary classification dataset is a CSV file comprising six columns,

including project name, CVE ID, CWE ID, method name, AST N-grams, and vul-

nerability status, which contain 53,201 instances. Upon inspection, we observed

that only 29,693 AST N-grams (features) are unique out of these instances, which
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accounts for 55.81% of the dataset. Furthermore, the study employed a 10-fold

cross-validation, which means that the dataset was split into ten folds, and the model

was trained and tested ten times. This means that the same instances were used in

multiple folds, likely leading to data leakage. We observed that they conducted their

deduplication using all the CSV columns rather than just the AST N-grams column.

This would have led to some of the exact AST N-grams appearing in multiple folds,

potentially resulting in overly optimistic results. This is a significant issue in the

study, affecting the reliability of the results.

Table 6.2: Post-Deduplication Dataset Details - Multiple Software Systems

Description Value %

Number of Non-Vulnerable Methods Post-Deduplication 19,421 94.72
Number of Vulnerable Methods Post-Deduplication 1,081 5.28

Total Number of Methods Post-Deduplication 20,502

Table 6.2 provides an overview of the post-deduplication dataset details for the

token-based and Code2Vec-based analyses. The dataset comprises 20,502 meth-

ods, including 19,421 non-vulnerable (94.72%) and 1,081 vulnerable (5.28%). The

class distribution is significantly imbalanced, with non-vulnerable methods vastly

outnumbering vulnerable ones.

6.3.3.2 Feature Scaling

As in the previous chapters, we normalised the metrics data using Min-Max scaling

to ensure uniform scaling across all feature values and prevent bias towards features

with larger values. Subsubsection 4.4.3.5 provides a detailed explanation of this

process.

6.3.3.3 Software System Vulnerabilities and Data Imbalance

After deduplication, we observed a significant data imbalance in our token-based

and Code2Vec-based datasets, with non-vulnerable methods vastly outnumbering

vulnerable ones, which was expected. This issue is common in vulnerability pre-

diction research, as discussed in Subsubsection 6.2.2.4.
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Typically, software systems contain far more non-vulnerable than vulnerable

code artefacts, making it challenging to train an effective classifier. This imbalance

can bias classifiers towards the majority class (non-vulnerable), reducing perfor-

mance in predicting the minority class (vulnerable).

Although the imbalance in our datasets was not as extreme as in the previous

two chapters, it was still significant, with non-vulnerable methods at 94.72% and

vulnerable methods at 5.28%, as shown in Table 6.2. To address this, we employed

the SMOTE as in Chapters 4 and 5. See Subsubsection 4.4.3.6 for details.

6.3.4 Information Retrieval

We constructed an information retrieval document index using 20,692 source code

token representations of methods in the vulnerability dataset, as shown in Table 6.1.

We created two information retrieval setups using Apache Lucene, one for token-

based and one for Code2Vec-based analysis.

Both setups are fully described in the previous chapters. Refer to Subsec-

tions 4.4.4 and 5.4.4 for the token-based analysis and Code2Vec-based analysis,

respectively.

Table 6.3: Percentage of Vulnerable versus Non-Vulnerable Methods with Hits - Multiple
Software Systems

Number of Vulnerable Methods 1081
Number of Vulnerable Methods with Hits 914
% of Vulnerable Methods with Hits 84.55

Number of Non-Vulnerable Methods 19,421
Number of Non-Vulnerable Methods with Hits 8,989
% of Non-Vulnerable Methods with Hits 46.28

Table 6.3 supplements Table 6.2. It shows the percentage of vulnerable and

non-vulnerable methods with hits in the target software systems dataset, demon-

strating that vulnerable methods are significantly more likely to share patterns with

vulnerable code than non-vulnerable methods, an observation consistent with the

previous chapters and extensively discussed in Subsections 4.6.2 and 5.6.2.
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6.3.5 Machine Learning Analysis

We proceeded to the machine learning analysis phase, following the token-based

and Code2Vec-based information retrieval and metrics data development phases.

The metrics data abstracts the type of representation used in the information re-

trieval phase. The metrics data are the independent variables for the machine learn-

ing classification task, while the ground truth data is the dependent variable. The

machine learning analysis described in Subsection 4.4.5 applies to Chapters 4, 5,

and this chapter.

The only difference in this chapter is the exclusion of churn-related metrics

from the metrics data development phase, as the dataset is derived from multiple

software systems, not multiple releases of the same system. We excluded TICC,

TRICC, NTDT, and NTDDT for the token-based analysis (see Subsection 4.3.1 and

Table 4.1). For the Code2Vec-based analysis, we excluded PICC, PRICC, NTDP,

and NTDDP (see Subsection 5.3.1 and Table 5.1).

Apart from these differences, the machine learning analysis phase in this chap-

ter is similar to that of the previous two chapters.

6.3.6 Approach to Question 3

The primary goal of this chapter is to address Research Question 3: How well does

the information retrieval-driven software vulnerability prediction technique gener-

alise across multiple software systems?

We set four objectives to address this question:

1. Identify the most suitable classifier for vulnerability prediction across multi-

ple software systems for token-based and Code2Vec-based analyses.

2. Identify the best-performing combination of software metrics for vulner-

ability prediction across multiple software systems for token-based and

Code2Vec-based analyses.

3. Evaluate the impact of hyperparameter tuning on the performance of the best-

performing classifier for token-based and Code2Vec-based analyses.
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4. Investigate the impact of dataset variability on vulnerability prediction per-

formance.

6.3.6.1 Objective 1

To achieve the first objective, we assessed the performance of ten machine learning

classifiers on the token-based and Code2Vec-based metrics data using precision,

recall, and F1 scores. The classifier with the highest F1 score, the harmonic mean

of precision and recall, was selected.

6.3.6.2 Objective 2

We used Sequential Forward Selection for the second objective to find the optimal

combination of metrics for vulnerability prediction. This technique systematically

evaluates different metrics combinations to identify the best feature set for classifi-

cation (see Subsubsection 4.4.6.2 for details).

6.3.6.3 Objective 3

To achieve the third objective, we employed the Grid Search technique to tune the

hyperparameters of the best-performing classifier. This technique systematically

evaluates different hyperparameter combinations to find the optimal configuration

(see Subsubsection 4.4.6.3 for details).

6.3.6.4 Objective 4

The dataset used in this chapter is derived from multiple software systems, intro-

ducing variability that can affect vulnerability prediction. For the fourth objective,

we investigated the impact of dataset variability on vulnerability prediction perfor-

mance. We conducted analyses to investigate the impact of dataset variability on

vulnerability prediction by examining the Coefficient of Variation of the metrics

used in the analyses.

The Coefficient of Variation measures a dataset’s relative variability. It is a di-

mensionless quantity expressed as a percentage, making it helpful in comparing the

variability of datasets with different units or means. The Coefficient of Variation is

calculated by dividing a dataset’s standard deviation by its mean and multiplying by
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100. ‘Dataset’ refers to a single metric used in the vulnerability prediction analysis

in this context.

The primary advantages of using the Coefficient of Variation include:

• Independence from Units: As a dimensionless measure, the Coefficient of

Variation allows direct comparisons between datasets with different units.

• Relative Measure: Coefficient of Variation provides a relative measure of

variability, which is helpful in comparing datasets with different means.

• Ease of Interpretation: Expressed as a percentage, Coefficient of Variation

is easy to interpret.

• Simplicity of Calculation: Coefficient of Variation requires only the mean

and standard deviation of the dataset.

• Facilitates Comparisons: Coefficient of Variation simplifies the comparison

of variability between multiple datasets.

By calculating the Coefficient of Variation of the metrics used in our vulner-

ability prediction analyses, we gained insights into the stability and consistency

of the metrics across the datasets, allowing us to understand the impact of dataset

variability on vulnerability prediction. We conducted these analyses for our single

software system (within-project dataset) used in Chapters 4 and 5, as well as for

the multiple software systems (mixed-project dataset) used in this chapter, for both

token-based and Code2Vec-based metrics.

6.3.7 Summary of Methodological Differences Across Chapters

To conclude this methodology section, we summarise the key methodological dif-

ferences between this chapter and the previous two chapters in Table 6.4. The table

highlights differences in the prediction setting, dataset type (software system), num-

ber of metrics, source code attributes considered, and the type of representation used

in the information retrieval phase.

In the subsequent sections, we present the results of the vulnerability prediction

analysis, discuss the findings, and address the threats to validity associated with
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Table 6.4: Methodological Differences Between Chapters 4, 5, and the Current Chapter

Description Chapter 4 Chapter 5 Current Chapter

Setting Within-Project Within-Project Mixed-Project
Software System Single Single Multiple
Number of Metrics Sixteen (16) Sixteen (16) Twelve (12)
Code Pattern Similarity Applicable Applicable Applicable
Intricacy Applicable Applicable Applicable
Size Applicable Applicable Applicable
Code Churn Applicable Applicable Not Applicable
Representation Token-Based Code2Vec-Based Both

this chapter. We then directly and conclusively address the third and final research

question in this thesis.



6.4. Results 260

6.4 Results
This section presents the results of the vulnerability prediction analysis conducted

in this chapter. We present the results according to the four objectives outlined in

Subsection 6.3.6.

6.4.1 Objective 1 Results

Identify the most suitable classifier for vulnerability prediction across multiple soft-

ware systems for token-based and Code2Vec-based analyses.

This objective aimed to identify the most effective classifier for predict-

ing vulnerabilities across multiple software systems, using both token-based and

Code2Vec-based analyses.

6.4.1.1 Token-Based Evaluation Metrics Trend Analysis
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Figure 6.2: Precision Trend across all Best-k-Performing Metrics Combinations (Token-
Based Analysis)

Figure 6.2 shows the precision trend for the top k metrics combinations in the

token-based analysis. Precision values for all classifiers are notably low, with the

highest being approximately 0.32, achieved by the Gradient Boosting classifier at
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k = 1. All other precision values for the classifiers and top k combinations are below

this.
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Figure 6.3: Recall Trend across all Best-k-Performing Metrics Combinations (Token-
Based Analysis)

Figure 6.3 shows the recall trend for the top k metrics combinations in the

token-based analysis. Similar to the precision trend, recall values are relatively low

for all classifiers across all top k combinations. The only exception is the Gaussian

Naïve Bayes classifier at k = 10, achieving a recall of 0.45. Although this is the

highest recall value, it remains relatively low. All other recall values from other

classifiers are below 0.20.

Figure 6.4 shows the F1 score trend for the token-based analysis’s top k metrics

combinations. Since the F1 score is the harmonic mean of precision and recall,

low F1 scores are expected for all classifiers. The only classifier exceeding the

0.20 threshold was the Gaussian Naïve Bayes, maintaining this level from k = 3 to

k = 12, with a maximum F1 score of 0.22. Other classifiers had significantly lower

F1 scores across all top k combinations.
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Figure 6.4: F1 score Trend across all Best-k-Performing Metrics Combinations (Token-
Based Analysis)

6.4.1.2 Code2Vec-Based Evaluation Metrics Trend Analysis

Figure 6.5 illustrates the precision trend for the top k metrics combinations in the

Code2Vec-based analysis. Similar to the token-based analysis, precision values are

low for all classifiers. The Linear Support Vector classifier achieved the highest pre-

cision at k = 1, k = 2, and k = 12, with values around 0.31. The Logistic Regression

classifier outperformed it from k = 3 to k = 11, maintaining a precision of around

0.30. Other classifiers had significantly lower precision values.

Figure 6.6 illustrates the recall trend for the top k metrics combinations in the

Code2Vec-based analysis. Recall values are low for all classifiers. The Gaussian

Naïve Bayes classifier performed best, achieving the highest recall of around 0.26

at k = 12. Other classifiers had recall values below 0.20, performing significantly

worse.

Figure 6.7 shows the F1 score trend for the top k metrics combinations in the

Code2Vec-based analysis. F1 scores are low for all classifiers. The Gaussian Naïve
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Figure 6.5: Precision Trend across all Best-k-Performing Metrics Combinations
(Code2Vec-Based Analysis)

Bayes classifier achieved the highest F1 score, around 0.20 at k = 8. Other classi-

fiers had F1 scores below 0.20, performing significantly worse.

To address the first objective, we identified the Gaussian Naïve Bayes clas-

sifier as the best-performing classifier for vulnerability prediction across multiple

software systems in both the token-based and Code2Vec-based analyses. However,

we highlight that the performance of all classifiers across the top k metrics com-

binations was generally poor and not actionable, with low precision, recall, and

F1 scores.

6.4.2 Objective 2 Results

Identify the best-performing combination of software metrics for vulnerability pre-

diction across multiple software systems for token-based and Code2Vec-based anal-

yses.

This objective aimed to identify the optimal combination of metrics for vulner-

ability prediction across multiple software systems using Sequential Forward Selec-
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Figure 6.6: Recall Trend across all Best-k-Performing Metrics Combinations (Code2Vec-
Based Analysis)

tion for both token-based and Code2Vec-based analyses. Similar to Chapters 4 and

5, we first present the Correlation Matrix for both the token-based and Code2Vec-

based analyses in Figures 6.8 and 6.9, respectively. The matrices feature a two-level

grouping structure. Firstly, rows and columns are categorised into ground truth, hit-

independent, and hit-dependent metrics. Secondly, the latter two categories are

further clustered based on their constituent metrics. The Pearson Correlation Co-

efficient quantifies the linear association between two variables, ranging from −1

(strong negative correlation) to 1 (strong positive correlation), with 0 indicating no

correlation. We categorise the values within the correlation matrix according to the

classification scheme presented in Table 4.13. Each matrix includes a colour scale

on the right side, using a diverging colour scheme: red hues at the top indicate a

strong positive correlation, white in the middle signifies no correlation, and teal

tones at the bottom indicate a strong negative correlation.
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Figure 6.7: F1 score Trend across all Best-k-Performing Metrics Combinations
(Code2Vec-Based Analysis)

Below, we outline the critical observations derived from the correlation matrix.

The complete names of the metrics are provided in Tables 5.1 and 5.3, with metrics

abbreviated in the correlation matrix for brevity.

6.4.2.1 Token-Based Metrics Correlation Analysis

Figure 6.8 presents the correlation matrix of all token-based metrics and the ground

truth.

The main observations are as follows:

1. Certain cells within Band No. 1 exhibit values of ‘1’ or values close to ‘1’, in-

dicating a strong positive correlation between specific metrics. Notably, there

is a significant correlation between NUSM and SMR, as well as between

metrics and their distinct equivalents, such as NHS and NDHS. This outcome

aligns with expectations due to the conceptual similarities among these met-

rics. However, these high correlations suggest potential redundancy, which

may affect model performance.
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Figure 6.8: Correlation Matrix of all Metrics + Ground Truth (Token-Based Analysis)

2. No metrics exhibit negative correlations with other metrics or the ground

truth, as no cells have a value below ‘0.’ The lowest value is ‘0.039’, observed

between SHTSR and NTT, which still indicates a weak positive correlation.

3. The NTT & NVT metrics, tailored to the target software system and the

vulnerability dataset, respectively, show a weak positive correlation of 0.34

(Band No. 4). This correlation improves to 0.55 (Band No. 3) when hits are

considered, as seen between SHTSR & SHVSR. This highlights the impor-

tance of hits in the vulnerability prediction process.

4. The TVSSR metric, encompassing the target software system and its corre-

sponding method in the vulnerability dataset, shows a stronger association

with SHTSR & SHVSR than between SHTSR & SHVSR alone. TVSSR has

a high positive correlation of 0.83 (Band No. 1) with SHTSR and 0.85 (Band
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No. 1) with SHVSR, compared to 0.55 (Band No. 3) between SHTSR &

SHVSR. This highlights the significance of the TVSSR metric in vulnerabil-

ity prediction.

5. The ground truth shows no strong correlation with any single metric, with

the highest being 0.22 (Band No. 4) between the ground truth and NDTT &

TRU.

6.4.2.2 Code2Vec-Based Metrics Correlation Analysis
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Figure 6.9: Correlation Matrix of all Metrics + Ground Truth (Code2Vec-Based Analysis)

Figure 6.9 presents the correlation matrix of all Code2Vec-based metrics and

the ground truth.

The main observations are:
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1. Compared to the token-based correlation matrix (Figure 6.8), the Code2Vec-

based correlation matrix generally shows weaker positive correlations be-

tween metrics, as evidenced by the overall lighter hues.

2. Similar to the token-based correlation matrix, the Code2Vec-based matrix re-

veals a significant positive correlation between specific metrics. For example,

NUPM & PMR and NHP & NDHP exhibit a perfect positive correlation of 1

(Band No. 1). These correlations suggest that these metrics assess the same

attributes with slight methodological differences, indicating potential redun-

dancy.

3. Unlike the token-based correlation matrix, the Code2Vec-based matrix ex-

hibits negative correlations between specific metrics, particularly between

PRU and other metrics, including the ground truth. The highest negative cor-

relations are between PRU and NHP and between PRU and NDHP, with a

value of -0.52 (Band No. 9). This is expected as PRU measures the unique-

ness of a method, which inversely relates to the number of hits (NHP &

NDHP).

4. The NTP & NVP metrics, analogous to the NTT & NVT metrics in the

token-based analysis, focus on the target software system and the vulnerabil-

ity dataset, respectively. These metrics show a very weak positive correlation

of 0.14 (Band No. 5). When hits are incorporated, such as between PHTSR

and PHVSR, the correlation improves to 0.46 (Band No. 3).

5. The TVPSR metric, which integrates the target software system and its corre-

sponding most similar method in the vulnerability dataset, shows a stronger

association with PHTSR and PHVSR than the direct association between

PHTSR and PHVSR. TVPSR exhibits high positive correlations of 0.71

(Band No. 2) with PHTSR and 0.87 (Band No. 1) with PHVSR, whereas

the correlation between PHTSR and PHVSR is 0.46 (Band No. 3). This

highlights the significance of the TVPSR metric in vulnerability prediction.
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6. Similar to the token-based correlation matrix and previous chapters, the

ground truth has no strong correlation with any single metric, with the highest

being 0.20 (Band No. 4) between the ground truth and NDTP.

In Chapters 4 and 5, we discussed how the correlation matrix can help iden-

tify and exclude redundant metrics to improve a model’s performance. However,

we observed that excluding seemingly redundant metrics often did not enhance per-

formance and sometimes slightly worsened it. Therefore, we included all metrics

in our analyses to ensure no potentially beneficial metrics were excluded. Instead,

we used the Sequential Forward Selection technique to identify the best-performing

combination of metrics for vulnerability prediction. We adopted the same approach

in this chapter for consistency.

6.4.2.3 Token-Based Classifier Performance Analysis

Table 6.5: Best Performance Per Classifier (Token-Based Analysis)

Classifier Best k Precision Recall F1 score

Gaussian Naïve Bayes 5 0.16780 0.29921 0.21477
Decision Tree classifier 5 0.15315 0.17742 0.16714
Random Forest classifier 9 0.23641 0.11748 0.15860
K-Nearest Neighbors classifier 5 0.17887 0.13784 0.15525
XGBoost classifier 5 0.21315 0.05374 0.08520
Logistic Regression 5 0.29859 0.04681 0.08022
LightGBM classifier 7 0.26069 0.03062 0.05428
Linear Support Vector classifier 1 0.28867 0.02193 0.04035
Gradient Boosting classifier 2 0.30755 0.01378 0.02611
AdaBoost classifier 7 0.22889 0.00907 0.01740

Table 6.5 presents the best performance per classifier in the token-based anal-

ysis, sorted by the highest F1 score in descending order. The Gaussian Naïve Bayes

classifier achieved the highest F1 score of 0.21477 at k = 5, followed by the Deci-

sion Tree classifier with an F1 score of 0.16714 at k = 5, and the Random Forest

classifier with an F1 score of 0.15860 at k = 9.

At the lower end, the AdaBoost classifier achieved the lowest F1 score of

0.01740 at k = 7, followed by the Gradient Boosting classifier with an F1 score
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of 0.02611 at k = 2, and the Linear Support Vector classifier with an F1 score of

0.04035 at k = 1.

6.4.2.4 Code2Vec-Based Classifier Performance Analysis

Table 6.6: Best Performance Per Classifier (Code2Vec-Based Analysis)

Classifier Best k Precision Recall F1 score

Gaussian Naïve Bayes 8 0.17859 0.23869 0.20394
Decision Tree classifier 8 0.12479 0.17206 0.14639
Random Forest classifier 7 0.20633 0.10276 0.13468
K-Nearest Neighbors classifier 6 0.14916 0.11970 0.13250
XGBoost classifier 7 0.21741 0.04865 0.07883
Logistic Regression 2 0.28573 0.03608 0.06329
LightGBM classifier 1 0.26814 0.02933 0.05221
Linear Support Vector classifier 2 0.30382 0.02303 0.04244
Gradient Boosting classifier 2 0.21819 0.00934 0.01790
AdaBoost classifier 5 0.16817 0.00555 0.01057

Table 6.6 presents the best performance per classifier in the Code2Vec-based

analysis, sorted by the highest F1 score in descending order. The Gaussian Naïve

Bayes classifier achieved the highest F1 score of 0.20394 at k = 8, followed by

the Decision Tree classifier with an F1 score of 0.14639 at k = 8, and the Random

Forest classifier with an F1 score of 0.13468 at k = 7.

Conversely, the AdaBoost classifier achieved the lowest F1 score of 0.01057 at

k = 5, followed by the Gradient Boosting classifier with an F1 score of 0.01790 at

k = 2, and the Linear Support Vector classifier with an F1 score of 0.04244 at k = 2.

6.4.2.5 Token-Based Metrics Combination Analysis

Table 6.7 presents the best metrics combination per classifier in the token-based

analysis, categorised into hit-independent and hit-dependent metrics. The table

shows that hit-dependent metrics are more prevalent in the best metrics combina-

tions, consistent with the previous chapters.

The table also highlights the relative importance of each metric by indicating

its frequency of appearance in the best metrics combinations. For example, the

NDTT metric is part of the best metrics combination for all classifiers except the
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Table 6.7: Token-Based Best Metrics Combination Per Classifier

Metric Classifiers
AB DT GNB GB KN LGBM LSVC LG RF XGB

Hit-Independent
NTT ✓ ✓ ✓ ✓ ✓ ✓
NDTT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
TRU ✓ ✓ ✓ ✓
Hit-Dependent
NHS ✓ ✓ ✓
NDHS ✓ ✓
NVT ✓ ✓ ✓
NDVT ✓ ✓ ✓ ✓
TVSSR ✓ ✓ ✓ ✓ ✓
SHTSR ✓ ✓ ✓ ✓ ✓ ✓ ✓
SHVSR ✓ ✓
NUSM ✓ ✓ ✓
SMR ✓ ✓ ✓ ✓

K-Nearest Neighbors and XGB classifiers. In contrast, the NDHS metric appears

only twice in the best metrics combinations, specifically for the Logistic Regression

and Random Forest classifiers.

Thus, regarding the token-based component of the second objective, the op-

timal combination of software metrics for vulnerability prediction includes those

used by the best-performing classifier, the Gaussian Naïve Bayes classifier. These

metrics are NDTT, TRU, NDVT, SHTSR, and SMR.

6.4.2.6 Code2Vec-Based Metrics Combination Analysis

Table 6.8 presents the best metrics combination per classifier in the Code2Vec-based

analysis, categorised into hit-independent and hit-dependent metrics. As expected,

hit-dependent metrics are more prevalent in the best metrics combinations.

The table also highlights the relative importance of each metric by indicating

the frequency with which it appears in the best metrics combinations. The NDTP

metric appears in the best metrics combinations for all classifiers, while the NDVP

metric appears only once in the best metrics combination for the Random Forest

classifier.
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Table 6.8: Code2Vec-Based Best Metrics Combination Per Classifier

Metric Classifiers
AB DT GNB GB KN LGBM LSVC LG RF XGB

Hit-Independent
NTP ✓ ✓ ✓ ✓
NDTP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
PRU ✓ ✓ ✓ ✓ ✓
Hit-Dependent
NHP ✓ ✓ ✓ ✓ ✓
NDHP ✓ ✓ ✓ ✓ ✓
NVP
NDVP ✓
TVPSR ✓ ✓ ✓
PHTSR ✓ ✓ ✓ ✓ ✓
PHVSR ✓ ✓
NUPM ✓ ✓ ✓ ✓ ✓ ✓
PMR ✓ ✓

Therefore, regarding the Code2Vec-based component of the second objective,

the optimal combination of software metrics for vulnerability prediction includes

those used by the best-performing classifier, the Gaussian Naïve Bayes classifier.

These metrics are NTP, NDTP, PRU, NHP, NDHP, PHTSR, NUPM, and PMR.

6.4.3 Objective 3 Results

Evaluate the impact of hyperparameter tuning on the performance of the best-

performing classifier for token-based and Code2Vec-based analyses.

This objective evaluated the impact of hyperparameter tuning on the perfor-

mance of the best-performing classifier for vulnerability prediction in both the

token-based and Code2Vec-based analyses.

6.4.3.1 Token-Based Parameter Grid and Best Hyperparameter Val-

ues

Table 6.9 presents the parameter grid (default sci-kit-learn values marked with an

asterisk ‘*’) and best hyperparameter values for the Gaussian Naïve Bayes classifier

in the token-based analysis.
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Table 6.9: Parameter Grid and Best Hyperparameter Values (Token-Based Analysis)

Parameter Grid

Hyperparameter Values Best Value

priors None*, [0.1,0.9], [0.2,0.8], [0.3,0.7], [0.8,0.2]
↪→ [0.5,0.5], [0.6,0.4], [0.7,0.3], [0.8,0.2],
↪→ [0.9,0.1]

var_smoothing 1e−9*, 1e−8, 1e−7, 1e−6, 1e−5 1e−5

The Gaussian Naïve Bayes classifier has fewer hyperparameters to tune com-

pared to classifiers like the Random Forest classifier. Its simplicity is its main

strength, so extensive hyperparameter tuning is unnecessary.

The table shows that the best hyperparameter values for the Gaussian Naïve

Bayes classifier are priors = [0.8,0.2] and var_smoothing = 1e−5. The ‘priors’

hyperparameter represents the prior probabilities of the classes, which is ideal for

imbalanced datasets [Thölke et al., 2023], while ‘var_smoothing’ is the portion of

the largest variance of all features added to variances for calculation stability [Sari

et al., 2021].

6.4.3.2 Hyperparameter Tuning Results for Token-Based Analysis

Table 6.10: Pre-and-Post-Hyperparameter Tuning Results for Gaussian Naïve Bayes Clas-
sifier (Token-Based Analysis)

Metric Before After ∆%

Precision 0.16780 0.15115 -9.9
Recall 0.29921 0.38016 27.0
F1 score 0.21477 0.21616 0.65

Table 6.10 presents the pre- and post-hyperparameter tuning results for the

Gaussian Naïve Bayes classifier in the token-based analysis. The table shows that

hyperparameter tuning improved the classifier’s performance, with a 9.9% decrease

in precision, a 27.0% increase in recall, and a 0.65% increase in the F1 score.
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Table 6.11: Parameter Grid and Best Hyperparameter Values (Code2Vec-Based Analysis)

Parameter Grid

Hyperparameter Values Best Value

priors None*, [0.1,0.9], [0.2,0.8], [0.3,0.7], [0.8,0.2]
↪→ [0.5,0.5], [0.6,0.4], [0.7,0.3], [0.8,0.2],
↪→ [0.9,0.1]

var_smoothing 1e−9*, 1e−8, 1e−7, 1e−6, 1e−5 1e−9

6.4.3.3 Code2Vec-Based Parameter Grid and Best Hyperparameter

Values

Table 6.11 presents the parameter grid (default sci-kit-learn values marked with an

asterisk ‘*’) and best hyperparameter values for the Gaussian Naïve Bayes classifier

in the Code2Vec-based analysis.

We used the same hyperparameters as in the token-based analysis. The table

shows that the best hyperparameter value for ‘priors’ is the same as in the token-

based analysis. However, the best hyperparameter value for ‘var_smoothing’ is

1e−9, which differs from the value used in the token-based analysis.

6.4.3.4 Hyperparameter Tuning Results for Code2Vec-Based Anal-

ysis

Table 6.12: Pre-and-Post-Hyperparameter Tuning Results for Gaussian Naïve Bayes Clas-
sifier (Code2Vec-Based Analysis)

Metric Before After ∆%

Precision 0.17859 0.16021 -10.29
Recall 0.23869 0.30363 27.20
F1 score 0.20394 0.20932 2.64

Table 6.12 presents the pre- and post-hyperparameter tuning results for the

Gaussian Naïve Bayes classifier in the Code2Vec-based analysis. The table shows

that hyperparameter tuning improved the classifier’s performance, resulting in a

10.29% decrease in precision, a 27.20% increase in recall, and a 2.64% increase in

the F1 score.
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Therefore, in addressing the third objective, hyperparameter tuning had a

mixed but net positive impact on the performance of the best-performing classi-

fiers for both the token-based and Code2Vec-based analyses, specifically the Gaus-

sian Naïve Bayes classifier. However, it is worth noting that the overall post-

hyperparameter tuning results for the mixed-project task were lower than those for

the within-project vulnerability prediction task and, thus, not actionable.

6.4.4 Objective 4 Results

Investigate the impact of dataset variability on vulnerability prediction model per-

formance.

This objective investigated the impact of dataset variability on vulnerability

prediction model performance by examining and comparing the Coefficient of Vari-

ation of the token-based and Code2Vec-based metrics.

Figure 6.10 shows plots of the Coefficient of Variation of the token-based met-

rics both for our single software system and multiple software systems.

Subfigure 6.10a presents a plot of the Coefficient of Variation of the token-

based metrics for the single software system. The y-axis represents the Coefficient

of Variation, normalised to the range [0, 1], while the x-axis represents the software

system releases used in Chapters 4 and 5. Each vertical line represents a single

software system release, and the twelve data points on each line represent the Coef-

ficient of Variation of the twelve token-based metrics for that release.

As reported in Table 4.9, the single software system dataset, Apache Tomcat

(version 7), comprises 76 releases, resulting in 76 vertical lines in the plot. Out

of the sixteen token-based metrics developed (Section 4.3), we employed twelve

metrics in this chapter (excluding the churn-related metrics), as stated in Subsection

6.3.5, resulting in twelve data points on each vertical line.

Subfigure 6.10b shows the Coefficient of Variation of the token-based metrics

for multiple software systems. The y-axis represents the Coefficient of Variation,

normalised to the range [0, 1], while the x-axis represents the software systems

used in this chapter’s token-based analysis. Each vertical line represents a single
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(b) Token-Based Metrics: Multiple Software Systems

Figure 6.10: Coefficient of Variation of Token-Based Metrics

software system, and the twelve data points on each line represent the Coefficient

of Variation of the twelve token-based metrics for that system.
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Table 6.1 reports that the multiple software systems dataset comprises 132 soft-

ware systems, resulting in 132 vertical lines in the plot. Again, out of the sixteen

token-based metrics developed (Section 4.3), we employed twelve metrics in this

chapter (excluding the churn-related metrics), as stated in Subsection 6.3.5, result-

ing in twelve data points on each vertical line.

Observations from the plots reveal that the Coefficient of Variation of the

token-based metrics is higher for the multiple software systems than for the sin-

gle software system, as indicated by the more intense dispersion of data points in

the former, particularly in terms of vertical spread. This suggests that the token-

based metrics exhibit more significant variability across multiple software systems

than within a single software system. This variability is expected due to differences

in project characteristics, such as project size, complexity, domain, and software

development practices.

Consequently, employing a dataset comprising multiple software systems, as

shown in Subfigure 6.10b, as training data for vulnerability prediction models may

present challenges due to the variability in the token-based metrics data across the

systems.

Figure 6.11 is similar to Figure 6.10, but it presents plots of the Coefficient

of Variation of the Code2Vec-based metrics for our single and multiple software

systems.

Subfigure 6.11a presents a plot of the Coefficient of Variation of the Code2Vec-

based metrics for the single software system. The y-axis represents the Coefficient

of Variation, normalised to the range [0, 1], while the x-axis represents the software

system releases used in Chapters 4 and 5. Each vertical line represents a single

software system release, and the twelve data points on each line represent the Coef-

ficient of Variation of the twelve Code2Vec-based metrics for that release.

As reported in Table 4.9, the single software system dataset, Apache Tomcat

(version 7), comprises 76 releases, resulting in 76 vertical lines in the plot. Out of

the sixteen Code2Vec-based metrics developed (Section 5.3), we employed twelve



6.4. Results 278

Software System Release
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Co

ef
fic

ie
nt

 o
f V

ar
ia

tio
n 

pe
r M

et
ric

NDHP
NDTP
NDVP

NHP
NTP
NUPM

NVP
PHTSR
PHVSR

PMR
PRU
TVPSR

(a) Code2Vec-Based Metrics: Single Software System

Software System

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
ef

fic
ie

nt
 o

f V
ar

ia
tio

n 
pe

r M
et

ric

NDHP
NDTP
NDVP

NHP
NTP
NUPM

NVP
PHTSR
PHVSR

PMR
PRU
TVPSR

(b) Code2Vec-Based Metrics: Multiple Software Systems

Figure 6.11: Coefficient of Variation of Code2Vec-Based Metrics

metrics in this chapter (excluding the churn-related metrics), as stated in Subsection

6.3.5, resulting in twelve data points on each vertical line.
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Subfigure 6.11b shows the Coefficient of Variation of the Code2Vec-based

metrics for multiple software systems. The y-axis represents the Coefficient of

Variation, normalised to the range [0, 1], while the x-axis represents the software

systems used in this chapter’s Code2Vec-based analysis. Each vertical line repre-

sents a single software system, and the twelve data points on each line represent the

Coefficient of Variation of the twelve Code2Vec-based metrics for that system.

Table 6.1 reports that the multiple software systems dataset comprises 132 soft-

ware systems, resulting in 132 vertical lines in the plot. Again, out of the sixteen

Code2Vec-based metrics developed (Section 5.3), we employed twelve metrics in

this chapter (excluding the churn-related metrics), as stated in Subsection 6.3.5,

resulting in twelve data points on each vertical line.

Similar to the observations from the token-based metrics in Figure 6.10, the

Coefficient of Variation of the Code2Vec-based metrics is higher for multiple soft-

ware systems than for the single software system, as indicated by the more intense

dispersion of data points in the former, particularly in terms of vertical spread.

Again, this suggests that the Code2Vec-based metrics exhibit more significant vari-

ability across multiple software systems than within a single one. Thus, we draw the

same conclusion that employing the dataset comprising multiple software systems,

as shown in Subfigure 6.11b, as training data for vulnerability prediction models

may present challenges due to the variability in the Code2Vec-based metrics across

the systems.

To address the fourth objective, Coefficient of Variation analyses revealed that

token-based and Code2Vec-based metrics exhibit more significant variability in the

dataset with multiple software systems than in the single-system dataset. This sug-

gests that datasets with characteristics similar to the former may lead to perfor-

mance issues when used as training data for vulnerability prediction models. It

also implies that to achieve acceptable performance in a mixed or cross-project

vulnerability prediction task, the dataset must be carefully curated to account for

the variability in the software systems by ensuring that the systems are similar in

terms of project size, complexity, domain, and development practices.
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6.5 Discussion
In this chapter, we conducted a stress test of our information retrieval-driven vul-

nerability prediction techniques as a generalisability study in a mixed-project set-

ting, focusing on both token-based and Code2Vec-based analyses. We present our

findings and insights in the following subsections, discussing the performance of

within-project versus mixed-project approaches, the impact of dataset variability,

and the chapter’s implications and recommendations.

6.5.1 Within- versus Mixed-Project Performance Comparison

For both the token-based and Code2Vec-based analyses, the within-project vul-

nerability prediction task yielded higher performance than the mixed-project task.

The results are expected as within-project prediction is generally relatively more

straightforward than mixed-project prediction due to the availability of project-

specific information, such as structure, coding conventions, and development prac-

tices, which enhance model learning and accuracy. In contrast, mixed-project pre-

diction requires models to generalise across different projects, which is challenging

due to differences in project characteristics and the lack of project-specific informa-

tion.

To quantify the performance difference, the within-project token-based anal-

ysis in Chapter 4 achieved a post-hyperparameter tuning precision of 0.73, recall

of 0.60, and F1 score of 0.66 using the Random Forest classifier. The mixed-

project token-based analysis in this chapter achieved a post-hyperparameter tuning

precision of 0.15, recall of 0.38, and F1 score of 0.22 using the Gaussian Naïve

Bayes classifier. Similarly, the within-project Code2Vec-based analysis in Chap-

ter 5 achieved a post-hyperparameter tuning precision of 0.72, recall of 0.62, and

F1 score of 0.67 using the Random Forest classifier. The mixed-project Code2Vec-

based analysis in this chapter achieved a post-hyperparameter tuning precision of

0.16, recall of 0.30, and F1 score of 0.21 using the Gaussian Naïve Bayes classifier.

The disparities in the results highlight the challenges of generalising vulnera-

bility prediction models across different projects and the importance of considering

project-specific information when building and evaluating these models.
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This discussion point extends The Significance of Vulnerable Code Patterns

discussion in Chapter 4 to a macroscopic level.

6.5.2 Code Representation Sensitivity

A critical observation from Figure 6.10 and Figure 6.11 is that the disparities in dis-

persion between the single software system and multiple software systems are more

pronounced for the token-based metrics than for the Code2Vec-based metrics (i.e.,

Subfigure 6.10a vs Subfigure 6.10b, and Subfigure 6.11a vs Subfigure 6.11b). This

observation is important because it confirms our finding in Subsubsection 5.3.1.3

of Chapter 5 that Code2Vec is less sensitive to code changes than token-based met-

rics. Trivial code changes modify the token representation, which in turn affects any

metrics derived from the tokens, resulting in significant variability in the metrics. In

contrast, since trivial code changes do not significantly affect the AST representa-

tion, the derived metrics are less sensitive to code changes, resulting in less metric

variability.

So, even though AST-based metrics, such as our Code2Vec-based metrics, may

better capture the hierarchical structure and relationships within the code compared

to tokens, as asserted by Liu et al. [2022a] and evidenced by our slightly improved

performance in Chapter 5 over Chapter 4, the token-based metrics are more sensitive

to code changes. This sensitivity is evident in the relative data homogeneity in the

single software system for the token-based metrics in Subfigure 6.10a compared to

the Code2Vec-based metrics in Subfigure 6.11a, in comparison to their respective

multiple software systems Subfigures 6.10b and 6.11b.

6.5.3 Data-Related Challenges: A Revisit

The data issues-related observations in this chapter highlight the challenges in vul-

nerability prediction research, particularly in the context of cross-project vulner-

ability prediction, underscoring the discussion in the Background section of this

chapter.

Firstly, it highlights why researchers whose methodologies we briefly high-

lighted in Subsection 6.2.1 needed to employ sophisticated transfer learning and
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domain adaptation techniques in their cross-project vulnerability prediction analy-

ses.

Secondly, it illustrates the data-related challenges in vulnerability prediction

discussed in Subsection 6.2.2, such as data generalisability, data accessibility, data

preparation effort, data scarcity, label noise, and data noise.

The observations from our Coefficient of Variation analyses primarily relate

to Data Noise, particularly data heterogeneity, a common problem in vulnerability

prediction which arises from inconsistencies and biases in the training data and

can affect model performance and generalisability. Heterogeneity in training data

for vulnerability prediction can arise due to data scarcity, the lack of standardised

data formats, the absence of comprehensive and consistent data sources, and the

difficulty in integrating data from multiple sources. These issues complicate the

problem and contribute to the development of poor-quality vulnerability prediction

models.

6.5.4 Implications

The findings from this chapter have several implications for vulnerability predic-

tion research and practice. The results highlight the difficulties and impracticalities

in generalising vulnerability prediction models across different software systems.

Performance disparities between within-project and mixed-project tasks, as well as

metric variability across multiple systems, highlight the challenges in transferring

models between projects. Data heterogeneity exacerbates these issues, introducing

inconsistencies and biases that affect model performance and generalisability. Ad-

dressing these challenges requires careful consideration of dataset characteristics,

including variability, quality, and representativeness. Researchers and practitioners

should utilise representative datasets, employ appropriate evaluation methods, and

incorporate project-specific information to mitigate these challenges.

The Coefficient of Variation analyses provide valuable insights into the vari-

ability of vulnerability prediction metrics across different systems. By quantifying

metric variability, researchers and practitioners can gain a deeper understanding of

the challenges posed by data heterogeneity and its implications for model develop-
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ment and refinement. These insights can inform the development of more robust

and generalisable models by highlighting the need to address data variability, qual-

ity, and representativeness.

6.5.5 Recommendations

Researchers and practitioners should address data heterogeneity by selecting repre-

sentative datasets, ensuring data quality and consistency, and considering project-

specific information when developing vulnerability prediction models. Mitigating

data heterogeneity can improve model performance and generalisability, making the

integration of data heterogeneity analysis into the vulnerability prediction process

essential.

Data-driven insights, such as the Coefficient of Variation analysis, provide

valuable information on metric variability across systems and should be a staple

in vulnerability prediction research. This sentiment is also echoed by Zheng et al.

[2020], whose study calls for a deeper analysis of dataset attributes, given that dif-

ferent datasets tend to have distinct characteristics that influence results differently.

Researchers and practitioners should utilise such dataset-related insights to com-

prehend data heterogeneity and its implications, and apply them to inform dataset

selection, thereby facilitating the development of more robust and generalisable

models. Furthermore, incorporating project-specific information, such as structure,

coding conventions, and development practices, can also enhance model perfor-

mance and generalisability.

Finally, addressing data-related challenges, such as heterogeneity, scarcity, la-

bel noise, and data noise, is difficult but crucial. Additionally, evaluating model

performance for both within-project and stress testing them under mixed-project

conditions is essential, as comparing performance across different tasks provides

insights into generalisation challenges and opportunities for improvement.
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6.6 Threats to Validity
In this section, we discuss the threats to the validity of our study, some of which are

common to vulnerability prediction studies and may also apply to the previous two

chapters.

6.6.1 Internal Validity

Internal validity refers to the extent to which the study’s results accurately reflect

the genuine relationship between variables without being influenced by external

factors.

6.6.1.1 Context-Dependent Vulnerabilities

Software vulnerabilities may sometimes span multiple methods rather than being

confined to one. Some methods might not exhibit vulnerability in different con-

texts. While it is possible to address these context-dependent vulnerabilities by

considering a broader unit of analysis, this study focused on method-level vulnera-

bility prediction.

6.6.1.2 Selection Bias

The dataset used in this chapter comprises many projects, but it represents only a

minuscule fraction of the available software projects. The projects are primarily

open-source and hosted on GitHub, which may not reflect the full diversity of soft-

ware projects. Consequently, the results of this study may not be generalisable to

all software projects.

6.6.1.3 Data Imbalance

The imbalance between vulnerable and non-vulnerable methods in the dataset could

lead to biased model performance, favouring the majority class. We employed the

SMOTE to balance the dataset, yet the risk of residual imbalance effects persists.

6.6.1.4 Ground Truth Estimation

Our approach to labelling methods as vulnerable or non-vulnerable in this chapter

(see Subsubsection 6.3.2.2) differs from the approaches in the previous two chapters

(see Subsubsection 4.4.3.4). This chapter’s approach aligns with the approach used
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in our primary source paper, i.e., Al Debeyan et al. [2022], for the dataset used in

this chapter, as noted earlier. While logically sound, we note that the approach, like

other ground truth estimation approaches, are imperfect and could introduce label

noise into the dataset, affecting model performance.

6.6.2 External Validity

External validity concerns how this study’s findings can be generalised to other

contexts outside the experimental settings.

6.6.2.1 Programming Language Generalisability

The study focused on Java-based software systems, which may limit the applicabil-

ity of the findings to projects written in other programming languages. While Java

is widely used, the results may not generalise to systems developed in languages

with different characteristics.

6.6.2.2 Focus on Static Vulnerabilities

The vulnerabilities examined in this chapter, as well as in the preceding two chap-

ters, are those detectable through static analysis. This study did not include those

vulnerability types that manifest only during runtime, referred to as dynamic vul-

nerabilities. Consequently, the generalisability of the findings is confined to vulner-

abilities that can be identified statically.

6.6.2.3 Limitations of Vulnerability Patterns

This study concentrated on recognised vulnerability patterns, which may not en-

compass emerging or unidentified vulnerabilities. Moreover, the vulnerability

dataset, i.e., SARD, utilised in this research, likely does not include all known vul-

nerability patterns. Consequently, these models may be ineffective in identifying

vulnerabilities that exhibit patterns not previously encountered in the training data.

6.6.2.4 Tool and Technique Dependence

The study utilises specific tools, including JavaParser and Apache Lucene, as well as

techniques such as information retrieval and machine learning algorithms. Different
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tools or techniques might yield different results, and the findings may not be directly

transferable if different methodologies are used.
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6.7 Answer to Research Question 3

Research Question 3: How well does the information retrieval-driven software vul-

nerability prediction technique generalise across multiple software systems?

This chapter explored the challenges of using diverse data sources to train vul-

nerability prediction models, focusing on the dataset’s generalisability and the im-

pact of dataset variability on model performance. The primary objective was to

evaluate the generalisability of vulnerability prediction models using both token-

based and Code2Vec-based analyses as a stress test. This involved comparing

within-project and mixed-project performance, analysing dataset variability, and

understanding the role of hyperparameter tuning in model optimisation.

We conducted comprehensive analyses on token-based and Code2Vec-based

datasets, using performance metrics such as precision, recall, and F1 score to evalu-

ate model performance. Then, we utilised the Coefficient of Variation to assess the

relative variability of metrics across our datasets. After that, we applied hyperpa-

rameter tuning to optimise model performance and compared the results between

within-project and mixed-project tasks.

While performance metrics were generally poor, the findings provided valu-

able insights into the dataset challenges affecting vulnerability prediction analyses.

The results showed significant disparities between within-project and mixed-project

performance. Within-project tasks from the previous two chapters generally yielded

higher performance metrics due to the availability of project-specific information

and the relatively reduced data variability across the different releases of the same

software system. In contrast, mixed-project tasks suffered from data heterogeneity

and variability due to differences in project characteristics of different constituent

software systems, resulting in lower performance metrics.

These findings have significant implications for vulnerability prediction re-

searchers and practitioners. Firstly, the study highlights that addressing data hetero-

geneity and metric variability challenges is crucial for developing robust and gener-

alisable models. Secondly, the findings indicate the need for representative datasets,

appropriate evaluation methods, and normalising integrating dataset variability tests
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in vulnerability prediction research to facilitate the incorporation of project-specific

information to mitigate the field’s data-related challenges. Based on the findings, it

is recommended that researchers and practitioners focus on addressing data hetero-

geneity by selecting representative datasets, ensuring data quality, and considering

project-specific characteristics.

Future work should explore advanced techniques for improving the general-

isability of vulnerability prediction models. This includes investigating methods

for handling data heterogeneity, developing adaptive models to transfer knowledge

across projects more effectively, and integrating additional project-specific infor-

mation.

To answer the third research question of this thesis, the stress test conducted

on our information retrieval-driven software vulnerability prediction technique un-

surprisingly revealed the significant data-related challenges in generalising vulner-

ability prediction models across multiple software systems. The results highlighted

the difficulties in transferring models between projects due to data heterogeneity

and variability, highlighting the importance of considering project-specific infor-

mation when building and evaluating these models. Regardless, the technique re-

mains effective for within-project vulnerability prediction tasks, as evidenced by the

results and findings in Chapters 4 and 5.



Chapter 7

Conclusion

This chapter concludes the thesis by summarising key findings, discussing research

contributions, and outlining future research directions. The research investigated

the effectiveness of information retrieval-driven techniques for predicting software

vulnerabilities, utilising various machine learning models and source code repre-

sentations. This concluding chapter highlights how the research objectives were

met, discusses the implications of the findings, outlines the contributions to the field,

and identifies potential limitations. It also suggests future research avenues that can

build on this work.
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7.1 Vulnerability Prediction: A Retrospective and

Prospective
Software vulnerability prediction is increasingly vital as the digital landscape ex-

pands and cyber threats become more sophisticated. Vulnerabilities, i.e., security-

relevant bugs in software design, development, or configuration, can be exploited

by malicious actors to compromise system security, leading to financial, reputa-

tional, and even physical damages. Traditional vulnerability identification methods,

such as static and dynamic analysis, are often inadequate, especially in large-scale

software systems where complexity can obscure critical issues.

Machine learning techniques have shown promise in predicting software vul-

nerabilities in recent years. These methods utilise historical data and source code

features to identify potential security vulnerabilities before they can be exploited.

This thesis contributes to this emerging field by exploring information retrieval

techniques to enhance vulnerability prediction through the development of security-

relevant source code metrics.

The research presented here is situated within the broader context of software

security. It addresses the challenges posed by increasing software system complex-

ity and the corresponding rise in security threats. This work focuses on method-

level vulnerability prediction, aiming to improve the accuracy and reliability of au-

tomated vulnerability prediction and equipping developers with tools to enhance the

security of their software.

This chapter concludes the thesis by summarising key findings, discussing re-

search contributions, and outlining future research directions. The research has

investigated the effectiveness of information retrieval-driven techniques for predict-

ing software vulnerabilities using various machine learning models and different

representations of source code. This final chapter provides an overview of how the

research objectives were met, the implications of the findings, contributions to the

field, and limitations that may have influenced the results. It also suggests future

research directions that can build on the research presented in this thesis.
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7.2 Summary of Research Objectives
This research aimed to develop and evaluate an information retrieval-based ap-

proach for predicting software vulnerabilities. We accomplished this aim by pursu-

ing the following specific objectives:

• Assess the performance of the information retrieval-based technique on a

multi-release software system dataset using source code token representation.

• Assess the technique’s performance using Code2Vec representation on the

same dataset.

• Determine the technique’s generalisation capability on a dataset comprising

code artefacts from multiple software systems.

These objectives were designed to address gaps in the literature and advance

current methodologies for predicting vulnerabilities in contemporary software sys-

tems, with a focus on developing security-relevant metrics and a thorough exami-

nation of data-related challenges that negatively impact the performance of vulner-

ability prediction models. The research developed and evaluated various models,

providing valuable insights into the effectiveness of information retrieval techniques

in predicting software vulnerabilities and the impact of different source code repre-

sentations on model performance.
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7.3 Key Findings
This section summarises the main findings of the research, aligning them with the

research questions presented in Section 1.4.

7.3.1 Token-Based Prediction Performance (Within-Project)

The research demonstrated that our information retrieval-based approach performed

well on a multi-release software system dataset when using token representa-

tion. The model effectively identified vulnerability-prone components by lever-

aging token-based features from the source code. After hyperparameter tuning, we

achieved a precision of 0.73, recall of 0.60, and an F1 score of 0.66 using a Random

Forest classifier. These results align with other studies [Ferzund et al., 2009, An and

Khomh, 2015, Al Debeyan et al., 2022, Shailee et al., 2024, Moussa et al., 2022]

that identified Random Forest as an effective model for vulnerability prediction.

7.3.2 Code2Vec-Based Prediction Performance (Within-Project)

Using the Code2Vec representation, the information retrieval-based technique

achieved a slightly better F1 score than the token-based approach. This improve-

ment is likely due to Code2Vec’s ability to capture more contextual information

through its AST-based representation [Samoaa et al., 2022]. After hyperparameter

tuning, the model achieved a precision of 0.72, recall of 0.62, and an F1 score of

0.67 using a Random Forest classifier. This suggests that advanced source code rep-

resentations, such as Code2Vec, can enhance the predictive power of vulnerability

models by better capturing the semantic relationships between code elements.

7.3.3 Mixed-Project Prediction Performance

While evaluating our information retrieval-based approach in a within-project set-

ting showed promising results, our stress test of the technique’s performance across

multiple software systems (mixed-project) was less consistent, an outcome we at-

tribute to the data-related challenges discussed in Chapter 6. This highlights the

challenge of generalising vulnerability prediction models across diverse systems, as

system-specific characteristics can significantly impact performance. It also high-

lights the importance of integrating systematic approaches to dataset selection, such
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as Coefficient of Variation analyses, into vulnerability prediction research to help

practitioners better understand dataset characteristics and make informed decisions

on the suitability of a dataset for their analysis.
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7.4 Contributions to the Field
This research has made several key contributions to the field of software vulnera-

bility prediction:

• Application of Information Retrieval Techniques: This research pioneered

information retrieval techniques for software vulnerability prediction. The

approach demonstrated potential in improving the accuracy of vulnerability

prediction models by providing a framework for extracting security-relevant

features from source code using information retrieval methods.

• Development of Security-Relevant Metrics: This thesis introduced novel

security-relevant software metrics derived using information retrieval tech-

niques. These metrics enhanced the performance of vulnerability prediction

models, highlighting the importance of incorporating vulnerable code pat-

terns into machine learning models and adding valuable tools for software

security analysis.

• Evaluation of Source Code Representations: The research evaluated var-

ious source code representations, including token-based and Code2Vec, for

their effectiveness in predicting vulnerabilities, thereby contributing to the

discourse on the role of semantic information in software security.

• Generalisability of Prediction Models: The study assessed the generalis-

ability of vulnerability prediction models across different software systems,

offering insights into the challenges and opportunities of applying these mod-

els in varied contexts and highlighting the importance of statistics-driven sys-

tematic dataset selection in vulnerability prediction research.

This thesis contributes to the broader understanding of software security by

highlighting the challenges and opportunities in applying advanced machine learn-

ing techniques to vulnerability prediction. The insights from this research will be

valuable to both academic researchers and industry practitioners, enabling them to

develop more effective and reliable vulnerability prediction tools.
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7.5 Limitations of the Study
While this research has provided valuable insights, several limitations should be

noted:

• Dataset Constraints: The findings may be limited by the specific datasets

used for model training and evaluation, including factors like software domain

and dataset size.

• Focus on the Java Programming Language: The research experimented

with software systems developed using the Java programming language,

which may limit the generalisability of the findings to other languages.

• Focus on Method-Level Vulnerability Prediction: The research focused on

method-level vulnerability prediction, which does not capture all aspects of

software security.

• Focus on Binary Classification: The research centred on binary classifi-

cation, predicting whether a method is vulnerable, without addressing multi-

class classification, which could offer more detailed insights into vulnerability

types.
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7.6 Future Research Directions
The findings and contributions of this thesis suggest several avenues for future re-

search. One promising direction is refining the information retrieval-driven vulner-

ability prediction technique. Future work could integrate additional code represen-

tations, such as graph-based models, to capture more contextual information and

enhance prediction accuracy. It would also be valuable to improve the technique’s

generalisability across different software systems by developing advanced feature

engineering methods or employing domain adaptation techniques.

Another critical area is the further exploration of Large Language Models

(LLMs) in software vulnerability prediction. As LLMs advance, their potential for

more accurate and context-aware vulnerability prediction increases. Our immediate

future work will focus on extending our information retrieval-driven technique to

leverage Retrieval-Augmented Generation (RAG) for vulnerability prediction, in-

corporating the latest advancements in LLMs.
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7.7 Final Thoughts

Until AI-driven vulnerability prediction techniques mature, the most practical ap-

proach for achieving actionable results suitable for real-world applications is to

focus on a single (multi-release) software system within a within-project setting,

using a release-by-release dataset construction method and incorporating informa-

tion on previously fixed vulnerabilities. This real-world implementation could be

integrated into a continuous integration/continuous deployment (CI/CD) pipeline.

The pipeline would automatically extract security-relevant features from each re-

lease’s source code, train a vulnerability prediction model, and evaluate the model’s

performance. Also, since the quality of the vulnerability dataset is crucial for build-

ing accurate prediction models, such a pipeline must ensure that the vulnerability

dataset used for building security-relevant metrics (features) is periodically updated

to reflect the latest vulnerabilities and the vulnerability prediction model is retrained

using the updated features to incorporate the latest vulnerable code patterns as new

vulnerabilities are discovered.

This release-by-release approach will help mitigate several data-related chal-

lenges discussed in Chapter 6, including generalisability, accessibility, preparation

effort, scarcity, label noise, and data noise. The approach will enhance data general-

isability by capturing the temporal evolution of software systems, reflecting changes

in code and vulnerabilities over time to inform more accurate prediction models.

The structured nature of these datasets will also improve data accessibility and re-

duce label and data noise by ensuring more accurate labelling and cleaner data is

curated throughout the software system’s lifecycle. Additionally, this pre-organised

format, integrated into the CI/CD pipeline, will simplify data preparation, making

the training and evaluation more efficient. Finally, the approach will address data

scarcity by leveraging cumulative data from multiple releases, providing a more

reliable foundation for training and evaluating vulnerability prediction models over

time. This described implementation methodology will help bridge the gap between

academic research and industry practice, enabling developers to enhance the secu-

rity of their software systems effectively and efficiently.
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Despite ongoing challenges in data quality and quantity in contemporary vul-

nerability prediction, this work paves the way for future research, as outlined in Fu-

ture Research Directions. This research has demonstrated the potential of informa-

tion retrieval-driven techniques for software vulnerability prediction, highlighting

their feasibility and effectiveness. It also highlights the importance of interdisci-

plinary approaches in software security research. Collaboration between machine

learning, software engineering, and cybersecurity experts could lead to more com-

prehensive and robust solutions for vulnerability prediction. This could result in

integrated security tools combining multiple approaches, offering developers more

effective means of securing their software. Our findings contribute to the growing

body of knowledge on applying machine learning and information retrieval in soft-

ware security. The insights gained could lead to more robust and generalisable vul-

nerability prediction models, ultimately enhancing software security. This chapter

concludes the thesis by summarising the contributions, acknowledging the limita-

tions, and suggesting directions for future research. The work presented represents

a significant step forward in vulnerability prediction and aims to inspire further re-

search and innovation in this critical area, ultimately contributing to a more secure

digital future.



Appendix A

Investigating the Co-Evolution of

Software Bugs

This appendix features a study on the co-evolution of bug-related code artefacts in

software systems, focusing on the relationship between bug-fixing and bug-inducing

changes.
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A.1 Introduction
Bugs significantly impact software quality and maintenance costs [Khan et al.,

2020]. Their effects range from minor user inconveniences to severe issues, such

as complete system crashes. Non-functional bugs [Sophia et al., 2021], which have

minimal impact on functionality, often go undetected, whereas more critical bugs

can cause crashes or system freezes, leading to denial of service. Security-relevant

bugs, in particular, can be exploited as vulnerabilities, allowing unauthorised access

to systems. A notable example is the 2003 North American blackout caused by a

race condition in the General Electric Energy XA/21 monitoring software, which

led to an undetected local outage [Gujral et al., 2015].

Human error is the leading cause of software bugs, with approximately 57%

resulting from carelessness or oversight, leading to changes in the code that induce

bugs. These errors typically become apparent during testing or post-deployment

[Gujral et al., 2015].

Bug-fixing changes are deliberate efforts to resolve issues and are easily iden-

tifiable in commit histories, as developers usually note these fixes in their com-

mit messages. In contrast, identifying bug-inducing changes is more challenging,

as developers are often unaware they have introduced problematic code that could

compromise their software [Nadim et al., 2020].

A.1.1 Motivation

A common misconception is that a bug’s point of manifestation is the same as the

origin. However, bugs may appear in one part of a software system while originating

elsewhere. Thus, assuming that fixing a bug where it manifests will resolve the issue

is overly simplistic and often incorrect. In reality, the changes that induce bugs

can be far removed from those that fix them [Wen et al., 2019]. This disconnect

undermines several traditional bug-fixing methods and the tools that rely on them,

emphasising the need for more sophisticated approaches to bug management. It also

highlights the importance of understanding the relationship between bug-inducing

and bug-fixing changes, as well as the limitations of bug-related data, which often

lacks the necessary context to trace a bug’s origin and evolution.
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The reductive assumption described above is the basis of the SZZ Algorithm,

a popular method researchers use to identify bug-inducing changes by tracing them

from bug-fixing commits [Śliwerski et al., 2005]. The algorithm traces bug-fixing

commits to determine the original bug-inducing changes. Issue-tracking software

often lacks details on the root cause and introduction of bugs into systems. The

SZZ algorithm augments their data by offering insights into the timing of bug intro-

ductions, providing valuable information for researchers and software developers

[Pokropiński et al., 2022]. However, the assumption on which the SZZ algorithm

is based is inaccurate, as not all bug-fixing artefacts are directly related to the bug-

inducing artefacts, which begs the question: Do the lines of code flagged as ‘bug-

inducing’ truly represent the source of the defect?

Wen et al. [2019] explored this issue by examining the connection between

bug-inducing and bug-fixing commits. They found that only 73.2% of the source

code files involved in bug fixes were also involved in bug inducement, with 26.8%

of bugs introduced in one source code file but resolved in another. Their study

highlighted that the SZZ algorithm frequently lacks precision, as it presumes that

bug fixes occur precisely at the locations where the bugs were introduced.

The ramifications of this imprecision are significant, as it threatens the valid-

ity of bug-related research, which often estimates the defect status of source code

artefacts based on their bug-fixing history.

For instance, a typical bug prediction experiment broadly comprises these

stages:

1. Statement of hypotheses and research questions.

2. Dataset acquisition, preprocessing and feature extraction.

3. Ground truth development.

4. Training and testing the bug prediction model.

5. Performance evaluation of the prediction result against the ground truth to

answer the research questions.



A.1. Introduction 302

The ground truth data is crucial in this process as it determines the reported

model’s accuracy. If the ground truth data is inaccurate, the model’s predictions

will be unreliable. Therefore, the accuracy of the SZZ algorithm in identifying

bug-inducing changes is critical to the validity of bug prediction models.

Thus, the ideal dataset for bug prediction should comprehensively and accu-

rately present bug-fixing details, including version control information such as the

commit ID and URL, as well as associated bug-inducing details. However, in-

formation about bug-inducing changes is often missing or inaccurate because, as

mentioned earlier, they are not easily trackable. The reason is that developers of-

ten inadvertently introduce them and, therefore, do not explicitly document them.

Therefore, most bug prediction studies rely on bug-fixing changes to estimate the

ground truth, assuming that every fixed software artefact was buggy before the fix.

This approach makes it impossible to accurately capture the duration between bug

introduction and bug fixing, as well as the exact location(s) of the bug-inducing

changes.

A.1.2 Research Question

Inspired by Wen et al. [2019]’s work, we evaluated the SZZ algorithm’s perfor-

mance by investigating how closely bug-fixing artefacts co-evolve with the corre-

sponding detached bug-inducing artefacts to deepen our understanding of software

bugs. Our research addresses the following question:

To what extent do bug-fixing artefacts co-evolve with their associated

detached bug-inducing artefacts?

A detached bug-inducing artefact refers to a file that contributed to the intro-

duction of a bug but was not involved in its subsequent fix.

A.1.3 Research Scope

• Programming Language: This study exclusively utilises datasets from Java-

based open-source software systems. Other programming languages are not

considered.
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• Ground Truth Data: Our ground truth data is restricted to the InduceBench-

mark dataset, as used in Wen et al. [2019]’s study.

• Unit of Analysis: The analysis in this study is conducted at the source code

file level, with no consideration of other units of analysis such as classes or

methods.

• Bug Types: The focus is on code-related bugs within the source code. Other

bug types are excluded, such as those related to design, requirements, or con-

figuration.

A.1.4 Significance and Contribution

The SZZ algorithm is commonly used to identify bug-inducing changes, but various

studies have questioned its effectiveness [Wen et al., 2019, Pascarella et al., 2018,

da Costa et al., 2017, Alohaly and Takabi, 2017, Gema et al., 2020, Sophia et al.,

2021, Ogino et al., 2021]. This research adds to the ongoing discussion by assessing

the co-evolution of bug-fixing artefacts and their associated detached bug-inducing

artefacts. Our experimental results provide a clearer understanding of the SZZ al-

gorithm’s accuracy and the reliability of the bug-inducing changes it identifies.

A.1.5 Structure of the Study

The rest of the study is organised as follows: Section A.2 provides background

on code artefact co-evolution. Section A.4 outlines the study’s methodology. Sec-

tion A.5 presents the results. Section A.6 discusses the results and the implications

of the findings. Section A.7 addresses potential threats to the study’s validity. Sec-

tion A.8 concludes the study.
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A.2 Background
A software system’s revision history reveals essential details about its evolution, in-

dicating which components typically evolve independently and which parts change

together. For example, if a database query changes whenever the associated schema

is modified, we can say that the query ‘co-evolves’ with the schema [Zimmermann

et al., 2005].

Co-evolution in software systems refers to the relationship between compo-

nents that change in tandem. This relationship is often expressed using association

rules: A⇒ B, where ‘A’ and ‘B’ represent different artefacts or sets of artefacts. In

this context, ‘A⇒ B’ implies that when ‘A’ changes, ‘B’ also changes [Zhou et al.,

2019a]. Here, ‘A’ is the antecedent, and ‘B’ is the consequent.

A.2.1 Association Rule Mining

Association rule mining, a technique used in data mining, identifies relationships

between variables in large datasets [Tjortjis, 2020]. Commonly applied in market

basket analysis, this technique helps uncover patterns in customer purchasing be-

haviour [Arivazhagan et al., 2022]. For instance, it can reveal that customers who

buy bread are also likely to buy butter, insights that can inform product placement

strategies in supermarkets.

In software engineering, association rule mining can identify relationships be-

tween software artefacts, such as files or classes, that frequently change together.

In this study, we apply association rule mining to explore the relationships between

bug-fixing and bug-inducing artefacts.

We will measure the absolute support, support, and confidence of association

rules between files modified to fix a bug and those that contributed to inducing it.

These metrics are fundamental in association rule mining and will be discussed

later.

A.2.2 Co-Evolution of Code Artefacts: A Hypothetical Scenario

Figure A.1 depicts a hypothetical co-evolution scenario where a junior developer

modifies a database schema file (schema.foo) and an associated query in a Java
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Figure A.1: Hypothetical Co-Evolution Scenario

file (query.bar), unintentionally introducing an SQL injection vulnerability upon

committing the changes (Commit i).

Subsequently, a senior developer addresses the flaw by updating the schema

(schema.foo) and refactoring the query (query.bar) to use Prepared Statements,

committing these changes as a fix (Commit i + n), where n represents any num-

ber of commits between the bug introduction and its resolution.

In this scenario, schema.foo and query.bar co-evolve in both the bug-inducing

and bug-fixing commits, reflecting a co-evolutionary relationship.

A third developer, investigating past bugs, might employ the SZZ algorithm

to trace the original bug-inducing commit (Commit i) using the bug-fixing commit

(Commit i + n).
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Here, the bug-fixing commit (Commit i + n) serves as the antecedent, while

the bug-inducing commit (Commit i) is the consequent, providing a traceable rela-

tionship for the third developer.

Files such as sourcefile.baz, sourcefile.qux, and sourcefile.quux represent files

involved in the bug-inducing commit but not in the subsequent fix and are, therefore,

termed detached bug-inducing files.

Suppose query.bar depends on sourcefile.corge and sourcefile.grault, yet these

were not updated by the junior developer in Commit i. In that case, it can result

in sourcefile.corge and sourcefile.grault remaining buggy until Commit i + n. This

situation causes sourcefile.corge and sourcefile.grault to be buggy when query.bar

changes, and vice versa.

Bug prediction datasets typically include only bug-fixing changes (see Sub-

subsection 4.4.3.4, as an example), assuming the fixed artefacts were previously

buggy. However, this approach cannot represent complex scenarios, such as the

one depicted in Figure A.1, where the dataset reflects only the fix at Commit i + n,

omitting the bug-inducing changes at Commit i.

This complex scenario, akin to a ‘Schrödinger’s Bug’, means that the versions

of sourcefile.corge and sourcefile.grault before the fix in Commit i + n are simulta-

neously buggy and non-buggy, depending on the state of query.bar, thus threatening

the validity of ground truth data in bug prediction studies.

This study explores this complexity to assess whether bug-fixing artefacts can

predict these detached artefacts.

The goal is to evaluate whether bug-fixing files can predict bug-inducing files

by analysing the strength of their co-evolutionary relationship. In this context, bug-

fixing artefacts/files are those modified by a bug-fixing commit, while bug-inducing

artefacts/files are those altered by a bug-inducing commit.

Framing our research within Figure A.1, we aim to determine if the co-

evolution of bug-fixing artefacts—schema.foo, query.bar, sourcefile.corge, and

sourcefile.grault—and their detached bug-inducing counterparts—sourcefile.baz,
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sourcefile.qux, and sourcefile.quux—is strong enough to predict the latter using the

former.
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A.3 Literature Review

This section reviews a few relevant literature on software artefact co-evolution, bug-

inducing changes, and the SZZ algorithm, providing context for our study.

Zimmermann et al. [2005] hypothesised that association rules for code changes

could predict future modifications, reveal item coupling undetectable by program

analysis, and prevent errors from incomplete changes. Their study aimed to utilise

co-evolving software artefacts to help developers manage related changes, akin to

a recommendation system. For example, ‘Developers who changed function foo()

also changed function bar().’ This approach mirrors e-commerce recommenda-

tions, such as ‘Customers who bought A also bought B.’ The researchers developed

a prototype tool, ROSE, which analyses code changes and predicts additional loca-

tions that may require modifications. They evaluated ROSE on eight open-source

software systems, finding that its top three suggestions were correct over 70% of the

time. The study concluded that ROSE is valuable for helping developers identify

necessary changes and ensuring that no critical modifications are overlooked after

an initial change.

Śliwerski et al. [2005] observed that developers often introduce changes that

cause issues as software systems evolve. Using CVS and Bugzilla, they identi-

fied these problematic changes by linking bug reports with their corresponding

fixes. They then traced the changes before the reported bug, identifying these as

fix-inducing changes. Their analysis found 25,317 links in Eclipse, connecting 47%

of fixed bugs to 29% of transactions, and 53,574 links in Mozilla, connecting 55.3%

of fixed bugs to 43.91% of transactions. The study revealed that more significant

changes are more likely to induce fixes, and fix-related changes are three times more

likely to lead to additional fixes than simple enhancements. This work contributed

to the development of the SZZ algorithm.

Wen et al. [2019] observed that despite the widespread use of the SZZ algo-

rithm, questions remain about its accuracy in identifying ‘bug-inducing’ lines of

code. They investigated this issue by examining bug-inducing and bug-fixing com-

mits across 333 open-source software bugs. Their analysis revealed that the SZZ
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algorithm is often imprecise, as it assumes bug fixes occur at the exact locations of

the bug inducements. They found that only 73.2% of the source files involved in bug

fixes were also involved in bug inducement, with 26.8% of bugs introduced in one

file but resolved in another. This imprecision raises concerns about the reliability of

previous studies that relied on the SZZ algorithm.

Kim et al. [2006] pointed out that software researchers frequently use bug fixes

to predict bugs and identify vulnerabilities within systems, yet these fixes rarely re-

veal the initial change that introduced the bug. They added that recognising changes

that introduce bugs could uncover crucial details about the bugs’ origins, such as

the developers or change types most likely to introduce them. Identifying these

changes, however, is challenging. The researchers developed algorithms to auto-

matically and accurately identify bug-inducing changes with fewer errors. Their

methodology employed annotation graphs to exclude non-semantic changes and

outlier fixes, significantly reducing false positives and negatives. They also man-

ually verified the accuracy of fixes to ensure reliability. The study presented im-

provements to the SZZ algorithm, reducing false positives by 38% to 51% and false

negatives by approximately 14%. This research highlights the significance of con-

sidering bug-inducing changes in studies related to software bugs.

Linares-Vásquez et al. [2017] noted that the prevalence of mobile devices has

led to numerous studies on software vulnerabilities, particularly those related to

mobile applications and operating systems (OS). However, they observed that stud-

ies on OS-related vulnerabilities often cover only a small portion of known issues.

The scholars investigated 660 vulnerabilities related to the Android OS to enhance

their understanding in this area. They developed a taxonomy of vulnerability types

within Android and applied the SZZ algorithm to identify the most susceptible lay-

ers and subsystems of the Android OS. Additionally, they assessed the lifespan

of vulnerabilities by measuring the time between their introduction and resolution.

The study revealed that most vulnerabilities stem from four main issues: memory

buffer operations, data processing errors, inadequate access control, and insufficient

input validation. It also found that third-party hardware drivers were frequently af-
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fected. Contrary to some critiques, the SZZ algorithm showed high precision in

this study. The results suggest that stringent secure coding practices could mitigate

many vulnerabilities, especially in data handling and memory operations.

da Costa et al. [2017] acknowledged the importance of the SZZ algorithm in

bug prediction research but noted a lack of extensive evaluation of its results. They

developed a framework to assess various SZZ implementations, aiming to bridge

this gap, and applied it to data from ten open-source projects. The evaluation fo-

cused on three aspects: the timing of bug appearance, the future impact of changes,

and the realism of bug introductions. The findings indicated that enhancements

to the SZZ algorithm often overestimated the number of correctly identified bug-

inducing changes. The study also found that a single bug-inducing change could

precipitate hundreds of future bugs. Furthermore, at least 46% of bugs identified by

SZZ implementations were traced back to changes made years earlier. The research

concluded that existing SZZ implementations lacked the precision to accurately pin-

point bug-introducing changes.

Alohaly and Takabi [2017] highlighted that Version Control Systems (VCSs)

are crucial in modern software development, adding that they help developers man-

age code versions and assist software security experts in identifying patterns of

vulnerability-inducing changes. The researchers investigated whether the concept

of change classification, commonly used in bug detection, could be applied to vul-

nerability detection. They used semi-supervised learning and text-mining tech-

niques on their dataset. While they did not use the SZZ algorithm, they pointed

out its limitations with an example where a vulnerability-inducing change and its

associated fix occurred six years apart, noting that the vulnerability migrated due to

file renaming. Their experiments achieved a recall between 0.6 and 0.8 and a preci-

sion from 0.63 to 1.0, demonstrating the potential of using change classification for

proactive vulnerability detection.

Gema et al. [2020] challenged the common assumption in bug prediction that

lines of code modified to fix a bug are the same ones that introduced it. They noted

that external factors, such as API changes, can also introduce bugs, complicating
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the traceability of bug origins due to a lack of empirical evidence. To refine this

understanding, they developed a model to identify the first software system snap-

shot showing buggy behaviour. They created a dataset of bug-introducing changes

unrelated to source code modifications. Using this dataset, they evaluated four SZZ

algorithm implementations, finding significant inaccuracies, particularly in scenar-

ios with multiple commits. The F1 scores varied from 0.44 to 0.77, with a maximum

true positive rate of 0.63. Their findings suggest that the assumption about bug orig-

ination is overly simplistic, indicating a need for more nuanced research into bug

origins to enhance software development processes.

Sophia et al. [2021] investigated the effectiveness of the SZZ algorithm in iden-

tifying non-functional bug-inducing changes, focusing on aspects such as perfor-

mance and security rather than direct software functionality. They observed that

fixes for non-functional bugs typically occur in locations not directly linked to their

induction points, rendering the SZZ algorithm less effective. The study noted that

this limitation had not been widely acknowledged in previous research. In their

study, the researchers analysed the accuracy of the SZZ algorithm using the NF-

Bugs dataset, specifically for non-functional bugs. Their evaluation revealed that

297 out of 376 SZZ-identified bug-inducing commits were false positives, demon-

strating the algorithm’s ineffectiveness. Their findings highlight the need to enhance

the SZZ algorithm to better address non-functional bugs.

Ogino et al. [2021] emphasised the importance of effective bug prediction tech-

niques to improve cost efficiency in quality assurance. They critiqued current bug

prediction research for not meeting essential criteria: accurate model performance

evaluation, granularity to reduce manual effort and costs, and a reliable dependent

variable indicating bug presence in software components. Their study aimed to

evaluate and improve bug prediction models under realistic conditions. They devel-

oped their dataset by utilising eight Java projects with multiple releases, identifying

fixed bugs and using an SZZ-based algorithm to pinpoint bug-inducing commits.

The study highlighted the limitations of this approach in its Threats to Validity sec-

tion, questioning the accuracy of the algorithm. They emphasised three critical el-
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ements for realistic settings: method-level granularity, a release-by-release dataset

approach, and the bug-inducing commit as the dependent variable. However, the

resulting F-Measure of 0.19 for the bug prediction model highlighted the ongoing

challenge of developing effective models in such conditions.

The literature review reveals a near consensus on the SZZ algorithm’s limita-

tions in accurately identifying bug-inducing changes. These limitations have signif-

icant implications for bug prediction research as they can lead to unreliable ground

truth data. This study addresses these limitations by evaluating the co-evolution of

bug-fixing and bug-inducing artefacts to determine the SZZ algorithm’s accuracy

in identifying bug origins. We will detail our approach to this evaluation in the

following Methodology section.
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A.4 Methodology
Our methodology focused on identifying source code file pairs involved in both bug-

fixing and bug-inducing changes and analysing their co-evolution to assess whether

bug-fixing files can reliably predict detached bug-inducing files. We utilised the

InduceBenchmark dataset from Wen et al. [2019]’s study1 as our ground truth for

this study.

A.4.1 Overview of the Methodology

Acquire GitHub Commit
History

Conduct Statistical
Analysis

Construct
Transaction
Databases

Evaluate
Association Rules

Identify Detached
Bug-Inducing

Files

Figure A.2: Methodology Overview

Figure A.2 outlines our methodology, divided into two main phases. Below is

a summary of each phase, We present detailed descriptions in the following subsec-

tions.

1. Phase I: Transaction Database Construction

I Extract GitHub Commit History: We used PyDriller2 to extract the

commit history for each software system.

1https://github.com/justinwm/InduceBenchmark
2https://github.com/ishepard/pydriller

https://github.com/justinwm/InduceBenchmark
https://github.com/ishepard/pydriller
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II Build Transaction Databases: We assigned a unique ID to each mod-

ified source code file in the commit history to construct a transaction

database for each software system.

2. Phase II: Measuring Bug Co-Evolution

I Identify Detached Bug-Inducing Files: We identified detached bug-

inducing files by comparing bug-inducing and bug-fixing files using

data from the InduceBenchmark dataset and the constructed transaction

databases.

II Evaluate Association Rules: We assessed the association rules between

bug-fixing and bug-inducing files within the transaction databases for

each bug resolution record. A bug resolution record comprises a set of

bug-fixing files and a set of bug-inducing files.

III Perform Statistical Analysis: Descriptive statistics were conducted to

quantify the co-evolution between bug-fixing and bug-inducing files.

A.4.2 Dataset

The InduceBenchmark dataset, referenced earlier, relates to the Apache software

systems studied in Wen et al. [2019]. We selected five systems from this dataset:

Accumulo3, Ambari4, Hadoop5, Lucene6, and Oozie7. A manually curated set of

bug resolution records has been compiled for these systems.

The InduceBenchmark dataset includes pairs of bug-fixing and bug-inducing

commits, referred to as bug resolution records. In a bug resolution record, the an-

tecedent is the set ABF, which consists of files modified by a bug-fixing commit. The

consequent is the set CBI, consisting of files modified by a bug-inducing commit.

Table A.1 summarises the number of bug resolution records (abbreviated as

BRRs) analysed for each software system. It also details the number of bug reso-

3https://github.com/apache/accumulo
4https://github.com/apache/ambari
5https://github.com/apache/hadoop
6https://github.com/apache/lucene
7https://github.com/apache/oozie

https://github.com/apache/accumulo
https://github.com/apache/ambari
https://github.com/apache/hadoop
https://github.com/apache/lucene
https://github.com/apache/oozie
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Table A.1: Bug Resolution Records Details

Project No. of BRRs No. of BRRs with at least one DBIF

Accumulo 33 29
Ambari 31 30
Hadoop 51 39
Lucene 20 19
Oozie 44 37

179 154

lution records that include at least one detached bug-inducing file (abbreviated as

DBIF). Detached bug-inducing files are crucial to our analysis. These files con-

tributed to inducing a bug but were not involved in the subsequent fix. Further

details on these files are provided later in this section.

The data in Table A.1 suggests two main types of bugs based on the complexity

of their inducement. These are classified as Type-I and Type-II bugs.

Type-I bugs originate entirely from artefacts modified to fix the bug. These

bugs do not have detached bug-inducing artefacts, allowing developers to resolve

them by addressing the identified bug-inducing artefacts.

In contrast, Type-II bugs have more complex origins involving one or more

detached bug-inducing artefacts. Most bugs in the bug resolution records fall into

the Type-II category. Of 179 analysed bugs, 154 (86%) are classified as Type-II.

Table A.2: Dataset Details

Project Commits Transactions Modified Files

Accumulo 11,198 7,721 77,121
Ambari 24,590 24,089 199,457
Hadoop 25,660 25,156 184,360
Lucene 35,778 34,777 267,173
Oozie 2,377 2,371 19,697

Table A.2 provides the total number of GitHub commits, transactions, and

modified files for each software system as of March 2022. A transaction is defined

as a commit that modifies at least one file.
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A.4.3 Approach to Research Question

This study addresses the research question: To what extent do bug-fixing artefacts

co-evolve with their associated detached bug-inducing artefacts?

To answer this research question, we quantified the co-evolution between arte-

facts modified to fix a bug and those identified as having induced it.

We analysed 179 bug reports from five Apache open-source software systems,

including Accumulo, Ambari, Hadoop, Lucene, and Oozie. We then extracted the

transaction database from the GitHub commit history of these systems for our co-

evolution analysis. In association rule mining, a transaction is a set of items, and a

transaction database is a collection of these transactions. Here, a transaction repre-

sents a commit that modifies at least one file in the software system, and a transac-

tion database is the collection of such commits.

Our methodology involved two main phases. The first phase identified pairs

of files that were modified by both bug-fixing and bug-inducing changes. The sec-

ond phase analysed their co-evolution by evaluating the association rules between

bug-fixing files and their associated detached bug-inducing files, where ‘detached’

indicates that the bug-inducing files were not part of the bug-fixing changes.

We calculated the Absolute Support, Support, and Confidence values for each

association rule, followed by descriptive statistical analysis to evaluate and quantify

the co-evolution between bug-fixing and bug-inducing files.

The following subsections provide detailed explanations of each phase.

A.4.4 Phase I: Transaction Database Construction

This phase aimed to construct a transaction database for each software system. A

transaction, t, is defined as a commit that modifies at least one file, and a transaction

database, T , is a collection of such transactions. Therefore, t ∈ T .

We used PyDriller to retrieve the commit history for each software system,

focusing on the files modified in each commit. Each modified file in these trans-

action databases was then assigned a unique ID, ensuring that the transactions in a

transaction database only include file-modifying commits.
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As of the analysis time, PyDriller does not return modified files for merge

commits, i.e., commits that merge changes from one branch into another; therefore,

these commits are classified as non-file-modifying. This accounts for the difference

between the figures in the ‘Commits’ and ‘Transactions’ columns in Table A.2,

where the number of transactions is lower than the total number of commits for

each software system.

A.4.5 Phase II: Measurement of Bug Co-Evolution

The second phase focused on measuring co-evolution for each bug resolution

record, comprising three key steps: identifying detached bug-inducing files, evalu-

ating association rules, and conducting statistical analysis.

A.4.5.1 Identification of Detached Bug-Inducing Files

The first step involved identifying the detached bug-inducing files, DBI, for each

bug resolution record. As defined earlier, these files contributed to inducing the bug

but were not involved in its resolution. Therefore, they represent the set difference

between CBI, the set of files modified by a bug-inducing commit, and ABF, the set

of files modified by a bug-fixing commit, as described in Subsection A.4.2.

The detached bug-inducing files are mathematically represented as:

DBI =CBI \ABF

A.4.5.2 Association Rule Evaluation

Given a bug resolution record, abf represents an element of its ABF, and dbi rep-

resents an element of its DBI. Thus, abf ∈ ABF and dbi ∈ DBI. Here, {abf} is a

singleton containing an element from ABF, and {dbi} is a singleton containing an

element from DBI. In this second step, we evaluated each {abf} ⇒ {dbi} associa-

tion rule for every bug resolution record against the transactions in the five software

systems.

For each {abf}⇒ {dbi} association rule, we calculated the absolute support.

In association rule mining, absolute support is the frequency with which items

co-occur in a transaction database. For example, if bread and butter are bought
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together in 10 out of 100 transactions, the absolute support for the rule {bread} ⇒

{butter} is 10, indicating that the items co-occur 10 times. In our study, this metric

represents the number of times a bug-fixing file, abf, co-changes with a detached

bug-inducing file, dbi, in a software system. Using this absolute support, we also

computed the co-evolution frequency, or support, of abf with dbi.

The AbsoluteSupport({abf} ⇒ {dbi}) is the count of transactions containing

both abf and dbi in a transaction database, i.e., the number of times abf co-evolves

with dbi.

AbsoluteSupport({abf}⇒ {dbi}) = |{t ∈ T : abf ∈ t ∧dbi ∈ t}|

Support is relative to the total number of transactions in a transaction database.

Continuing with the supermarket example, if bread and butter are bought together

in 10 out of 100 transactions, the support for {bread} ⇒ {butter} is 0.1. In our

study, support indicates the co-evolution frequency of abf and dbi in a transaction

database.

Thus, Support({abf} ⇒ {dbi}) is the co-evolution frequency of abf and dbi,

calculated as the ratio of absolute support to the total number of transactions.

Support({abf}⇒ {dbi}) =
AbsoluteSupport({abf}⇒{dbi})

|{t∈T}|

Next, we calculated the confidence, which indicates the likelihood of encoun-

tering dbi given abf.

In association rule mining, confidence is the ratio of absolute support to the

number of transactions containing abf. For instance, if bread is purchased in 10

transactions and butter in 3, the confidence for {bread} ⇒ {butter} is 0.3, indicat-

ing that butter is bought in 30% of transactions where bread is purchased. In our

study, confidence measures the likelihood of encountering dbi when abf is present.

Thus, Con f idence({abf} ⇒ {dbi}) is the ratio of absolute support to the num-

ber of transactions containing abf.

Con f idence({abf}⇒ {dbi}) =
AbsoluteSupport({abf}⇒{dbi})

|{t∈T :abf∈t}|

Finally, we identified the optimal values by selecting the association rules with

the highest average support and confidence for each bug resolution record.
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Table A.3: Co-evolution Details for ACCUMULO-3937

Bug Reference abf dbi Abs. Sup. Sup. Conf.

ACCUMULO-3937 8996 25253 32 0.00414 0.12261
ACCUMULO-3937 25237 25253 49 0.00635 0.16724
ACCUMULO-3937 25258 25253 33 0.00427 0.41772
ACCUMULO-3937 8996 27471 16 0.00207 0.0613
ACCUMULO-3937 25237 27471 27 0.0035 0.09215
ACCUMULO-3937 25258 27471 14 0.00181 0.17722
ACCUMULO-3937 8996 33387 3 0.00039 0.01149
ACCUMULO-3937 25237 33387 6 0.00078 0.02048
ACCUMULO-3937 25258 33387 6 0.00078 0.07595

For example, a bug resolution record, ACCUMULO-3937, includes bug-fixing

files {8996, 25237, 25258} and detached bug-inducing files {25253, 27471, 33387}.

Table A.3 shows all {abf} ⇒ {dbi} association rules between these sets. The table

lists each rule’s absolute support, support, and confidence values. Rows 3, 6, and 9

represent the highest average values for support and confidence, which we refer to

as the record’s optimal pairs.

A.4.5.3 Evaluation

In the final step, we performed descriptive statistical analysis. We calculated the

five-number summary for the optimal pairs identified in Subsubsection A.4.5.2, and

created boxplots for each software system. These boxplots visually depict the dis-

tribution of the optimal pairs’ support, confidence, and absolute support values.

This analysis demonstrated the co-evolution of bug-fixing files with their asso-

ciated detached bug-inducing files, offering a quantitative basis for benchmarking

the software systems.
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A.5 Results
This section presents the results of our study, focusing on the co-evolution between

bug-fixing files and their associated detached bug-inducing files. We assessed the

association rules linking these files and performed statistical analysis to quantify the

extent of their co-evolution.

A.5.1 Absolute Support

Table A.4: Absolute Support

Accumulo Ambari Hadoop Lucene Oozie

Min. 0 0 0 0 1
25% 1 1 1 2 2
Median 2 2 2 3 3
75% 5 4 5 6 7
Max. 51 187 79 112 203
Average 4.3 3.7 4.9 5.1 7
SD 6.6 8.8 9.5 7.1 18.6

Table A.4 summarises the Absolute Support values for the five software sys-

tems, including the minimum, 25th percentile, median, 75th percentile, maximum,

average, and standard deviation for each system. The average Absolute Support

values range from 3.7 to 7, with standard deviations between 6.6 and 18.6.

Accumulo Ambari Hadoop Lucene Oozie
0

100

200

Figure A.3: Absolute Support Boxplots

Figure A.3 shows the boxplots of Absolute Support values for the five software

systems based on the data in Table A.4. These boxplots provide a visual overview

of the distribution of Absolute Support for each system.
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A.5.2 Support

Table A.5: Support

Accumulo Ambari Hadoop Lucene Oozie

Min. 0.00000 0.00000 0.00000 0.00000 0.00042
25% 0.00013 0.00004 0.00004 0.00006 0.00084
Median 0.00026 0.00008 0.00008 0.00009 0.00127
75% 0.00065 0.00017 0.00020 0.00017 0.00295
Max. 0.00661 0.00776 0.00314 0.00322 0.08562
Average 0.00055 0.00015 0.00020 0.00015 0.00297
SD 0.00085 0.00037 0.00038 0.00021 0.00784

Table A.5 summarises the Support values for the five software systems, includ-

ing the minimum, 25th percentile, median, 75th percentile, maximum, average, and

standard deviation for each system. The average Support values range from 0.00015

to 0.00297, with standard deviations between 0.00021 and 0.00784.

Accumulo Ambari Hadoop Lucene Oozie
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Figure A.4: Support Boxplots

Figure A.4 presents the Support boxplots for the five software systems, as de-

rived from the data in Table A.5. These boxplots visually depict the distribution of

Support values across the different systems.

A.5.3 Confidence

Table A.6 summarises the Confidence values for the five software systems, includ-

ing the minimum, 25th percentile, median, 75th percentile, maximum, average, and

standard deviation for each system. The average Confidence values range from

0.15615 to 0.26436, with standard deviations ranging from 0.13219 to 0.22141.
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Table A.6: Confidence

Accumulo Ambari Hadoop Lucene Oozie

Min. 0.00000 0.00000 0.00000 0.00000 0.00068
25% 0.03846 0.06667 0.03448 0.05263 0.11327
Median 0.10000 0.17742 0.09524 0.10526 0.24242
75% 0.20000 0.38503 0.25926 0.20833 0.36364
Max. 0.90909 0.85714 0.67500 0.87179 0.85714
Average 0.15615 0.24974 0.16996 0.15750 0.26436
SD 0.17060 0.22141 0.18314 0.13219 0.19982

Accumulo Ambari Hadoop Lucene Oozie
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Figure A.5: Confidence Boxplots

Figure A.5 shows the Confidence boxplots for all five software systems, de-

rived from the data in Table A.6. These boxplots illustrate the distribution of Con-

fidence values across the different systems.

A.5.4 Co-evolving Files Per Transaction

Table A.7: Co-evolving Files Per Transaction

Bug-Fixing Files DBIFs Co-evolving Files/Transaction

Accumulo 78 866 0.1222
Ambari 437 651 0.0451
Hadoop 158 193 0.0140
Lucene 58 897 0.0274
Oozie 165 483 0.2733

Table A.7 summarises each software system’s co-evolving files per transaction.

It lists the number of bug-fixing files, detached bug-inducing files (DBIFs), and the
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co-evolving files per transaction. The co-evolving file values range from 0.0140 to

0.2733.

A.5.5 Cumulative Averages for all Five Software Systems

Table A.8: Cumulative Averages for All Five Software Systems

Cumulative Average Value

Number of Transactions 18822.80
Support 0.00080
Absolute Support 5
Confidence 0.19954

Table A.8 summarises the cumulative averages for transactions, support, ab-

solute support, and confidence across all five software systems. The cumulative

averages are as follows: 18,822.80 transactions, 0.00080 support, 5 for absolute

support, and 0.19954 for confidence.
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A.6 Discussion
Our co-evolution analysis provides valuable insights into the relationship between

bug-fixing and bug-inducing files within software systems. The Absolute Support,

Support, and Confidence values reflect the frequency and likelihood of co-evolution

between these files. Additionally, the co-evolving files per transaction values, which

capture the co-evolution rate for each software system, are essential for understand-

ing the interaction dynamics between bug-fixing and bug-inducing files. The cumu-

lative averages offer a broader perspective on co-evolution patterns across all five

systems. In the following subsections, we discuss the results of our analysis, their

implications, and their relevance to software maintenance and evolution.

A.6.1 Co-evolution Analysis

The first row in Table A.4 indicates that, except for Oozie, no bug-fixing files co-

changed with detached bug-inducing files. The median absolute support across all

five software systems ranges from just 2 to 3, meaning that in half of the transactions

(as detailed in Table A.2), bug-fixing files co-changed with detached bug-inducing

files only 2-3 times. This co-evolution trend does not significantly improve even in

the third quartile, with Oozie showing the most improvement.

Overall, the metrics present poor co-evolution results, as demonstrated in Fig-

ures A.3 and A.4, and notably in Table A.8. The data shows that, on average, a

bug-fixing file co-changes with a detached bug-inducing file only five times out of

18,822.80 transactions. Nevertheless, some instances of solid co-evolution were

observed in individual systems.

The maximum confidence values in Table A.6 are generally very high, ap-

proaching 1, suggesting that in rare cases, detached bug-inducing files co-evolved

with bug-fixing files. In such instances, co-evolution can reliably identify associ-

ated detached bug-inducing files based on the bug-fixing files. However, as shown

in Figure A.5, these high confidence values, apart from those in Ambari, are often

outliers, indicating their rarity.

Despite the low significance of support and confidence values, they still suggest

a latent dependency between specific bug-fixing and detached bug-inducing files.
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This observation aligns with Zimmermann et al. [2005], who argued that co-changes

can reveal item coupling not detectable through program analysis.

In conclusion, the co-evolutionary link between bug-fixing and detached bug-

inducing artefacts appears minimal. Thus, the SZZ algorithm cannot reliably use

software co-evolution to infer detached bug-inducing files in bug-resolution records.

These finding aligns with the previous studies by Wen et al. [2019], Pascarella et al.

[2018], da Costa et al. [2017], Alohaly and Takabi [2017], Gema et al. [2020],

Sophia et al. [2021] and Ogino et al. [2021] on the algorithm’s limitations.

A.6.2 The Effect of Co-evolution Rate

We analysed each software system’s co-evolution rate to understand Oozie’s rela-

tively higher statistical figures (see Table A.7). We calculated the co-evolution rate

by summing the total number of bug-fixing files and detached bug-inducing files

(DBIFs) for each system and dividing these sums by the total number of transac-

tions, resulting in the co-evolving files per transaction.

Next, we tested the correlation between the co-evolving files per transaction

values and the average support values in Table A.5. We chose the support metric

for our correlation test because it is the only metric that considers all transactions

within a software system. The Pearson Correlation Coefficient test produced an r

value of 0.9618 and a p-value of 0.008917, indicating a strong positive correlation

between the two sets of values. This suggests that the co-evolution rate is inversely

proportional to the total number of transactions in a software system. Put in another

way, software systems whose co-evolution instances are very complex, i.e., involv-

ing many files, tend to have fewer transactions overall. This explains why Oozie,

with fewer transactions, has higher absolute support, support, and confidence values

than the other systems.

For instance, consider Ambari in Tables A.4 and A.5. Table A.5 shows a maxi-

mum support of 0.00776, corresponding to an absolute support of 187 in Table A.4.

Meanwhile, Oozie’s higher maximum support of 0.08562 results in an absolute sup-

port of 203. Despite the significant difference in their support values, their absolute
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support values are comparable (as reflected in their similar positions in Figure A.3)

because the number of transactions in Oozie is significantly lower than in Ambari.

A.6.3 Bug-Contributing Artefacts

Table A.7 reveals that the total number of detached bug-inducing files consistently

exceeds that of bug-fixing files across all systems. This difference arises because

bug inducements often occur during feature changes or implementations, leading to

commits encompassing all the code changes related to the feature. In other words,

bugs are usually a side effect of feature development; thus, bug-inducing commits

tend to be more extensive, often involving multiple files beyond those directly re-

lated to the bug. In contrast, bug-fixing commits tend to be more focused and in-

volve fewer files as they target a specific bug/issue. Consequently, not every file

altered in a bug-inducing commit necessarily contributed to the bug.

The term ‘bug-contributing’ is similar to the ‘vulnerability-contributing’ con-

cept discussed by Meneely et al. [2013]. They argued for the use of ‘vulnerability-

contributing’ over terms like ‘injecting’, ‘fix-inducing’, or ‘fault-introducing’ found

in the literature. The reasoning is that the original bug-inducing commit does not

necessarily prompt an immediate fix; instead, it contributes to the bug’s emergence.

In our context, we use ‘bug-contributing artefacts’ to refer to files within the de-

tached bug-inducing set that may not have directly caused the bug but are still con-

sidered contributors due to their involvement in the co-evolving set.

This raises the question: how can we identify the specific bug-contributing

artefacts within a set of bug-inducing files? To explore this, we manually inspected

several bug resolution records. We found that most bug-contributing artefacts within

these bug-inducing files were Java source files (backend). Other artefacts included

frontend files, controllers (servlets), test files, and configuration files.

Focusing solely on Java artefacts might have yielded higher co-evolution fig-

ures, but this would not provide a comprehensive analysis of software co-evolution.

Software artefacts often co-evolve across layers because components from different

layers typically interact to perform a function. For example, in a monolithic Java

web application, changes to the backend may necessitate corresponding updates
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to the frontend, controllers, and test files unless a developer is simply refactoring.

Therefore, a complete analysis of software co-evolution may need to consider arte-

facts from all layers.

Many studies, including those by Śliwerski et al. [2005] and Wen et al. [2019],

have not addressed this observation or the concept of detached bug-inducing files

introduced earlier.

A.6.4 Implications

Regarding Absolute Support, systems like Oozie and Ambari, which exhibit high

maximum support values and significant variability, may require more targeted

maintenance due to their complex and frequent co-evolution patterns. In contrast,

Accumulo, with its lower and more stable values, might be easier to maintain but

could also indicate less intricate interactions. The high maximum values in Am-

bari and Oozie suggest the presence of specific modules or components with high

activity levels, potentially serving as hotspots for bugs or areas needing optimi-

sation. Identifying these hotspots can help prioritise bug resolution and system

enhancements. Oozie’s minimum value of 1 and higher quartile values suggest a

more interconnected system, which might benefit from strategies aimed at improv-

ing modularity to mitigate the impact of bugs.

Regarding Support, Oozie’s high maximum and average support values and

substantial variability indicate a more complex system with frequent and diverse

interactions between bug-fixing and bug-inducing files. With lower variability, sys-

tems like Ambari and Hadoop may have more predictable interaction patterns but

still require attention to outlier transactions with higher support values.

Regarding Confidence, systems with higher average and maximum confidence

values, such as Oozie and Ambari, may experience more frequent and predictable

interactions between bug-fixing and bug-inducing files. The variability in confi-

dence values highlights the complexity and potential for high-impact co-evolution

scenarios.
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A.6.5 Recommendations

The co-evolution analysis reveals critical insights into the relationship between bug-

fixing and bug-inducing files, leading to a few software maintenance and evolution

recommendations.

Our findings suggest that focusing maintenance efforts on modules with high

co-evolution activity can help identify and address hotspots for bugs and areas need-

ing optimisation.

Enhancing system modularity can also help contain bugs within specific mod-

ules, improving maintainability and reducing the risk of bugs spreading across a

software system.

We also deduced that prioritising transactions with higher support values can

help address critical bugs and improve system reliability, as these indicate more

frequent co-evolution between bug-fixing and bug-inducing files. Additionally,

analysing transactions with lower variability in support and confidence can help

identify stable interaction patterns and maintain system stability.

Finally, to analyse software co-evolution more comprehensively in real-world

scenarios, we recommend including all evolving software artefacts, not just one file

type, as in our case, Java files.
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A.7 Threats to Validity
This section discusses the threats to the validity of our study, categorised into inter-

nal and external validity.

A.7.1 Internal Validity

Internal validity threats concern the study’s design, execution, and analysis.

A.7.1.1 Dataset Snapshot

The dataset used in our experiment was obtained in the first quarter of 2022. There-

fore, our results reflect the state of the five analysed software systems at that time.

Future studies may yield different outcomes depending on the evolution of these

systems.

A.7.1.2 Sample Size

Our experiment and conclusions are based on five repositories from Wen et al.

[2019]’s study. Including more software systems or systems from other sources

could lead to different cumulative results. However, our findings remain valid for

the five systems analysed.

A.7.2 External Validity

External validity threats concern the generalisability of our results to other contexts.

A.7.2.1 Generalisation to Other Programming Languages

Different programming languages impose varying structures on artefact organisa-

tion, influencing project structure and module organisation. For example, Java man-

dates that methods (functions) be declared within classes, whereas JavaScript allows

functions to be defined outside classes.

These design differences mean a JavaScript developer might spread related

functions across multiple files, creating more association rules during functionality

changes. In contrast, a Java developer would likely modify a single class file. Since

our experimental repositories are Java-based, results may vary when applied to other

programming languages.
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A.8 Conclusion
This study examined the co-evolution of software artefacts modified to fix a bug

with those that induced the bug. We analysed five Apache open-source software

systems and identified two types of bugs.

Type-I bugs have straightforward origins, and developers can fully resolve

them by modifying the artefacts that induced them. In contrast, Type-II bugs are

induced by multiple artefacts, though not all require modification during the fix.

We found that Type-II bugs are more prevalent in the analysed software systems.

The key finding of this study is that the co-evolution between bug-fixing and

bug-inducing artefacts is minimal. Our results showed low median support and con-

fidence values, ranging from 0.08% to 0.13% and 9.52% to 24.24%, respectively.

These low figures indicate that the SZZ algorithm cannot reliably infer all bug-

inducing artefacts based on co-evolution, making it more suitable for Type-I bugs.

Future research to improve the SZZ algorithm should deprioritise co-evolution as a

focus. Thus, we conclude that the co-evolutionary relationship between bug-fixing

and detached bug-inducing artefacts is insignificant. This conclusion is consistent

with the imprecision issues of the SZZ algorithm noted in previous studies.

Regarding the construction of bug prediction datasets, our findings suggest that

it is not feasible to create a more comprehensive dataset that accurately represents

the broader bug landscape, incorporating bug-inducing and bug-fixing information.

This is primarily due to the unreliable, inaccurate, or unknown nature of information

on bug-inducing commits. As previously discussed in the Subsection A.2.2, the

ground truth in typical bug prediction datasets is generally estimated using only

bug-fixing commit data. The underlying assumption is that the artefacts modified

during the bug-fixing commits introduced the bug and were buggy before the fix.

While this assumption is not always accurate, it remains the most viable approach

without precise information about bug-inducing commits and will likely continue

to be used in future studies. Regardless, acknowledging this approach’s limitations

is essential for interpreting the results of bug prediction studies.



Appendix B

Exploring Large Language

Model-Based Vulnerability

Prediction

This study explores the out-of-the-box effectiveness of Large Language Models

(LLMs) in vulnerability prediction, with a focus on ChatGPT. It evaluates their

performance in identifying vulnerabilities in code samples and compares them with

our information retrieval-driven vulnerability prediction technique. The study offers

insights into the utility, strengths, and potential improvements of LLMs in software

security, particularly in the context of vulnerability prediction.
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B.1 Introduction
Reliable and secure software applications are paramount in today’s rapidly evolv-

ing digital landscape. As digitalisation expands, strengthening software against

breaches and cyber-attacks becomes crucial. A software vulnerability can be

likened to an unsecured door, allowing unauthorised access to sensitive data. To

mitigate these risks, the software community is exploring various methods to iden-

tify and fix vulnerabilities in code bases [Akuthota et al., 2023].

Software vulnerabilities pose significant risks, including the compromise of

sensitive information1 and system failures2. Researchers have proposed machine

learning and deep learning approaches for identifying vulnerabilities in source code

[Hanif and Maffeis, 2022, Fu and Tantithamthavorn, 2022, Nguyen et al., 2022,

Zhou et al., 2019b]. Previous methods often trained models from scratch, using

algorithms such as Random Forest [Ferzund et al., 2009, Shailee et al., 2024, Dam

et al., 2021] or smaller neural networks, such as Graph Neural Networks [Nguyen

et al., 2022], or relied on medium-sized pre-trained models [Fu and Tantithamtha-

vorn, 2022, Feng et al., 2020b].

Recent advancements in Large Pre-Trained Language Models have shown re-

markable few-shot learning capabilities across various tasks [Xia and Zhang, 2023,

Zhang et al., 2023d,e, Weyssow et al., 2023, Zhou et al., 2023]. "Few-shot learning"

refers to a model’s ability to learn from a few examples, making it ideal for tasks

with limited training data. Introducing sophisticated models, such as OpenAI’s

Generative Pre-trained Transformers (GPT) series, has added a new dimension to

this field. Specifically, the GPT series has exhibited a high level of proficiency in

understanding, producing, and evaluating text, making it a potentially valuable tool

for software code evaluation [Akuthota et al., 2023], including vulnerability predic-

tion.

However, it is essential to meticulously evaluate the utility, strengths, and po-

tential enhancements of LLMs in software security, particularly in the context of

1https://www.bankinfosecurity.com/ms-exchange-flaw-causes-spike
-intrdownloader-gen-trojans-a-16236

2https://docs.broadcom.com/doc/istr-07-sept-emea-en

https://www.bankinfosecurity.com/ms-exchange-flaw-causes-spike-intrdownloader-gen-trojans-a-16236
https://www.bankinfosecurity.com/ms-exchange-flaw-causes-spike-intrdownloader-gen-trojans-a-16236
https://docs.broadcom.com/doc/istr-07-sept-emea-en


B.1. Introduction 333

vulnerability prediction. The performance of LLMs on security-oriented tasks,

such as vulnerability prediction, remains largely unexplored. While LLMs are be-

ing utilised in software engineering, notably in automated program repair [Xia and

Zhang, 2023], their effectiveness in classification tasks and whether they can out-

perform contemporary machine learning and deep learning models in vulnerability

prediction remains uncertain [Zhou et al., 2024].

This study investigates the out-of-the-box effectiveness of LLMs in predicting

vulnerability. It also compares their performance with the results obtained in Chap-

ters 4, 5, and 6 to understand the potential of LLMs in vulnerability prediction.

B.1.1 Motivation

Chapters 4 and 5 investigated vulnerability prediction using token-based and code-

based source code representations, yielding promising results in a within-project

setting. The token-based approach achieved a precision of 0.73, a recall of 0.60,

and an F1 score of 0.66. The code-based approach yielded a precision of 0.72, a

recall of 0.62, and an F1 score of 0.67.

Chapter 6 extended this research to a mixed-project setting as a stress test. This

experiment showed poor performance due to issues with data quality and quantity,

highlighting the need for a systematic approach to dataset selection in vulnerability

prediction research. These issues were discussed in Subsection 6.2.2 and supported

by empirical evidence in Subsection 6.4.4, using Coefficient of Variation analyses

to compare dataset variability across within- and mixed-project settings.

Variability is a significant challenge in vulnerability prediction, affecting the

generalisability and performance of models. High variability datasets often result

in models with poor generalisability [Croft et al., 2022, Berggren et al., 2024], as

observed in the mixed-project experiments in Chapter 6.

With the rise of LLMs, it is speculated that these models could help address

some of the data-related challenges (see Subsection 6.2.2) in vulnerability pre-

diction, particularly the issues related to data quantity, such as accessibility and

scarcity, given that these models are trained on vast amounts of data. However,

their impact on data quality remains to be assessed.
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This study examines the out-of-the-box effectiveness of LLMs in vulnerabil-

ity prediction and compares their performance with that of contemporary machine

learning and deep learning models. Specifically, we focus on ChatGPT to evalu-

ate its proficiency in identifying vulnerabilities within diverse code samples and its

potential for classification tasks in vulnerability prediction.

B.1.2 Research Question

This study addresses the following research question:

How well do Large Language Models perform on method-level vulner-

ability prediction tasks?

We evaluate the effectiveness of Large Language Models, particularly the pop-

ular ChatGPT, in identifying vulnerabilities within code samples. Their perfor-

mance is compared to contemporary machine learning and deep learning models.

The results are analysed to determine the potential of LLMs in vulnerability predic-

tion.

B.1.3 Research Scope

The research scope for this study includes:

• Programming Language: The datasets are written in Java, with a focus on

vulnerabilities in Java methods. Other sources, such as web services, annota-

tions, and configuration files, are not considered.

• Method-Level Vulnerability Prediction: The focus is on predicting vulner-

abilities at the method level rather than at the class or file level.

• Within- and Mixed-Project Vulnerability Prediction: The study evaluates

the LLM-driven vulnerability prediction in both within- and mixed-project

settings, using datasets comprising multiple releases of a single software sys-

tem and multiple software systems.

• Binary Classification: The study uses binary classification to predict

whether a method is vulnerable without considering multi-class classification

(i.e., predicting the specific type of vulnerability).
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B.1.4 Significance and Contributions

This study assesses the out-of-the-box effectiveness of LLMs in predicting software

vulnerabilities, comparing their performance with that of contemporary machine

learning and deep learning models. It provides insights into the strengths, utility,

and potential enhancements of LLMs in software security, particularly in the context

of vulnerability prediction. The empirical evidence supports the effectiveness of

LLMs in this domain, laying a foundation for future research and suggesting new

avenues for exploration.

The study also discusses the practical implications of using LLMs for vulner-

ability prediction and their potential impact on software security practices. It con-

tributes to understanding LLMs in software security and expands the knowledge

base.

B.1.5 Structure of the Study

Section B.2 provides background information on generative artificial intelligence,

Large Language Models, and ChatGPT. Section B.3 presents a literature review

on vulnerability prediction using Large Language Models. Section B.4 outlines the

methodology, including dataset selection, data preprocessing, and model evaluation.

Section B.5 presents the experimental results. Section B.6 presents the discussion

of the findings. Section B.7 addresses threats to validity. Finally, Section B.8 con-

cludes the study.
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B.2 Background
The previous section introduced Large Language Models and briefly discussed their

potential in software engineering, including their primary applications in natural

language processing tasks, automated program repair, code generation, and other

generation-based tasks. The section also highlighted the potential of Large Lan-

guage Models in vulnerability prediction, particularly in identifying vulnerabilities

within code samples.

This section provides additional background on generative artificial intelli-

gence, Large Language Models, and ChatGPT, as well as their potential applica-

tions in software security, with a focus on vulnerability prediction.

B.2.1 Generative Artificial Intelligence and Large Language

Models

Generative artificial intelligence has become a pivotal field, transforming domains

such as computer vision, natural language processing, the creative arts [Cao et al.,

2023], and requirements engineering [Vogelsang and Fischbach, 2024].

Generative models have a long history in artificial intelligence, dating back to

the 1950s with the introduction of Hidden Markov Models (HMMs) [Knill and

Young, 1997] and Gaussian Mixture Models (GMMs) [Reynolds et al., 2009].

These early models generated sequential data, such as speech and time series.

Generative AI focuses on creating algorithms and models that generate syn-

thetic data that closely resembles real-world data. This capability has significant

implications for the entertainment, healthcare, and finance industries. Applications

include image synthesis, text generation, music composition, and human-like chat-

bots [Zhang et al., 2023a].

The advent of deep learning significantly improved the performance of gen-

erative models. The availability of large-scale datasets and advancements in deep

learning techniques have driven the rapid development of Generative AI [Cao et al.,

2023]. The growing interest in and impact of Generative AI are evident in recent

statistics. Precedence Research reported that the global market for Generative AI
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was valued at USD 10.79 billion in 2022. It is projected to reach approximately

USD 118.06 billion by 2032, with a Compound Annual Growth Rate (CAGR) of

27.02% from 2023 to 20323. This surge in market demand highlights the recog-

nition of Generative AI as a powerful tool with immense potential across various

industries [Bandi et al., 2023].

Generative AI encompasses diverse applications, including StyleGAN and

OpenAI’s GPT series. StyleGAN [Karras et al., 2019], developed by NVIDIA,

revolutionised image generation by producing highly realistic and varied images. It

employs a style-based approach, manipulating visual attributes to enable new cre-

ative dimensions in digital art. Meanwhile, OpenAI’s GPT-3 transformed natural

language processing [Brown et al., 2020]. Its massive scale and transformer archi-

tecture generate human-like text with impressive fluency and coherence, excelling

in tasks such as question answering, essay writing, and conversation. These ex-

amples demonstrate the potential of Generative AI to transform creative industries,

content generation, and human-machine interaction, paving the way for further ad-

vancements.

B.2.2 The Generative Pre-trained Transformer Series and

ChatGPT

Large Language Models are a subset of Generative AI models focused on natural

language processing tasks [Yu et al., 2023]. The GPT series by OpenAI exemplifies

LLMs, known for their large size, transformer architecture, and impressive perfor-

mance across various tasks4. ChatGPT, a variant of the GPT series, is tailored for

conversational tasks. It generates human-like text, engages in dialogue, and under-

stands context. These models are designed for user interaction, answering ques-

tions, and providing information, making them ideal for chatbot applications5. The

GPT series has played a pivotal role in advancing Generative AI, particularly in the

3https://www.globenewswire.com/en/news-release/2023/05/15/266836
9/0/en/Generative-AI-Market-Size-to-Hit-Around-USD-118-06-Bn-By-2
032.html/

4https://platform.openai.com/docs/models
5https://chat.openai.com/

https://www.globenewswire.com/en/news-release/2023/05/15/2668369/0/en/Generative-AI-Market-Size-to-Hit-Around-USD-118-06-Bn-By-2032.html/
https://www.globenewswire.com/en/news-release/2023/05/15/2668369/0/en/Generative-AI-Market-Size-to-Hit-Around-USD-118-06-Bn-By-2032.html/
https://www.globenewswire.com/en/news-release/2023/05/15/2668369/0/en/Generative-AI-Market-Size-to-Hit-Around-USD-118-06-Bn-By-2032.html/
https://platform.openai.com/docs/models
https://chat.openai.com/
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field of Natural Language Processing. As of this writing in Q3, 2024, the series

includes various models, such as the GPT-4o, GPT-4o-mini, GPT-4, and GPT-3.5-

turbo. These models understand and generate natural language or code, with some

also accepting image inputs. GPT-4o, the most advanced, generates text at an im-

pressive speed and excels in vision and non-English language tasks. GPT-4o-mini,

a smaller yet capable model, is ideal for tasks previously relying on GPT-3.5-turbo.

It offers higher intelligence and multimodal capabilities at a lower cost, making it

suitable for smaller vision-related tasks. GPT-4, OpenAI’s current flagship series,

is renowned for its advanced reasoning and broader knowledge. It outperforms the

previous series in complex reasoning situations. The GPT-3.5-turbo model (from

the GPT-3 series), optimised for chat but effective for non-chat tasks, remains avail-

able as of the time of writing and has been instrumental in various applications,

from natural language understanding to code generation. LLMs are characterised

by their vast size, extensive training data, and transformer architecture. For exam-

ple, GPT-3 is trained on 175 billion parameters, while GPT-4, OpenAI’s current

flagship, is trained on one trillion parameters [Yu et al., 2023].

B.2.3 Large Language Model Applications in Software Vulner-

ability Prediction

LLMs have shown significant promise in software engineering, particularly in au-

tomated program repair, code generation, and code summarisation. Their ability to

understand and generate code makes them valuable for software development and

maintenance. The recent surge in Generative AI has sparked interest in applying

LLMs to software security, particularly in predicting vulnerabilities in code. Recent

studies have examined the effectiveness of LLMs in this domain. We contribute to

this discussion by evaluating ChatGPT’s performance in vulnerability prediction us-

ing OpenAI’s GPT-3 and GPT-4 series models, with training data up to September

2021 and October 2023, respectively. We assess the out-of-the-box performance

of these models without fine-tuning6 or providing any specific context or prompts

related to known vulnerabilities, focusing solely on method-level code samples. We

6https://platform.openai.com/docs/guides/fine-tuning

https://platform.openai.com/docs/guides/fine-tuning


B.2. Background 339

then compare these results with those obtained in Chapters 4, 5, and 6 to gauge the

potential of LLMs in vulnerability prediction. Finally, we also assess the perfor-

mances of the GPT-3 and GPT-4 series models to understand their advancements

and potential in software vulnerability prediction tasks.
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B.3 Literature Review

This section reviews studies on the application of LLMs in vulnerability detection

and prediction, providing an overview of the current state-of-the-art in vulnerability

detection using LLMs.

Akuthota et al. [2023] emphasised the critical need to secure software against

breaches and cyber-attacks, especially in an increasingly digital world. They noted

that traditional methods often fail to manage the complexity of modern software

systems, prompting the exploration of advanced machine learning models. They

investigated the use of Large Language Models, specifically the GPT-3.5-Turbo

model, to detect and monitor software vulnerabilities. The study aimed to eval-

uate the effectiveness of GPT-3.5-Turbo in identifying vulnerabilities within soft-

ware code, enhancing software security, and release management through continu-

ous monitoring. Their methodology involved using the OpenAI interface to interact

with GPT-3.5-Turbo, developing a function called "find security issues and gener-

ate fix" to scan code snippets, identify vulnerabilities, and suggest potential fixes.

Data from documented vulnerabilities were analysed, and automated testing tools,

such as the OWASP Benchmark, were utilised to streamline the evaluation pro-

cess. The study achieved an accuracy of 0.77 in detecting vulnerabilities across

2,740 test cases, identifying various types of vulnerabilities, including SQL Injec-

tion, Cross-Site Scripting (XSS), and Command Injection. The results demonstrated

that GPT-3.5-Turbo can effectively analyse code to predict security flaws, making

it a valuable tool for preliminary code reviews. The research concluded that LLMs,

such as GPT-3.5-Turbo, show significant promise in improving software security by

accurately identifying vulnerabilities. However, the study also noted the need for

ongoing refinement to address biases and enhance detection capabilities. It recom-

mended that future work focus on training LLMs with code-based data, optimising

prompts, and exploring different parameters to improve model performance.

In response to the increasing complexity of web applications and the rise in

security vulnerabilities, Szabó and Bilicki [2023] investigated the use of LLMs,

particularly GPT models, to enhance web application security. They noted that
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traditional vulnerability detection methods often require significant human inter-

vention and may not fully address the complexities of modern web frameworks.

The study aimed to assess the effectiveness of GPT models in detecting Improper

Isolation or Compartmentalisation (CWE-653) vulnerabilities within web applica-

tion source code. The goal was to automate the detection of these vulnerabilities,

reducing the need for extensive manual code reviews. Their methodology involved

a multi-step process using the GPT Application Programming Interface (API) for

static code analysis of Angular web applications. The steps included preprocess-

ing and minifying the source code of selected open-source Angular projects, using

GPT models to identify and classify sensitive data elements, mapping the codebase

into JSON structures for further analysis, assessing the protection levels of sensi-

tive code segments based on predefined criteria, and comparing GPT-based analysis

results with manual evaluations to assess accuracy. Few-shot examples and chain-

of-thought prompting techniques improved the models’ interpretive accuracy. The

results showed that GPT-4 significantly outperformed previous models, achieving

an 88.76% vulnerability detection rate. GPT-4 effectively understood the context

and semantics of the source code, accurately detecting and classifying sensitive

data segments. However, challenges were noted in handling highly modular code

and identifying services managing multiple types of sensitive data. The study con-

cluded that GPT-4 exhibits considerable potential for enhancing web application

security through automated code inspection, thereby reducing the need for manual

reviews and improving overall security. The study recommended that future work

focus on refining prompts, exploring GPT models for other vulnerabilities and web

frameworks, and addressing challenges like modular code handling and complex

data flow detection.

Zhou et al. [2024] addressed the critical issue of software vulnerabilities, which

can lead to severe consequences, including data breaches and system failures. They

noted that while machine learning and deep learning models such as CodeBERT

have been used for vulnerability detection, the emergence of Large Pre-Trained

Language Models such as GPT-3.5 and GPT-4 offers new possibilities. The study
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aimed to evaluate the effectiveness of LLMs, particularly GPT-3.5 and GPT-4, in

detecting software vulnerabilities and to determine whether they could outperform

medium-sized models, such as CodeBERT, especially in classification tasks related

to software security. Additionally, the research explored the impact of different

prompt designs on the performance of these models. Using ChatGPT, based on

GPT-3.5 and GPT-4, the researchers experimented with various prompt designs to

enhance vulnerability detection. They utilised in-context learning (iCL) to avoid the

computational cost of fine-tuning large models. Prompts included task descriptions,

role descriptions, project information, and examples from the Common Weakness

Enumeration (CWE) database. The performance of these prompts was compared

to that of a fine-tuned version of CodeBERT, using a dataset of vulnerability-fixing

commits from C/C++ software repositories. Results showed that the base prompt

alone was inadequate, with GPT-3.5 achieving only 50% accuracy and predicting all

samples as non-vulnerable. However, incorporating external knowledge from CWE

examples and training data significantly improved performance. GPT-3.5 achieved

62.7% accuracy by combining random sampling and retrieval of similar code, sur-

passing CodeBERT’s 60.3% accuracy. GPT-4, using the CWE examples prompt,

outperformed CodeBERT by 34.8% in accuracy, highlighting its superior capability

in vulnerability detection. The study concluded that LLMs, particularly GPT-3.5

and GPT-4, show considerable promise in enhancing software vulnerability detec-

tion, especially when well-crafted prompts are used. While GPT-3.5 performed

competitively with CodeBERT, GPT-4 demonstrated even more tremendous poten-

tial, indicating significant progress in the field. The researchers emphasised the

need for further investigation into local and specialised LLMs, improving preci-

sion and robustness, addressing the long-tailed distributions of vulnerability types,

and fostering trust and synergy with developers. These findings suggest that LLMs

could be crucial in future software security frameworks if optimised and tailored to

specific needs.

Yıldırım et al. [2024] addressed the growing concerns around API security,

noting that as APIs become integral to software development, they also introduce
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unique security risks. The study aimed to compare the effectiveness of static code

analysers and LLMs in detecting API vulnerabilities, particularly those listed in the

OWASP Top 10 API Security Risks. The primary objective was to evaluate how

well these tools identify 40 API vulnerabilities in source code, each representing a

category within the OWASP Top 10. The research sought to highlight the poten-

tial advantages of LLMs over traditional static code analysers. Their methodology

involved evaluating ten static code analysers and four popular LLMs (ChatGPT

3.5, ChatGPT 4, LLaMA 2, and Bard) against 40 Python API code samples, each

containing specific vulnerabilities aligned with the OWASP API Top 10 for 2019.

The tools were assessed on accuracy in detecting vulnerabilities, providing correct

Common Weakness Enumeration titles and numbers, and explaining the identified

issues. The results showed significant differences in performance. ChatGPT 4 was

the most effective LLM, with detection rates of 62.5% using the first prompt and

42.5% using the second. LLaMA 2 was the least effective. Static code analysers

generally had lower detection rates, with Snyk leading at 25%, while tools like

Pylint, Pyre, and Trivy failed to detect any vulnerabilities. The study highlighted

that ChatGPT 4 demonstrated a deep understanding of complex API security issues,

achieving 100% accuracy in specific OWASP categories. However, both LLMs and

static code analysers showed variability across different OWASP categories, sug-

gesting that a multi-tool approach might be necessary for comprehensive vulnera-

bility detection. The study concluded that while static code analysers are helpful,

their effectiveness in detecting API vulnerabilities is significantly lower than that

of LLMs, mainly when the latter are appropriately prompted. ChatGPT 4 emerged

as the most effective LLM tested, indicating its potential as a superior tool for API

vulnerability detection. The researchers suggested combining multiple LLMs with

static code analysers could offer a more comprehensive approach to API security.

They also recommended that future research focus on improving the precision and

robustness of LLMs, exploring specialised LLM solutions, and addressing privacy

and security concerns related to using LLMs in vulnerability detection.
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These studies highlight the growing interest in applying LLMs to software

security, particularly in vulnerability detection. They demonstrate their potential

in identifying vulnerabilities to enhance software security and automate the detec-

tion of vulnerabilities. The studies also highlight the importance of well-crafted

prompts, external knowledge, and specialised LLMs in improving vulnerability de-

tection and prediction accuracy, as well as GPT-4’s superior performance in vulner-

ability prediction tasks. The following sections outline the methodology employed

in this study to assess the effectiveness of LLMs, specifically ChatGPT, in predict-

ing vulnerability.
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B.4 Methodology
This section outlines our methodology for evaluating LLMs in the context of vul-

nerability prediction. It provides an overview of the methodology, detailing the

dataset, data preprocessing, and model evaluation.

B.4.1 Overview of the Methodology

Preprocess source code

Evaluate predictive
performance using ground

truth data

Develop a
method-level

dataset

Deduplicate
dataset based on
method source

code

Process and
append ground
truth data to the

dataset

Pass each
method's source
code to ChatGPT
for vulnerability

prediction

Setup ChatGPT
prompt to accept
method source

code as a variable

Obtain a binary
response for each

method's
vulnerability

status

Figure B.1: LLM-Based Vulnerability Prediction Methodology Overview

Figure B.1 illustrates our methodology, which comprises four phases: Dataset

Preparation, Prompt Construction, Vulnerability Prediction, and Performance Eval-

uation.
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The first phase, dataset preparation, includes the first four steps of the method-

ology (Figure B.1). It involved preparing the dataset to ensure data quality and

relevance for vulnerability prediction.

1. Source Code Preprocessing: Preprocess source code samples to remove ir-

relevant information, such as comments.

2. Method-Level Dataset Development: Extract method-level code samples,

removing unqualified code elements and methods, such as abstract and test

methods.

3. Ground Truth Annotation: Annotate the dataset with vulnerability status

labels.

4. Data Deduplication: Remove duplicate entries to ensure data quality.

The second phase, prompt construction, is the fifth step of the methodology

(Figure B.1). It involved constructing prompts that guide LLMs in identifying vul-

nerabilities in code samples.

The third phase, vulnerability prediction, includes the sixth and seventh steps

of the methodology (Figure B.1). It focused on predicting vulnerabilities in method-

level code samples using LLMs.

1. Method Source Code Input: Provide method-level code samples to LLMs

for vulnerability prediction.

2. Binary Classification: Obtain a binary response from LLMs, classifying

methods as vulnerable or non-vulnerable.

The last phase, performance evaluation, is the final step of the methodology

(Figure B.1). It used ground truth information to evaluate LLM performance in

vulnerability prediction using precision, recall, and F1 score metrics.

The methodology provides a structured approach for analysing LLMs’ effec-

tiveness in vulnerability prediction. The following subsections detail the dataset,

preprocessing, and model evaluation.
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Where possible, we refer the reader to relevant sections in previous chapters,

where concepts, resources, or methodological techniques have already been dis-

cussed, rather than repeating the information here to avoid redundancy.

B.4.2 Dataset

To facilitate performance comparison with our information retrieval-driven tech-

nique from previous chapters, we used the same datasets from Chapters 4 and 6: one

comprising multiple releases of a single software system, i.e., within-project dataset

and another comprising multiple software systems, i.e., mixed-project dataset.

The first dataset is Apache Tomcat 7, an open-source web server. It includes 76

releases from 7.0.0 to 7.0.108, each containing Java source code files. For details,

see Chapter 4, specifically Subsection 4.4.2 and Subsubsections 4.4.2.1, 4.4.2.2,

and 4.4.3.4. We used this dataset for within-project vulnerability prediction.

The second dataset comprises code artefacts from multiple software systems

from Al Debeyan et al. [2022] and Reis and Abreu [2021]. For details, see Chap-

ter 6, specifically Subsection 6.3.2 and Subsubsections 6.3.2.1 and 6.3.2.2. We used

this dataset for mixed-project vulnerability prediction.

B.4.3 Data Processing

The data processing steps are similar to those in Chapters 4 and 6: preprocessing

source code, extracting method-level details, annotating methods with vulnerability

labels, and removing duplicates.

B.4.3.1 Data Preprocessing

We utilised JavaParser to parse source code files, removing irrelevant information

to focus on the code’s logic and structure. Irrelevant code artefacts, such as ab-

stract and test methods, were excluded to ensure the use of only relevant data for

vulnerability prediction.

B.4.3.2 Source Code Extraction

We used JavaParser to extract method-level code samples from the source code files.

This process resulted in two datasets of method-level code samples: a within-project

method-level dataset and a mixed-project method-level dataset.
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Unlike previous chapters, which used token-based and code-based represen-

tations, this study employed raw code samples as input. We provided the code

samples directly to the LLMs for vulnerability prediction without any transforma-

tion.

B.4.4 Ground Truth: Estimation

Ground truth is essential for evaluating LLM performance. We annotated the

datasets with vulnerability status labels. For detailed ground truth estimation for

each of the two datasets, see Chapter 4, specifically, Subsubsections 4.4.2.2 &

4.4.3.4, and Chapter 6, specifically, Subsubsections 6.3.2.2.

B.4.5 Data Deduplication

Although data leakage is not a concern in this study due to the use of pre-trained

LLMs, we have deduplicated our data to ensure data quality. Removing duplicates

enhances computational efficiency, storage, and performance metrics and reduces

the financial costs associated with using the OpenAI API service.

B.4.6 OpenAI API

We utilised the OpenAI API7 through HTTP requests to interact with LLMs. The

API provides access to various models for text generation, classification, and other

Natural Language Processing tasks. The API offers a straightforward interface for

interacting with LLMs, allowing users to submit requests and receive responses.

The API documentation provides comprehensive guidance on model usage, request

formats, response structures, and streamlining interaction with LLMs.

B.4.7 Prompt Construction

Prompt construction is crucial for guiding the responses of LLMs. We carefully

constructed prompts to direct the models to predict vulnerabilities based purely on

code logic and structure, excluding external context.

We employed two prompts8: system prompts and user prompts. The system

prompt instructed the LLMs to assess Java methods for vulnerabilities based on their

7https://platform.openai.com/docs/api-reference
8https://platform.openai.com/docs/guides/prompt-engineering

https://platform.openai.com/docs/api-reference
https://platform.openai.com/docs/guides/prompt-engineering
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source code. The user prompt presented the code, guiding the models in classifying

potential vulnerabilities in a binary manner through logical analysis.

You are an advanced vulnerability prediction system that analyses Java
method source code. Your task is to predict whether a given Java method

contains a security vulnerability based on its source code.
When provided with the source code of a Java method, analyse it
thoroughly and determine if it has any security vulnerabilities. Your

response should be “1” if a vulnerability is present and “0” if no vulnerability
is detected.

Make sure to base your predictions solely on the code provided. Do not
consider any external factors or additional context.

Figure B.2: System Prompt for Vulnerability Prediction

Figure B.2 shows the system prompt for vulnerability prediction. It directs the

LLMs to assess Java method source code, focusing exclusively on code logic and

structure without considering any external context.

Analyse the following Java method source code for any security
vulnerabilities. Return your analysis in a JSON object that follows this

schema: {"prediction": PREDICTED_VALUE}.
Assign "1" to the prediction property if the method contains a security

vulnerability; otherwise, assign "0" to the prediction property.
Method Source Code:[METHOD_SOURCE_CODE]

Figure B.3: User Prompt for Vulnerability Prediction

Figure B.3 presents the user prompt for vulnerability prediction. It di-

rects the LLM to analyse Java method source code for security vulnera-

bilities and return a binary classification. The prompt includes two place-

holders: ‘[PREDICTED_VALUE]’ for the predicted vulnerability status and

‘[METHOD_SOURCE_CODE]’ for the method’s source code.

B.4.8 Evaluation Metrics

We evaluated the LLMs’ vulnerability prediction performance using precision, re-

call, and F1 score metrics. These metrics are particularly suitable for imbalanced

datasets in binary classification, offering valuable insights into the models’ effec-

tiveness in identifying vulnerabilities. Additionally, the F1 score is particularly
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useful in this study because it not only facilitates comparison with previous chap-

ters but also places less emphasis on true negatives, which are of lesser interest in

vulnerability prediction tasks, as noted in Subsubsection 4.4.5.3 in Chapter 4.

B.4.9 Approach to Research Question

The experiments in this chapter addressed the research question: How well do Large

Language Models perform on method-level vulnerability prediction tasks?

To explore this research question, we pursued the following objectives:

1. Evaluate the effectiveness of Large Language Models, particularly ChatGPT,

in identifying vulnerabilities within code samples without external context.

2. Compare the performance of Large Language Models with our models in

Chapters 4, 5, and 6.

B.4.9.1 Objective 1

Evaluate the effectiveness of Large Language Models, particularly ChatGPT, in

identifying vulnerabilities within code samples without external context.

We approached this objective from two perspectives: evaluating the perfor-

mance of our LLMs using standard evaluation metrics and assessing their perfor-

mance improvements over time.

We used the OpenAI API’s LLMs, specifically GPT-3.5-turbo-0125, GPT-4o-

mini, and GPT-4o, to predict vulnerabilities from method-level code samples. The

models provided binary classifications indicating the presence or absence of vulner-

abilities, which we evaluated using precision, recall, and F1 score metrics.

To compare the LLMs’ performance, we completed inter-series and intra-series

comparisons. First, we compared the vulnerability prediction performance of the

GPT-3 and GPT-4 models, i.e., an inter-series comparison, to assess the improve-

ments between the two series. This analysis highlighted the advancements in the

GPT series over time. Next, we evaluated the performance differences within the

GPT-4 series models, i.e., intra-series comparison. This comparison showcased the

capabilities of the latest models in the GPT-4 series.



B.4. Methodology 351

For inter-series advancements, we compared the GPT-3.5-turbo-0125 model

with the GPT-4o-mini and GPT-4o models, using GPT-3.5-turbo-0125 as a base-

line. We performed performance ratio analyses across all evaluation metrics on our

within- and mixed-project datasets.

Following the inter-series comparison, we conducted an intra-series analysis to

evaluate the vulnerability prediction performance of the GPT-4 series models, using

GPT-4o-mini as the baseline. Specifically, we compared GPT-4o-mini and GPT-4o

on our within- and mixed-project datasets.

For both inter-series and intra-series comparisons, we calculated performance

improvement ratios and percentages to quantify the advancements in the GPT series

models.

We calculated the performance improvement ratio PIR as follows:

PIR = Pe
Pb

Pe and Pb represent the performance of the model under evaluation and the

baseline model for the evaluation metric, respectively.

The performance improvement percentage PIP was then derived as follows:

PIP = (PIR−1)×100%

These comparisons offered a comprehensive analysis of the vulnerability pre-

diction capabilities of the GPT-3 and GPT-4 series models, highlighting their ad-

vancements.

B.4.9.2 Objective 2

Compare the performance of Large Language Models with our models in Chap-

ters 4, 5, and 6.

The second objective was to compare the performance of LLMs with the best-

performing models developed in Chapters 4, 5, and 6. We used precision, recall,

and F1 score metrics to evaluate the LLMs’ vulnerability prediction performance

and compared the results with those from the earlier chapters.

This comparison provided insights into the effectiveness of LLMs in vulnera-

bility prediction without external context and highlighted their potential in software
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security tasks. The following section presents the results from our experiments on

both the within- and mixed-project datasets.
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B.5 Results

B.5.1 Objective 1 Results

Evaluate the effectiveness of Large Language Models, particularly ChatGPT, in

identifying vulnerabilities within code samples without external context.

This objective aimed to assess the effectiveness of LLMs in identifying vulner-

abilities in code samples without relying on external context or prior knowledge of

known vulnerability patterns.

Table B.1: Large Language Model Performances on the Within-Project Dataset

Metric GPT-3.5-turbo-0125 GPT-4o-mini GPT-4o

Precision 0.03006 0.04428 0.04826
Recall 0.12698 0.43915 0.68519
F1 score 0.04861 0.08046 0.09017

Table B.1 shows the performance of GPT-3.5-turbo-0125, GPT-4o-mini, and

GPT-4o models on the within-project dataset. The models exhibited varying preci-

sion, recall, and F1 scores, reflecting differences in their effectiveness at identifying

vulnerabilities. The models demonstrated low performance, particularly in terms of

precision and F1 score.

Table B.2: Large Language Model Performances on the Mixed-Project Dataset

Metric GPT-3.5-turbo-0125 GPT-4o-mini GPT-4o

Precision 0.12750 0.13406 0.13383
Recall 0.14154 0.36448 0.56614
F1 score 0.13415 0.19602 0.21648

Table B.2 shows the performance of GPT-3.5-turbo-0125, GPT-4o-mini, and

GPT-4o models on the mixed-project dataset. The models displayed varying preci-

sion, recall, and F1 scores, reflecting differences in their ability to identify vulner-

abilities. Performance (based on F1 score) was slightly better on the mixed-project

dataset than on the within-project dataset, but precision and F1 scores remained

suboptimal.
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Metric GPT-4o-mini (%) GPT-4o (%)

Precision 47 61
Recall 246 440
F1 score 66 85

(a) Within-Project Dataset

Metric GPT-4o-mini (%) GPT-4o (%)

Precision 5 5
Recall 158 300
F1 score 46 61

(b) Mixed-Project Dataset

Figure B.4: Performance Improvement Percentages: GPT-4 Over GPT-3 Series (Inter-
Series Comparison)

Figure B.4 shows the performance improvement percentages of GPT-4 models

compared to the GPT-3 model on the within- and mixed-project datasets, calcu-

lated using the PIP formula from Subsubsection B.4.9.1. These percentages reflect

advancements in the GPT series for out-of-the-box vulnerability prediction tasks.

Recall showed the highest improvement across GPT-4 models on both datasets,

while precision had the lowest. The F1 score showed moderate improvement, indi-

cating overall progress between the GPT series.

Metric GPT-4o (%)

Precision 9
Recall 56
F1 score 12

(a) Within-Project Dataset

Metric GPT-4o (%)

Precision 0
Recall 55
F1 score 10

(b) Mixed-Project Dataset

Figure B.5: Performance Improvement Percentages: GPT-4o Over GPT-4o Mini (Intra-
Series Comparison)

Figure B.5 shows the performance improvement percentages of the GPT-4o

model over the GPT-4o-mini model on the within- and mixed-project datasets, cal-

culated using the PIP formula from Subsubsection B.4.9.1. These percentages re-

flect intra-series advancements in the GPT-4 models for vulnerability prediction.

As expected, the improvements were less significant than those in the inter-

series comparison, indicating that GPT-4o did not outperform GPT-4o-mini as dra-
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matically as the GPT-4 models outperformed the GPT-3 model, but the improve-

ments were still notable.

Similar to the inter-series comparison, recall showed the highest improvement

between the two GPT-4 models on both datasets, while precision had the lowest.

The F1 score showed moderate improvement, indicating a continued upward trend

in the GPT series’ performance.
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(d) Mixed-Project Dataset

Figure B.6: Performance Improvement Percentages: Inter- (GPT-4 Over GPT-3 Series) and
Intra-Series (GPT-4o Over GPT-4o Mini) Comparisons

Figure B.6 presents bar charts showing the performance improvement percent-

ages of GPT-4 models over GPT-3 models and GPT-4o over GPT-4o-mini on our

within- and mixed-project datasets, based on the data from Tables B.4 and B.5. The

bar charts visually highlight the advancements in the GPT series for out-of-the-box

vulnerability prediction tasks.

Subfigures B.6a and B.6b (in blue) show the performance improvement per-

centages of GPT-4 models over the GPT-3 model on the within- and mixed-project

datasets, respectively.

Subfigures B.6c and B.6d (in green) show the comparably less pronounced

performance improvement percentages of GPT-4o over GPT-4o-mini on the same

datasets.
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In summary, the LLMs performed suboptimally in identifying vulnerabilities

within code samples. All models yielded inadequate results, limiting their practi-

cal utility for vulnerability prediction in code samples. However, we observe that

the GPT-4 models significantly improve upon GPT-3 models in vulnerability predic-

tion tasks. The inter-series comparison showed substantial improvements, while the

intra-series comparison yielded more modest gains, which is expected given that the

models belong to the same generation. This upward trend in performance is promis-

ing for the future, as it indicates advancements in the GPT series for vulnerability

prediction tasks.

B.5.2 Objective 2 Results

Compare the performance of Large Language Models with our models in Chap-

ters 4, 5, and 6.

Table B.3: Within-Project Performance Comparison: Previous Chapters versus Large Lan-
guage Models

Model Precision Recall F1 score

Chapter 4: RF (Token-Based) 0.73635 0.58345 0.64821
Chapter 5: RF (Code2Vec-Based) 0.73171 0.60668 0.66106
GPT-3.5-turbo-0125 0.03006 0.12698 0.04861
GPT-4o-mini 0.04428 0.43915 0.08046
GPT-4o 0.04826 0.68519 0.09017

Table B.3 presents the within-project performance comparison of our best-

performing models from Chapters 4 and 5 with the GPT-3.5-turbo-0125, GPT-

4o-mini, and GPT-4o models. The figures for the chapters’ models are the pre-

hyperparameter tuning values, representing a fair ‘out-of-the-box’ comparison with

the LLMs. Also, we note that ‘RF’ stands for Random Forest classifier.

Table B.4 presents a comparison of the mixed-project performance of our best-

performing models from Chapter 6 with that of the GPT-3.5-turbo-0125, GPT-4o-

mini, and GPT-4o models. Like the within-project comparison, the figures for the

chapter’s models are pre-hyperparameter tuning. ‘GNB’ stands for Gaussian Naïve

Bayes classifier.
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Table B.4: Mixed-Project Performance Comparison: Previous Chapters versus Large Lan-
guage Models

Model Precision Recall F1 score

Chapter 6: GNB (Token-Based) 0.16780 0.29921 0.21477
Chapter 6: GNB (Code2Vec-Based) 0.17859 0.23869 0.20394
GPT-3.5-turbo-0125 0.12750 0.14154 0.13415
GPT-4o-mini 0.13406 0.36448 0.19602
GPT-4o 0.13383 0.56614 0.21648

Chapter 5: RF 
 (Token-Based)

Chapter 6: RF 
 (Code2Vec-Based)

GPT-3.5-turbo-0125 GPT-4o-mini GPT-4o
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(a) Within-Project Performance Comparison

Chapter 7: GNB 
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Chapter 7: GNB 
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(b) Mixed-Project Performance Comparison

Figure B.7: Performance Comparison: Previous Chapters versus LLM

Figure B.7 shows two grouped bar charts comparing the pre-hyperparameter

tuning performance of our best-performing models from Chapters 4, 5, and 6 with

the performance of our LLMs.
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Subfigure B.7a compares the performance of the models on the within-project

dataset, while Subfigure B.7b compares the performance on the mixed-project

dataset.

Subfigure B.7a shows the performance of our token-based model (Random

Forest Classifier) from Chapter 4, our Code2vec-based model (Random Forest Clas-

sifier) from Chapter 5, and the three LLMs on the within-project dataset.

Subfigure B.7b shows the performance of our token-based model (Gaussian

Naïve Bayes classifier) from Chapter 6, our Code2vec-based model (Gaussian

Naïve Bayes classifier) also from Chapter 6, and the three LLMs on the mixed-

project dataset.

The immediate observation from Figure B.7 is that our traditional Random

Forest token- and Code2Vec-based models significantly outperform the LLMs in

all metrics on the Within-Project dataset.

On the other hand, the LLMs perform competitively with our Gaussian Naïve

Bayes token- and Code2Vec-based models on the Mixed-Project dataset, with the

GPT-4 models noticeably outperforming the Gaussian Naïve Bayes models in re-

call. Although all the results in the Mixed-Project dataset are suboptimal.

In summary, our traditional machine learning models outperformed the LLMs

in a within-project setting, while the LLMs performed competitively with our tra-

ditional models in a mixed-project setting. The LLMs, especially GPT-4o, show

the most promise in vulnerability prediction tasks, particularly in recall, but their

precision and F1 scores are currently insufficient for practical use.
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B.6 Discussion
This study evaluated the effectiveness of LLMs, specifically OpenAI’s GPT series,

in predicting software vulnerabilities at the method level. The research focused on

their out-of-the-box capability to predict vulnerabilities without relying on external

context, such as known vulnerability patterns. The results were compared with tra-

ditional machine learning models developed in Chapters 4, 5, and 6, and we found

that the LLMs’ performance was suboptimal in identifying vulnerabilities within

code samples without external context. While LLMs show promise in this field,

their performance, particularly in terms of precision and F1 score, is insufficient to

replace or surpass existing models.

B.6.1 Effectiveness of Large Language Models in Vulnerability

Prediction

Using within- and mixed-project datasets, we assessed the GPT-3.5-turbo, GPT-

4o-mini, and GPT-4o models. While the GPT-4 series models showed notable im-

provements in the recall, precision remained low, leading to reduced F1 scores.

This indicates that although LLMs can detect more true positives, they also produce

many false positives, limiting their practical effectiveness in vulnerability predic-

tion. It also indicates that, based on out-of-the-box performance, LLMs in their

current evolution struggle to distinguish subtle differences between vulnerable and

non-vulnerable code patterns, resulting in a high rate of false positives.

B.6.2 Comparison of Large Language Models with Previous

Models

The comparison of LLMs with traditional machine learning models from Chap-

ters 4, 5, and 6 revealed that the latter significantly outperformed the former in

within-project settings. On the other hand, the LLMs performed competitively with

the traditional models in mixed-project settings, particularly in recall. We theorise

that the traditional models’ superior performance in within-project settings is due to

their ability to learn from specific vulnerability patterns in the training data, which

the LLMs struggle with. In contrast, the LLMs’ competitive performance in mixed-
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project settings is due to their generalisation capabilities, possibly due to their vast

pre-trained knowledge.

B.6.3 Performance Improvements in the Generative Pre-trained

Transformer Series

The findings highlight clear performance improvements across the GPT series. The

shift from GPT-3.5 to GPT-4o-mini and GPT-4o models showed significant gains in

the recall, though precision and, consequently, F1 score improvements were modest.

This suggests that while LLMs are improving in identifying vulnerabilities, they

still need refinement to reduce false positives. The performance ratios between

the GPT-3 and GPT-4 series indicate ongoing advancements, particularly in recall,

which enhance the models’ ability to detect vulnerabilities more effectively.

B.6.4 Limitations of Large Language Models in Vulnerability

Prediction

Despite their potential, the LLMs evaluated in this study have notable limitations in

vulnerability prediction. The primary issue is their low precision, which results in a

high rate of false positives. This could prove costly in software security applications

because of the potential for unnecessary alerts and wasted resources in investigating

false positives. Additionally, LLMs are highly sensitive to the quality and specificity

of prompts, making their effectiveness reliant on well-framed input, a sentiment

echoed in most of the reviewed literature in Section B.3.

B.6.5 Context-Aware Large Language Model-based Vulnerabil-

ity Prediction

Given these limitations, future research could explore the development of context-

aware LLMs for vulnerability prediction. These models would use the static knowl-

edge from their training data and dynamically incorporate contextual information,

such as the software environment, system architecture, usage patterns, and emerging

threats. The fine-tuning feature of OpenAI’s LLMs could be leveraged to adapt the

models to specific software contexts, enhancing their precision and reducing false
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positives. This approach could improve precision by filtering irrelevant information

and focusing on contextually significant code patterns. Additionally, incorporating

real-time feedback could refine predictions and reduce false positives.

Another avenue for creating context-aware LLMs is to leverage Retrieval-

Augmented Generation (RAG) models. RAG is an advanced AI framework that

integrates traditional information retrieval systems with the capabilities of gener-

ative language models. RAG can be integrated into chatbot systems to enhance

conversational abilities in practical applications [Rangan and Yin, 2024]. By lever-

aging external knowledge, RAG-powered chatbots can deliver more comprehensive

and context-aware responses, thereby enhancing the user experience. The external

knowledge sources enhance the accuracy, relevance, and timeliness of the generated

text [Ding et al., 2024].

RAG operates through two main steps. First, it retrieves relevant information

from external data sources, such as web pages, knowledge bases, or, in our case,

vulnerability databases, using sophisticated search algorithms. The retrieved infor-

mation is then pre-processed to ensure it is ready for integration [Izacard and Grave,

2020]. In the second step, this information is incorporated into the LLM, enriching

the model’s understanding and enabling it to generate more precise and contextually

relevant responses [Xiong et al., 2024]. RAG employs vector databases to facilitate

efficient retrieval based on semantic similarity [Sawarkar et al., 2024].

The primary advantages of RAG include access to up-to-date information, im-

proved factual accuracy, and enhanced contextual relevance. Unlike traditional

LLMs, which are limited to pre-trained knowledge, RAG ensures that responses

are accurate and current by accessing external sources [Ding et al., 2024]. Be-

cause RAG conditions output on retrieved factual information, it promotes con-

sistency and reduces the likelihood of inaccuracies. This is particularly useful in

high-precision applications where factual accuracy is paramount, such as vulnera-

bility prediction in software systems. This aspect is crucial in our context, given

that our results have demonstrated the need for improved precision in LLM-based

vulnerability prediction.
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Overall, RAG represents a significant advancement in AI. It combines the

strengths of information retrieval and language generation to produce more accu-

rate and contextually grounded outputs, enhancing the performance of LLMs in

vulnerability prediction tasks.

B.6.6 Data Challenges in Large Language Model-Based for Vul-

nerability Prediction

In Subsection 6.2.2, we discussed the significant impact of data quality and quan-

tity on vulnerability prediction models. We categorised these challenges into

six themes: data generalisability, data accessibility, data preparation effort, data

scarcity, label noise, and data noise. We explained that models often conform to

the "garbage in, garbage out" principle, i.e., models are susceptible to the data on

which they are trained. Thus, challenges such as the scarcity of high-quality data,

inconsistent reporting practices, and organisations’ reluctance to share vulnerability

data exacerbate these data-related issues.

Although this study shows that advancements in LLMs hold promise for vul-

nerability prediction, their current poor performance still reflects the same data-

related challenges previously discussed. For instance, the need for context-aware

LLMs suggests that data preparation will continue to be a significant challenge,

requiring substantial expertise and resources. This issue is closely tied to other

challenges, such as data generalisability, accessibility, scarcity, and noise. As a re-

sult, the trade-offs between using LLMs and traditional machine learning models in

vulnerability prediction remain critical in the current generation of LLMs.

B.6.7 Implications

The results of this study provide essential insights into the strengths and limita-

tions of LLMs in predicting vulnerabilities in software code. While LLMs, such

as the GPT series, are crucial for text understanding and generation, their appli-

cation in vulnerability prediction still requires substantial refinement, particularly

in terms of precision. Despite their advanced architecture, LLMs may not be en-

tirely suited to vulnerability prediction tasks without significant tuning or additional
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contextual data. The observed performance improvements across the GPT series in-

dicate progress, but the current state of LLMs warrants caution when using them in

critical security tasks.

These findings have significant implications for both researchers and industry

practitioners. For researchers, the identified performance gaps suggest that further

work is needed to refine LLMs, potentially through hybrid approaches that combine

LLMs with traditional models or domain-specific techniques. For industry practi-

tioners, the findings emphasise the need to consider the limitations of LLMs in

security-critical applications and the importance of rigorous testing and validation

to ensure their reliability and effectiveness.

B.6.8 Recommendations

Based on this study’s findings, several recommendations for future research and

practice in vulnerability prediction can be made. Firstly, researchers should explore

hybrid approaches that combine the strengths of LLMs with traditional machine

learning models to improve precision and specificity. Secondly, developing context-

aware LLMs that adapt to dynamic software environments and emerging threats

is crucial for enhancing real-world effectiveness. Thirdly, practitioners should use

LLMs cautiously in security-critical applications, ensuring thorough testing and val-

idation, especially where precision is critical. Additionally, integrating LLMs with

other security tools could provide a more balanced approach, leveraging LLMs’

strengths in recall while addressing their precision limitations. Additionally, further

exploration of context-aware models through fine-tuning or RAGs is recommended

to enhance the practical utility of LLMs in software security. Finally, future research

should focus on refining the training and tuning processes for LLMs to improve their

performance in vulnerability prediction and address the limitations identified in this

study.
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B.7 Threats to Validity
The findings of this study are subject to several threats to validity that may impact

the results and conclusions. These threats are discussed below to provide a compre-

hensive understanding of the study’s limitations and potential biases.

B.7.1 Internal Validity

Internal validity refers to the reliability of this study’s results, ensuring they are free

from confounding factors.

B.7.1.1 Dataset Characteristics

The data used to evaluate the LLMs poses a significant threat to internal validity.

Datasets, especially those in cross- and mixed-project settings, may contain biases

or inconsistencies affecting model performance. Noisy labels or incomplete data

could lead to inaccurate assessments. Despite efforts to clean the data, eliminating

these issues is challenging and may have influenced the results.

B.7.1.2 Dataset Vulnerability versus Non-Vulnerability Distribution

The distribution of vulnerable and non-vulnerable code samples in the datasets can

impact model performance. An imbalance in positive and negative samples might

skew results, affecting the models’ vulnerability prediction capabilities. For exam-

ple, the within-project dataset has a 1.48% vulnerability rate (Table 4.11), whereas

the mixed-project dataset has a 5.28% rate (Table 6.2). As shown in Tables B.1

and B.2, the mixed-project dataset yielded better results, likely due to its higher

vulnerability rate, which may have enhanced model performance.

Balancing the datasets could produce different results but also introduce bias,

as this adjustment may not accurately reflect real-world scenarios. Moreover, such

class distribution adjustments would misalign with the study’s aim of evaluating

LLMs’ out-of-the-box performance.

B.7.1.3 Prompt Design Bias

The effectiveness of LLMs in predicting vulnerabilities can be sensitive to the phras-

ing and structure of the prompts. Although this study used carefully designed

prompts to minimise bias, unintended prompt bias remains possible. Different
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prompts might lead to varying results, introducing subjectivity that could impact

the study’s internal validity.

B.7.1.4 Application Programming Interface Request Parameters

The study’s request configuration, including temperature and other parameters,

could affect LLM performance. Although we followed best practices, these settings

introduced a layer of complexity that may have influenced the models’ predictions.

For instance, the temperature setting, which ranges from 0 (deterministic output) to

1 (more random output), was left at the default value of 0. Changing this setting

could alter the LLMs’ predictions and introduce bias.

B.7.2 External Validity

External validity concerns the generalisability of the study’s findings beyond its

specific context.

B.7.2.1 Programming Language Generalisability

One significant threat is the exclusive use of Java datasets. While Java is widely

used, the findings may not apply to vulnerability prediction in other programming

languages, as distinct syntax and semantic structures can influence the effectiveness

of LLMs. Therefore, the results may not generalise to projects in other languages.

B.7.2.2 Granularity of Vulnerability Prediction

The focus on method-level vulnerability prediction may limit the study’s generalis-

ability to other levels of granularity. While this granularity enables detailed analysis,

the findings may not apply to other levels, such as class-level or file-level vulnera-

bility prediction. The complexity of vulnerabilities varies with the unit of analysis,

and LLMs may perform differently in broader contexts.

B.7.2.3 Model Generalisability

The reliance on specific versions of GPT models may limit the generalisability of

the results. As LLM technology evolves, newer models might exhibit different

strengths and weaknesses. The findings here are based on GPT-3.5-turbo, GPT-
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4o-mini, and GPT-4o, and future models may produce different outcomes. Thus,

generalising these conclusions to future LLM versions should be done cautiously.

B.7.2.4 Absence of Contextual Information

Our exclusion of external contextual data in the experimental setup may not reflect

real-world scenarios where additional context can enhance vulnerability prediction.

The absence of this context could limit the applicability of the findings to real-world

software security tasks where context-aware analysis is beneficial.
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B.8 Conclusion

This study utilised LLMs, specifically OpenAI’s GPT series, to predict software

vulnerabilities. It aimed to explore the prospect of enhancing software security by

leveraging advanced AI models to overcome the limitations of traditional machine

learning approaches. The objectives were to assess the out-of-the-box effective-

ness of LLMs in vulnerability prediction, compare their performance with that of

existing models, and evaluate improvements within the GPT series, focusing on

their viability at the method level. Using within-project and mixed-project datasets,

the study evaluated LLMs, including GPT-3.5-turbo, GPT-4o-mini, and GPT-4o

models, through binary vulnerability prediction classification tasks using precision,

recall, and F1 score metrics as evaluation criteria.

Results indicated that while the GPT-4 series improved recall and F1 score,

precision remained suboptimal. The LLMs performed better than the traditional

models from Chapter 6 on the mixed-project dataset, likely due to their generalisa-

tion capabilities facilitated by a vast pre-trained knowledge base, which, according

to Yu et al. [2023], comprises billions of parameters for the GPT-3 series and up

to a trillion parameters for the GPT-4 series. However, the traditional models from

Chapters 4 and 5 significantly outperformed the LLMs on the within-project dataset,

suggesting that LLMs struggle with recognising and discerning specific vulnerabil-

ity patterns within their vast pre-trained knowledge. The findings suggest that de-

spite their advanced architecture, LLMs are not yet optimised for vulnerability pre-

diction and, thus, produce high false positive rates. Thus, significant improvements

are needed for LLMs to match or surpass traditional machine learning approaches

for vulnerability prediction.

We conclude this study by noting that precision is a significant challenge for

LLMs in vulnerability prediction, limiting their practical utility in software secu-

rity. However, the inter- and intra-generation improvements in the GPT series sug-

gest ongoing advancements that could enhance LLMs’ effectiveness in vulnerability

prediction, especially on the mixed-project front. Until these advancements are re-
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alised, context-aware LLMs attained through fine-tuning or RAG models represent

a promising approach to improving LLMs’ practical utility in software security.
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