Information Retrieval-Driven
Software Vulnerability Prediction

Chizzy Godson Meka

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
of

University College London.

Department of Computer Science

University College London

April 14, 2025

© Chizzy Godson Meka 2025
All rights reserved.

2

I, Chizzy Godson Meka, confirm that the work presented in this thesis is my
own. Where information has been derived from other sources, I confirm that this

has been indicated in the work.

Abstract

Context: The growing complexity of software systems continually correlates with
increasing vulnerabilities, necessitating effective mitigation strategies, such as vul-
nerability prediction. This Artificial Intelligence (Al)-driven approach aims to im-
prove Secure Software Development Life Cycle (SSDLC) practices by proactively
identifying potential security flaws. While various prediction approaches have been
proposed, opportunities for further research remain, particularly in leveraging Infor-

mation Retrieval (IR)’s pattern-matching capabilities to enhance prediction models.

Objective: This thesis advances secure software engineering methodologies by in-
troducing IR-driven feature engineering methods for predicting software vulner-
abilities. We develop granular method-level vulnerability prediction models that
leverage novel IR-driven security-relevant metrics and evaluate their predictive per-

formances.

Methodology: We developed two varieties of sixteen IR-driven security-relevant
features using token-based and Abstract Syntax Tree (AST)-based source code rep-
resentations. Then, we utilised these features to develop models with various ma-
chine learning classifiers using Python and evaluated them on Java open-source soft-
ware systems, starting with a Within-Project (release-by-release dataset). Finally,
we conducted a stress test in a Mixed-Project (multi-software systems dataset) set-

ting to assess the generalisability of our models across software systems.

Results: Our Within-Project token-based IR-driven approach reached a post-
hyperparameter tuning precision of 0.73, a recall of 0.60, and an F1 score of 0.66

using a Random Forest classifier. The Within-Project AST-based approach attained

Abstract 4

a slightly better F1 score performance, yielding a post-hyperparameter tuning pre-
cision of 0.72, a recall of 0.62, and an F1 score of 0.67, also using Random Forest.
Conclusion: Our research indicates that IR-driven feature engineering techniques
significantly enhance prediction performance, demonstrating the effectiveness of
our approach. However, the Mixed-Project analysis indicated that data-related chal-
lenges in vulnerability prediction persist, especially regarding data heterogeneity
across software systems. Thus, system-specific vulnerability prediction models
leveraging a release-by-release dataset and knowledge of previous system-specific
vulnerabilities represent the most promising approach for practical vulnerability

prediction in real-world software systems.

Impact Statement

The research presented in this thesis has the potential to make significant contribu-
tions both within academia and beyond. In the academic sphere, this work advances
the software engineering field, particularly in software vulnerability prediction. By
integrating information retrieval techniques into vulnerability prediction models,
the research introduces a novel approach that could reshape how vulnerabilities are
detected in software systems. This could lead to more accurate and scalable predic-
tion models, which are crucial given the increasing complexity and size of modern

software systems.

Beyond academia, this research could profoundly impact on several industries,
particularly those that rely heavily on software systems. Developing more robust
software vulnerability prediction models could enhance security measures, reduc-
ing the likelihood of successful cyberattacks. This, in turn, could help maintain
public trust in digital systems by preventing reputational damage by protecting sen-
sitive data. Such advancements could have far-reaching implications for industries
such as finance, healthcare, and critical infrastructure, where software security is
paramount. They could help safeguard against more severe potential catastrophic

consequences, such as financial losses, injury, or loss of life in critical systems.

Moreover, the insights gained from this research could inform the development
of new tools and practices for software developers. By incorporating information
retrieval-driven techniques, software professionals could be better equipped to iden-
tify and mitigate vulnerabilities during the software development lifecycle. Such

development could help reduce the Time To Market (TTM) for software products

Abstract 6

while improving their security, benefiting end-users by providing safer and more
reliable digital environments.

The research could also influence public policy, particularly in cybersecurity-
related areas. As governments and organisations worldwide seek to strengthen their
defences against cyber threats, the methodologies and findings presented in this
thesis could serve as a foundation for new policies and regulations to improve soft-
ware security standards. This could have a wide-reaching impact, not only on the
organisational level but also on national and international cybersecurity strategies.

In summary, this thesis contributes to both the theoretical advancement of soft-
ware vulnerability prediction and its practical application in the real world. The
potential benefits of this work are far-reaching, with implications for academic re-
search, industry practices, and public policy. This research has the potential to im-
pact how vulnerabilities are managed in the digital age by addressing the pressing

issue of software security through innovative methods.

Acknowledgements

The high-quality supervision I received from Dr. Jens Krinke is a testament to his
dedication. This attribute is profound enough to be immediately apparent upon
interacting with him. His support and guidance as my primary supervisor remained
unwavering from the time I expressed my intention to enrol in the PhD programme
in the Computer Science department until I finalised this thesis, and I will be forever
thankful. I am also grateful to my second supervisor, Dr. Ingolf Becker, for his
support in the earlier part of my doctoral journey.

Beyond UCL, my spouse and two boys have most positively impacted my life
on this academic journey, and I owe them the privilege of being in a position to write
these acknowledgements. My wife does not know a lot about software vulnerability
prediction. Still, the cumulative effect of her immeasurable indirect support has
compounded into a positive force that has significantly contributed to the realisation
of this thesis; even better, as the academically minded individual that she is, my
journey has sparked her interest in pursuing her doctoral studies, and I am here for
it. This positive influence is what I also look forward to my two boys partaking in.
I am blessed that our sons are young enough to have only known me as a doctoral
student and that their earliest memories of me would be witnessing their father
living that "PhD life." That sentiment contributed to my determination to see this
programme through and set an example about setting and achieving life goals.

I also acknowledge my wider family and friends and eagerly look forward to
reciprocating the favour.

I am thankful for overcoming the challenges to reach this point, proud to

achieve this milestone, and eternally grateful for this academic experience.

Contents

1 Introduction

1.1 SoftwareBugs
1.2 Software Vulnerabilities
1.2.1 How Software Vulnerabilities Arise
1.2.2 The Ever-Present Threat of Software Vulnerabilities
1.3 Motivation e
1.4 ResearchQuestions
1.5 ResearchScope
1.6 Research Contributions
1.7 ThesisOutline
2 Background
2.1 Software Vulnerability Mitigation Techniques
2.2 Software Vulnerability Prediction
2.2.1 Software Vulnerability Prediction Granularity
2.2.2 Software Vulnerability Prediction Features
2.3 Source Code Representations
2.3.1 Token-based Representations
2.3.2 Abstract Syntax Tree-Based Representations
2.3.3 Other Source Code Representations
2.4 Information Retrieval IR)

2.4.1 Introduction to Information Retrieval

2.4.2 Information Retrieval System Features

24
25
26
26
27
29
32
33
34
35

Contents 9

2.4.3 How We Use Information Retrieval in Our Research 55
3 Literature Review 58
3.1 Introduction 59
3.2 Software Vulnerability Prediction 61
3.2.1 Vulnerability Prediction Studies Influencing Work 61
3.2.2 Machine Learning-Based Vulnerability Prediction 63
3.2.3 Deep Learning-Based Vulnerability Prediction 75
3.2.4 Systematic Literature Reviews on Vulnerability Prediction . 84
3.2.5 Comparative Studies on Vulnerability Prediction 86
3.3 Software Bug Prediction, . 90
3.3.1 Bug Prediction Studies Influencing Work 90
3.3.2 Other Bug Prediction Studies 91
3.4 Observations in the Literature 97
3.4.1 Dominance of Deep Learning Techniques 97
3.4.2 Success Stories of the Long Short-Term Memory Algorithm 97
3.4.3 Random Forest as a Reliable Baseline 97
3.4.4 Challenges in Adopting Vulnerability Prediction 97
3.5 Future Research Directions 99
3.5.1 Real-Time Prediction 99
3.5.2 Granular Prediction and Contextual Information 99

3.5.3 Leveraging Large Language Models (LLMs) for Vulnera-
bility Prediction. oL oL 99
3.5.4 Data Preparation and Standardisation 99
3.6 Conclusion 100
4 Token-Based Vulnerability Prediction 101
4.1 Introduction 102
4.1.1 Chapter Motivation 102
4,12 ResearchQuestion 103

413 ResearchScope 103

Contents 10

4.1.4 Significance and Contributions 104
4.1.5 Structure of the Chapter 104
Background 106
4.2.1 Token-Based Source Code Representation 107
4.2.2 Granularity Levels in Software Vulnerability Prediction . . . 108
Token-Based Software Metrics 110
4.3.1 Token-Based Hit-Independent Metrics 111
4.3.2 Token-Based Hit-Dependent Metrics 119
4.3.3 Token-Based Metrics Calculation: An Illustration 127
Methodology 135
4.4.1 Overview of the Methodology 135
442 Dataset 139
443 DataPreprocessing 141
444 InformationRetrieval, 144
4.4.5 Machine Learning Analysis 146
4.4.6 Approach to Research Question1 150
Results. o 157
4.5.1 Objective 1 Results 157
452 Objective2Results oL 160
453 Objective3Results 166
Discussion 168

4.6.1 The Importance of Interpretability in Prediction Models . . 168
4.6.2 The Significance of Vulnerable Code Patterns 168

4.6.3 The Token-Based Relative Instantaneous Code Churn Met-

ricDesign. 172
4.6.4 Feature Interactions: Synergism and Antagonism 173
4.6.5 Implications 174
4.6.6 Recommendations 174
Threats to Validity, 176

477.1 Internal Validity 176

4.8

Contents

472 External Validity

Answer to Research Question 1

5 Abstract Syntax Tree (AST)-Based Vulnerability Prediction

5.1

5.2

5.3

54

5.5

5.6

Introduction
5.1.1 Chapter Motivation
5.1.2 ResearchQuestion
5.1.3 ResearchScope
5.1.4 Significance and Contributions
5.1.5 Structure of the Chapter
Background L Lo
5.2.1 Code2Vec Representation: A Revisit.
522 astminer e e
Code2Vec-Based Metrics
5.3.1 Code2Vec-Based Hit-Independent Metrics
5.3.2 Code2Vec-Based Hit-Dependent Metrics
5.3.3 Code2Vec-Based Metrics Calculation: An Illustration
5.3.4 Token-Based versus Code2Vec-Based Approaches
Methodology
5.4.1 Overview of the Methodology
542 Dataset
543 DataPreprocessing
544 Information Retrieval
5.4.5 Machine Learning Analysis
5.4.6 Approach to Research Question2
Results.
5.5.1 Objective 1 Results
5.52 Objective2 Results
5.5.3 Objective3Results L.
Discussion Lo

5.6.1 Code2Vec Representation Performance

11

177
179

Contents 12

5.6.2 Hit-Dependent Metrics Performance 229

5.6.3 A Closer Look at the Evaluation Metrics 229

5.6.4 Hyperparameter Tuning Impact 230

5.6.5 Implications, 231

5.6.6 Recommendations 231

5.7 Threatsto Validity, 233
5.7.1 Internal Validity 233

5.7.2 External Validity 233

5.8 Answerto Research Question2. 234
6 A Vulnerability Prediction Dataset Generalisability Study 236
6.1 Introduction 237

6.1.1 Cross-Project vs Mixed-Project Vulnerability Prediction . . 237

6.1.2 Dataset Generalisability: An Introduction 238
6.1.3 Chapter Motivation 239
6.1.4 ResearchQuestion 239
6.1.5 ResearchScope, 240
6.1.6 Significance and Contributions 240
6.1.7 Structure of the Chapter 241
6.2 Background 242
6.2.1 Cross-Project Vulnerability Prediction 242
6.2.2 Data Quality Challenges in Vulnerability Prediction 244
6.3 Methodology 248
6.3.1 Overview of the Methodology 248
6.3.2 Dataset 251
6.3.3 DataPreprocessing 253
6.3.4 Information Retrieval 255
6.3.5 Machine Learning Analysis 256
6.3.6 ApproachtoQuestion3 256

6.3.7 Summary of Methodological Differences Across Chapters . 258
6.4 Results. 260

Contents 13

6.4.1 Objective I Results 260

6.4.2 Objective2Results 263

6.43 Objective3Results L. 272

6.4.4 Objective4 Results 275

6.5 Discussion. 280
6.5.1 Within- versus Mixed-Project Performance Comparison . . 280

6.5.2 Code Representation Sensitivity 281

6.5.3 Data-Related Challenges: A Revisit 281

6.5.4 Implications 282

6.5.5 Recommendations 283

6.6 Threatsto Validity 284
6.6.1 Internal Validity 284

6.6.2 External Validity 285

6.7 AnswertoResearchQuestion3. 287

7 Conclusion 289
7.1 Vulnerability Prediction: A Retrospective and Prospective 290

7.2 Summary of Research Objectives 291

73 KeyFindings 292
7.3.1 Token-Based Prediction Performance (Within-Project) . . . 292

7.3.2 Code2Vec-Based Prediction Performance (Within-Project) . 292

7.3.3 Mixed-Project Prediction Performance 292

7.4 Contributionstothe Field 294

7.5 Limitationsofthe Study 295
7.6 Future Research Directions 296

7.7 Final Thoughts 297
Appendix A 299
A Investigating the Co-Evolution of Software Bugs 299
A.l Introduction 300

A.1.1 Motivation 300

A2

A3
A4

AS

A.6

A7

A8

Contents 14

A.1.2 ResearchQuestion 302
A.1.3 ResearchScope 302
A.1.4 Significance and Contribution 303
A.1.5 Structureofthe Study, 303
Background o 304
A.2.1 Association Rule Mining 304

A.2.2 Co-Evolution of Code Artefacts: A Hypothetical Scenario . 304

Literature Review 308
Methodology 313
A.4.1 Overview of the Methodology 313
AA42 Dataset 314
A.4.3 Approach to Research Question 316
A.4.4 Phase I: Transaction Database Construction 316
A.4.5 Phase II: Measurement of Bug Co-Evolution 317
Results. o 320
A.5.1 Absolute Support 320
AS5.2 Support 321
AS53 Confidence 321
A.5.4 Co-evolving Files Per Transaction 322
A.5.5 Cumulative Averages for all Five Software Systems 323
Discussion 324
A.6.1 Co-evolution Analysis 324
A.6.2 The Effect of Co-evolutionRate 325
A.6.3 Bug-Contributing Artefacts 326
A.6.4 Implications 327
A.6.5 Recommendations 328
Threats to Validity 329
A.7.1 Internal Validity 329
A7.2 External Validity, 329
Conclusion 330

Contents 15

Appendix B 331

B Exploring Large Language Model-Based Vulnerability Prediction 331

B.1

B.2

B.3
B4

B.5

B.6

Introduction 332
B.1.1 Motivation 333
B.1.2 Research Question 334
B.1.3 ResearchScope 334
B.1.4 Significance and Contributions 335
B.1.5 Structureof the Study 335
Background 336

B.2.1 Generative Artificial Intelligence and Large Language Models336
B.2.2 The Generative Pre-trained Transformer Series and ChatGPT 337
B.2.3 Large Language Model Applications in Software Vulnera-

bility Prediction oL ... 338
Literature Review oL 340
Methodology 345
B.4.1 Overview of the Methodology 345
B.42 Dataset 347
B.43 DataProcessing. 347
B.4.4 Ground Truth: Estimation 348
B.4.5 DataDeduplication 348
B.4.6 OpenAIAPI 348
B.4.7 Prompt Construction 348
B.4.8 Evaluation Metrics 349
B.4.9 Approach to Research Question 350
Results. 353
B.5.1 Objective 1 Results 353
B.5.2 Objective2Results 356
Discussion e 359

B.6.1 Effectiveness of Large Language Models in Vulnerability
Prediction 359

Contents 16

B.6.2 Comparison of Large Language Models with Previous Models359

B.6.3 Performance Improvements in the Generative Pre-trained
Transformer Series 360

B.6.4 Limitations of Large Language Models in Vulnerability
Prediction oo 360

B.6.5 Context-Aware Large Language Model-based Vulnerability
Prediction Lo 360

B.6.6 Data Challenges in Large Language Model-Based for Vul-
nerability Prediction 362
B.6.7 Implications, 362
B.6.8 Recommendations 363
B.7 Threatsto Validity 364
B.7.1 Internal Validity 364
B.7.2 External Validity 365
B.8 Conclusion 367
List of Terms 369
Bibliography 378

List of Figures

2.1 Token Representation of the Method in Listing 2.1
2.2 3-Gram Representation of the Method in Listing 2.1
2.3 AST of the Method in Listing2.1
2.4 Code2Vec Representation for the Method in Listing 2.2
2.5 Path-Contexts: Representation of the Relationships among the Sub-
COMPONENES v v v vttt et e e e e
2.6 token_vocabulary, path_vocabulary and node_type_vocabulary
Values for Path Context: 4494, 2, 5136

4.1 Token Representation of the Method in Listing4.1
4.2 5-gram Shingles of the Method in Listing4.1
4.3 Method Evolution: An Infographic Representation
4.4 Single Whitespace-Separated Token Representation of the Method
inListing 4.2
4.5 Single Whitespace-Separated Token Representation of the Method
imListing4.3
4.6 Token-Based Vulnerability Prediction Methodology Overview
(Within-Project)
4.7 Token Representation of the Method in Listing4.4
4.8 Shingle Representation of the Method in Listing4.4
4.9 Query String for the Method in Listing4.4
4.10 Precision Trend across all Best-k-Performing Metrics Combinations
4.11 Recall Trend across all Best-k-Performing Metrics Combinations . .

4.12 FI1 score Trend across all Best-k-Performing Metrics Combinations .

List of Figures 18

4.13 Correlation Matrix of all Metrics + Ground Truth 161
5.1 Code2Vec Representation of the Method in Listing4.2 206
5.2 Code2Vec Representation of the Method in Listing4.3 206
5.3 Code2Vec-Based Vulnerability Prediction Methodology Overview
(Within-Project) 210
5.4 Precision Trend across all Best-k-Performing Metrics Combinations 217
5.5 Recall Trend across all Best-k-Performing Metrics Combinations . . 218
5.6 F1 score Trend across all Best-k-Performing Metrics Combinations . 219
5.7 Correlation Matrix of all Metrics + Ground Truth 221
6.1 Token- and Code2Vec-Based Vulnerability Prediction Methodology
Overview (Mixed-Project) 248
6.2 Precision Trend across all Best-k-Performing Metrics Combinations
(Token-Based Analysis) 260
6.3 Recall Trend across all Best-k-Performing Metrics Combinations
(Token-Based Analysis) 261
6.4 F1 score Trend across all Best-k-Performing Metrics Combinations
(Token-Based Analysis) 262
6.5 Precision Trend across all Best-k-Performing Metrics Combinations
(Code2Vec-Based Analysis) 263
6.6 Recall Trend across all Best-k-Performing Metrics Combinations
(Code2Vec-Based Analysis) 264
6.7 F1 score Trend across all Best-k-Performing Metrics Combinations
(Code2Vec-Based Analysis) 265
6.8 Correlation Matrix of all Metrics + Ground Truth (Token-Based
Analysis) 266
6.9 Correlation Matrix of all Metrics + Ground Truth (Code2Vec-Based
Analysis) 267
6.10 Coefficient of Variation of Token-Based Metrics 276

6.11 Coefficient of Variation of Code2Vec-Based Metrics 278

A.l
A2
A3
A4
AS

B.1

B.2

B.3

B.4

B.5

B.6

B.7

List of Figures

Hypothetical Co-Evolution Scenario
Methodology Overview
Absolute Support Boxplots oL
Support Boxplots

Confidence Boxplots

LLM-Based Vulnerability Prediction Methodology Overview
System Prompt for Vulnerability Prediction
User Prompt for Vulnerability Prediction
Performance Improvement Percentages: GPT-4 Over GPT-3 Series
(Inter-Series Comparison)
Performance Improvement Percentages: GPT-40 Over GPT-40
Mini (Intra-Series Comparison)
Performance Improvement Percentages: Inter- (GPT-4 Over GPT-3
Series) and Intra-Series (GPT-40 Over GPT-40 Mini) Comparisons .

Performance Comparison: Previous Chapters versus LLM

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

5.1
5.2

5.3
54

Token-Based Hit-Independent Metrics 111
Token-Based Hit Independent Metrics Code Attributes of Concern . 112
TICC and TRICC Hlustration 115
Token-Based Hit-Dependent Metrics 119

Token-Based Hit Dependent Metrics Code Attributes of Concern . . 119

Shingles of the Method in Listing4.2 130
Shingles of the Method in Listing4.3 132
Example Token-Based Metrics Calculation 133
Token-Based Single Software System Dataset Details 141
Deduplication Strategy 143
Apache Tomcat 7 Post-Deduplication Dataset Details 143

Percentage of Vulnerable versus Non-Vulnerable Methods with Hits 146

Pearson Correlation Coefficient Value Bands 161
Best Performance Per Classifier (Sorted by F1 score) 164
Best Metrics Combination Per Classifier 165
Parameter Grid and Best Hyperparameter Values 167

Pre-and-Post-Hyperparameter Tuning Results for Random Forest

Classifier e 167
Code2Vec-Based Hit-Independent Metrics 191

Code2Vec-Based Hit-Independent Metrics Code Attributes of Con-

Code2Vec-Based Hit-Dependent Metrics 198
Code2Vec-Based Hit-Dependent Metrics Code Attributes of Concern 198

5.5
5.6

5.7
5.8
59
5.10

6.1
6.2
6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

A.l
A2
A3

List of Tables

Example Code2Vec-Based Metrics Calculation
Summary of Differences: Token-Based versus Code2Vec-Based

Metrics e
Best Performance Per Classifier (Sorted by F1 score)
Best Metrics Combination Per Classifier
Parameter Grid and Best Hyperparameter Values
Pre-and-Post-Hyperparameter Tuning Results for Random Forest

classifier

Dataset Details - Multiple Software Systems
Post-Deduplication Dataset Details - Multiple Software Systems . .
Percentage of Vulnerable versus Non-Vulnerable Methods with Hits
- Multiple Software Systems L.
Methodological Differences Between Chapters 4, 5, and the Current
Chapter e
Best Performance Per Classifier (Token-Based Analysis)
Best Performance Per Classifier (Code2Vec-Based Analysis)
Token-Based Best Metrics Combination Per Classifier
Code2Vec-Based Best Metrics Combination Per Classifier
Parameter Grid and Best Hyperparameter Values (Token-Based
Analysis)
Pre-and-Post-Hyperparameter Tuning Results for Gaussian Naive
Bayes Classifier (Token-Based Analysis)
Parameter Grid and Best Hyperparameter Values (Code2Vec-Based
Analysis)
Pre-and-Post-Hyperparameter Tuning Results for Gaussian Naive

Bayes Classifier (Code2Vec-Based Analysis)

Bug Resolution Records Details
Dataset Details

Co-evolution Details for ACCUMULO-3937

A4
A5
A.6
A7
A8

B.1
B.2
B.3

B.4

List of Tables 22

Absolute Support 320
Support ... e e e e 321
Confidence 322
Co-evolving Files Per Transaction 322
Cumulative Averages for All Five Software Systems 323

Large Language Model Performances on the Within-Project Dataset 353
Large Language Model Performances on the Mixed-Project Dataset 353
Within-Project Performance Comparison: Previous Chapters versus
Large Language Models 356
Mixed-Project Performance Comparison: Previous Chapters versus

Large Language Models 357

Listings

2.1
2.2
4.1
4.2
4.3
4.4

A Simple Java Main Method 45
getName Method 49
printHelloWorldMethod 111
processUsername Method 129
getUserDataMethod 131

getChannelSendOptions Method 145

Chapter 1

Introduction

This chapter outlines the research context of this thesis, concentrating on software
bugs and vulnerabilities, their impact, and the associated challenges. It further
details the motivation, research questions, scope, contributions, and structure of

the thesis.

1.1. Software Bugs 25

1.1 Software Bugs

Computer systems are the foundation of our digital society, empowering individuals
and companies globally [Lin et al., 2020b]. However, their ubiquity brings the pro-
liferation of software bugs, a primary concern for software professionals and users
alike. A software bug is an error, flaw, or fault in a program that leads to incorrect
or unexpected outcomes or unpredictable behaviour. Bugs can range from minor
issues to serious system failures with potentially devastating consequences. Most
bugs stem from human errors in the source code or design of a software system
[Singh, 2013]. These mistakes can occur during coding, testing, or maintenance.
Since the first documented software bug in 1945, professionals have been develop-
ing techniques to mitigate these issues [Sophia et al., 2021]. Despite these efforts,
software bugs continue to be a significant concern.

Bugs are costly to resolve and increase maintenance efforts [Sophia et al.,
2021]. The cost of fixing bugs escalates exponentially as the software develop-
ment lifecycle progresses. Additionally, they directly impact a software system’s
quality [Khan et al., 2020], leading to user inconvenience and software crashes.

Bugs can be classified based on their impact on a system’s functionality. Non-
functional bugs affect a system’s non-functional requirements. They may have a mi-
nor impact on functionality and remain undetected but can cause crashes or freezes,
leading to denial of service. In contrast, functional bugs affect a system’s functional
requirements, and performance-related bugs impair a system’s performance [Sophia
et al., 2021]. Finally, there are security-related bugs, also known as vulnerabilities.

Our research focuses on vulnerabilities. These bugs pose a significant threat
in modern society, where information systems support most daily processes. For

example, they can enable unauthorised access to a software system.

1.2. Software Vulnerabilities 26

1.2 Software Vulnerabilities

Software vulnerabilities, like other bugs, could arise from design, development,
or configuration flaws. However, unlike other bugs, malicious actors can exploit
these flaws to violate security policies [Lin et al., 2020b]. A software vulnerability
is a weakness in a system that can be exploited by threats, adversely impacting
the confidentiality, integrity, and availability of the affected systems [Spanos and
Angelis, 2018].

Vulnerabilities differ from general bugs as they represent security-related is-
sues, while traditional bugs indicate impaired or insufficient functionality [Camilo
et al., 2015]. Not all software weaknesses are exploitable or available for abuse, so

not all qualify as vulnerabilities.

Software vulnerabilities are a significant concern for professionals. Despite
countermeasures, software attacks cost up to $200 billion per year. The Common
Vulnerabilities and Exposures (CVE) system reports that the number of vulnerabili-
ties has more than doubled in recent years, heightening security concerns due to the

potential for malicious exploitation [Gupta et al., 2021].

1.2.1 How Software Vulnerabilities Arise

Software system vulnerabilities can result from various factors, including coding er-
rors, design flaws, inadequate input validation, and improper system configuration.

Each phase of the software development lifecycle can introduce vulnerabilities.

Coding errors are a significant source of vulnerabilities. Programmers may
inadvertently introduce bugs and logic errors that attackers can exploit, known as
vulnerability-inducing changes. For example, an input validation flaw in a web
application may allow an attacker to inject malicious code, or a buffer overflow can

enable arbitrary code execution [Gujral et al., 2015].

Design flaws can also introduce vulnerabilities. Poor system design can make
it easier for attackers to exploit weaknesses [Igure and Williams, 2008]. For in-
stance, storing passwords in plain text instead of encrypting them allows an attacker

who gains access to the database to steal all the passwords. Similarly, weak authen-

1.2. Software Vulnerabilities 27

tication mechanisms, such as simple passwords, make it easy for an attacker to
guess or crack them, thereby gaining access to the system [Nandy et al., 2019].

Lack of input validation is another common source of vulnerabilities. Unval-
idated user input can allow attackers to inject malicious code into the system. For
example, SQL injection attacks occur when an attacker uses unvalidated input to
modify or extract data from a database [Fadlalla and Elshoush, 2023].

Poor system configuration can lead to vulnerabilities. Misconfigured systems
can have open ports, unsecured databases, or other weaknesses that attackers can
exploit. For example, leaving the default password on a database or server makes
it easy for an attacker to access the system, as default passwords are often easily
found in documentation or online sources [OWASP, 2021].

Human error is often a significant factor in creating vulnerabilities [Pollock,
2017]. To address these errors, it is essential to identify and proactively miti-
gate vulnerabilities. Changes made to fix these vulnerabilities are referred to as

vulnerability-fixing changes [Bhandari et al., 2021].

1.2.2 The Ever-Present Threat of Software Vulnerabilities

In 2013, Apple’s Developer portal suffered an information theft breach!. In 2018,
British Airways faced a £183 million penalty after a data breach compromised
380,000 customers’ transaction details? 3. In 2020, the US government suffered
multiple data breaches at top federal agencies, attributed to a cyberattack suspected
to have been orchestrated by Russia*. In 2021, Microsoft reported an exploit by
a hacker group allegedly working for China, targeting Microsoft Exchange servers

5

via zero-day vulnerabilities®. In mid-2023, the Superannuation Arrangements of

the University of London (SAUL) experienced a data breach due to a cyber incident

lhttps://www.theguardian.com/technology/2013/jul/22/apple—devel
oper—-site—hacked

https://www.reuters.com/article/us-iag-cybercrime-british-airwa
ys/ba-apologizes—after-380000-customers—hit-in-cyber—attack—-idUSK
CN1LM2P6

3https://www.bbc.co.uk/news/business-48905907

“https://edition.cnn.com/2020/12/16/tech/solarwinds—orion-hack-e
xplained/index.html

’https://www.nbcnews.com/tech/security/u-s-issues-warning-after
-microsoft-says—-china-hacked-its—-nl1259522

https://www.theguardian.com/technology/2013/jul/22/apple-developer-site-hacked
https://www.theguardian.com/technology/2013/jul/22/apple-developer-site-hacked
https://www.reuters.com/article/us-iag-cybercrime-british-airways/ba-apologizes-after-380000-customers-hit-in-cyber-attack-idUSKCN1LM2P6
https://www.reuters.com/article/us-iag-cybercrime-british-airways/ba-apologizes-after-380000-customers-hit-in-cyber-attack-idUSKCN1LM2P6
https://www.reuters.com/article/us-iag-cybercrime-british-airways/ba-apologizes-after-380000-customers-hit-in-cyber-attack-idUSKCN1LM2P6
https://www.bbc.co.uk/news/business-48905907
https://edition.cnn.com/2020/12/16/tech/solarwinds-orion-hack-explained/index.html
https://edition.cnn.com/2020/12/16/tech/solarwinds-orion-hack-explained/index.html
https://www.nbcnews.com/tech/security/u-s-issues-warning-after-microsoft-says-china-hacked-its-n1259522
https://www.nbcnews.com/tech/security/u-s-issues-warning-after-microsoft-says-china-hacked-its-n1259522

1.2. Software Vulnerabilities 28

involving MOVEit software®. In early 2023, T-Mobile discovered an API vulnera-
bility that led to the theft of personal data belonging to 37 million customers’. In
June 2024, a ransomware attack targeted NHS hospitals, disrupting medical services
and necessitating an urgent appeal for blood donations® °.

These examples illustrate the indiscriminate nature of cyberattacks, affecting
governmental, commercial, non-profit, and individual entities. Exploitation of vul-
nerabilities is a common theme in all these cases, highlighting the severe conse-
quences of neglecting software system vulnerabilities. Consequences range from
minor inconveniences, such as denial of service, to significant issues, including rep-
utational damage, financial loss, or even injury and death in safety-critical systems.
Therefore, it is crucial to identify and mitigate vulnerabilities before they can be
exploited by attackers.

Despite the importance of identifying and eradicating vulnerabilities, devel-
opers must balance the cost of remediation, the potential impact of the vulnera-
bility, and the overall software development lifecycle. An automated process that
effortlessly identifies and prioritises security weaknesses can be invaluable. Such
a solution can help developers to focus on the most critical vulnerabilities, reduc-
ing remediation time and cost while ensuring a productive software development

lifecycle.

®https://www.ucl.ac.uk/human-resources/news/2023/jun/saul-respo
nse-cyber—-incident—-and-data-breach

"https://techcrunch.com/2023/01/19/t-mobile-data-breach/

8https://news.sky.com/story/nhs-issues—-urgent-blood-donation-a
ppeal-after—-it-cyber—-attack-leaves-hospitals—-struggling-to-match
-patients-13150509

https://news.sky.com/story/nhs-cyber-attack-sensitive-data-sto
len-from-blood-test-provider-in-cyber—-attack-by-criminal-group-p
ublished-online-13154539

https://www.ucl.ac.uk/human-resources/news/2023/jun/saul-response-cyber-incident-and-data-breach
https://www.ucl.ac.uk/human-resources/news/2023/jun/saul-response-cyber-incident-and-data-breach
https://techcrunch.com/2023/01/19/t-mobile-data-breach/
https://news.sky.com/story/nhs-issues-urgent-blood-donation-appeal-after-it-cyber-attack-leaves-hospitals-struggling-to-match-patients-13150509
https://news.sky.com/story/nhs-issues-urgent-blood-donation-appeal-after-it-cyber-attack-leaves-hospitals-struggling-to-match-patients-13150509
https://news.sky.com/story/nhs-issues-urgent-blood-donation-appeal-after-it-cyber-attack-leaves-hospitals-struggling-to-match-patients-13150509
https://news.sky.com/story/nhs-cyber-attack-sensitive-data-stolen-from-blood-test-provider-in-cyber-attack-by-criminal-group-published-online-13154539
https://news.sky.com/story/nhs-cyber-attack-sensitive-data-stolen-from-blood-test-provider-in-cyber-attack-by-criminal-group-published-online-13154539
https://news.sky.com/story/nhs-cyber-attack-sensitive-data-stolen-from-blood-test-provider-in-cyber-attack-by-criminal-group-published-online-13154539

1.3. Motivation 29

1.3 Motivation

Our research is driven by the increasing threat of software vulnerabilities and the
urgent need for effective vulnerability prediction methods. In recent years, the Na-
tional Vulnerability Database (NVD)!? has reported a steady increase in disclosed
security vulnerabilities. Software vulnerabilities can have severe consequences if
exploited, making it essential to identify and mitigate them proactively. Tradi-
tional vulnerability prediction methods, such as static code analysis and dynamic
code analysis, face limitations, particularly in large-scale software systems, due to
high computational costs [Shin and Williams, 2013]. Furthermore, these methods
rely heavily on manual feature definition and code audits, which are both time-
consuming and prone to errors [Kaur and Nayyar, 2020, Lipp et al., 2022]. The
increasing complexity and variety of software systems further complicate vulnera-
bility identification using these conventional techniques [Zhang et al., 2023c]. As
a result, researchers are now focusing on automated, Al-driven methods, using ma-
chine learning and deep learning to enhance the efficiency and accuracy of vulner-
ability prediction.

However, while machine learning techniques offer promise, they face chal-
lenges that impact their performance. A fundamental limitation in existing machine
learning-driven vulnerability prediction models is the quality of features used for
training. Most models rely on features extracted from source code, such as metrics
of complexity and structure. However, these features often lack security context,
which is critical for capturing the full implications of the code [Lin et al., 2020a].
For example, a complex code snippet might not be vulnerable if inaccessible to
an attacker, yet traditional features may not capture this information. Therefore,
incorporating security context into feature extraction is vital for improving vulnera-
bility prediction. High false positive rates are another significant issue with current
machine learning models [Shin and Williams, 2013]. False positives, where non-
vulnerable code is incorrectly flagged as vulnerable, waste time and resources. Re-

ducing false positives is crucial to making these models more effective in practice.

Onttps://nvd.nist.gov/general/visualizations/vulnerability-visua
lizations/cvss—severity-distribution-over—time

https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time

1.3. Motivation 30

To address these limitations—namely, the lack of security context in features
and high false positive rates—we propose a novel approach that utilises supervised
machine learning techniques for vulnerability prediction, enhanced by information

retrieval methods.

Information retrieval, widely used in search engines and text mining, involves
retrieving relevant information from extensive data collections [Chowdhury, 2010].
Our research adapts this concept for vulnerability prediction, aiming to improve
the quality of training features and reduce false positives. The core of information
retrieval is pattern matching. Given a query, an information retrieval system re-
trieves relevant documents from a collection based on the query’s similarity to the
documents. In our context, the ‘query’ is a code element from a software system
being analysed for vulnerabilities, and the ‘documents’ are known vulnerable code
samples from a dataset. Our system retrieves relevant documents based on their
similarity to the query, extracting features that encapsulate the security context of

the code element. We then use these features to train machine learning models.

By ‘code element’, we refer to a unit of analysis in the source code, also known
as ‘granularity.” In modern object-oriented programming languages like Java, this
could be a method or a class. For instance, in method-scoped analysis, the code
element is a method, and the information retrieval system retrieves relevant docu-
ments, i.e., vulnerable methods, based on their similarity to the method under anal-
ysis. Similarly, in class-scoped analysis, the code element is a class, and the system
would retrieve relevant documents, i.e., vulnerable classes, based on their similarity
to the class under analysis. Our research focuses on method-level granularity, pre-
dicting whether a method is vulnerable based on its source code. Consequently, the

resulting features are method-level.

By matching queries to documents, we extract quantitative attributes that cap-
ture the security context of the methods we analyse relative to the known vulnerable
methods in the vulnerability dataset. These attributes, derived using novel similar-
ity metrics, serve as features for training machine learning models. This process

embeds the security posture of the methods we analyse into the features relative to

1.3. Motivation 31

the comprehensiveness of the vulnerability dataset, enhancing the model’s ability to
predict vulnerabilities in unseen, similar code.

In summary, our research introduces a novel approach to vulnerability pre-
diction by integrating information retrieval techniques and a dataset of known vul-
nerable code samples. This approach integrates security context into the training
features, aiming to reduce false positives and ultimately enhance the performance
of machine learning models in vulnerability prediction.

By addressing these limitations, our research aims to provide software devel-
opers with a more practical and effective method for identifying vulnerability-prone

components in software systems before they can be exploited.

1.4. Research Questions 32

1.4 Research Questions

The research questions guiding this thesis are as follows:

1. How well does the information retrieval-driven software vulnerability predic-
tion technique perform on a single, multi-release software system dataset for

token-based source code representations?

2. How well does the information retrieval-driven software vulnerability predic-
tion technique perform on a single, multi-release software system dataset for

Abstract Syntax Tree (AST)-based source code representations?

3. How well does the information retrieval-driven software vulnerability predic-

tion technique generalise across multiple software systems?

The first and second research questions evaluate the performance of our in-
formation retrieval-driven software vulnerability prediction technique on a single,
multi-release software system dataset using different source code representations.
These evaluations will offer insights into the technique’s effectiveness in predicting
vulnerabilities.

The third research question examines the generalisation capabilities of the in-
formation retrieval-driven software vulnerability prediction technique across mul-
tiple software systems, as a form of stress test, providing insights into its ability
to predict vulnerabilities in within-project and mixed-project datasets. A ‘within-
project’ dataset contains data from a single software system, whereas a ‘mixed-

project’ dataset contains data from multiple software systems.

1.5. Research Scope 33

1.5 Research Scope

1.

This research focuses on predicting software vulnerabilities using supervised

machine learning techniques.

. The study develops a novel approach leveraging information retrieval tech-

niques and a dataset of known vulnerable code samples to extract features
and train machine learning models. Other machine learning techniques, such
as unsupervised machine learning, reinforcement learning, and deep learning,

are not considered.

. The study evaluates the performance of the approach on Java-based software

systems.

. The unit of analysis is the method in the source code of software systems.

. Only code-related vulnerabilities occurring within methods are considered.

We do not consider configuration-related, design-related, or other types of

vulnerabilities.

. The study focuses on binary classification tasks to predict whether a method

is vulnerable rather than considering multi-class classification tasks, which

focus on predicting the type of vulnerability.

1.6. Research Contributions 34

1.6 Research Contributions

Information retrieval is a well-established technique for extracting relevant infor-

mation from large text corpora. However, its application to software vulnerability

prediction has been largely unexplored. This research demonstrates the feasibility

of repurposing information retrieval techniques for practical vulnerability predic-

tion. By harnessing the pattern-matching capabilities of information retrieval, we

develop novel security-related software metrics (features) that facilitate encoding

security context into machine learning features to enhance the effectiveness of ma-

chine learning models in identifying vulnerable code.

The primary contributions of this research are as follows:

. A novel approach to software vulnerability prediction that applies information
retrieval techniques to extract security-relevant features from source code by

leveraging known vulnerable code samples.

. A comprehensive evaluation of this approach using a multi-release dataset
of a single software system, incorporating both token-based and AST-based

representations of source code.

. An assessment of the generalisability of this approach across multiple soft-
ware systems, offering insights into its performance on both within-project

and mixed-project datasets.

. A comparative analysis of this approach against existing machine learning-

based software vulnerability prediction models.

. A discussion of the research findings’ implications for software developers
and the broader software security community, providing insights into its prac-

tical applications and potential impact on vulnerability prediction.

. A set of recommendations for future research in software vulnerability pre-

diction, outlining potential areas for further investigation and development.

1.7. Thesis Outline 35

1.7 Thesis Outline

The rest of this thesis is structured as follows:

 Chapter 2 provides background information on the concepts and techniques

used in our research.

» Chapter 3 reviews the literature on software vulnerability prediction and re-

lated topics.

» Chapter 4 presents a study on information retrieval-driven software vulnera-

bility prediction using token-based representations.

* Chapter 5 presents a study on information retrieval-driven software vulnera-

bility prediction using AST-based representations (Code2Vec).

* Chapter 6 examines the generalisability of information retrieval-driven soft-

ware vulnerability prediction across multiple software systems.

* Chapter 7 concludes the thesis, summarising the research contributions and

discussing future work.

* Appendix A investigates the co-evolution of bug-fixing change and bug-

inducing change artefacts.

* Appendix B explores using Large Language Models for vulnerability predic-

tion.

* Finally, the thesis features a comprehensive glossary of the most relevant
terms defined in the context of this research. Each term in the glossary fea-
tures a page number reference to the first occurrence of the term in the thesis.
Note that terms that appear in the Literature Review chapter or any other
parts of the thesis discussing other scholars’ work do not qualify as first oc-
currences to avoid misdefining them in ways that are not aligned with the

original authors’ definitions.

Chapter 2

Background

This chapter covers the background of software vulnerabilities, mitigation tech-
niques, vulnerability prediction, and representations of source code. We explore the
granularity and features of vulnerability prediction models, as well as the source
code representations employed in our research. Additionally, we introduce infor-
mation retrieval concepts and their relevance to vulnerability prediction in our re-

search.

2.1. Software Vulnerability Mitigation Techniques 37

2.1 Software Vulnerability Mitigation Techniques

Attacks exploiting software vulnerabilities can take various forms, such as Denial-
of-Service (DoS) attacks or privilege escalation. One trusted mitigation method is
adhering to secure programming practices during development. This reduces the
risk of introducing vulnerabilities and simplifies their management. Despite efforts,
including Microsoft reportedly spending 100 machine years annually addressing

software flaws [Chernis and Verma, 2018], many flaws still reach production.

Researchers have proposed various methods to tackle vulnerabilities, includ-
ing static analysis, dynamic analysis, hybrid analysis, penetration testing, patching,
and program transformation. Recently, Al-driven methodologies, primarily ma-
chine learning and deep learning approaches, have been the focus [Ghaffarian and
Shahriari, 2017]. Before these machine learning-driven techniques, static and dy-
namic analysis techniques were standard. Static analysis examines source code
without executing it to identify potential vulnerabilities, analysing code structure,
data flow, and control flow [Ghaffarian and Shahriari, 2017]. Techniques include
code metrics analysis, pattern matching, and symbolic execution [Zhou et al., 2021,
Chen et al., 2017, Luckow et al., 2020]. Dynamic analysis involves executing code
to observe its behaviour and identify vulnerabilities during runtime. Techniques in-
clude fuzz testing and taint analysis [Chen et al., 2017, Liu et al., 2008, Tang et al.,

2010]. Hybrid approaches combine static and dynamic techniques [Liu et al., 2008].

Machine learning and deep learning techniques now dominate research in vul-
nerability prediction. These methods predict software vulnerabilities based on his-
torical data and source code characteristics. Supervised learning, which involves
training algorithms on labelled data, is a common approach in vulnerability pre-
diction. Some common supervised learning algorithm examples include Decision
Trees, Support Vector Machines (SVM), and Random Forests. Building a machine
learning-based vulnerability prediction model involves collecting data, preparing
the data, developing the model, and testing and evaluating it [Lin et al., 2020b].
Performance is typically evaluated using precision, recall, F1 score, and accuracy

metrics. Challenges include the abundance of software bugs compared to vulnera-

2.1. Software Vulnerability Mitigation Techniques 38

bilities, making it difficult to find enough training data to effectively train models
[Lin et al., 2020b, Ghaffarian and Shahriari, 2017]. Despite this, Al-driven tech-
niques have outperformed rule-based methods, placing them at the forefront of vul-
nerability prediction research [Wang et al., 2021a]. Unsupervised learning, which
identifies anomalies or outliers in unlabelled data, also plays a role, with exam-
ples including k-means clustering and anomaly detection algorithms [Ghaffarian
and Shahriari, 2017]. Deep learning techniques, such as Convolutional Neural Net-
works (CNN), Recurrent Neural Networks (RNN), and Long Short-Term Memory
(LSTM) networks, have also gained traction in recent years [Lin et al., 2020a].
The following section delves into software vulnerability prediction, exploring
the concept of granularity, vulnerability predictors (i.e., features or metrics), and

source code representations used in vulnerability prediction research.

2.2. Software Vulnerability Prediction 39

2.2 Software Vulnerability Prediction

Vulnerability prediction is a promising methodology in secure software engineer-
ing that identifies vulnerabilities before they can be exploited. Its primary goal is
to help software testers allocate their limited resources efficiently by automatically
identifying the most vulnerable components of a software system [Shen and Chen,
2020]. The main idea is to preemptively pinpoint software components that could be
susceptible to security threats, thereby mitigating risks before attackers can exploit
them. This research area has gained significant traction over the past decade [Hov-
sepyan et al., 2016]. Predicting which software components are likely to contain
vulnerabilities promotes the early identification and mitigation of potential security

issues during the development cycle [Shin et al., 2010].

Vulnerability prediction models are typically built using supervised machine
learning techniques. These models utilise software attributes to differentiate be-
tween vulnerable and clean (or neutral) software components [Kalouptsoglou et al.,
2023]. Recently, there has been a surge of interest in applying deep learning tech-
niques to vulnerability prediction research [Lin et al., 2020a]. These models’ pri-
mary goal is to identify software components more likely to contain vulnerabili-
ties, enabling developers to concentrate on securing these critical areas [Shin et al.,

2010].

A key aspect of vulnerability prediction is discerning the characteristics that
differentiate vulnerable code components from non-vulnerable ones and other bugs.
However, this task is challenging due to the inherent complexity of software sys-
tems. Coding-related vulnerabilities are often subtle and context-dependent, mak-
ing them difficult to detect by casual observation. To overcome this challenge,
vulnerability prediction approaches leverage machine learning techniques to iden-
tify vulnerable code patterns in software code. These patterns, often not apparent to
human observers, make machine learning an ideal automated solution for detecting
such subtle indicators. By employing machine learning, researchers aim to enhance

the accuracy of vulnerability prediction and reduce the incidence of false positives.

2.2. Software Vulnerability Prediction 40
2.2.1 Software Vulnerability Prediction Granularity

Artificial intelligence has been applied to vulnerability prediction to enhance soft-
ware quality and reliability. The scarcity of testing and verification resources has
driven security testers to develop methods to prioritise critical components, making
vulnerability predictions essential for efficient resource allocation [Morrison et al.,

2015].

Computational models for vulnerability prediction utilise historical software
data and labelled vulnerable software artefacts. These models operate on source
files to identify potentially vulnerable components. However, identifying vulner-
abilities at the source code file level can be challenging, particularly with large
files, as it complicates pinpointing the exact location of vulnerabilities. To address
this issue, researchers have explored more granular prediction methods, such as
method-level prediction, which allows for finer granularity in identifying vulnera-

bilities within software systems [Ghaffarian and Shahriari, 2017].

Besides source file-level and method-level granularity, other levels include
binary-level, class-level, and change-level granularity [Kim et al., 2008]. Binary-
level predictions are impractical due to the large number of files that require manual
inspection after prediction. Source file-level granularity presents challenges with
large files containing thousands of lines of code. Similarly, large classes with nu-
merous methods pose difficulties at the class-level granularity. Change-level gran-
ularity, focusing on codebase changes, often lacks context, involving only code
snippets. Consequently, method-level predictions are considered the most practical

option [Morrison et al., 2015].

Giger et al. [2012] proposed a method-level bug prediction approach to re-
duce manual inspection steps. Method-level vulnerability prediction is analogous
to method-level bug prediction, aiming to identify methods likely to contain vulner-
abilities. Method-level vulnerability prediction in software security involves exam-
ining and assessing vulnerabilities at the level of individual methods or functions
within a software codebase. This analysis focuses on scrutinising specific meth-

ods or functions to identify potential risks, using various techniques to predict the

2.2. Software Vulnerability Prediction 41

likelihood of vulnerabilities. This proactive approach aims to identify potential vul-
nerabilities at the method level before they manifest as security issues.

Method-level granularity in vulnerability prediction refers to the detailed anal-
ysis of potential security weaknesses at the level of individual methods within a
codebase. Unlike coarser assessment levels, such as binary, file, or class levels,
method-level granularity examines each method independently for vulnerabilities.
Since methods are typically smaller than classes or source files, this approach en-
ables more precise targeting of specific code sections where vulnerabilities may
reside. It provides a more detailed understanding of potential risks associated with
each method, facilitating localised identification of vulnerabilities and offering bet-
ter insights into each method’s security posture [Croft et al., 2022].

A detailed understanding of vulnerabilities at the method level would enable
software professionals to develop more targeted security measures and remediation
strategies. Such an approach could lead to more efficient resource allocation, ensur-
ing that security efforts are concentrated where they are most needed at a much finer
granularity, optimising the vulnerability mitigation process. Additionally, method-
level vulnerability prediction could provide insights into the specific characteristics
of vulnerable methods, aiding in the development of preventive measures and best
practices to mitigate vulnerabilities in the future.

By incorporating method-level vulnerability prediction into the development
workflow, software professionals can ensure the early identification of potential se-
curity issues, making the process more efficient than waiting until an entire class or
source file is written. This strategy enables the more accurate identification of vul-
nerability sources, facilitating timely and effective remediation [Giger et al., 2012,

Morrison et al., 2015, Sultana et al., 2023].

2.2.2 Software Vulnerability Prediction Features

The features used in vulnerability prediction models are crucial for their perfor-
mance. These features are characteristics of software components that enable the
model to distinguish between vulnerable and non-vulnerable components. As in-

put to the machine learning model, features enable it to learn patterns indicative of

2.2. Software Vulnerability Prediction 42

vulnerabilities, making the careful selection of these features essential for accurate
predictions.

Many studies have utilised traditional software metrics as features. These met-
rics, both product and process metrics, measure various aspects of software engi-
neering products and processes. Product metrics quantify attributes such as code
size and complexity, while process metrics measure factors like developers’ pro-
ductivity. When applied correctly, these metrics can define the success or failure of
a software product or process, providing valuable information for making business
decisions and improving software systems [Chhabra and Gupta, 2010].

Traditional software metrics are often calculated from components such as
classes and methods. In the context of vulnerability prediction research, the goal
is to leverage these metrics to identify components prone to vulnerabilities based
on observations that vulnerable code components often exhibit specific characteris-
tics. Therefore, careful selection of metrics can enhance the predictive performance
of vulnerability prediction models [Singh et al., 2011].

There are two broad categories of software metrics:

* Product Metrics: These metrics quantify source code attributes, such as code
size and complexity. Examples include Lines of Code (LOC) and McCabe’s

Cyclomatic Complexity.

* Process Metrics: These quantify software-related processes, such as the

number of code changes (churn) or developer characteristics.

There has been a longstanding debate about which metric category performs
better in vulnerability prediction [Rahman and Devanbu, 2013] and whether tra-
ditional software metrics alone are sufficient for accurate vulnerability prediction.
Researchers have observed that vulnerable code tends to have specific character-
istics: it is often large, complex, tightly coupled, and frequently churned [Giger
et al., 2012, Morrison et al., 2015, Pascarella et al., 2018, Du et al., 2019]. These at-
tributes can be measured using product software metrics. Traditional metrics, such

as McCabe’s Cyclomatic Complexity, Lines of Code, Code Churn, and Dependency

2.2. Software Vulnerability Prediction 43

metrics (Fan-In and Fan-Out), are commonly used as features in vulnerability pre-
diction models. However, these metrics face several challenges that can limit their
effectiveness in accurately predicting vulnerabilities.

The primary challenge is their limited ability to capture security-specific code
characteristics. Traditional software metrics were initially designed to measure soft-
ware quality and productivity, not security. Consequently, they may miss security-
specific aspects, such as input validation, authentication, and authorisation. For
instance, traditional metrics might deem a codebase with low complexity and churn
secure, but in reality, it could contain vulnerabilities due to insufficient input valida-
tion. While traditional software metrics can be valuable as supplementary features,
they may be insufficient for accurately predicting vulnerabilities. Therefore, vul-
nerability prediction models must incorporate features that capture security-relevant
code attributes. Researchers argue that the inadequacy of traditional metrics arises
from their reliance on syntactic code characteristics, which often lack semantic
depth [Lin et al., 2020a]. Traditional metrics do not convey the underlying mean-
ing of the code. This limitation is why many contemporary studies employ source
code representation-based features, as they provide a more nuanced view of the
code’s syntax and semantics [Xiao et al., 2024]. Such features are more likely to
identify subtle patterns distinguishing vulnerable code from non-vulnerable code.
Consequently, studies using only traditional metrics often report poor results in vul-
nerability prediction [Ghaffarian and Shahriari, 2017].

In the next section, we delve into source code representations, examining the
token-based and Abstract Syntax Tree (AST)-based representations employed in

our research.

2.3. Source Code Representations 44

2.3 Source Code Representations

To accomplish different software engineering goals and improve software develop-
ment and maintenance, practitioners have developed many methods, such as source
code classification [Frantzeskou et al., 2008, Mou et al., 2016], code clone detection
[Kamiya et al., 2002, Sajnani et al., 2016, White et al., 2016, Wei and Li, 2017], bug
prediction [D’Ambros et al., 2012, Tantithamthavorn et al., 2016], and code sum-
marisation [Haiduc et al., 2010, Jiang et al., 2017]. However, a primary challenge
common to these methods is effectively representing source code to capture its syn-
tactical and semantic information.

Source code representation abstracts low-level details, providing a higher-level
view. It transforms text-based source code into a more abstract and structured form,
capturing syntactical and semantic information [Zhang et al., 2019]. This new form
finds applications in various software engineering tasks. The abstraction enables
tasks that are difficult or impossible to perform directly on text-based source code,
including machine learning and deep learning tasks. These algorithms typically
require numerical inputs, and source code representation facilitates converting tex-
tual source code into a format they can process [Hancock and Khoshgoftaar, 2020].
Many machine learning tasks require transforming raw data into a processable for-
mat, known as feature engineering. Effective source code representation captures
embedded syntactical and semantic information. Each representation method has
its advantages and disadvantages. The choice of representation depends on the spe-
cific task and the desired level of abstraction. Notably, no single representation is
suitable for all tasks, as different representations capture different aspects of source
code [Samoaa et al., 2022].

The following subsections discuss the source code representation approaches

used in our research, including token-based and AST-based representations.

2.3.1 Token-based Representations

Token-based representations are among the most common methods for represent-
ing source code. They involve tokenising source code into a sequence of tokens,

where each token represents a specific syntactic element, such as keywords, iden-

2.3. Source Code Representations 45

tifiers, literals, and operators [Zhou et al., 2020]. Token-based representations are
widely used in tasks such as code clone detection [Li et al., 2017], bug prediction
[Choudhary and Singh, 2017], and code summarisation [Fowkes et al., 2017]. These
representations are relatively simple and easy to generate, making them convenient
for many software engineering tasks.

For example, consider the following Java code snippet:

Listing 2.1: A Simple Java Main Method

3 public static void main(String[] args) {

4 System.out .println ("Hello, World!");

Tokenising this code snippet would result in the following sequence of tokens:

public static void main (String [] args) { System .
— out . println (" Hello , World ! ") ; 1}

Figure 2.1: Token Representation of the Method in Listing 2.1

2.3.1.1 N-Grams

N-grams are a common feature representation technique in Natural Language Pro-
cessing (NLP). An N-gram is a contiguous sequence of N items from a given sample
of text or speech. In NLP, these items are typically words, characters, or tokens. N-
grams capture the local context of words in a text, providing information about the
relationships between adjacent words.

Character-based N-grams help capture morphological information, while
word-based N-grams help capture semantic information [Abdolahi and Zahedh,
2017, Dogra et al., 2022].

For instance, the character-based 2-gram representation of the sentence "Hello,
World!" would be ["He", "el", "11", "lo0", "o,", ", ", " uW",
"Wo", "or", "rl", "ld", "d!"].

Its 3-gram representation would be ["Hel", "ell", "11lo", "lo,",

"O, "’ ||’ W", "WOI", "Orl", "rld", "ld!"].

2.3. Source Code Representations 46

2.3.1.2 Shingles (Word N-Grams)

Shingles, also known as word N-grams, are a common feature representation tech-
nique in text processing. A shingle is a sequence of N words from a given text
sample. Shingles capture the local context of words in a text, providing information
about the relationships between adjacent words. For instance, a 2-shingle (bigram)
captures the relationship between two adjacent words, while a 3-shingle (trigram)
captures the relationship between three adjacent words.

To illustrate, the sentence "The quick brown fox jumps over the lazy dog" can
be represented as 2-grams: ["The quick", "quick brown", "brown fox", "fox jumps",

"mnon "mnon "non

"jumps over", "over the", "the lazy", "lazy dog"].

" "

Its 3-gram representation would be: ["The quick brown", "quick brown fox",
"brown fox jumps", "fox jumps over", "jumps over the", "over the lazy", "the lazy
dog"].

In the context of source code, N-grams can capture the local context of tokens
within a code snippet. For example, a 3-gram representation of the Java code snippet

in Listing 2.1 would be:

public static void«rstatic void main<void main (<main (
String« (String [«<String [][] args<>] args)<
args) {<) { System<>{ System .<4>System . out<>.
out .<rout . printlné. println (<println ("< ("
Hello«" Hello ,<*Hello , World¢«», World !<*World !
n<_>! n)H") ;H) ; }

FeELdd

Figure 2.2: 3-Gram Representation of the Method in Listing 2.1

As shown in Figure 2.2, the 3-gram representation captures the local context of
tokens in the code snippet, providing information about the relationships between

adjacent tokens and encoding the syntactical structure of the code.

2.3.2 Abstract Syntax Tree-Based Representations

An AST represents the abstract syntactic structure of source code [Baxter et al.,
1998]. This tree-like structure captures the hierarchical relationships between syn-
tactic elements, such as statements, expressions, and declarations. In ASTs, nodes

represent syntactic constructs, such as method declarations, expressions, or state-

2.3. Source Code Representations 47

ments, while edges represent relationships between nodes, including parent-child
or sibling relationships [Fluri et al., 2007]. These nodes and edges form paths rep-

resenting the code’s syntactic structure.

ASTs are widely used in programming languages and software engineering
tools. Compared to plain source code, ASTs are more abstract and do not include
all details, such as punctuation and delimiters, thus not representing every aspect
of the code’s syntax [Veeramani et al., 2014]. However, ASTs describe the lex-
ical information and syntactic structure, such as method names and control flow
structures. ASTs play essential roles in tasks like source code search [Paul and
Prakash, 1994], program repair [Weimer et al., 2009], and source code differenc-
ing [Falleri et al., 2014]. ASTs also play essential roles in various program analysis
tasks, such as type checking, code generation, and refactoring, as well as in machine
learning-based software engineering tasks like code completion and recommenda-

tion [Miller, 1995, Jiang et al., 2021, Sommerlad et al., 2008, Liu et al., 2022a].

To illustrate how ASTs represent source code, Figure 2.3 shows the AST of
the method in Listing 2.1. The AST captures the hierarchical relationships between
syntactic elements in the source code, providing a more abstract view of the code’s
syntactic structure. Each node in the tree represents a syntactic construct, such as
a method declaration, an expression statement, or a string literal, in the code being

represented.

The CompilationUnit node represents the entire code snippet, while the Type-
Declaration node represents the class containing the Main method. The Method-
Declaration node represents the Main method, with child nodes representing the
method’s modifiers, return type, name, parameters, and body. The Block node rep-
resents the method’s body, containing an ExpressionStatement node representing
the println statement. The MethodInvocation node represents the println method in-
vocation, with child nodes representing the method’s target, name, arguments, and

string literal argument.

2.3. Source Code Representations 48

CompilationUnit

TypeDeclaration

MethodDeclaration

Modifier: Modifier: PrimitiveType: SimpleName: SingleVariableDeclaration Block
public static void main ArrayType SimpleName: ExpressionStatement
SimpleType: args MethodInvocation
String SimpleName: SimpleName: SimpleName: StringLiteral:
System out println "Hello, World!"

Figure 2.3: AST of the Method in Listing 2.1

ASTs form the foundational concept for AST-based representations, including
Code2Vec, which utilises AST paths to represent source code. In this research, we

use Code2Vec in our AST-based vulnerability prediction analyses.

2.3.2.1 Code2Vec Representation

Code2Vec is a source code embedding technique that extracts paths from the AST
of the source code. It represents these paths as triples, comprising start nodes, end
nodes, and internal path sequences. Code2Vec has been applied in various contexts
since its introduction, notably in method name recommendation!, as demonstrated

by Alon et al. [2019].

'Mttps://code2vec.org/

https://code2vec.org/

2.3. Source Code Representations 49

Listing 2.2: getName Method

13 @Override
14 public String getName () {
15 return fileItem.getFieldName () ;

Path contexts

4494,2,5136 2307,1065,154 2307,1066,25 2307,1067,140 154,15,25 154,12,140 25,639,140
ATl bl

Path context

Figure 2.4: Code2Vec Representation for the Method in Listing 2.2

Listing 2.2 shows the source code of the get Name method, and Figure 2.4

illustrates its Code2Vec (path-based) representation as extracted from the AST.

2.3.2.2 The Path Context Concept

Path-based representation models code snippets as collections of paths between
AST nodes [Kovalenko et al., 2019]. The Code2Vec representation in Figure 2.4 in-

cludes seven whitespace-separated path contexts, a central innovation of Code2Vec.

path_context token_vocabulary

- Each path context in a collection -
method_id of path contexts representing a . token_id

Path Context method may reference any two token_ids - Token

as its start and end tokens.

Each path context in a collection
of path contexts representing a
method may reference
any path_id as its target path.

path_vocabulary Each referenced path_id in a node_type_vocabulary
path_id path context may reference node_type_id
Path a sequence of node_type_ids b Node Type
of an arbitrary length,
which forms a path.

Figure 2.5: Path-Contexts: Representation of the Relationships among the Subcomponents

2.3. Source Code Representations 50

An ideal analogy to illustrate the path context concept is the Entity-
Relationship Model (ERD). Figure 2.5 shows an ERD-like representation of the
relationships among the path context subcomponents.

Suppose we have four entities (data files) representing the components of the

path context concept:

1. path_context: This data file holds the Code2Vec representation (comprising
path contexts) of methods, with a method_id column featuring unique nu-

meric [Ds that map to the path context of a method.

2. token_vocabulary: This data file holds tokens extracted from the source code,

with a roken_id column featuring unique numeric IDs that map to each token.

3. node_type_vocabulary: This data file holds the node types in the ASTs of the
methods, with a node_type_id column featuring unique numeric IDs that map

to each node type.

4. path_vocabulary: This data file holds sequences of node types forming paths
in a method’s AST, with a path_id column featuring unique numeric IDs that

map to each path.

In this context, a path is a sequence of node types that indicates a traversal
direction in an AST. A path context comprises a path enveloped by a start and end
token, as shown in Figure 2.4.

Code2Vec captures the hierarchical structure and relationships within the
source code by considering the code’s context through path contexts. It learns con-
nections between nodes within a path and relationships between nodes in different
paths. This enables Code2Vec to effectively encode source code semantics, yielding
robust representations for various software engineering tasks.

In Figure 2.4, each path context consists of a triplet: a path in the method’s
AST, surrounded by start and end tokens and separated by commas. The first num-
ber in each triplet is the start token, the second is the path, and the third is the end

token.

2.3. Source Code Representations 51

For example, the annotated path context 4494, 2, 5136 means the start to-
ken references roken_id 4494 in the token_vocabulary, the end token references
token_id 5136, and the path references path_id 2 in the path_vocabulary, which in

turn references a sequence of node types in the node_type_vocabulary.

token_id token

4494 filelitem path_id | path

5136 getlfieldlname 2 1564

(a) token_vocabulary (b) path_vocabulary
node_type_id node_type

1 SimpleName UP

4 SimpleName DOWN

5 METHOD_INVOCATION_RECEIVER UP

6 MethodInvocation TOP

(¢) node_type_vocabulary

Figure 2.6: token_vocabulary, path_vocabulary and node_type_vocabulary Values for
Path Context: 4494, 2, 5136

Figure 2.6 contains three subtables detailing the interconnections among the
components of the annotated path context in Figure 2.4, as derived from our data
files. Other path contexts in Figure 2.4 and in other methods also exhibit similar in-
terconnections, with the data files providing extensive information on tokens, paths,
and node types, encompassing all source code elements within a software system or

codebase.

2.3.3 Other Source Code Representations

Besides token-based and AST-based representations, other source code represen-
tations have been proposed for various software engineering tasks. For example,
Control Flow Graphs (CFGs) represent a program’s control flow in terms of ba-
sic blocks and their interconnections. CFGs are helpful in program analysis tasks
involving reasoning about the program’s execution behaviour, such as program slic-
ing, optimisation, and program comprehension [Zhao et al., 2022, Anju et al., 2010].

Program Dependence Graphs (PDGs) are another technique for representing
programs. They represent the data and control dependencies among program state-

ments [Czech et al., 2017, Horwitz and Reps, 1992].

2.3. Source Code Representations 52

Many code representation techniques exist, and this section, by no means,
covers all of them. As mentioned, each representation has advantages and disad-
vantages and is suitable for different tasks. Our research focuses on token-based
and AST-based representations, which we use to construct features for vulnerability
prediction models.

In the subsequent sections, we discuss the information retrieval techniques we

employ to leverage these representations for vulnerability prediction.

2.4. Information Retrieval (IR) 53

2.4 Information Retrieval (IR)

The common idea behind the representations discussed in Section 2.3 is transform-
ing source code into structured formats. These formats enable complex analyses
and computations that would be challenging or impossible on raw data. They facil-
itate activities such as extracting meaningful features, applying machine learning,
and measuring similarity and relevance for efficient searching, analysis, and com-
prehension. These applications are integral to our vulnerability prediction work.
We combine source code representations with information retrieval techniques to
implement these effectively. These techniques allow us to leverage these represen-
tations to retrieve relevant source code components, identify patterns, and measure
similarity, which we use to construct features for our vulnerability prediction mod-

els.

2.4.1 Introduction to Information Retrieval

Information retrieval encompasses activities related to the organisation, processing,
and accessing of information in various forms and formats. An information retrieval
system enables a user to interact with an information system or service to find in-
formation, such as text, graphic images, sound recordings, or video, that meets their
needs [Chowdhury, 2010].

Information retrieval is crucial for accessing information efficiently in the vast
digital landscape. It facilitates decision-making, research, knowledge discovery,
and numerous other applications across various fields and industries. It has appli-
cations in search engines, digital libraries, recommendation systems, e-commerce
platforms, and other domains where accessing and retrieving relevant information
is essential [Dong and Wang, 2008, Herrera-Viedma et al., 2008]. While web-based
information retrieval is not the primary focus of our work, it remains the most visi-
ble application today because of search engines like Google, Bing, and Yahoo.

Many modern information retrieval systems handle multimedia information,
including text, audio, images, and video. While features of conventional text re-
trieval systems apply to multimedia information retrieval, the unique nature of au-

dio, image, and video information has necessitated the development of new tools

2.4. Information Retrieval (IR) 54

and techniques. Modern information retrieval encompasses the storage, organisa-
tion, and access to text and multimedia resources [Chowdhury, 2010].

Despite its extensive applications, information retrieval remains a largely un-
explored area in software security. We address this gap by applying information re-
trieval techniques to software security, with a specific focus on vulnerability predic-
tion. Our information retrieval application primarily involves textual data, specifi-

cally data related to source code representation.

2.4.2 Information Retrieval System Features

Several features characterise information retrieval systems, essential for effectively

organising, processing, and accessing information. The primary features include:

* Indexing: Information retrieval systems index documents to facilitate effi-
cient searching. Indexing involves creating an index of terms extracted from
the documents, allowing users to search for specific terms or phrases. This
index provides a quick way to locate documents containing the desired infor-

mation [Maron and Kuhns, 1960, Maron, 1977].

* Querying: Users interact with information retrieval systems by submitting
queries. Queries are requests for information that users want to retrieve from
the system. The system processes the queries and returns relevant documents

based on the search criteria [Manning, 2008, Kobayashi and Takeda, 2000].

* Ranking: Information retrieval systems rank documents based on their rel-
evance to the query. The ranking algorithm determines the order in which
documents are presented to the user, with the most relevant documents ap-

pearing at the top of the search results [Pang et al., 2017, Jin et al., 2008].

* Relevance Feedback: Relevance feedback allows users to provide feedback
on the relevance of search results. Users can indicate which documents are
relevant or irrelevant, and the system uses this feedback to refine subsequent
searches. This helps improve the accuracy of search results by incorporating

user feedback [Lv and Zhai, 2009, Chang and Hsu, 1999].

2.4. Information Retrieval (IR) 55

* Retrieval Models: Information retrieval systems use retrieval models to de-
termine the relevance of documents to a query. Retrieval models define how
documents are scored and ranked based on their similarity to the query. Some
standard retrieval models include vector space models, probabilistic models

[Singhal et al., 2001], and language models [Song and Croft, 1999].

* Evaluation: Information retrieval systems are evaluated based on their abil-
ity to retrieve relevant information effectively. Evaluation metrics assess the
system’s effectiveness in retrieving relevant documents for users. Some stan-
dard evaluation metrics include precision, recall, F1 score, and mean average

precision [Saracevic, 1995, Kobayashi and Takeda, 2000].

2.4.3 How We Use Information Retrieval in Our Research

Information retrieval plays a core role in our feature engineering process for vulner-
ability prediction. This thesis experiments with two types of source code represen-
tations, token-based and AST-based representations, to capture both the syntactical
and semantic information of the source code we analyse. These representations en-
able us to extract meaningful features from source code for building models that
predict vulnerabilities. By applying information retrieval techniques, we identify
patterns in source code, quantitatively measure similarity between code components
and retrieve relevant code snippets for analysis. These features help us predict vul-

nerabilities in software systems more accurately and efficiently.

2.4.3.1 Mapping Information Retrieval Features to Our Setup

Subsection 2.4.2 outlined the primary features of information retrieval systems, in-
cluding indexing, querying, ranking, relevance feedback, retrieval models, and eval-
uation. Indexing, querying, and ranking are the most relevant to our research.

We use indexing to create an index of terms comprising elements from our
code representations, as extracted from source code, enabling efficient searching.
Querying is employed to process queries and retrieve relevant source code compo-
nents. Ranking determines the relevance of these components to a query, ensur-

ing that the most relevant components are prioritised. Our work does not involve

2.4. Information Retrieval (IR) 56

relevance feedback and retrieval models. Additionally, while we evaluate the per-
formance of our vulnerability prediction models, we do not assess our information
retrieval setup, as it serves only as a means to an end rather than the primary focus
of our research. Therefore, our work does not involve evaluation in the context of

information retrieval systems.

Our datasets comprise a target software system, where we aim to predict vul-
nerabilities, and a vulnerability dataset, comprising known vulnerable code sam-
ples. These two datasets comprise source code representations of methods from the
datasets. These representations are token-based and AST-based data derived from
the source code of the methods. We index the source code representations of the
methods in the vulnerability dataset to create an index of terms, allowing efficient
searching of source code representation components. We then use the source code
representations of the methods in the target software system as queries to retrieve
relevant components from the vulnerability dataset. Finally, we rank the retrieved
source code representation components based on their relevance to the query, ensur-
ing that the most relevant components are presented first. The returned results and
the top-ranked components are then used to construct features for our vulnerability

prediction models.

The primary goal of our information retrieval setup is pattern matching and
similarity measurement between source code components across the target soft-
ware system and the vulnerability dataset. We aim to identify patterns in our target
software system’s source code that are consistent with known vulnerable code sam-
ples in the vulnerability dataset. These patterns indicate potential vulnerabilities
consistent with the known vulnerabilities in the vulnerability dataset, enabling us to

predict vulnerabilities more accurately and efficiently in the target software system.

2.4.3.2 Feature Engineering

Feature engineering is pivotal in machine learning and data science. It involves
transforming raw data into meaningful features for predictive modelling. We em-

ployed information retrieval techniques to extract features from source code repre-

2.4. Information Retrieval (IR) 57

sentations for vulnerability prediction, capturing syntactical and semantic informa-
tion to enhance prediction accuracy.

Our work focuses on two primary feature types: token-based and AST-based,
each of which is subdivided into two categories. The first, hit-independent metrics,
consists of features derived directly from the intrinsic attributes of source code rep-
resentations. The second, hit-dependent metrics, relies on information retrieval to
measure the similarity between a method in the target software system and the most
similar methods in a vulnerability dataset.

In our context, a hit occurs when a method in the target software system
matches at least one method in the vulnerability dataset. Following a hit, features
are used to quantify the similarity between the target software system method and
the most similar method in the vulnerability dataset, as well as the general distribu-
tion of similarities between the target software system method and all methods in
the vulnerability dataset.

Subsequent chapters will elaborate on our information retrieval-driven ap-
proach, detailing the extraction of source code representations, feature construction,
and their application in machine learning models for vulnerability prediction. The
immediate chapter, however, will review relevant literature, focusing on vulnerabil-

ity prediction, general bug prediction and other related topics.

Chapter 3

Literature Review

This chapter presents a literature review on software vulnerability and bug pre-
diction methodologies. It discusses critical studies that influenced our work and
emphasises the role of machine learning and deep learning in improving predic-
tive capabilities. The chapter concludes by discussing our observations in the field,
identifying gaps in the literature, and laying the groundwork for the subsequent

chapters.

3.1. Introduction 59

3.1 Introduction

Previous chapters have highlighted the importance of understanding the adverse
impact of software vulnerabilities in modern development. As reliance on digi-
tal infrastructure grows, so do the risks associated with software vulnerabilities.
This chapter presents a comprehensive literature review, which is essential for con-
textualising current research, identifying critical methodologies, and highlighting

significant findings in software vulnerability and bug prediction.

The proliferation of software vulnerabilities presents an ongoing challenge in
maintaining secure systems. The increasing complexity of software and rapid de-
velopment have made identifying and mitigating vulnerabilities more challenging.
Traditional detection methods, such as static and dynamic analysis, provide valu-
able insights but face limitations in terms of accuracy and scalability, particularly in
modern systems. These challenges have driven interest in advanced methodologies,

notably those using machine learning, to enhance predictive capabilities.

Predicting software vulnerabilities is a proactive approach to identifying po-
tential threats before they can be exploited. It involves analysing historical data
and source code characteristics to detect patterns indicative of vulnerabilities. The
literature reveals various techniques, ranging from simple to sophisticated, that col-
lectively enhance our understanding of how vulnerabilities manifest and propagate,

ultimately leading to the development of innovative mitigation strategies.

The advent of machine learning and deep learning has transformed vulner-
ability prediction. Supervised learning techniques show promise in identifying
vulnerability-prone components by learning from labelled datasets. These tech-
niques use various features from the source code, including syntactic and semantic
information, to train predictive models. Deep learning further enhances these capa-

bilities by capturing complex patterns within the code.

Despite advancements, challenges remain. High false positive rates in many
predictive models lead to inefficiencies in vulnerability prediction. Additionally, the
scarcity of comprehensive labelled datasets hinders the development and evaluation

of robust models.

3.1. Introduction 60

This literature review highlights the critical need for innovative approaches in
secure software development. It sets the stage for subsequent chapters, which delve
deeper into specific methodologies and experimental evaluations undertaken in this
research. The findings highlight the dynamic nature of the field and ongoing efforts
to enhance software security through predictive analytics.

This chapter organises the reviewed literature into two main themes: software
vulnerability prediction and software bug prediction. The first theme focuses on
studies of software vulnerabilities and prediction methodologies, with an emphasis
on machine learning and deep learning techniques. The second theme explores
general (non-security-relevant) software bug prediction methodologies, providing a
broader context for understanding software quality and reliability.

We highlight studies that significantly influenced our work within each theme
and also review relevant systematic reviews and comparative studies to provide a
comprehensive overview of the field.

The chapter concludes with a discussion of our observations and emphasises
the importance of identifying gaps in the literature. These gaps present opportu-
nities for future research and highlight the novelty and significance of our work in

predicting software vulnerabilities.

3.2. Software Vulnerability Prediction 61

3.2 Software Vulnerability Prediction

This section reviews software vulnerabilities and the methodologies developed to
predict them. It discusses critical studies that have influenced our work and high-
lights the role of machine learning and deep learning in enhancing predictive capa-
bilities. It also considers systematic reviews and comparative studies to provide a
comprehensive overview of the field, placing our research within the broader con-

text of software vulnerability prediction.

3.2.1 Vulnerability Prediction Studies Influencing Work

This subsection reviews critical vulnerability prediction studies that significantly
influenced our work and laid the foundation for our research. Their innovative
methodologies, insightful findings, and contributions to the field of software vul-

nerability prediction influenced our work.

Shin et al. [2010] sought to enhance tools for security testers by exploring
the predictive potential of software metrics data, including source code characteris-
tics and historical data. They examined metrics related to complexity, code churn,
and developer activity in empirical studies of Mozilla Firefox and Red Hat Enter-
prise Linux kernel. Their results indicated that 24 out of 28 metrics effectively
distinguished between vulnerable and non-vulnerable files in both projects. Ma-
chine learning models that incorporated all three categories of metrics predicted
over 80% of the pre-identified vulnerable files, with fewer than 25% false positives
in both cases. The study concluded that these models could significantly reduce in-
spection efforts by up to 71% for Mozilla Firefox and 28% for Red Hat Enterprise

Linux.

Hovsepyan et al. [2012] critiqued traditional software vulnerability prediction
methods that rely on ‘cooked’ features, such as code complexity and churn. They
introduced an alternative approach using raw source code analysis as text to de-
velop features. Their model, tested across 18 versions of a large mobile application,
achieved an average accuracy of 0.87, a precision of 0.85, and a recall of 0.88. The

study concluded that this method is a viable complement to software metrics-based

3.2. Software Vulnerability Prediction 62

methods and highlighted a future research direction that combines textual source

code analysis with software metrics as features.

Meneely et al. [2013] pointed out that software security is crucial in modern
development, as vulnerabilities, often stemming from design and coding flaws, can
linger undetected, posing substantial risks. The researchers aimed to enhance secu-
rity by examining the size, churn, and community dissemination of Vulnerability-
Contributing Changes (VCCs). They employed a hybrid approach to trace 124 com-
mits that resulted in 68 known vulnerabilities in the Apache HTTPD server, some
of which dated back nearly two decades. They traced these VCCs using the ‘git
bisect’” command. The analysis revealed that VCCs are generally larger than non-
VCCs and that vulnerabilities are more likely to be introduced by new developers
working on specific sections of the code. The findings suggest that understanding

these patterns can help developers reduce the risk of introducing vulnerabilities.

Shin and Williams [2013] explored whether fault prediction models could
effectively predict vulnerabilities or if dedicated Vulnerability Prediction Models
(VPMs) were necessary. Their study, which used traditional software metrics such
as complexity, code churn, and fault history, focused on the Mozilla Firefox web
browser. They found that while 21% of the source code files contained faults, only
3% contained vulnerabilities. Their analysis showed that fault and vulnerability
prediction models performed comparably at various classification thresholds. For
instance, at a threshold of 0.6, the fault prediction model achieved a recall of 83%
and a precision of 11%; similarly, the VPM reached a recall of 83% and a preci-
sion of 12% at a threshold of 0.5. They concluded that software metrics-based fault
prediction models could also serve as effective VPMs. However, both model types

require further refinement to decrease false positives and enhance recall.

Morrison et al. [2015] explored the challenges of implementing VPMs in large-
scale systems, such as the Windows Operating System, highlighting their role in
helping software engineers prioritise verification resources. The study evaluated
the accuracy and actionability, which is defined as the inspection effort required to

assess the results of VPMs constructed using standard recommendations. The re-

3.2. Software Vulnerability Prediction 63

searchers replicated a VPM for two Windows releases, adjusting model granularity
and statistical learners, and assessed the models’ precision, recall, and required in-
spection effort for security reviews. The findings indicated that while binary-level
predictions offered high precision (0.75), they required an impractically high in-
spection effort due to low recall (approximately 0.20). On the other hand, source
file-level models showed lower precision (less than 0.5) and recall (less than 0.2).
These outcomes suggest that VPMs need further refinement to become actionable,
possibly by integrating security-specific metrics. The study concluded that although
VPMs are promising, significant enhancements are necessary to improve their pre-
cision and recall. It recommended further research and the inclusion of security-

specific metrics.

Al Debeyan et al. [2022] highlighted the criticality of the Log4jshell vulner-
ability! to highlight the importance of effective vulnerability detection in software
systems. They critiqued traditional vulnerability prediction models for their binary
classification approach, which only identifies if a code component is vulnerable.
They argued that these models should also inform developers about the nature of
the vulnerabilities they detect. To enhance this, they developed a multiclass classifi-
cation model that categorises vulnerabilities by type. They analysed vulnerable and
non-vulnerable methods, extracting vulnerability types and decomposing the code’s
Abstract Syntax Trees (ASTs) into n-grams. This data was used to train classifiers,
and their random forest model achieved an F measure of 75% and a Matthews Cor-
relation Coefficient (MCC) of 74%. The study concluded that using n-grams from
ASTs to train classifiers offers a more insightful approach to vulnerability predic-

tion, as it provides detailed information on vulnerability types.

3.2.2 Machine Learning-Based Vulnerability Prediction

Machine learning has revolutionised vulnerability prediction by utilising historical

data and source code features to develop predictive models. This subsection re-

'"https://www.ncsc.gov.uk/information/log4j-vulnerability-what-e
veryone—-needs—-to-know

https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know

3.2. Software Vulnerability Prediction 64

views studies that applied machine learning techniques, including supervised, semi-

supervised, and unsupervised learning, to vulnerability prediction.

3.2.2.1 Supervised Learning-Based Vulnerability Prediction

Although in-code vulnerabilities can be complex, context-dependent, and challeng-
ing to detect, they inherently conform to finite patterns because they are based on
specific code structures. Therefore, supervised learning techniques are well-suited
to predict vulnerabilities by learning from labelled data. This subsubsection reviews

studies that have applied supervised learning to predict software vulnerabilities.

Younis and Malaiya [2014] emphasised the growing risk posed by the increas-
ing number of software vulnerabilities and the shrinking timeframe between their
public disclosure and exploitation. They stated that traditional methods for assess-
ing vulnerability exploitability often rely on subjective judgment and are not scal-
able, underscoring the need for automated, scalable, and objective methods. To
address this, the study proposed a new metric based on software structure prop-
erties such as attack entry points, vulnerability locations, dangerous system calls,
and reachability. Their research aimed to introduce and evaluate this new metric,
which they designed to reduce subjectivity and enhance scalability in assessing ex-
ploitation risks. Additionally, they developed a Support Vector Machines (SVM)
model using this metric to automatically predict the risk of vulnerability exploita-
tion. The model’s effectiveness was tested using data from the National Vulnera-
bility Database and various exploit databases. Preliminary results suggest that fac-
tors such as reachability and the presence of dangerous system calls strongly pre-
dict exploitability. The model showed promising results in distinguishing between
exploitable and non-exploitable vulnerabilities, outperforming traditional methods.
The study highlighted the potential of integrating software structure properties and
machine learning to automate and improve the accuracy of vulnerability exploita-
tion assessments. The study concluded that their approach could significantly help
prioritise vulnerabilities and allocate resources more effectively, offering a valuable

direction for future research in vulnerability assessment.

3.2. Software Vulnerability Prediction 65

Perl et al. [2015] stated that security experts recognise the exponential increase
in vulnerabilities despite intensified efforts to mitigate them. They pointed out that
pre-deployment security audits struggle with the impracticality posed by the vast
volume of code. In contrast, tools like Flawfinder, a Python-based tool that helps
identify vulnerabilities in C/C++ source code, although helpful in identifying vul-
nerabilities, suffer from high false positive rates. To improve this, the researchers
introduced VCCFinder, a tool designed to identify vulnerable code in repositories
with significantly lower false positive rates. They linked Common Vulnerabilities
and Exposures (CVE) entries to corresponding GitHub commits, creating a database
comprising 66 C and C++ projects with 170,860 commits. They used a crawler to
identify vulnerable commits by searching for CVE IDs in commit messages and val-
idated their accuracy through manual analysis of a 10% random sample. A Support
Vector Machines model trained using this database classified vulnerable commits.
The study reported that VCCFinder dramatically reduced the false positive rate
by up to 99% compared to Flawfinder, producing only 36 false positives against
Flawfinder’s 5,460. The research highlighted the potential for further research to
generalise their findings and develop recommendations for reducing vulnerabilities

in deployed software systems.

Li et al. [2016] stated that the rapid increase in software vulnerabilities poses
significant challenges in cybersecurity, as these vulnerabilities are often exploited
in various types of attacks. The researchers stated that patching vulnerabilities is
crucial, but reusing vulnerable code across different software versions and libraries
complicates vulnerability tracking and patching efforts. Existing tools frequently
fail to identify all instances of a vulnerability, highlighting the need for more effec-
tive automated detection systems. They introduced VulPecker, an automated sys-
tem that detects software vulnerabilities using code similarity analysis. This system
aims to overcome the limitations of current detection methods by identifying vul-
nerable code fragments across diverse software products and versions. VulPecker
utilises a Vulnerability Patch Database (VPD) and a Vulnerability Code Instance

Database (VCID), which store information about known vulnerabilities and their

3.2. Software Vulnerability Prediction 66

code instances. It characterises patches using defined features and applies various
code similarity algorithms to detect vulnerabilities. Classifiers are built to determine
the most effective algorithm for each vulnerability type. The researchers evaluated
VulPecker, demonstrating its ability to detect 40 vulnerabilities not recorded in the
National Vulnerability Database (NVD), including 18 previously unknown vulnera-
bilities and 22 vulnerabilities that were silently patched in subsequent releases. The
system significantly improved detection accuracy, achieving high precision and re-
call. The researchers attributed its success to selecting appropriate code similarity
algorithms for different types of vulnerabilities. They then suggested that future
research could extend its application to additional programming languages and ex-
plore scalability for larger software systems. This study highlighted the potential of
automated systems to enhance cybersecurity by enabling more thorough and accu-

rate detection of vulnerabilities and patching.

Sultana [2017a] emphasised the crucial role of software security in maintain-
ing overall software quality, noting the rising number of vulnerabilities and the so-
phistication of attacks. They critiqued traditional software metrics for their high
false negative rates and lack of specific guidance on secure coding. To overcome
these limitations, the study aimed to develop a more effective software vulnerabil-
ity prediction model by introducing the concept of traceable patterns, which can
be automatically recognised and extracted from source code. The research ex-
plored whether traceable patterns could more accurately predict vulnerable code
than traditional metrics by analysing class-level and method-level patterns. Data
from projects like Apache Tomcat and various Java web applications were used.
Machine learning and statistical methods were employed to predict vulnerabilities
using features derived from traceable patterns and traditional metrics. The findings
revealed that traceable patterns yielded a lower false negative rate and higher recall
compared to traditional metrics. Patterns like CompoundBox and Immutable indi-
cated secure code, whereas Outline and AugmentedType were associated with vul-
nerability. Their Support Vector Machines models demonstrated enhanced perfor-

mance in predicting vulnerabilities when trained with traceable patterns, presenting

3.2. Software Vulnerability Prediction 67

a substantial advancement in predicting software vulnerabilities. The study advo-
cated for integrating traceable patterns in vulnerability assessments to give develop-
ers better tools for prioritising code reviews and testing efforts. They recommended
that future research focus on refining these patterns and testing their applicability in

different programming languages and development environments.

Sultana and Williams [2017] focused on enhancing the early detection of vul-
nerable code to improve the cost-effectiveness and efficiency of software testing.
They explored the utility of class-level traceable patterns, known as micropatterns,
which can be automatically mined from source code. The study hypothesised that
micropatterns could outperform traditional software metrics in vulnerability predic-
tion. To verify this, they compared the effectiveness of micropatterns against con-
ventional class-level metrics in predicting vulnerabilities. Machine learning tech-
niques were applied using data from Java-based systems, such as Apache Tomcat
7 and Apache Camel, with micropatterns and class metrics as features. The results
demonstrated that micropatterns achieved higher recall in identifying vulnerable
classes than traditional metrics. Specifically, while class metrics showed precision
values ranging from 0.693 to 0.995 and recall values ranging from 0.250 to 0.786,
micropatterns, analysed using a Decision Tree algorithm, achieved precision values
between 0.604 and 0.705 and recall values between 0.875 and 0.923. The study
concluded that micropattern-based models are more effective at predicting vulner-
able Java classes than models based on traditional class-level metrics, suggesting a

significant potential for improving vulnerability detection methodologies.

Yang et al. [2017] stated that predicting software vulnerabilities before code
audits is ideal. However, many models lack granularity because they typically oper-
ate at file or component levels, which can be costly and impractical. To address this,
they introduced VulDigger, a code review tool for identifying potentially vulnera-
ble commits in software systems’ commit histories at the change level. The study
developed a dataset from Mozilla Firefox and used a classification tool that lever-
ages metrics from bug and vulnerability detection. They adopted a unique approach

similar to Perl et al. [2015]’s work (also reviewed) for semi-automatically mapping

3.2. Software Vulnerability Prediction 68

vulnerabilities to contributing changes. Their approach achieved a high precision of
0.92 but a low recall of 0.14. The study concluded that this method supports con-
tinuous security inspection by providing instant feedback on code changes, aiding

in more targeted and efficient vulnerability management.

Sultana et al. [2018a] aimed to enhance early vulnerability detection in soft-
ware development, noting the limitations of traditional metrics in accurately locat-
ing vulnerabilities. They investigated the efficacy of method-level traceable patterns
(nano-patterns) compared to traditional software metrics in vulnerability detection.
Their research involved experiments using Apache Tomcat 6 and 7, Apache CXF,
and two standalone Java web applications. They employed three machine learning
techniques to evaluate nano-patterns and method-level metrics. The results indi-
cated that nano-patterns provided lower false-negative rates and higher recall val-
ues than traditional metrics, making them more effective for identifying vulnerable
code. Specifically, nano-patterns achieved precision between 0.676 and 0.812 and
recall between 0.689 and 0.897, while traditional metrics showed higher precision
between 0.775 and 0.871 but lower recall between 0.500 and 0.776. The study
concluded by recommending that developers integrate nano-patterns as features in

vulnerability prediction models to improve detection accuracy.

Jimenez et al. [2019] critiqued the common assumption in vulnerability pre-
diction research that models are trained with sufficient and accurate labelling. They
noted that this idea does not reflect real-world scenarios, where data is often partial
and mislabelled, pointing out that this discrepancy can lead to promising empiri-
cal results that diminish under realistic conditions. To explore this, they analysed
1,898 real-world vulnerabilities across 74 releases of Linux Kernel, OpenSSL, and
Wireshark, evaluating the effectiveness of three vulnerability prediction approaches,
both with and without the unrealistic labelling assumption. Their findings showed
that unrealistic labelling could significantly skew results, with Matthews Correla-
tion Coefficient values of 0.77, 0.65, and 0.43 for Linux Kernel, OpenSSL, and
Wireshark, respectively, under unrealistic conditions. When using more realistic

labelling, these values fell to 0.08, 0.22, and 0.10. The study concluded that vulner-

3.2. Software Vulnerability Prediction 69

ability prediction research needs to improve experimental and empirical methods to

ensure the robustness and practical applicability of the findings.

Chong et al. [2019a] discussed the escalating threat posed by the quick transi-
tion from discovery to exploitation of software vulnerabilities. They highlighted the
inefficiencies of traditional vulnerability detection methods and explored the use of
software metrics as predictors for vulnerable code components in open-source Java
and Python projects. The aim was to assess the predictive capability of these metrics
and compare their effectiveness across these programming languages. The study fo-
cused on function-level metrics like Cyclomatic Complexity, Lines of Code (LOC),
and Nesting Levels. The research employed machine learning classifiers, including
Support Vector Machines and Logistic Regression (LR), to analyse vulnerabilities
in three Java projects (Apache Tomcat 6, Tomcat 7, and Apache CXF) and two
Python projects (Django and Keystone). The models were evaluated based on pre-
cision, recall, and false positive rates. The findings indicated that software metrics
were more effective in predicting vulnerabilities in Java projects, with SVM models
achieving a recall of 70-73% and LR models about 67-71%. In contrast, Python
projects saw lower recall rates, with SVM at 42-50% and LR at 40-46%. This
suggests that while software metrics are reliable predictors for Java, their effective-
ness in Python requires enhancement. The study concluded that software metrics
hold significant potential as predictors of vulnerable code components, especially in
Java. However, the varied performance across programming languages indicates a
need for further research to optimise the use of software metrics in different coding
environments. The researchers recommended investigating additional metrics and
advanced machine learning techniques to improve vulnerability prediction across

all domains.

Sultana et al. [2021] stated that maintaining software systems to mitigate vul-
nerabilities is crucial, especially as some vulnerabilities can remain dormant for
years and persist across software releases. In this context, the researchers focused
on how effectively software metrics can predict vulnerabilities at different granu-

larities. They conducted a comparative study using class-level and method-level

3.2. Software Vulnerability Prediction 70

metrics across four Java projects to train supervised learning models. These metrics
included traditional process indicators such as code size, complexity, and nesting.
The study found that class-level granularity achieved a recall of over 70% and a
precision of over 75%, while method-level metrics yielded recall and precision val-
ues of over 65% and 80%, respectively. These results suggest that targeted testing
based on these metrics can effectively mitigate the risks associated with dormant
vulnerabilities. The researchers highlighted the potential of using such metrics to
guide development teams in focusing their testing efforts on the most susceptible

areas of the code.

Zhou et al. [2021] highlighted the importance of secure programming practices
in mitigating vulnerabilities during software development. They stated that while
many studies have developed vulnerability prediction models using software met-
rics, the impact of vulnerability fixes on these metrics has been less explored. The
researchers examined how specific metrics change following vulnerability fixes,
using static analysis to compare metrics before and after fixes for 250 vulnerable
files from Apache Tomcat and Apache CXF. The analysis focused on metrics such
as class and method counts, variable instances, maximum nesting, lines of code,
and complexity. They observed a minimum increase of 2% in metrics including
CountDeclClass, CountDeclClassMethod, CountDeclClassVariable, CountDeclIn-
stanceVariable, CountDeclMethodDefault, CountLineCode, MaxCyclomaticStrict,
and MaxNesting post-fix. The findings suggest that understanding the effect of fixes
on these metrics could guide the development of more effective vulnerability pre-

diction models.

Recognising the need for secure software development, Medeiros et al. [2021]
conducted two experiments to enhance software security early in the development
lifecycle. The first experiment focused on developing vulnerability prediction mod-
els using software metrics calculated from the Linux Kernel and Mozilla Firefox,
including McCabe’s Cyclomatic Complexity, Lines of Code, Coupling Between
Objects, and Lack of Cohesion. They trained five different machine learning models

using these metrics for vulnerability detection. The second experiment introduced a

3.2. Software Vulnerability Prediction 71

consensus-based decision-making approach to categorise code components by their
perceived vulnerability into four categories: ‘Highly Critical’, ‘Critical’, ‘Low Crit-
ical’, and ‘Non-Critical ’. This method combined the classification results from the
first experiment to assess the potential vulnerability of code components. The study
found that the consensus-based method was more effective across various develop-
ment scenarios than standalone vulnerability prediction models. It concluded that
while software metrics alone may not be sufficient to identify vulnerable code due
to high false positives, they are valuable in scenarios where precise vulnerability

detection is crucial.

Ganesh et al. [2021] stated that organisations often deploy open-source systems
to manage sensitive data, necessitating rigorous security checks early in develop-
ment to prevent cyberattacks. Recognising the need for tools that enable developers
to identify vulnerabilities during coding, they assessed the utility of machine learn-
ing algorithms in detecting potentially vulnerable software components via source
code analysis. They sourced security vulnerability data and source code for Apache
Tomcat versions 4 to 10 to compute 43 object-oriented metrics, such as coupling,
cohesion, and complexity, which formed the basis of their model features. The
research utilised Naive Bayes, Decision Tree, K-Nearest Neighbors (KNN), and
Logistic Regression. It found that the KNN algorithm achieved the highest accu-
racy at 80%. However, the researchers cautioned that these promising results are
specific to Apache Tomcat and may not apply universally across different software

systems.

Pereira et al. [2021] highlighted the unreliability of many vulnerability detec-
tion methods used by software developers, noting exceptionally high false-positive
rates. They proposed a combined approach using static analysis tool (SAT) alerts
and software metrics to enhance vulnerability detection in the Firefox Mozilla
project, which is written in C and C++. They constructed datasets incorporating
SAT alerts, software metrics, and their combination. After that, they conducted sev-
eral classification experiments, including binary classification, binary per category,

and multiclass classification using Decision Trees, Random Forests, Extreme Gra-

3.2. Software Vulnerability Prediction 72

dient Boosting, and Bagging algorithms. The results demonstrated that the Bagging
algorithm, utilising software metrics data, achieved the highest precision of 0.94,
while the combination of SAT alerts and software metrics reached the highest re-
call of 0.90. The best F1 measure was 0.36, using software metrics with Bagging.
The findings indicated that software metrics generally outperform SAT alerts in
machine learning models and highlighted the difficulty of simultaneously achieving
high precision and recall. The research revealed that vulnerable and non-vulnerable

files often have similar attributes, complicating the differentiation process.

Hocking et al. [2022] highlighted the crucial role of computers in modern so-
ciety but emphasised the growing threat of cyberattacks exploiting vulnerabilities,
thereby highlighting the need for practical vulnerability prediction tools. Their re-
search focused on methods that treat source code as text files, particularly inter-
pretability analysis, to identify the most critical features in predicting vulnerabil-
ities. The study involved developing features from over 2.4 million C and Java
components to predict vulnerability proneness. They employed an L1-regularised
logistic regression model, known for its interpretability due to the Lasso/L1 regu-
larisation technique, and used a Gradient Boosting algorithm as a non-linear base-
line. They also explored combining neural network embedding features with L1-
regularised models. A 10-fold cross-validation revealed that linear models with
interpretable features outperformed those relying solely on neural network embed-
dings. The study concluded that combining interpretable and neural network em-
bedding features is essential for optimal prediction performance. However, they
acknowledged the study’s limitation in considering only one interpretable feature,
code complexity, and suggested expanding the feature set to include code churn and

developer activity in future research.

Le and Babar [2022] noted that while many researchers have explored vulner-
ability detection in program functions and fine-grained code statements, few have
focused on using the output of these methods to assess vulnerabilities and gain
deeper insights into their nature, which is critical for vulnerability prioritisation.

To address this gap, they investigated automating function-level vulnerability as-

3.2. Software Vulnerability Prediction 73

sessment. Their dataset included 1,782 functions with 429 vulnerabilities from 200
real-world software systems. They gathered vulnerable and non-vulnerable code
statements from vulnerability-fixing commits sourced from the National Vulnerabil-
ity Database, GitHub Advisory Database, and VulasDB. The researchers extracted
the context of these vulnerable statements to generate features, which were then
input into six classifiers to develop models for predicting Common Vulnerability
Scoring System (CVSS) metrics. The study achieved a maximum performance of
0.64 Matthews Correlation Coefficient and 0.75 F1 score. The authors concluded
that further research is needed in function-level vulnerability assessment, with a
primary focus on techniques that effectively capture the relationships between vul-

nerable and non-vulnerable code statements.

Napier et al. [2023] highlighted the increasing difficulty of resolving software
vulnerabilities due to their growing complexity and severity. They added that while
traditional vulnerability detection methods are valuable, machine learning-based
approaches are gaining prominence. To evaluate the effectiveness of these methods,
the researchers conducted a study focusing on text-based machine learning models.
The study utilised a dataset of 344 open-source projects comprising 2,182 vulner-
abilities and 38 vulnerability types. To address the class imbalance, they extracted
functions from the source code and applied a pairing technique between fixed and
vulnerable versions of the same code samples. They tested seven machine learning
models and various Natural Language Processing and data processing techniques.
The experiments detected vulnerabilities within and across the top 10 projects and
the top 10 CWE vulnerability types based on the number of extracted function pairs.
After statistical analysis, the average precision ranged from 52.07% to 63.36%
within and across the top 10 projects and from 55.19% to 61.61% within and across
the top 10 CWE types. The study concluded that text-based machine learning vul-
nerability detectors are ineffective for detecting vulnerabilities across projects and

CWE types.

3.2. Software Vulnerability Prediction 74

3.2.2.2 Semi-Supervised Learning-Based Vulnerability Prediction

Semi-supervised learning is less explored in vulnerability prediction compared to
supervised learning. This subsubsection reviews a study that revisits a prior super-
vised learning-based approach using a semi-supervised technique.

VCCFinder, introduced by Perl et al. [2015] (also reviewed), is a machine
learning-based methodology for detecting vulnerabilities through code change anal-
ysis. Timothé et al. [2021] attempted to replicate VCCFinder’s supervised learning
approach but faced challenges due to the unavailability of the original resources.
Consequently, they developed an alternative method using a semi-supervised learn-
ing technique and a different set of features; their study also explored the difficulties
in identifying vulnerability-contributing commits, which often lack explicit tags or
messages. The alternative approach did not yield the same results as VCCFinder,
indicating a gap in replicability and effectiveness. Despite this, the authors regarded
their findings as a constructive baseline for future research in vulnerability predic-

tion, highlighting the field’s ongoing challenges.

3.2.2.3 Unsupervised Learning-Based Vulnerability Prediction

Like semi-supervised learning, unsupervised learning is less commonly used in vul-
nerability prediction. This subsubsection reviews studies that explore unsupervised
approaches, particularly anomaly detection-based vulnerability prediction.

To enhance security testing, Yamaguchi et al. [2013] developed Chucky, an
anomaly detection tool designed to identify missing checks in source code. Recog-
nising that many vulnerabilities stem from insufficient input validation, they used
Chucky to statically analyse the code for omitted conditions related to security-
relevant objects. The tool was tested on projects including Firefox, Linux, LibPNG,
LibTIFF, and Pidgin, discovering 12 previously unknown vulnerabilities in the lat-
ter two. The researchers also suggested that Chucky could be integrated with tech-
niques like fuzzing or symbolic execution to further analyse and rank the severity
of these vulnerabilities. Using anomaly detection to identify vulnerabilities, this ap-
proach marked a notable advancement in unsupervised vulnerability identification

approaches.

3.2. Software Vulnerability Prediction 75

In response to increasing cyberattacks targeting the Google Android platform,
Malik et al. [2019] conducted a study to detect anomalies in system calls within An-
droid applications, aiming to distinguish between benign and malicious behaviours.
The study hypothesised that the type, frequency, and sequence of system calls linked
to vulnerabilities exhibit distinct patterns. Using machine learning techniques, they
employed several metrics and parameters to monitor system processes and differen-
tiate between normal and harmful activities. Their K-Nearest Neighbours algorithm
achieved a precision of 0.852, a recall of 0.839, and an F1 score of 0.846. The Long
Short-Term Memory (LSTM) algorithm demonstrated a precision of 0.786, a recall
0f 0.946, and an F1 score of 0.856. Additionally, an enhanced LSTM Genetic Algo-
rithm achieved a precision of 0.752, a recall of 0.988, and an F1 score of 0.854. The
study concluded that these machine learning approaches could effectively predict
bugs and vulnerabilities, with an F score of around 85%. This study also prioritised

anomaly detection techniques, similar to Yamaguchi et al. [2013] (also reviewed).

3.2.3 Deep Learning-Based Vulnerability Prediction

This subsection reviews studies that have applied deep learning techniques, includ-
ing Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN),
and LSTM networks, to predict software vulnerabilities.

Lin et al. [2018] stated that security testers increasingly rely on machine learn-
ing tools to detect software vulnerabilities before release; however, the lack of high-
quality training data often hinders their efforts. Addressing this, they aimed to de-
velop an approach that generalises across similar projects by learning high-quality
features. They employed a serialised AST and Continuous Bag of Words (CBOW)
neural embedding to capture code semantics. These were processed using a deep
learning algorithm to generate representations aligned with software vulnerabilities.
This neural representation, derived from existing software projects, was then trans-
ferable to new projects, facilitating vulnerability detection even with limited train-
ing data. To evaluate their model, the researchers manually labelled 457 vulnerable
functions and sourced over 30,000 non-vulnerable methods from six open-source

projects. Their results indicated that the model could accurately identify vulnera-

3.2. Software Vulnerability Prediction 76

bilities and adapt to various projects, outperforming traditional software metrics in

both in-project and cross-project scenarios.

Russell et al. [2018] developed a vulnerability detection tool in response to
the increasing emergence of new vulnerabilities, which heighten the risk of cy-
berattacks. They collected millions of C/C++ function-level code samples from
the SATE IV Juliet Test Suite, Debian Linux Distribution, and GitHub. Using a
custom lexer, they generated features from the source code, focusing on capturing
the most relevant tokens to reduce the overall token vocabulary size. They imple-
mented a CNN that interpreted the lexed source code for vulnerability detection.
They achieved a Precision-Recall Area Under the Curve (PR AUC) of 0.944, an
Area Under the Receiver Operating Characteristic Curve (ROC AUC) of 0.954, a
Matthews Correlation Coefficient of 0.698, and an F1 score of 0.840. The study
affirmed the effectiveness of deep feature representation learning on source code

for vulnerability detection, suggesting it is a promising research direction.

Li et al. [2019] addressed the pressing issue of software security by introduc-
ing a method to efficiently detect vulnerabilities amidst rising software complex-
ity and cyber threats. The study proposed a lightweight-assisted vulnerability dis-
covery method using deep neural networks (LAVDNN) designed to identify weak
functions in large-scale open-source software. This approach involved extracting
function names as semantic features from source code and employing deep neural
networks to differentiate between weak and benign functions. The research elabo-
rated on the construction of deep neural networks and evaluated their performance
across different models. The study found that LAVDNN effectively detected vul-
nerabilities in C/C++ and Python programs, achieving high F2 scores from 0.91 to
0.915, demonstrating the method’s precision. Moreover, the approach significantly
reduced false positive rates and efficiently pinpointed functions that required fur-
ther analysis. In conclusion, the paper endorsed LAVDNN as a valuable tool for
aiding manual code audits and enhancing the efficiency of vulnerability detection,

noting its minimal need for preprocessing and reduced human intervention. Signif-

3.2. Software Vulnerability Prediction 77

icant benefits were also highlighted, including the method’s adaptability to various

programming languages and its ability to identify vulnerabilities.

Feng et al. [2020a] emphasised the importance of automatic vulnerability de-
tection in source code, highlighting the role of Al and deep learning. They cri-
tiqued existing methods that treat source code as plain text for not fully utilising
syntax structure, which leads to redundancy and potential data loss from truncation
techniques used for variable-length data. To overcome these limitations, they pro-
posed a novel data processing approach using ASTs to capture all syntax-related
features, thereby reducing redundancy. Their method involved parsing source code
into ASTs to maintain syntax information and prevent data redundancy. They em-
ployed a pack-padded approach to handle variable-length data without truncation or
padding. The model was evaluated on over 260,000 functions covering 118 CWE
vulnerability types from the Juliet Test Suite in the National Institute of Standards
and Technology (NIST) Software Assurance Reference Dataset (SARD). They re-
ported F1 scores of 82.43 for buffer overflow vulnerabilities (CWE-121), 82.79 for
types with over 5,000 samples (‘5k’), and 82.76 for the entire dataset (‘ALL’). The
study concluded that while their approach significantly improved handling syntax-
related features in vulnerability detection, the challenges necessitate further inves-

tigation.

Wang et al. [2021b] observed that despite ongoing efforts in vulnerability de-
tection, the number of reported vulnerabilities continues to increase annually. They
stated that traditional methods transform source code into an intermediate repre-
sentation for machine learning or deep learning analysis. Still, this approach often
leads to high false positive and false negative rates due to the representation’s inabil-
ity to accurately capture vulnerability characteristics. To that end, they introduced a
feature extraction model using CNN to improve vulnerability detection. They anal-
ysed 65,513 code samples from the National Vulnerability Database and the NIST
Software Assurance Reference Dataset. They calculated software metrics and de-
rived secondary metrics to create a comprehensive dataset of code metrics. These

samples were classified as ‘vulnerable’ or ‘clean’, incorporating various program

3.2. Software Vulnerability Prediction 78

size and complexity metrics. The study effectively utilised this enriched dataset in
its CNN model, achieving precision and recall rates of approximately 80%. The re-
searchers highlighted the need for further research into characterising source code

to extract more comprehensive, high-quality features.

Dam et al. [2021] acknowledged that vulnerabilities and code flaws in software
systems can lead to severe issues like deadlocking, hacking, data loss, and system
failures. They added that traditional vulnerability detection methods rely on manu-
ally crafted features, such as complexity metrics or code token frequencies, which
may not fully capture the necessary semantic and syntactic information for an ef-
fective prediction model. To address this, the researchers introduced an approach
using the LSTM algorithm better to capture the semantic and syntactic attributes of
source code. They tested this method on an Android dataset comprising 18 applica-
tions and a Firefox dataset, parsing source code into tokens and employing a ‘code-
book’ concept from computer vision to develop features for both within-project and
cross-project predictions. Their evaluation compared this approach against tradi-
tional software metrics, Bag of Words, and Deep Belief Network using four classi-
fiers: Random Forests, Decision Tree, Naive Bayes, and Logistic Regression. The
results showed that all metrics (precision, recall, F-measure, and AUC) exceeded
80% for the Android dataset, and similarly high results were observed for cross-
project evaluations. The study concluded that the researchers planned to extend
their approach to other application types and programming languages, aiming to
develop a comprehensive vulnerability prediction system that efficiently processes

raw input to predict vulnerabilities.

Addressing the challenge of detecting software vulnerabilities before exploita-
tion, Ziems and Wu [2021] introduced a method using Natural Language Processing
(NLP) techniques to analyse code. This approach treats source code as text repre-
sentations, utilising a database of over 100,000 C programming files identified with
123 vulnerabilities from the NIST Software Assurance Reference Dataset. They
implemented five deep learning models, including LSTM, Bidirectional LSTM,

and Bidirectional Encoder Representations from Transformers (BERT) The BERT

3.2. Software Vulnerability Prediction 79

models incorporate a transfer learning component trained in natural English. The
hybrid model, which combines BERT and LSTM, achieved an accuracy of 93.19%,
while the combination of BERT and BiLSTM recorded a slightly higher accuracy
of 93.49%. The study highlighted the effectiveness of maintaining contextual in-
formation in NLP-based methods for vulnerability detection, suggesting that these
techniques can significantly enhance the identification of potential security breaches

in software.

Zou et al. [2021] acknowledged that granular vulnerability detection is crucial
yet challenging. They stated that an ideal solution needs to detect vulnerabilities and
identify their types. They pointed out that existing deep learning solutions can de-
tect vulnerabilities but often fail to specify their types, a critical shortcoming given
the need to quickly pinpoint vulnerabilities in large source files. The researchers in-
troduced pVulDeePecker, a multiclass vulnerability detection system utilising deep
learning, which addresses this gap by incorporating the ‘Code Attention’ concept.
This concept builds upon the ‘Code Gadget’ idea to enhance the capture of semantic
details in program analysis. This system comprises three main modules: a parser
that transforms programs into Code Gadgets and Code Attentions, a vector rep-
resentation extractor, and a detector module that utilises the LSTM algorithm for
multiclass vulnerability detection. uVulDeePecker demonstrated impressive accu-
racy, achieving a false-positive rate of only 0.02%, a false negative rate of 5.73%,
and an F1 measure of 94.22%. The research concluded that despite its success, the
ongoing challenges in accurately classifying vulnerability types present significant

opportunities for future research in vulnerability detection.

Zhuang et al. [2021] tackled the challenge of detecting software vulnerabil-
ities, a crucial component of software security. The researchers stated that tradi-
tional methods, such as static and dynamic analyses, often suffer from high false
positives and incomplete coverage, leading researchers to explore Al models for
vulnerability detection. The study introduced a deep learning approach that auto-
matically learns insecure patterns from code corpora, utilising a novel Graph Neural

Network (GNN) architecture called 3GNN. The 3GNN model operates on disaggre-

3.2. Software Vulnerability Prediction 80

gated code graph representations, including ASTs, Data Flow Graphs (DFGs), and
Control Flow Graphs (CFGs). It synthesises these representations and incorporates
a new training loss metric that leverages the fine granularity of labelling. Tested
on two real-world datasets, Draper and QEMU+Ffmpeg, 3GNN outperformed text,
image, and graph-based approaches, achieving F1 scores between 0.54 and 0.62 and
MCC scores between 0.25 and 0.52. The model’s F1 score was 6.9% higher than
that of the compared model, highlighting its effectiveness in capturing vulnerability
signals. The study concluded with plans to explore the model’s explainability and

its application to new vulnerability detection datasets in future research.

Li et al. [2021] observed that most Al-driven vulnerability detection ap-
proaches only determine whether a piece of code is vulnerable without specify-
ing which part of the code is at risk. To address this limitation, they developed
IVDetect, an Al-driven tool to provide more detailed information on vulnerable
statements. IVDetect consists of two main modules: a graph-based vulnerabil-
ity detection model that takes the source code of a software system’s methods as
input and classifies them as vulnerable or non-vulnerable and a graph-based inter-
pretation module that identifies and ranks the relevant vulnerable statements within
these methods. The results showed significant improvements in top-10 nDCG and
MAP ranking scores, ranging from 43% to 84% and 105% to 255%, respectively,
compared to similar tools. IVDetect successfully identified the correct vulnerable
statements in 7% of cases within a top-5 ranked list, with accuracy improvements
ranging from 12.3% to 400% over other interpretation models. The study concluded
by comparing [VDetect’s performance with other Al-driven vulnerability detectors.
The researchers planned to evaluate its performance against static analysis tools in

future research.

Wartschinski et al. [2022] highlighted that identifying vulnerable code is cru-
cial for enhancing software security, yet manual detection is time-consuming, re-
quires expertise, and is inefficient. They asserted that automated vulnerability de-
tection should meet critical criteria: high accuracy with granular identification, ap-

plicability across various software systems, and ease of use with minimal setup.

3.2. Software Vulnerability Prediction 81

They developed VUDENC (Vulnerability Detection with Deep Learning on a Nat-
ural Codebase) to address these needs. This deep learning-based tool learns the
features of vulnerable code from a real-world Python codebase. The researchers
compiled a dataset of Python project commit histories from GitHub, focusing on
seven OWASP Top 10 vulnerability types. Using the Word2Vec concept, they cre-
ated vector representations of the code and trained their model with an LSTM algo-
rithm. The model achieved recall rates of 78%—87%, precision rates of 82%—-96%,
and F1 scores of 80%—-90%. The study emphasised the importance of understand-
ability and actionability in making such tools practical for developers. The authors
also suggested that future research could explore replacing their Word2Vec-based
approach with more programming language-specific models, such as Code2Vec,

which incorporate detailed AST-like features.

Binkley et al. [2022] argued that effective vulnerability prediction helps de-
velopers prioritise efforts by targeting the most at-risk software components. They
critiqued Li et al. [2019]’s approach (also reviewed), which used deep learning to
predict vulnerabilities based on function names, for its limited ability to identify
and rank "dangerous" words. To address these shortcomings, the researchers pro-
posed an improved method that systematically splits function names into constituent
words, analysing the "danger" associated with each word. They defined a "danger-
ous" word as one whose presence in a function’s name correlated with a higher
likelihood of vulnerability. For instance, functions involving user input, which are
often vulnerable to stack attacks, typically contain words like "read" or "input,"
which they classified as "dangerous." Functions with these terms were flagged as
potentially vulnerable. The study analysed 73,000 vulnerable and 950,000 non-
vulnerable functions, finding that the deep learning model heavily relied on individ-
ual words for classification, especially in datasets with a homogeneous vocabulary.
The researchers concluded their approach could be efficient in within-project vul-

nerability prediction, where such vocabulary consistency is typical.

3.2. Software Vulnerability Prediction 82

Hanif and Maffeis [2022] noted the steady rise in vulnerabilities since 2016,
as reported by MITRE?, which has driven increased research in vulnerability de-
tection. They observed that deep learning techniques, particularly Bidirectional-
LSTM and Graph Neural Networks, have shown promising results due to their abil-
ity to capture syntactic and semantic code information. Building on this success,
the authors developed VulBerta, a transformer-based neural architecture. They pre-
trained a RoBerta model using a custom tokenisation pipeline on functions from
open-source C/C++ software projects. This deep knowledge representation, rich in
syntactic and semantic information, was then used to train their vulnerability detec-
tion classifiers. A key aspect of their approach was its simplicity, which they at-
tributed to achieving a slightly higher Matthews Correlation Coefficient of 55.86%
compared to 52% in a related study by Zhuang et al. [2021] (also reviewed). The au-
thors concluded that its conceptual simplicity and low complexity distinguish their

research.

Luo et al. [2022] highlighted the significance of source code representation
in Al-driven vulnerability detection. They introduced a programming language-
agnostic technique called Compact Abstract Graphs (CAGs), designed for use with
Graph Neural Network models. They derived CAGs from compact representations
of abstract graphs built from the source code’s ASTs. The performance of CAGs
was evaluated on C and Java datasets from NVD and SARD. On the C dataset,
they achieved a maximum accuracy of 93.21%, a precision of 92.51%, a recall of
93.47%, and an F1 score of 92.90%. For the Java dataset, the maximum values were
94.09% accuracy, 92.29% precision, 94.77% recall, and an F1 score of 93.40%. The
study concluded that CAGs outperform traditional representations, such as ASTs,

CFGs, and PDGs.

Zhang et al. [2022] highlighted the importance of vulnerability detection in
information security, noting the limitations of existing approaches that rely on vari-
ous code representation methods and deep learning algorithms. To overcome these

challenges, they proposed a weight graph deep learning-driven approach. Their

https://www.cvedetails.com/browse-by-date.php

https://www.cvedetails.com/browse-by-date.php

3.2. Software Vulnerability Prediction 83

method involved five key steps: data collection, static analysis, vector input, Weight
Function Graph (WFGQG) transformation, and graph comparison, where the input is
the source code and the output is identified as potential vulnerabilities. Using data
from four programs, their tool, VDBWGDL, achieved a maximum F1 score of ap-
proximately 0.87. The study concluded that their approach outperformed existing

vulnerability detection methods.

Fu and Tantithamthavorn [2022] highlighted the significant issues caused by
vulnerabilities in software systems, such as deadlocks, information loss, and sys-
tem failures, emphasising the importance of early vulnerability prediction during
software development. They noted that [VDetect by Li et al. [2021] (also reviewed)
and similar Al-driven approaches suffer from inaccuracies and lack precision. To
address these shortcomings, they developed LineVul, designed to improve IVDe-
tect by predicting vulnerable functions and pinpointing vulnerable lines. LineVul
achieved a 91% F1 score in function-level prediction, surpassing IVDetect’s per-
formance. It also achieved a top-10 accuracy of 0.65 in line-level vulnerability
localisation and a recall value of 0.75 for cost-effectiveness. The study concluded
that LineVul is expected to assist security analysts in identifying vulnerable lines

more cost-effectively.

Cheng et al. [2022] noted the increasing role of machine learning and deep
learning across various fields, particularly in developing new static deep learning
techniques for vulnerability detection as alternatives to traditional methods. They
explained that current methods often abstract source code into graphs to train classi-
fication models that distinguish between vulnerable and non-vulnerable code frag-
ments. However, they criticised this approach for focusing on classification rather
than understanding the underlying vulnerability semantics. They introduced Con-
traFlow, a contrastive value-flow embedding approach designed for precise static
software vulnerability detection to address this limitation. ContraFlow involves
both a training and prediction process. The training phase includes contrastive
value flow embedding, value-flow path selection, and model training. It takes

value-flow paths extracted from unlabelled source code as input and produces a

3.2. Software Vulnerability Prediction 84

trained model. The prediction phase then applies this model to unseen code arte-
facts for vulnerability detection. Their results showed that the ContraFlow-Method
achieved an F1 score of 75.3%, while the ContraFlow-Slice reached 82.8%. The
study concluded that their approach outperformed similar methods developed in

related works.

Tang et al. [2023] emphasised the importance of identifying and addressing
potential vulnerabilities to secure software systems. They noted that traditional
static vulnerability detection methods rely heavily on developer expertise. Further-
more, they added that most deep learning approaches typically use a single sequence
or graph embedding method, often overlooking the structured information in the
source code. To address these limitations, they developed a deep learning-based
approach called Combining Sequence and Graph embedding for Vulnerability De-
tection (CSGVD). This approach models function-level vulnerability detection as a
graph binary classification task. The approach has two phases: feature extraction
and neural network model development. They introduced the PE-B1 module using
the CodeXGLUE dataset, which includes over 27,000 samples from two sizeable
open-source C projects. This module uses sequence embedding to extract seman-
tic information from a code’s control flow graph as node embeddings. They then
utilised CSGVD’s graph neural networks to capture the structural information of
the control flow graph. Combining these elements, they developed feature repre-
sentations for their neural model. Their approach achieved a maximum precision of
65.49% and a recall of 58.99%. The study concluded with the researchers express-

ing interest in further exploring node and graph embedding in future research.

3.2.4 Systematic Literature Reviews on Vulnerability Prediction

This subsection provides a concise overview of the field’s trends and directions,
reviewing systematic literature reviews on vulnerability detection and prediction.
By juxtaposing the findings in this subsection with the literature discussed earlier,
we aim to validate our conclusions on the state of the art in vulnerability detection

and prediction and suggest future research directions.

3.2. Software Vulnerability Prediction 85

Ghaffarian and Shahriari [2017] tackled the pressing issue of software secu-
rity vulnerabilities, emphasising their significant impact on computer security. The
study reviewed the increasing use of machine learning and data mining techniques
for vulnerability analysis, categorised the existing works, discussed their benefits
and limitations, and identified gaps in the research. The authors emphasised the im-
portance of feature engineering and the need for novel machine learning algorithms
specifically designed for software vulnerability analysis. They concluded that the
field remains underdeveloped and lacks standard benchmark datasets. They rec-
ommended that future research focus on developing robust features, designing new

algorithms, and establishing standard benchmarks for evaluation and comparison.

Jin and Yu [2018] noted that as software systems grow, so do the vulnera-
bilities they contain, making detection increasingly crucial. The researchers re-
viewed machine learning-driven methods for vulnerability prediction, focusing on
program representation and vectorisation techniques. They discussed four primary
code representation approaches often used in vulnerability prediction: software
metrics, language models, and tree and graph representations. The study high-
lighted that supervised learning methods, particularly CNN and Bidirectional Long
Short-Term Memory (BiLSTM) networks, are the most effective and are likely to
dominate future research. The study concluded that current methods often operate
at a coarse-grained level, highlighting the need for granular vulnerability prediction

approaches.

Lin et al. [2020b] reviewed vulnerability detection methods leveraging deep
learning. They observed that the rapid expansion of open-source software projects
has created vast data opportunities for machine learning. The study highlighted how
recent advances in deep learning, particularly in Natural Language Processing, have
enabled neural models to better understand and identify vulnerable code patterns.
The researchers focused on evaluating how these deep learning methods utilise neu-
ral networks to comprehend code semantics and identify vulnerabilities. They also
identified key challenges in the field and proposed several promising future research

directions.

3.2. Software Vulnerability Prediction 86

Croft et al. [2022] emphasised that software vulnerability prediction relies
heavily on data. They added that despite its growing popularity in software en-
gineering, data preparation challenges hinder the widespread adoption of this ap-
proach in the industry. To address this, they systematically reviewed 61 peer-
reviewed papers focusing on data preparation techniques and challenges in vul-
nerability prediction. The study identified 16 key challenges, including data gen-
eralisability, accessibility, scarcity, label noise, and data noise. The authors recom-
mended consolidating these findings into a comprehensive resource to enhance data
preparation efforts in vulnerability prediction research.

Nazim et al. [2022] emphasised the rising number of software vulnerabilities
driven by the proliferation of new applications, highlighting the need for advanced
detection methods to counter cyberattacks. They noted that Al-driven vulnerability
detection is becoming increasingly important as human efforts alone are insuffi-
cient to manage these threats. They conducted a systematic literature review on
deep learning-based vulnerability prediction methods to gain a deeper understand-
ing of the field. Using five scientific databases, they identified 303 studies published
between 2017 and 2022 and filtered them down to the ten most relevant papers. The
review highlighted fundamental source code representation techniques, including
ASTs, code gadgets, code property graphs, lexed representations, and semantics-
based vulnerability candidates. Convolutional and recurrent neural networks were
noted as the most prevalent models. Popular datasets mentioned were NVD, SARD,
Draper VDISC, REVEAL, and FFMPeg+Qemu. The study concluded by acknowl-
edging challenges, particularly the nascent stage of deep learning-based vulnerabil-

ity prediction and the numerous unexplored areas in the field.

3.2.5 Comparative Studies on Vulnerability Prediction

This subsection reviews recent comparative studies on vulnerability detection and
prediction, aiming to validate their conclusions by comparing their findings with the
literature discussed earlier. These studies evaluate the effectiveness of deep learning
versus traditional machine learning, assess the performance of various detection and

prediction methods, and examine the factors that influence these approaches.

3.2. Software Vulnerability Prediction 87

Theisen and Williams [2020] noted that the widespread adoption of vulnera-
bility prediction remains limited despite extensive research using various metrics.
They highlighted the need for software developers to have clear insights into the
predictive power, data, and resource requirements of these models, which is es-
sential for informed project decision-making. They also added that compared to
traditional bugs, the relative rarity of vulnerabilities further hampers broader accep-
tance. To aid in selecting the most predictive features, the researchers conducted
a comparative study of vulnerability prediction models. They replicated four mod-
els at the source file level on Mozilla Firefox, analysing 28,750 source code files
with 271 vulnerabilities using software metrics, text mining, and crash data. They
then examined the impact of combining features from these models on prediction
performance. By integrating features from three models, they improved their best
model’s F1 score from 0.20 to 0.28. Their findings revealed that crash data, the
FanOut dependency metric, and the string ‘nullptr’ (from their text mining model)
were among the most predictive features. The study highlighted the importance of
developing new features with strong predictive capabilities and suggested explor-
ing novel analytical approaches to address the challenge of vulnerability scarcity in

software systems.

Zheng et al. [2020] highlighted that despite numerous studies on vulnerabil-
ity detection, theirs was the first to identify and evaluate the influence of four key
factors on detection performance. These four factors were dataset quality, classi-
fication models, vectorisation techniques, and function or variable name changes.
They emphasised that dataset quality, classification models, and vectorisation tech-
niques directly impact detection outcomes. Additionally, they noted that changes
in function or variable names could indirectly affect detection features and per-
formance. The researchers conducted a comparative study to assess these factors,
utilising two datasets: the National Vulnerability Database and the NIST Software
Assurance Reference Dataset, and examining three vulnerability types: CWE-119,
CWE-399, and CWE-664. Their most significant finding was that deep learning

models, particularly Bidirectional LSTM, outperformed traditional machine learn-

3.2. Software Vulnerability Prediction 88

ing models. This result aligns with findings from Hanif and Maffeis [2022] (also
reviewed) and Jin and Yu [2018] (also reviewed), which support the effectiveness
of Bidirectional LSTM. The study concluded by identifying areas for improvement,
such as incorporating more vulnerability types and conducting a deeper analysis of
dataset attributes, as the two datasets used exhibited different characteristics that
influenced the results. They also stressed the need for more accurate and stable

evaluation models.

Mazuera-Rozo et al. [2021] discussed the increasing use of deep learning tech-
niques in software engineering, particularly in the context of vulnerability detec-
tion. However, they pointed out that the evidence supporting the superiority of
deep learning over traditional machine learning remains inconclusive. To explore
this further, they conducted an empirical study comparing the effectiveness of deep
learning models with traditional machine learning techniques. The study evalu-
ated two deep learning models, CNN and RNN, against a shallow machine learning
model, specifically a Random Forest classifier. The evaluation focused on binary
and multi-class classification of vulnerabilities using three C/C++ datasets, which
contained 1.8 million functions, of which 400,000 were vulnerable. Additionally,
they established a baseline with Google Cloud Platform’s AutoML. Their findings
revealed that the traditional Random Forest algorithm performed competitively with
the deep learning models. This outcome suggests that traditional machine learning
classifiers still provide a robust baseline against more advanced deep learning tech-
niques. The study concluded that achieving reliability in vulnerability detection
remains challenging and that current methods still have considerable room for im-

provement.

This section reviewed several vulnerability prediction studies, including those
using supervised, semi-supervised, unsupervised, and deep learning techniques.
The studies highlighted the importance of feature engineering, data preparation, and
model selection in vulnerability prediction. They also identified key challenges, in-
cluding data-related issues, various feature engineering approaches, and model per-

formance, and suggested future research directions to address these challenges. In

3.2. Software Vulnerability Prediction 89

the following section, we review studies on general software bug prediction, which

encompasses a broader perspective on vulnerabilities.

3.3. Software Bug Prediction 90

3.3 Software Bug Prediction

This section reviews studies on software bug prediction, focusing on bug prediction
studies that influenced our work, machine learning-based bug prediction studies,
and related topics. Since bugs are a superset of vulnerabilities, the studies reviewed
in this section do not necessarily address bugs with security implications, like those

in the preceding section.

3.3.1 Bug Prediction Studies Influencing Work

This subsection reviews studies that have significantly influenced our work, specif-

ically in terms of our method-level granularity choice to vulnerability prediction.

Giger et al. [2012] stated that predicting bugs at a higher granularity than the
method level is challenging, as it requires developers to examine thousands of lines
of code to find predicted bugs. At the same time, extensive source code files are also
more likely to be bug-prone. They proposed a method-level bug prediction tech-
nique to reduce developers’ manual efforts and increase bug elimination efficiency.
They utilised code change metrics and source code metrics from 21 open-source
Java projects to develop bug prediction models, achieving a maximum precision of
84% and a recall of 88%. The study found that code change metrics significantly
outperformed source code metrics. The researchers expressed interest in further
exploring time-based code changes and expanding features for future prediction

models.

Pascarella et al. [2018] pointed out that bug prediction aims to identify po-
tentially defective software components, adding that researchers have found that
combining product and process metrics yields the best results. In re-evaluating
method-level bug prediction, they replicated Giger et al. [2012]’s study (also re-
viewed) across different systems and periods. They developed a method-level bug
prediction model using the same features as Giger et al. [2012] and assessed its
performance on 13 projects using 10-fold cross-validation. Notably, they did not
use the SZZ algorithm, a popular algorithm for identifying bug-inducing changes,

citing concerns about its reliability. Their results indicated that the models under-

3.3. Software Bug Prediction 91

performed under rigorous evaluation, highlighting persistent challenges in method-

level bug prediction.

3.3.2 Other Bug Prediction Studies

This subsection reviews other notable studies on bug prediction that have con-
tributed to the advancement of the broader software bug prediction field.

Kim et al. [2008] asserted that the software development process would ben-
efit significantly if developers could quickly identify defective changes. The re-
searchers introduced change classification for bug prediction to address this need.
They highlighted its advantages: granular prediction, no need for semantic source
code information, applicability across languages and projects, and fast performance.
They identified bug-introducing changes in 12 open-source projects, extracting fea-
tures from metadata, change logs, source code, file names, and complexity metrics.
Their classifier, which distinguishes between buggy and clean changes, achieved
an accuracy of 78% and a recall of 60%. The researchers emphasised the impor-
tance of real-time assessment tools within IDEs and highlighted several unresolved
challenges in this field.

Ferzund et al. [2009] asserted that managing software changes is challenging
yet essential, as changes can introduce errors that lead to failures. They pointed
out that these changes often occur in small code units and hunks across several
source files. The researchers proposed a hunk classification technique using hunk-
related metrics for granular bug prediction. They introduced various hunk metrics,
processed revision histories to extract hunks, and identified bug-inducing ones. Us-
ing Logistic Regression and Random Forest algorithms, they developed models to
classify hunks as either ‘buggy’ or ‘not buggy’ across seven open-source projects,
achieving an accuracy of up to 81%, a precision of 77%, and a recall of 67%. The
study also highlighted the varying effectiveness of individual metrics and suggested
future research to refine these metrics further and explore different machine learning
techniques.

Shivaji et al. [2009] stated that machine learning classifiers are widely used to

predict buggy changes in source files. However, they often suffer from performance

3.3. Software Bug Prediction 92

issues due to the inclusion of multiple features, which can slow down prediction
times and hinder practical application. The researchers explored feature selection
techniques in classification-based bug prediction to enhance performance by re-
moving less essential features. They first identified bug fixes using log messages
across 11 software projects and identified the related bug-inducing changes. After
streamlining the features, they trained Naive Bayes and Support Vector Machines
classifiers with the reduced feature set. The study found that the Naive Bayes clas-
sifier improved by 21% compared to Kim et al. [2008] (also reviewed), while the
SVM classifier showed a 9% increase in F-measure. The researchers suggested that
these improvements could facilitate the real-world adoption of classifier-based bug

prediction by optimising performance and precision.

Yamada and Mizuno [2014] stated that many studies have focused on identi-
fying and mitigating fault-prone software modules. They proposed a text filtering-
based fault detection technique, hypothesising that bugs are related to specific words
and contexts within a component. They used Git to obtain bug-fixing changes
from two projects, Apache OpenJPA and Apache MINA and identified related
bug-inducing changes. A text-filtering technique was then used to classify these
changes. Their predictions for fault-prone modules in Apache OpenJPA achieved a
recall of 0.97, a precision of 0.42, and an F1 measure of 0.60. For Apache MINA,
the recall was 0.99, with a precision of 0.47 and an F1 measure of 0.64. The re-
searchers expressed interest in testing their technique on more projects to compare

its effectiveness.

An and Khomh [2015] stated that organisations are cautious about software
crashes, often relying on automatic crash reporting tools to triage crash types and
related bugs. They added that while these tools improve debugging efficiency, they
act reactively after a crash occurs. To that end, the authors sought a more proac-
tive approach by studying crash-inducing commits in Mozilla Firefox. They linked
Firefox’s crash reports to associated bugs and mapped these to relevant commits.
From commit logs and source files, they extracted 24 metrics to develop predictive

models for crash likelihood. Using algorithms such as GLM, Naive Bayes, C5.0,

3.3. Software Bug Prediction 93

and Random Forest, the classifiers achieved a precision of up to 61.4% and a recall
0f 95.0%. The study found that crash-inducing commits account for over 25% of all

Firefox commits, often involving novice developers and significant code changes.

Ray et al. [2016] posited that real-life code resembles natural language, being
repetitive and predictable. They suggested that various tools, such as suggestion
engines and coding standard checkers, exploit the ‘naturalness of software.” Code
that seems improbable or ‘surprising’ to these models may be considered ‘unnat-
ural’ and potentially faulty. The researchers analysed bug-fixing commits from 10
Java projects and traced corresponding bug-inducing commits using tools such as
‘git-diff” and ‘git-blame.” They assessed the naturalness of buggy code and its fixes,
finding that it is typically more unnatural or entropic but becomes more natural af-
ter fixes. The study concluded that code entropy scores are a valuable indicator for

defect prediction.

Despite extensive research in bug prediction, Bowes et al. [2016] noted that
exploiting mutation testing by-products was still underexplored. They proposed
a novel ‘mutation-aware’ fault prediction approach that combines traditional soft-
ware metrics with mutation testing-related metrics to enhance bug prediction mod-
els. The effectiveness of this technique relies on the test suite’s capability to de-
tect bugs. They gathered mutation and traditional metrics from three substantial
open-source and closed-source systems, encompassing over 220,000 lines of code.
They applied Naive Bayes, Logistic Regression, J48, and Random Forest models,
cross-validated their approach, and evaluated them using the Matthews Correlation
Coefficient. Their results demonstrated an improvement, with static code metrics
achieving an MCC of 0.447, a 0.035 increase over similar studies. The combina-
tion of static and dynamic mutation metrics provided the best prediction perfor-
mance, suggesting significant potential benefits for bug prediction and mutation

testing fields.

Moussa et al. [2022] highlighted that software defects pose a significant chal-
lenge in the software industry, necessitating effective prediction methods to enhance

software reliability. They added that traditional defect prediction models, which

3.3. Software Bug Prediction 94

frame the task as a two-class classification problem, often suffer from performance
1ssues due to the imbalance between defective and non-defective instances. Then,
they pointed out that recent studies have considered one-class classifiers, such as
the One-Class Support Vector Machines (OCSVM), which trains using only non-
defective instances. To this end, they explored the efficacy of OCSVM across vari-
ous defect prediction scenarios, including within-project, cross-version, and cross-
project contexts. Then, they compared its performance with that of traditional clas-
sifiers such as Random Forest and Support Vector Machines. The study utilised
empirical data from NASA and realistic datasets to evaluate OCSVM in three sce-
narios against classifiers such as Random Forest, Naive Bayes, and Logistic Regres-
sion. Their evaluation metrics included the Matthews Correlation Coefficient and
statistical tests such as the Wilcoxon Signed-Rank Test and Vargha and Delaney’s
A, effect size. Their results showed that OCSVM often outperformed the Ran-
dom Forest classifier in some cases, particularly in cross-version and cross-project
predictions. Interestingly, they found that OCSVM sometimes surpassed Support
Vector Machines, especially with heterogeneous data. A hyper-parameter-tuned
version of OCSVM (OCSVMr) improved performance, suggesting its suitability
for diverse datasets. Their findings also showed that while OCSVM showed po-
tential in defect prediction, especially when defective instances are scarce, Random
Forest remained the most reliable classifier across scenarios. The study suggested
further refining one-class classifiers and exploring their broader application to max-

imise their utility in defect prediction.

Shailee et al. [2024] emphasised the significance of tools for early defect de-
tection in contemporary software systems. They utilised the NASA-curated JM1
dataset to evaluate various machine learning algorithms for predicting software
bugs, aiming to enhance software quality and reduce maintenance costs. The study
evaluated the effectiveness of various algorithms, including Naive Bayes, Decision
Trees, Random Forest, Support Vector Machines, Logistic Regression, Artificial
Neural Networks, and K-Nearest Neighbors, using the JM1 dataset, which com-

prises 10,885 instances and 22 attributes. The dataset was divided into an 80%

3.3. Software Bug Prediction 95

training set and a 20% testing set. The researchers utilised Python-based machine
learning libraries and evaluated the performance of their algorithms using precision,
recall, F1 score, accuracy, and Root Mean Squared Error (RMSE) metrics. Random
Forest emerged as the top performer, achieving an accuracy of 81%, the highest
precision and recall rates, and the lowest RMSE, indicating its effectiveness in pre-
dicting software defects. Logistic Regression also performed well, with an accuracy
of 80%. Other models exhibited varied performance levels but were generally less
effective. The results confirm that Random Forest is an effective tool for early
bug detection, suggesting its potential for broader application in software develop-
ment. The study recommends further research on advanced feature engineering and
applying these models to different datasets and software projects to enhance their

generalisability and effectiveness.

Chowdhury et al. [2024] addressed the challenges posed by software bugs,
noting the limited practical adoption of existing bug prediction models due to their
coarse granularity at class or file levels. Their study focused on method-level bug
prediction (MLBP), aiming to provide more precise and actionable insights for the
early detection and resolution of bugs. The research evaluated the efficacy of MLBP
models in realistic, time-sensitive scenarios to identify limitations and propose im-
provements. They used three publicly available datasets and a new dataset com-
prising 774,051 Java methods from 49 open-source projects. The study assessed
MLBP models under realistic conditions, rather than using traditional k-fold cross-
validation, to prevent incorporating future data into the training process. They
introduced a more accurate bug labelling approach to reduce noise, investigated
method age as a predictor for concept drift, and explored the effectiveness of se-
lecting optimal training projects. The research also evaluated the benefits of using
separate models for small and large methods. Their findings indicated that existing
MLBP models underperform in realistic scenarios due to issues such as noisy data
and the misuse of future information during training. The study showed improved
prediction accuracy with a refined bug labelling approach, confirmed that method

age could effectively capture concept drift, and highlighted that tailored models for

3.3. Software Bug Prediction 96

different method sizes could enhance accuracy. The study concluded that while
MLBP is an open research area, addressing issues such as data noise, concept drift,
and project selection for training could significantly enhance the models’ practi-
cal applicability. The study recommended that future research focus on refining
labelling techniques, leveraging method age, and developing tailored models to en-
hance MLBP effectiveness in software engineering.

This section concludes our literature review, summarising the key findings
from vulnerability and bug prediction studies. The subsequent section will present
our observations from the reviewed literature, highlighting trends, challenges, and

future research directions in the field.

3.4. Observations in the Literature 97

3.4 Observations in the Literature

This section summarises our observations from the reviewed literature, cover-
ing datasets, methodologies, evaluation metrics, outcomes, and emerging research

trends.

3.4.1 Dominance of Deep Learning Techniques

Deep learning techniques have dominated vulnerability prediction research for the
better part of the last decade. However, Mazuera-Rozo et al. [2021] challenges the
assumed superiority of deep learning, demonstrating that traditional machine learn-
ing can achieve comparable results. Regardless, deep learning remains favoured,

possibly due to trends, perceived sophistication, or technical familiarity.

3.4.2 Success Stories of the Long Short-Term Memory Algo-

rithm

Recent studies consistently highlight the LSTM algorithm and its variants as the

leading methods for vulnerability prediction based on code representation.

3.4.3 Random Forest as a Reliable Baseline

Random Forest has emerged as a reliable baseline for both vulnerability and bug
prediction, often consistently outperforming many other traditional machine learn-
ing algorithms. This performance could be attributed to the Random Forest clas-
sifier’s ability to handle high-dimensional data and complex relationships between

features.

3.4.4 Challenges in Adopting Vulnerability Prediction

Vulnerability prediction faces considerable barriers to widespread adoption, with
several factors hindering broader implementation. These challenges include techni-
cal issues such as data quality and availability, the complexity of modern software

systems, and the absence of standardisation. We briefly explore these factors below.

3.4.4.1 Data Challenges

A key challenge in developing effective vulnerability prediction models is the lim-

ited availability of large, diverse, and representative datasets. Accurate models rely

3.4. Observations in the Literature 98

on comprehensive data about past vulnerabilities, their characteristics, and corre-
sponding fixes. However, such datasets are often scarce or inaccessible, complicat-

ing the training and evaluation of prediction models.

3.4.4.2 Complexity of Modern Software Systems

Modern software systems are inherently complex, with numerous dependencies,
libraries, and components. This complexity makes it challenging to develop a vul-
nerability prediction solution that effectively addresses these diverse elements. Vul-
nerabilities may emerge from interactions between components or unexpected be-
haviours between software layers. Additionally, the continuous evolution of soft-
ware, with frequent updates, patches, and new features, further complicates predic-

tion efforts.

3.4.4.3 Lack of Standardisation

A standardised approach is crucial for the widespread adoption of Al-driven vul-
nerability prediction. While there is consensus in the literature on the rapid growth
of software vulnerabilities and the relevance of Al techniques, there is significant
disharmony on the steps required to implement practical solutions. This lack of
standardisation hinders software professionals from adopting these methods outside

the research community.

3.5. Future Research Directions 99

3.5 Future Research Directions

This section outlines future research directions based on the reviewed literature.
Based on the identified challenges and opportunities, we provide recommendations
for advancing vulnerability prediction research and highlight areas for further ex-

ploration.

3.5.1 Real-Time Prediction

As Kim et al. [2008] suggested, integrating real-time bug prediction tools within
IDEs could greatly benefit developers. Future research should explore more effi-

cient and seamless integration methods.

3.5.2 Granular Prediction and Contextual Information

Research by Giger et al. [2012] and Ferzund et al. [2009] has shown the benefits of
method-level and hunk-level prediction. Future studies should continue to explore

these granular techniques to enhance their performance.

3.5.3 Leveraging Large Language Models (LLMs) for Vulnera-
bility Prediction
With the rise of Large Language Models, future research should explore leveraging

these models for vulnerability prediction.

3.5.4 Data Preparation and Standardisation

Data-related challenges and the lack of standardisation are major obstacles in vul-
nerability prediction research. Future work should aim to develop standardised
datasets and data preparation techniques to improve model training and evaluation.
Creating benchmark datasets that cover various vulnerabilities, software systems,
and programming languages is crucial for advancing the field. Additionally, de-
veloping comprehensive datasets that mirror real-world software development con-
ditions is essential. Future research should prioritise creating and using realistic

datasets for more accurate evaluation of vulnerability prediction models.

3.6. Conclusion 100

3.6 Conclusion

We have reviewed the vulnerability and bug prediction literature, summarising key
findings and offering insights for future research. Our review highlights the growing
focus on developing more effective prediction models, mainly through Al-driven
techniques. This shift has spurred innovation in feature engineering, which is now a
central focus in the field. Notable techniques include the codebook method by Dam
et al. [2021], the mutation-aware approach by Bowes et al. [2016], and the concept
of the ‘naturalness of software’ by Ray et al. [2016]. We contribute to this area
by proposing a novel feature engineering technique that uses information retrieval
methods to build features encoding vulnerability code semantics from known vul-
nerable code samples. This technique represents a novel contribution to the field
of vulnerability prediction. To our knowledge, it is the first information retrieval-
driven technique in the field of vulnerability prediction research. We are confident
that it will significantly advance vulnerability prediction and aid researchers in de-
veloping more effective models, whether from scratch or as a data augmentation
technique for existing models, as well as for the newly emerging Large Language
Models. In the following two chapters, we will present our proposed feature en-
gineering technique and evaluate its effectiveness in predicting vulnerabilities in

real-world software systems.

Chapter 4

Token-Based Vulnerability

Prediction

This chapter introduces a novel Information Retrieval-driven technique for predict-
ing software vulnerability. It uses token-based source code representations to de-
velop novel predictive software metrics. The chapter presents the methodology,
results, and discussion of the technique’s performance in a Within-Project setting,

addressing the first research question of this thesis.

4.1. Introduction 102

4.1 Introduction

As software systems have become increasingly integral to our daily lives, their com-
plexity and interconnectedness have also grown. These systems typically comprise
multiple software components that communicate with each other and other systems
over a network. Unfortunately, this complexity and interconnectivity create a fer-
tile ground for bugs and vulnerabilities. Gujral et al. [2015] described a bug as a
software flaw that causes the system to deviate from its specification. Al Debeyan
et al. [2022] defined a vulnerability as a weakness in a software system that can
be exploited to compromise its security. Thus, vulnerabilities are a subset of bugs

characterised by their security implications.

The increasing complexity of software systems makes identifying vulnerabil-
ities more challenging, necessitating the development of advanced techniques and
tools. These new methods must go beyond traditional approaches to identify vulner-
abilities early in the software development lifecycle. In this chapter, we detail our
novel technique for identifying vulnerabilities. Our approach leverages information

retrieval-driven techniques to enhance the effectiveness of vulnerability prediction.

4.1.1 Chapter Motivation

The need for advanced techniques to identify vulnerabilities in software systems
has spurred numerous studies proposing innovative prediction methods. However,

many of these approaches fail to yield satisfactory results.

These methods face two main issues. Firstly, they often lack the performance
required for practical use. Secondly, they typically operate at a granularity level
that is too coarse, making them impractical. This concern is noted by Morrison
et al. [2015] and Al Debeyan et al. [2022]. By granularity, we mean the unit of
analysis within the software system. For instance, a class-level prediction approach
identifies vulnerable classes in the software system, and a method-level prediction

approach identifies vulnerable methods.

4.1. Introduction 103

4.1.2 Research Question

The growing interest in vulnerability prediction has led to numerous studies propos-
ing innovative approaches with varying degrees of success. Researchers have ap-
plied diverse concepts from other fields of computer science to vulnerability pre-
diction. However, significant unexplored areas remain, particularly the application
of information retrieval techniques to vulnerability prediction. We address this gap
by proposing an information retrieval-driven software vulnerability prediction tech-
nique.

Information retrieval involves finding relevant information from extensive data
collections to help users locate the information they need quickly and efficiently. In-
formation retrieval techniques are widely utilised in search engines, digital libraries,
and data mining applications. They primarily focus on text-based data but can also
operate on images, audio, and video. The information retrieval process typically in-
cludes document collection, indexing, query processing, ranking, and information
presentation [Schiitze et al., 2008, Salton, 1983].

Pattern matching, a core characteristic of information retrieval, involves identi-
fying similarities between a query and documents within a collection. This capabil-
ity can be leveraged to encode patterns indicative of software vulnerabilities, aiding
in the development of security-focused predictive metrics for machine learning-
based vulnerability prediction.

In this chapter, we address the following research question:

How well does the information retrieval-driven software vulnerability
prediction technique perform on a single, multi-release software system

dataset for token-based source code representations?

4.1.3 Research Scope

This study focuses on the following areas:

* Programming Language: The datasets used are written in Java, and the

vulnerabilities are within Java methods. Vulnerabilities from other sources,

4.1. Introduction 104

such as web services, annotations, and configuration files, are not taken into

consideration.

* Method-Level Vulnerability Prediction: The focus is on predicting vulner-

abilities at the method level rather than at the class or file level.

* Within-Project Vulnerability Prediction: The study predicts vulnerabilities

within a single software system across multiple releases.

* Binary Classification: The study employs binary classification using ma-
chine learning to predict whether a method is vulnerable without considering

multi-class classification, i.e., predicting the type of vulnerability.

4.1.4 Significance and Contributions

This chapter proposes an information retrieval-based technique for developing soft-
ware metrics that predict vulnerabilities, leveraging the pattern-matching capabili-
ties of information retrieval to construct security-relevant metrics from source code

structures.

4.1.4.1 Significance of the Study

The study demonstrates the feasibility of repurposing information retrieval tech-
niques for vulnerability prediction. These techniques effectively develop security-
relevant predictive software metrics, potentially increasing their adoption for effi-

ciently identifying and mitigating software vulnerabilities.

4.1.4.2 Contributions

This study introduces several novel information retrieval-driven software metrics

for vulnerability prediction.

4.1.5 Structure of the Chapter

The rest of this chapter is structured as follows: Section 4.2 provides the back-
ground for this chapter. Section 4.3 introduces our new information retrieval-driven
software metrics for vulnerability prediction. Section 4.4 outlines the methodology

used in this chapter. Section 4.5 presents the chapter’s results. Section 4.6 discusses

4.1. Introduction 105

the findings and their implications. Section 4.7 addresses the threats to the chapter’s

validity. Finally, Section 4.8 answers the first research question of this thesis.

4.2. Background 106

4.2 Background

The rapid adoption of technology has brought significant privacy and security chal-
lenges [Al Debeyan et al., 2022]. Software vulnerabilities are security weaknesses
in code that can be exploited to gain unauthorised control of a system, steal or
manipulate sensitive data, or deny system services [Liu et al., 2019]. Detecting,
mitigating, and eradicating vulnerabilities are critical for software security and reli-
ability [Riom et al., 2021]. Identifying vulnerable components early in development
enables developers to prioritise efforts on critical areas, thereby improving security,
reducing remediation costs, and shortening the time-to-market for software prod-

ucts.

Various approaches exist for identifying vulnerabilities, including penetration
testing, static code analysis, and dynamic analysis. Modern vulnerability prediction,
utilising machine learning, deep learning, and data mining, aims to identify vulnera-
bilities before they are exploited, addressing the limitations of traditional techniques
[Ghaffarian and Shahriari, 2017]. These methods typically involve classification
models to predict vulnerable code areas, enabling developers to target their security
auditing efforts more effectively. However, current methods often underperform
and offer coarse-grained predictions [Chakraborty et al., 2021, Al Debeyan et al.,
2022].

Several factors influence the performance of vulnerability prediction models,
with code representation being a crucial factor. Previous models have used static
code metrics [Shin and Williams, 2008b, Sultana et al., 2021], literal text tokens
[Zou et al., 2021, Scandariato et al., 2014], and graph representations such as Con-
trol Flow Graphs, Data Dependency Graphs, or Abstract Syntax Trees (ASTs) [Bil-
gin et al., 2020, Cao et al., 2021, Liu et al., 2019, Partenza et al., 2021, Zhou et al.,
2019b]. These representations serve as input features for machine learning or deep

learning models.
Contemporary approaches transform source code into a format compatible
with machine learning or deep learning algorithms, often numerical. This chapter

uses token-based source code representation and shingling to develop novel infor-

4.2. Background 107

mation retrieval-driven metrics for vulnerability prediction. Background on source
code representation, particularly token-based, is provided in Section 2.3 and Sub-
section 2.3.1. However, given its central role in this thesis, we briefly reiterate the

relevant techniques in the following subsection.

4.2.1 Token-Based Source Code Representation

As discussed in Section 2.3, source code representation is vital in modern software
engineering, including vulnerability prediction. It transforms text-based source
code into a more abstract, structured form, effectively retaining syntactical and se-
mantic information [Zhang et al., 2019]. This abstraction aids various tasks, such
as program analysis, transformation, and optimisation, by converting source code
into formats suitable for machine learning and deep learning algorithms [Hancock

and Khoshgoftaar, 2020].

Source code representations can be token-based, tree-based, or graph-based
[Samoaa et al., 2022]. These approaches abstract away low-level details, focusing
instead on high-level code structures, making complex tasks more manageable. A
common technique, tokenisation, breaks down text into smaller units called tokens,

such as keywords, identifiers, literals, and operators.

Shingling, another related concept, breaks text into overlapping subsequences
called shingles, capturing local text structure. For example, the sentence ‘The quick
brown fox jumps over the lazy dog’ yields the following 3-gram shingles: ‘The
quick brown’, ‘quick brown fox’, ‘brown fox jumps’, ‘fox jumps over’, ‘jumps over
the’, ‘over the lazy’, ‘the lazy dog’. Shingling can help capture the context of code

elements in a method.

Our contributions to vulnerability prediction research involve leveraging
token-based source code representation and shingling to develop novel informa-
tion retrieval-driven metrics. These metrics translate the structure of methods into
a numerical form that machine learning algorithms can understand. Some of our
developed metrics capture method attributes directly, while others use patterns

consistent with code vulnerabilities to enhance predictive power.

4.2. Background 108

We focus on method-level granularity, predicting vulnerabilities within meth-
ods of a software system. Granularity refers to the level of detail in vulnerability
predictions [Lomio et al., 2022], and many researchers have highlighted its impor-
tance [Al Debeyan et al., 2022, Morrison et al., 2015]. We had previously discussed
granularity levels in Subsection 2.2.1. However, in the following subsection, we
reiterate the importance of method-level granularity to set the context for under-

standing our metrics.

4.2.2 Granularity Levels in Software Vulnerability Prediction

The most common granularity levels in modern object-oriented programming lan-
guages are binary, source code file, class, and method. For example, a class-level
vulnerability prediction solution identifies vulnerable classes, while a method-level

solution identifies vulnerable methods within a software system.

Among these, binary level granularity is the coarsest, and method level is the
finest. Additionally, recent studies have explored code-change level granularity,
which is even more granular than method level [Sahin et al., 2022, Giger et al., 2011,
Shivaji et al., 2012, Yang et al., 2023]. However, as Russell et al. [2018] noted,
method-level granularity captures a subroutine’s flow more completely, providing

better context than code-change level granularity.

Identifying vulnerabilities in binary or source code files can be relatively
straightforward. However, this coarse granularity requires developers and security
testers to invest significant time and effort in pinpointing the exact location of the
vulnerability, which may not be immediately apparent within a significant software

component [Morrison et al., 2015].

Method-level vulnerability prediction involves identifying potentially vulnera-
ble methods within a software system. Unlike coarser granularities, such as binary
and source code file levels, analysing individual methods can be more complex.
However, remediating vulnerabilities at the method level is usually more straight-
forward once identified due to the methods’ smaller size compared to classes and

source code files, which reduces the effort required for inspection.

4.2. Background 109

Our study focuses on method-level vulnerability prediction. We use token-
based source code representation and shingling to develop novel information

retrieval-driven software metrics. Therefore, the metrics introduced in the next sec-

tion have a method-level scope.

4.3. Token-Based Software Metrics 110

4.3 Token-Based Software Metrics

This section highlights the novelty of our study. We developed sixteen custom soft-
ware metrics, driven by information retrieval, that leverage token representations in
our datasets. These metrics are used as machine learning classification features to
predict the vulnerability proneness of software components. Our datasets include
a target software system and a vulnerability dataset. The target software system
is the software for which we predict vulnerabilities, while the vulnerability dataset

contains known software vulnerabilities used to develop specific metrics.

Vulnerable and non-vulnerable software artefacts often have similar attributes,
which can complicate the differentiation process [Pereira et al., 2021], particularly
in machine learning-based vulnerability prediction. So, to enhance predictive power
in recognising patterns consistent with code vulnerabilities, we integrated thousands
of known software vulnerabilities from the vulnerability dataset to develop metrics
that capture patterns consistent with code vulnerabilities. These metrics are used to
predict the vulnerability proneness of software components in the target software

system.

The Methodology section will provide further details on our target software
system and vulnerability dataset. Meanwhile, the rest of this section will elaborate

on the metrics, categorised into hit-independent and hit-dependent metrics.

A ‘hit’ refers to code fragments in the target software system that match frag-
ments in the vulnerability dataset, represented as shingles. In this chapter, a hit
refers to the intersection of shingles from a target software system method under

consideration and those from a vulnerable method in the vulnerability dataset.

For instance, if the shingles of a method in our vulnerability dataset share
one or more shingles with the printHelloWorld method in Listing 4.1 whose
token representation and shingles (separated by ‘<) are shown in Figures 4.1 and
4.2 respectively, we say that the printHelloWorld method has a hit with the

vulnerability dataset method.

4.3. Token-Based Software Metrics

Listing 4.1: printHelloWorld Method

111

5 public void printHelloWorld() {
6 System.out.println("Hello, World!");
7 }
public void printHelloWorld () { System . out . println
« (" Hello , World ! "™) ; 1}

Figure 4.1: Token Representation of the Method in Listing 4.1

public void printHelloWorld ()<+void printHelloWorld ()
— {&printHelloWorld () { System<>() { System .<)
— { System . out4+{ System . out .<4>System . out
— println<. out . println (<out . println ("<4>.
<~ println (" Hello«println (" Hello ,«+(" Hello ,
— World+" Hello , World !<*Hello , World ! "<&, World
— I " YoWorld ! ") ;& M) ;)

Figure 4.2: 5-gram Shingles of the Method in Listing 4.1

We use the term hit-independent metrics for metrics that are calculated based

on concrete attributes (such as code churn, size, and complexity) discernible from a

target software system method’s token representation without relying on hits. Con-

versely, hit-dependent metrics refer to metrics that rely on the concept

of hit for

their calculation. The following subsections will provide more details on both hit-

independent and hit-dependent metrics.

4.3.1 Token-Based Hit-Independent Metrics

Table 4.1: Token-Based Hit-Independent Metrics

Token-Based Hit-Independent Metric Abbr.
Number of Target Software System Tokens NTT
Number of Distinct Target Software System Tokens NDTT
Token-Based Instantaneous Code Churn TICC
Token-Based Relative Instantaneous Code Churn TRICC
Number of Target Software System Diff Tokens NTDT

Number of Target Software System Distinct Diff Tokens NTDDT

Token Relative Uniqueness TRU

4.3. Token-Based Software Metrics 112

Table 4.2: Token-Based Hit Independent Metrics Code Attributes of Concern

Token-Based Hit-Independent Metric Abbr. Attributes of Concern

Churn Intricacy Size

NTT v
NDTT v v
TICC v

TRICC v

NTDT v
NTDDT v v
TRU v

Table 4.1 presents the seven hit-independent metrics we developed. Table 4.2

shows the code attributes each metric captures.

4.3.1.1 Number of Target Software System Tokens (NTT)

A target software system method’s NTT is the total number of tokens in its token
representation. This straightforward metric indicates the size of a method. For
example, the NTT of the method shown in Figure 4.1 is 20. The hypothesis is that
more extensive methods are more likely to contain vulnerabilities.

For a target software system method m, with a multiset of tokens T;(m;), NTT

is expressed as:
NTT = |T;(m,)|

The NTT metric’s hypothesis was inspired by several studies, including Shin
et al. [2010], Giger et al. [2012], Morrison et al. [2015], Pascarella et al. [2018],
and Du et al. [2019]. However, we conceptualised its information retrieval-based

design and implementation.

4.3.1.2 Number of Distinct Target Software System Tokens (NDTT)

A target software system method’s NDTT is the count of unigue tokens in its token
representation. Unlike NTT, which indicates size, NDTT measures both the size and
diversity of code elements. A higher NDTT suggests a more diverse and intricate
method. For example, the NDTT of the method shown in Figure 4.1 is 16. The

hypothesis is that intricate methods are more likely to contain vulnerabilities.

4.3. Token-Based Software Metrics 113

For a target software system method m; with a set of tokens 7,(m,), NDTT is

expressed as:
NDTT = |T/(m;)|

The NDTT metric was inspired by the NTT metric, which in turn was inspired
by several studies, including Shin et al. [2010], Giger et al. [2012], Morrison et al.
[2015], Pascarella et al. [2018], and Du et al. [2019]. However, we conceptualised

its information retrieval-based design and implementation.

4.3.1.3 Token-Based Instantaneous Code Churn (TICC)

A target software system method’s TICC is the number of times its token represen-
tation has changed throughout its history. Code churn quantifies the frequency of
code rewrites over time, measured by version control check-ins or changes in lines
of code [Shin et al., 2010]. This metric is commonly used in vulnerability predic-
tion, based on the hypothesis that higher churn correlates with higher vulnerability
proneness [Zimmermann et al., 2010, Shin et al., 2010, Shin and Williams, 2013,
Meneely et al., 2013, Morrison et al., 2015].

In our work, any code change, however minor, alters the token representation,
so TICC is incremented for each release where the method’s token representation
changes. Thus, TICC counts the number of changes to a method’s source code
across the software system’s history. The hypothesis is that methods that undergo
[frequent modifications are more likely to contain vulnerabilities, possibly indicating
problematic code.

For a method m;, in a target software system, with & (m,) representing the set of

releases where m;’s token representation changed, TICC is evaluated as:
TICC(my) = |6 (my)|

The TICC metric’s hypothesis was inspired by several studies, including Shin
et al. [2010], Giger et al. [2012], Morrison et al. [2015], Pascarella et al. [2018],
and Du et al. [2019]. However, we conceptualised its information retrieval-based

design and implementation.

4.3. Token-Based Software Metrics 114

4.3.1.4 Token-Based Relative Instantaneous Code Churn (TRICC)

A target software system method’s TRICC is the ratio of its token representation
change count to the total number of releases in which it appears. TRICC is similar
to TICC, but it is a relative value that better indicates how frequently each method
has evolved compared to others.

For a method m; in a target software system, and N representing the total num-

ber of releases where m; appears, TRICC is calculated as:

TRICC(m,) = HECm)

In a later section, we will discuss the design of the TRICC metric further, par-
ticularly how N could threaten the validity of a machine learning analysis through

data leakage, depending on the context of the analysis.

Release 1 Release 2 Release 3 Release 4 Release 5

b » Method A
< >« >« » Method B
b >4 P Method C
» Method D

>4 Method E

Figure 4.3: Method Evolution: An Infographic Representation

To illustrate TRICC, Figure 4.3 shows the evolution of methods A, B, C, D,
and E over releases 1 to 5 of a target software system.
- Method A first appeared in Release 1 and remained unchanged.

- Method B first appeared in Release 1 and was modified in Releases 2 and 4.

4.3. Token-Based Software Metrics 115

- Method C first appeared in Release 1 and was modified only in Release 3.
- Method D first appeared in Release 2 and remained unchanged thereafter.
- Method E first appeared in Release 2, was modified in Release 3, and was

removed in Release 4.

Table 4.3: TICC and TRICC Illustration

Method Release 1 Release 2 Release 3 Release 4 Release 5

A TICC:0/RICC:0 TICC:0/RICC:0 TICC:0/RICC:0 TICC:0/RICC:0 TICC:0/RICC:0

B TICC:0/RICC:0 TICC:1/RICC:0.20 TICC:1/RICC:0.20 TICC:2/RICC:0.40 TICC:2/RICC:0.40
C TICC:0/RICC:0 TICC:0/RICC:0 TICC:1/RICC:0.20 TICC:1/RICC:0.20 TICC:1/RICC:0.20
D NA TICC:0/RICC:0 TICC:0/RICC:0 TICC:0/RICC:0 TICC:0/RICC:0

E NA TICC:0/RICC:0 TICC:1/RICC:0.33 TICC:1/RICC:0.33 NA

Table 4.3 illustrates the TICC and TRICC metrics for the methods in Fig-
ure 4.3.

Method A: First introduced in Release 1 and remained unchanged in subse-

quent releases. TICC and TRICC values are 0 throughout the five releases.

* Method B: First appeared in Release 1, modified in Release 2 and 4. TICC
is 1 in Release 2 and 3, and 2 in Release 4 and 5. TRICC is 0.20 in Release 2
and 3, and 0.40 in Release 4 and 5.

* Method C: First appeared in Release 1, modified only in Release 3. TICC is
1 in Release 3, 4, and 5. TRICC is 0.20 in Releases 3, 4, and 5.

* Method D: First introduced in Release 2 and remained unchanged in subse-

quent releases. TICC and TRICC values are 0 throughout the four releases.

* Method E: First appeared in Release 2, modified in Release 3, and removed
in Release 4. TICC is 1 in Release 3 and 4. TRICC is 0.33 in Release 3 and
4.

The TRICC metric was inspired by the TICC metric, which in turn was inspired
by several studies, including Shin et al. [2010], Giger et al. [2012], Morrison et al.
[2015], Pascarella et al. [2018], and Du et al. [2019]. However, we conceptualised

its information retrieval-based design and implementation.

4.3. Token-Based Software Metrics 116

4.3.1.5 Number of Target Software System Diff Tokens (NTDT)

A target software system method’s NTDT is the count of tokens in the symmetric
difference between its tokens and those of its previous release. As discussed for
TICC, any code changes alter the token representation. The NTDT metric measures
the magnitude of changes between two contiguous releases by counting the tokens
in the difference.

The hypothesis is that developers are more likely to introduce vulnerabilities
when making significant and intricate changes to a method.

For a method m; in a target software system, and m;,_ | representing its previous

release, NTDT is expressed as:

NTDT(m¢) = |T; (m;) AT, 1 (m;_1)|

Here, A is the symmetric difference operator that returns a multiset of elements
in either of the two sets but not in both, and 7;(m,) and T;_1(m,_) are the token
representations of m; and m;_1, respectively.

The NTDT metric’s hypothesis was inspired by several studies, including Shin
et al. [2010], Giger et al. [2012], Morrison et al. [2015], Pascarella et al. [2018],
and Du et al. [2019]. However, we conceptualised its information retrieval-based

design and implementation.

4.3.1.6 Number of Target Software System Distinct Diff Tokens
(NTDDT)

A target software system method’s NTDDT is the count of unigue tokens in the
symmetric difference between its tokens and those of its previous release. NTDDT
is similar to NTDT, but while NTDT measures the magnitude of changes between
two contiguous releases, NTDDT measures the diversity of the code elements in-

volved in those changes.

For a method m; and its previous release m,_;, NTDDT is expressed as:

NTDDT(m) = [T/ (m) AT, ()|

4.3. Token-Based Software Metrics 117

Here, A is the symmetric difference operator that returns a set of elements in
either of the two sets but not in both, and T/ (m,) and T, | (m,_) represent the set

of tokens in the token representations of m;, and m;_1, respectively.

The NTDDT metric was inspired by the NTDT metric, which in turn was in-
spired by several studies, including Shin et al. [2010], Giger et al. [2012], Morrison
et al. [2015], Pascarella et al. [2018], and Du et al. [2019]. However, we conceptu-

alised its information retrieval-based design and implementation.

4.3.1.7 Token Relative Uniqueness (TRU)

The TRU metric analyses the individual tokens in a method’s token representa-
tion. It is inspired by the Term Frequency-Inverse Document Frequency (TF-IDF)
technique from information retrieval and is used for method-level vulnerability pre-
diction. The idea is that within the context of a given software system or codebase,
the developers working on it are more likely to write vulnerable code when using
complex programming features that the team rarely uses. The TRU metric reflects
a method’s intricacy based on the rarity of its code elements compared to other

methods in the software system or codebase.

TF-IDF measures a word’s importance in a document relative to its rarity
across a corpus. Similarly, TRU assesses the uniqueness of tokens within meth-

ods in a target software system.

In our context, a word corresponds to a token, a document to a method, and a
corpus to the target software system. We apply the TF-IDF technique for method-
level vulnerability prediction to assign weightings to each method’s token, indicat-

ing how unique a token is compared to those in other methods.

To illustrate, given a software system, the Java keyword ‘void’ commonly ap-
pears in standard methods that do not return a value. In contrast, the keyword ‘syn-
chronized’ is more likely to appear in intricate methods that handle threading. We
will observe that in a synchronized void method, the ‘synchronized’ keyword will
likely have a higher TF-IDF weighting than ‘void’ because ‘void’ is more frequently

used across methods in the software system.

4.3. Token-Based Software Metrics 118

If we compare a void method and a synchronized void method of similar size
and standard code elements, the synchronized void method will have a higher TRU.
This suggests that methods containing the ‘synchronized’ keyword are more com-
plex than average void methods, making them more prone to vulnerability-inducing
changes.

The TRU metric indicates a method’s uniqueness compared to other methods.
It is calculated as the harmonic mean of all TF-IDF weightings for a method’s to-
kens. Thus, TRU measures the relative obscurity of a method compared to others. A
method with a high TRU value is likely to feature advanced, specialised, and rarely
used programming language concepts in the software system. The hypothesis is
that developers working on a given software system or codebase are more likely to
introduce vulnerabilities when working with advanced and complex programming
language features that are rarely used by the development team.

Suppose f represents a token in a target software system’s method, and m repre-
sents a multiset of tokens in the method. The term frequency, tf(z,m), is the relative

frequency of token ¢ within the method m. It is expressed as:

tf(e.m) = g

Here, f;, represents the raw count of token ¢ in the method’s representation,
and Y ¢, frr.m denotes the total number of tokens in m.

Suppose M represents a multiset of all method tokens in our target software
system. We express the inverse document frequency, idf(z, M), for token ¢ in method

m as:

idf(¢,M) = log\mezév—;z@m

Here, N is the total number of methods in the target software system, N = |M|,
and |m € M : t € m| is the total number of methods that include ¢.

The TF-IDF for token ¢ is then calculated as:
tidf(z,m,M) = tf(¢,m) -1df (¢, M)

Finally, the TRU for method m, TRU(m,M), is evaluated by calculating the

harmonic mean of the TF-IDF values of all its tokens:

4.3. Token-Based Software Metrics 119

TRU(m,M) = —Jtm

Yiem thdf(.m.M)

As before, f;,, is the raw count of token, ¢, in the method’s representation.
Yiem m is the sum of the inverse TF-IDF values for all tokens in m.

We exclusively developed the TRU metric’s conceptualisation, software vul-
nerability prediction contextualisation, hypothesis, design, and implementation,
drawing inspiration from how the TF-IDF technique tends to assign higher weight-

ings to rare words in information retrieval.
4.3.2 Token-Based Hit-Dependent Metrics

Table 4.4: Token-Based Hit-Dependent Metrics

Token-Based Hit-Dependent (Security-Relevant) Metric Abbr.
Number of Hit Shingles NHS
Number of Distinct Hit Shingles NDHS
Number of Vulnerability Dataset Tokens NVT
Number of Distinct Vulnerability Dataset Tokens NDVT

Target Software System Method-to-
— Vulnerable Dataset Method Shingle Similarity Ratio
Shingle Hits-to-Target Software System Method Similarity Ratio SHTSR

TVSSR

Shingle Hits-to-Vulnerable Dataset Method Similarity Ratio SHVSR
Number of Shingle Matches NUSM
Shingle Match Ratio SMR

Table 4.5: Token-Based Hit Dependent Metrics Code Attributes of Concern

Token-Based Hit-Dependent Metric Abbr. Attributes of Concern

Intricacy Similarity Size

NHS

NDHS v
NVT

NDVT v
TVSSR

SHTSR

SHVSR

NUSM

SMR

ESENENEN

N N NS NENENEN

4.3. Token-Based Software Metrics 120

Many studies have utilised traditional software metrics, such as McCabe’s Cy-
clomatic Complexity, Number of Lines of Code, Code Churn, and Fan-in and Fan-
out dependency metrics, as features in vulnerability prediction models. However,
these metrics are often criticised for not adequately capturing code semantics be-
cause they are not designed with security in mind. Their primary focus is on quan-
tifying code characteristics, which many scholars believe contributes to their rela-
tively poor performance in vulnerability prediction. Recent research emphasises the
importance of using security-specific metrics for more effective vulnerability pre-
diction [Shin and Williams, 2008b,a, Morrison et al., 2015, Munaiah et al., 2017,
Sultana and Chong, 2019, Al Debeyan et al., 2022, Zimmermann et al., 2010, Shin
et al., 2010, Doyle and Walden, 2011, Shin and Williams, 2013, Moshtari et al.,
2013, Meneely et al., 2013, Walden et al., 2014, Perl et al., 2015, Younis et al.,
2016, Sultana, 2017b, Sultana et al., 2018b, Chong et al., 2019b, Kalouptsoglou
et al., 2020].

We aimed to develop security-aware metrics by leveraging the knowledge of
known vulnerability patterns, creating nine additional (hit-dependent) metrics as
presented in Table 4.4. Table 4.5 details the code attributes each metric captures.
All hit-dependent metrics except NUSM and SMR measure the similarity between
a target software system method and a known vulnerable method. For example,
the NHS metric measures the similarity and size between a target software system
method and a known vulnerable method, while the NDHS metric captures the di-
versity of code elements within this similarity. NUSM and SMR, on the other hand,
measure the general distribution of similarities between a target software system

method and known vulnerable methods.

A hit refers to the intersection of shingles between a target and vulnerable
methods in a dataset. Unlike the hit-independent metrics, these nine hit-dependent
metrics are pattern-based. Their evaluation depends on the patterns found in the
shingles of a target software system method and a known vulnerable method, as

facilitated by the hits.

4.3. Token-Based Software Metrics 121

Because vulnerable and non-vulnerable code elements often have similar at-
tributes, which complicates their differentiation [Pereira et al., 2021], these hit-
dependent metrics facilitate this differentiation by focusing on the patterns found
in vulnerable code, making them security-relevant.

These security-relevant metrics aim to quantify the similarity of code compo-
nents in the target system to those in a dataset of known vulnerabilities. These met-
rics are termed ‘security-relevant’ because they encode patterns found in vulnerable

code rather than directly indicating the presence of vulnerabilities.

4.3.2.1 Number of Hit Shingles (NHS)

A target software system method’s NHS is the number of shingles shared between
it and the most similar known vulnerable method in a vulnerability dataset. This
metric is straightforward, simply counting the shared shingles.

The hypothesis is that the more code representation elements a target software
system method shares with a known vulnerable method, the more likely it is to ex-
hibit the same vulnerability.

For a target software system method m; with a multiset of shingles S; (m;) and a
matching method m, from a vulnerability dataset with a multiset of shingles S, (m,),

NHS is expressed as:
NHS = |A]

Here, h represents the hits between S;(m;) and S,(m,), where h = S;(m;) N
Sy(my).

The hits are shingles instead of tokens because shingles encode the structure
of the source code, capturing the context more effectively.

We exclusively conceptualised the NHS metric, contextualised it within soft-
ware vulnerability prediction and developed its hypothesis, design and implemen-

tation.

4.3.2.2 Number of Distinct Hit Shingles (NDHS)

A target software system method’s NDHS is the count of unique shingles shared

between the method and the most similar known vulnerable method in a vulnera-

4.3. Token-Based Software Metrics 122

bility dataset. NDHS is similar to NHS, but it measures the diversity of the shared
shingles rather than their total number.

For a target software system method m; with a set of shingles S/(m,) and a
matching method m, from a vulnerability dataset with a ser of shingles S, (m,), let
I represent the hits between S} (m;) and S, (m,), where i’ = S}(m;) N S, (m,). NDHS

is expressed as:
NDHS = |//|

We exclusively conceptualised the NDHS metric, contextualised it within soft-
ware vulnerability prediction and developed its hypothesis, design and implemen-

tation.

4.3.2.3 Number of Vulnerability Dataset Tokens (NVT)

A target software system method’s NVT is the count of tokens in its most similar
known vulnerable method from a vulnerability dataset. The NVT metric is similar
to the NTT metric introduced in Subsubsection 4.3.1.1, which measures the number
of tokens in a target software system method. However, while NTT measures the
tokens of the target software system method, NVT measures the tokens of the most
similar known vulnerable method. NTT is hit-independent, whereas NVT is hit-
dependent because it requires a match with a known vulnerable method.

The hypothesis is that a method matching with a large and complex known
vulnerable method is likely to be complex and potentially vulnerable.

NVT is expressed as:
NVT = |T,(m,)|

We exclusively conceptualised the NVT metric, contextualised it within soft-
ware vulnerability prediction and developed its hypothesis, design and implemen-

tation.

4.3.2.4 Number of Distinct Vulnerability Dataset Tokens (NDVT)

A target software system method’s NDVT is the count of unigue tokens in its most

similar known vulnerable method from a vulnerability dataset. The NDVT metric is

4.3. Token-Based Software Metrics 123

similar to the NDTT metric. While NDTT measures the number of distinct tokens
in a target software system method, NDVT measures the number of distinct tokens
in the most similar known vulnerable method. NDTT is hit-independent, whereas
NDVT is hit-dependent because its calculation requires a match with a known vul-
nerable method.

NDVT is expressed as:

NDVT = [T} (m,)

The NDVT metric was inspired by the NDTT metric, which in turn was in-
spired by several studies, including Shin et al. [2010], Giger et al. [2012], Morrison
et al. [2015], Pascarella et al. [2018], and Du et al. [2019]. However, we conceptu-

alised its information retrieval-based design and implementation.

4.3.2.5 Target Software System Method-to-Vulnerable Dataset
Method Shingle Similarity Ratio (TVSSR)

A target software system method’s TVSSR is the Jaccard Similarity of its shingles
to those of the most similar known vulnerable method in a vulnerability dataset.

The TVSSR metric measures the extent to which a target software system
method shares code elements with a known vulnerable method. It evaluates the
distinct shingles appearing in both methods relative to the total number of distinct
shingles between them. While the metric does not directly consider order and fre-
quency, the shingles inherently encode these aspects.

Jaccard Similarity is the ratio of the intersection to the union of two sets. In
this context, it refers to the ratio of shared distinct shingles between m; and m, to
the total distinct shingles in both methods.

The hypothesis is that the more unique code representation elements a method
shares with a known vulnerable method, the more likely it is to exhibit the same
vulnerability.

For a target software system method m; with a set of shingles S/(m;) and a

matching method m, from a vulnerability dataset with a set of shingles S, (m,),

4.3. Token-Based Software Metrics 124

let i’ represent the hits between S, (m;) and S|, (m,), where h' = S/(m;) N S, (m,).
TVSSR is expressed as:

_]
TVSSR = i stim)
Or, more derivatively:
TVSSR = NDHS

(NDTS+NDVS)—NDHS

NDTS and NDV S are temporary variables representing the number of distinct
shingles in the target and known vulnerable methods, respectively.

We exclusively developed the TVSSR metric’s conceptualisation, software
vulnerability prediction contextualisation, hypothesis, design, and implementation,

drawing inspiration from the Jaccard Similarity technique used in string metrics.

4.3.2.6 Shingle Hits-to-Target Software System Method Similarity
Ratio (SHTSR)

The SHTSR of a target software system method is the ratio of shared shingles be-
tween its shingles and those of the most similar known vulnerable method to the to-
tal number of shingles in the target software system method. This metric measures
the extent to which a target software system method comprises shingles shared with
a known vulnerable method.

The hypothesis is that the more a target software system method includes code
representation elements present in a known vulnerable method, the more likely it is
to exhibit the same vulnerability.

For a target software system method m; with a set of shingles S/(m;) and a
matching method m, from a vulnerability dataset with a set of shingles S (m,),
let 4’ represent the hits between S, (m,) and S, (m,), where h’ = S;(m;) N S, (m,).
SHTSR is expressed as:

_
SHISR = gy
Or, more derivatively:
SHTSR = NPHS

NDTS

4.3. Token-Based Software Metrics 125

NDTS is a temporary variable representing the number of distinct shingles in
the target software system method.

We exclusively conceptualised the SHTSR metric, contextualised it within
software vulnerability prediction and developed its hypothesis, design and imple-

mentation.

4.3.2.7 Shingle Hits-to-Vulnerable Dataset Method Similarity Ratio
(SHVSR)

A target software system method’s SHVSR is the ratio of the shared shingles be-
tween its shingles and those of the most similar known vulnerable method to the
total number of shingles in the vulnerable method. This metric measures how much
a known vulnerable method comprises shingles shared with a target software system
method.

SHVSR is similar to SHTSR, with the difference being that SHVSR evaluates
the vulnerable method, while SHTSR evaluates the target software system method.

When evaluating SHTSR, the question is: "To what extent do the unique shin-
gles in our hits constitute the unique shingles in our target software system method?"
For SHVSR, the question is: "To what extent do the unique shingles in our hits con-
stitute the unique shingles in the vulnerable method?"

The hypothesis is that the more a vulnerable method comprises code represen-
tation elements present in a target software system method, the more likely it is that
the target software system method’s components will exhibit the same vulnerability.

For a target software system method m, with a set of shingles S (m;), and a
matching method m, from a vulnerability dataset with a set of shingles S (m,),
let /' represent the hits between S, (m,) and S, (m,), where h’ = S;(m;) N S, (m,).
SHVSR is expressed as:

_]
SHVYSR = 1g7m]
Or, more derivatively:
SHVSR = YDHS

NDVS

4.3. Token-Based Software Metrics 126

NDV S is a temporary variable representing the number of distinct shingles in
the known vulnerable method.
We exclusively conceptualised the SHVSR metric, contextualised it within

software vulnerability prediction and developed its hypothesis, design and imple-

mentation.

4.3.2.8 Number of Shingle Matches (NUSM)

A target software system method’s NUSM is the count of known vulnerable meth-
ods in a vulnerability dataset that share at least one shingle with the method in
question. This metric measures the number of known vulnerable methods that share
shingles with a target software system method.

The hypothesis is that the more vulnerable methods that share at least one
code representation element with a target software system method, the more likely
the target software system method is to be vulnerable.

For a target software system method m, with a set of shingles S/(m,) and a
vulnerability dataset V' containing n known vulnerable methods m, ,m,,,...,m,,,

each with sets of shingles S, (m,,).S,, (my,),...,S, (my,), NUSM is expressed as:

NUSM = [{m,, €V : S(m;) N S, (m,,) # 0}

We exclusively conceptualised the NUSM metric, contextualised it within soft-
ware vulnerability prediction and developed its hypothesis, design and implemen-

tation.

4.3.2.9 Shingle Match Ratio (SMR)

A target software system method’s SMR is the ratio of known vulnerable methods
in a vulnerability dataset that share at least one shingle with the method to the total
number of vulnerable methods in the dataset. The SMR metric is similar to the
NUSM metric but focuses on the ratio rather than the absolute number. In other
words, a method’s SMR is its NUSM divided by the total number of vulnerable

methods in the dataset.

4.3. Token-Based Software Metrics 127

For a target software system method m; with a set of shingles S/(m;) and a
vulnerability dataset V' containing n known vulnerable methods m, ,m,,,...,m,,,
each with sets of shingles S|, (m,,),S,,(my,),...,S, (my,), SMR is expressed as:

[{myy €V <8 m) NS}, (my,)70}
n

SMR =

Or, more derivatively:
_ NUSM
SMR = ==

We exclusively conceptualised the SMR metric, contextualised it within soft-
ware vulnerability prediction and developed its hypothesis, design and implemen-
tation.

The following subsection illustrates how these metrics are calculated using a

hypothetical target software system and a hypothetical vulnerable method.

4.3.3 Token-Based Metrics Calculation: An Illustration

We illustrate the calculation of the metrics developed in this study using one of the
most well-known software vulnerabilities: SQL Injection! 2.

SQL Injection is a code injection technique exploiting vulnerabilities in an
application’s software layer. It occurs when user input is not correctly filtered for
string literal escape characters embedded in SQL statements, allowing an attacker
to execute arbitrary SQL commands. This vulnerability is common and poses a
significant risk to web applications, potentially leading to data breaches, loss, and
other security incidents.

We use two code snippets to illustrate the calculation of the token-based met-
rics: a hypothetical target software system method and a hypothetical known vul-
nerable method from a vulnerability dataset.

For simplicity, we exclude specific metrics requiring more extensive informa-
tion than what is representable within a method body. These metrics include TICC,

TRICC, NTDT, NTDDT, TRU, NUSM, and SMR. For example, TICC, TRICC,

NTDT, and NTDDT require information on an entire method’s change history,

"https://owasp.org/www—community/attacks/SQL_Injection
https://cwe.mitre.org/data/definitions/89.html

https://owasp.org/www-community/attacks/SQL_Injection
https://cwe.mitre.org/data/definitions/89.html

4.3. Token-Based Software Metrics 128

which is neither representable within a method body nor in its token representa-
tion and shingles.

The target software system method in Listing 4.2 is a simple Java method that
prompts the user to enter a username, constructs a SQL query using the username,
and processes the query. This method is vulnerable to SQL Injection. It constructs
an SQL query using user input without proper filtering, allowing an attacker to enter
a malicious username containing SQL commands.

Similarly, the vulnerability dataset method in Listing 4.3 is another simple Java
method that constructs a SQL query using a username parameter and then executes
the query. Like the target software system method, it is vulnerable to SQL Injection
due to the lack of proper input filtering, allowing an attacker to execute malicious

SQL commands.

4.3. Token-Based Software Metrics 129

Listing 4.2: processUsername Method

76 public void processUsername () throws SQLException {

77 Scanner scanner = new Scanner (System.in);

78 System.out.println ("Enter your username:");

79 String username = scanner.nextLine();

80 String g = "SELECT % FROM users WHERE username = '

" + username + "’'";
81 processQuery (q) ;
82 scanner.close () ;

83 }

public void processUsername () throws SQLException {
< Scanner scanner = new Scanner (System . in) ;
— System . out . println (" Enter your username "

<~) ; String username = scanner . nextLine () ;

<~ String g = " SELECT x FROM users WHERE username = '

— " + username + " ' " ; processQuery (gq) ;

N

scanner . close () ; }

Figure 4.4: Single Whitespace-Separated Token Representation of the Method in List-
ing 4.2

Figure 4.4 shows the single whitespace-separated token representation of the
processUsername method in Listing 4.2. Some vulnerabilities can occur within
a string literal, such as the SQL Injection vulnerability in the target software sys-
tem method or even within a single token, such as a hardcoded password or API
key. For this reason, we aimed for ultimate granularity in our token representation
by disintegrating code elements, including strings, into simple individual tokens to

optimise token retrieval (i.e., using information retrieval) and analysis.

4.3. Token-Based Software Metrics 130

Table 4.6: Shingles of the Method in Listing 4.2

public void processUsername () = scanner . nextLine (

void processUsername () throws scanner . nextLine ()

processUsername () throws SQLException . nextLine () ;

() throws SQLException { nextLine () ; String

) throws SQLException { Scanner () ; String g

throws SQLException { Scanner scanner) ; String gq =

SQLException { Scanner scanner = ; String g ="

{ Scanner scanner = new String g = " SELECT

Scanner scanner = new Scanner g = " SELECT x

scanner = new Scanner (= " SELECT * FROM

= new Scanner (System " SELECT * FROM users

new Scanner (System . "SELECT * FROM users WHERE

Scanner (System . in * FROM users WHERE username

(System . in) FROM users WHERE username =

System . in) ; users WHERE username = '

. in) ; System WHERE username = ' "

in) ; System . username = ' " +

) ; System . out = ' " 4+ username

; System . out . ’ " 4+ username +

System . out . println " + username + "

. out . println (+ username + " /

out . println (" username + " /"
println (" Enter + " "y

println (" Enter your "’ " ; processQuery

(" Enter your username ! " ; processQuery (

" Enter your username : " ; processQuery (g

Enter your username : " ; processQuery (q)

your username : ") processQuery (q) ;

username : ") (g) ; scanner

: ") ; String g) ; scanner

") ; String username) ; scanner . close

) ; String username = ; scanner . close (

; String username = scanner scanner . close ()

String username = scanner . . close () ;

username = scanner . nextLine close () ; 1}

Table 4.6 shows the shingles (5-grams) derived from the token representation
of the target software system method in Figure 4.4.

Shingles typically exclude punctuation and whitespace characters in natural
language processing, focusing only on words. However, in our source code context,
we include all code elements (except comments and whitespaces), such as brackets,

parentheses, and semicolons, to capture the code’s structure and syntax.

850

851

852

853

854

855

856

857

858

859

860

861

862

863

865

4.3. Token-Based Software Metrics 131

Listing 4.3: getUserData Method

public ResultSet getUserData (String username) {

String dbUrl = getDatabaseUrl () ;

ResultSet resultSet = null;

try (Connection conn = DriverManager.getConnection
(dbUrl) ;
Statement statement = conn.createStatement ())

{

String query = "SELECT * FROM users WHERE
username = '" + username + "'";

resultSet = statement.executeQuery (query);

} catch (SQLException e) {
e.printStackTrace();

}

return resultSet;

public ResultSet getUserData (String username) { String

TLLELLLLY

dbUrl = getDatabaseUrl () ; ResultSet resultSet =
null ; try (Connection conn = DriverManager
getConnection (dbUrl) ; Statement statement =
conn . createStatement ()) { String query = "
SELECT * FROM users WHERE username = ' " 4+ username

+ " 7 " ; resultSet = statement . executeQuery (
query) ; } catch (SQLException e) { e
printStackTrace () ; } return resultSet ; }

Figure 4.5: Single Whitespace-Separated Token Representation of the Method in List-

ing 4.3

4.3. Token-Based Software Metrics 132
Table 4.7: Shingles of the Method in Listing 4.3

public ResultSet getUserData (String query = " SELECT x
ResultSet getUserData (String username | = " SELECT x FROM
getUserData (String username) " SELECT *» FROM users
(String username) { "SELECT * FROM users WHERE
String username) { String * FROM users WHERE username
username) { String dbUrl FROM users WHERE username =
) { String dbUrl = users WHERE username = '/
{ String dbUrl = getDatabaseUrl WHERE username = ' "
String dbUrl = getDatabaseUrl (username = ' " +
dbUrl = getDatabaseUrl () =’ " 4+ username
= getDatabaseUrl () ; ’ " + username +
getDatabaseUrl () ; ResultSet " + username + "
() ; ResultSet resultSet + username + " '/
) ; ResultSet resultSet = username + " /"
; ResultSet resultSet = null + "
ResultSet resultSet = null ; "/ ", resultSet
resultSet = null ; try " ; resultSet =
= null ; try (" ; resultSet = statement
null ; try (Connection ; resultSet = statement
; try (Connection conn resultSet = statement executeQuery
try (Connection conn = = statement executeQuery (
(Connection conn = DriverManager statement . executeQuery (query
Connection conn = DriverManager executeQuery (query)
conn = DriverManager . getConnection executeQuery (query) ;
= DriverManager . getConnection ((query) ; }
DriverManager . getConnection (dbUrl query) ; } catch

getConnection (dbUrl)) ; } catch (
getConnection (dbUrl) ; ; } catch (SQLException
(dbUrl) ; Statement } catch (SQLException e
dbUrl) ; Statement statement catch (SQLException e)
) ; Statement statement = (SQLException e) {
; Statement statement = conn SQLException e) { e
Statement statement = conn e) { e
statement = conn . createStatement) { e . printStackTrace
= conn . createStatement ({ e . printStackTrace (
conn . createStatement () e printStackTrace ()

createStatement ()) printStackTrace () ;
createStatement ()) { printStackTrace () ; }
()) { String () ; } return
)) { String query) ; } return resultSet
) { String query = ; } return resultSet ;
{ String query = " } return resultSet ; }
String query = " SELECT

Table 4.7 shows the shingles (5-grams) derived from the token representation

in Figure 4.5 of the getUserData method in Listing 4.3. Again, the shingles

include every code element (except comments and whitespaces), such as brackets,

parentheses, and semicolons, to capture the code’s structure and every low-level

syntactic detail.

4.3. Token-Based Software Metrics 133

Table 4.8: Example Token-Based Metrics Calculation

Hit-Independent Metrics Metric Value

NTT 74
NDTT 35
Hit-Dependent Metrics Metric Value
NHS 14
NDHS 14
NVT 89
NDVT 37
TVSSR %
SHTSR 14
SHVSR g

Table 4.8 presents the calculated values of the metrics for the processUsername

Method and the hypothetical vulnerable method, as derived from a vulnerability

dataset. The full names of the metrics are in Table 4.1 and Table 4.4.

The NTT metric, the number of tokens in the target software system method, is
74, obtained by counting the tokens in the token representation of the target software

system method (Figure 4.4).

The NDTT metric, the number of distinct tokens in the target software system
method, is 35, obtained by counting the distinct tokens in the token representation

of the target software system method (Figure 4.4).

The NHS metric, the number of shared shingles between the target software
system method and the vulnerable method, is 14, determined by counting the shin-
gles that appear in both methods (Tables 4.6 and 4.7). For clarity, these shared

shingles are emboldened in both tables.

The NDHS metric, the number of distinct shared shingles between the target

and vulnerable methods, is also 14.

The NVT metric, the number of tokens in the vulnerable method, is 89, ob-
tained by counting the tokens in the token representation of the vulnerable method

(Figure 4.5).

4.3. Token-Based Software Metrics 134

The NDVT metric, the number of distinct tokens in the vulnerable method,
is 37, obtained by counting the distinct tokens in the token representation of the
vulnerable method (Figure 4.5).

The TVSSR metric, the Jaccard Similarity of the target software system

method’s shingles and the vulnerable method’s shingles is where

o894 OF 14D
70 and 85 are the number of distinct shingles in the target and vulnerable methods,
respectively (Tables 4.6 and 4.7).

The SHTSR metric, which is the ratio of the number of distinct shared shingles
to the number of distinct shingles in the target software system method, is %.

The SHVSR metric, which is the ratio of the number of distinct shared shingles
to the number of distinct shingles in the vulnerable method, is %.

This example illustrates how we calculate the metrics developed in this study
using a hypothetical target software system and a hypothetical vulnerable method.
The following section details our methodology, including how these metrics are

leveraged in our machine learning classification.

4.4. Methodology 135
4.4 Methodology

This section presents the chapter’s methodology. We provide preliminary infor-
mation on our approach, followed by detailed information on our datasets, data

preprocessing, information retrieval techniques, and machine learning analysis.

4.4.1 Overview of the Methodology

Preprocess source code

Deduplicate
metrics data
based on method

Extract token
representations
from TSS and VD
methods

Build Word N-
grams

F

token

Append the
ground truth data
(dependent
variable) to the

A

A 4

(shingles) using
tokens from TSS
and VD methods

Build metrics data
(which includes

A 4

Build information
retrieval
document index
using VD method
shingles

the independent |«

variables) from

Query the index
using each TSS
method shingles

representation metrics data the query results

\ 4

Scale metrics Conduct metric

values o | Address class Y correlation » Apply sequential
. imbalance g) "| feature selection
(Feature Scaling) analysis
v
Er\ézlilézflz Classify metrics
Tune selected model's Select best- | 4 grformance P data using
hyperparameters performing model | P N nominated ML
using ground truth lqorith
data algorithms

Figure 4.6: Token-Based Vulnerability Prediction Methodology Overview (Within-
Project)

Figure 4.6 provides a high-level summary of our approach, grouped into six
main phases: source code preprocessing, token representation extraction, word n-
grams (shingles) generation, information retrieval, metrics development, and ma-

chine learning analysis.

4.4.1.1 Source Code Preprocessing

Following the acquisition of the dataset, we began by preprocessing the source code
of our target software system and the vulnerability dataset. The target software

system is the program in which we want to predict vulnerabilities.

4.4. Methodology 136

This phase involved several preparatory steps, including identifying and filter-
ing out irrelevant code artefacts, such as abstract and test methods. We also removed

source code comments from all files to ensure they did not influence the analysis.

4.4.1.2 Source Code Token Representation Extraction

After preprocessing, we parsed each source code file in our target software system
and the vulnerability dataset. We used JavaParser® to extract the token represen-
tations of methods from both software systems. JavaParser is a Java library that

parses Java source code and generates ASTs from the parsed code.

4.4.1.3 Word N-grams (Shingles) Generation

We generated shingles for each method using the token representations of methods
in our target software system and the vulnerability dataset with Apache Lucene’s
ShingleFilter*. These shingles were then utilised in the next phase of our experi-
ment, which involved information retrieval. Apache Lucene is a Java-based, high-
performance, full-featured text search engine library, which we will discuss in more

detail later in this section.

4.4.1.4 Information Retrieval

This phase involved constructing a document index and querying it. The aim was to
apply information retrieval techniques to the shingles generated from the extracted
source code token representations of the methods in our target software system and

the vulnerability dataset.

1. Document Index Construction: We used the shingles generated from the vul-
nerability dataset methods to build an information retrieval document index.
This index serves as a data repository, facilitating the efficient storage and
retrieval of relevant information, where a ‘document’ refers to the shingles

generated from a method’s token representation.

3https://javaparser.org/
‘https://lucene.apache.org/

https://javaparser.org/
https://lucene.apache.org/

4.4. Methodology 137

2. Document Index Querying: We used the shingles from each target software
system method to query and retrieve the most similar methods from the doc-

ument index.

4.4.1.5 Metrics Data Development

This experiment phase embodies our core contribution: the sixteen metrics we de-
veloped using our novel information retrieval-driven approach to vulnerability pre-

diction. This phase had two subphases:

1. Metrics Calculation and Feature Engineering: In this subphase, we generated
the metrics data for each method in our target software system. This involved
leveraging the attributes from the source code token representations and shin-
gles of the methods, as well as the results from the information retrieval phase.
The metrics data included two categories: hit-independent (seven metrics)
and hit-dependent (nine metrics). The hit-independent metrics were calcu-
lated using only the attributes of the target software system methods. In con-
trast, the hit-dependent metrics used attributes from the target software sys-
tem methods and their most similar methods in the vulnerability dataset. Hit-
independent metrics communicated the methods’ structural and evolutionary
details, while hit-dependent metrics provided security-aware data by leverag-
ing the vulnerability dataset. This process constituted the feature engineering

for our machine learning classification.

2. Ground Truth Data Appendation: This subphase involved supplementing the
metrics data with ground truth information for each method in our target soft-
ware system. The ground truth data, comprising vulnerability fix information
from the official security reports, was crucial for evaluating the performance

of our machine learning classification.

4.4.1.6 Machine Learning Analysis

This phase aimed to:

i identify the best-performing machine learning classifier for vulnerability pre-

diction;

4.4. Methodology 138

ii identify the best-performing combination of metrics for vulnerability predic-

tion.
We completed several subphases to achieve these aims:

1. Metrics Data Deduplication: This subphase aimed to eliminate data leakage,

which can cause overfitting and inflated performance metrics.

2. We removed duplicate data by ensuring a unique token representation per

method per release.

3. Feature Scaling: We normalised the metrics data using the Min-Max feature
scaling technique to ensure all metrics values were on the same scale and

contributed equally to the machine learning classification.

4. Class Imbalance Mitigation: Due to the class imbalance between vulnerable
and non-vulnerable code artefacts, we applied the Synthetic Minority Over-

sampling Technique (SMOTE) to balance the metrics data before training.

5. Correlation Analysis: This subphase identified correlations among the met-
rics (independent variables) and between the metrics and the ground truth

(dependent variable).

6. Feature Selection: We applied the Sequential Feature Selection (SFS) feature
selection technique to identify the best-performing combination of metrics

for vulnerability prediction.

7. Classification: We trained ten machine learning classifiers using the metrics
data as independent variables, and the vulnerability fix information as the
dependent variable. The goal was to predict whether each method in our

target software system was vulnerable or non-vulnerable.

8. Performance Evaluation: We evaluated the classifiers’ performance using the

ground truth data, calculating precision, recall, and F1 score.

9. Model Selection: We selected the best-performing classifier based on the

highest F1 score.

4.4. Methodology 139

10. Model Optimisation (Hyperparameter Tuning): Using the Grid Search hy-
perparameter tuning technique, we tuned the hyperparameters of the best-

performing classifier to improve its performance.

The above enumeration summarises the methodology used in this study. The

following subsections provide detailed information on each overviewed item.

4.4.2 Dataset

Our analysis involved a target software system and vulnerability datasets. The tar-
get software system dataset was the focus of our vulnerability prediction analysis.
In contrast, the vulnerability dataset was crucial for assessing the likelihood of vul-
nerability of the methods in the target system.

Our target software system was Apache Tomcat 7°, acquired in the fourth quar-
ter of 2021. The vulnerability dataset was the National Institute of Standards and
Technology (NIST) Software Assurance Reference Dataset (SARD)®, obtained in
the fourth quarter of 2022. We used SARD to evaluate whether methods in various
Apache Tomcat 7 releases exhibited the same vulnerable patterns as those in the

vulnerability dataset.

4.4.2.1 Target Software System

We used Apache Tomcat 7 as our target software system. Tomcat is an open-source
implementation of Java Servlet, JavaServer Pages, Java Expression Language, and
WebSocket technologies. It provides a fully Java-based HTTP web server environ-
ment for running Java code. The project is developed by an open-source community
with support from the Apache Software Foundation and is licensed under Apache
License 2.0.

We chose this software system for several reasons, including access to its com-
plete source code, security reports, and information on vulnerability fixes. These
resources, available on the Apache Tomcat website, are essential for evaluating pre-

dictions.

Shttps://archive.apache.org/dist/tomcat/tomcat—7/
Shttps://samate.nist.gov/SARD/

https://archive.apache.org/dist/tomcat/tomcat-7/
https://samate.nist.gov/SARD/

4.4. Methodology 140

We analysed several releases of Apache Tomcat 7, between 7.0.0 and 7.0.108.
We excluded a few source code files that we could not parse and test or other non-

conventional methods due to their irrelevance in our context.

4.4.2.2 Ground Truth Data

We used Apache Tomcat 7 fixed vulnerabilities data’, spanning releases 7.0.2 to

7.0.108, as our ground truth.

We filtered out two groups of components from our ground truth data:

1. Test-related methods that are modified as part of a vulnerability fix since they
do not directly define a system’s functionality or contribute to its vulnerability

proneness.

2. Methods added from scratch as part of a vulnerability fix, as they did not exist
before the fix and could not have contributed to pre-existing vulnerabilities.
While such methods could introduce new vulnerabilities, our analysis did not
consider this risk category. We focused solely on the threats posed by partially

fixed, pre-existing methods.

4.4.2.3 National Institute of Standards and Technology (NIST) Soft-
ware Assurance Reference Dataset

The SARD vulnerability dataset provided numerous vulnerable code samples. It
contained over 450,000 test programs with documented weaknesses, ranging from
small synthetic to large applications at the time of acquisition. While we focused
on Java-based programs, the dataset includes C, C++, Java, PHP, and C#, covering
over 150 Common Weakness Enumeration (CWE)? classes.

A typical SARD test case comprises one or more source code files with at-
tributes such as ‘type’, ‘author’, ‘language’, ‘state’, ‘status’, and ‘submission date.’

In our experiment, the ‘type’ was ‘source code’, and the ‘language’ was ‘Java.’

"https://tomcat.apache.org/security—7.html
8https://cwe.mitre.org/

https://tomcat.apache.org/security-7.html
https://cwe.mitre.org/

4.4. Methodology 141

The ‘state’ attribute options are ‘good’, ‘bad’, and ‘mixed.” A ‘good’ test case
is non-vulnerable (false positive), a ‘bad’ test case is vulnerable (true positive), and

a ‘mixed’ test case contains both vulnerable and non-vulnerable code.

The ‘status’ attribute options are ‘candidate’, ‘accepted’, and ‘deprecated.’
Test cases start as ‘candidate’ and, if they pass a review by a SARD librarian, be-
come ‘accepted.” Accepted test cases meet quality standards, are well-documented,

represent specific weaknesses, are easy to understand, and are free of ambiguities.

We prioritised ‘accepted’ test cases due to their quality and credibility. How-
ever, due to data scarcity, availability and accessibility-related challenges in soft-
ware vulnerability research, we also included ‘candidate’ test cases to increase the
number of vulnerable samples. We excluded ‘deprecated’ test cases as SARD dis-

courages their use.

Also, we only used test cases from the ‘bad’ and ‘mixed’ categories for the
‘state’ attribute. We extracted the vulnerable methods from the ‘mixed’ category

and skipped the non-vulnerable counterparts.

Table 4.9: Token-Based Single Software System Dataset Details

Description Value
Total Number of Analysed Target Software System Releases 76
Total Number of Analysed Vulnerability Fixes 261
Total Number of Indexed Vulnerability Dataset Methods 20,692

Table 4.9 presents the details of our target software system and vulnerability
dataset. We analysed 76 releases of Apache Tomcat 7 and 261 vulnerability fixes.
The SARD vulnerability dataset comprised 20,692 methods.

4.4.3 Data Preprocessing

We parsed and extracted source code tokens using JavaParser and generated shin-
gles from these tokens using Apache Lucene’s ShingleFilter. Using information
retrieval techniques, we developed features (metrics) for machine learning classifi-

cation from the extracted tokens and generated shingles.

4.4. Methodology 142

4.43.1 Source Code Token Extraction

Source code tokenisation involves converting source code into a sequence of tokens
that represent its structure. We extracted tokens from all analysed methods in our

target software system and the vulnerability dataset.

4.4.3.2 Shingle Generation

We generated shingles for each method in our target software system and the vul-
nerability dataset following token extraction.

Shingling breaks down code into smaller, overlapping fragments called shin-
gles. This technique is employed in text analysis for detecting plagiarism and
analysing code similarity.

The ideal shingle size depends on the context and nature of the analysis.
Smaller shingles capture fine details but may produce noise and be computation-
ally expensive. Larger shingle sizes reduce noise but may miss subtle details. We
conducted preliminary experiments and found that a shingle size of ‘5’ was ideal
for our analysis.

After token extraction and shingle generation, we applied information retrieval
techniques and machine learning classification, which were discussed later in this
section. Before that, we describe additional steps in preparing our data: deduplica-

tion, ground truth evaluation, feature scaling and class imbalance mitigation.

4.4.3.3 Data Deduplication

We deduplicated the Tomcat (training) dataset to avoid data leakage® during ma-
chine learning classification. Data leakage occurs when a classifier inadvertently
uses test data during training, which can happen if duplicates are not removed, mak-
ing some data points appear in both the training and test sets.

Our deduplication strategy retained only the first release of each method in
the dataset and all subsequent releases where its token representation changed.

Figure 4.3 and Table 4.10 illustrate this strategy. Table 4.11 presents the post-

https://scikit-learn.org/stable/common_pitfalls.html#data-leaka
ge

https://scikit-learn.org/stable/common_pitfalls.html#data-leakage
https://scikit-learn.org/stable/common_pitfalls.html#data-leakage

4.4. Methodology 143

deduplication figures of our target software system dataset, Apache Tomcat 7, show-

ing a highly imbalanced class distribution.

Table 4.10: Deduplication Strategy

Method Release 1 Release2 Release3 Release4 Release5

A Include Remove Remove Remove Remove

B Include Include Remove Include Remove

C Include Remove Include Remove Remove

D NA Include Remove Remove Remove

E NA Include Include Remove NA

Table 4.11: Apache Tomcat 7 Post-Deduplication Dataset Details

Description Value /)
Number of Non-Vulnerable Methods Post-Deduplication 25,166 98.52
Number of Vulnerable Methods Post-Deduplication 378 148
Total Number of Methods Post-Deduplication 25,544

4.4.3.4 Ground Truth: Affected Methods Estimation

To measure the number of affected methods for each vulnerability fix, we assume
that each fixed method reported in the ground truth was vulnerable in its earlier
releases before the fix.

A vulnerability fix can affect multiple methods in a file and multiple files in
a software system. The value 378 in Table 4.11 represents the number of affected

methods, calculated from the 261 vulnerability fixes reported in Table 4.9.

4.4.3.5 Feature Scaling

Feature scaling is an essential preprocessing step in machine learning classification.
It ensures that all features have a uniform scale, preventing model bias towards
features with larger values.

We applied Min-Max scaling to standardise our metrics data. This technique
transforms each feature into a fixed range of [0, 1] by subtracting the minimum value

and dividing by the feature’s range, as defined by:

— X_Xmin
Xscaled T Xmax*Xmin

4.4. Methodology 144

Where X is the original value, X, is the minimum value of the feature, and
Xmax 18 the maximum value of the feature.
This normalisation ensures that all feature values contribute equally to the

learning process, improving model convergence and stability.

4.4.3.6 Software System Vulnerabilities and Data Imbalance

We addressed the class imbalance in our target software system dataset after dedu-
plication.

Typically, a software system has far fewer vulnerable artefacts than non-
vulnerable ones because the number of known vulnerabilities is usually low at any
given time. This imbalance creates a skewed class distribution when comparing
vulnerable artefacts to non-vulnerable ones [Ban et al., 2019, Shu et al., 2022, Liu
et al., 2019]. In our case, the imbalance between vulnerable and non-vulnerable
methods was extreme, as shown in Table 4.11. We addressed this imbalance before
applying machine learning classification to ensure fairness and avoid model bias.

Chawla et al. [2002] introduced SMOTE to address the class imbalance prob-
lem by oversampling the minority class. SMOTE generates synthetic minority-class
samples by interpolating between them, effectively balancing the class distribution.

We applied SMOTE to our dataset, oversampling the minority class (vulnerable
methods) to balance the class distribution before proceeding to the machine learning

classification phase.

4.4.4 Information Retrieval

Following source code token extraction and shingle generation, as described in Sub-
subsections 4.4.3.1 and 4.4.3.2, we applied information retrieval to the generated
shingles to identify the best-matching methods in the vulnerability dataset for each
method in the target software system. By ‘best-matching’, we mean shingle matches
shared between the target software system method and the SARD methods shingles.
To find these matches, we used Apache Lucene.

Apache Lucene is a Java-based open-source information retrieval library. Itis a

high-performance, full-featured text search engine that indexes and searches the en-

4.4. Methodology 145

tire text of a document. Lucene is mature, well-established, and highly scalable. It
is capable of efficiently indexing and searching hundreds of millions of documents.
It is highly configurable and extensible, supporting multiple platforms, including

Windows, Linux, and macOS.

4.4.4.1 Apache Lucene Document Index Construction

Our Lucene index comprised 20,692 documents, each representing a method in the
SARD dataset. The documents in the index were the shingles obtained from the
token representation of the methods in the SARD dataset, as shown in Table 4.9.

The index structure maps each method’s custom ID to its shingles.

4.4.42 Apache Lucene Query Construction (BooleanQuery)

Our queries comprised shingles generated from the token representations of the tar-
get software system (Tomcat) methods. Each query included the method’s shingles

separated by the ‘OR’ Boolean logical operator.

Listing 4.4: getChannelSendOptions Method

47 public int getChannelSendOptions () {
48 return channelSendOptions;
49 }
public int getChannelSendOptions () { return

— channelSendOptions ; }

Figure 4.7: Token Representation of the Method in Listing 4.4

public int getChannelSendOptions ()<+int
< getChannelSendOptions () {<rgetChannelSendOptions
— () { return<() { return channelSendOptions<) {

< return channelSendOptions ;<>{ return
< channelSendOptions ; }

Figure 4.8: Shingle Representation of the Method in Listing 4.4
For example, Listing 4.4 presents a method from our target software system.
Figure 4.7 shows the token representation of the method. Figure 4.8 presents the
shingles of the method, with a shingle size of five, and each shingle separated by

.

4.4. Methodology 146

"public int getChannelSendOptions ()" OR "int
— getChannelSendOptions () {" OR "
— getChannelSendOptions () { return" OR " () {
— return channelSendOptions" OR ") { return

<~ channelSendOptions ;"

Figure 4.9: Query String for the Method in Listing 4.4

Figure 4.9 shows the query string for the method in Listing 4.4. The ‘OR’ op-
erator in our query strings makes each shingle optional, allowing Lucene to flexibly
retrieve the best matching methods from the vulnerability dataset for any target soft-
ware system method. The more ORs that match between a target software system
method and a SARD method, the more relevant the SARD method is to the target
software system method. We used the query results to calculate the hit-dependent

metrics described in Subsection 4.3.2.

Table 4.12: Percentage of Vulnerable versus Non-Vulnerable Methods with Hits

Number of Vulnerable Methods 378
Number of Vulnerable Methods with Hits 361
% of Vulnerable Methods with Hits 95.50
Number of Non-Vulnerable Methods 25,166
Number of Non-Vulnerable Methods with Hits 15,201
% of Non-Vulnerable Methods with Hits 60.40

Table 4.12 extends Table 4.11, detailing the numbers and percentages of vul-
nerable and non-vulnerable methods with hits. The table shows that vulnerable
methods are likelier to share patterns with known vulnerable methods in the dataset

than non-vulnerable methods.

4.4.5 Machine Learning Analysis

After processing the token representations and shingles and calculating the metrics
data, we fed the data into several machine learning classification algorithms (see
Subsection 4.4.3). This part of the experiment utilised metrics derived from tokens
and shingles to classify the methods in our target software system as either vulner-

able or non-vulnerable.

4.4. Methodology 147

After classification, we evaluated the performance of each algorithm using the

ground truth data (see Subsubsections 4.4.2.2 and 4.4.3.4).

4.4.5.1 Nominated Classification Algorithms

We selected ten classifiers for our experiment based on their applicability, suitability
for our dataset, and prevalence in the literature to facilitate comparability between

studies. The classifiers include:

* AdaBoost classifier!?

* Decision Tree classifier!!

* Gaussian Naive Bayes'?

* Gradient Boosting classifier!?

« K-Nearest Neighbors classifier!#

* LightGBM classifier!”

» Linear Support Vector classifier'®
17

* Logistic Regression

¢ Random Forest classifier!$

Ohttps://scikit-learn.org/stable/modules/generated/sklearn.ense
mble.AdaBoostClassifier.html
"https://scikit-learn.org/stable/modules/generated/sklearn.tree
.DecisionTreeClassifier.html
Phttps://scikit-learn.org/stable/modules/naive_bayes.html#gauss
ian—-naive-bayes
Bhttps://scikit-learn.org/stable/modules/generated/sklearn.ense
mble.GradientBoostingClassifier.html
14https://scikit—learn.org/stable/modules/generated/sklearn.neig
hbors.KNeighborsClassifier.html
Bhttps://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.L
GBMClassifier.html
mhttps://scikit—learn.org/stable/modules/generated/sklearn.svm.
LinearSVC.html#sklearn.svm.LinearSVC
"nttps://scikit-learn.org/stable/modules/generated/sklearn.line
ar_model.LogisticRegression.html
Bnttps://scikit-learn.org/stable/modules/generated/sklearn.ense
mble.RandomForestClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/naive_bayes.html#gaussian-naive-bayes
https://scikit-learn.org/stable/modules/naive_bayes.html#gaussian-naive-bayes
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

4.4. Methodology 148

» XGBoost classifier!®

4.4.5.2 Repeated Stratified k-fold Cross-validation

The fundamental idea behind supervised learning is that a machine learning algo-
rithm ‘learns’ from data and then uses the learned model to predict unseen data.
Typically, practitioners split their data into training and test sets. The training set
trains the model in isolation from the test set, which then evaluates the model’s per-
formance. Since the model did not access the test set during training, we consider
the test set ‘unseen data.” However, this approach can lead to a model that does not
generalise well, as it is possible to overfit during training without a chance to cor-
rect it. Overfitting occurs when a model learns the training data patterns too well,

resulting in poor performance on unseen data [Yang et al., 2022].

Cross-Validation?” addresses this issue by improving generalisation, the ability
of a classifier to perform well across various inputs. In cross-validation, the data is
split into k subsets (folds), and the classifier is trained iteratively on k-7 folds, using
the remaining fold as a test set. This process repeats until each fold is used for
training and testing. For example, given a dataset with 200 observations and k set
to 10, 10-fold cross-validation splits the data into fen folds of 20 observations each.
It trains the model on 180 observations and tests it on 20, repeating this process
with different folds until all folds have been used. This yields a more reliable result
based on the average of the iterations, provided there is no data leakage between the

training and test sets.

Stratified K-fold Cross-Validation®! ensures that each fold maintains the same
class distribution between vulnerable and non-vulnerable methods, which is crucial
given our class distribution of 1.48 : 98.52 as shown in Table 4.11. Traditional k-
fold cross-validation does not account for class distributions, which could lead to

inaccurate results due to disproportionate class representation in some folds.

Yhttps://xgboost.readthedocs.io/en/stable/python/index.html

Mnttps://scikit-learn.org/stable/modules/cross_validation.html

2lhttps://scikit-learn.org/stable/modules/generated/sklearn.mode
1 selection.StratifiedKFold.html

https://xgboost.readthedocs.io/en/stable/python/index.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html

4.4. Methodology 149

Repeated Stratified k-fold Cross-Validation?? repeats the stratified k-fold cross-
validation n times. For example, with k set to 10 and n set to 3, it performs 10-fold
cross-validation three times, reporting the average performance metrics over the
repetitions. This averaged figure is more reliable than a single cross-validation or
train-test split figure.

To ensure reliable classification results, we performed repeated stratified k-fold
cross-validation with k and n both set to 10. Thus, we repeated the stratified 10-fold
cross-validation ten times for each of our ten classifiers and reported the average

performance metrics obtained.

4.4.5.3 Evaluation Metrics

Model evaluation?? is crucial in classification tasks to determine a classifier’s per-
formance and suitability for a given task. We evaluated our classifiers using ground
truth data (see Subsubsections 4.4.2.2 and 4.4.3.4) and three metrics: precision,
recall, and F1 score.

Binary classification involves two classes: positive and negative. The positive
class is usually the class of interest, which, in our case, is the vulnerable method.
The negative class is the opposite of the positive class, which, in our case, is the
non-vulnerable method. We used the following terms to describe the classification

results:
* True Positive (TP): Correctly predicts an observation as positive (e.g., identi-

fying a vulnerable method as vulnerable).

* True Negative (TN): Correctly predicts an observation as negative (e.g., iden-

tifying a non-vulnerable method as non-vulnerable).

* False Positive (FP): Incorrectly predicts an observation as positive (e.g., iden-

tifying a non-vulnerable method as vulnerable).

» False Negative (FN): Incorrectly predicts an observation as negative (e.g.,

identifying a vulnerable method as non-vulnerable).

Phttps://scikit-learn.org/stable/modules/generated/sklearn.mode
1_selection.RepeatedStratifiedKFold.html
Bpttps://scikit-learn.org/stable/modules/model_evaluation.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RepeatedStratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RepeatedStratifiedKFold.html
https://scikit-learn.org/stable/modules/model_evaluation.html

4.4. Methodology 150

Precision measures the proportion of true positives among all predicted posi-

tives:

TP

Precision = TPLFP

Recall measures the proportion of true positives among all actual positives:

_ TP
Recall = TPLEN

F1 score is the harmonic mean of precision and recall, balancing the two:

(Precision x Recall)

Flscore =2 x (Precision+ Recall)

The F1 score is particularly suitable for imbalanced datasets [Al-Azani and El-
Alfy, 2017] like ours. We chose it as the primary evaluation metric for the following

reasons:
1. Itis simple to understand and interpret.

2. It is widely used in the machine learning community, facilitating comparison

with other studies.

3. It places less emphasis on true negatives, which are less relevant in our con-
text, given that we are more interested in identifying vulnerable methods than

non-vulnerable ones.

4.4.6 Approach to Research Question 1

The experiments in this chapter addressed the first research question of this the-
sis: How well does the information retrieval-driven software vulnerability predic-
tion technique perform on a single, multi-release software system dataset for token-
based source code representations?

To address this research question, we aimed to achieve the following objec-

tives:

1. Identify the most suitable classifier for information retrieval-driven, token-

based, method-level vulnerability prediction.

4.4. Methodology 151

2. Determine the best-performing combination of token-based software metrics

for vulnerability prediction.

3. Evaluate the impact of hyperparameter tuning on the performance of the best-

performing classifier.

4.4.6.1 Objective 1

Identify the most suitable classifier for information retrieval-driven token-based
method-level vulnerability prediction.

We used precision and recall to evaluate classifier performance and the
F1 score to balance these two metrics for the first objective. As explained in Sub-
subsection 4.4.5.3, the F1 score combines precision and recall into a single value.
Thus, we used the metric as the primary evaluation criterion to determine the best

classifier for our prediction task.

4.4.6.2 Objective 2

ldentify the best-performing token-based software metrics combination for vulner-
ability prediction.

The second objective involved analysing the best-performing combination of
software metrics for vulnerability prediction from all sixteen metrics.

Building an interpretable model in machine learning requires understanding
how different features affect its performance. Therefore, feature selection is cru-
cial, as the chosen features directly impact model performance. This is a sentiment
shared by Shivaji et al. [2009] and Theisen and Williams [2020].

With sixteen software metrics to consider, we used a feature selection tech-
nique to identify the best combination for our classification models.

Before feature selection, we conducted a correlation analysis to assess the re-
lationship between the metrics and the ground truth data. This analysis helps clarify
how each metric correlates with the target variable (ground truth) or other metrics.
A high correlation with the target variable indicates essential features, while a high

inter-metric correlation might lead to redundancy.

4.4. Methodology 152

In machine learning, correlation analysis helps identify redundant features that
could negatively impact model performance. However, evaluating all possible com-
binations of the sixteen metrics is impractical due to the exponential increase in
combinations. For instance, evaluating five metrics requires checking 31 com-
binations, while sixteen require checking 65,535 combinations, making this ap-
proach time-prohibitive. Thus, the time complexity of the brute-force approach
is O(2"), where n is the number of metrics, which is exponential and, therefore,
time-prohibitive. in contrast, the Sequential Forward Selection algorithm has a time
complexity of O(n?), making it more efficient.

We employed Sequential Feature Selection®*, which selects features sequen-
tially to find the best-performing combination. We identified the best-performing
combination for every n number of metrics, where n ranges from 1 to 15, in ad-
dition to the baseline model that uses all 16 metrics. We then compared these to
identify the best-performing combination.

Sequential Feature Selection is a greedy search algorithm that aims to identify
the best-k-performing feature combination out of n features for a given machine
learning model, where k < n and k are specified a priori. It has two basic variants:
Forward Selection and Backward Selection. Forward Selection starts with an empty
set of features and adds one feature at a time until it reaches k features. Backward
Selection starts with all features and removes one feature at a time until it reaches k
features. We used Forward Selection, the default variant in the scikit-learn library.

To illustrate, suppose we have a dataset with four features (n = 4) and want
to identify the best three-feature combination using Sequential Feature Selection
(Forward Selection) to achieve the highest F1 score. The algorithm proceeds as

follows:
1. Start with an empty set of features.

2. Train a model using each feature in the dataset and evaluate the F1 score of

each model (k= 1).

Xhttps://scikit-learn.org/stable/modules/generated/sklearn. feat
ure_selection.SequentialFeatureSelector.html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html

4.4. Methodology 153

3. Identify the feature that yields the best performance.

4. Train a model using the feature identified in step 3 and each remaining feature,

then evaluate the F1 score of each model (k = 2).
5. Identify the best-performing feature duo.

6. Train a model using the feature duo identified in step 5 and each remaining

feature, then evaluate the F1 score of each model (k = 3).
7. Identify the best-performing feature trio.
8. Return the set of features identified in step 7.

In a more complex scenario, to identify the best single feature, the best-
performing feature duo, the best-performing feature trio, and the baseline perfor-
mance using all four features, we would need to run the algorithm four times. The
first three runs would have k equal to 1, 2, and 3, respectively, and the fourth would
involve training and evaluating a baseline model using all four features. Algo-
rithms 1 and 2 present the pseudocode for this more complex scenario used in our
experiment.

For simplicity, we used a small hypothetical dataset with four features in our
illustration, but the same approach applies to our sixteen-feature dataset. The al-
gorithm runs sixteen times for each k value, where k ranges from 1 to 15, plus the
baseline model training using all sixteen features.

Algorithm 1 declares the independent variables, X, on line 2, the number of
features in the dataset, n, on line 3, and the dependent variable, y, on line 4. It then
declares the cross-validation strategy, cv, on line 5. The algorithm iterates through
the number of features in the dataset, n, on line 6 and calls the run_classification
procedure on line 8. The call to the run_classification procedure includes a Boolean
flag, is_baseline, on line 7 to indicate whether the current iteration is for training
and evaluating a baseline model. is_baseline is set to true if k is equal to n, which
indicates that the current iteration is for training and evaluating a baseline model

using all features.

4.4. Methodology 154

Algorithm 1 Sequential Feature Selection and Classification (Part I of II)

1: features < features_in_dataset > List containing CSV column names.
2: X < independent_variables > CSV column data for features.
3: n < number_of_features

4: y < dependent_variable > Binary vulnerability status label: ‘0” or ‘1’
5: ¢v < cross_validation_object > Repeated Stratified K-Fold.
6: for k< I, ndo > ‘k’: number of features to select.
7: is_baseline < k=n

8: run_classification(X,y,is_baseline,k,cv)

9: end for

Algorithm 2 Sequential Feature Selection and Classification (Part II of II)

1:

2:

AN

LR

10:

12:

13:

14:
15:

procedure RUN_CLASSIFICATION(X, y,is_baseline,k,cv)
classifiers < classifier_objects_list
for classifier € classifiers do

pl < create_pipeline() > Add MinMaxScaler, SMOTE & classifier.
data_map <— empty_map

if is_baseline then > Run baseline classification.
data_map < train_and_evaluate_pipeline(pl, X, y, cv)
else > Run classification with feature selection.

scoring <— “F1 score”

best_k_features <— sequential_feature_selector(pl, k, scoring, cv)

data_map < train_and_evaluate_pipeline(pl, best_k_features, y, cv)
end if

plot_data(data_map) > Plot F1 score, Precision and Recall data.

end for
end procedure

4.4. Methodology 155

The run_classification procedure is declared in Algorithm 2. It takes the in-
dependent variables X, the dependent variable y, the Boolean flag is_baseline, the
number of features to select k, and the cross-validation strategy cv as parameters.
It iterates through all nominated classifiers on line 3 and calls the create_pipeline
procedure on line 4. The create_pipeline procedure creates a pipeline pl alongside
pipeline steps, comprising a MinMaxScaler (Feature Scaling) object, a SMOTE ob-
ject, and an estimator object, i.e, the classifier.

If the current iteration is for training and evaluating a baseline model, the
run_classification procedure calls the train_and_evaluate_pipeline procedure on
line 7, which trains and evaluates the classifier in the pipeline using all features. It
then calls the plot_data procedure on line 13 to plot the current classifier’s F1 score,
Precision, and Recall data.

Suppose the current iteration is not for training and evaluating a base-
line model. In that case, the run_classification procedure calls the sequen-
tial_feature_selector procedure on line 10, a scikit-learn implementation of the Se-
quential Feature Selection algorithm, to identify the best-performing features for
the current classifier. After that, it calls train_and_evaluate_pipeline on line 11,
which trains and evaluates the classifier in the pipeline using the best-performing
features identified by Sequential Feature Selection. Note that the best-performing
features best_k_features are passed on line 11, unlike the X variable used for the
baseline model on line 7.

Finally, the run_classification procedure calls the plot_data procedure on line
13 to plot the current classifier’s F1 score, Precision, and Recall data. The outputs
from plot_data then inform the best-performing software metrics combination for

each n number of metrics, addressing this objective.

4.4.6.3 Objective 3

Evaluate the impact of hyperparameter tuning on the performance of the best-
performing classifier.
For the third objective, we conducted hyperparameter tuning to determine its

impact on the predictive performance of the best classifier.

4.4. Methodology 156

Hyperparameter tuning is essential in machine learning as it involves selecting
the optimal hyperparameters for a model. The model does not learn directly from
hyperparameters; instead, the hyperparameters control the learning process, such as
the number of trees in a random forest classifier. Hyperparameter tuning is crucial
because it can significantly affect a model’s performance. For instance, a random
forest classifier with 100 trees might outperform one with 50 trees, but this is not
always the case. Therefore, it is often necessary to tune hyperparameters to find the
best combination for a given model.

Two popular hyperparameter tuning techniques are Grid Search and Random
Search. We used Grid Search® in our experiment. Grid Search exhaustively
searches a manually specified subset of hyperparameter values and selects the best-
performing combination. Although computationally expensive, it is straightforward
and effective.

We combined Grid Search with Repeated Stratified k-fold cross-validation
to tune the hyperparameters of our best-performing classifier using the best-
performing metrics combination. The tuning process involved only the best-
performing software metrics combination identified for the best-performing clas-
sifier in the previous objective, not all sixteen metrics.

The hyperparameter tuning process concludes our methodology for addressing
Research Question 1. The following section presents and discusses our experimen-

tal results.

Bhttps://scikit-learn.org/stable/modules/generated/sklearn.mode
1 selection.GridSearchCV.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

4.5. Results 157

4.5 Results

This section presents our experimental results, organised according to the objectives

outlined in Subsection 4.4.6.

4.5.1 Objective 1 Results

Identify the most suitable classifier for information retrieval-driven token-based

method-level vulnerability prediction.

This objective aimed to identify the best-performing machine learning binary

classifier among the nominated classifiers in terms of predictive performance.

4.5.1.1 Evaluation Metrics Trend Analysis

® AdaBoost Classifier ® LGBM Classifier
Decision Tree Classifier Linear SVC
® Gaussian Naive Bayes ® Logistic Regression
® Gradient Boosting Classifier Random Forest Classifier
® K-Neighbors Classifier ® XGB Classifier
1.0
0.9 1
0.8
® []
0.7 o--—-¢ ° o ® o y
71 ® ®
S o °
®
0.6 - s) [) ®
=
(%)
§ 0.5 A1 ® ° ® [} L4 L] L ® ° °
o
0.4 —
0.3 ° 8 o o & 8 $. L e |
o © ' s
0.2 A1 b 4]
‘ P P ® [) o []] [[®
4 ® o ®
0.1 ® [] ® Y ° PY P PS ° ° Py e
0.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Best-k-Metric Combination

Figure 4.10: Precision Trend across all Best-k-Performing Metrics Combinations

Figure 4.10 shows the precision trend across all best-k-performing metrics
combinations for each classifier, with the highest precision nearly 0.80, achieved
by the Random Forest classifier at k = 15. The lowest precision is around 0.07,

attained by the Gaussian Naive Bayes classifier at k = 16.

4.5. Results 158

The figure indicates that the Random Forest classifier achieved the highest pre-
cision and maintained the best precision trend across most best-k-performing met-
rics combinations. Additionally, the LGBM and XGB classifiers mostly showed
above-average precision trends in most best-k-performing metrics combinations,
with the Gradient Boosting classifier generally following the average precision trend
and achieving its best above-average precision at k = 16. The remaining classifiers

showed trends with below-average precision.

The Gaussian Naive Bayes, Logistic Regression, and Linear Support Vec-
tor classifiers performed the worst in terms of precision. The Gaussian Naive
Bayes consistently achieved the lowest precision across all best-k-performing met-
rics combinations. Similarly, the Linear Support Vector classifier and Logistic Re-

gression had low precision across most best-k-performing metrics combinations.

® AdaBoost Classifier ® LGBM Classifier
Decision Tree Classifier Linear SVC
® Gaussian Naive Bayes ® Logistic Regression
® Gradient Boosting Classifier Random Forest Classifier
® K-Neighbors Classifier ® XGB Classifier
1.0
0.9 A
0.8
0.7 1
[] ° ° °® ® L4)
0.6 o9 L
= o []
3 0.5 e o % o .2 P’
& ° ¢ & 3 o 8 o s 3 3 o
L4 ®
0.4 Py ® : °
s PS ° ° s S
0.3 - o g O & % 0 0 09 ¢ e e o
° e o © ¢ ¢ © o o o o ° 3
° [°
0.2 A1 ®
: ® ® ® P ° ° ® ° ® L4 ®]
0.1 A ®
0.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Best-k-Metric Combination

Figure 4.11: Recall Trend across all Best-k-Performing Metrics Combinations

Figure 4.11 shows the recall trend across all best-k-performing metrics com-

binations for each classifier, with the highest recall of approximately 0.65 achieved

4.5. Results 159

by the K-Nearest Neighbors classifier at k = 11. The lowest recall is approximately
0.09, attained by the Linear Support Vector classifier at k = 16.

The figure indicates that the K-Nearest Neighbors classifier achieved the high-
est recall and maintained the best recall trend across most best-k-performing metrics
combinations. The Random Forest, Decision Tree, and Gaussian Naive Bayes clas-
sifiers mainly showed above-average recall trends in most best-k-performing met-
rics combinations. The remaining classifiers showed below-average recall trends.

The worst-performing classifiers in terms of recall were the Linear Support
Vector classifier, Logistic Regression, and AdaBoost classifier. The Linear Support
Vector classifier consistently achieved the lowest recall across all best-k-performing
metrics combinations. Similarly, the Logistic Regression and AdaBoost classifier

had low recall across most best-k-performing metrics combinations.

® AdaBoost Classifier ® LGBM Classifier
Decision Tree Classifier Linear SVC
® Gaussian Naive Bayes ® Logistic Regression
® Gradient Boosting Classifier Random Forest Classifier
® K-Neighbors Classifier ® XGB Classifier

1.0
0.9 4
0.8
0.7 4
0.6
g ° ® ® °® ® ° d
S 054 o 8 $§ &8 & © o © o o o o
@ ° o 4
4 4 ® o o
[]
0.4- H ® ° °) °) ®) o
PS ° ° ° ° ° ° ° ° °®
° PY ® ®
J 8 () °
0.3 -
° ° ° ° ° ° °
;! °) ° ° ° °)
0.2 4
e 2 $ 8 o 8 8 8 3 e o © o o o
‘ v v 4 L
0.1' b 4 A &
0.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Best-k-Metric Combination

Figure 4.12: F1 score Trend across all Best-k-Performing Metrics Combinations

Figure 4.12 shows the F1 score trend across all best-k-performing metrics
combinations for each classifier, with the highest F1 score of approximately 0.65

achieved by the Random Forest classifier at k = 7.

4.5. Results 160

The figure indicates that the Random Forest classifier consistently achieves the
highest F1 score across all best-k-performing metrics combinations and the baseline
model.

It also shows that the XGB and LGBM classifiers achieved above-average
F1 score trends in most best-k-performing metrics combinations. The Decision
Tree classifier occasionally appeared along the average F1 score trend from k =4 to
k=S8.

The worst-performing classifiers in terms of F1 score were the Linear Sup-
port Vector classifier, Gaussian Naive Bayes, and Logistic Regression. The Linear
Support Vector classifier and Gaussian Naive Bayes showed similar F1 score trends,
while Logistic Regression performed slightly better but was still significantly below
average.

Regarding the first objective, the Random Forest classifier achieved the best
predictive performance, with the highest F1 score among all best-k-performing met-

rics combinations.

4.5.2 Objective 2 Results

Identify the best-performing token-based software metrics combination for vulner-
ability prediction.
This objective aimed to identify the best-performing combination of software

metrics for vulnerability prediction from all sixteen metrics.

4.5.2.1 Metrics Correlation Analysis

Figure 4.13 shows the correlation matrix of all metrics and the ground truth. The
figure displays the Pearson Correlation Coefficient for the ground truth in the first
row and column, with the remaining metrics in the other rows and columns. The
matrix is organised into two levels of groupings. First, the rows and columns are
grouped into ground truth, hit-independent, and hit-dependent metrics. Then, the
latter two groups are clustered according to their respective metrics. The Pearson
Correlation Coefficient measures the linear correlation between two variables, rang-

ing from ‘-1’ (strong negative correlation) to ‘1’ (strong positive correlation), with

4.5. Results

Truth

0.1 0.063 0.12 0.18 0.00047-0.017 0.03 0.1 0.1 0.1 0.12 0.092 0.091

e 0.023 -0.047 0.11 035 035 0.31 . 021 0.23

0.28

Ground

- 0.063 0.02 -0.037 0.083 0.28 028 03 018 0.19

- 0.12 b E b d (XT38 0.0098 - b 033 033 032 0.18 0.19

- 013 0.23 0.25
- 017 0.26

- 0.18

NDTT NTT NTDDT NTDT TRICC TICC

- 0.18

-0.00047 0.023

0.02 0.0098 0.034 0.021

0.07

--0.017 -0.047 -0.037 -0.057 -0.05 -0.068 -0.035 - 0.18 018 03 036 0.27 0.34

- 0.03 011 0.083 0.13 0.16 -0.047 0.0048

- 01 035 028 033 0.18

- 01 035 028 033 0.18

SMR NUSM SHVSR SHTSR TVSSR TRU

- 01 031 028 032

-0.092 0.21 018 0.18 0.23 026 0.35

0.3

034 036 0.36

0.021 0.27 -0.047

NDVT NVT NDHS NHS

-0.091 023 019 019 0.25 0.29 0.34 0.0048

' ' ' ' " ' ' i '
Ground TICC TRICC NTDT NTDDT NTT NDTT TRU TVSSR SHTSR SHVSR NUSM
Truth

Figure 4.13: Correlation Matrix of all Metrics + Ground Truth

‘0’ indicating no correlation. For interpretation, we categorise the values

correlation matrix as shown in Table 4.13.

Table 4.13: Pearson Correlation Coefficient Value Bands

Band No. Band Description

0.8-1 Very strong positive correlation
0.6 -0.8 Strong positive correlation
0.4-0.6 Moderate positive correlation
0.2-0.4 Weak positive correlation

0-0.2 Very weak positive correlation
0 No correlation
-02-0 Very weak negative correlation

-0.4 —-0.2 Weak negative correlation

-0.6 —-0.4 Moderate negative correlation
-0.8 —-0.6 Strong negative correlation

-1 --0.8 Very strong negative correlation

O 0N LN AW~

[EE e S—
—_ O

161

1.00

0.75

0.50

-0.25

-0.00

--0.25

—-0.50

-0.75

—-1.00

in the

4.5. Results 162

The figure includes a scale on the right side of the matrix, featuring a diverging
colour scheme. The red-toned area (toward the top) indicates a strong positive cor-
relation, the white area (in the middle) indicates no correlation, and the teal-toned

area (toward the bottom) indicates a strong negative correlation.

We present the main observations from the correlation matrix below. For ref-

erence, the full names of the metrics are in Table 4.1 and Table 4.4.

1. Some cells in Band No. 1 feature a value of ‘1’ and values close to ‘1°,
indicating a strong positive correlation between certain metrics. Examples
include the correlation between NUSM & SMR, as well as between several
metrics and their distinct counterparts, such as NTT & NDTT. These high
correlations align with expectations as the metrics are conceptually similar.
For instance, SMR is a relative counterpart of NUSM, & NDTT is a distinct
counterpart of NTT. Such correlations suggest possible redundancy between

metrics, which may or may not adversely affect model performance.

2. Regarding negative correlation, the highest values fall within Band No. 8.
For example, the highest observed negative correlation is between TRICC
& SHTSR, around -0.037. TRICC represents the relative code churn of a
method, while SHTSR represents the ratio of the number of hit shingles to
the total number of shingles in a method. The negative correlation indicates
that the hit shingles ratio decreases as the relative code churn of a method in-
creases. However, these negative correlations are not strong, indicating cau-

tion when interpreting these values.

3. The NTT & the NVT are conceptually similar metrics, but they cater to differ-
ent datasets in our analysis, i.e., the target software system and the vulnerabil-
ity dataset. As such, these metrics exhibit a weak positive correlation at 0.23
(Band No. 4) because each metric focuses on a different dataset. However,
this positive correlation improves to 0.48 (Band No. 3) when considering hits,

as observed between SHTSR & SHVSR.

4.5. Results 163

4. SHTSR assesses a target software system’s method, while SHVSR assesses
its matching method in the vulnerability dataset. TVSSR considers the target
software system and its matching method in the vulnerability dataset. Thus,
TVSSR shares a closer bond with SHTSR & SHVSR, resulting in higher cor-
relations of 0.71 (Band No. 2) and 0.83 (Band No. 1), respectively, compared
to the correlation between SHTSR & SHVSR at 0.48 (Band No. 3).

5. While SMR is the relative version of NUSM, their relationship is more stable
than that between TRICC & TICC. This stability is due to the fact that the
denominator used in calculating SMR, i.e., the total number of matches in the
vulnerability dataset, remains constant, whereas the denominator for TRICC,
i.e., the total number of target software system releases, changes. Conse-
quently, the correlation between NUSM & SMR is higher than that between
TRICC & TICC.

6. The ground truth does not exhibit a strong correlation with any single met-
ric, with the highest correlation of 0.18 (Band No. 5) observed between the
ground truth and NDTT & TRU. This lack of strong correlation suggests that
despite the redundancy indicated by the correlation matrix, some metrics are
crucial for classifying the ground truth effectively, as shown by the above-

average performance of at least four classifiers.

7. The low correlation values between the ground truth and any of the sixteen
metrics suggest that software vulnerability prediction is a challenging task.
Since no single metric significantly correlates with the ground truth, mean-
ingful results likely arise from a combination of metrics. The low correlation
values of the ground truth highlight one of the main challenges in software

vulnerability prediction research.

Conceptually, as explained in Subsubsection 4.4.6.2, the correlation matrix
helps identify and exclude redundant metrics to improve model performance. How-
ever, in our case, excluding seemingly redundant metrics such as SMR and the ‘dis-

tinct’ metric variants (NTDDT, NDHS, NDVT, and NDT) did not improve perfor-

4.5. Results 164

mance; in many cases, it actually worsened performance across different classifiers,
albeit marginally.

We attribute this to feature interactions, where combining features yields re-
sults that differ from the sum of the individual feature results. Although the corre-
lation matrix may flag specific metrics as redundant, these features can still interact
synergistically, aiding the successful prediction of the ground truth.

Therefore, we included all metrics in our analysis to avoid inadvertently ex-
cluding those that may be beneficial. We opted to apply feature selection, an es-
sential activity in prediction analysis, as supported by Shivaji et al. [2009]’s work.
Thus, we relied on the Sequential Feature Selection algorithm to identify the best-
performing metrics combinations. For instance, SMR, NTDDT, NDHS, NDVT,
and NDTT may seem redundant due to their conceptual similarity to other met-
rics—SMR is the relative variant of NUSM, NTDDT is the distinct variant of
NTDT, NDHS is the distinct variant of NHS, NDVT is the distinct variant of NVT,
and NDTT is the distinct variant of NTT. However, the Sequential Feature Selec-
tion algorithm identified these metrics as part of the best-performing combinations,

justifying their inclusion in our analysis.
4.5.2.2 Classifier Performance Analysis

Table 4.14: Best Performance Per Classifier (Sorted by F1 score)

Classifier Best k Precision Recall F1 score
Random Forest classifier 7 0.73635 0.58345 0.64821
XGBoost classifier 10 0.69415 0.46830 0.55622
LightGBM classifier 10 0.67129 0.44188 0.52947
Decision Tree classifier 6 0.47433 0.54988 0.50878

K-Nearest Neighbors classifier 4 0.34247 0.59923 0.43471
Gradient Boosting classifier 5 048036 0.31356 0.37731
AdaBoost classifier 3 030337 0.25707 0.27521
Gaussian Naive Bayes 2 0.11818 0.33347 0.17425
Logistic Regression 8 0.16774 0.16693 0.16634
Linear Support Vector classifier 6 0.21746 0.10846 0.14320

Table 4.14 shows the best performance per classifier, sorted by descending

F1 score, our preferred metric for identifying the best-performing classifier, as it

4.5. Results 165

balances precision and recall. The ‘Best £’ column indicates the number of features
that achieved the performance.

The table shows that the Random Forest classifier had the highest F1 score.
The XGBoost, LightGBM, and Decision Tree classifiers also performed well, with
above-average F1 scores.

Conversely, the Linear SVC, Logistic Regression, and Gaussian Naive Bayes

classifiers were among the worst performers in terms of F1 score.

4.5.2.3 Metrics Combination Analysis

Table 4.15: Best Metrics Combination Per Classifier

Metric Classifiers
AB | DT | GNB | GB | KN | LGBM | LSVC | LG | RF | XGB |

Hit-Independent
NTT v v v IV v v |V v
NDTT v v v v
TICC v
TRICC v
NTDT v
NTDDT
TRU v v
Hit-Dependent
NHS

NDHS

NVT

NDVT v
TVSSR v v
SHTSR
SHVSR
NUSM v
SMR v v

\
\
\
\

SSENENEN
\

ANENENEN

<~

SNENENENENENEN
SNENENENENENEN

SESEN

Table 4.15 displays the optimal metrics combinations for each classifier, cate-
gorised into hit-independent and hit-dependent groups.

The table offers several insights. Notably, it shows that hit-dependent metrics
are more crucial for classifiers than hit-independent metrics, as most classifiers in-
clude more hit-dependent metrics in their best-performing combinations. This is

expected since these metrics capture vulnerable code patterns in the vulnerability

4.5. Results 166

dataset. We define the best-performing classifiers as those achieving average or
above-average F1 scores, as reported in Table 4.14.

Additionally, the table highlights the importance of individual metrics. For
instance, the NTT and NDVT metrics appear eight times in the best-performing
combinations, signifying their importance. In contrast, the TICC and NTDT metrics
appear only once, indicating lesser significance.

We also note the poor performance of code churn-related metrics, TICC and
TRICC, in the analysis. This aligns with the correlation matrix findings, show-
ing weak correlations between churn metrics, ground truth, and other metrics. As
shown in Figure 4.13, the correlation values for churn metrics are primarily lo-
cated in the lighter areas, indicating weaker correlations compared to most hit-
independent metrics.

The TRICC metric appears only twice for the Linear SVC and Logistic Re-
gression classifiers, both of which are poor performers, as shown in Table 4.14.
Similarly, the TICC metric appears only once for the Linear SVC, another poor
performer.

Thus, for the second objective, the optimal software metrics combination
for vulnerability prediction includes those used by the best-performing classifier,
the Random Forest classifier. These metrics are NDVT, NHS, NTT, NUSM, NVT,
SHVSR, and SMR.

4.5.3 Objective 3 Results

Evaluate the impact of hyperparameter tuning on the performance of the best-
performing classifier.
This objective aimed to evaluate the impact of hyperparameter tuning on the

performance of the best-performing classifier identified in the first objective.

4.5.3.1 Parameter Grid and Best Hyperparameter Values

Table 4.16 presents the parameter grid details and the best hyperparameter values for
the Random Forest classifier, which was identified as the best-performing classifier

in the first objective. The first two columns show the hyperparameters and values

4.5. Results 167

Table 4.16: Parameter Grid and Best Hyperparameter Values

Parameter Grid \

Hyperparameter Values ‘ Best Value
bootstrap True*, False False
max_depth None*, 10, 20 | None
max_features ‘auto’, ‘sqrt’* | auto
min_samples_leaf 1%,2,4 1
min_samples_split 2%, 5, 10 2
n_estimators 100*, 200, 300 | 100

we used to tune the Random Forest classifier. The asterisk (*) denotes the default
value in the scikit-learn implementation. We focused on six hyperparameters due to
time and computational resource constraints.

The last column shows the best-performing hyperparameter values determined
by our Grid Search technique (see Subsubsection 4.4.6.3). We tuned the hyper-
parameters using the best-performing metrics combination identified in the second

objective: NDVT, NHS, NTT, NUSM, NVT, SHVSR, and SMR.

4.5.3.2 Hyperparameter Tuning Results

Table 4.17: Pre-and-Post-Hyperparameter Tuning Results for Random Forest Classifier

Metric Before After A%

Precision 0.73635 0.73472 -0.22
Recall 0.58345 0.59667 2.23
F1 score 0.64821 0.65741 1.42

Table 4.17 presents the pre- and post-hyperparameter tuning results for the
Random Forest classifier. Tuning the hyperparameters resulted in changes to the
classifier’s performance metrics. Precision decreased by 0.22%, recall increased by
2.23%, and the F1 score increased by 1.42%.

To address the third objective, hyperparameter tuning had a mixed impact
on the performance of the best-performing classifier, the Random Forest classi-
fier. However, the overall impact was positive, as indicated by the increase in the

F1 score metric, our preferred measure for evaluating classifier performance.

4.6. Discussion 168
4.6 Discussion

This chapter investigated a novel approach to vulnerability prediction using token-
based representations and information retrieval techniques. We conducted an empir-
ical analysis using the Apache Tomcat 7 software system, encompassing 76 releases
and over 20,000 vulnerable code samples from the NIST Software Assurance Ref-
erence Dataset. The objective was to assess the effectiveness of this method for
predicting method-level vulnerabilities. The Random Forest classifier emerged as
the top-performing model, achieving a precision of 0.73, a recall of 0.60, and an
F1 score of 0.66 after hyperparameter tuning. These results demonstrate the promise
of information retrieval-driven techniques for practical vulnerability prediction.
The following subsections discuss the study’s findings, key observations, and

implications and offer recommendations for practitioners and researchers.

4.6.1 The Importance of Interpretability in Prediction Models

An interpretable prediction model is crucial for understanding the relationship be-
tween predictors (independent variables) and the target variable (dependent vari-
able). Figure 4.12 illustrates a vital insight: the inclusion of more predictors does
not necessarily lead to more accurate predictions, a finding implied by Shivaji et al.
[2009]’s study. The figure shows that the F1 score trend improves with most classi-
fiers from k = 2 and peaks (and often plateaus) at any value before or after k = 8. It
then gradually declines as k approaches 16. This trend indicates that while adding
more predictors can enhance prediction performance, there is a point of diminish-
ing returns. Beyond this point, additional predictors may not significantly improve
performance and may even degrade it. Therefore, aiming for interpretability in pre-
diction models is vital. This approach can help identify the optimal balance between

the number of predictors and prediction performance.

4.6.2 The Significance of Vulnerable Code Patterns

The best-performing metrics combination—NDVT, NHS, NTT, NUSM, NVT,
SHVSR, and SMR—primarily includes hit-dependent metrics. The only hit-

independent metric in the combination is NTT. Since hit-dependent metrics fun-

4.6. Discussion 169

damentally measure code element similarity to vulnerable code patterns, we deduce
that code patterns, especially those consistent with vulnerable code, are crucial for
predicting vulnerabilities. Thus, the similarity measure is the most significant pre-

dictor of vulnerabilities.

Another perspective that showcases the validity of the significance of vulner-
able code pattern deduction is in the context of vulnerability types. A few related
works in the literature focused on specific vulnerability types, such as the improper
use of programming language features, API misuse, SQL injection, cross-site script-
ing, operating system command injection, and buffer overflow. These vulnerability
types are characterised by specific code patterns that, although they may vary in
complexity, are fundamentally similar across instances of the same vulnerability
type and thus finite. This similarity in code patterns across instances of the same
vulnerability type is a key factor in the success of vulnerability prediction mod-
els, as we will highlight by synthesising the findings from the works of Guo et al.
[2023], Rabheru et al. [2022], and Wu et al. [2023].

Guo et al. [2023] developed VulExplore, a novel vulnerability detection model
that combines code metrics (CMs) with a composite neural network comprising a
Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM).
The authors constructed a CM dataset from a publicly available code slice dataset
containing four types of vulnerabilities in C/C++. They also introduced two addi-
tional software engineering-related CMs: maintainability index and average number
of vulnerabilities per line. They designed a CNN-LSTM network to extract features
from these CMs and learn deep representations of the code slices. The model was
evaluated using k-fold cross-validation and compared with other tools and meth-
ods. The results demonstrated that VulExplore achieved high precision, recall, and
F1 scores (over 80%) while reducing both false negative and false positive rates
(under 20%). The authors claimed that their model outperformed existing tools and
methods in terms of accuracy and coverage. They concluded that VulExplore is
an effective and superior approach for vulnerability detection based on CMs. The

critical similarity between their work and ours lies in their use of the SARD dataset

4.6. Discussion 170

and similar metrics concerned with code intricacy and size. However, the primary
difference is that they employed deep learning techniques, while we used machine
learning approaches. Additionally, our study addressed a broader range of vulner-
ability types, covering a wide range across our within- and mixed-project datasets,

whereas their study focused on only four types.

Rabheru et al. [2022] developed a deep learning approach that combines Gated
Recurrent Units (GRU) and Graph Convolutional Networks (GCN) for detecting
PHP vulnerabilities. Their study aimed to develop a hybrid technique capable of
capturing both syntactic and semantic information from PHP source code, enabling
the accurate detection of SQLi, XSS, and OSCI vulnerabilities with strong gener-
alisability. The authors introduced DeepTective, a deep learning model comprising
two components: a GRU that processes token sequences and a GCN that operates
on the source code’s control flow graph. The model was evaluated against other
tools using a synthetic dataset (SARD) and a realistic dataset (GIT) from GitHub.
The results showed that DeepTective outperformed other tools on both datasets,
achieving F1 scores of 99.92% on SARD and 88.12% on GIT. Additionally, Deep-
Tective identified four novel vulnerabilities in deployed WordPress plugins. The
study concluded that DeepTective is an effective and efficient vulnerability detec-
tion method that leverages the strengths of both GRU and GCN. Like our study,
the study utilised the SARD dataset. However, they focused on PHP while we
worked with Java. Additionally, they employed deep learning techniques, whereas
we used machine learning approaches. Finally, similar to Guo et al. [2023], their
study focused on four types of vulnerabilities, while we considered a broader range

of vulnerabilities.

Wu et al. [2023] proposed a novel fine-grained code vulnerability detection
model called SlicedLocator, which can predict vulnerabilities at both the program
and statement levels. The study introduced a new code representation method,
the Sliced Dependence Graph (SDG), which preserves rich interprocedural rela-
tionships while eliminating irrelevant statements. Additionally, the authors de-

signed attention-based code embedding networks and a fusion model that combines

4.6. Discussion 171

LSTM and GNN to capture the semantic and structural features of SDGs. Sliced-
Locator was evaluated using a large-scale C/C++ vulnerability dataset collected
from CVE-fixes and SARD, covering 25 common vulnerabilities and 15 real-world
software projects. The model was compared with other methods, including fine-
grained approaches such as IVDETECT and LineVD, and coarse-grained meth-
ods like VulDeePecker, SySeVR, and Devign, using metrics such as Mean Average
Precision (MAP), Recall, Normalized Discounted Cumulative Gain (nDCG), First
Ranking (FR), and Average Ranking (AR). The results showed that SlicedLocator
outperformed state-of-the-art vulnerability detection and localisation methods, par-
ticularly in localisation metrics, achieving a Macro F1 score of 0.6879. The study
demonstrated that the SDG, code embedding networks, and LSTM-GNN could sig-
nificantly enhance vulnerability localisation. It also revealed that the dual-grained
training approach, which predicts vulnerabilities at both program and statement lev-
els, improves detection performance. The study concluded that SlicedLocator is an
effective fine-grained code vulnerability detection model that can assist security en-
gineers in efficiently analysing and fixing vulnerabilities. The authors suggested
future improvements, such as incorporating more types of code that can cause vul-
nerabilities, using advanced language models, and applying the model to other pro-
gramming languages. This study is comparable to ours in terms of the F score and
the use of the SARD dataset. However, they focused on C/C++, while we focused
on Java. Additionally, they employed deep learning techniques, whereas we used
machine learning approaches. Finally, they addressed 25 types of vulnerabilities,

while we considered a broader range of vulnerabilities.

A critical observation from the three studies discussed above, which all em-
ployed the SARD vulnerability dataset, is that the first two studies, which limited
their focus to a very few vulnerability types, reported higher performance. This
suggests that the number of vulnerability types considered is inversely proportional
to predictive performance. For example, Guo et al. [2023] and Rabheru et al. [2022]
only considered four vulnerabilities and reported F1 scores exceeding 80% and

99.92%, respectively. Conversely, Wu et al. [2023]’s work, which addressed 25

4.6. Discussion 172

vulnerability types, reported a lower F1 score of 0.6879. This trend suggests that
a broader range of vulnerabilities correlates with the requirement for prediction
models to recognise a more diverse set of vulnerable code patterns, which may be
more challenging. On the other hand, a narrower focus on fewer vulnerability types
may enable models to learn more specific and consistent code patterns, resulting
in higher performance. This observation highlights the significance of identifying
vulnerable code patterns in predicting vulnerabilities, as we have highlighted in our
study.

Additionally, code patterns have a significant impact on the performance of
prediction models on a broader scale in a dataset generalisability context. We will

discuss this phenomenon extensively in Chapter 6.

4.6.3 The Token-Based Relative Instantaneous Code Churn

Metric Design

The design of the TRICC metric could pose a threat to internal validity, depending
on the analysis. In Subsubsection 4.3.1.4, we defined a method’s TRICC as the ratio
of its token representation change count to the total number of releases in which it
appeared. Mathematically, we express it as the ratio of the TICC to N, where N is
the total number of releases in which the method exists within the target software
system.

This design approach encodes the ‘future knowledge’ of a method’s evolution
into the metric through N, allowing a machine learning classifier to learn from a
method’s history. This could be problematic in scenarios where future knowledge
of the evolution of a software system’s artefact leads to data leakage during machine
learning analysis, a point also highlighted in Subsection 3.3.2 by Chowdhury et al.
[2024]’s work.

We designed the TRICC metric to capture the entire evolution of a method over
time through N at any point in its history rather than an instance of its evolution at
a specific time. Our approach was based on the fact that we were more interested in
quantifying each method’s relative evolution history, as this is a more interpretable

measure of a method’s evolution.

4.6. Discussion 173

Regardless, we point out that depending on the nature and objectives of the
machine learning analysis, it may be necessary to make N instantaneous, where N
represents the number of releases in which the method exists at a given point in time
in the method’s evolution history, rather than the total number of releases in which
the method exists.

Nonetheless, our TRICC metric design choice does not affect the validity of
our findings. As shown in Table 4.15, the TRICC metric is not part of the best-
performing metrics combination for any of our best-performing classifiers with
above-average F1 scores. It only appears in the best-performing metrics combi-
nation for the Linear SVC and Logistic Regression, which have some of the lowest

F1 scores among the classifiers.

4.6.4 Feature Interactions: Synergism and Antagonism

Metrics can have synergistic or antagonistic effects when combined, as evidenced
by the trends in Figures 4.10, 4.11, and 4.12.

For instance, Figure 4.10 shows that the precision trend for the XGB classifier
dips after k = 6 before rising past its previous level at k = 11. This dip at k = 6 is due
to adding a seventh metric to an already effective six-metric combination, causing
an antagonistic effect. Continuous metric additions maintained this antagonistic
effect until the eleventh metric reversed it. Similarly, in Figure 4.11, the recall
trend for the Random Forest classifier dips after k = 3. It rises again after k =
5, indicating that the fourth metric had an antagonistic effect on recall, which the
fifth metric reversed, creating a synergistic effect. Figure 4.12 also shows a dip
between k = 8 and k = 10 for the LGBM classifier, suggesting an antagonistic effect
of the ninth metric on the F1 score. These examples demonstrate that interactions
between metrics can result in synergism or antagonism. Even though a metric may
have a positive or negative impact on its own, its inclusion with others can result in
different outcomes, which can be positive (synergistic) or adverse (antagonistic).

Sequential Feature Selection is designed to identify the best-performing k met-
rics combination at any point, selecting the top-performing metrics at each iteration.

Ideally, this would result in a steady increase in performance as k increases until it

4.6. Discussion 174

reaches a peak, after which the trend would decline as k increases further. How-
ever, Figures 4.10, 4.11, and 4.12 show that while the trends generally have upward
or downward trajectories, they are not always monotonically increasing or decreas-
ing. This variation is a consequence of the synergistic or antagonistic interactions
between metrics.

This complex interplay between metrics underscores the importance of con-
sidering feature interactions in prediction analysis and the need to employ feature

selection techniques that can identify the best-performing metrics combinations.

4.6.5 Implications

The implications of this chapter are multifaceted. Our findings offer a pathway for
software security practitioners to integrate advanced machine learning techniques
into vulnerability prediction workflows. The Random Forest classifier has demon-
strated effectiveness, an attribute it most likely possesses due to its ability to handle
high-dimensional data and non-linear relationships. Also, the identified vital met-
rics provide a practical blueprint for developing information retrieval-driven predic-
tive models.

For researchers, the study opens avenues for further exploration into the syn-
ergy between information retrieval and machine learning. Insights into feature inter-
actions and the importance of comprehensive metric inclusion highlight areas that
warrant further investigation. Additionally, the approach can be extended to other
programming languages and software systems, potentially broadening its applica-

bility.

4.6.6 Recommendations

Based on the findings and insights presented in this chapter, we offer several rec-
ommendations. Firstly, practitioners should incorporate token-based information
retrieval techniques in their vulnerability prediction efforts. Model development
should prioritise the identified key metrics (NDVT, NHS, NTT, NUSM, NVT,
SHVSR, and SMR). Secondly, hyperparameter tuning should be an integral part

of the model training process. Employing techniques such as grid search, combined

4.6. Discussion 175

with cross-validation, can significantly enhance model performance. Thirdly, data-
related challenges in vulnerability prediction deserve more attention. Techniques
such as transfer learning, which leverages knowledge from one dataset to another,
could mitigate this challenge and improve model generalisation. Lastly, we rec-
ommend localising the vulnerability dataset to specific vulnerable code segments
rather than entire methods. This granularity can provide classifiers with more pre-

cise information, potentially enhancing predictive performance.

4.7. Threats to Validity 176

4.7 Threats to Validity

In this section, we discuss the threats to the validity of our study. We categorise the

threats into internal and external validity.

4.7.1 Internal Validity

Internal validity refers to the extent to which a study’s design, execution, and anal-

ysis support the conclusions drawn from it.

4.7.1.1 Oversampling and Undersampling Techniques

We used SMOTE to oversample the minority (‘vulnerable’) class. However, various
other techniques exist. For instance, some oversampling techniques include random
oversampling [Mohammed et al., 2020], Adaptive Synthetic Sampling (AdaSyn)
[He et al., 2008], and augmentation [Shorten and Khoshgoftaar, 2019]. Undersam-
pling techniques include cluster-based undersampling [Zhang et al., 2010], Tomek
Links [Tomek, 1976, Devi et al., 2017], and ensemble learning-based undersam-
pling [Sarkar et al., 2020]. Changing the parameters or substituting SMOTE with
these techniques may result in slightly different analysis outcomes, which can affect

internal validity.

4.7.1.2 Ground Truth Estimation: Number of Affected Methods

We estimated the number of methods affected by the 261 fixed vulnerabilities in the
ground truth data by assuming that a vulnerability has existed in a component since
the component’s implementation or the last unsuccessful attempt to fix it. While
logical and widely used, it is imperfect, as some vulnerabilities may have existed
for varying lengths of time. Different estimation approaches may yield different

results, thus threatening internal validity.

4.7.1.3 Inclusion of ‘Candidate’ Code Samples in Training Data

We included ‘candidate’ code samples in the training data because of data-related
challenges, as explained in Subsubsection 4.4.2.3. SARD had not yet confirmed
these samples as vulnerable at the time of our analysis. Although this increases the
number of vulnerable samples, it poses a risk to internal validity, as some ‘candi-

date’ samples may not be genuinely vulnerable. However, SARD does not explicitly

4.7. Threats to Validity 177

discourage the use of ‘candidate’ samples, and we consider the risk posed by false

positives to be minimal.

4.7.1.4 Code Churn and Method Signatures

Our code churn detection approach uses method signatures to identify counterparts
across releases. Any refactoring that changes a method’s signature in a given release
will mean our approach no longer considers the refactored method as a counterpart,

treating it as a different method and assessing it accordingly.

4.7.1.5 Shingle Size

We extracted token representations using a shingle size of ‘5°, as preliminary ex-
periments indicated that this size yielded the best results in terms of balancing per-
formance and computational efficiency. Shingle size, a hyperparameter, determines
the number of tokens in a shingle. Changing the shingle size will result in different

token representations, which may lead to varying analysis outcomes.

4.7.2 External Validity

External validity concerns the generalisability of the study’s findings to other con-

texts.

4.7.2.1 Generalisation to other Programming Languages

We experimented with a Java-based dataset, using JavaParser to extract token repre-
sentations. While Java is a popular programming language and JavaParser a widely
used tool, generalising our approach to other programming languages may yield

different results due to syntactical and semantic differences.

4.7.2.2 Generalisability to Other Software Systems

We focused on the Apache Tomcat 7 software system, a widely used web server.
Generalising our approach to other software systems may yield different results due
to differences in software size, complexity, and data heterogeneity across systems.
Additionally, our vulnerability dataset may not accurately represent all software

systems, which could affect its generalisability.

4.7. Threats to Validity 178

4.7.2.3 Generalisability to Other Vulnerability Datasets
We used the NIST Software Assurance Reference Dataset for our analysis. While
SARD is widely recognised, applying our approach to other vulnerability datasets

might produce different results.

4.7.2.4 Generalisability to Other Machine Learning Classifiers
We experimented with ten machine learning classifiers, identifying the Random
Forest classifier as the best performer. Applying our approach to other classifiers

might yield different results, as each classifier has distinct strengths and weaknesses.

4.8. Answer to Research Question 1 179

4.8 Answer to Research Question 1

Research Question 1: How well does the information retrieval-driven software vul-
nerability prediction technique perform on a single, multi-release software system

dataset for token-based source code representations?

Software industry professionals are well aware of the risks posed by soft-
ware vulnerabilities and the importance of effective mitigation strategies. Lever-
aging machine learning to predict vulnerability locations within software presents
a cutting-edge solution. This approach enhances security testing efficiency by en-
abling testers to focus on the most vulnerable components. Despite its promise,
Al-driven vulnerability prediction remains limited outside research due to techni-
cal constraints and data-related challenges. Nevertheless, concerted efforts from
software professionals interested in vulnerability prediction research could revolu-

tionise software security and safeguard our digital environment.

To contribute to advancing Al-driven vulnerability prediction, this chapter pro-
poses an information retrieval technique that leverages token-based software met-
rics to predict method-level vulnerabilities in software systems. We conducted an
empirical study on the Apache Tomcat 7 software system, comprising 76 releases
and over 20,000 vulnerable code samples from the NIST Software Assurance Ref-
erence Dataset. We extracted token representations and shingles of the methods in
the software system and the vulnerable code samples. We then calculated custom
software metrics and used them to train and evaluate ten machine learning classi-

fiers.

The results showed that the Random Forest classifier achieved the best predic-
tive performance, with a precision of 0.73, a recall of 0.60, and an F1 score of 0.66

after tuning its hyperparameters.

These findings indicate that the Random Forest classifier is an effective tool for
vulnerability prediction, which is in agreement with several other studies [Walden
et al., 2014, Scandariato et al., 2014, Kalouptsoglou et al., 2022, Amasaki et al.,
2023, Al Debeyan et al., 2022].

4.8. Answer to Research Question 1 180

Additionally, most metrics in our identified best metrics combination, NDVT,
NHS, NTT, NUSM, NVT, SHVSR, and SMR in Tables 4.1 and 4.4, encode vulner-
able code patterns, facilitated by our information retrieval-driven technique. This
suggests that creating a solution that encodes vulnerable code patterns is crucial
to effective vulnerability prediction. This observation explains why supervised ma-
chine learning techniques, which utilise knowledge of vulnerable code patterns from
training data, remain predominant in vulnerability prediction research, in contrast to
unsupervised machine learning techniques, which do not leverage such knowledge.

This study highlights the feasibility of repurposing information retrieval-based
techniques for practical vulnerability prediction analysis. These techniques con-
tribute to the development of security-specific metrics and offer insights into alter-
native metrics that capture various aspects of software quality, including code size
and complexity. We anticipate that more vulnerability researchers will adopt these
information retrieval-based techniques to enhance actionable vulnerability predic-
tion performance.

Future directions include augmenting training data with a larger vulnerabil-
ity dataset to allow classifiers to learn a broader range of vulnerable code patterns.
However, data quality and quantity-related challenges in software vulnerability re-
search remain significant obstacles, making this strategy challenging. An exten-
sion of the work in this chapter will focus on localising the vulnerability dataset
to the specific locations of the vulnerability in each method rather than the entire
method. The goal is to enhance the performance of the information retrieval-driven
vulnerability prediction technique by providing the classifiers with more granular
and targeted information about the vulnerable code patterns they need to learn.

We conclude the chapter by explicitly answering the first research question of
this thesis, stating that the information retrieval-driven software vulnerability pre-
diction technique performs well on a single, multi-release software system dataset
for source code token representation, with the Random Forest classifier achieving

the best predictive performance.

Chapter 5

Abstract Syntax Tree (AST)-Based

Vulnerability Prediction

This chapter introduces our novel AST-based metrics, specifically Code2Vec-based
metrics, for information retrieval-driven vulnerability prediction and assesses their
effectiveness. It replicates the vulnerability prediction experiment from Chapter 4
using the Code2Vec technique, comparing its effectiveness with that of the token-

based approach. This chapter addresses the second research question of the thesis.

5.1. Introduction 182

5.1 Introduction

In the Background chapter, we introduced source code representations, discussing
their various software engineering applications in areas such as source code clas-
sification, code clone detection, bug prediction, and code summarisation. We dis-
cussed the source code representation approaches used in our research, including

token-based and AST-based representations.

Token-based representations involve tokenising the source code into a se-
quence of tokens, each representing a specific syntactic element, such as keywords,
identifiers, literals, and operators. We explained that due to their simplicity and ease
of generation, these representations are widely used in tasks such as code clone de-
tection [Li et al., 2017], bug prediction [Choudhary and Singh, 2017], and code
summarisation [Fowkes et al., 2017]. We introduced N-grams as a token-based
representation technique involving sequences of N tokens from the source code.
We added that character-based N-grams capture morphological information, while
word-based N-grams capture semantic information. We also discussed shingling,
which involves sequences of N tokens to capture the local context of tokens in the

source code.

Following token-based representations, we introduced AST-based represen-
tations and explained that they are tree-like structures that represent a program’s
structure. They represent code elements, such as statements, expressions, and dec-
larations, as nodes, with their relationships represented as edges. ASTs are utilised
in program analysis tasks, such as type checking, code generation, and refactoring,
as well as in machine learning-based tasks, including code completion and rec-
ommendation [Miller, 1995, Jiang et al., 2021, Sommerlad et al., 2008, Liu et al.,
2022a].

We also briefly mentioned other source code representation approaches, such
as Control Flow Graphs (CFGs) [Zhao et al., 2022, Anju et al., 2010] and Program
Dependence Graphs (PDGs) [Czech et al., 2017, Horwitz and Reps, 1992], noting

that each approach has its strengths and limitations.

5.1. Introduction 183

Finally, we explained that machine learning and deep learning tasks benefit
significantly from these representations, as algorithms typically require numerical
inputs. Therefore, representing source code effectively for feature engineering is
crucial for converting textual source code into a format suitable for these algorithms
[Hancock and Khoshgoftaar, 2020]. Moreover, the choice of representation de-
pends on the specific software engineering task and the desired level of abstraction
because, as pointed out earlier, different representations capture various aspects of

the source code, each with its advantages and disadvantages [Samoaa et al., 2022].

In this chapter, we will explore AST representations, a technique renowned for
effectively capturing the syntax and semantics of source code. Our goal with this
technique is to leverage the advantages of AST-based representations to achieve

more accurate vulnerability prediction results.

5.1.1 Chapter Motivation

In the previous chapter, we used token-based representations for our vulnerability
prediction task. While our results were promising, with a hyperparameter-tuned
precision of 0.73, recall of 0.60, and F1 score of 0.66, we identified limitations in
the token-based approach, particularly in capturing the semantic information in the
source code. We also noted its limited ability to capture the hierarchical structure

and relationships within the code [Panichella et al., 2013, Liu et al., 2022a].

Liu et al. [2022a] emphasised that token-based representations fall short in
capturing the syntax and structure of code effectively, unlike AST-based repre-
sentations, which can capture the hierarchical structure and relationships within
the source code. Token-based representations, though more straightforward and
language-agnostic, may lack the structural and contextual richness needed for com-
plex analysis. On the other hand, AST-based representations provide a more de-
tailed and context-aware view of source code, enabling complex operations and
deeper analysis, albeit with increased complexity and resource requirements. These
advantages contribute to the popularity of AST-based representations in software

engineering research, as highlighted by Samoaa et al. [2022].

5.1. Introduction 184

The choice between token-based and AST-based representations is crucial, as it
significantly impacts the performance of software engineering tasks. To mitigate the
limitations of token-based representations, we suggested augmenting tokenisation
with techniques like shingling. However, this augmentation may not fully capture
the semantic information in the source code. Besides, determining the optimal shin-
gle size can be challenging and may vary depending on the software system. Even
more, computational and storage costs must be considered when generating and
storing shingles of varying sizes. Given these limitations, this chapter explores the
Code2Vec representation technique, an AST-based approach introduced by Alon
et al. [2019].

5.1.2 Research Question

In this chapter, we will reproduce the vulnerability prediction experiment from
Chapter 4 using the Code2Vec representation technique. Instead of the token-based
approach, we will use Code2Vec to represent the source code of the target software
system and the vulnerability dataset. While the overall methodology remains the
same, this change in representation necessitates adjustments in tools, data prepro-
cessing, feature engineering, and information retrieval setup. These adjustments
will be highlighted as we proceed. The goal remains to predict software vulnera-
bilities using machine learning algorithms. To this end, we will address the second

research question of this thesis:

How well does the information retrieval-driven software vulnerability
prediction technique perform on a single, multi-release software system

dataset for Abstract Syntax Tree-based source code representations?

This research question is similar to the first one, which focuses on token-based
representation. The difference lies in the representation technique used. The results
will provide a comparative analysis of the effectiveness of Code2Vec representa-
tions in predicting software vulnerabilities compared to the token-based approach
and offer insights into the adaptability of our information retrieval-driven vulnera-

bility prediction technique to different source code representations.

5.1. Introduction 185

5.1.3 Research Scope

This chapter covers the following scope:
* Programming Language: The datasets used are exclusively written in Java.

* Method-Level Vulnerability Prediction: This study focuses on predicting
method-level vulnerabilities within Java methods. Vulnerabilities from other
sources, such as web services, annotations, and configuration files, are not

taken into consideration.

* Within-Project Vulnerability Prediction: The aim is to predict vulnerabili-

ties within a single software system across multiple releases.

* Binary Classification: The study uses binary classification with machine
learning techniques to predict whether a method is vulnerable; multi-class

classification for specific vulnerability types is not considered.

5.1.4 Significance and Contributions

This chapter advances secure software engineering methodologies by evaluating
the effectiveness of the Code2Vec representation technique in predicting software

vulnerabilities.

5.1.4.1 Significance of the Study

This study compares the Code2Vec representation technique with the token-based
approach for vulnerability prediction, using identical parameters and setup, to pro-
vide valuable insights into the effectiveness of Code2Vec and the adaptability of our

technique to different source code representations.

5.1.4.2 Contributions

This study introduces the AST-based version of the novel security-relevant vul-
nerability prediction metrics discussed in Section 4.3. It utilises these metrics in
conjunction with an alternative representation technique and evaluates their effec-
tiveness in predicting software vulnerabilities using our information retrieval-driven

approach.

5.1. Introduction 186

5.1.5 Structure of the Chapter

The rest of this chapter is structured as follows: Section 5.2 provides background
information on the Code2Vec representation technique. Section 5.3 presents the
novel Code2Vec-based information retrieval-driven software metrics, comparing
them with token-based metrics where necessary. Section 5.4 details the experiment
methodology. Section 5.5 presents the experiment results. Section 5.6 presents
the discussion of the results. Section 5.7 outlines the threats to validity. Finally,

Section 5.8 answers the second research question of this thesis.

5.2. Background 187

5.2 Background

In Subsections 2.2.2 and 4.3.2, we discussed that many vulnerability prediction
studies have used traditional software product metrics as features in Al-driven vul-
nerability prediction. These metrics, derived from the source code, quantify the
software product’s characteristics and are believed to capture syntactic traits of
code, which can help predict bugs and vulnerabilities. However, the results from
these techniques are often underwhelming and not actionable [Shin and Williams,
2008b,a, Morrison et al., 2015, Munaiah et al., 2017, Sultana and Chong, 2019,
Al Debeyan et al., 2022, Zimmermann et al., 2010, Shin et al., 2010, Doyle and
Walden, 2011, Shin and Williams, 2013, Moshtari et al., 2013, Meneely et al.,
2013, Walden et al., 2014, Perl et al., 2015, Younis et al., 2016, Sultana, 2017b,
Sultana et al., 2018b, Chong et al., 2019b, Kalouptsoglou et al., 2020]. We noted
that the main criticism is that these metrics are designed to quantify the syntactic
characteristics of software products rather than specifically for vulnerability predic-
tion. Thus, they fail to capture code semantics, which are crucial for predicting
vulnerabilities. As a result, many researchers have emphasised the importance of
using code representation techniques that capture both syntax and semantics for
more actionable results [Lin et al., 2020a, Zhang et al., 2020]. This has led to a
shift from traditional software metrics to alternative methods of source code repre-
sentation that better capture code semantics for vulnerability prediction. For these
reasons and the comparative purposes stated in Chapter Motivation, we explore the

Code2Vec representation technique in this chapter.

5.2.1 Code2Vec Representation: A Revisit

In the Background chapter, we introduced the Code2Vec representation technique,
which was developed by Alon et al. [2019]. Code2Vec utilises the structured nature
of source code, precisely the finite set of node types and tokens, to represent code as
paths within abstract syntax trees. Since its introduction, Code2Vec has gained sig-
nificant traction in software engineering research, particularly for predicting method

names based on the method’s body.

5.2. Background 188

The key idea behind Code2Vec is to encode a code snippet into a fixed-length
vector that captures its semantic properties. This is achieved by decomposing the
code into a set of paths within its AST. Code2Vec introduces ‘path contexts,” and in
this chapter, we employed astminer to extract path contexts from the source code of

our datasets.

5.2.2 astminer

l'is an open-source toolkit from JetBrains Research? for mining ASTs and

astminer
analysing software. It provides APIs for extracting, querying, and manipulating
ASTs and supports various programming languages, including Java, Kotlin, C/C++,
Python, JavaScript, and PHP. We used astminer to extract code representation data
for our analysis.

ASTs are tree-like data structures that represent the source code structure and
syntax of programming languages. The astminer toolkit parses source code into
ASTs and extracts features such as method and variable names, type information,
and control flow structures. Researchers can use these features for code compre-
hension, bug detection, and software refactoring.

astminer implements a Code2Vec output format designed to present extracted
data numerically as path contexts. This format uses an ID system to store data
efficiently by reusing IDs for different code components. It leverages the structured
nature of source code and the finite number of unique node types and tokens in ASTs
to represent code snippets as paths. This approach reduces the memory footprint and
avoids data duplication in significant mining tasks [Kovalenko et al., 2019].

The ability to manipulate path context data using information retrieval tech-
niques is crucial for implementing our information retrieval-driven vulnerability
prediction technique, as it facilitates the extraction of relevant information to pre-
dict vulnerabilities.

In this experiment, we utilise information retrieval techniques to extract rele-

vant information from the path context data generated by astminer, thereby devel-

"https://github.com/JetBrains—Research/astminer
https://www. jetbrains.com/research/

https://github.com/JetBrains-Research/astminer
https://www.jetbrains.com/research/

5.2. Background 189

oping metrics (features) for vulnerability prediction. The following section presents

the novel Code2Vec-based software metrics for vulnerability prediction.

5.3. Code2Vec-Based Metrics 190

5.3 Code2Vec-Based Metrics

As discussed in Chapter 4, our information retrieval-driven software metrics are a
significant contribution. We have developed sixteen custom software metrics driven
by information retrieval. These metrics serve as features in machine learning mod-
els to predict the vulnerability of software components. The primary difference be-
tween this chapter and the previous one is that it utilises Code2Vec representations
instead of the token-based representations used previously. The datasets remain

consistent, consisting of a target software system and a vulnerability dataset.

The target software system is the system in which we aim to predict vulnera-
bilities. Our vulnerability dataset comprises thousands of known software vulnera-

bilities, which we utilise for their patterns of vulnerable source code.

Like in the previous chapter, we categorise the metrics introduced in this chap-
ter into hit-independent and hit-dependent metrics. A ‘hit’ denotes fragments of
code in a target software system method that match code fragments in vulnerabil-
ity dataset methods. Specifically, these hits comprise path contexts in this chapter,
unlike the hits from the previous chapter, which comprised shingles generated from

tokenised source code.

Thus, within this Code2Vec-focused chapter, a hit refers to the intersection of
the path contexts of an arbitrary method in the target software system and the path
contexts of a vulnerable method in the vulnerability dataset. For instance, if the path
contexts of the method depicted in Figure 2.4 intersect with those of a vulnerable

method in the vulnerability dataset, it is considered a hit.

As in the previous chapter, hit-independent metrics are calculated based on
specific attributes (such as code churn, size, and complexity) discernible from the
Code2Vec representation of a method in the target software system. Conversely,
hit-dependent metrics are those whose calculation depends on the hit concept. The
following subsections provide a detailed discussion of hit-independent and hit-

dependent metrics.

5.3. Code2Vec-Based Metrics 191

Table 5.1: Code2Vec-Based Hit-Independent Metrics

Code2Vec-Based Hit-Independent Metric Abbr.
Number of Target Software System Path Contexts NTP
Number of Distinct Target Software System Path Contexts NDTP
Path Context-Based Instantaneous Code Churn PICC
Path Context-Based Relative Instantaneous Code Churn PRICC
Number of Target Software System Diff Path Contexts NTDP
Number of Target Software System Distinct Diff Path Contexts NTDDP
Path Context Relative Uniqueness PRU

Table 5.2: Code2Vec-Based Hit-Independent Metrics Code Attributes of Concern

Code2Vec-Based Hit-Independent Metric Abbr. Attributes of Concern

Churn Intricacy Size

NTP v
NDTP v v
PICC v

PRICC v

NTDP v
NTDDP v v
PRU v

5.3.1 Code2Vec-Based Hit-Independent Metrics

In this chapter, we developed seven hit-independent metrics, detailed in Table 5.1.

The source code attributes relevant to each metric are summarised in Table 5.2.

5.3.1.1 Number of Target Software System Path Contexts (NTP)
The NTP for a method in the target software system is the total count of path con-
texts in its Code2Vec representation. NTP is the most straightforward metric we
developed, serving as an indicator of the method’s size. For example, the NTP for
the method in Figure 2.4 is 7. See Subsubsection 4.3.1.1 for the hypothesis.

For a method m; in the target software system with a multiset of path contexts

P,(m;), NTP is defined as follows:
NTP = |P;(m;)|

The NTP metric’s hypothesis was inspired by several studies, including Shin

et al. [2010], Giger et al. [2012], Morrison et al. [2015], Pascarella et al. [2018],

5.3. Code2Vec-Based Metrics 192

and Du et al. [2019]. However, we conceptualised its information retrieval-based

design and implementation.

5.3.1.2 Number of Distinct Target Software System Path Contexts
(NDTP)

The NDTP for a method in the target software system is the count of unique path
contexts in its Code2Vec representation. Unlike NTP, which measures the number
of path contexts, NDTP focuses on their diversity. This metric indicates the size and
diversity of code elements within a method. More distinct path contexts suggest
greater intricacy in the method’s implementation. For example, the NDTP of the
method in Figure 2.4 is 7, as all path contexts are unique. See Subsubsection 4.3.1.2
for the hypothesis.

For a method m; in the target software system with a set of path contexts

P/(m;), NDTP is defined as:
NDTP = [P ()]

The NDTP metric was inspired by the NTP metric, which in turn was inspired
by several studies, including Shin et al. [2010], Giger et al. [2012], Morrison et al.
[2015], Pascarella et al. [2018], and Du et al. [2019]. However, we conceptualised

its information retrieval-based design and implementation.

5.3.1.3 Path Context-Based Instantaneous Code Churn (PICC)

A target software system method’s PICC is defined as the number of times its
Code2Vec representation has changed throughout its history. The code churn metric
quantifies how often developers rewrite their code over time, measured by version
control system check-ins or the number of lines of code added, deleted, or modified
[Shin et al., 2010]. Many studies have used code churn in vulnerability prediction
and have suggested that higher churn correlates with higher vulnerability [Zimmer-
mann et al., 2010, Shin et al., 2010, Shin and Williams, 2013, Meneely et al., 2013,
Morrison et al., 2015].

Unlike the token-based analysis in the previous chapter, where any code

change affects the representation, regardless of how trivial, Code2Vec represen-

5.3. Code2Vec-Based Metrics 193

tations do not change as frequently. Minor syntactic changes, such as making a
method ‘static’ or adding/removing an annotation, often do not affect the Code2Vec
representation. This aligns with the idea that AST-based representations do not
capture every syntactic detail.

Our PICC implementation increments a method’s PICC by one for every re-
lease in which its Code2Vec representation changes. Thus, PICC counts the num-
ber of times a method’s source code has changed throughout the target software
system’s history, as reflected in the Code2Vec representation. See Subsubsection
4.3.1.3 for the hypothesis.

Let m, represent a method in a target software system, and let &(m;) represent
the set of releases in which m;’s Code2Vec representation changed. The PICC for

m; is evaluated as follows:
PICC(my) = |6(m,)]

The PICC metric’s hypothesis was inspired by several studies, including Shin
et al. [2010], Giger et al. [2012], Morrison et al. [2015], Pascarella et al. [2018],
and Du et al. [2019]. However, we conceptualised its information retrieval-based

design and implementation.

5.3.1.4 Path Context-Based Relative Instantaneous Code Churn

(PRICC)

A target software system method’s PRICC is the ratio of times its Code2Vec rep-
resentation has changed to the total number of releases in which the method has
appeared. PRICC is relative, unlike the PICC metric, which is absolute. This rel-
ative characteristic makes it more effective in indicating how frequently a method
has evolved compared to others.

Let m; represent a method in a target software system, and let N represent the
total number of releases in which m; appears. The PRICC for m; is evaluated as

follows:

PRICC(m,) = ZECm)

5.3. Code2Vec-Based Metrics 194

The TRICC metric in Chapter 4 is the token-based equivalent of PRICC. In
that chapter, we discussed how N could threaten the validity of machine learning
analysis through data leakage, depending on the aim and context of the analysis.
This discussion is also relevant to PRICC, so refer to Subsection 4.6.3 for more
details on the implications.

For a general illustration of PRICC, see Subsubsection 4.3.1.4, Figure 4.3, and
Table 4.3.

The PRICC metric was inspired by the PICC metric, which in turn was inspired
by several studies, including Shin et al. [2010], Giger et al. [2012], Morrison et al.
[2015], Pascarella et al. [2018], and Du et al. [2019]. However, we conceptualised

its information retrieval-based design and implementation.

5.3.1.5 Number of Target Software System Diff Path Contexts
(NTDP)

A target software system method’s NTDP is the count of path contexts in the sym-
metric difference between its current and previous release’s path contexts. The
NTDP metric measures the magnitude of changes between two consecutive method
releases. See Subsubsection 4.3.1.5 for the hypothesis.

Let m; represent a method in the target software system, and let m;_| represent
its previous release.

The NTDP metric for m; is expressed as follows:

NTDP(my) = [P (m,) AP, —1(m;—1)|

Here, A is the symmetric difference operator that returns a multiset of elements
present in either of the two sets but not in both. P, (m,) and P, (m,_1) represent the
path contexts of m; and m;_1, respectively.

The NTDP metric’s hypothesis was inspired by several studies, including Shin
et al. [2010], Giger et al. [2012], Morrison et al. [2015], Pascarella et al. [2018],
and Du et al. [2019]. However, we conceptualised its information retrieval-based

design and implementation.

5.3. Code2Vec-Based Metrics 195
5.3.1.6 Number of Target Software System Distinct Diff Path Con-
texts (NTDDP)

A target software system method’s NTDDP is the count of unigue path contexts in
the symmetric difference between its current and previous release’s path contexts.
Unlike NTDP, which measures the magnitude of changes, NTDDP measures the
diversity of code elements involved in those changes.

The NTDDP metric for my; is defined as follows:
NTDDP(m;) = P/ (m;) AP, (m;—1)]

Here, A is the symmetric difference operator that returns a set of elements
present in either of the two sets but not in both, and P/ (m,) and P/, (m,_;) represent
the unique path contexts of m; and m,_1, respectively.

This metric was inspired by the NTDP metric, which in turn was inspired by
several studies, including Shin et al. [2010], Giger et al. [2012], Morrison et al.
[2015], Pascarella et al. [2018], and Du et al. [2019]. However, we conceptualised

its information retrieval-based design and implementation.

5.3.1.7 Path Context Relative Uniqueness (PRU)

The PRU metric quantifies the distinctiveness of path contexts in a method’s
Code2Vec representation within a target software system. Inspired by informa-
tion retrieval techniques, the metric is used for method-level vulnerability predic-
tion analysis based on the Term Frequency-Inverse Document Frequency (TF-IDF)
approach. The underlying premise is that developers are more prone to introduc-
ing vulnerabilities when using complex and rarely utilised programming language
features in the context of a given software system or codebase. The PRU metric
captures a method’s complexity based on its composition of rare code elements
compared to other methods in the software system or codebase.

The TF-IDF measure, commonly used in information retrieval, quantifies a
word’s significance to a document within a corpus. The TF-IDF hypothesis posits
that a word is pertinent to a specific document if it appears frequently in that docu-

ment but infrequently in other documents within the same corpus.

5.3. Code2Vec-Based Metrics 196

We applied the TF-IDF technique analogously to method-level vulnerability
prediction to develop the PRU metric. This analogy is based on three primary com-

ponents: word, document, and corpus.

In our context, the target software system is the system in which we aim to
predict vulnerabilities. Our target software system dataset comprises methods rep-

resented using Code2Vec representations, which consist of path contexts.

In this analogy, a word corresponds to a path context, a document to a method,
and a corpus to our target software system dataset. Since the analysis pertains to
method-level (not class-level) vulnerability prediction, we disregard the classes. We
then employ the TF-IDF technique to derive weightings for each method’s path
context to ascertain their significance to the method. In this context, ‘significance’

denotes how unique a path context is to the method compared to other methods.

For example, in a given software system or codebase, the Java keyword ‘void’
will likely appear in every standard method designed not to return a value. In con-
trast, the keyword ‘synchronized’ is more likely to appear in a complex method
performing a specific operation with threads. Therefore, in a ‘synchronized’ void
method, the ‘synchronized” keyword will have a higher TF-IDF weighting than the
word ‘void’ because more methods in the software system will feature the ‘void’
keyword than the ‘synchronized’ keyword. If we calculate the average PRU for
both a void method and a ‘synchronized’ void method, the ‘synchronized’ void

method will have a higher PRU due to its increased complexity.

The PRU signifies a method’s uniqueness compared to other methods in a soft-
ware system. Evaluating this metric is comparable to finding the harmonic mean of
all the TF-IDF weightings of the words in a document. Thus, a method’s PRU is
the harmonic mean of all TF-IDF weightings for the path contexts in its Code2Vec
representation. The PRU determines how obscure a method is compared to others.
A high PRU value suggests the method features advanced, specialised, and rarely
applied programming language concepts compared to other methods in the software

system or codebase. See Subsubsection 4.3.1.7 for the hypothesis.

5.3. Code2Vec-Based Metrics 197

Let p represent a path context in a target software system’s method, and let m
represent a multiset of the method’s path contexts. The term frequency, tf(p,m), is
the relative frequency of path context p within method m.

It is expressed as follows:

tf(p,m) = Zp'iz—”}w

Here, f, represents the raw count of path context p in method m, and
Y. p'em Jfp.m denotes the total number of path contexts in m.

Let M represent a multiset of all methods’ path contexts in our target software
system.

The inverse document frequency, idf(p, M), is expressed as follows:

idf(p, M) = log g

Here, N is the total number of methods in the target software system, N = [M|,
and |m € M : p € m| is the total number of methods that feature p.

The TF-IDF for a path context, tfidf(p,m,M), is calculated as follows:
tdf(p,m,M) = tf(p,m) -idf(p,M)

Finally, a method’s PRU, PRU(m, M), is obtained by calculating the harmonic

mean of the TF-IDF values of all its path contexts:

PRU(m,M) = —Lem

Lyem thdf(p/,m.M)

As before, f,, is the raw count of a path context in a method’s representation.
Y em m is the sum of the inverses of the TF-IDF values for all p in m.

We exclusively developed the PRU metric’s conceptualisation, software vul-
nerability prediction contextualisation, hypothesis, design, and implementation,
drawing inspiration from how the TF-IDF technique tends to assign higher weight-

ings to rare words in information retrieval.

5.3. Code2Vec-Based Metrics 198

Table 5.3: Code2Vec-Based Hit-Dependent Metrics

Code2Vec-Based Hit-Dependent (Security-Relevant) Metric Abbr.
Number of Hit Path Contexts NHP
Number of Distinct Hit Path Contexts NDHP
Number of Vulnerability Dataset Path Contexts NVP
Number of Distinct Vulnerability Dataset Path Contexts NDVP

Target Software System Method-to-
— Vulnerable Dataset Method Path Context Similarity Ratio
Path Context Hits-to-Target Software System Method Similarity Ratio PHTSR

TVPSR

Path Context Hits-to-Vulnerable Dataset Method Similarity Ratio PHVSR
Number of Path Context Matches NUPM
Path Context Match Ratio PMR

Table 5.4: Code2Vec-Based Hit-Dependent Metrics Code Attributes of Concern

Code2Vec-Based Hit-Dependent Metric Abbr. Attributes of Concern

Intricacy Similarity Size

NHP

NDHP v
NVP

NDVP v
TVPSR

PHTSR

PHVSR

NUPM

PMR

SSENENEN

N N N NN RN

5.3.2 Code2Vec-Based Hit-Dependent Metrics

As in the previous chapter, we developed nine security-aware metrics for this chap-
ter to leverage the knowledge of known vulnerabilities in our vulnerability dataset.
Previously, we defined a hit as the intersection of the path contexts of a target soft-
ware system method and those of a vulnerable method in a vulnerability dataset.
Using this knowledge, we developed hit-dependent metrics to measure the simi-
larity between the path contexts of a target software system method and those of

vulnerable methods.

Table 5.3 presents the hit-dependent metrics developed for this chapter, while

Table 5.4 outlines their attributes of concern. All hit-dependent metrics except

5.3. Code2Vec-Based Metrics 199

NUPM and PMR perform a similarity comparison between the path contexts of a
target software system method and those of a vulnerable method. NUPM and PMR
measure the general distribution of similarities between a target software system
method and the methods in the vulnerability dataset. These hit-dependent metrics
are security-relevant; while they do not directly measure or indicate the presence of
vulnerabilities, they encode the patterns found in vulnerable code, similar to their

token-based counterparts.

5.3.2.1 Number of Hit Path Contexts (NHP)

A target software system method’s NHP is the number of path contexts it shares
with its most similar known vulnerable method in a vulnerability dataset. The NHP
metric is straightforward: it counts the path contexts that intersect between a target
software system method and the most similar vulnerable method. See Subsubsec-
tion 4.3.2.1 for the hypothesis.

Consider a target software system method m; with a multiset of path contexts
P,(m;), and a matching method m, from a vulnerability dataset with a multiset of
path contexts P,(m,). Let the hits between F,(m,) and P,(m,) be h, where h =
P, (m;) NP, (my).

The NHP for the target software system method is expressed as follows:

NHP = ||

The critical point is that with the token-based approach, hit constituents are
shingles, whereas with the Code2Vec-based approach in this chapter, they are path
contexts.

We exclusively conceptualised the NHP metric, contextualised it within soft-
ware vulnerability prediction and developed its hypothesis, design and implemen-

tation.

5.3.2.2 Number of Distinct Hit Path Contexts (NDHP)

A target software system method’s NDHP is the number of unique path contexts

it shares with its most similar known vulnerable method in a vulnerability dataset.

5.3. Code2Vec-Based Metrics 200

While NHP measures the total number of shared path contexts, NDHP measures the

diversity of the code elements in that intersection.

Consider a target software system method m, with a ser of path contexts P/ (m;),
and a matching method m, from a vulnerability dataset with a set of path contexts
P)(m,). Let the hits between P/ (m;) and P,(m,) be h', where i’ = P/(m;) N P,(m,).

NDHP is then expressed as follows:

NDHP = |//|

We exclusively conceptualised the NDHP metric, contextualised it within soft-
ware vulnerability prediction and developed its hypothesis, design and implemen-

tation.

5.3.2.3 Number of Vulnerability Dataset Path Contexts (NVP)

A target software system method’s NVP is the number of path contexts in its most
similar known vulnerable method in a vulnerability dataset. The NVP metric is
similar to the NTP metric introduced in Subsubsection 5.3.1.1, which measures the
number of path contexts in a target software system method. The critical differ-
ence is that while NTP measures the number of path contexts in the target soft-
ware system method, NVP measures the number of path contexts in its most similar
known vulnerable method. Additionally, NTP is hit-independent, whereas NVP is
hit-dependent because it requires a hit between the target software system method
and at least one method in the vulnerability dataset to calculate the metric. See

Subsubsection 4.3.2.3 for the hypothesis.

NVP is expressed as follows:
NVP = |P,(m,)]
We exclusively conceptualised the NVP metric, contextualised it within soft-

ware vulnerability prediction and developed its hypothesis, design and implemen-

tation.

5.3. Code2Vec-Based Metrics 201
5.3.2.4 Number of Distinct Vulnerability Dataset Path Contexts
(NDVP)

A target software system method’s NDVP is the number of unigue path contexts in
its most similar known vulnerable method within a vulnerability dataset. The NDVP
metric is similar to the NDTP metric. However, while NDTP measures the num-
ber of distinct path contexts in a target software system method, NDVP measures
the number of distinct path contexts in its most similar known vulnerable method.
Additionally, NDTP is hit-independent, whereas NDVP is hit-dependent, as it re-
quires a hit between the target software system method and at least one method in
the vulnerability dataset to calculate the metric.

NDVP is expressed as follows:
NDVP = |P)(m,)|

The NDVP metric was inspired by the NDTP metric, which in turn was in-
spired by several studies, including Shin et al. [2010], Giger et al. [2012], Morrison
et al. [2015], Pascarella et al. [2018], and Du et al. [2019]. However, we conceptu-

alised its information retrieval-based design and implementation.

5.3.2.5 Target Software System Method-to-Vulnerable Dataset
Method Path Context Similarity Ratio (TVPSR)

A target software system method’s TVPSR is the Jaccard Similarity between its path
contexts and the most similar known vulnerable method in a vulnerability dataset.

The TVPSR metric assesses the extent to which a target software system
method shares code elements with a known vulnerable method. It considers the
distinct path contexts in both methods relative to the total number of distinct path
contexts between them. Although it does not directly account for the order and fre-
quency of path contexts, the path contexts derived from the methods’ ASTs inher-
ently encode these attributes, capturing the hierarchical structure and relationships
within the source code.

Jaccard Similarity is the ratio of the intersection to the union of two sets. In this

context, it represents the ratio of the distinct path contexts shared between m; and

5.3. Code2Vec-Based Metrics 202

m,, to the total number of distinct path contexts in both methods. See Subsubsection
4.3.2.5 for the hypothesis.

Consider a target software system method m, with a set of path contexts P/ (m;),
and a matching method m, from a vulnerability dataset with a set of path contexts
P)(m,). Let the hits between P/(m,) and P,(m,) be I, where i’ = P/(m;) N P}(m,).

TVPSR is expressed as follows:

_]
TVPSR = i Gem|
Or, more derivatively:
TVPSR = o

NDTP+NDVP—-NDHP

We exclusively developed the TVPSR metric’s software vulnerability predic-
tion contextualisation, hypothesis, design, and implementation, drawing inspiration

from the Jaccard Similarity technique used in string metrics.

5.3.2.6 Path Context Hits-to-Target Software System Method Simi-
larity Ratio (PHTSR)

The PHTSR of a target software system method is the ratio of the number of path
contexts it shares with its most similar known vulnerable method in a vulnerability
dataset to the total number of path contexts in the target software system method.
The PHTSR metric measures the extent to which a target software system method
shares path contexts with a known vulnerable method, indicating how much of the
target software system method consists of code elements also found in the vulnera-
ble method. See Subsubsection 4.3.2.6 for the hypothesis.

Consider a target software system method m, with a set of path contexts P/ (m;),
and a matching method m, from a vulnerability dataset with a set of path contexts
P)(m,). Let the hits between P/(m,) and P,(m,) be I, where i’ = P/(m;) N P.(m,).

PHTSR is expressed as follows:

_
PHTSR = 3o

Or, more derivatively:

5.3. Code2Vec-Based Metrics 203

_ NDHP
PHTSR = NPHE

We exclusively conceptualised the PHTSR metric, contextualised it within
software vulnerability prediction and developed its hypothesis, design and imple-

mentation.

5.3.2.7 Path Context Hits-to-Vulnerable Dataset Method Similarity
Ratio (PHVSR)

A target software system method’s PHVSR is the ratio of the number of path con-
texts it shares with its most similar known vulnerable method in a vulnerability
dataset to the total number of path contexts in the known vulnerable method. The
PHVSR metric measures the extent to which a known vulnerable method comprises
the path contexts it shares with a target software system method. While PHTSR
evaluates the target software system method, PHVSR focuses on the known vulner-
able method.

When evaluating PHTSR, we ask, "To what extent do the unique path con-
texts in our hits constitute the unique path contexts in our target software sys-
tem method?" Similarly, when evaluating PHVSR, we ask, "To what extent do the
unique path contexts in our hits constitute the unique path contexts in the vulner-
able method?" PHVSR determines the extent to which a vulnerable method com-
prises distinct code elements of a target software system method. See Subsubsection
4.3.2.7 for the hypothesis.

Consider a target software system method m, with a ser of path contexts P/ (m,),
and a matching method m, from a vulnerability dataset with a set of path contexts
P/(m,). Let the hits between P/(m,) and P,(m,) be i, where i’ = P/(m;) N P.(m,).

PHVSR is expressed as follows:

W
PHVSR = moy

Or, more derivatively:

__ NDHP
PHVSR = NDHP

5.3. Code2Vec-Based Metrics 204

We exclusively conceptualised the PHVSR metric, contextualised it within
software vulnerability prediction and developed its hypothesis, design and imple-

mentation.

5.3.2.8 Number of Path Context Matches (NUPM)

A target software system method’s NUPM is the number of known vulnerable meth-
ods in a vulnerability dataset that share at least one path context with the method in
question. This metric counts the number of vulnerable methods that share one or
more path contexts with a given target software system method. See Subsubsection
4.3.2.8 for the hypothesis.

Consider a target software system method m; with a set of path contexts
P/(m;) and a vulnerability dataset V containing n known vulnerable methods,
My, ,My,,...,m,,, each with sets of path contexts PV’1 (my,),PV’2 (my,),....P, (my,).

NUPM is expressed as follows:
NUPM = [{my, €V : F/(m;) N P} (my,) # 0}

We exclusively conceptualised the NUPM metric, contextualised it within soft-
ware vulnerability prediction and developed its hypothesis, design and implemen-

tation.

5.3.2.9 Path Context Match Ratio (PMR)

A method’s PMR in the target software system is the ratio of known vulnerable
methods in a vulnerability dataset that share at least one path context with the
method to the total number of vulnerable methods in the dataset. The PMR metric is
similar to the NUPM metric. However, while NUPM focuses on the absolute num-
ber of known vulnerable methods that share at least one path context with a target
software system method, PMR focuses on the proportion of such methods relative
to the total number of methods in the vulnerability dataset. In other words, PMR is
NUPM divided by the total number of vulnerable methods in the dataset.

Consider a target software system method m; with a set of path contexts
P/(m;) and a vulnerability dataset containing n known vulnerable methods,

My My, .oy My,

n*

5.3. Code2Vec-Based Metrics 205

PMR is expressed as follows:

|{mvi €V P/ (my) ﬂP‘/,l, (mvi)#@H
n

PMR =
Or, more derivatively:

PMR = NUPM

- n
We exclusively conceptualised the PMR metric, contextualised it within soft-
ware vulnerability prediction and developed its hypothesis, design and implemen-
tation.
In the following subsection, we will illustrate how we calculate the hit-

dependent metrics using an example.

5.3.3 Code2Vec-Based Metrics Calculation: An Illustration

In Subsection 4.3.3, we demonstrated how to calculate the token-based metrics us-
ing one of the most well-known software vulnerabilities: SQL Injection. In that
chapter, we used two code snippets to illustrate the calculation of the token-based
metrics: one representing a hypothetical target software system method and the
other, a hypothetical known vulnerable method from a vulnerability dataset. We
excluded specific metrics from the example that required more extensive target soft-
ware system information than what is representable within a method body, such as
TICC, TRICC, NTDT, NTDDT, TRU, NUSM, and SMR. We pointed out that met-
rics such as TICC, TRICC, NTDT, and NTDDT require information on an entire
method’s change history, and calculating the TRU metric necessitates information
on the entire target software system. Thus, we could not calculate these metrics
using only the information represented in the method bodies.

In this chapter, we will utilise the same hypothetical target software system
method and known vulnerable method (see Listings 4.2 and 4.3) to demonstrate the
calculation of Code2Vec-based metrics. However, unlike the previous chapter, we
will use the Code2Vec representations of the methods, as shown in Figures 5.1 and
5.2. We have highlighted the shared path contexts in bold in these representations.

For simplicity and brevity, we will also exclude metrics that require more ex-

tensive information about the target software system than can be represented within

5.3. Code2Vec-Based Metrics 206

w
N
[y

1,3,3 1,4,4 5,2,6 1,3,5 1,4,6 7,2,8 1,3,7 1,4,8
32,58,33 32,59,32 32,60,33 32,3,32 25,45,26
25,61,34 26,38,34 32,8,35 2,11,32 2,12,35 1,3,2
16,15,17 16,16,2 16,17,10 17,18,2 17,19,10 2,20, 10
36,21,16 36,22,17 36,23,2 36,21,10 1,3,36 3,7,5
3,7,7 5,7,7 11,8,12 11,9,3 11,9,5 11,9,7 12,10,3
12,10,5 12,10,7 13,11,11 13,12,12 13,13,3 13,13,5
13,13,7 13,3,13 13,8,14 15,11,13 15,12,14 15,3,15
15,8,19 15,9,36 19,10,36 9,11,15 9,12,19 9,13, 36
9,3,9 9,31,21 9,32,10 21,33,10 9,34,22 21,35,22
10,36,22 9,8,23 9,8,24 9,37,2 24,38,2 2,15,17
2,39,9 2,40,24 2,41,2 17,42,9 17,43,24 17,44,2
25,45,26 26,46,2 26,47,17 13,8,37 15,8,37 9,8,37
32,8,37 30,62,38 30,49,39 30,48,27 30,63,22
38,64,39 38,65,27 38,66,22 39,67,27 39,68,22

L

Figure 5.1: Code2Vec Representation of the Method in Listing 4.2

1,1

~
[\

3,2,41,3,3 1,4,4 5,2,6 1,3,5 1,4,6 7,2,8 1,3,7
1,4,8 9,5,10 9,3,9 9,6,10 3,7,5 3,7,7 5,7,7 11,8,12
11,9,3 11,9,5 11,9,7 12,10,3 12,10,5 12,10,7
13,11,11 13,12,12 13,13,3 13,13,5 13,13,7 13,14,13
13,8,14 15,11,13 15,12,14 15,14,15 16,15,17 16,16,2
16,17,10 17,18,2 17,19,10 2,20,10 18,21,16
18,22,17 18,23,2 18,21,10 1,3,18 15,8,19 15,9,18
19,10,18 9,24,20 9,25,15 9,26,19 9,27,18 20,28,15
20,29,19 20,30,18 9,31,21 9,32,10 21,33,10 9,34,22
21,35,22 10,36,22 9,8,23 9,8,24 9,37,2 24,38,2
2,15,17 2,39,9 2,40,24 2,41,2 17,42,9 17,43,24
17,44,2 25,45,26 26,46,2 26,47,17 27,1,28 28,8,29
30,48,9 30,49,31 30,50,1 30,51,2 30,52,9 9,53,31
9,54,2 31,55,1 31,56,2 31,57,9

R

Figure 5.2: Code2Vec Representation of the Method in Listing 4.3

a method body. These excluded metrics are the Code2Vec counterparts of the token-
based metrics we excluded in the previous chapter: PRICC, NTDP, NTDDP, PRU,
NUPM, and PMR.

Table 5.5 presents the calculated Code2Vec-based metrics for the hypothetical
target and the known vulnerable methods. The full names of the metrics are listed
in Table 5.1 and Table 5.3 for reference.

The NTP metric, representing the number of path contexts in the target soft-
ware system method, is 91. This value is obtained by counting the path contexts
in the Code2Vec representation of the target software system method, as shown in

Figure 5.1.

5.3. Code2Vec-Based Metrics 207

Table 5.5: Example Code2Vec-Based Metrics Calculation

Hit-Independent Metrics Metric Value

NTP 91
NDTP 90
Hit-Dependent Metrics Metric Value
NHP 47
NDHP 47
NVP 86
NDVP 86
47
TVPSR 9
PHTSR %
PHVSR ge

The NDTP metric, indicating the number of distinct path contexts in the target
software system method, is 90. This value is derived by counting the distinct path
contexts in the Code2Vec representation of the target software system method.

The NHP, a metric concerned with counting the number of shared path con-
texts between the target software system method and the known vulnerable method,
is 47. This value is obtained by counting the intersecting path contexts between
the Code2Vec representations of the target and vulnerable methods, as shown in
Figures 5.1 and 5.2. The matching path contexts are highlighted in bold in the
representations.

The NDHP metric, representing the number of distinct shared path contexts
between the target and known vulnerable methods, is also 47.

The NVP metric, indicating the number of path contexts in the known vul-
nerable method, is 86. This value is derived by counting the path contexts in the
Code2Vec representation of the vulnerable method.

The NDVP metric, representing the number of distinct path contexts in the
known vulnerable method, is also 86.

The TVPSR metric, which is the target software system method-to-vulnerable
method path context similarity ratio, is calculated as M‘ﬁ, which simplifies to
1%. 90 and 86 are the number of distinct path contexts in the target software system

and known vulnerable methods, respectively.

5.3. Code2Vec-Based Metrics 208

The PHTSR metric, representing the ratio of shared path contexts to the num-
ber of path contexts in the target software system method, is %.

The PHVSR metric, representing the ratio of shared path contexts to the num-
ber of path contexts in the known vulnerable method, is g—g.

This example illustrates how we calculate the Code2Vec-based metrics. In
the following subsection, we will provide a brief comparison of the token-based
and Code2Vec-based metrics to highlight the key differences between the two ap-

proaches.

5.3.4 Token-Based versus Code2Vec-Based Approaches

Chapter 4 introduced token-based and shingle-based metrics using token-based rep-
resentations to predict vulnerabilities in software systems. These metrics capture the
structural and evolutionary intricacies of methods in a target system and their simi-
larities to known vulnerable methods in a vulnerability dataset. They are categorised
into hit-independent and hit-dependent metrics. Hit-independent metrics are calcu-
lated using only the attributes of the target software system methods. In contrast,
hit-dependent metrics leverage attributes of the target software system methods and
their most relevant methods in the vulnerability dataset.

This chapter introduces AST-based metrics using Code2Vec representations
to represent source code. Similar to their token-based counterparts, these metrics
capture the structural and evolutionary intricacies of methods in a target system and
their similarities to known vulnerable methods in a vulnerability dataset. The AST-,
or more specifically, Code2Vec-based metrics, are also divided into hit-independent
and hit-dependent categories.

The primary difference between the token-based and Code2Vec-based metrics
lies in the method of representation. Token-based metrics use sequences of tokens
extracted from the source code and shingles derived from these sequences. In con-
trast, Code2Vec-based metrics utilise representations generated from the methods’
ASTs. Code2Vec representations capture the hierarchical structure and relation-
ships within the source code, providing a potentially more detailed and context-

aware method representation.

5.3. Code2Vec-Based Metrics 209

This subsection provides a comparative summary of the token-based and
Code2Vec-based metrics, highlighting their key differences to clarify the distinc-

tion between the two approaches.

Table 5.6: Summary of Differences: Token-Based versus Code2Vec-Based Metrics

Token-Based Code2Vec-Based
Metrics Token and Shingle-based Path Context-based
Query Constituents Shingles Path Contexts
Document Index Shingles Path Contexts
Hit Constituents Shingles Path Contexts
Code Churn Sensitivity High Relatively Lower
Token Extraction Tool JavaParser Not Applicable
Shingle Generation Tool ~ Apache Lucene Not Applicable
Code2Vec Extraction Tool Not Applicable astminer

Table 5.6 summarises the key differences between the token-based and
Code2Vec-based metrics.

Token-based metrics use tokens and shingles as query constituents, document
index, and hit constituents. They are more sensitive to code churn because they rely
on token sequences extracted directly from the source code. Even a minor change
in the raw source code can significantly affect the token sequences and shingles,
which in turn can impact the metrics. These metrics require a token extraction tool,
such as JavaParser, to extract the token sequences and a shingle generation tool, like
Apache Lucene, to generate the shingles.

In contrast, Code2Vec-based metrics use path contexts for query constituents,
document index, and hit constituents. They are less sensitive to code churn as they
do not capture every minor detail in the source code. Code2Vec representations are
generated directly from the ASTs of methods using astminer.

In summary, token-based metrics utilise token and shingle-based representa-
tions, whereas Code2Vec-based metrics employ Code2 Vec representations of meth-
ods.

Following this comparison, we will proceed to the next section, which outlines

the methodology used in this chapter.

5.4. Methodology 210
5.4 Methodology

This section outlines the methodology used in this chapter. We begin with essential
preliminary information, followed by information on our datasets, data preprocess-
ing, information retrieval techniques, and machine learning analysis. Given the
similarity between the token-based and Code2Vec-based methodologies, this sec-
tion focuses on the unique aspects of the Code2Vec-based methodology, referring

readers to the relevant sections in Chapter 4 for shared aspects.

5.4.1 Overview of the Methodology

Build document

Extract Code2Vec index using VD

representations

I
Preprocess source code from TSS and VD > Cn;ztehzo\(/iesc
methods representations
A\ 4
Append the Build metrics data Query the index
ground truth data (which includes using each TSS
(dependent [« the independent [« method
variable) to the variables) from Code2Vec
metrics data the query results representation
A 4
Deduplicate
metrics data N Scale metrics | Address class
based on » values » imbalance
Code2Vec (Feature Scaling)
representation
Classify metrics .
data using o Apply feature | g COC':)?;;?:;”C
nominated ML |~ selection - analvsis
algorithms y
v
Evaluate
pgr;i?ﬁgﬁe »| Select best- Tune selected model's
> X
using ground truth performing model hyperparameters
data

Figure 5.3: Code2Vec-Based Vulnerability Prediction Methodology Overview (Within-
Project)

5.4. Methodology 211

Figure 5.3 provides an overview of our approach, divided into five main phases:
source code preprocessing, Code2Vec representation extraction, information re-

trieval, metrics data development, and machine learning analysis.

5.4.1.1 Source Code Preprocessing

This phase is identical to the source code preprocessing phase of the token-based

methodology (see Subsubsection 4.4.1.1).

5.4.1.2 Code2Vec Representation Extraction

After preprocessing, we parsed each source code file in our target software system
and the vulnerability dataset. We then extracted the Code2Vec representations of
the methods in both systems using astminer. For more information on astminer,

refer to Subsection 5.2.2.

5.4.1.3 Information Retrieval

This phase involved constructing and querying a document index to apply infor-
mation retrieval techniques to the path contexts in the Code2Vec representations
of the methods in our target software system and vulnerability datasets. The setup
is similar to the token-based methodology’s information retrieval phase (see Sub-
subsection 4.4.1.4). The primary difference is that Code2Vec representations are

utilised in the construction and querying of the document index.

5.4.1.4 Metrics Data Development

This phase embodies our core contribution: the sixteen metrics we developed. It
comprised two subphases: generating metrics data for each method in our target
software system and supplementing this data with ground truth information for per-
formance evaluation in the machine learning analysis phase. The phase mirrors that
of the token-based methodology (see Subsubsection 4.4.1.5). The only difference

is that Code2Vec representations are used instead of token sequences and shingles.

5.4.1.5 Machine Learning Analysis

As in Chapter 4, this phase aimed to:

5.4. Methodology 212

i Identify the best-performing machine learning classifier for vulnerability pre-

diction.

ii Identify the best-performing combination of metrics for vulnerability predic-

tion.

To achieve these aims, several subphases were completed, including Met-
rics Data Deduplication, Feature Scaling, Class Imbalance Mitigation, Correlation
Analysis, Feature Selection, Classification, Performance Evaluation, Model Selec-
tion, and Model Optimisation, similar to the token-based methodology (see Subsub-
section 4.4.1.6). The only distinction lies in the metric data deduplication subphase:
in the token-based methodology, duplicates were removed based on the token rep-
resentation of methods, while in the Code2Vec methodology, they were removed
based on the Code2Vec representation.

The phases addressed above summarise the methodology employed in this
chapter. A comparison with the methodology presented in the previous chapter
highlights the differences between the two approaches, as illustrated in Figures 4.6
and 5.3. The following subsections provide detailed information on each step out-

lined above.

5.4.2 Dataset

This analysis used the same target software system and vulnerability datasets as in

Chapter 4. See Subsection 4.4.2 for detailed information on the datasets.

5.4.3 Data Preprocessing

We used astminer to extract Code2Vec representations from the source code in our
datasets, subsequently developing information retrieval-based features for machine

learning classification.

5.4.3.1 Source Code Path Extraction
The IDs used by the Code2Vec representation elements extracted by astminer, in-
cluding tokens, paths, and node types, are volatile, meaning that the IDs generated

for the same elements differ every time astminer is executed. Therefore, to use

5.4. Methodology 213

the SARD dataset with a target software system for information retrieval-driven
vulnerability prediction, it is necessary to ensure that the Code2Vec representation
elements from both datasets use IDs generated in the same execution. We designed
our setup to extract code representations from the SARD and target software system
datasets in a single execution, ensuring consistent IDs across both datasets for the
same source code elements.

After extracting source code paths, we applied information retrieval techniques
and machine learning classification, which will be discussed later in this section.
Before that, we describe the additional steps we took to prepare our data, including

data deduplication, data imbalance handling, and ground truth evaluation.

5.4.3.2 Data Deduplication
As in the previous chapter, we deduplicated the Tomcat (training) dataset to prevent
data leakage. Refer to Subsubsection 4.4.3.3, Figure 4.3, and Table 4.10 for more
details on our deduplication strategy.

To accurately compare the Code2Vec and token-based techniques, we used
the exact post-deduplication figures for the target software system dataset, Apache

Tomcat 7, as in the previous chapter, including the class distribution. See Table 4.11.

5.4.3.3 Feature Scaling

We applied Min-Max scaling to the metrics data to ensure that all features were on

the same scale, as described in Subsubsection 4.4.3.5 in the previous chapter.

5.4.3.4 Software System Vulnerabilities and Data Imbalance

Similar to the previous chapter, we employed the Synthetic Minority Oversampling
Technique (SMOTE) to address the class imbalance between vulnerable and non-
vulnerable methods in our dataset. Refer to Subsubsection 4.4.3.6 for more infor-

mation on data imbalance and SMOTE.

5.4.4 Information Retrieval
Following the extraction of Code2Vec representations, as detailed in Subsub-
section 5.4.1.2, we applied information retrieval techniques to identify the best-

matching methods in the vulnerability dataset for each method in the target software

5.4. Methodology 214

system. The ‘best-matching’ methods share the most path contexts with the target
software system methods, indicating a higher likelihood of the same vulnerability.
We utilised Apache Lucene, a high-performance, full-featured text search engine

library in Java.

5.4.4.1 Document Index Construction

We reused the same number of target software system releases, vulnerability fixes,
and indexed vulnerability dataset methods as in the previous chapter to ensure a
fair comparison between the Code2Vec and token-based techniques, as shown in
Table 4.9. The number of indexed methods in the vulnerability dataset was 20,692,
consistent with the previous chapter. The index structure consists of each method’s

custom ID mapped to its Code2 Vec representation.

5.4.4.2 Apache Lucene Query Construction (BooleanQuery)

Our queries comprised the path contexts in the Code2Vec representation of each
method in the target software system. Each query included the path contexts of a
method, separated by the ‘OR’ boolean logical operator. For example, the query
for the Code2Vec representation shown in Figure 2.4 would be: "4494,2,5136"
OR "2307,1065,154" OR "2307,1066,25" OR "2307,1067,140" OR "154,15,25" OR
"154,12,140" OR "25,639,140".

The ‘OR’ operator in our query strings makes each path context optional, pro-
viding flexibility in the information retrieval process. This enables Lucene to re-
trieve the most relevant SARD methods from the index for any target software sys-
tem method. The more path contexts that match between a target software system
method and a SARD method, the more relevant Lucene considers it, and thus, the

higher it ranks.

We then used the results from these queries to calculate the hit-dependent met-

rics, as described in Subsection 5.3.2.

Table 5.6 summarises the differences between the token-based and Code2 Vec-

based information retrieval setups.

5.4. Methodology 215

5.4.5 Machine Learning Analysis

Our machine learning analysis details are identical to those in the previous chapter.
To accurately compare the Code2Vec and token-based techniques, we maintained
consistency in the machine learning analysis, including the classifiers used, the met-
rics calculated, and the performance evaluation metrics.

In the machine learning part of the analysis, the representations are irrelevant;
the classifiers only use the metrics data extracted from the representations as fea-
tures.

To avoid redundancy, we will not repeat the details of the machine learning
analysis in this chapter. However, as in the previous chapter, we evaluate the classi-
fiers’ performance using precision, recall, and F1 scores.

For additional information on the machine learning analysis, refer to Subsec-

tion 4.4.5.

5.4.6 Approach to Research Question 2

This chapter addresses our second research question: How well does the information
retrieval-driven software vulnerability prediction technique perform on a single,
multi-release software system dataset for Abstract Syntax Tree-based source code
representations?

This question is similar to the first research question from the previous chapter,
differing only in that it uses Code2Vec representations instead of token-based ones.

Therefore, our approach here is largely similar, with the following objectives:

1. Identify the most suitable classifier for information retrieval-driven,

Code2Vec-based method-level vulnerability prediction.

2. Identify the best-performing combination of Code2Vec-based software met-

rics for vulnerability prediction.

3. Evaluate the impact of hyperparameter tuning on the performance of the best-

performing classifier.

5.4. Methodology 216

Detailed descriptions of the approach will not be repeated here to avoid re-
dundancy. Instead, references to relevant sections of the previous chapter will be

provided where necessary.

5.4.6.1 Objective 1

The first objective is to determine the most suitable classifier for information
retrieval-driven Code2Vec-based vulnerability prediction at the method level. This
aligns with the first objective of the previous chapter, where we utilised precision,
recall, and F1 score to evaluate the performance of classifiers, identifying the best-

performing classifier based on the highest F1 score (see Subsubsection 4.4.6.1).

5.4.6.2 Objective 2

The second objective is identifying the best-performing combination of Code2Vec-
based software metrics for vulnerability prediction. This is similar to the second
objective of the previous chapter, where we used Sequential Forward Selection to
identify the optimal combination of metrics. Refer to Subsubsection 4.4.6.2 for

more details.

5.4.6.3 Objective 3

The third objective is to evaluate the impact of hyperparameter tuning on the per-
formance of the best-performing classifier. This is similar to the third objective of
the previous chapter, where we used the Grid Search technique for hyperparameter
tuning (see Subsubsection 4.4.6.3).

The following section presents the results of our experiments, organised ac-
cording to the objectives detailed above. A discussion of the findings, threats to

validity, and concluding remarks follow the Results section.

5.5. Results 217

5.5 Results

This section presents the results of our experiments, focusing on the three objectives
outlined in Subsection 5.4.6. We discuss the outcomes of the machine learning anal-
ysis, focusing on classifier performance, metrics combinations, and the performance

of hyperparameter tuning.

5.5.1 Objective 1 Results

Identify the most suitable classifier for information retrieval-driven Code2Vec-

based method-level vulnerability prediction.
This objective aimed to identify the best-performing binary classifier based on

predictive performance.

5.5.1.1 Evaluation Metrics Trend Analysis

® AdaBoost Classifier ® LGBM Classifier
Decision Tree Classifier Linear SVC
® Gaussian Naive Bayes ® Logistic Regression
® Gradient Boosting Classifier Random Forest Classifier
® K-Neighbors Classifier ® XGB Classifier
1.0
0.9 A
0.8 A1]
$ 8 ¢
0.7 { e] ®
°®
e o o o ° $. e o o
0.6 ®
S ® [) ®
‘@ []
2 0.5 [)] L °
g o e o Ve 8 e o ©
o
0.4 8.2
[3 [] [J
H ® ° ° ° ° ° ° ° é
0.3 1 ®] Py
® [}
[J
0.2 6@ J ® o o o o o o o o o o 8
[] [] ([] [] [] [] °
0.1- L4 © 0 o o o : @ 6 o o o o
[] [[) D) ° Py
0.0 T T T T T T T T T T T T T T T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Best-k-Metric Combination

Figure 5.4: Precision Trend across all Best-k-Performing Metrics Combinations

Figure 5.4 shows the precision trends for each classifier’s top k metrics combi-

nations. The LGBM classifier achieved the highest precision, nearly 0.80, at k = 16,

5.5. Results 218

while the Gaussian Naive Bayes classifier had the lowest precision, around 0.07, at

k= 16.

The Random Forest classifier consistently performed well across most metrics
combinations, slightly outperformed by the Gradient Boosting and XGB classifiers
atk=1, k= 15and k = 16, and the LGBM classifier at k = 16.

The LGBM and XGB classifiers generally showed above-average precision
trends across most metrics combinations. The Decision Tree and Gradient Boosting
classifiers also exhibited occasional above-average precision, specifically between
k =4 and k = 7 for the Decision Tree and between k = 10 and k = 12 for the

Gradient Boosting classifier.

The Gaussian Naive Bayes, Logistic Regression, and Linear Support Vector
classifiers performed the worst in precision. The Gaussian Naive Bayes had the
lowest precision across all metrics combinations, while the Logistic Regression and

Linear Support Vector classifiers showed similarly poor precision trends.

® AdaBoost Classifier ® LGBM Classifier
Decision Tree Classifier Linear SVC
® Gaussian Naive Bayes ® Logistic Regression
® Gradient Boosting Classifier Random Forest Classifier
® K-Neighbors Classifier ® XGB Classifier

1.0
0.9
0.8
0.7
e & 8 o o ® o o o o
0.6 °
= [] ®
S ® ®) [L4 ® L4 ° °
g% ° AR A S S I T e o :
]
°® |
0.4 . o © o & o e
o ° ° 8 [] [J [] PY ° ® []
0.3 ° s ® ° ®
°
)
0.2 s ® [] o ® [] ® ® PY [J : s
01 ° ® [)) °) P ® & é . 5 .
®
0.0 . : : . : : : : :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Best-k-Metric Combination

Figure 5.5: Recall Trend across all Best-k-Performing Metrics Combinations

5.5. Results 219

Figure 5.5 shows the recall trends for each classifier’s top k metrics combi-
nations. The K-Nearest Neighbours classifier achieved the highest recall, approx-
imately 0.66 at k = 9, while the Linear Support Vector classifier had the lowest
recall, around 0.04 at k = 16.

The K-Nearest Neighbours classifier performed well across most metrics com-
binations, from k = 4 to kK = 16. The Decision Tree and Random Forest classifiers

performed better between k = 1 and k = 3.

The Decision Tree and Random Forest classifiers also had above-average recall
trends from k = 2 to k = 12. The XGB classifier showed average recall trends at
k =2 and from k = 5 to k = 12. Other classifiers mainly exhibited below-average

recall trends.

The worst-performing classifiers in terms of recall were the Linear Support
Vector and Logistic Regression classifiers. The Linear Support Vector classifier
mostly had recall values below 0.1, and Logistic Regression generally had recall

values significantly below 0.15.

® AdaBoost Classifier ® LGBM Classifier
Decision Tree Classifier Linear SVC
® Gaussian Naive Bayes ® Logistic Regression
® Gradient Boosting Classifier Random Forest Classifier
® K-Neighbors Classifier ® XGB Classifier
1.0
0.9 A
0.8
0.7
0.6 ®] ° ® ®
® o
[® []
5 é : ° ° [} [] [} [) ® ® e P .
@ 0.5 o ©® ® o &
o e © ©® ° o o o o o T
0.4 s ° ° ° ° ° ° ° ° ®
$ o ° e & .
| J
0.3 A pA g °
® []
0.2 s ¢ & % o 0o o o o e o 0o o .
[3
g » ¢ ¢ ¢ 8 s s s e ¢ o o o ,
0.1] [} ° b4 b
0.0 T T T T T T T T T T T T T T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Best-k-Metric Combination

Figure 5.6: F1 score Trend across all Best-k-Performing Metrics Combinations

5.5. Results 220

Figure 5.6 shows the F1 score trends for each classifier’s top k metrics combi-
nations. The Random Forest classifier achieved the highest F1 score, approximately
0.66 at k = 9, while the Linear Support Vector classifier had the lowest, around 0.05
atk = 16.

The Random Forest classifier consistently performed well, especially from k =
1 to k = 12, but the XGB classifier outperformed it slightly from k = 13 to k = 16.

The XGB and LGBM classifiers generally achieved above-average F1 scores
across most metrics combinations, with the XGB classifier performing particularly
well across several k values, second only to the Random Forest classifier. The De-
cision Tree classifier achieved above-average F1 scores from k = 3 to k = 11 before
declining sharply from k = 12 to k = 16.

The worst-performing classifiers in terms of F1 score were the Linear Sup-
port Vector, Logistic Regression, and Gaussian Naive Bayes classifiers. The Linear
Support Vector classifier had the lowest F1 scores, mostly around 0.1, followed by
Logistic Regression and Gaussian Naive Bayes, with F1 scores generally below 0.2.

Based on the F1 score trends, the Random Forest classifier showed the best
predictive performance, achieving the highest F1 score across most top k metrics

combinations.

5.5.2 Objective 2 Results

Identify the best-performing Code2Vec-based software metrics combination for vul-
nerability prediction.
This objective aimed to identify the best-performing combination of software

metrics for vulnerability prediction among the sixteen available metrics.

5.5.2.1 Metrics Correlation Analysis

Figure 5.7 displays the correlation matrix of all metrics and the ground truth. The
first row and column show the Pearson Correlation Coefficient for the ground truth,
while the remaining rows and columns represent the other metrics. The matrix has
two levels of grouping: ground truth, hit-independent, and hit-dependent metrics.

The hit-independent and hit-dependent metrics are further clustered by their respec-

5.5. Results 221

oS 1.00
52 2011 0.011 -0.031 0.059 0.042 0.042 0.085 0.1 0.032 0.023

IS

E 033 0035 -0.076 0.16 016 016 022 0.25 0.082 0.063

o 0.75
9 - 0.068 026 0.038 -0.055 0.13 012 012 0.18 02 0058 0.043

T

a

8- 012 028 0.021 -0.08 018 014 014 024 028 0063 0.045

=2

=y 0.50
8- 013 032 004 -0.081 022 017 017 028 0.32 0.079 0.057

=z

a

E- 016 0.39 . 0.088 0.059

o

5- 017 y ’ ; a2 |d ! b b Wk | 012 0.084 -0.25
=z

Z2--011 -0.33 -026 -0.
a
o
£ -0.011 0035 0.038 0.021 -0.00
£
&
£ --0.031 -0.076 -0.055 -0.08
z
g
£-0059 016 013 018 | 005
o
=
&-0042 016 012 0.14
2
o
$-0042 016 012 0.14
z -0.50
-9
I-0085 022 018 024
o
5- 01 025 02 028
= -0.75
%,0.032 0.082 0.058 0.063 0.079 0.088 032 -0. 0.37
[N
3 -0.023 0063 0.043 0.045 0.057 0.059 0.084 -0.29 -0.17 026 -021 023 023 032 017
=4
- -1.00

' ' ' ' ' ' ' ' ' i ' ' " " '
Ground PICC PRICC NTDP NTDDP NTP NDTP PRU TVPSR PHTSR PHVSR NUPM PMR NHP NDHP NVP NDVP
Truth

Figure 5.7: Correlation Matrix of all Metrics + Ground Truth

tive constituent metrics. The Pearson Correlation Coefficient measures the linear
correlation between two variables, ranging from ‘-1’ (strong negative correlation)
to ‘1’ (strong positive correlation), with ‘0’ indicating no correlation. Values in the
correlation matrix are categorised as per Table 4.13. The figure includes a scale
on the right side, using a diverging colour scheme: red indicates a strong positive
correlation, white indicates no correlation, and teal indicates a strong negative cor-

relation.

The main observations from the correlation matrix are presented below. The

full names of the metrics are listed in Table 5.1 and Table 5.3.

1. Some cells in Band No. 1 show values close to ‘1’, indicating a strong positive

correlation between certain metrics, such as NUPM and PMR, and pairs like

5.5. Results 222

NHP and NDHP. This suggests possible redundancy, which may or may not

affect model performance.

. Negative correlations fall within Band No. 7 and higher, but none are as
strong as the positive ones. The highest negative correlation is -0.53 between
PRU and NDTP, indicating a moderate negative correlation. PRU measures
method uniqueness, while NDTP refers to the number of unique path con-

texts, which explains the negative correlation.

. The second-highest negative correlation is -0.52 (PRU and NUPM/PMR), in-
dicating a moderate negative correlation. NUPM counts vulnerable methods
sharing a path context, and PMR is their ratio. Methods with many matches

to vulnerable methods have lower PRU values.

. NTP/NDTP and NVP/NDVP are conceptually similar but apply to different
datasets. The correlation between NTP and NVP is 0.088, and between NDTP
and NDVP is 0.084, both indicating very weak positive correlations. When
hits are included, the correlation improves significantly to 0.45 (PHTSR and
PHVSR).

. The TVPSR metric, considering both target system and vulnerability dataset
methods, shares a closer bond with PHTSR (0.70) and PHVSR (0.86) than

the latter two with each other (0.45).

. The correlation between NUPM and PMR, i.e., 1 (Band No. 1), is higher
than that between PRICC and PICC, 0.68 (Band No. 2). This is because
the PMR denominator (total matches in the dataset) is constant, while the
PRICC denominator (total system releases) changes, making PRICC values

more variable.

. The ground truth shows no strong correlation with any metrics, with the high-
est being 0.17 (Band No. 5) with NDTP. Despite weak correlations, classifiers
can still perform well, as shown in Figure 5.6, indicating that seemingly re-

dundant metrics may contribute to overall performance.

5.5. Results 223

8. Excluding potentially redundant metrics, such as PMR, NTDDP, NDTP,
NDHP, and NDVP, did not necessarily improve classifier performance and
sometimes decreased it. Therefore, as noted in the previous chapter, we re-
tained all classification metrics, focusing on feature selection to identify the

best-performing combinations.

5.5.2.2 Classifier Performance Analysis

Table 5.7: Best Performance Per Classifier (Sorted by F1 score)

Classifier Best k Precision Recall F1 score

Random Forest classifier 0.73171 0.60668 0.66106
XGBoost classifier 0.70472 0.53556 0.60564
LightGBM classifier 0.66666 0.48016 0.55496

0.50839 0.58884 0.54284
0.35246 0.64649 0.45508
0.51111 0.33964 0.40499
0.21772 0.22986 0.22031
0.11647 0.28856 0.16568
0.16279 0.12250 0.13910
0.15780 0.08198 0.10700

Decision Tree classifier
K-Nearest Neighbors classifier
Gradient Boosting classifier
AdaBoost classifier

Gaussian Naive Bayes

Logistic Regression

Linear Support Vector classifier

[S—
AN W LD 930 O O

Table 5.7 presents the best performance of each classifier, sorted by descending
F1 score, our primary evaluation metric. The Random Forest classifier achieved the
highest F1 score. The XGBoost, LightGBM, and Decision Tree classifiers also
performed well, with XGBoost and LightGBM outperforming the Decision Tree.
The worst-performing classifiers in terms of F1 score were the Linear SVC, Logistic

Regression, and Gaussian Naive Bayes.

5.5.2.3 Metrics Combination Analysis

Table 5.8 shows the optimal combination of metrics for each classifier, categorised
into Hit-Independent and Hit-Dependent sections. A checkmark indicates the best-
performing metrics combination for each classifier.

This table reveals that hit-dependent metrics are crucial for most classifiers,

frequently appearing in the best-performing combinations. This supports the find-

5.5. Results 224

Table 5.8: Best Metrics Combination Per Classifier

Metric Classifiers
AB | DT | GNB | GB | KN | LGBM | LSVC | LR | RF | XGB |

Hit-Independent
NTP v v |V v v v |V v
NDTP v v v v v | Vv
PICC
PRICC
NTDP v
NTDDP

PRU
Hit-Dependent
NHP

NDHP

NVP v
NDVP v
TVPSR
PHTSR
PHVSR v
NUPM
PMR v

Q\
(\
(\
\

ANEN

ANENENEN
SSENENEN
SNENEN

{\
NENENENEN

SNENENENENENENENEN
{\
(\

NENEN
AN
NENEN
(\
NENEN

ings of the previous chapter, which show that hit-dependent metrics outperform

hit-independent metrics in terms of predictive performance.

The table also highlights the usefulness of each metric by its frequency in top-
performing combinations. For instance, the NTP metric is selected for all classifiers
except AdaBoost and Decision Tree, indicating its importance. Conversely, NTDP
is only chosen for Gaussian Naive Bayes, and the code churn metrics, PICC and

PRICC, are not selected.

In conclusion, the optimal software metrics combination for vulnerability pre-
diction, as per the second objective, includes those used by the best-performing
classifier, the Random Forest classifier. These metrics are NDHP, NDTP, NDVP,
NTP, NUPM, NVP, PHVSR, PMR, and PRU.

5.5.3 Objective 3 Results

This objective evaluated the impact of hyperparameter tuning on the performance

of the best-performing classifier from the first objective.

5.5. Results 225

5.5.3.1 Parameter Grid and Best Hyperparameter Values

Table 5.9: Parameter Grid and Best Hyperparameter Values

Parameter Grid \

Hyperparameter Values ‘ Best Value
bootstrap True*, False False
max_depth None*, 10,20 | 20
max_features ‘auto’, ‘sqrt’* | auto
min_samples_leaf 1%,2,4 1
min_samples_split 2%, 5, 10 2
n_estimators 100%*, 200, 300 | 200

Table 5.9 shows the parameter grid and best hyperparameter values for the
Random Forest classifier. As in the previous chapter, the Random Forest classifier
performed well in this Code2Vec-based analysis, so we used the same hyperparam-
eters and values.

The parameter grid includes only six key hyperparameters, as tuning all hy-
perparameters would be impractical due to time and computational resource con-
straints. The asterisk (*) denotes the default value in scikit-learn. The last column
shows the best-performing values determined by our Grid Search technique (see
Subsubsection 4.4.6.3).

We tuned the hyperparameters using the best-performing metrics combina-
tion identified in the second objective (NDHP, NDTP, NDVP, NTP, NUPM, NVP,
PHVSR, PMR, and PRU) rather than all sixteen metrics.

The parameter grid (first two columns in Table 5.9) in this chapter is identical
to the one in the previous chapter (see Table 4.16). However, the ‘max_depth’
hyperparameter has a best value of ‘20’ here compared to ‘None’ in the previous
chapter. Also, the ‘n_estimators’ hyperparameter has a best value of ‘200 here

compared to ‘100’ in the previous chapter.

5.5.3.2 Hyperparameter Tuning Results

Table 5.10 shows the pre- and post-hyperparameter tuning results for the Random

Forest classifier.

5.5. Results 226

Table 5.10: Pre-and-Post-Hyperparameter Tuning Results for Random Forest classifier

Metric Before After A%

Precision 0.73171 0.72111 -1.45
Recall 0.60668 0.62261 2.63
F1 score 0.66106 0.66778 1.02

After tuning, precision decreased by 1.45%, recall increased by 2.63%, and the
F1 score increased by 1.02%.

This trend aligns with the previous chapter, where precision decreased by
0.22%, recall increased by 2.23%, and the F1 score increased by 1.42%.

Regarding the third objective, as in the previous chapter, hyperparameter tun-
ing had a mixed impact on the performance of the Random Forest classifier. Preci-
sion decreased, recall increased, and the F1 score, our primary evaluation metric,

ultimately improved slightly.

5.6. Discussion 227

5.6 Discussion

This section discusses our results and their implications. We examine the perfor-
mance of the Code2Vec representation technique, the impact of hit-dependent met-

rics, the evaluation metrics, and the effect of hyperparameter tuning.

5.6.1 Code2Vec Representation Performance

In this chapter, we explored the effectiveness of the Code2 Vec technique for predict-
ing software vulnerabilities. We used an information retrieval-driven approach on a
multi-release software system dataset with Code2Vec representations. Our analysis
aimed to identify the best classifier for Code2Vec-based vulnerability prediction,
determine the optimal combination of metrics, and assess the impact of hyperpa-
rameter tuning on the performance of the best classifier.

As in the previous chapter, the Random Forest classifier was the best-
performing model. However, it showed slightly better improvements in the F1 score
in this chapter compared to the previous one. The token-based approach achieved
a maximum post-hyperparameter tuning precision of 0.73472, recall of 0.59667,
and F1 score of 0.65741. In contrast, the Code2Vec-based approach achieved a
precision of 0.72111, recall of 0.62261, and F1 score of 0.66778.

These results suggest that Code2Vec representations may capture syntactic and
semantic information more effectively than token-based approaches, providing a
more nuanced understanding of code structure and potential vulnerabilities. This
supports Liu et al. [2022a]’s finding about the effectiveness of AST-based represen-
tations. However, it is essential to note that the shingle size in the token-based ap-
proach may affect the results. In Subsubsection 4.4.3.2, we noted that we employed
a shingle size of ‘5’ in the token-based approach, following some experimentation,
as it provided the best balance between performance and computational efficiency
for our analysis.

Nevertheless, other studies have highlighted the effectiveness of AST-based
representations, most notably a critical study by Al Debeyan et al. [2022] that sig-
nificantly influenced this research. The study tackled the challenge of software

vulnerability prediction and detection, using AST information to represent code

5.6. Discussion 228

vulnerabilities for machine learning models. Their goal was to enhance the perfor-
mance of vulnerability prediction models by using AST N-grams as features, apply-
ing binary classification to detect vulnerability status, and multiclass classification
to categorise code into different vulnerability types based on Common Weakness
Enumeration (CWE) categories. The researchers used a dataset comprising 5,001
real-world vulnerable Java methods from 219 open-source projects, extracting 18
static code metrics and AST N-grams from these methods. They compared the
performance of three machine learning models (Random Forest, Naive Bayes, and
SVM) and one deep learning model (DeepBalance) using binary classification, with
evaluation metrics including F-measure and MCC. Additionally, they proposed a
Random Forest model with multiclass classification to cluster code into different
CWE types and evaluated its performance using the same metrics. The study found
that the Random Forest model using AST N-grams outperformed the other models
in binary classification, achieving an F-measure of 75% and an MCC of 74%. The
multiclass classification model using AST N-grams also performed well, with an
average F-measure of 61% and an MCC of 63%. The authors concluded that AST
N-grams are effective features for improving the predictive performance of vulnera-
bility models and providing more detailed information on vulnerability types. They
also suggested further enhancing their approach by incorporating more CWE types,

adding code context, and applying transfer learning.

Al Debeyan et al. [2022]’s research is similar to ours in terms of methodology
and results. We achieved a comparable F1 score using the same classifier: Random
Forest. However, we utilised a different set of novel vulnerability prediction metrics
and seven additional machine learning models. Additionally, they considered binary

and multiclass classification, while we focused solely on binary classification.

While Al Debeyan et al. [2022]’s study reported impressive results, we ob-
served a data leakage issue in their binary classification analysis, which may have
impacted the model’s performance. We will address this issue in the following
chapter. Nevertheless, their study provides valuable insights into the effectiveness

of AST-based representations for vulnerability prediction. These insights support

5.6. Discussion 229

our findings in this chapter and those of other researchers in the field, as seen in the

study mentioned earlier by Liu et al. [2022a].

5.6.2 Hit-Dependent Metrics Performance

Another important insight uncovered in this chapter is the significance of hit-
dependent metrics, i.e., metrics that use known vulnerabilities to identify patterns
indicating security risks. As in the previous chapter, these metrics outperformed
hit-independent ones, highlighting the value of incorporating contextual informa-
tion from known vulnerabilities into a predictive model. Hit-dependent metrics sig-
nificantly enhanced predictive performance, suggesting that capturing the semantic
and syntactic nuances of vulnerable source code is crucial for accurate vulnerabil-
ity prediction. However, we emphasise that the quality of these metrics depends
on the completeness and relevance of the vulnerability dataset from which they are
derived. Therefore, comprehensive and up-to-date vulnerability datasets are crucial
for accurate vulnerability prediction. This also means that the model must be up-
dated regularly in a real-life scenario to incorporate new vulnerabilities and ensure
accurate predictions. Therefore, a CI/CD pipeline that automatically updates the

vulnerability dataset and re-trains the model would be beneficial.

5.6.3 A Closer Look at the Evaluation Metrics

Like the previous chapter, the evaluation metrics in this chapter offer a compre-
hensive view of classifier performance. The Random Forest classifier achieved the
highest F1 score, striking the best performance balance between precision and recall
in this chapter’s Code2Vec-based experiments. This balance is crucial in vulnera-
bility prediction, where false positives and negatives can have severe consequences.
The performance of the Random Forest classifier suggests it can effectively identify
vulnerabilities while minimising false positives and negatives.

Our observations indicate that the Code2Vec-based representation outper-
formed the token-based approach in terms of recall and F1 score, subject to the
shingle size used in the token-based approach. These improvements are significant

since recall and F1 score are crucial metrics in vulnerability prediction. The supe-

5.6. Discussion 230

rior performance of the Code2Vec-based approach in these metrics suggests it can
better identify vulnerabilities and minimise false negatives, which is essential in
security-critical applications.

However, the precision metric showed a slight decrease. This decrease is not
unexpected, as the Code2Vec-based approach may be more sensitive to false posi-
tives due to its ability to capture nuanced code semantics. This trend suggests that
while Code2Vec enhances the model’s ability to identify vulnerabilities (recall),
it also increases the number of false positives, leading to a decrease in precision.
Nonetheless, the superior recall and F1 score of the Code2Vec-based approach sug-
gest that it may be more effective at identifying vulnerabilities while maintaining
reasonable precision. However, as pointed out earlier, shingle sizes in the token-
based approach may affect the results, and further investigation is needed to deter-
mine the optimal shingle size for vulnerability prediction.

In conclusion, the Code2Vec representation may enhance the model’s under-
standing of complex code structures more effectively, resulting in improved vulner-
ability detection. This improvement is particularly evident in the recall and F1 score
metrics. The increase in recall indicates that the model is more adept at identifying
actual vulnerabilities. The improvement in the F1 score highlights the effectiveness
of the Code2Vec representation in balancing precision and recall, which is essential
for vulnerability prediction. However, the decrease in precision highlights the need

for further refinement to reduce false positives.

5.6.4 Hyperparameter Tuning Impact

The Random Forest classifier’s hyperparameters remained consistent across chap-
ters, with minor changes in ‘max_depth’ and ‘n_estimators.” This consistency sug-
gests that, despite the differences in metrics data yielded by the Code2Vec and
token-based representations, the Random Forest classifier’s performance remains
stable, highlighting its robustness in vulnerability prediction. We also observed this
robustness in the literature, as discussed in Subsection 3.4.3 and supported by the
findings in several studies [Walden et al., 2014, Scandariato et al., 2014, Kaloupt-
soglou et al., 2022, Amasaki et al., 2023, Al Debeyan et al., 2022]. However, we

5.6. Discussion 231

note that different source code representation techniques may require distinct tuning
strategies for optimal performance.

Hyperparameter tuning resulted in a slight decrease in precision, an increase
in recall, and an overall improvement in the F1 score, consistent with the findings
from the previous chapter. This trend indicates that tuning can enhance the Ran-
dom Forest classifier’s performance by balancing precision and recall, improving

its vulnerability prediction capabilities.

5.6.5 Implications

Our findings have several implications for vulnerability prediction research and its
practical applications. Firstly, the improved performance with Code2Vec suggests
that future models should prioritise representations that effectively capture both
source code syntax and semantics. This can enhance the model’s ability to ac-
curately identify vulnerabilities, which is crucial for security-critical applications.
Additionally, the reliance on hit-dependent metrics highlights the need to utilise
comprehensive vulnerability datasets to inform the predictive model. Incorporating
known vulnerabilities can enhance the model’s ability to effectively identify secu-
rity risks, emphasising the importance of contextual information in vulnerability
prediction. Lastly, the changes in hyperparameter optimisation indicate that models
using advanced representations, such as Code2Vec, require tailored tuning strate-
gies for optimal results. This highlights the complexity of hyperparameter tuning
and suggests that future research should explore strategies tailored to the specific
representation used, thereby ensuring optimal performance in vulnerability predic-

tion.

5.6.6 Recommendations

Future research and applications in software vulnerability prediction should adopt
Code2Vec or similar AST-based representations that effectively capture syntac-
tic and semantic information. This approach can enhance the model’s ability to
identify vulnerabilities, thereby improving the security of software systems. Also,

combining AST-based representations with other techniques may capture a broader

5.6. Discussion 232

spectrum of code characteristics, potentially improving overall model performance.
Future research should explore hybrid representations to leverage the strengths of
different techniques, enhancing the model’s ability to identify vulnerabilities effec-
tively. Finally, emphasising hit-dependent metrics is crucial for enhancing predic-
tive performance. These metrics significantly boost predictive accuracy by leverag-

ing known vulnerabilities to identify security risks.

5.7. Threats to Validity 233

5.7 Threats to Validity

This section discusses threats to the validity of our study, focusing on internal and

external validity, similar to the previous chapter.

5.7.1 Internal Validity

Internal validity concerns the extent to which observed effects can be attributed to
the experimental conditions rather than other factors. Several threats to internal

validity were identified.

5.7.1.1 Hyperparameter Tuning

The selection of hyperparameters for the Random Forest classifier might have in-
fluenced the outcomes. Although we used Grid Search for tuning, other hyperpa-
rameter combinations could yield different results. Future studies should explore a
broader range of settings and potentially use automated hyperparameter optimisa-

tion techniques.

5.7.1.2 Dataset Characteristics

The specific characteristics of the Apache Tomcat dataset may have impacted the
findings. This dataset is from a single software system with multiple releases, which
may not be generalisable to other systems. Similar experiments on diverse datasets

from different domains are recommended to validate the findings.

5.7.2 External Validity

External validity refers to the extent to which the results can be generalised beyond

the specific experimental conditions.

5.7.2.1 Programming Language and Dataset Generalisability

A primary threat is the generalisability to other programming languages and soft-
ware systems. This study focused exclusively on Java-based systems, specifically
the Apache Tomcat dataset. While the results are promising, it remains unclear
whether the Code2Vec technique will perform equally well on software in other

languages.

5.8. Answer to Research Question 2 234

5.8 Answer to Research Question 2

Research Question 2: How well does the information retrieval-driven software vul-
nerability prediction technique perform on a single, multi-release software system

dataset for Abstract Syntax Tree-based source code representations?

This chapter examined the effectiveness of the Code2Vec representation tech-
nique for predicting software vulnerabilities. We aimed to answer the research
question by evaluating the performance of the Code2Vec-based approach on a sin-
gle, multi-release software system dataset and comparing it with the token-based

approach used in the previous chapter.

We preprocessed Apache Tomcat’s source code, extracted Code2Vec rep-
resentations from the methods, and developed software metrics using informa-
tion retrieval techniques. Various machine learning classifiers were trained using
these metrics, and their performance was evaluated based on precision, recall, and
F1 score. Hyperparameter tuning was conducted to optimise the best-performing

classifier.

The findings indicated that the Code2Vec representation yielded a slight im-
provement in vulnerability prediction compared to the token-based approach. How-
ever, the nominated shingle size in the token-based approach may have influenced
the results. The Random Forest classifier emerged as the best-performing model,
with precision, recall, and F1 score values of 0.72111, 0.62261, and 0.66778, re-
spectively. Contrastingly, the token-based approach achieved a maximum post-
hyperparameter tuning precision of 0.73472, recall of 0.59667, and F1 score of
0.65741. While the token-based approach showed a slightly higher precision, the
Code2Vec-based approach achieved better recall and F1 score results, which are
critical for security applications. The Code2Vec representation may have captured
more detailed code semantics relative to the shingle size of ‘5’ used in the token-
based approach, leading to better vulnerability detection.

Our findings also highlighted the importance of hit-dependent metrics in vul-
nerability prediction, as they significantly enhanced predictive performance com-

pared to hit-independent metrics, as in the previous chapter.

5.8. Answer to Research Question 2 235

Additionally, the Random Forest classifier’s consistent performance across dif-
ferent representations highlights its robustness and suitability for vulnerability pre-
diction tasks.

Finally, our results showed that hyperparameter tuning generally improves pre-
dictive performance, as evidenced by the increased F1 score, at the expense of a
slight decrease in precision.

Future work should extend the approach to other programming languages, in-
tegrate Code2Vec with other representation techniques, explore the impact of differ-
ent shingle sizes in token-based approaches, conduct longitudinal studies to assess
model stability and develop real-time vulnerability prediction tools for practical
software development and maintenance applications.

To explicitly answer the second research question of this thesis, the informa-
tion retrieval-driven software vulnerability prediction technique performed well on
a single, multi-release software system dataset for Code2Vec representation, achiev-
ing slight but notable improvements in predictive performance, as measured by the

F1 score, compared to the token-based approach.

Chapter 6

A Vulnerability Prediction Dataset
Generalisability Study

This chapter evaluates the generalisability of our information retrieval-driven vul-
nerability prediction technique using a dataset of code artefacts from multiple soft-
ware systems. We assess its performance in a mixed-project setting, with a focus
on data quality and quantity limitations. The chapter addresses the third and final
research question of this thesis, examining the applicability of the technique across

projects and the impact of data-related factors on prediction accuracy.

6.1. Introduction 237

6.1 Introduction

We provided background on the potential of Al-driven techniques, specifically Su-
pervised Machine Learning, in predicting software vulnerabilities in Section 2.1,
stating that these methods utilise historical data from software systems to identify
patterns indicative of vulnerabilities and predict future vulnerabilities.

A machine learning-based approach typically involves training a supervised
learning model on a dataset of code artefacts labelled with known vulnerabilities.
This model can then predict vulnerabilities in other software systems, particularly
useful in the early stages of software development [Zhang et al., 2023c].

Despite their largely theoretical effectiveness, predicting vulnerabilities in
large-scale software code remains complex, time-consuming, and error-prone, even
for domain experts [Zhang et al., 2023b]. A significant challenge lies in obtain-
ing high-quality labelled data. Acquiring extensive datasets of software systems
annotated with vulnerabilities is inherently complex, limiting the effectiveness of
supervised learning techniques that require large amounts of labelled data to build
robust models. Consequently, there are relatively few labelled projects compared
to the vast number of unlabelled ones [Nguyen et al., 2024], highlighting the need
for alternative approaches to address these data-related challenges. One promising

alternative is cross-project prediction.

6.1.1 Cross-Project vs Mixed-Project Vulnerability Prediction

Cross-project or inter-project vulnerability prediction, in its simplest form, involves
predicting vulnerabilities in a target software system using a model trained on a
different source system. This is vital as it allows for predicting vulnerabilities in
projects with insufficient data for training a supervised learning model [Malhotra
and Meena, 2024]. The model’s versatility is also crucial. A model that can be ap-
plied across multiple projects (or software systems) is theoretically more adaptable
than a within-project prediction model confined to a single project (or software sys-
tem). Such a generalisable model enhances efficiency by enabling software profes-
sionals to use one model for various projects, eliminating the need to train separate

models for each project.

6.1. Introduction 238

In this chapter, we use the term mixed-project vulnerability prediction to de-
scribe the process of predicting vulnerabilities in a target software system using a
model trained on a dataset comprising code artefacts from multiple software sys-

tems.

We consider the conventional cross-project vulnerability prediction a straight-
forward subset of mixed-project prediction, where the training data consists of code
artefacts from one project. Mixed-project prediction, on the other hand, encom-
passes a broader range of more complex scenarios where the training data com-
prises code artefacts from an arbitrary number of projects. Due to the increased
data variability in the dataset, mixed-project prediction presents a more significant
challenge as it provides a more rigorous test of a model’s ability to generalise across
diverse software systems. Therefore, we could consider mixed-project prediction a

stress test of the model’s generalisability.

This chapter examines mixed-project vulnerability prediction and assesses the
generalisability of our information retrieval-based vulnerability prediction tech-
nique across different software systems using a dataset comprising code artefacts

from multiple projects.

6.1.2 Dataset Generalisability: An Introduction

Generalisability refers to the extent to which study findings can be applied to other
contexts or settings. In our context, it denotes the applicability of data to vari-
ous scenarios. Croft et al. [2022] noted that data generalisability measures the
external validity of an analysis. This chapter uses the term data generalisability
to describe how well a vulnerability prediction technique performs across multiple
datasets or projects. Specifically, we examine the applicability of our information
retrieval-driven vulnerability prediction technique across different projects, explor-
ing its generalisability using a dataset comprising artefacts from various software

systems.

6.1. Introduction 239

6.1.3 Chapter Motivation

In Chapter 4, we introduced an innovative Information Retrieval-driven vulnera-
bility prediction technique, which forms the core of our thesis. This technique
utilises information retrieval methods to generate metrics from various source code
attributes, including size, complexity, churn, and known vulnerability code patterns.
These metrics are then used to predict vulnerabilities. We evaluated this technique
using token-based code representations, achieving promising results with a Ran-
dom Forest classifier: a precision of 0.73, a recall of 0.60 and an F1 score of 0.66.
In Chapter 5, we extended the technique using Abstract Syntax Tree (AST)-based
Code2Vec representations, which, according to our results and findings from other
studies [Liu et al., 2022a, Al Debeyan et al., 2022], prove to be very effective in
capturing the hierarchical structure and relationships within the source code. This
approach slightly improved the F1 score, yielding a precision of 0.72, a recall of
0.62, and an F1 score of 0.67, again using the Random Forest classifier.

While noteworthy, these results from Chapters 4 and 5 were based on a single
project, Apache Tomcat 7, representing a within-project vulnerability prediction
setting. This chapter is motivated by the need to evaluate our technique’s perfor-
mance in a mixed-project setting to determine its generalisability across multiple
projects and gain insight into how much data-related challenges affect its perfor-
mance, in other words, a stress test of the technique’s generalisability. To achieve
this, we used a dataset comprising code artefacts from several projects to assess
the generalisability of the information retrieval-driven vulnerability prediction tech-
nique. This evaluation aims to understand how data-related factors affect the appli-
cability of supervised learning techniques in vulnerability prediction across diverse

software systems.

6.1.4 Research Question

To address the motivation outlined above, we pose the third and final research ques-

tion of this thesis:

How well does the information retrieval-driven software vulnerability

prediction technique generalise across multiple software systems?

6.1. Introduction 240

This research question is crucial for comprehensively evaluating our vulnera-
bility prediction technique. While Chapters 4 and 5 focus on within-project assess-
ments, this chapter examines mixed-project scenarios. This shift provides insights
into the technique’s generalisability from a stress test perspective, highlighting its
performance across diverse software systems and the impact of data on vulnerability

prediction.

6.1.5 Research Scope

The research scope of this chapter is as follows:
* Programming Language: We use a Java-based dataset.

* Method-Level Vulnerability Prediction: Our analysis focuses on method-
level vulnerabilities. Vulnerabilities at the class or file level or outside the
source code (e.g., configuration files, web services, or APIs) are not consid-

ered.

* Mixed-Project Vulnerability Prediction: We evaluate the information
retrieval-driven vulnerability prediction technique using methods from multi-

ple software projects.

* Binary Classification: The study focuses on binary classification, where a
method is classified as vulnerable or non-vulnerable. Multi-class classifica-

tion is not considered.

6.1.6 Significance and Contributions

This chapter contributes to software vulnerability prediction by evaluating the gen-
eralisability of our information retrieval-driven technique. It focuses on stress-
testing our technique in a mixed-project vulnerability prediction setting and high-
lights the impact of data quality and quantity.

The study assesses the technique’s generalisability across multiple projects,
offering insights into its ability to predict vulnerabilities beyond the initial train-

ing project. The results will help software professionals understand the technique’s

6.1. Introduction 241

capabilities, limitations, and applicability in within-project and mixed-project con-
texts. Additionally, it will provide insights into the impact of data quality and quan-
tity on vulnerability prediction, highlighting the challenges and opportunities in this
field.

6.1.7 Structure of the Chapter

Section 6.2 provides background information on mixed-project vulnerability pre-
diction and data-related issues in vulnerability prediction. Section 6.3 outlines the
study’s methodology, including the dataset, data preprocessing, and other relevant
aspects. Section 6.4 presents the experimental results. Section 6.5 discusses the
results and their implications. Section 6.6 outlines the threats to validity for this
chapter. Finally, Section 6.7 provides the conclusive answer to the third and final

research question of this thesis.

6.2. Background 242

6.2 Background

In the previous section, we discussed data-related issues in vulnerability predic-
tion, noting that acquiring high-quality labelled data is a significant challenge for
data-driven vulnerability prediction techniques. We mentioned how the insufficient
training data challenge has led researchers to explore cross-project vulnerability
prediction, which involves predicting vulnerabilities in a target software system us-
ing a model trained on a different source system.

This section provides some background on cross-project vulnerability predic-
tion by briefly examining existing approaches. We highlight how researchers have
approached this problem and the techniques they have used. Additionally, we ad-
dress data quality challenges in vulnerability prediction, outlining the factors con-

tributing to these challenges and their implications.

6.2.1 Cross-Project Vulnerability Prediction

Cross-project vulnerability prediction leverages data from a software project to pre-
dict vulnerabilities in another. This technique is appropriate when limited data is
available for training a model. Data from various projects can be used to develop
more robust models that predict vulnerabilities across a broader range of software
systems. However, this approach is challenging due to differences in size, complex-
ity, programming languages, and coding conventions between software projects.
These differences make it challenging to develop a model that accurately predicts
vulnerabilities across multiple projects. While within-project models have shown
promising results, cross-project models often face performance issues [Kaloupt-
soglou et al., 2020, Siavvas et al., 2018].

Researchers have developed various machine and deep learning techniques for
cross-project vulnerability prediction to address these challenges. Studies show
that deep learning techniques generally outperform traditional machine learning
methods [Kalouptsoglou et al., 2020] due to their ability to automatically construct
high-level abstract feature representations of software systems, which is crucial for
cross-project predictions [Liu et al., 2022b]. Thus, there is growing interest in deep

learning for cross-project predictions.

6.2. Background 243

Contemporary cross-project techniques often involve transferring ‘knowledge’
from one project to another to improve prediction accuracy. This involves two main
concepts: transfer learning and domain adaptation. Transfer learning enhances a
model by transferring knowledge from another domain [Weiss et al., 2016], where
‘domain’ refers to the data distribution, such as the distribution of vulnerable and
non-vulnerable code samples. Knowledge is transferred from a source project to a
target project to enhance prediction accuracy in the target project. Domain adap-
tation, a subset of transfer learning, involves adapting a model trained on a source
domain to a target domain by reducing the distribution discrepancy between the two
domains [Wilson and Cook, 2020]. It focuses on aligning the distributions of the

source and target domains to improve prediction accuracy in the target domain.

Liu et al. [2022b] introduced the CD-VulD system, which utilises deep learning
and domain adaptation to detect software vulnerabilities by learning token embed-
dings, constructing high-level representations, and mitigating domain divergence

with the Metric Transfer Learning Framework (MTLF).

Nguyen et al. [2020] proposed the Dual Generator-Discriminator Deep Code
Domain Adaptation Network (Dual-GD-DDAN). This GAN-based deep domain
adaptation method enhances transfer learning between labelled and unlabelled

projects, addressing mode collapse and improving predictive performance.

Kalouptsoglou et al. [2020] investigated the use of deep learning with soft-
ware metrics to enhance cross-project vulnerability prediction, comparing machine

learning models and assessing feature selection using a PHP dataset.

Nguyen et al. [2024] proposed a method that combines automatic representa-
tion learning and deep domain adaptation, utilising a cross-domain kernel classifier

to enhance vulnerability detection in imbalanced labelled and unlabelled projects.

Zhang et al. [2023b] introduced CPVD, a cross-domain vulnerability detection
method that utilises a code property graph and a Graph Attention Network with
Convolution Pooling to extract features alongside Domain Adaptation Representa-

tion Learning to reduce distribution discrepancies.

6.2. Background 244

Du et al. [2024] proposed CPMSVD, a method for snippet-level vulnerability
detection using snippet attention, deep feature representation (AST-based Neural
Network (ASTNN) for global, Bi-directional Gated Recurrent Unit (BiGRU) for
local), domain adaptation (CORrelation ALignment (CORAL), Semi-Supervised
Metric Transfer (SSMT)), and a K-Nearest Neighbors (KNN) classifier for vulner-

ability identification.

These methodologies demonstrate diverse and sophisticated approaches to
cross-project vulnerability prediction, highlighting the complexity of the problem.
The following subsection discusses how data quality and quantity are critical factors

in vulnerability prediction.

6.2.2 Data Quality Challenges in Vulnerability Prediction

Data quality is crucial in vulnerability prediction because models adhere to the
Garbage In, Garbage Out (GIGO) principle. While data-related issues affect
both within- and cross-project vulnerability prediction settings, they are more pro-
nounced in the latter due to the diversity of software systems. High-quality data is
essential for accurate and reliable models [Jimenez et al., 2019], requiring signifi-
cant attention to collection and processing [Zheng and Casari, 2018]. Vulnerabil-
ity prediction requires samples of both vulnerable and non-vulnerable code, which
compounds the data quality challenge [Walden et al., 2014]. Obtaining quality vul-
nerability data is difficult due to its infrequency [Zimmermann et al., 2010], in-
consistent reporting [Anwar et al., 2021], and organisations’ reluctance to share
sensitive data [Coulter et al., 2020] related to the security posture of their software

systems.

This subsection discusses critical factors contributing to data quality challenges
in vulnerability prediction based on themes identified by Croft et al. [2022]: data
generalisability, data accessibility, data preparation effort, data scarcity, label noise,

and data noise.

6.2. Background 245

6.2.2.1 Data Generalisability

Data generalisability is a significant challenge in vulnerability prediction. Real-
world relevance is crucial, as synthetic data often used in vulnerability prediction
analyses might not reflect actual vulnerabilities encountered in practice [Shahriar
and Zulkernine, 2012]. External validity is also a concern, as data are often specific
to particular programming languages, applications, or domains, limiting generalis-
ability [Shahriar and Zulkernine, 2012, Hanif et al., 2021]. Additionally, vulnerabil-
ities may span multiple components, and code representations used in predictions
may fail to capture all relevant details, leading to a lack of completeness [Sidi et al.,

2012, Shin and Williams, 2013, Tantithamthavorn et al., 2015].

6.2.2.2 Data Accessibility

Data accessibility is also a critical issue in vulnerability prediction. An aspect of this
issue is the cold-start problem, a situation where a process must start without prior
information. In our context, it refers to a situation characterised by a deficiency
in previously identified vulnerabilities required for training a model [Croft et al.,
2021]; thus, the limited data availability hinders comprehensive analyses [Neuhaus
et al., 2007]. Also, data privacy concerns further complicate accessibility, as organ-
isations may be reluctant to share sensitive data due to commercial, ethical, or legal
reasons! 2 3. Even worse, when available, the data may be vague or incomplete due

to inconsistent reporting practices [Anwar et al., 2021].

6.2.2.3 Data Preparation Effort

Collecting and labelling data is labour-intensive and requires significant human re-
sources. It also demands domain expertise, as accurately labelling vulnerabilities

requires deep knowledge of the concerned software system(s) [Zhang et al., 2023b].

"https://www.gov.uk/government /publications/data-sharing-governa
nce-framework/data-sharing-governance-framework

’https://ico.org.uk/for-organisations/advice-for-small-organisat
ions/whats-new/blogs/data-sharing-when-is—it-unlawful/

3https://www.ukri.org/wp-content/uploads/2021/08/MRC-0208212-GDP
R-lawful-basis—-research-consent-and-confidentiality.pdf

https://www.gov.uk/government/publications/data-sharing-governance-framework/data-sharing-governance-framework
https://www.gov.uk/government/publications/data-sharing-governance-framework/data-sharing-governance-framework
https://ico.org.uk/for-organisations/advice-for-small-organisations/whats-new/blogs/data-sharing-when-is-it-unlawful/
https://ico.org.uk/for-organisations/advice-for-small-organisations/whats-new/blogs/data-sharing-when-is-it-unlawful/
https://www.ukri.org/wp-content/uploads/2021/08/MRC-0208212-GDPR-lawful-basis-research-consent-and-confidentiality.pdf
https://www.ukri.org/wp-content/uploads/2021/08/MRC-0208212-GDPR-lawful-basis-research-consent-and-confidentiality.pdf

6.2. Background 246
6.2.2.4 Data Scarcity

Data scarcity presents a significant challenge. There is often a significant imbal-
ance, with vulnerable code samples being much rarer than non-vulnerable ones,
which can skew analysis results. Additionally, the low sample size of vulnerable
code limits the exposure of models to a diverse range of vulnerabilities and pat-
terns, reducing the robustness of prediction models [Ban et al., 2019, Shu et al.,
2022, Liu et al., 2019]. This particular issue is demonstrated in Chapters 4 and 5,
where we had to rely on ‘Candidate’ vulnerable code samples in our vulnerability
dataset to augment the limited number of confirmed vulnerable code samples (See
Subsubsection 4.4.2.3) and also employ Synthetic Minority Oversampling Tech-
nique (SMOTE) to balance the number of vulnerable and non-vulnerable methods

(See Subsubsection 4.4.3.6).

6.2.2.5 Label Noise

Label noise has a significant impact on the quality of vulnerability prediction. In-
complete labels are prevalent, with datasets containing dormant or latent vulnera-
bilities that remain undetected, resulting in data gaps [Bosu and MacDonell, 2013].
The absence or inaccuracy of vulnerability location information complicates anal-
ysis [He and Garcia, 2009], and misclassifying vulnerabilities can cause models to
learn incorrect patterns, adversely affecting performance [Tantithamthavorn et al.,
2015, Bosu and MacDonell, 2013]. This issue is one we highlighted in Subsubsec-
tion 4.7.1.2.

6.2.2.6 Data Noise

Data noise, particularly in source code, presents substantial challenges. Irrele-
vant noise, whether stylistic or syntactic, can obscure meaningful patterns [Leicht
et al., 2017]. Redundant code elements, where identical or similar code exists
across vulnerable and non-vulnerable artefacts, also hamper model performance
[Tantithamthavorn et al., 2015]. Additionally, data heterogeneity from different
sources, varying developer styles, and differing project conventions can reduce the

versatility and effectiveness of prediction models, especially in cross-project set-

6.2. Background 247

tings [Tantithamthavorn et al., 2015, He and Garcia, 2009, Scandariato et al., 2014,
Jimenez et al., 2016, Liu et al., 2022b, Stuckman et al., 2016]. Thus, normalisation
techniques are often needed to mitigate these irregularities [Singh and Chaturvedi,
2020], which requires additional effort and expertise.

These data-related challenges adversely affect data-driven software engineer-
ing processes, such as vulnerability prediction. They emphasise the importance of
employing robust data collection and processing techniques to ensure the develop-
ment of reliable and accurate prediction models. Thus, addressing these challenges
is essential for developing effective vulnerability prediction techniques. This chap-
ter stress-tests our information retrieval-driven vulnerability prediction technique
by evaluating its generalisability across multiple software systems, focusing on data
quality and quantity limitations. The subsequent sections outline the methodology,

results, and discussion of this study.

6.3 Methodology

6.3. Methodology

248

This section outlines the methodology used in this chapter. We first provide an

overview of the methodology, followed by detailed descriptions of the dataset used

in the experiments, data preprocessing techniques, information retrieval strategies,

and machine learning analyses. These machine learning analyses use metrics data

developed using token-based and Code2Vec-based representations.

6.3.1 Overview of the Methodology

Develop a source
file-based target |

Obtain CVE-IDs and
CWE-IDs from the primary
source paper's dataset

A 4

Use CVE-IDs and
CWE-IDs to

Extract
vulnerability fix

obtain
vulnerability fixes
commit details

Pre-process |

software systems |
dataset

v

Determine the
vulnerable

A 4

commits' Java
source code files
from VCS

A 4

Obtain the pre-
vulnerability fix

source code

Derive a method-
5| based target

methods
(Ground Truth)

" | software systems
dataset

version of each
source code file

Complete
Token-based Vulnerability
Prediction Analysis
[as in Chapter 4]

A 4

Complete

Code2Vec-based

Vulnerability Prediction
Analysis

[as in Chapter 5]

Figure 6.1: Token- and Code2Vec-Based Vulnerability Prediction Methodology Overview

(Mixed-Project)

6.3. Methodology 249

Figure 6.1 illustrates the overall methodology used in this study, divided into
three core components: dataset acquisition for target software systems, token-
based vulnerability prediction analysis, and Code2Vec-based vulnerability predic-
tion analysis.

The first eight steps of the flowchart relate to the dataset acquisition process
for the target software systems. After completing dataset acquisition (step eight),
the flowchart branches into two separate paths for token-based and Code2Vec-based
vulnerability prediction analyses, as these analyses are conducted concurrently and
independently.

This chapter’s token-based vulnerability prediction analysis comprises five
core stages: extraction of token representations, generation of n-grams (shingles)
from tokens, setup of information retrieval, development of metrics data, and ma-
chine learning analysis.

This chapter’s Code2Vec-based vulnerability prediction analysis comprises
four core stages: extraction of Code2Vec representations, setup of information re-
trieval, development of metrics data, and machine learning analysis.

For detailed token-based and Code2Vec-based vulnerability prediction

methodologies, refer to Sections 4.4 and 5.4, respectively.

6.3.1.1 Part A: Target Software Systems Dataset Acquisition

The process of acquiring the target software systems dataset involved six phases:

1. Collection of CVE and CWE IDs: The primary source paper for the dataset
used in this chapter provided several thousand samples of vulnerable and non-
vulnerable code from various software systems, identified by their associated
CVE and CWE IDs We compiled a list of these IDs to identify the vulnerable

code samples”.

2. Identification of Vulnerability-Fix Commits: The secondary reference pa-
per, from which the primary source paper obtained the dataset, contained

detailed information about the code samples, including vulnerability-fix com-

‘https://cve.mitre.org/

https://cve.mitre.org/

6.3. Methodology 250

mits linked to the CVE and CWE IDs. We cross-referenced these IDs with
those in the dataset to identify the relevant commits in the respective version

control repositories.

3. Retrieval of Source Code: We created a ‘file-level” dataset by retrieving Java
source code files associated with the identified vulnerability-fix commits. By
‘file-level’, we mean in the dataset context, each file represents a single code
artefact, i.e., the unit of analysis. We also retrieved previous versions of each
source code file prior to the fixes, including any files that were deleted as part

of the fixes.

4. Preprocessing of Source Code: We removed comments and other irrelevant
elements from the source code files to eliminate noise that could affect the

analysis.

5. Extraction of Ground Truth Data: Using the current and previous versions
of the source code files, we determined the ground truth for each method,

labelling them as either vulnerable or non-vulnerable.

6. Construction of the Target Software Systems Dataset: We parsed the
source code files and constructed a method-level dataset comprising meth-

ods labelled as vulnerable or non-vulnerable based on the ground truth data.

6.3.1.2 Part B: Token-Based Analysis

This part of the methodology is identical to the token-based vulnerability prediction
analysis detailed in Section 4.4, specifically from Subsubsections 4.4.1.1 to 4.4.1.6.
However, we note that churn-related metrics were excluded in this chapter due to

the dataset’s multi-system nature.

6.3.1.3 Part C: Code2Vec-Based Analysis

This part of the methodology mirrors the Code2Vec-based vulnerability prediction
analysis detailed in Section 5.4, specifically from Subsubsections 5.4.1.1 to 5.4.1.5.
Again, churn-related metrics were excluded in this chapter due to the dataset’s

multi-system nature.

6.3. Methodology 251

This section provided an overview of the methodology, summarising the ex-
perimental procedures used in this chapter. The upcoming sections provide more

details on the dataset and other relevant aspects of the methodology.

6.3.2 Dataset

We obtained our dataset in the first quarter of 2024 from Al Debeyan et al. [2022]’s
work (reviewed in Subsection 3.2.1). The dataset is a CSV file containing informa-
tion on several Java methods from multiple software systems. It includes columns
holding information on the project name, CVE ID, CWE ID, method name, N-
grams of AST representations, and a binary vulnerability status column indicating
whether the method is vulnerable or not.

Since our analyses required the source code of the methods, which was not
included in the dataset, we retrieved it from the software systems’ version con-
trol repositories. We referred to the study by Reis and Abreu [2021], from which
Al Debeyan et al. [2022] obtained their dataset. This secondary source study pro-
vided detailed information about the code samples, including the vulnerability-fix
commits linked to the CVE and CWE IDs. This enabled us to identify the relevant
commits in the version control repository (GitHub) and retrieve the source code of

the methods.

6.3.2.1 Target Software Systems

To retrieve the source code of the methods, we used PyDriller5, a Python framework
for extracting information from version control repositories. We cross-referenced
the CVE and CWE IDs in Al Debeyan et al. [2022]’s dataset with those in Reis and
Abreu [2021]’s dataset to identify the vulnerability-fix commits.

This allowed us to retrieve the source code of the methods associated with
the vulnerability-fix commits. We also obtained previous versions of each source
code file before the fixes. Additionally, we gathered supplementary information for
each file, including the project name, commit hash, GitHub URL, and file paths.

This enabled us to build a file-centric dataset of target software systems, primarily

Shttps://pydriller.readthedocs.io/

https://pydriller.readthedocs.io/

6.3. Methodology 252

comprising pre- and post-vulnerability-fix versions of the source code files associ-
ated with the vulnerability-fix commits for the CVE and CWE IDs obtained in our

primary source paper’s dataset.

6.3.2.2 Ground Truth Data Development

Since our vulnerability prediction analyses in this thesis focus on the method level,
we shifted from file-level to method-level analysis to determine the ground truth

data for each method.

We compared the pre- and post-vulnerability-fix versions of the source code
files to label each method as vulnerable or non-vulnerable based on the changes
made. A method was considered vulnerable if it existed in the pre-fix version but
was deleted or modified in the post-fix version. Conversely, a method was con-
sidered non-vulnerable if it remained unchanged between the two versions or was

added in the post-fix version.

Apart from dataset acquisition, this ground truth determination approach is the
only methodological similarity between our work and the primary source paper,
i.e., Al Debeyan et al. [2022]’s work. The primary source paper adopted the same

approach to determine the ground truth in their methodology.

6.3.2.3 National Institute of Standards and Technology (NIST) Soft-

ware Assurance Reference Dataset (SARD)

Building on previous chapters, this work also uses the NIST Software Assurance
Reference Dataset as a source of known Java software vulnerabilities. See Subsub-

section 4.4.2.3.

We used the same SARD artefacts as in previous chapters, totalling 20,692
known vulnerable methods (see Table 4.9). To ensure a fair comparison between
within-project and mixed-project techniques, we preprocessed the source code files
in the vulnerability dataset in the same manner as the target software systems
dataset, as described in Subsubsection 6.3.1.1. This included removing irrelevant

elements, such as comments, to reduce noise in the analysis.

6.3. Methodology 253

Table 6.1: Dataset Details - Multiple Software Systems

Description Value
Total Number of Software Systems 132
Total Number of Vulnerability Fixes 672

Total Number of Indexed Vulnerability Dataset Methods 20,692

Table 6.1 provides an overview of the dataset details for the multiple software
systems used in this chapter. The target software systems dataset included 132
software systems with 672 vulnerability fixes. The vulnerability dataset contained
20,692 known vulnerable methods, consistent with the number of known vulnerable

methods used in Chapters 4 and 5.

6.3.3 Data Preprocessing

We used the same data preprocessing techniques as in the previous two chapters. For
the token-based analysis, we followed the method in Chapter 4 (Subsection 4.4.3).
For the Code2Vec-based analysis, we applied the technique described in Chapter 5
(Subsection 5.4.3).

6.3.3.1 Data Deduplication

Similar to the previous two chapters, we removed duplicate methods (based on their
representations) to prevent data leakage in the machine learning analysis. Our dedu-
plication process is fully described in Subsubsection 4.4.3.3.

Failing to address data leakage in vulnerability prediction analyses adequately
can lead to overly optimistic results. This is an issue we observed in Al Debeyan
et al. [2022]’s study, the primary source paper for this chapter’s dataset. We re-
viewed the study in Subsection 3.2.1 and further discussed it in Subsection 5.6.1.
In their methodology, they stated that they removed duplicates from the dataset.
However, a closer look at their dataset revealed that their deduplication process was
flawed. Their binary classification dataset is a CSV file comprising six columns,
including project name, CVE ID, CWE ID, method name, AST N-grams, and vul-
nerability status, which contain 53,201 instances. Upon inspection, we observed

that only 29,693 AST N-grams (features) are unique out of these instances, which

6.3. Methodology 254

accounts for 55.81% of the dataset. Furthermore, the study employed a 10-fold
cross-validation, which means that the dataset was split into ten folds, and the model
was trained and tested ten times. This means that the same instances were used in
multiple folds, likely leading to data leakage. We observed that they conducted their
deduplication using all the CSV columns rather than just the AST N-grams column.
This would have led to some of the exact AST N-grams appearing in multiple folds,
potentially resulting in overly optimistic results. This is a significant issue in the

study, affecting the reliability of the results.

Table 6.2: Post-Deduplication Dataset Details - Multiple Software Systems

Description Value Y0
Number of Non-Vulnerable Methods Post-Deduplication 19,421 94.72
Number of Vulnerable Methods Post-Deduplication 1,081 5.28
Total Number of Methods Post-Deduplication 20,502

Table 6.2 provides an overview of the post-deduplication dataset details for the
token-based and Code2Vec-based analyses. The dataset comprises 20,502 meth-
ods, including 19,421 non-vulnerable (94.72%) and 1,081 vulnerable (5.28%). The
class distribution is significantly imbalanced, with non-vulnerable methods vastly

outnumbering vulnerable ones.

6.3.3.2 Feature Scaling

As in the previous chapters, we normalised the metrics data using Min-Max scaling
to ensure uniform scaling across all feature values and prevent bias towards features
with larger values. Subsubsection 4.4.3.5 provides a detailed explanation of this

process.

6.3.3.3 Software System Vulnerabilities and Data Imbalance

After deduplication, we observed a significant data imbalance in our token-based
and Code2Vec-based datasets, with non-vulnerable methods vastly outnumbering
vulnerable ones, which was expected. This issue is common in vulnerability pre-

diction research, as discussed in Subsubsection 6.2.2.4.

6.3. Methodology 255

Typically, software systems contain far more non-vulnerable than vulnerable
code artefacts, making it challenging to train an effective classifier. This imbalance
can bias classifiers towards the majority class (non-vulnerable), reducing perfor-

mance in predicting the minority class (vulnerable).

Although the imbalance in our datasets was not as extreme as in the previous
two chapters, it was still significant, with non-vulnerable methods at 94.72% and
vulnerable methods at 5.28%, as shown in Table 6.2. To address this, we employed

the SMOTE as in Chapters 4 and 5. See Subsubsection 4.4.3.6 for details.

6.3.4 Information Retrieval

We constructed an information retrieval document index using 20,692 source code
token representations of methods in the vulnerability dataset, as shown in Table 6.1.
We created two information retrieval setups using Apache Lucene, one for token-
based and one for Code2Vec-based analysis.

Both setups are fully described in the previous chapters. Refer to Subsec-

tions 4.4.4 and 5.4.4 for the token-based analysis and Code2Vec-based analysis,

respectively.

Table 6.3: Percentage of Vulnerable versus Non-Vulnerable Methods with Hits - Multiple
Software Systems

Number of Vulnerable Methods 1081
Number of Vulnerable Methods with Hits 914
% of Vulnerable Methods with Hits 84.55
Number of Non-Vulnerable Methods 19,421
Number of Non-Vulnerable Methods with Hits 8,989
% of Non-Vulnerable Methods with Hits 46.28

Table 6.3 supplements Table 6.2. It shows the percentage of vulnerable and
non-vulnerable methods with hits in the target software systems dataset, demon-
strating that vulnerable methods are significantly more likely to share patterns with
vulnerable code than non-vulnerable methods, an observation consistent with the

previous chapters and extensively discussed in Subsections 4.6.2 and 5.6.2.

6.3. Methodology 256

6.3.5 Machine Learning Analysis

We proceeded to the machine learning analysis phase, following the token-based
and Code2Vec-based information retrieval and metrics data development phases.
The metrics data abstracts the type of representation used in the information re-
trieval phase. The metrics data are the independent variables for the machine learn-
ing classification task, while the ground truth data is the dependent variable. The
machine learning analysis described in Subsection 4.4.5 applies to Chapters 4, 5,
and this chapter.

The only difference in this chapter is the exclusion of churn-related metrics
from the metrics data development phase, as the dataset is derived from multiple
software systems, not multiple releases of the same system. We excluded TICC,
TRICC, NTDT, and NTDDT for the token-based analysis (see Subsection 4.3.1 and
Table 4.1). For the Code2Vec-based analysis, we excluded PICC, PRICC, NTDP,
and NTDDP (see Subsection 5.3.1 and Table 5.1).

Apart from these differences, the machine learning analysis phase in this chap-

ter is similar to that of the previous two chapters.

6.3.6 Approach to Question 3

The primary goal of this chapter is to address Research Question 3: How well does
the information retrieval-driven software vulnerability prediction technique gener-
alise across multiple software systems?

We set four objectives to address this question:

1. Identify the most suitable classifier for vulnerability prediction across multi-

ple software systems for token-based and Code2Vec-based analyses.

2. Identify the best-performing combination of software metrics for vulner-
ability prediction across multiple software systems for token-based and

Code2Vec-based analyses.

3. Evaluate the impact of hyperparameter tuning on the performance of the best-

performing classifier for token-based and Code2Vec-based analyses.

6.3. Methodology 257

4. Investigate the impact of dataset variability on vulnerability prediction per-

formance.

6.3.6.1 Objective 1

To achieve the first objective, we assessed the performance of ten machine learning
classifiers on the token-based and Code2Vec-based metrics data using precision,
recall, and F1 scores. The classifier with the highest F1 score, the harmonic mean

of precision and recall, was selected.

6.3.6.2 Objective 2

We used Sequential Forward Selection for the second objective to find the optimal
combination of metrics for vulnerability prediction. This technique systematically
evaluates different metrics combinations to identify the best feature set for classifi-

cation (see Subsubsection 4.4.6.2 for details).

6.3.6.3 Objective 3

To achieve the third objective, we employed the Grid Search technique to tune the
hyperparameters of the best-performing classifier. This technique systematically
evaluates different hyperparameter combinations to find the optimal configuration

(see Subsubsection 4.4.6.3 for details).

6.3.6.4 Objective 4

The dataset used in this chapter is derived from multiple software systems, intro-
ducing variability that can affect vulnerability prediction. For the fourth objective,
we investigated the impact of dataset variability on vulnerability prediction perfor-
mance. We conducted analyses to investigate the impact of dataset variability on
vulnerability prediction by examining the Coefficient of Variation of the metrics
used in the analyses.

The Coefficient of Variation measures a dataset’s relative variability. It is a di-
mensionless quantity expressed as a percentage, making it helpful in comparing the
variability of datasets with different units or means. The Coefficient of Variation is

calculated by dividing a dataset’s standard deviation by its mean and multiplying by

6.3. Methodology 258

100. ‘Dataset’ refers to a single metric used in the vulnerability prediction analysis
in this context.

The primary advantages of using the Coefficient of Variation include:

* Independence from Units: As a dimensionless measure, the Coefficient of

Variation allows direct comparisons between datasets with different units.

* Relative Measure: Coefficient of Variation provides a relative measure of

variability, which is helpful in comparing datasets with different means.

» Ease of Interpretation: Expressed as a percentage, Coefficient of Variation

is easy to interpret.

» Simplicity of Calculation: Coefficient of Variation requires only the mean

and standard deviation of the dataset.

* Facilitates Comparisons: Coefficient of Variation simplifies the comparison

of variability between multiple datasets.

By calculating the Coefficient of Variation of the metrics used in our vulner-
ability prediction analyses, we gained insights into the stability and consistency
of the metrics across the datasets, allowing us to understand the impact of dataset
variability on vulnerability prediction. We conducted these analyses for our single
software system (within-project dataset) used in Chapters 4 and 5, as well as for
the multiple software systems (mixed-project dataset) used in this chapter, for both

token-based and Code2Vec-based metrics.

6.3.7 Summary of Methodological Differences Across Chapters

To conclude this methodology section, we summarise the key methodological dif-
ferences between this chapter and the previous two chapters in Table 6.4. The table
highlights differences in the prediction setting, dataset type (software system), num-
ber of metrics, source code attributes considered, and the type of representation used
in the information retrieval phase.

In the subsequent sections, we present the results of the vulnerability prediction

analysis, discuss the findings, and address the threats to validity associated with

6.3. Methodology 259

Table 6.4: Methodological Differences Between Chapters 4, 5, and the Current Chapter

Description Chapter 4 Chapter 5 Current Chapter
Setting Within-Project Within-Project Mixed-Project
Software System Single Single Multiple

Number of Metrics Sixteen (16) Sixteen (16) Twelve (12)

Code Pattern Similarity Applicable Applicable Applicable
Intricacy Applicable Applicable Applicable

Size Applicable Applicable Applicable

Code Churn Applicable Applicable Not Applicable
Representation Token-Based = Code2Vec-Based Both

this chapter. We then directly and conclusively address the third and final research

question in this thesis.

6.4. Results 260

6.4 Results

This section presents the results of the vulnerability prediction analysis conducted
in this chapter. We present the results according to the four objectives outlined in

Subsection 6.3.6.

6.4.1 Objective 1 Results

Identify the most suitable classifier for vulnerability prediction across multiple soft-
ware systems for token-based and Code2Vec-based analyses.

This objective aimed to identify the most effective classifier for predict-
ing vulnerabilities across multiple software systems, using both token-based and

Code2Vec-based analyses.

6.4.1.1 Token-Based Evaluation Metrics Trend Analysis

® AdaBoost Classifier ® LGBM Classifier
Decision Tree Classifier Linear SVC
® Gaussian Naive Bayes ® Logistic Regression
® Gradient Boosting Classifier Random Forest Classifier
® K-Neighbors Classifier ® XGB Classifier
1.0
0.9 A
0.8
0.7
0.6
e
k]
%]
S 0.5 1
g
o
0.4
0.3 ° [] e ° ® ® [) (]) 8 °
’ : ' : " = [] [] a $
0.2 4 o % ® ® L] 4 $! b []
o [] [] [}] [}]
2 8 3 s ¢ 3
0.1 A
0.0 T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12

Best-k-Metric Combination

Figure 6.2: Precision Trend across all Best-k-Performing Metrics Combinations (Token-
Based Analysis)

Figure 6.2 shows the precision trend for the top k metrics combinations in the
token-based analysis. Precision values for all classifiers are notably low, with the

highest being approximately 0.32, achieved by the Gradient Boosting classifier at

6.4. Results 261

k = 1. All other precision values for the classifiers and top kK combinations are below

this.
® AdaBoost Classifier ® LGBM Classifier
Decision Tree Classifier Linear SVC
® Gaussian Naive Bayes ® Logistic Regression
® Gradient Boosting Classifier Random Forest Classifier
® K-Neighbors Classifier ® XGB Classifier
1.0
0.9 A
0.8
0.7
0.6
g 0.5
° L] * ? ®
0.4 A ° ®
0.3 1 ® ®
[]
0.2 [
[) & o ([} o o a e o a Y ®
0.1
f 2 2 8 &8 & &8 & & % 1
0.0 N * + + a n s s an an T ‘w-—
0 1 2 3 4 5 6 7 8 10 11 12
Best-k-Metric Combination

Figure 6.3: Recall Trend across all Best-k-Performing Metrics Combinations (Token-
Based Analysis)

Figure 6.3 shows the recall trend for the top k metrics combinations in the
token-based analysis. Similar to the precision trend, recall values are relatively low
for all classifiers across all top k combinations. The only exception is the Gaussian
Naive Bayes classifier at k = 10, achieving a recall of 0.45. Although this is the
highest recall value, it remains relatively low. All other recall values from other

classifiers are below 0.20.

Figure 6.4 shows the F1 score trend for the token-based analysis’s top k£ metrics
combinations. Since the F1 score is the harmonic mean of precision and recall,
low F1 scores are expected for all classifiers. The only classifier exceeding the
0.20 threshold was the Gaussian Naive Bayes, maintaining this level from k = 3 to
k =12, with a maximum F1 score of 0.22. Other classifiers had significantly lower

F1 scores across all top k combinations.

6.4. Results 262

® AdaBoost Classifier ® LGBM Classifier
Decision Tree Classifier Linear SVC
® Gaussian Naive Bayes ® Logistic Regression
® Gradient Boosting Classifier Random Forest Classifier
® K-Neighbors Classifier ® XGB Classifier
1.0
0.9 A
0.8
0.7
0.6
g
o
@ 0.5
—
w
0.4 1
0.3 A
0.2 1 ® e []] L] (] ([] ® [] ® Y
® a [] @ 9 L ® L4 b4 °
0.1
®
(S T T S S T R R B S -
0.0] v L L 9 L L e L]]] L]
0 1 2 3 4 5 6 7 8 9 10 11 12
Best-k-Metric Combination

Figure 6.4: F1 score Trend across all Best-k-Performing Metrics Combinations (Token-
Based Analysis)

6.4.1.2 Code2Vec-Based Evaluation Metrics Trend Analysis

Figure 6.5 illustrates the precision trend for the top k metrics combinations in the
Code2Vec-based analysis. Similar to the token-based analysis, precision values are
low for all classifiers. The Linear Support Vector classifier achieved the highest pre-
cisionatk =1, k=2, and k = 12, with values around 0.31. The Logistic Regression
classifier outperformed it from k = 3 to k = 11, maintaining a precision of around

0.30. Other classifiers had significantly lower precision values.

Figure 6.6 illustrates the recall trend for the top k metrics combinations in the
Code2Vec-based analysis. Recall values are low for all classifiers. The Gaussian
Naive Bayes classifier performed best, achieving the highest recall of around 0.26
at k = 12. Other classifiers had recall values below 0.20, performing significantly

WOrseE.

Figure 6.7 shows the F1 score trend for the top k metrics combinations in the

Code2Vec-based analysis. F1 scores are low for all classifiers. The Gaussian Naive

6.4. Results 263

® AdaBoost Classifier ® LGBM Classifier
Decision Tree Classifier Linear SVC
® Gaussian Naive Bayes ® Logistic Regression
® Gradient Boosting Classifier Random Forest Classifier
® K-Neighbors Classifier ® XGB Classifier
1.0
0.9 1
0.8
0.7 1
0.6 1
e
ied
%]
S 0.5 1
o
o
0.4 1
0.3 1 ®] ® [] ®
¢ 3 I ¢ S ¢ e
0.21] H $ 8 § g o e | s 8
. ! [|] ' [4 | J .
Ps M 8 M ®] 3]
® e [] |]
0.1
0.0 T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12

Best-k-Metric Combination

Figure 6.5: Precision Trend across all Best-k-Performing Metrics Combinations
(Code2Vec-Based Analysis)

Bayes classifier achieved the highest F1 score, around 0.20 at k = 8. Other classi-

fiers had F1 scores below 0.20, performing significantly worse.

To address the first objective, we identified the Gaussian Naive Bayes clas-
sifier as the best-performing classifier for vulnerability prediction across multiple
software systems in both the token-based and Code2Vec-based analyses. However,
we highlight that the performance of all classifiers across the top k metrics com-
binations was generally poor and not actionable, with low precision, recall, and

F1 scores.

6.4.2 Objective 2 Results

Identify the best-performing combination of software metrics for vulnerability pre-
diction across multiple software systems for token-based and Code2Vec-based anal-
yses.

This objective aimed to identify the optimal combination of metrics for vulner-

ability prediction across multiple software systems using Sequential Forward Selec-

6.4. Results 264

® AdaBoost Classifier ® LGBM Classifier
Decision Tree Classifier Linear SVC
® Gaussian Naive Bayes ® Logistic Regression
® Gradient Boosting Classifier Random Forest Classifier
® K-Neighbors Classifier ® XGB Classifier
1.0
0.9 A
0.8
0.7
0.6
E
$ 0.57
o
0.4 1
0.3 A
° ° ' ® ® g
0.2 1 ® ® ® [4
[
0.1 [) S o 9 o [) [] [] [Y o
ol & & 8 & & § § 8 & § & §|
0 1 2 3 4 5 6 7 8 9 10 11 12
Best-k-Metric Combination

Figure 6.6: Recall Trend across all Best-k-Performing Metrics Combinations (Code2Vec-
Based Analysis)

tion for both token-based and Code2Vec-based analyses. Similar to Chapters 4 and
5, we first present the Correlation Matrix for both the token-based and Code2 Vec-
based analyses in Figures 6.8 and 6.9, respectively. The matrices feature a two-level
grouping structure. Firstly, rows and columns are categorised into ground truth, hit-
independent, and hit-dependent metrics. Secondly, the latter two categories are
further clustered based on their constituent metrics. The Pearson Correlation Co-
efficient quantifies the linear association between two variables, ranging from —1
(strong negative correlation) to 1 (strong positive correlation), with 0 indicating no
correlation. We categorise the values within the correlation matrix according to the
classification scheme presented in Table 4.13. Each matrix includes a colour scale
on the right side, using a diverging colour scheme: red hues at the top indicate a
strong positive correlation, white in the middle signifies no correlation, and teal

tones at the bottom indicate a strong negative correlation.

6.4. Results 265

® AdaBoost Classifier ® LGBM Classifier
Decision Tree Classifier Linear SVC
® Gaussian Naive Bayes ® Logistic Regression
® Gradient Boosting Classifier Random Forest Classifier
® K-Neighbors Classifier ® XGB Classifier
1.0
0.9 A
0.8
0.7
0.6
g
o
@ 0.5
—
w
0.4 1
0.3 A
0.2 ° ® ® ® ® ® ® ® [} ® []
° ¢ [] [8 e e
0.1 Py
,..-aa:aa::i
0.0 L L L] - - - - L] . . .
0 1 2 3 4 5 6 7 8 9 10 11 12

Best-k-Metric Combination

Figure 6.7: F1 score Trend across all Best-k-Performing Metrics Combinations

(Code2Vec-Based Analysis)

Below, we outline the critical observations derived from the correlation matrix.

The complete names of the metrics are provided in Tables 5.1 and 5.3, with metrics

abbreviated in the correlation matrix for brevity.

6.4.2

.1 Token-Based Metrics Correlation Analysis

Figure 6.8 presents the correlation matrix of all token-based metrics and the ground

truth.

The main observations are as follows:

1.

Certain cells within Band No. 1 exhibit values of ‘1’ or values close to ‘1’, in-
dicating a strong positive correlation between specific metrics. Notably, there
is a significant correlation between NUSM and SMR, as well as between
metrics and their distinct equivalents, such as NHS and NDHS. This outcome
aligns with expectations due to the conceptual similarities among these met-
rics. However, these high correlations suggest potential redundancy, which

may affect model performance.

6.4. Results 266

1.00

Truth

1 0.19 0.22 0.22 0.091 0.046 0.15 0.17 0.17 0.12 0.15 0.12 0.15

Ground

NTT

- 0.19 0.75

- 022

NDTT

0.50
- 022

TRU

- 0.091

TVSSR

-0.25

- 0.046

SHTSR

- 015 -0.00

SHVSR

- 017

NUSM

--0.25
- 017

SMR

- 012

NHS

—-0.50

- 015

- 015

NDHS

-0.75

NVT

NDVT

—-1.00

'
Ground NTT TVSSR SHTSR SHVSR NUSM
Truth

Figure 6.8: Correlation Matrix of all Metrics + Ground Truth (Token-Based Analysis)

2. No metrics exhibit negative correlations with other metrics or the ground
truth, as no cells have a value below ‘0.” The lowest value is ‘0.039’, observed

between SHTSR and NTT, which still indicates a weak positive correlation.

3. The NTT & NVT metrics, tailored to the target software system and the
vulnerability dataset, respectively, show a weak positive correlation of 0.34
(Band No. 4). This correlation improves to 0.55 (Band No. 3) when hits are
considered, as seen between SHTSR & SHVSR. This highlights the impor-

tance of hits in the vulnerability prediction process.

4. The TVSSR metric, encompassing the target software system and its corre-
sponding method in the vulnerability dataset, shows a stronger association
with SHTSR & SHVSR than between SHTSR & SHVSR alone. TVSSR has
a high positive correlation of 0.83 (Band No. 1) with SHTSR and 0.85 (Band

6.4. Results 267

No. 1) with SHVSR, compared to 0.55 (Band No. 3) between SHTSR &
SHVSR. This highlights the significance of the TVSSR metric in vulnerabil-

ity prediction.

5. The ground truth shows no strong correlation with any single metric, with
the highest being 0.22 (Band No. 4) between the ground truth and NDTT &
TRU.

6.4.2.2 Code2Vec-Based Metrics Correlation Analysis

1.00
'UE
Ef= 0.032 -0019 0076 0064 0064 0075 0075 0.039 0.028
6]
[N
= . -0.1
£ 0.097 -0.073 0.31 0.25 0.25 0.17 0.17 0.14 0.11 075
o
5 0.27 0.27 0.2 0.2 0.16 0.12
=
5 0.50
z- -014 -0. -0. -0. 032 -0.29
o
&
Ef 0.032 0.26
-0.25
&
£- -0019 -0073 -0.07
z
&
2. 0076 031 0.35 -0.00
z
=
- 0064 025 0.27
=
--0.25
o
S- 0064 025 0.27

£- 0075 017 02
-0.50

S
I 0075 017 02
2
$- 0039 o014 016 -0.75
N
Z- 0028 011 012 029 -015 026 -02
=2

: L _1.00

' ' ' ' ' ' " "
Ground NTP NDTP PRU TVPSR PHTSR PHVSR NUPM PMR
Truth

Figure 6.9: Correlation Matrix of all Metrics + Ground Truth (Code2Vec-Based Analysis)

Figure 6.9 presents the correlation matrix of all Code2Vec-based metrics and

the ground truth.

The main observations are:

6.4. Results 268

. Compared to the token-based correlation matrix (Figure 6.8), the Code2Vec-
based correlation matrix generally shows weaker positive correlations be-

tween metrics, as evidenced by the overall lighter hues.

. Similar to the token-based correlation matrix, the Code2 Vec-based matrix re-
veals a significant positive correlation between specific metrics. For example,
NUPM & PMR and NHP & NDHP exhibit a perfect positive correlation of 1
(Band No. 1). These correlations suggest that these metrics assess the same
attributes with slight methodological differences, indicating potential redun-

dancy.

. Unlike the token-based correlation matrix, the Code2Vec-based matrix ex-
hibits negative correlations between specific metrics, particularly between
PRU and other metrics, including the ground truth. The highest negative cor-
relations are between PRU and NHP and between PRU and NDHP, with a
value of -0.52 (Band No. 9). This is expected as PRU measures the unique-
ness of a method, which inversely relates to the number of hits (NHP &

NDHP).

. The NTP & NVP metrics, analogous to the NTT & NVT metrics in the
token-based analysis, focus on the target software system and the vulnerabil-
ity dataset, respectively. These metrics show a very weak positive correlation
of 0.14 (Band No. 5). When hits are incorporated, such as between PHTSR
and PHVSR, the correlation improves to 0.46 (Band No. 3).

. The TVPSR metric, which integrates the target software system and its corre-
sponding most similar method in the vulnerability dataset, shows a stronger
association with PHTSR and PHVSR than the direct association between
PHTSR and PHVSR. TVPSR exhibits high positive correlations of 0.71
(Band No. 2) with PHTSR and 0.87 (Band No. 1) with PHVSR, whereas
the correlation between PHTSR and PHVSR is 0.46 (Band No. 3). This

highlights the significance of the TVPSR metric in vulnerability prediction.

6.4. Results 269

6. Similar to the token-based correlation matrix and previous chapters, the

ground truth has no strong correlation with any single metric, with the highest

being 0.20 (Band No. 4) between the ground truth and NDTP.

In Chapters 4 and 5, we discussed how the correlation matrix can help iden-
tify and exclude redundant metrics to improve a model’s performance. However,
we observed that excluding seemingly redundant metrics often did not enhance per-
formance and sometimes slightly worsened it. Therefore, we included all metrics
in our analyses to ensure no potentially beneficial metrics were excluded. Instead,
we used the Sequential Forward Selection technique to identify the best-performing
combination of metrics for vulnerability prediction. We adopted the same approach

in this chapter for consistency.
6.4.2.3 Token-Based Classifier Performance Analysis

Table 6.5: Best Performance Per Classifier (Token-Based Analysis)

Classifier Best k Precision Recall F1 score
Gaussian Naive Bayes 5 0.16780 0.29921 0.21477
Decision Tree classifier 5 0.15315 0.17742 0.16714
Random Forest classifier 9 0.23641 0.11748 0.15860
K-Nearest Neighbors classifier S 0.17887 0.13784 0.15525
XGBoost classifier 5 0.21315 0.05374 0.08520
Logistic Regression 5 0.29859 0.04681 0.08022
LightGBM classifier 7 0.26069 0.03062 0.05428
Linear Support Vector classifier 1 0.28867 0.02193 0.04035
Gradient Boosting classifier 2 0.30755 0.01378 0.02611
AdaBoost classifier 7 0.22889 0.00907 0.01740

Table 6.5 presents the best performance per classifier in the token-based anal-
ysis, sorted by the highest F1 score in descending order. The Gaussian Naive Bayes
classifier achieved the highest F1 score of 0.21477 at k = 5, followed by the Deci-
sion Tree classifier with an F1 score of 0.16714 at k = 5, and the Random Forest
classifier with an F1 score of 0.15860 at k = 9.

At the lower end, the AdaBoost classifier achieved the lowest F1 score of

0.01740 at k = 7, followed by the Gradient Boosting classifier with an F1 score

6.4. Results 270

of 0.02611 at k = 2, and the Linear Support Vector classifier with an F1 score of
0.04035 at k = 1.

6.4.2.4 Code2Vec-Based Classifier Performance Analysis

Table 6.6: Best Performance Per Classifier (Code2Vec-Based Analysis)

Classifier Best k Precision Recall F1 score
Gaussian Naive Bayes 8 0.17859 0.23869 0.20394
Decision Tree classifier 8 0.12479 0.17206 0.14639
Random Forest classifier 7 0.20633 0.10276 0.13468
K-Nearest Neighbors classifier 6 0.14916 0.11970 0.13250
XGBoost classifier 7 0.21741 0.04865 0.07883
Logistic Regression 2 0.28573 0.03608 0.06329
LightGBM classifier 1 0.26814 0.02933 0.05221
Linear Support Vector classifier 2 030382 0.02303 0.04244
Gradient Boosting classifier 2 0.21819 0.00934 0.01790
AdaBoost classifier 5 0.16817 0.00555 0.01057

Table 6.6 presents the best performance per classifier in the Code2Vec-based
analysis, sorted by the highest F1 score in descending order. The Gaussian Naive
Bayes classifier achieved the highest F1 score of 0.20394 at k = 8, followed by
the Decision Tree classifier with an F1 score of 0.14639 at k = 8, and the Random
Forest classifier with an F1 score of 0.13468 at k = 7.

Conversely, the AdaBoost classifier achieved the lowest F1 score of 0.01057 at
k =5, followed by the Gradient Boosting classifier with an F1 score of 0.01790 at
k =2, and the Linear Support Vector classifier with an F1 score of 0.04244 at k = 2.

6.4.2.5 Token-Based Metrics Combination Analysis

Table 6.7 presents the best metrics combination per classifier in the token-based
analysis, categorised into hit-independent and hit-dependent metrics. The table
shows that hit-dependent metrics are more prevalent in the best metrics combina-
tions, consistent with the previous chapters.

The table also highlights the relative importance of each metric by indicating
its frequency of appearance in the best metrics combinations. For example, the

NDTT metric is part of the best metrics combination for all classifiers except the

6.4. Results 271

Table 6.7: Token-Based Best Metrics Combination Per Classifier

Metric Classifiers
AB | DT | GNB | GB | KN | LGBM | LSVC | LG | RF | XGB |

Hit-Independent
NTT

NDTT

TRU
Hit-Dependent
NHS

NDHS v
NVT
NDVT v v v
TVSSR v |V v
SHTSR v v
SHVSR
NUSM v v
SMR v v

v v |V

v v
v v v v v v
v

~

ANERENENEN
\

<
\
SSESESENEN

NENEN
NERENENEN

K-Nearest Neighbors and XGB classifiers. In contrast, the NDHS metric appears
only twice in the best metrics combinations, specifically for the Logistic Regression

and Random Forest classifiers.

Thus, regarding the token-based component of the second objective, the op-
timal combination of software metrics for vulnerability prediction includes those
used by the best-performing classifier, the Gaussian Naive Bayes classifier. These

metrics are NDTT, TRU, NDVT, SHTSR, and SMR.

6.4.2.6 Code2Vec-Based Metrics Combination Analysis

Table 6.8 presents the best metrics combination per classifier in the Code2 Vec-based
analysis, categorised into hit-independent and hit-dependent metrics. As expected,

hit-dependent metrics are more prevalent in the best metrics combinations.

The table also highlights the relative importance of each metric by indicating
the frequency with which it appears in the best metrics combinations. The NDTP
metric appears in the best metrics combinations for all classifiers, while the NDVP
metric appears only once in the best metrics combination for the Random Forest

classifier.

6.4. Results 272

Table 6.8: Code2Vec-Based Best Metrics Combination Per Classifier

Metric Classifiers
AB | DT | GNB | GB | KN | LGBM | LSVC | LG | RF | XGB |

Hit-Independent
NTP

NDTP v
PRU
Hit-Dependent
NHP v
NDHP v
NVP
NDVP v
TVPSR
PHTSR v v v v
PHVSR v
NUPM v
PMR v v

v
v v | v v v v
v

\
NEENENEN

NENEEENENEN
NENERENEN

(\
(\
NEN

ANEN

Therefore, regarding the Code2Vec-based component of the second objective,
the optimal combination of software metrics for vulnerability prediction includes
those used by the best-performing classifier, the Gaussian Naive Bayes classifier.

These metrics are NTP. NDTP, PRU, NHP, NDHP, PHTSR, NUPM, and PMR.

6.4.3 Objective 3 Results

Evaluate the impact of hyperparameter tuning on the performance of the best-

performing classifier for token-based and Code2Vec-based analyses.

This objective evaluated the impact of hyperparameter tuning on the perfor-
mance of the best-performing classifier for vulnerability prediction in both the

token-based and Code2Vec-based analyses.

6.4.3.1 Token-Based Parameter Grid and Best Hyperparameter Val-
uecs
Table 6.9 presents the parameter grid (default sci-kit-learn values marked with an

asterisk ‘*’) and best hyperparameter values for the Gaussian Naive Bayes classifier

in the token-based analysis.

6.4. Results 273

Table 6.9: Parameter Grid and Best Hyperparameter Values (Token-Based Analysis)

Parameter Grid \

Hyperparameter Values ‘ Best Value
priors None*, [0.1,0.9], [0.2,0.8], [0.3,0.7], [0.8,0.2]
— [0.5,0.5], [0.6,0.4], [0.7,0.3], [0.8,0.2],
— [0.9,0.1]
var_smoothing le 9%, 1678, le 7, le© 1e73 le™s

The Gaussian Naive Bayes classifier has fewer hyperparameters to tune com-
pared to classifiers like the Random Forest classifier. Its simplicity is its main

strength, so extensive hyperparameter tuning is unnecessary.

The table shows that the best hyperparameter values for the Gaussian Naive
Bayes classifier are priors = [0.8,0.2] and var_smoothing = le=>. The ‘priors’
hyperparameter represents the prior probabilities of the classes, which is ideal for
imbalanced datasets [Tholke et al., 2023], while ‘var_smoothing’ is the portion of
the largest variance of all features added to variances for calculation stability [Sari

et al., 2021].

6.4.3.2 Hyperparameter Tuning Results for Token-Based Analysis

Table 6.10: Pre-and-Post-Hyperparameter Tuning Results for Gaussian Naive Bayes Clas-
sifier (Token-Based Analysis)

Metric Before After A%

Precision 0.16780 0.15115 -9.9
Recall 0.29921 0.38016 27.0
F1score 0.21477 0.21616 0.65

Table 6.10 presents the pre- and post-hyperparameter tuning results for the
Gaussian Naive Bayes classifier in the token-based analysis. The table shows that
hyperparameter tuning improved the classifier’s performance, with a 9.9% decrease

in precision, a 27.0% increase in recall, and a 0.65% increase in the F1 score.

6.4. Results 274

Table 6.11: Parameter Grid and Best Hyperparameter Values (Code2Vec-Based Analysis)

Parameter Grid \

Hyperparameter Values ‘ Best Value
priors None*, [0.1,0.9], [0.2,0.8], [0.3,0.7], [0.8,0.2]
— [0.5,0.5], [0.6,0.4], [0.7,0.3], [0.8,0.2],
— [0.9,0.1]
var_smoothing le 9%, 1678, le 7, le© 1e73 le?

6.4.3.3 Code2Vec-Based Parameter Grid and Best Hyperparameter
Values

Table 6.11 presents the parameter grid (default sci-kit-learn values marked with an
asterisk ‘*’) and best hyperparameter values for the Gaussian Naive Bayes classifier
in the Code2Vec-based analysis.

We used the same hyperparameters as in the token-based analysis. The table
shows that the best hyperparameter value for ‘priors’ is the same as in the token-
based analysis. However, the best hyperparameter value for ‘var_smoothing’ is

le—?, which differs from the value used in the token-based analysis.
6.4.3.4 Hyperparameter Tuning Results for Code2Vec-Based Anal-
ysis

Table 6.12: Pre-and-Post-Hyperparameter Tuning Results for Gaussian Naive Bayes Clas-
sifier (Code2Vec-Based Analysis)

Metric Before After A%

Precision 0.17859 0.16021 -10.29
Recall 0.23869 0.30363 27.20
F1 score 0.20394 0.20932 2.64

Table 6.12 presents the pre- and post-hyperparameter tuning results for the
Gaussian Naive Bayes classifier in the Code2Vec-based analysis. The table shows
that hyperparameter tuning improved the classifier’s performance, resulting in a
10.29% decrease in precision, a 27.20% increase in recall, and a 2.64% increase in

the F1 score.

6.4. Results 275

Therefore, in addressing the third objective, hyperparameter tuning had a
mixed but net positive impact on the performance of the best-performing classi-
fiers for both the token-based and Code2Vec-based analyses, specifically the Gaus-
sian Naive Bayes classifier. However, it is worth noting that the overall post-
hyperparameter tuning results for the mixed-project task were lower than those for

the within-project vulnerability prediction task and, thus, not actionable.

6.4.4 Objective 4 Results

Investigate the impact of dataset variability on vulnerability prediction model per-

formance.

This objective investigated the impact of dataset variability on vulnerability
prediction model performance by examining and comparing the Coefficient of Vari-

ation of the token-based and Code2Vec-based metrics.

Figure 6.10 shows plots of the Coefficient of Variation of the token-based met-

rics both for our single software system and multiple software systems.

Subfigure 6.10a presents a plot of the Coefficient of Variation of the token-
based metrics for the single software system. The y-axis represents the Coefficient
of Variation, normalised to the range [0, 1], while the x-axis represents the software
system releases used in Chapters 4 and 5. Each vertical line represents a single
software system release, and the twelve data points on each line represent the Coef-

ficient of Variation of the twelve token-based metrics for that release.

As reported in Table 4.9, the single software system dataset, Apache Tomcat
(version 7), comprises 76 releases, resulting in 76 vertical lines in the plot. Out
of the sixteen token-based metrics developed (Section 4.3), we employed twelve
metrics in this chapter (excluding the churn-related metrics), as stated in Subsection

6.3.5, resulting in twelve data points on each vertical line.

Subfigure 6.10b shows the Coefficient of Variation of the token-based metrics
for multiple software systems. The y-axis represents the Coefficient of Variation,
normalised to the range [0, 1], while the x-axis represents the software systems

used in this chapter’s token-based analysis. Each vertical line represents a single

® NDHS
NDTT
NDVT

6.4.

Results

NHS ® NVT
NTT ® SHTSR
NUSM ® SHVSR

® SMR
® TRU
TVSSR

1.0 A

0.9 1

0.8 A

Coefficient of Variation per Metric

0.2 A

0.1

0.0

1.0 1

0.9 1

0.8 1

Coefficient of Variation per Metric

0.2 1

0.1

0.0 1

0.7 1

0.6 1

0.5 1

0.4

0.3 1

Software System Release

(a) Token-Based Metrics: Single Software System

0.7 A

0.6 1

0.5 A

0.4

0.3 1

® NDHS NHS ® NVT ® SMR
NDTT © NTT ® SHTSR e TRU
NDVT NUSM ® SHVSR TVSSR
° ®

e

Software System

(b) Token-Based Metrics: Multiple Software Systems

Figure 6.10: Coefficient of Variation of Token-Based Metrics

276

software system, and the twelve data points on each line represent the Coefficient

of Variation of the twelve token-based metrics for that system.

6.4. Results 277

Table 6.1 reports that the multiple software systems dataset comprises 132 soft-
ware systems, resulting in 132 vertical lines in the plot. Again, out of the sixteen
token-based metrics developed (Section 4.3), we employed twelve metrics in this
chapter (excluding the churn-related metrics), as stated in Subsection 6.3.5, result-

ing in twelve data points on each vertical line.

Observations from the plots reveal that the Coefficient of Variation of the
token-based metrics is higher for the multiple software systems than for the sin-
gle software system, as indicated by the more intense dispersion of data points in
the former, particularly in terms of vertical spread. This suggests that the token-
based metrics exhibit more significant variability across multiple software systems
than within a single software system. This variability is expected due to differences
in project characteristics, such as project size, complexity, domain, and software

development practices.

Consequently, employing a dataset comprising multiple software systems, as
shown in Subfigure 6.10b, as training data for vulnerability prediction models may
present challenges due to the variability in the token-based metrics data across the

systems.

Figure 6.11 is similar to Figure 6.10, but it presents plots of the Coefficient
of Variation of the Code2Vec-based metrics for our single and multiple software

systems.

Subfigure 6.11a presents a plot of the Coefficient of Variation of the Code2 Vec-
based metrics for the single software system. The y-axis represents the Coefficient
of Variation, normalised to the range [0, 1], while the x-axis represents the software
system releases used in Chapters 4 and 5. Each vertical line represents a single
software system release, and the twelve data points on each line represent the Coef-

ficient of Variation of the twelve Code2Vec-based metrics for that release.

As reported in Table 4.9, the single software system dataset, Apache Tomcat
(version 7), comprises 76 releases, resulting in 76 vertical lines in the plot. Out of

the sixteen Code2Vec-based metrics developed (Section 5.3), we employed twelve

6.4. Results 278

® NDHP NHP ® NvP ® PMR
NDTP © NTP ® PHTSR ® PRU
NDVP © NUPM ® PHVSR TVPSR
1.0 1 ®
0.9 1
0.8 1

o
N
L

o
o
L

Coefficient of Variation per Metric
o o
IS wn

o
w
L

e
N]
N

o
=
!

o
o

Software System Release

(a) Code2Vec-Based Metrics: Single Software System

® NDHP NHP ® NVP ©® PMR
NDTP © NTP ® PHTSR ® PRU
NDVP © NUPM ® PHVSR TVPSR

Coefficient of Variation per Metric
I o o o o o o o =
N w B v o ~ o] o o
N) L L) N) L !

o
=
!

o
o
L

Software System

(b) Code2Vec-Based Metrics: Multiple Software Systems

Figure 6.11: Coefficient of Variation of Code2Vec-Based Metrics

metrics in this chapter (excluding the churn-related metrics), as stated in Subsection

6.3.5, resulting in twelve data points on each vertical line.

6.4. Results 279

Subfigure 6.11b shows the Coefficient of Variation of the Code2Vec-based
metrics for multiple software systems. The y-axis represents the Coefficient of
Variation, normalised to the range [0, 1], while the x-axis represents the software
systems used in this chapter’s Code2Vec-based analysis. Each vertical line repre-
sents a single software system, and the twelve data points on each line represent the
Coefficient of Variation of the twelve Code2Vec-based metrics for that system.

Table 6.1 reports that the multiple software systems dataset comprises 132 soft-
ware systems, resulting in 132 vertical lines in the plot. Again, out of the sixteen
Code2Vec-based metrics developed (Section 5.3), we employed twelve metrics in
this chapter (excluding the churn-related metrics), as stated in Subsection 6.3.5,
resulting in twelve data points on each vertical line.

Similar to the observations from the token-based metrics in Figure 6.10, the
Coefficient of Variation of the Code2Vec-based metrics is higher for multiple soft-
ware systems than for the single software system, as indicated by the more intense
dispersion of data points in the former, particularly in terms of vertical spread.
Again, this suggests that the Code2Vec-based metrics exhibit more significant vari-
ability across multiple software systems than within a single one. Thus, we draw the
same conclusion that employing the dataset comprising multiple software systems,
as shown in Subfigure 6.11b, as training data for vulnerability prediction models
may present challenges due to the variability in the Code2Vec-based metrics across
the systems.

To address the fourth objective, Coefficient of Variation analyses revealed that
token-based and Code2Vec-based metrics exhibit more significant variability in the
dataset with multiple software systems than in the single-system dataset. This sug-
gests that datasets with characteristics similar to the former may lead to perfor-
mance issues when used as training data for vulnerability prediction models. It
also implies that to achieve acceptable performance in a mixed or cross-project
vulnerability prediction task, the dataset must be carefully curated to account for
the variability in the software systems by ensuring that the systems are similar in

terms of project size, complexity, domain, and development practices.

6.5. Discussion 280

6.5 Discussion

In this chapter, we conducted a stress test of our information retrieval-driven vul-
nerability prediction techniques as a generalisability study in a mixed-project set-
ting, focusing on both token-based and Code2Vec-based analyses. We present our
findings and insights in the following subsections, discussing the performance of
within-project versus mixed-project approaches, the impact of dataset variability,

and the chapter’s implications and recommendations.

6.5.1 Within- versus Mixed-Project Performance Comparison

For both the token-based and Code2Vec-based analyses, the within-project vul-
nerability prediction task yielded higher performance than the mixed-project task.
The results are expected as within-project prediction is generally relatively more
straightforward than mixed-project prediction due to the availability of project-
specific information, such as structure, coding conventions, and development prac-
tices, which enhance model learning and accuracy. In contrast, mixed-project pre-
diction requires models to generalise across different projects, which is challenging
due to differences in project characteristics and the lack of project-specific informa-
tion.

To quantify the performance difference, the within-project token-based anal-
ysis in Chapter 4 achieved a post-hyperparameter tuning precision of 0.73, recall
of 0.60, and F1 score of 0.66 using the Random Forest classifier. The mixed-
project token-based analysis in this chapter achieved a post-hyperparameter tuning
precision of 0.15, recall of 0.38, and F1 score of 0.22 using the Gaussian Naive
Bayes classifier. Similarly, the within-project Code2Vec-based analysis in Chap-
ter 5 achieved a post-hyperparameter tuning precision of 0.72, recall of 0.62, and
F1 score of 0.67 using the Random Forest classifier. The mixed-project Code2Vec-
based analysis in this chapter achieved a post-hyperparameter tuning precision of
0.16, recall of 0.30, and F1 score of 0.21 using the Gaussian Naive Bayes classifier.

The disparities in the results highlight the challenges of generalising vulnera-
bility prediction models across different projects and the importance of considering

project-specific information when building and evaluating these models.

6.5. Discussion 281

This discussion point extends The Significance of Vulnerable Code Patterns

discussion in Chapter 4 to a macroscopic level.

6.5.2 Code Representation Sensitivity

A critical observation from Figure 6.10 and Figure 6.11 is that the disparities in dis-
persion between the single software system and multiple software systems are more
pronounced for the token-based metrics than for the Code2Vec-based metrics (i.e.,
Subfigure 6.10a vs Subfigure 6.10b, and Subfigure 6.11a vs Subfigure 6.11b). This
observation is important because it confirms our finding in Subsubsection 5.3.1.3
of Chapter 5 that Code2Vec is less sensitive to code changes than token-based met-
rics. Trivial code changes modify the token representation, which in turn affects any
metrics derived from the tokens, resulting in significant variability in the metrics. In
contrast, since trivial code changes do not significantly affect the AST representa-
tion, the derived metrics are less sensitive to code changes, resulting in less metric
variability.

So, even though AST-based metrics, such as our Code2Vec-based metrics, may
better capture the hierarchical structure and relationships within the code compared
to tokens, as asserted by Liu et al. [2022a] and evidenced by our slightly improved
performance in Chapter 5 over Chapter 4, the token-based metrics are more sensitive
to code changes. This sensitivity is evident in the relative data homogeneity in the
single software system for the token-based metrics in Subfigure 6.10a compared to
the Code2Vec-based metrics in Subfigure 6.11a, in comparison to their respective

multiple software systems Subfigures 6.10b and 6.11b.

6.5.3 Data-Related Challenges: A Revisit

The data issues-related observations in this chapter highlight the challenges in vul-
nerability prediction research, particularly in the context of cross-project vulner-
ability prediction, underscoring the discussion in the Background section of this
chapter.

Firstly, it highlights why researchers whose methodologies we briefly high-

lighted in Subsection 6.2.1 needed to employ sophisticated transfer learning and

6.5. Discussion 282

domain adaptation techniques in their cross-project vulnerability prediction analy-
ses.

Secondly, it illustrates the data-related challenges in vulnerability prediction
discussed in Subsection 6.2.2, such as data generalisability, data accessibility, data
preparation effort, data scarcity, label noise, and data noise.

The observations from our Coefficient of Variation analyses primarily relate
to Data Noise, particularly data heterogeneity, a common problem in vulnerability
prediction which arises from inconsistencies and biases in the training data and
can affect model performance and generalisability. Heterogeneity in training data
for vulnerability prediction can arise due to data scarcity, the lack of standardised
data formats, the absence of comprehensive and consistent data sources, and the
difficulty in integrating data from multiple sources. These issues complicate the
problem and contribute to the development of poor-quality vulnerability prediction

models.

6.5.4 Implications

The findings from this chapter have several implications for vulnerability predic-
tion research and practice. The results highlight the difficulties and impracticalities
in generalising vulnerability prediction models across different software systems.
Performance disparities between within-project and mixed-project tasks, as well as
metric variability across multiple systems, highlight the challenges in transferring
models between projects. Data heterogeneity exacerbates these issues, introducing
inconsistencies and biases that affect model performance and generalisability. Ad-
dressing these challenges requires careful consideration of dataset characteristics,
including variability, quality, and representativeness. Researchers and practitioners
should utilise representative datasets, employ appropriate evaluation methods, and
incorporate project-specific information to mitigate these challenges.

The Coefficient of Variation analyses provide valuable insights into the vari-
ability of vulnerability prediction metrics across different systems. By quantifying
metric variability, researchers and practitioners can gain a deeper understanding of

the challenges posed by data heterogeneity and its implications for model develop-

6.5. Discussion 283

ment and refinement. These insights can inform the development of more robust
and generalisable models by highlighting the need to address data variability, qual-

ity, and representativeness.

6.5.5 Recommendations

Researchers and practitioners should address data heterogeneity by selecting repre-
sentative datasets, ensuring data quality and consistency, and considering project-
specific information when developing vulnerability prediction models. Mitigating
data heterogeneity can improve model performance and generalisability, making the
integration of data heterogeneity analysis into the vulnerability prediction process
essential.

Data-driven insights, such as the Coefficient of Variation analysis, provide
valuable information on metric variability across systems and should be a staple
in vulnerability prediction research. This sentiment is also echoed by Zheng et al.
[2020], whose study calls for a deeper analysis of dataset attributes, given that dif-
ferent datasets tend to have distinct characteristics that influence results differently.
Researchers and practitioners should utilise such dataset-related insights to com-
prehend data heterogeneity and its implications, and apply them to inform dataset
selection, thereby facilitating the development of more robust and generalisable
models. Furthermore, incorporating project-specific information, such as structure,
coding conventions, and development practices, can also enhance model perfor-
mance and generalisability.

Finally, addressing data-related challenges, such as heterogeneity, scarcity, la-
bel noise, and data noise, is difficult but crucial. Additionally, evaluating model
performance for both within-project and stress testing them under mixed-project
conditions is essential, as comparing performance across different tasks provides

insights into generalisation challenges and opportunities for improvement.

6.6. Threats to Validity 284
6.6 Threats to Validity

In this section, we discuss the threats to the validity of our study, some of which are
common to vulnerability prediction studies and may also apply to the previous two

chapters.

6.6.1 Internal Validity

Internal validity refers to the extent to which the study’s results accurately reflect
the genuine relationship between variables without being influenced by external

factors.

6.6.1.1 Context-Dependent Vulnerabilities

Software vulnerabilities may sometimes span multiple methods rather than being
confined to one. Some methods might not exhibit vulnerability in different con-
texts. While it is possible to address these context-dependent vulnerabilities by
considering a broader unit of analysis, this study focused on method-level vulnera-

bility prediction.

6.6.1.2 Selection Bias

The dataset used in this chapter comprises many projects, but it represents only a
minuscule fraction of the available software projects. The projects are primarily
open-source and hosted on GitHub, which may not reflect the full diversity of soft-
ware projects. Consequently, the results of this study may not be generalisable to

all software projects.

6.6.1.3 Data Imbalance
The imbalance between vulnerable and non-vulnerable methods in the dataset could
lead to biased model performance, favouring the majority class. We employed the

SMOTE to balance the dataset, yet the risk of residual imbalance effects persists.

6.6.1.4 Ground Truth Estimation
Our approach to labelling methods as vulnerable or non-vulnerable in this chapter
(see Subsubsection 6.3.2.2) differs from the approaches in the previous two chapters

(see Subsubsection 4.4.3.4). This chapter’s approach aligns with the approach used

6.6. Threats to Validity 285

in our primary source paper, i.e., Al Debeyan et al. [2022], for the dataset used in
this chapter, as noted earlier. While logically sound, we note that the approach, like
other ground truth estimation approaches, are imperfect and could introduce label

noise into the dataset, affecting model performance.

6.6.2 External Validity

External validity concerns how this study’s findings can be generalised to other

contexts outside the experimental settings.

6.6.2.1 Programming Language Generalisability

The study focused on Java-based software systems, which may limit the applicabil-
ity of the findings to projects written in other programming languages. While Java
is widely used, the results may not generalise to systems developed in languages

with different characteristics.

6.6.2.2 Focus on Static Vulnerabilities

The vulnerabilities examined in this chapter, as well as in the preceding two chap-
ters, are those detectable through static analysis. This study did not include those
vulnerability types that manifest only during runtime, referred to as dynamic vul-
nerabilities. Consequently, the generalisability of the findings is confined to vulner-

abilities that can be identified statically.

6.6.2.3 Limitations of Vulnerability Patterns

This study concentrated on recognised vulnerability patterns, which may not en-
compass emerging or unidentified vulnerabilities. Moreover, the vulnerability
dataset, i.e., SARD, utilised in this research, likely does not include all known vul-
nerability patterns. Consequently, these models may be ineffective in identifying

vulnerabilities that exhibit patterns not previously encountered in the training data.

6.6.2.4 Tool and Technique Dependence

The study utilises specific tools, including JavaParser and Apache Lucene, as well as

techniques such as information retrieval and machine learning algorithms. Different

6.6. Threats to Validity 286

tools or techniques might yield different results, and the findings may not be directly

transferable if different methodologies are used.

6.7. Answer to Research Question 3 287

6.7 Answer to Research Question 3

Research Question 3: How well does the information retrieval-driven software vul-

nerability prediction technique generalise across multiple software systems?

This chapter explored the challenges of using diverse data sources to train vul-
nerability prediction models, focusing on the dataset’s generalisability and the im-
pact of dataset variability on model performance. The primary objective was to
evaluate the generalisability of vulnerability prediction models using both token-
based and Code2Vec-based analyses as a stress test. This involved comparing
within-project and mixed-project performance, analysing dataset variability, and

understanding the role of hyperparameter tuning in model optimisation.

We conducted comprehensive analyses on token-based and Code2Vec-based
datasets, using performance metrics such as precision, recall, and F1 score to evalu-
ate model performance. Then, we utilised the Coefficient of Variation to assess the
relative variability of metrics across our datasets. After that, we applied hyperpa-
rameter tuning to optimise model performance and compared the results between

within-project and mixed-project tasks.

While performance metrics were generally poor, the findings provided valu-
able insights into the dataset challenges affecting vulnerability prediction analyses.
The results showed significant disparities between within-project and mixed-project
performance. Within-project tasks from the previous two chapters generally yielded
higher performance metrics due to the availability of project-specific information
and the relatively reduced data variability across the different releases of the same
software system. In contrast, mixed-project tasks suffered from data heterogeneity
and variability due to differences in project characteristics of different constituent

software systems, resulting in lower performance metrics.

These findings have significant implications for vulnerability prediction re-
searchers and practitioners. Firstly, the study highlights that addressing data hetero-
geneity and metric variability challenges is crucial for developing robust and gener-
alisable models. Secondly, the findings indicate the need for representative datasets,

appropriate evaluation methods, and normalising integrating dataset variability tests

6.7. Answer to Research Question 3 288

in vulnerability prediction research to facilitate the incorporation of project-specific
information to mitigate the field’s data-related challenges. Based on the findings, it
is recommended that researchers and practitioners focus on addressing data hetero-
geneity by selecting representative datasets, ensuring data quality, and considering
project-specific characteristics.

Future work should explore advanced techniques for improving the general-
isability of vulnerability prediction models. This includes investigating methods
for handling data heterogeneity, developing adaptive models to transfer knowledge
across projects more effectively, and integrating additional project-specific infor-
mation.

To answer the third research question of this thesis, the stress test conducted
on our information retrieval-driven software vulnerability prediction technique un-
surprisingly revealed the significant data-related challenges in generalising vulner-
ability prediction models across multiple software systems. The results highlighted
the difficulties in transferring models between projects due to data heterogeneity
and variability, highlighting the importance of considering project-specific infor-
mation when building and evaluating these models. Regardless, the technique re-
mains effective for within-project vulnerability prediction tasks, as evidenced by the

results and findings in Chapters 4 and 5.

Chapter 7

Conclusion

This chapter concludes the thesis by summarising key findings, discussing research
contributions, and outlining future research directions. The research investigated
the effectiveness of information retrieval-driven techniques for predicting software
vulnerabilities, utilising various machine learning models and source code repre-
sentations. This concluding chapter highlights how the research objectives were
met, discusses the implications of the findings, outlines the contributions to the field,
and identifies potential limitations. It also suggests future research avenues that can

build on this work.

7.1. Vulnerability Prediction: A Retrospective and Prospective 290

7.1 Vulnerability Prediction: A Retrospective and

Prospective

Software vulnerability prediction is increasingly vital as the digital landscape ex-
pands and cyber threats become more sophisticated. Vulnerabilities, i.e., security-
relevant bugs in software design, development, or configuration, can be exploited
by malicious actors to compromise system security, leading to financial, reputa-
tional, and even physical damages. Traditional vulnerability identification methods,
such as static and dynamic analysis, are often inadequate, especially in large-scale
software systems where complexity can obscure critical issues.

Machine learning techniques have shown promise in predicting software vul-
nerabilities in recent years. These methods utilise historical data and source code
features to identify potential security vulnerabilities before they can be exploited.
This thesis contributes to this emerging field by exploring information retrieval
techniques to enhance vulnerability prediction through the development of security-
relevant source code metrics.

The research presented here is situated within the broader context of software
security. It addresses the challenges posed by increasing software system complex-
ity and the corresponding rise in security threats. This work focuses on method-
level vulnerability prediction, aiming to improve the accuracy and reliability of au-
tomated vulnerability prediction and equipping developers with tools to enhance the
security of their software.

This chapter concludes the thesis by summarising key findings, discussing re-
search contributions, and outlining future research directions. The research has
investigated the effectiveness of information retrieval-driven techniques for predict-
ing software vulnerabilities using various machine learning models and different
representations of source code. This final chapter provides an overview of how the
research objectives were met, the implications of the findings, contributions to the
field, and limitations that may have influenced the results. It also suggests future

research directions that can build on the research presented in this thesis.

7.2. Summary of Research Objectives 291

7.2 Summary of Research Objectives

This research aimed to develop and evaluate an information retrieval-based ap-
proach for predicting software vulnerabilities. We accomplished this aim by pursu-

ing the following specific objectives:

* Assess the performance of the information retrieval-based technique on a

multi-release software system dataset using source code token representation.

» Assess the technique’s performance using Code2Vec representation on the

same dataset.

* Determine the technique’s generalisation capability on a dataset comprising

code artefacts from multiple software systems.

These objectives were designed to address gaps in the literature and advance
current methodologies for predicting vulnerabilities in contemporary software sys-
tems, with a focus on developing security-relevant metrics and a thorough exami-
nation of data-related challenges that negatively impact the performance of vulner-
ability prediction models. The research developed and evaluated various models,
providing valuable insights into the effectiveness of information retrieval techniques
in predicting software vulnerabilities and the impact of different source code repre-

sentations on model performance.

7.3. Key Findings 292
7.3 Key Findings

This section summarises the main findings of the research, aligning them with the

research questions presented in Section 1.4.

7.3.1 Token-Based Prediction Performance (Within-Project)

The research demonstrated that our information retrieval-based approach performed
well on a multi-release software system dataset when using token representa-
tion. The model effectively identified vulnerability-prone components by lever-
aging token-based features from the source code. After hyperparameter tuning, we
achieved a precision of 0.73, recall of 0.60, and an F1 score of 0.66 using a Random
Forest classifier. These results align with other studies [Ferzund et al., 2009, An and
Khomh, 2015, Al Debeyan et al., 2022, Shailee et al., 2024, Moussa et al., 2022]

that identified Random Forest as an effective model for vulnerability prediction.

7.3.2 Code2Vec-Based Prediction Performance (Within-Project)

Using the Code2Vec representation, the information retrieval-based technique
achieved a slightly better F1 score than the token-based approach. This improve-
ment is likely due to Code2Vec’s ability to capture more contextual information
through its AST-based representation [Samoaa et al., 2022]. After hyperparameter
tuning, the model achieved a precision of 0.72, recall of 0.62, and an F1 score of
0.67 using a Random Forest classifier. This suggests that advanced source code rep-
resentations, such as Code2Vec, can enhance the predictive power of vulnerability

models by better capturing the semantic relationships between code elements.

7.3.3 Mixed-Project Prediction Performance

While evaluating our information retrieval-based approach in a within-project set-
ting showed promising results, our stress test of the technique’s performance across
multiple software systems (mixed-project) was less consistent, an outcome we at-
tribute to the data-related challenges discussed in Chapter 6. This highlights the
challenge of generalising vulnerability prediction models across diverse systems, as
system-specific characteristics can significantly impact performance. It also high-

lights the importance of integrating systematic approaches to dataset selection, such

7.3. Key Findings 293

as Coefficient of Variation analyses, into vulnerability prediction research to help
practitioners better understand dataset characteristics and make informed decisions

on the suitability of a dataset for their analysis.

7.4. Contributions to the Field 294

7.4 Contributions to the Field

This research has made several key contributions to the field of software vulnera-

bility prediction:

» Application of Information Retrieval Techniques: This research pioneered
information retrieval techniques for software vulnerability prediction. The
approach demonstrated potential in improving the accuracy of vulnerability
prediction models by providing a framework for extracting security-relevant

features from source code using information retrieval methods.

* Development of Security-Relevant Metrics: This thesis introduced novel
security-relevant software metrics derived using information retrieval tech-
niques. These metrics enhanced the performance of vulnerability prediction
models, highlighting the importance of incorporating vulnerable code pat-
terns into machine learning models and adding valuable tools for software

security analysis.

* Evaluation of Source Code Representations: The research evaluated var-
ious source code representations, including token-based and Code2Vec, for
their effectiveness in predicting vulnerabilities, thereby contributing to the

discourse on the role of semantic information in software security.

* Generalisability of Prediction Models: The study assessed the generalis-
ability of vulnerability prediction models across different software systems,
offering insights into the challenges and opportunities of applying these mod-
els in varied contexts and highlighting the importance of statistics-driven sys-

tematic dataset selection in vulnerability prediction research.

This thesis contributes to the broader understanding of software security by
highlighting the challenges and opportunities in applying advanced machine learn-
ing techniques to vulnerability prediction. The insights from this research will be
valuable to both academic researchers and industry practitioners, enabling them to

develop more effective and reliable vulnerability prediction tools.

7.5. Limitations of the Study 295

7.5 Limitations of the Study

While this research has provided valuable insights, several limitations should be

noted:

* Dataset Constraints: The findings may be limited by the specific datasets
used for model training and evaluation, including factors like software domain

and dataset size.

* Focus on the Java Programming Language: The research experimented
with software systems developed using the Java programming language,

which may limit the generalisability of the findings to other languages.

* Focus on Method-Level Vulnerability Prediction: The research focused on
method-level vulnerability prediction, which does not capture all aspects of

software security.

* Focus on Binary Classification: The research centred on binary classifi-
cation, predicting whether a method is vulnerable, without addressing multi-

class classification, which could offer more detailed insights into vulnerability

types.

7.6. Future Research Directions 296

7.6 Future Research Directions

The findings and contributions of this thesis suggest several avenues for future re-
search. One promising direction is refining the information retrieval-driven vulner-
ability prediction technique. Future work could integrate additional code represen-
tations, such as graph-based models, to capture more contextual information and
enhance prediction accuracy. It would also be valuable to improve the technique’s
generalisability across different software systems by developing advanced feature
engineering methods or employing domain adaptation techniques.

Another critical area is the further exploration of Large Language Models
(LLMs) in software vulnerability prediction. As LLMs advance, their potential for
more accurate and context-aware vulnerability prediction increases. Our immediate
future work will focus on extending our information retrieval-driven technique to
leverage Retrieval-Augmented Generation (RAG) for vulnerability prediction, in-

corporating the latest advancements in LLMs.

7.7. Final Thoughts 297

7.7 Final Thoughts

Until Al-driven vulnerability prediction techniques mature, the most practical ap-
proach for achieving actionable results suitable for real-world applications is to
focus on a single (multi-release) software system within a within-project setting,
using a release-by-release dataset construction method and incorporating informa-
tion on previously fixed vulnerabilities. This real-world implementation could be
integrated into a continuous integration/continuous deployment (CI/CD) pipeline.
The pipeline would automatically extract security-relevant features from each re-
lease’s source code, train a vulnerability prediction model, and evaluate the model’s
performance. Also, since the quality of the vulnerability dataset is crucial for build-
ing accurate prediction models, such a pipeline must ensure that the vulnerability
dataset used for building security-relevant metrics (features) is periodically updated
to reflect the latest vulnerabilities and the vulnerability prediction model is retrained
using the updated features to incorporate the latest vulnerable code patterns as new

vulnerabilities are discovered.

This release-by-release approach will help mitigate several data-related chal-
lenges discussed in Chapter 6, including generalisability, accessibility, preparation
effort, scarcity, label noise, and data noise. The approach will enhance data general-
isability by capturing the temporal evolution of software systems, reflecting changes
in code and vulnerabilities over time to inform more accurate prediction models.
The structured nature of these datasets will also improve data accessibility and re-
duce label and data noise by ensuring more accurate labelling and cleaner data is
curated throughout the software system’s lifecycle. Additionally, this pre-organised
format, integrated into the CI/CD pipeline, will simplify data preparation, making
the training and evaluation more efficient. Finally, the approach will address data
scarcity by leveraging cumulative data from multiple releases, providing a more
reliable foundation for training and evaluating vulnerability prediction models over
time. This described implementation methodology will help bridge the gap between
academic research and industry practice, enabling developers to enhance the secu-

rity of their software systems effectively and efficiently.

7.7. Final Thoughts 298

Despite ongoing challenges in data quality and quantity in contemporary vul-
nerability prediction, this work paves the way for future research, as outlined in Fu-
ture Research Directions. This research has demonstrated the potential of informa-
tion retrieval-driven techniques for software vulnerability prediction, highlighting
their feasibility and effectiveness. It also highlights the importance of interdisci-
plinary approaches in software security research. Collaboration between machine
learning, software engineering, and cybersecurity experts could lead to more com-
prehensive and robust solutions for vulnerability prediction. This could result in
integrated security tools combining multiple approaches, offering developers more
effective means of securing their software. Our findings contribute to the growing
body of knowledge on applying machine learning and information retrieval in soft-
ware security. The insights gained could lead to more robust and generalisable vul-
nerability prediction models, ultimately enhancing software security. This chapter
concludes the thesis by summarising the contributions, acknowledging the limita-
tions, and suggesting directions for future research. The work presented represents
a significant step forward in vulnerability prediction and aims to inspire further re-
search and innovation in this critical area, ultimately contributing to a more secure

digital future.

Appendix A

Investigating the Co-Evolution of

Software Bugs

This appendix features a study on the co-evolution of bug-related code artefacts in
software systems, focusing on the relationship between bug-fixing and bug-inducing

changes.

A.l. Introduction 300

A.1 Introduction

Bugs significantly impact software quality and maintenance costs [Khan et al.,
2020]. Their effects range from minor user inconveniences to severe issues, such
as complete system crashes. Non-functional bugs [Sophia et al., 2021], which have
minimal impact on functionality, often go undetected, whereas more critical bugs
can cause crashes or system freezes, leading to denial of service. Security-relevant
bugs, in particular, can be exploited as vulnerabilities, allowing unauthorised access
to systems. A notable example is the 2003 North American blackout caused by a
race condition in the General Electric Energy XA/21 monitoring software, which
led to an undetected local outage [Gujral et al., 2015].

Human error is the leading cause of software bugs, with approximately 57%
resulting from carelessness or oversight, leading to changes in the code that induce
bugs. These errors typically become apparent during testing or post-deployment
[Gujral et al., 2015].

Bug-fixing changes are deliberate efforts to resolve issues and are easily iden-
tifiable in commit histories, as developers usually note these fixes in their com-
mit messages. In contrast, identifying bug-inducing changes is more challenging,
as developers are often unaware they have introduced problematic code that could

compromise their software [Nadim et al., 2020].

A.1.1 Motivation

A common misconception is that a bug’s point of manifestation is the same as the
origin. However, bugs may appear in one part of a software system while originating
elsewhere. Thus, assuming that fixing a bug where it manifests will resolve the issue
is overly simplistic and often incorrect. In reality, the changes that induce bugs
can be far removed from those that fix them [Wen et al., 2019]. This disconnect
undermines several traditional bug-fixing methods and the tools that rely on them,
emphasising the need for more sophisticated approaches to bug management. It also
highlights the importance of understanding the relationship between bug-inducing
and bug-fixing changes, as well as the limitations of bug-related data, which often

lacks the necessary context to trace a bug’s origin and evolution.

A.l. Introduction 301

The reductive assumption described above is the basis of the SZZ Algorithm,
a popular method researchers use to identify bug-inducing changes by tracing them
from bug-fixing commits [Sliwerski et al., 2005]. The algorithm traces bug-fixing
commits to determine the original bug-inducing changes. Issue-tracking software
often lacks details on the root cause and introduction of bugs into systems. The
SZ7 algorithm augments their data by offering insights into the timing of bug intro-
ductions, providing valuable information for researchers and software developers
[Pokropifiski et al., 2022]. However, the assumption on which the SZZ algorithm
is based is inaccurate, as not all bug-fixing artefacts are directly related to the bug-
inducing artefacts, which begs the question: Do the lines of code flagged as ‘bug-
inducing’ truly represent the source of the defect?

Wen et al. [2019] explored this issue by examining the connection between
bug-inducing and bug-fixing commits. They found that only 73.2% of the source
code files involved in bug fixes were also involved in bug inducement, with 26.8%
of bugs introduced in one source code file but resolved in another. Their study
highlighted that the SZZ algorithm frequently lacks precision, as it presumes that
bug fixes occur precisely at the locations where the bugs were introduced.

The ramifications of this imprecision are significant, as it threatens the valid-
ity of bug-related research, which often estimates the defect status of source code
artefacts based on their bug-fixing history.

For instance, a typical bug prediction experiment broadly comprises these

stages:
1. Statement of hypotheses and research questions.
2. Dataset acquisition, preprocessing and feature extraction.
3. Ground truth development.
4. Training and testing the bug prediction model.

5. Performance evaluation of the prediction result against the ground truth to

answer the research questions.

A.l. Introduction 302

The ground truth data is crucial in this process as it determines the reported
model’s accuracy. If the ground truth data is inaccurate, the model’s predictions
will be unreliable. Therefore, the accuracy of the SZZ algorithm in identifying
bug-inducing changes is critical to the validity of bug prediction models.

Thus, the ideal dataset for bug prediction should comprehensively and accu-
rately present bug-fixing details, including version control information such as the
commit ID and URL, as well as associated bug-inducing details. However, in-
formation about bug-inducing changes is often missing or inaccurate because, as
mentioned earlier, they are not easily trackable. The reason is that developers of-
ten inadvertently introduce them and, therefore, do not explicitly document them.
Therefore, most bug prediction studies rely on bug-fixing changes to estimate the
ground truth, assuming that every fixed software artefact was buggy before the fix.
This approach makes it impossible to accurately capture the duration between bug
introduction and bug fixing, as well as the exact location(s) of the bug-inducing

changes.

A.1.2 Research Question

Inspired by Wen et al. [2019]’s work, we evaluated the SZZ algorithm’s perfor-
mance by investigating how closely bug-fixing artefacts co-evolve with the corre-
sponding detached bug-inducing artefacts to deepen our understanding of software

bugs. Our research addresses the following question:

To what extent do bug-fixing artefacts co-evolve with their associated

detached bug-inducing artefacts?

A detached bug-inducing artefact refers to a file that contributed to the intro-

duction of a bug but was not involved in its subsequent fix.

A.1.3 Research Scope

* Programming Language: This study exclusively utilises datasets from Java-
based open-source software systems. Other programming languages are not

considered.

A.l. Introduction 303

* Ground Truth Data: Our ground truth data is restricted to the InduceBench-

mark dataset, as used in Wen et al. [2019]’s study.

* Unit of Analysis: The analysis in this study is conducted at the source code
file level, with no consideration of other units of analysis such as classes or

methods.

* Bug Types: The focus is on code-related bugs within the source code. Other
bug types are excluded, such as those related to design, requirements, or con-

figuration.

A.1.4 Significance and Contribution

The SZZ algorithm is commonly used to identify bug-inducing changes, but various
studies have questioned its effectiveness [Wen et al., 2019, Pascarella et al., 2018,
da Costa et al., 2017, Alohaly and Takabi, 2017, Gema et al., 2020, Sophia et al.,
2021, Ogino et al., 2021]. This research adds to the ongoing discussion by assessing
the co-evolution of bug-fixing artefacts and their associated detached bug-inducing
artefacts. Our experimental results provide a clearer understanding of the SZZ al-

gorithm’s accuracy and the reliability of the bug-inducing changes it identifies.

A.1.5 Structure of the Study

The rest of the study is organised as follows: Section A.2 provides background
on code artefact co-evolution. Section A.4 outlines the study’s methodology. Sec-
tion A.5 presents the results. Section A.6 discusses the results and the implications
of the findings. Section A.7 addresses potential threats to the study’s validity. Sec-

tion A.8 concludes the study.

A.2. Background 304
A.2 Background

A software system’s revision history reveals essential details about its evolution, in-
dicating which components typically evolve independently and which parts change
together. For example, if a database query changes whenever the associated schema
is modified, we can say that the query ‘co-evolves’ with the schema [Zimmermann
et al., 2005].

Co-evolution in software systems refers to the relationship between compo-
nents that change in tandem. This relationship is often expressed using association
rules: A = B, where ‘A’ and ‘B’ represent different artefacts or sets of artefacts. In
this context, ‘A = B’ implies that when ‘A’ changes, ‘B’ also changes [Zhou et al.,

2019a]. Here, ‘A’ is the antecedent, and ‘B’ is the consequent.

A.2.1 Association Rule Mining

Association rule mining, a technique used in data mining, identifies relationships
between variables in large datasets [Tjortjis, 2020]. Commonly applied in market
basket analysis, this technique helps uncover patterns in customer purchasing be-
haviour [Arivazhagan et al., 2022]. For instance, it can reveal that customers who
buy bread are also likely to buy butter, insights that can inform product placement
strategies in supermarkets.

In software engineering, association rule mining can identify relationships be-
tween software artefacts, such as files or classes, that frequently change together.
In this study, we apply association rule mining to explore the relationships between
bug-fixing and bug-inducing artefacts.

We will measure the absolute support, support, and confidence of association
rules between files modified to fix a bug and those that contributed to inducing it.
These metrics are fundamental in association rule mining and will be discussed

later.

A.2.2 Co-Evolution of Code Artefacts: A Hypothetical Scenario

Figure A.1 depicts a hypothetical co-evolution scenario where a junior developer

modifies a database schema file (schema.foo) and an associated query in a Java

A.2. Background 305

Ij Commit i
A N N \ —
‘@' ") 4= —_— =
Bug-Inducing Change ——| d‘-w-co—chan & b v =
0 (73] 9 9 9 o JAVA 'Z)
' b] schema.foo query.bar sourcefile.baz sourcefile.qux sourcefile.quux

Junior

Software
Developer x
|
|
|
|
The SZZ Algorithm
identifes the consequent
|
|
|
|
L
Ij Commit i +n
& ‘ S
Bug-Fixing Change——— <+ Co-change v 5] D
|\
schema.foo query.bar sourcefile.corge sourcefile.grault
Senior
Software

Developer L3
1
1
1
1
1
1
1
1
1
1
1
1

Apply the
SZZ Algorithm = === - - - -
to the antecedent
Third
Software
Developer
(Investigative)

Figure A.1: Hypothetical Co-Evolution Scenario

file (query.bar), unintentionally introducing an SQL injection vulnerability upon

committing the changes (Commit 7).

Subsequently, a senior developer addresses the flaw by updating the schema
(schema.foo) and refactoring the query (query.bar) to use Prepared Statements,
committing these changes as a fix (Commit i + n), where n represents any num-

ber of commits between the bug introduction and its resolution.

In this scenario, schema.foo and query.bar co-evolve in both the bug-inducing

and bug-fixing commits, reflecting a co-evolutionary relationship.

A third developer, investigating past bugs, might employ the SZZ algorithm
to trace the original bug-inducing commit (Commit 7) using the bug-fixing commit

(Commit i + n).

A.2. Background 306

Here, the bug-fixing commit (Commit i + n) serves as the antecedent, while
the bug-inducing commit (Commit i) is the consequent, providing a traceable rela-

tionship for the third developer.

Files such as sourcefile.baz, sourcefile.qux, and sourcefile.quux represent files
involved in the bug-inducing commit but not in the subsequent fix and are, therefore,

termed detached bug-inducing files.

Suppose query.bar depends on sourcefile.corge and sourcefile.grault, yet these
were not updated by the junior developer in Commit i. In that case, it can result
in sourcefile.corge and sourcefile.grault remaining buggy until Commit i + n. This
situation causes sourcefile.corge and sourcefile.grault to be buggy when query.bar

changes, and vice versa.

Bug prediction datasets typically include only bug-fixing changes (see Sub-
subsection 4.4.3.4, as an example), assuming the fixed artefacts were previously
buggy. However, this approach cannot represent complex scenarios, such as the
one depicted in Figure A.1, where the dataset reflects only the fix at Commit i + n,

omitting the bug-inducing changes at Commit i.

This complex scenario, akin to a ‘Schrodinger’s Bug’, means that the versions
of sourcefile.corge and sourcefile.grault before the fix in Commit i + n are simulta-
neously buggy and non-buggy, depending on the state of query.bar, thus threatening

the validity of ground truth data in bug prediction studies.

This study explores this complexity to assess whether bug-fixing artefacts can

predict these detached artefacts.

The goal is to evaluate whether bug-fixing files can predict bug-inducing files
by analysing the strength of their co-evolutionary relationship. In this context, bug-
fixing artefacts/files are those modified by a bug-fixing commit, while bug-inducing

artefacts/files are those altered by a bug-inducing commit.

Framing our research within Figure A.1, we aim to determine if the co-
evolution of bug-fixing artefacts—schema.foo, query.bar, sourcefile.corge, and

sourcefile.grault—and their detached bug-inducing counterparts—sourcefile.baz,

A.2. Background 307

sourcefile.qux, and sourcefile.quux—is strong enough to predict the latter using the

former.

A.3. Literature Review 308

A.3 Literature Review

This section reviews a few relevant literature on software artefact co-evolution, bug-

inducing changes, and the SZZ algorithm, providing context for our study.

Zimmermann et al. [2005] hypothesised that association rules for code changes
could predict future modifications, reveal item coupling undetectable by program
analysis, and prevent errors from incomplete changes. Their study aimed to utilise
co-evolving software artefacts to help developers manage related changes, akin to
a recommendation system. For example, ‘Developers who changed function foo()
also changed function bar(). This approach mirrors e-commerce recommenda-
tions, such as ‘Customers who bought A also bought B.” The researchers developed
a prototype tool, ROSE, which analyses code changes and predicts additional loca-
tions that may require modifications. They evaluated ROSE on eight open-source
software systems, finding that its top three suggestions were correct over 70% of the
time. The study concluded that ROSE is valuable for helping developers identify
necessary changes and ensuring that no critical modifications are overlooked after

an initial change.

Sliwerski et al. [2005] observed that developers often introduce changes that
cause issues as software systems evolve. Using CVS and Bugzilla, they identi-
fied these problematic changes by linking bug reports with their corresponding
fixes. They then traced the changes before the reported bug, identifying these as
fix-inducing changes. Their analysis found 25,317 links in Eclipse, connecting 47%
of fixed bugs to 29% of transactions, and 53,574 links in Mozilla, connecting 55.3%
of fixed bugs to 43.91% of transactions. The study revealed that more significant
changes are more likely to induce fixes, and fix-related changes are three times more
likely to lead to additional fixes than simple enhancements. This work contributed

to the development of the SZZ algorithm.

Wen et al. [2019] observed that despite the widespread use of the SZZ algo-
rithm, questions remain about its accuracy in identifying ‘bug-inducing’ lines of
code. They investigated this issue by examining bug-inducing and bug-fixing com-

mits across 333 open-source software bugs. Their analysis revealed that the SZZ

A.3. Literature Review 309

algorithm is often imprecise, as it assumes bug fixes occur at the exact locations of
the bug inducements. They found that only 73.2% of the source files involved in bug
fixes were also involved in bug inducement, with 26.8% of bugs introduced in one
file but resolved in another. This imprecision raises concerns about the reliability of

previous studies that relied on the SZZ algorithm.

Kim et al. [2006] pointed out that software researchers frequently use bug fixes
to predict bugs and identify vulnerabilities within systems, yet these fixes rarely re-
veal the initial change that introduced the bug. They added that recognising changes
that introduce bugs could uncover crucial details about the bugs’ origins, such as
the developers or change types most likely to introduce them. Identifying these
changes, however, is challenging. The researchers developed algorithms to auto-
matically and accurately identify bug-inducing changes with fewer errors. Their
methodology employed annotation graphs to exclude non-semantic changes and
outlier fixes, significantly reducing false positives and negatives. They also man-
ually verified the accuracy of fixes to ensure reliability. The study presented im-
provements to the SZZ algorithm, reducing false positives by 38% to 51% and false
negatives by approximately 14%. This research highlights the significance of con-

sidering bug-inducing changes in studies related to software bugs.

Linares-Vasquez et al. [2017] noted that the prevalence of mobile devices has
led to numerous studies on software vulnerabilities, particularly those related to
mobile applications and operating systems (OS). However, they observed that stud-
ies on OS-related vulnerabilities often cover only a small portion of known issues.
The scholars investigated 660 vulnerabilities related to the Android OS to enhance
their understanding in this area. They developed a taxonomy of vulnerability types
within Android and applied the SZZ algorithm to identify the most susceptible lay-
ers and subsystems of the Android OS. Additionally, they assessed the lifespan
of vulnerabilities by measuring the time between their introduction and resolution.
The study revealed that most vulnerabilities stem from four main issues: memory
buffer operations, data processing errors, inadequate access control, and insufficient

input validation. It also found that third-party hardware drivers were frequently af-

A.3. Literature Review 310

fected. Contrary to some critiques, the SZZ algorithm showed high precision in
this study. The results suggest that stringent secure coding practices could mitigate

many vulnerabilities, especially in data handling and memory operations.

da Costa et al. [2017] acknowledged the importance of the SZZ algorithm in
bug prediction research but noted a lack of extensive evaluation of its results. They
developed a framework to assess various SZZ implementations, aiming to bridge
this gap, and applied it to data from ten open-source projects. The evaluation fo-
cused on three aspects: the timing of bug appearance, the future impact of changes,
and the realism of bug introductions. The findings indicated that enhancements
to the SZZ algorithm often overestimated the number of correctly identified bug-
inducing changes. The study also found that a single bug-inducing change could
precipitate hundreds of future bugs. Furthermore, at least 46% of bugs identified by
SZ7 implementations were traced back to changes made years earlier. The research
concluded that existing SZZ implementations lacked the precision to accurately pin-

point bug-introducing changes.

Alohaly and Takabi [2017] highlighted that Version Control Systems (VCSs)
are crucial in modern software development, adding that they help developers man-
age code versions and assist software security experts in identifying patterns of
vulnerability-inducing changes. The researchers investigated whether the concept
of change classification, commonly used in bug detection, could be applied to vul-
nerability detection. They used semi-supervised learning and text-mining tech-
niques on their dataset. While they did not use the SZZ algorithm, they pointed
out its limitations with an example where a vulnerability-inducing change and its
associated fix occurred six years apart, noting that the vulnerability migrated due to
file renaming. Their experiments achieved a recall between 0.6 and 0.8 and a preci-
sion from 0.63 to 1.0, demonstrating the potential of using change classification for

proactive vulnerability detection.

Gema et al. [2020] challenged the common assumption in bug prediction that
lines of code modified to fix a bug are the same ones that introduced it. They noted

that external factors, such as API changes, can also introduce bugs, complicating

A.3. Literature Review 311

the traceability of bug origins due to a lack of empirical evidence. To refine this
understanding, they developed a model to identify the first software system snap-
shot showing buggy behaviour. They created a dataset of bug-introducing changes
unrelated to source code modifications. Using this dataset, they evaluated four SZZ
algorithm implementations, finding significant inaccuracies, particularly in scenar-
10s with multiple commits. The F1 scores varied from 0.44 to 0.77, with a maximum
true positive rate of 0.63. Their findings suggest that the assumption about bug orig-
ination is overly simplistic, indicating a need for more nuanced research into bug

origins to enhance software development processes.

Sophia et al. [2021] investigated the effectiveness of the SZZ algorithm in iden-
tifying non-functional bug-inducing changes, focusing on aspects such as perfor-
mance and security rather than direct software functionality. They observed that
fixes for non-functional bugs typically occur in locations not directly linked to their
induction points, rendering the SZZ algorithm less effective. The study noted that
this limitation had not been widely acknowledged in previous research. In their
study, the researchers analysed the accuracy of the SZZ algorithm using the NF-
Bugs dataset, specifically for non-functional bugs. Their evaluation revealed that
297 out of 376 SZZ-identified bug-inducing commits were false positives, demon-
strating the algorithm’s ineffectiveness. Their findings highlight the need to enhance

the SZZ algorithm to better address non-functional bugs.

Ogino et al. [2021] emphasised the importance of effective bug prediction tech-
niques to improve cost efficiency in quality assurance. They critiqued current bug
prediction research for not meeting essential criteria: accurate model performance
evaluation, granularity to reduce manual effort and costs, and a reliable dependent
variable indicating bug presence in software components. Their study aimed to
evaluate and improve bug prediction models under realistic conditions. They devel-
oped their dataset by utilising eight Java projects with multiple releases, identifying
fixed bugs and using an SZZ-based algorithm to pinpoint bug-inducing commits.
The study highlighted the limitations of this approach in its Threats to Validity sec-

tion, questioning the accuracy of the algorithm. They emphasised three critical el-

A.3. Literature Review 312

ements for realistic settings: method-level granularity, a release-by-release dataset
approach, and the bug-inducing commit as the dependent variable. However, the
resulting F-Measure of 0.19 for the bug prediction model highlighted the ongoing
challenge of developing effective models in such conditions.

The literature review reveals a near consensus on the SZZ algorithm’s limita-
tions in accurately identifying bug-inducing changes. These limitations have signif-
icant implications for bug prediction research as they can lead to unreliable ground
truth data. This study addresses these limitations by evaluating the co-evolution of
bug-fixing and bug-inducing artefacts to determine the SZZ algorithm’s accuracy
in identifying bug origins. We will detail our approach to this evaluation in the

following Methodology section.

A.4. Methodology 313
A.4 Methodology

Our methodology focused on identifying source code file pairs involved in both bug-
fixing and bug-inducing changes and analysing their co-evolution to assess whether
bug-fixing files can reliably predict detached bug-inducing files. We utilised the
InduceBenchmark dataset from Wen et al. [2019]’s study1 as our ground truth for

this study.

A.4.1 Overview of the Methodology

Construct
Transaction
Databases

Acquire GitHub Commit

A 4

History

4

Identify Detached
Bug-Inducing
Files

\ 4

Conduct Statistical
Analysis

Evaluate
Association Rules

Figure A.2: Methodology Overview

Figure A.2 outlines our methodology, divided into two main phases. Below is
a summary of each phase, We present detailed descriptions in the following subsec-

tions.
1. Phase I: Transaction Database Construction

I Extract GitHub Commit History: We used PyDriller? to extract the

commit history for each software system.

"https://github.com/justinwm/InduceBenchmark
https://github.com/ishepard/pydriller

https://github.com/justinwm/InduceBenchmark
https://github.com/ishepard/pydriller

A.4. Methodology 314

IT Build Transaction Databases: We assigned a unique ID to each mod-
ified source code file in the commit history to construct a transaction

database for each software system.
2. Phase II: Measuring Bug Co-Evolution

I Identify Detached Bug-Inducing Files: We identified detached bug-
inducing files by comparing bug-inducing and bug-fixing files using
data from the InduceBenchmark dataset and the constructed transaction

databases.

II Evaluate Association Rules: We assessed the association rules between
bug-fixing and bug-inducing files within the transaction databases for
each bug resolution record. A bug resolution record comprises a set of

bug-fixing files and a set of bug-inducing files.

IIT Perform Statistical Analysis: Descriptive statistics were conducted to

quantify the co-evolution between bug-fixing and bug-inducing files.

A.4.2 Dataset

The InduceBenchmark dataset, referenced earlier, relates to the Apache software
systems studied in Wen et al. [2019]. We selected five systems from this dataset:
Accumulo?, Ambari?, Had00p5, Lucene®, and Oozie’. A manually curated set of
bug resolution records has been compiled for these systems.

The InduceBenchmark dataset includes pairs of bug-fixing and bug-inducing
commits, referred to as bug resolution records. In a bug resolution record, the an-
tecedent is the set Agp, which consists of files modified by a bug-fixing commit. The
consequent is the set Cpy, consisting of files modified by a bug-inducing commit.

Table A.1 summarises the number of bug resolution records (abbreviated as

BRRs) analysed for each software system. It also details the number of bug reso-

3https://github.com/apache/accumulo
‘https://github.com/apache/ambari
Shttps://github.com/apache/hadoop
Shttps://github.com/apache/lucene
"https://github.com/apache/oozie

https://github.com/apache/accumulo
https://github.com/apache/ambari
https://github.com/apache/hadoop
https://github.com/apache/lucene
https://github.com/apache/oozie

A.4. Methodology 315

Table A.1: Bug Resolution Records Details

Project No. of BRRs No. of BRRs with at least one DBIF

Accumulo 33 29
Ambari 31 30
Hadoop 51 39
Lucene 20 19
Oozie 44 37

179 154

lution records that include at least one detached bug-inducing file (abbreviated as
DBIF). Detached bug-inducing files are crucial to our analysis. These files con-
tributed to inducing a bug but were not involved in the subsequent fix. Further
details on these files are provided later in this section.

The data in Table A.1 suggests two main types of bugs based on the complexity
of their inducement. These are classified as Type-I and Type-II bugs.

Type-I bugs originate entirely from artefacts modified to fix the bug. These
bugs do not have detached bug-inducing artefacts, allowing developers to resolve
them by addressing the identified bug-inducing artefacts.

In contrast, Type-II bugs have more complex origins involving one or more
detached bug-inducing artefacts. Most bugs in the bug resolution records fall into

the Type-II category. Of 179 analysed bugs, 154 (86%) are classified as Type-II.

Table A.2: Dataset Details

Project Commits Transactions Modified Files

Accumulo 11,198 7,721 77,121
Ambari 24,590 24,089 199,457
Hadoop 25,660 25,156 184,360
Lucene 35,778 34,777 267,173
Oozie 2,377 2,371 19,697

Table A.2 provides the total number of GitHub commits, transactions, and
modified files for each software system as of March 2022. A transaction is defined

as a commit that modifies at least one file.

A.4. Methodology 316
A.4.3 Approach to Research Question

This study addresses the research question: To what extent do bug-fixing artefacts

co-evolve with their associated detached bug-inducing artefacts?

To answer this research question, we quantified the co-evolution between arte-

facts modified to fix a bug and those identified as having induced it.

We analysed 179 bug reports from five Apache open-source software systems,
including Accumulo, Ambari, Hadoop, Lucene, and Oozie. We then extracted the
transaction database from the GitHub commit history of these systems for our co-
evolution analysis. In association rule mining, a transaction is a set of items, and a
transaction database is a collection of these transactions. Here, a transaction repre-
sents a commit that modifies at least one file in the software system, and a transac-

tion database is the collection of such commits.

Our methodology involved two main phases. The first phase identified pairs
of files that were modified by both bug-fixing and bug-inducing changes. The sec-
ond phase analysed their co-evolution by evaluating the association rules between
bug-fixing files and their associated detached bug-inducing files, where ‘detached’
indicates that the bug-inducing files were not part of the bug-fixing changes.

We calculated the Absolute Support, Support, and Confidence values for each
association rule, followed by descriptive statistical analysis to evaluate and quantify

the co-evolution between bug-fixing and bug-inducing files.

The following subsections provide detailed explanations of each phase.

A.4.4 Phase I: Transaction Database Construction

This phase aimed to construct a transaction database for each software system. A
transaction, ¢, is defined as a commit that modifies at least one file, and a transaction

database, T, is a collection of such transactions. Therefore, t € T.

We used PyDriller to retrieve the commit history for each software system,
focusing on the files modified in each commit. Each modified file in these trans-
action databases was then assigned a unique ID, ensuring that the transactions in a

transaction database only include file-modifying commits.

A.4. Methodology 317

As of the analysis time, PyDriller does not return modified files for merge
commits, i.e., commits that merge changes from one branch into another; therefore,
these commits are classified as non-file-modifying. This accounts for the difference
between the figures in the ‘Commits’ and ‘Transactions’ columns in Table A.2,
where the number of transactions is lower than the total number of commits for

each software system.

A.4.5 Phase II: Measurement of Bug Co-Evolution

The second phase focused on measuring co-evolution for each bug resolution
record, comprising three key steps: identifying detached bug-inducing files, evalu-

ating association rules, and conducting statistical analysis.

A.4.5.1 Identification of Detached Bug-Inducing Files

The first step involved identifying the detached bug-inducing files, Dgj, for each
bug resolution record. As defined earlier, these files contributed to inducing the bug
but were not involved in its resolution. Therefore, they represent the set difference
between Cpj, the set of files modified by a bug-inducing commit, and Agp, the set
of files modified by a bug-fixing commit, as described in Subsection A.4.2.

The detached bug-inducing files are mathematically represented as:
Dg; = Cp1 \ App

A.4.5.2 Association Rule Evaluation

Given a bug resolution record, ays represents an element of its Agr, and dy,; rep-
resents an element of its Dgy. Thus, apr € Agr and dp; € Dpy. Here, {aw} is a
singleton containing an element from Agp, and {dy;} is a singleton containing an
element from Dg;. In this second step, we evaluated each {an} = {dp;} associa-
tion rule for every bug resolution record against the transactions in the five software
systems.

For each {aps} = {dp;i} association rule, we calculated the absolute support.

In association rule mining, absolute support is the frequency with which items

co-occur in a transaction database. For example, if bread and butter are bought

A.4. Methodology 318

together in 10 out of 100 transactions, the absolute support for the rule {bread} =
{butter} is 10, indicating that the items co-occur 10 times. In our study, this metric
represents the number of times a bug-fixing file, ayf, co-changes with a detached
bug-inducing file, dy,, in a software system. Using this absolute support, we also
computed the co-evolution frequency, or support, of aps with dy;.

The AbsoluteSupport({apt} = {dpi}) is the count of transactions containing
both aps and dy; in a transaction database, i.e., the number of times aps co-evolves

with dy;.
AbsoluteSupport ({apt} = {dpi}) = |{t €T : apt € t Ndy; € t}]

Support is relative to the total number of transactions in a transaction database.
Continuing with the supermarket example, if bread and butter are bought together
in 10 out of 100 transactions, the support for {bread} = {butter} is 0.1. In our
study, support indicates the co-evolution frequency of aps and dy,; in a transaction
database.

Thus, Support({aw} = {dy;}) is the co-evolution frequency of aps and dp,
calculated as the ratio of absolute support to the total number of transactions.

Support({apt} = {dni}) = Absozmes”pﬁ”tz(T{}’be}:>{dbi})

Next, we calculated the confidence, which indicates the likelihood of encoun-
tering dp; given apy.

In association rule mining, confidence is the ratio of absolute support to the
number of transactions containing aps. For instance, if bread is purchased in 10
transactions and butter in 3, the confidence for {bread} = {butter} is 0.3, indicat-
ing that butter is bought in 30% of transactions where bread is purchased. In our
study, confidence measures the likelihood of encountering dp; when ayy is present.

Thus, Con fidence({aw} = {dp;}) is the ratio of absolute support to the num-
ber of transactions containing daps.

AbsoluteSupport({ans}={dp;})
H{teT apset}]

Confidence({aw} = {dn}) =

Finally, we identified the optimal values by selecting the association rules with

the highest average support and confidence for each bug resolution record.

A.4. Methodology 319

Table A.3: Co-evolution Details for ACCUMULO-3937

Bug Reference ang dpi Abs. Sup. Sup. Conf.
ACCUMULO-3937 8996 25253 32 0.00414 0.12261
ACCUMULO-3937 25237 25253 49 0.00635 0.16724
ACCUMULO-3937 25258 25253 33 0.00427 0.41772
ACCUMULO-3937 8996 27471 16 0.00207 0.0613
ACCUMULO-3937 25237 27471 27 0.0035 0.09215
ACCUMULO-3937 25258 27471 14 0.00181 0.17722
ACCUMULO-3937 8996 33387 3 0.00039 0.01149
ACCUMULO-3937 25237 33387 6 0.00078 0.02048
ACCUMULO-3937 25258 33387 6 0.00078 0.07595

For example, a bug resolution record, ACCUMULQO-3937, includes bug-fixing
files {8996, 25237, 25258} and detached bug-inducing files {25253, 27471, 33387}.
Table A.3 shows all {aps} = {dbi} association rules between these sets. The table
lists each rule’s absolute support, support, and confidence values. Rows 3, 6, and 9
represent the highest average values for support and confidence, which we refer to

as the record’s optimal pairs.

A.4.5.3 Evaluation

In the final step, we performed descriptive statistical analysis. We calculated the
five-number summary for the optimal pairs identified in Subsubsection A.4.5.2, and
created boxplots for each software system. These boxplots visually depict the dis-
tribution of the optimal pairs’ support, confidence, and absolute support values.
This analysis demonstrated the co-evolution of bug-fixing files with their asso-
ciated detached bug-inducing files, offering a quantitative basis for benchmarking

the software systems.

A.5. Results 320

A.5 Results

This section presents the results of our study, focusing on the co-evolution between
bug-fixing files and their associated detached bug-inducing files. We assessed the
association rules linking these files and performed statistical analysis to quantify the

extent of their co-evolution.

A.5.1 Absolute Support

Table A.4: Absolute Support

Accumulo Ambari Hadoop Lucene Qozie
Min. 0 0 0 0 1
25% 1 1 1 2 2
Median 2 2 2 3 3
75% 5 4 5 6 7
Max. 51 187 79 112 203
Average 43 3.7 4.9 5.1 7
SD 6.6 8.8 9.5 7.1 18.6

Table A.4 summarises the Absolute Support values for the five software sys-
tems, including the minimum, 25th percentile, median, 75th percentile, maximum,
average, and standard deviation for each system. The average Absolute Support

values range from 3.7 to 7, with standard deviations between 6.6 and 18.6.

200
100 o I !
: : : |
N O T A R

Accumulo Ambari Hadoop Lucene Oozie

Figure A.3: Absolute Support Boxplots

Figure A.3 shows the boxplots of Absolute Support values for the five software
systems based on the data in Table A.4. These boxplots provide a visual overview

of the distribution of Absolute Support for each system.

A.5. Results

A.5.2 Support

Table A.S: Support

321

Accumulo Ambari Hadoop Lucene QOozie
Min. 0.00000 0.00000 0.00000 0.00000 0.00042
25% 0.00013 0.00004 0.00004 0.00006 0.00084
Median 0.00026 0.00008 0.00008 0.00009 0.00127
75 % 0.00065 0.00017 0.00020 0.00017 0.00295
Max. 0.00661 0.00776 0.00314 0.00322 0.08562
Average 0.00055 0.00015 0.00020 0.00015 0.00297
SD 0.00085 0.00037 0.00038 0.00021 0.00784

Table A.5 summarises the Support values for the five software systems, includ-

ing the minimum, 25th percentile, median, 75th percentile, maximum, average, and

standard deviation for each system. The average Support values range from 0.00015

to 0.00297, with standard deviations between 0.00021 and 0.00784.

0.075

0.050

0.025 o

0.000 . - S L
Accumulo Ambari Hadoop Lucene Oozie

Figure A.4: Support Boxplots

Figure A.4 presents the Support boxplots for the five software systems, as de-

rived from the data in Table A.5. These boxplots visually depict the distribution of

Support values across the different systems.

A.5.3 Confidence

Table A.6 summarises the Confidence values for the five software systems, includ-

ing the minimum, 25th percentile, median, 75th percentile, maximum, average, and

standard deviation for each system. The average Confidence values range from

0.15615 to 0.26436, with standard deviations ranging from 0.13219 to 0.22141.

A.5. Results 322
Table A.6: Confidence
Accumulo Ambari Hadoop Lucene Oozie
Min. 0.00000 0.00000 0.00000 0.00000 0.00068
25% 0.03846 0.06667 0.03448 0.05263 0.11327
Median 0.10000 0.17742 0.09524 0.10526 0.24242
75 % 0.20000 0.38503 0.25926 0.20833 0.36364
Max. 0.90909 0.85714 0.67500 0.87179 0.85714
Average 0.15615 0.24974 0.16996 0.15750 0.26436
SD 0.17060 0.22141 0.18314 0.13219 0.19982
8 o
0.75 : ! :
: : g
|
0.50 : T]
0.25 T T
Accumulo Ambari Hadoop Lucene Oozie

Figure A.5: Confidence Boxplots

Figure A.5 shows the Confidence boxplots for all five software systems, de-

rived from the data in Table A.6. These boxplots illustrate the distribution of Con-

fidence values across the different systems.

A.5.4 Co-evolving Files Per Transaction

Table A.7: Co-evolving Files Per Transaction

Bug-Fixing Files

DBIFs Co-evolving Files/Transaction

Accumulo 78
Ambari 437
Hadoop 158
Lucene 58
Oozie 165

866
651
193
897
483

0.1222
0.0451
0.0140
0.0274
0.2733

Table A.7 summarises each software system’s co-evolving files per transaction.

It lists the number of bug-fixing files, detached bug-inducing files (DBIFs), and the

A.5. Results 323

co-evolving files per transaction. The co-evolving file values range from 0.0140 to

0.2733.
A.5.5 Cumulative Averages for all Five Software Systems

Table A.8: Cumulative Averages for All Five Software Systems

Cumulative Average Value
Number of Transactions 18822.80
Support 0.00080
Absolute Support 5
Confidence 0.19954

Table A.8 summarises the cumulative averages for transactions, support, ab-
solute support, and confidence across all five software systems. The cumulative

averages are as follows: 18,822.80 transactions, 0.00080 support, 5 for absolute

support, and 0.19954 for confidence.

A.6. Discussion 324

A.6 Discussion

Our co-evolution analysis provides valuable insights into the relationship between
bug-fixing and bug-inducing files within software systems. The Absolute Support,
Support, and Confidence values reflect the frequency and likelihood of co-evolution
between these files. Additionally, the co-evolving files per transaction values, which
capture the co-evolution rate for each software system, are essential for understand-
ing the interaction dynamics between bug-fixing and bug-inducing files. The cumu-
lative averages offer a broader perspective on co-evolution patterns across all five
systems. In the following subsections, we discuss the results of our analysis, their

implications, and their relevance to software maintenance and evolution.

A.6.1 Co-evolution Analysis

The first row in Table A.4 indicates that, except for Oozie, no bug-fixing files co-
changed with detached bug-inducing files. The median absolute support across all
five software systems ranges from just 2 to 3, meaning that in half of the transactions
(as detailed in Table A.2), bug-fixing files co-changed with detached bug-inducing
files only 2-3 times. This co-evolution trend does not significantly improve even in
the third quartile, with Oozie showing the most improvement.

Overall, the metrics present poor co-evolution results, as demonstrated in Fig-
ures A.3 and A.4, and notably in Table A.8. The data shows that, on average, a
bug-fixing file co-changes with a detached bug-inducing file only five times out of
18,822.80 transactions. Nevertheless, some instances of solid co-evolution were
observed in individual systems.

The maximum confidence values in Table A.6 are generally very high, ap-
proaching 1, suggesting that in rare cases, detached bug-inducing files co-evolved
with bug-fixing files. In such instances, co-evolution can reliably identify associ-
ated detached bug-inducing files based on the bug-fixing files. However, as shown
in Figure A.5, these high confidence values, apart from those in Ambari, are often
outliers, indicating their rarity.

Despite the low significance of support and confidence values, they still suggest

a latent dependency between specific bug-fixing and detached bug-inducing files.

A.6. Discussion 325

This observation aligns with Zimmermann et al. [2005], who argued that co-changes

can reveal item coupling not detectable through program analysis.

In conclusion, the co-evolutionary link between bug-fixing and detached bug-
inducing artefacts appears minimal. Thus, the SZZ algorithm cannot reliably use
software co-evolution to infer detached bug-inducing files in bug-resolution records.
These finding aligns with the previous studies by Wen et al. [2019], Pascarella et al.
[2018], da Costa et al. [2017], Alohaly and Takabi [2017], Gema et al. [2020],
Sophia et al. [2021] and Ogino et al. [2021] on the algorithm’s limitations.

A.6.2 The Effect of Co-evolution Rate

We analysed each software system’s co-evolution rate to understand Oozie’s rela-
tively higher statistical figures (see Table A.7). We calculated the co-evolution rate
by summing the total number of bug-fixing files and detached bug-inducing files
(DBIFs) for each system and dividing these sums by the total number of transac-

tions, resulting in the co-evolving files per transaction.

Next, we tested the correlation between the co-evolving files per transaction
values and the average support values in Table A.5. We chose the support metric
for our correlation test because it is the only metric that considers all transactions
within a software system. The Pearson Correlation Coefficient test produced an r
value of 0.9618 and a p-value of 0.008917, indicating a strong positive correlation
between the two sets of values. This suggests that the co-evolution rate is inversely
proportional to the total number of transactions in a software system. Put in another
way, software systems whose co-evolution instances are very complex, i.e., involv-
ing many files, tend to have fewer transactions overall. This explains why Oozie,
with fewer transactions, has higher absolute support, support, and confidence values

than the other systems.

For instance, consider Ambari in Tables A.4 and A.5. Table A.5 shows a maxi-
mum support of 0.00776, corresponding to an absolute support of 187 in Table A.4.
Meanwhile, Oozie’s higher maximum support of 0.08562 results in an absolute sup-

port of 203. Despite the significant difference in their support values, their absolute

A.6. Discussion 326

support values are comparable (as reflected in their similar positions in Figure A.3)

because the number of transactions in Oozie is significantly lower than in Ambari.

A.6.3 Bug-Contributing Artefacts

Table A.7 reveals that the total number of detached bug-inducing files consistently
exceeds that of bug-fixing files across all systems. This difference arises because
bug inducements often occur during feature changes or implementations, leading to
commits encompassing all the code changes related to the feature. In other words,
bugs are usually a side effect of feature development; thus, bug-inducing commits
tend to be more extensive, often involving multiple files beyond those directly re-
lated to the bug. In contrast, bug-fixing commits tend to be more focused and in-
volve fewer files as they target a specific bug/issue. Consequently, not every file
altered in a bug-inducing commit necessarily contributed to the bug.

The term ‘bug-contributing’ is similar to the ‘vulnerability-contributing’ con-
cept discussed by Meneely et al. [2013]. They argued for the use of ‘vulnerability-
contributing’ over terms like ‘injecting’, ‘fix-inducing’, or ‘fault-introducing’ found
in the literature. The reasoning is that the original bug-inducing commit does not
necessarily prompt an immediate fix; instead, it contributes to the bug’s emergence.
In our context, we use ‘bug-contributing artefacts’ to refer to files within the de-
tached bug-inducing set that may not have directly caused the bug but are still con-
sidered contributors due to their involvement in the co-evolving set.

This raises the question: how can we identify the specific bug-contributing
artefacts within a set of bug-inducing files? To explore this, we manually inspected
several bug resolution records. We found that most bug-contributing artefacts within
these bug-inducing files were Java source files (backend). Other artefacts included
frontend files, controllers (servlets), test files, and configuration files.

Focusing solely on Java artefacts might have yielded higher co-evolution fig-
ures, but this would not provide a comprehensive analysis of software co-evolution.
Software artefacts often co-evolve across layers because components from different
layers typically interact to perform a function. For example, in a monolithic Java

web application, changes to the backend may necessitate corresponding updates

A.6. Discussion 327

to the frontend, controllers, and test files unless a developer is simply refactoring.
Therefore, a complete analysis of software co-evolution may need to consider arte-

facts from all layers.

Many studies, including those by Sliwerski et al. [2005] and Wen et al. [2019],
have not addressed this observation or the concept of detached bug-inducing files

introduced earlier.

A.6.4 Implications

Regarding Absolute Support, systems like Oozie and Ambari, which exhibit high
maximum support values and significant variability, may require more targeted
maintenance due to their complex and frequent co-evolution patterns. In contrast,
Accumulo, with its lower and more stable values, might be easier to maintain but
could also indicate less intricate interactions. The high maximum values in Am-
bari and Oozie suggest the presence of specific modules or components with high
activity levels, potentially serving as hotspots for bugs or areas needing optimi-
sation. Identifying these hotspots can help prioritise bug resolution and system
enhancements. Oozie’s minimum value of 1 and higher quartile values suggest a
more interconnected system, which might benefit from strategies aimed at improv-

ing modularity to mitigate the impact of bugs.

Regarding Support, Oozie’s high maximum and average support values and
substantial variability indicate a more complex system with frequent and diverse
interactions between bug-fixing and bug-inducing files. With lower variability, sys-
tems like Ambari and Hadoop may have more predictable interaction patterns but

still require attention to outlier transactions with higher support values.

Regarding Confidence, systems with higher average and maximum confidence
values, such as Oozie and Ambari, may experience more frequent and predictable
interactions between bug-fixing and bug-inducing files. The variability in confi-
dence values highlights the complexity and potential for high-impact co-evolution

scenarios.

A.6. Discussion 328

A.6.5 Recommendations

The co-evolution analysis reveals critical insights into the relationship between bug-
fixing and bug-inducing files, leading to a few software maintenance and evolution
recommendations.

Our findings suggest that focusing maintenance efforts on modules with high
co-evolution activity can help identify and address hotspots for bugs and areas need-
ing optimisation.

Enhancing system modularity can also help contain bugs within specific mod-
ules, improving maintainability and reducing the risk of bugs spreading across a
software system.

We also deduced that prioritising transactions with higher support values can
help address critical bugs and improve system reliability, as these indicate more
frequent co-evolution between bug-fixing and bug-inducing files. Additionally,
analysing transactions with lower variability in support and confidence can help
identify stable interaction patterns and maintain system stability.

Finally, to analyse software co-evolution more comprehensively in real-world
scenarios, we recommend including all evolving software artefacts, not just one file

type, as in our case, Java files.

A.7. Threats to Validity 329

A.7 Threats to Validity

This section discusses the threats to the validity of our study, categorised into inter-

nal and external validity.

A.7.1 Internal Validity

Internal validity threats concern the study’s design, execution, and analysis.

A.7.1.1 Dataset Snapshot

The dataset used in our experiment was obtained in the first quarter of 2022. There-
fore, our results reflect the state of the five analysed software systems at that time.
Future studies may yield different outcomes depending on the evolution of these

systems.

A.7.1.2 Sample Size

Our experiment and conclusions are based on five repositories from Wen et al.
[2019]’s study. Including more software systems or systems from other sources
could lead to different cumulative results. However, our findings remain valid for

the five systems analysed.

A.7.2 External Validity

External validity threats concern the generalisability of our results to other contexts.

A.7.2.1 Generalisation to Other Programming Languages

Different programming languages impose varying structures on artefact organisa-
tion, influencing project structure and module organisation. For example, Java man-
dates that methods (functions) be declared within classes, whereas JavaScript allows
functions to be defined outside classes.

These design differences mean a JavaScript developer might spread related
functions across multiple files, creating more association rules during functionality
changes. In contrast, a Java developer would likely modify a single class file. Since
our experimental repositories are Java-based, results may vary when applied to other

programming languages.

A.8. Conclusion 330

A.8 Conclusion

This study examined the co-evolution of software artefacts modified to fix a bug
with those that induced the bug. We analysed five Apache open-source software
systems and identified two types of bugs.

Type-I bugs have straightforward origins, and developers can fully resolve
them by modifying the artefacts that induced them. In contrast, Type-II bugs are
induced by multiple artefacts, though not all require modification during the fix.
We found that Type-II bugs are more prevalent in the analysed software systems.

The key finding of this study is that the co-evolution between bug-fixing and
bug-inducing artefacts is minimal. Our results showed low median support and con-
fidence values, ranging from 0.08% to 0.13% and 9.52% to 24.24%, respectively.
These low figures indicate that the SZZ algorithm cannot reliably infer all bug-
inducing artefacts based on co-evolution, making it more suitable for Type-I bugs.
Future research to improve the SZZ algorithm should deprioritise co-evolution as a
focus. Thus, we conclude that the co-evolutionary relationship between bug-fixing
and detached bug-inducing artefacts is insignificant. This conclusion is consistent
with the imprecision issues of the SZZ algorithm noted in previous studies.

Regarding the construction of bug prediction datasets, our findings suggest that
it is not feasible to create a more comprehensive dataset that accurately represents
the broader bug landscape, incorporating bug-inducing and bug-fixing information.
This is primarily due to the unreliable, inaccurate, or unknown nature of information
on bug-inducing commits. As previously discussed in the Subsection A.2.2, the
ground truth in typical bug prediction datasets is generally estimated using only
bug-fixing commit data. The underlying assumption is that the artefacts modified
during the bug-fixing commits introduced the bug and were buggy before the fix.
While this assumption is not always accurate, it remains the most viable approach
without precise information about bug-inducing commits and will likely continue
to be used in future studies. Regardless, acknowledging this approach’s limitations

is essential for interpreting the results of bug prediction studies.

Appendix B

Exploring Large Language
Model-Based Vulnerability

Prediction

This study explores the out-of-the-box effectiveness of Large Language Models
(LLMs) in vulnerability prediction, with a focus on ChatGPT. It evaluates their
performance in identifying vulnerabilities in code samples and compares them with
our information retrieval-driven vulnerability prediction technique. The study offers
insights into the utility, strengths, and potential improvements of LLMs in software

security, particularly in the context of vulnerability prediction.

B.1. Introduction 332
B.1 Introduction

Reliable and secure software applications are paramount in today’s rapidly evolv-
ing digital landscape. As digitalisation expands, strengthening software against
breaches and cyber-attacks becomes crucial. A software vulnerability can be
likened to an unsecured door, allowing unauthorised access to sensitive data. To
mitigate these risks, the software community is exploring various methods to iden-
tify and fix vulnerabilities in code bases [Akuthota et al., 2023].

Software vulnerabilities pose significant risks, including the compromise of

sensitive information! and system failures®

. Researchers have proposed machine
learning and deep learning approaches for identifying vulnerabilities in source code
[Hanif and Maffeis, 2022, Fu and Tantithamthavorn, 2022, Nguyen et al., 2022,
Zhou et al., 2019b]. Previous methods often trained models from scratch, using
algorithms such as Random Forest [Ferzund et al., 2009, Shailee et al., 2024, Dam
et al., 2021] or smaller neural networks, such as Graph Neural Networks [Nguyen
et al., 2022], or relied on medium-sized pre-trained models [Fu and Tantithamtha-
vorn, 2022, Feng et al., 2020b].

Recent advancements in Large Pre-Trained Language Models have shown re-
markable few-shot learning capabilities across various tasks [Xia and Zhang, 2023,
Zhang et al., 2023d,e, Weyssow et al., 2023, Zhou et al., 2023]. "Few-shot learning"
refers to a model’s ability to learn from a few examples, making it ideal for tasks
with limited training data. Introducing sophisticated models, such as OpenAI’s
Generative Pre-trained Transformers (GPT) series, has added a new dimension to
this field. Specifically, the GPT series has exhibited a high level of proficiency in
understanding, producing, and evaluating text, making it a potentially valuable tool
for software code evaluation [Akuthota et al., 2023], including vulnerability predic-
tion.

However, it is essential to meticulously evaluate the utility, strengths, and po-

tential enhancements of LLMs in software security, particularly in the context of

'"https://www.bankinfosecurity.com/ms—exchange-flaw-causes-spike
—intrdownloader—-gen-trojans—-a—-16236
Zhttps://docs.broadcom.com/doc/istr—07-sept—emea—en

https://www.bankinfosecurity.com/ms-exchange-flaw-causes-spike-intrdownloader-gen-trojans-a-16236
https://www.bankinfosecurity.com/ms-exchange-flaw-causes-spike-intrdownloader-gen-trojans-a-16236
https://docs.broadcom.com/doc/istr-07-sept-emea-en

B.1. Introduction 333

vulnerability prediction. The performance of LLMs on security-oriented tasks,
such as vulnerability prediction, remains largely unexplored. While LLMs are be-
ing utilised in software engineering, notably in automated program repair [Xia and
Zhang, 2023], their effectiveness in classification tasks and whether they can out-
perform contemporary machine learning and deep learning models in vulnerability
prediction remains uncertain [Zhou et al., 2024].

This study investigates the out-of-the-box effectiveness of LLMs in predicting
vulnerability. It also compares their performance with the results obtained in Chap-

ters 4, 5, and 6 to understand the potential of LLMs in vulnerability prediction.

B.1.1 Motivation

Chapters 4 and 5 investigated vulnerability prediction using token-based and code-
based source code representations, yielding promising results in a within-project
setting. The token-based approach achieved a precision of 0.73, a recall of 0.60,
and an F1 score of 0.66. The code-based approach yielded a precision of 0.72, a
recall of 0.62, and an F1 score of 0.67.

Chapter 6 extended this research to a mixed-project setting as a stress test. This
experiment showed poor performance due to issues with data quality and quantity,
highlighting the need for a systematic approach to dataset selection in vulnerability
prediction research. These issues were discussed in Subsection 6.2.2 and supported
by empirical evidence in Subsection 6.4.4, using Coefficient of Variation analyses
to compare dataset variability across within- and mixed-project settings.

Variability is a significant challenge in vulnerability prediction, affecting the
generalisability and performance of models. High variability datasets often result
in models with poor generalisability [Croft et al., 2022, Berggren et al., 2024], as
observed in the mixed-project experiments in Chapter 6.

With the rise of LLMs, it is speculated that these models could help address
some of the data-related challenges (see Subsection 6.2.2) in vulnerability pre-
diction, particularly the issues related to data quantity, such as accessibility and
scarcity, given that these models are trained on vast amounts of data. However,

their impact on data quality remains to be assessed.

B.1. Introduction 334

This study examines the out-of-the-box effectiveness of LLMs in vulnerabil-
ity prediction and compares their performance with that of contemporary machine
learning and deep learning models. Specifically, we focus on ChatGPT to evalu-
ate its proficiency in identifying vulnerabilities within diverse code samples and its

potential for classification tasks in vulnerability prediction.

B.1.2 Research Question

This study addresses the following research question:

How well do Large Language Models perform on method-level vulner-

ability prediction tasks?

We evaluate the effectiveness of Large Language Models, particularly the pop-
ular ChatGPT, in identifying vulnerabilities within code samples. Their perfor-
mance is compared to contemporary machine learning and deep learning models.
The results are analysed to determine the potential of LLMs in vulnerability predic-

tion.

B.1.3 Research Scope

The research scope for this study includes:

* Programming Language: The datasets are written in Java, with a focus on
vulnerabilities in Java methods. Other sources, such as web services, annota-

tions, and configuration files, are not considered.

* Method-Level Vulnerability Prediction: The focus is on predicting vulner-

abilities at the method level rather than at the class or file level.

* Within- and Mixed-Project Vulnerability Prediction: The study evaluates
the LLM-driven vulnerability prediction in both within- and mixed-project
settings, using datasets comprising multiple releases of a single software sys-

tem and multiple software systems.

* Binary Classification: The study uses binary classification to predict
whether a method is vulnerable without considering multi-class classification

(i.e., predicting the specific type of vulnerability).

B.1. Introduction 335

B.1.4 Significance and Contributions

This study assesses the out-of-the-box effectiveness of LLMs in predicting software
vulnerabilities, comparing their performance with that of contemporary machine
learning and deep learning models. It provides insights into the strengths, utility,
and potential enhancements of LLMs in software security, particularly in the context
of vulnerability prediction. The empirical evidence supports the effectiveness of
LLMs in this domain, laying a foundation for future research and suggesting new
avenues for exploration.

The study also discusses the practical implications of using LLMs for vulner-
ability prediction and their potential impact on software security practices. It con-
tributes to understanding LLMs in software security and expands the knowledge

base.

B.1.5 Structure of the Study

Section B.2 provides background information on generative artificial intelligence,
Large Language Models, and ChatGPT. Section B.3 presents a literature review
on vulnerability prediction using Large Language Models. Section B.4 outlines the
methodology, including dataset selection, data preprocessing, and model evaluation.
Section B.5 presents the experimental results. Section B.6 presents the discussion
of the findings. Section B.7 addresses threats to validity. Finally, Section B.8 con-

cludes the study.

B.2. Background 336

B.2 Background

The previous section introduced Large Language Models and briefly discussed their
potential in software engineering, including their primary applications in natural
language processing tasks, automated program repair, code generation, and other
generation-based tasks. The section also highlighted the potential of Large Lan-
guage Models in vulnerability prediction, particularly in identifying vulnerabilities

within code samples.

This section provides additional background on generative artificial intelli-
gence, Large Language Models, and ChatGPT, as well as their potential applica-

tions in software security, with a focus on vulnerability prediction.

B.2.1 Generative Artificial Intelligence and Large Language
Models

Generative artificial intelligence has become a pivotal field, transforming domains
such as computer vision, natural language processing, the creative arts [Cao et al.,

2023], and requirements engineering [Vogelsang and Fischbach, 2024].

Generative models have a long history in artificial intelligence, dating back to
the 1950s with the introduction of Hidden Markov Models (HMMs) [Knill and
Young, 1997] and Gaussian Mixture Models (GMMs) [Reynolds et al., 2009].

These early models generated sequential data, such as speech and time series.

Generative Al focuses on creating algorithms and models that generate syn-
thetic data that closely resembles real-world data. This capability has significant
implications for the entertainment, healthcare, and finance industries. Applications
include image synthesis, text generation, music composition, and human-like chat-

bots [Zhang et al., 2023a].

The advent of deep learning significantly improved the performance of gen-
erative models. The availability of large-scale datasets and advancements in deep
learning techniques have driven the rapid development of Generative Al [Cao et al.,
2023]. The growing interest in and impact of Generative Al are evident in recent

statistics. Precedence Research reported that the global market for Generative Al

B.2. Background 337

was valued at USD 10.79 billion in 2022. It is projected to reach approximately
USD 118.06 billion by 2032, with a Compound Annual Growth Rate (CAGR) of
27.02% from 2023 to 20323. This surge in market demand highlights the recog-
nition of Generative Al as a powerful tool with immense potential across various

industries [Bandi et al., 2023].

Generative Al encompasses diverse applications, including StyleGAN and
OpenAl’s GPT series. StyleGAN [Karras et al., 2019], developed by NVIDIA,
revolutionised image generation by producing highly realistic and varied images. It
employs a style-based approach, manipulating visual attributes to enable new cre-
ative dimensions in digital art. Meanwhile, OpenAI’s GPT-3 transformed natural
language processing [Brown et al., 2020]. Its massive scale and transformer archi-
tecture generate human-like text with impressive fluency and coherence, excelling
in tasks such as question answering, essay writing, and conversation. These ex-
amples demonstrate the potential of Generative Al to transform creative industries,
content generation, and human-machine interaction, paving the way for further ad-

vancements.

B.2.2 The Generative Pre-trained Transformer Series and
ChatGPT

Large Language Models are a subset of Generative Al models focused on natural
language processing tasks [Yu et al., 2023]. The GPT series by OpenAl exemplifies
LLMs, known for their large size, transformer architecture, and impressive perfor-
mance across various tasks®. ChatGPT, a variant of the GPT series, is tailored for
conversational tasks. It generates human-like text, engages in dialogue, and under-
stands context. These models are designed for user interaction, answering ques-
tions, and providing information, making them ideal for chatbot applications’. The

GPT series has played a pivotal role in advancing Generative Al, particularly in the

Shttps://www.globenewswire.com/en/news-release/2023/05/15/266836
9/0/en/Generative—-Al-Market-Size-to-Hit-Around-USD-118-06-Bn-By-2
032.html/

‘https://platform.openai.com/docs/models

Shttps://chat.openai.com/

https://www.globenewswire.com/en/news-release/2023/05/15/2668369/0/en/Generative-AI-Market-Size-to-Hit-Around-USD-118-06-Bn-By-2032.html/
https://www.globenewswire.com/en/news-release/2023/05/15/2668369/0/en/Generative-AI-Market-Size-to-Hit-Around-USD-118-06-Bn-By-2032.html/
https://www.globenewswire.com/en/news-release/2023/05/15/2668369/0/en/Generative-AI-Market-Size-to-Hit-Around-USD-118-06-Bn-By-2032.html/
https://platform.openai.com/docs/models
https://chat.openai.com/

B.2. Background 338

field of Natural Language Processing. As of this writing in Q3, 2024, the series
includes various models, such as the GPT-40, GPT-40-mini, GPT-4, and GPT-3.5-
turbo. These models understand and generate natural language or code, with some
also accepting image inputs. GPT-40, the most advanced, generates text at an im-
pressive speed and excels in vision and non-English language tasks. GPT-40-mini,
a smaller yet capable model, is ideal for tasks previously relying on GPT-3.5-turbo.
It offers higher intelligence and multimodal capabilities at a lower cost, making it
suitable for smaller vision-related tasks. GPT-4, OpenAlI’s current flagship series,
is renowned for its advanced reasoning and broader knowledge. It outperforms the
previous series in complex reasoning situations. The GPT-3.5-turbo model (from
the GPT-3 series), optimised for chat but effective for non-chat tasks, remains avail-
able as of the time of writing and has been instrumental in various applications,
from natural language understanding to code generation. LL.Ms are characterised
by their vast size, extensive training data, and transformer architecture. For exam-
ple, GPT-3 is trained on 175 billion parameters, while GPT-4, OpenAI’s current

flagship, is trained on one trillion parameters [Yu et al., 2023].

B.2.3 Large Language Model Applications in Software Vulner-
ability Prediction

LLMs have shown significant promise in software engineering, particularly in au-
tomated program repair, code generation, and code summarisation. Their ability to
understand and generate code makes them valuable for software development and
maintenance. The recent surge in Generative Al has sparked interest in applying
LLMs to software security, particularly in predicting vulnerabilities in code. Recent
studies have examined the effectiveness of LLMs in this domain. We contribute to
this discussion by evaluating ChatGPT’s performance in vulnerability prediction us-
ing OpenAI’s GPT-3 and GPT-4 series models, with training data up to September
2021 and October 2023, respectively. We assess the out-of-the-box performance
of these models without fine-tuning® or providing any specific context or prompts

related to known vulnerabilities, focusing solely on method-level code samples. We

Shttps://platform.openai.com/docs/guides/fine-tuning

https://platform.openai.com/docs/guides/fine-tuning

B.2. Background 339

then compare these results with those obtained in Chapters 4, 5, and 6 to gauge the
potential of LLMs in vulnerability prediction. Finally, we also assess the perfor-
mances of the GPT-3 and GPT-4 series models to understand their advancements

and potential in software vulnerability prediction tasks.

B.3. Literature Review 340

B.3 Literature Review

This section reviews studies on the application of LLMs in vulnerability detection
and prediction, providing an overview of the current state-of-the-art in vulnerability

detection using LL.Ms.

Akuthota et al. [2023] emphasised the critical need to secure software against
breaches and cyber-attacks, especially in an increasingly digital world. They noted
that traditional methods often fail to manage the complexity of modern software
systems, prompting the exploration of advanced machine learning models. They
investigated the use of Large Language Models, specifically the GPT-3.5-Turbo
model, to detect and monitor software vulnerabilities. The study aimed to eval-
uate the effectiveness of GPT-3.5-Turbo in identifying vulnerabilities within soft-
ware code, enhancing software security, and release management through continu-
ous monitoring. Their methodology involved using the OpenAl interface to interact
with GPT-3.5-Turbo, developing a function called "find security issues and gener-
ate fix" to scan code snippets, identify vulnerabilities, and suggest potential fixes.
Data from documented vulnerabilities were analysed, and automated testing tools,
such as the OWASP Benchmark, were utilised to streamline the evaluation pro-
cess. The study achieved an accuracy of 0.77 in detecting vulnerabilities across
2,740 test cases, identifying various types of vulnerabilities, including SQL Injec-
tion, Cross-Site Scripting (XSS), and Command Injection. The results demonstrated
that GPT-3.5-Turbo can effectively analyse code to predict security flaws, making
it a valuable tool for preliminary code reviews. The research concluded that LLMs,
such as GPT-3.5-Turbo, show significant promise in improving software security by
accurately identifying vulnerabilities. However, the study also noted the need for
ongoing refinement to address biases and enhance detection capabilities. It recom-
mended that future work focus on training LL.Ms with code-based data, optimising

prompts, and exploring different parameters to improve model performance.

In response to the increasing complexity of web applications and the rise in
security vulnerabilities, Szab6 and Bilicki [2023] investigated the use of LLMs,

particularly GPT models, to enhance web application security. They noted that

B.3. Literature Review 341

traditional vulnerability detection methods often require significant human inter-
vention and may not fully address the complexities of modern web frameworks.
The study aimed to assess the effectiveness of GPT models in detecting Improper
Isolation or Compartmentalisation (CWE-653) vulnerabilities within web applica-
tion source code. The goal was to automate the detection of these vulnerabilities,
reducing the need for extensive manual code reviews. Their methodology involved
a multi-step process using the GPT Application Programming Interface (API) for
static code analysis of Angular web applications. The steps included preprocess-
ing and minifying the source code of selected open-source Angular projects, using
GPT models to identify and classify sensitive data elements, mapping the codebase
into JSON structures for further analysis, assessing the protection levels of sensi-
tive code segments based on predefined criteria, and comparing GPT-based analysis
results with manual evaluations to assess accuracy. Few-shot examples and chain-
of-thought prompting techniques improved the models’ interpretive accuracy. The
results showed that GPT-4 significantly outperformed previous models, achieving
an 88.76% vulnerability detection rate. GPT-4 effectively understood the context
and semantics of the source code, accurately detecting and classifying sensitive
data segments. However, challenges were noted in handling highly modular code
and identifying services managing multiple types of sensitive data. The study con-
cluded that GPT-4 exhibits considerable potential for enhancing web application
security through automated code inspection, thereby reducing the need for manual
reviews and improving overall security. The study recommended that future work
focus on refining prompts, exploring GPT models for other vulnerabilities and web
frameworks, and addressing challenges like modular code handling and complex

data flow detection.

Zhou et al. [2024] addressed the critical issue of software vulnerabilities, which
can lead to severe consequences, including data breaches and system failures. They
noted that while machine learning and deep learning models such as CodeBERT
have been used for vulnerability detection, the emergence of Large Pre-Trained

Language Models such as GPT-3.5 and GPT-4 offers new possibilities. The study

B.3. Literature Review 342

aimed to evaluate the effectiveness of LLMs, particularly GPT-3.5 and GPT-4, in
detecting software vulnerabilities and to determine whether they could outperform
medium-sized models, such as CodeBERT, especially in classification tasks related
to software security. Additionally, the research explored the impact of different
prompt designs on the performance of these models. Using ChatGPT, based on
GPT-3.5 and GPT-4, the researchers experimented with various prompt designs to
enhance vulnerability detection. They utilised in-context learning (1CL) to avoid the
computational cost of fine-tuning large models. Prompts included task descriptions,
role descriptions, project information, and examples from the Common Weakness
Enumeration (CWE) database. The performance of these prompts was compared
to that of a fine-tuned version of CodeBERT, using a dataset of vulnerability-fixing
commits from C/C++ software repositories. Results showed that the base prompt
alone was inadequate, with GPT-3.5 achieving only 50% accuracy and predicting all
samples as non-vulnerable. However, incorporating external knowledge from CWE
examples and training data significantly improved performance. GPT-3.5 achieved
62.7% accuracy by combining random sampling and retrieval of similar code, sur-
passing CodeBERT’s 60.3% accuracy. GPT-4, using the CWE examples prompt,
outperformed CodeBERT by 34.8% in accuracy, highlighting its superior capability
in vulnerability detection. The study concluded that LLMs, particularly GPT-3.5
and GPT-4, show considerable promise in enhancing software vulnerability detec-
tion, especially when well-crafted prompts are used. While GPT-3.5 performed
competitively with CodeBERT, GPT-4 demonstrated even more tremendous poten-
tial, indicating significant progress in the field. The researchers emphasised the
need for further investigation into local and specialised LLMs, improving preci-
sion and robustness, addressing the long-tailed distributions of vulnerability types,
and fostering trust and synergy with developers. These findings suggest that LLMs
could be crucial in future software security frameworks if optimised and tailored to

specific needs.

Yildirim et al. [2024] addressed the growing concerns around API security,

noting that as APIs become integral to software development, they also introduce

B.3. Literature Review 343

unique security risks. The study aimed to compare the effectiveness of static code
analysers and LLLMs in detecting API vulnerabilities, particularly those listed in the
OWASP Top 10 API Security Risks. The primary objective was to evaluate how
well these tools identify 40 API vulnerabilities in source code, each representing a
category within the OWASP Top 10. The research sought to highlight the poten-
tial advantages of LLMs over traditional static code analysers. Their methodology
involved evaluating ten static code analysers and four popular LLMs (ChatGPT
3.5, ChatGPT 4, LLaMA 2, and Bard) against 40 Python API code samples, each
containing specific vulnerabilities aligned with the OWASP API Top 10 for 2019.
The tools were assessed on accuracy in detecting vulnerabilities, providing correct
Common Weakness Enumeration titles and numbers, and explaining the identified
issues. The results showed significant differences in performance. ChatGPT 4 was
the most effective LLM, with detection rates of 62.5% using the first prompt and
42.5% using the second. LLaMA 2 was the least effective. Static code analysers
generally had lower detection rates, with Snyk leading at 25%, while tools like
Pylint, Pyre, and Trivy failed to detect any vulnerabilities. The study highlighted
that ChatGPT 4 demonstrated a deep understanding of complex API security issues,
achieving 100% accuracy in specific OWASP categories. However, both LLMs and
static code analysers showed variability across different OWASP categories, sug-
gesting that a multi-tool approach might be necessary for comprehensive vulnera-
bility detection. The study concluded that while static code analysers are helpful,
their effectiveness in detecting API vulnerabilities is significantly lower than that
of LLMs, mainly when the latter are appropriately prompted. ChatGPT 4 emerged
as the most effective LLLM tested, indicating its potential as a superior tool for API
vulnerability detection. The researchers suggested combining multiple LLMs with
static code analysers could offer a more comprehensive approach to API security.
They also recommended that future research focus on improving the precision and
robustness of LLMs, exploring specialised LLLM solutions, and addressing privacy

and security concerns related to using LL.Ms in vulnerability detection.

B.3. Literature Review 344

These studies highlight the growing interest in applying LLMs to software
security, particularly in vulnerability detection. They demonstrate their potential
in identifying vulnerabilities to enhance software security and automate the detec-
tion of vulnerabilities. The studies also highlight the importance of well-crafted
prompts, external knowledge, and specialised LLMs in improving vulnerability de-
tection and prediction accuracy, as well as GPT-4’s superior performance in vulner-
ability prediction tasks. The following sections outline the methodology employed
in this study to assess the effectiveness of LLMs, specifically ChatGPT, in predict-

ing vulnerability.

B.4. Methodology 345

B.4 Methodology

This section outlines our methodology for evaluating LLMs in the context of vul-
nerability prediction. It provides an overview of the methodology, detailing the

dataset, data preprocessing, and model evaluation.

B.4.1 Overview of the Methodology

Preprocess source code

v

Develop a Process and
N »| append ground
meé:?:S:;VEI 7| truth data to the
dataset
v
Setup ChatGPT Deduplicate
prompt to accept | 4 dataset based on
method source | method source
code as a variable code
h 4
Pass each Obtain a binary
method's source response for each
code to ChatGPT > method_‘§
for vulnerability vulnerability
prediction status

Evaluate predictive
performance using ground
truth data

Figure B.1: LLM-Based Vulnerability Prediction Methodology Overview

Figure B.1 illustrates our methodology, which comprises four phases: Dataset
Preparation, Prompt Construction, Vulnerability Prediction, and Performance Eval-

uation.

B.4. Methodology 346

The first phase, dataset preparation, includes the first four steps of the method-
ology (Figure B.1). It involved preparing the dataset to ensure data quality and

relevance for vulnerability prediction.

1. Source Code Preprocessing: Preprocess source code samples to remove ir-

relevant information, such as comments.

2. Method-Level Dataset Development: Extract method-level code samples,
removing unqualified code elements and methods, such as abstract and test

methods.

3. Ground Truth Annotation: Annotate the dataset with vulnerability status

labels.
4. Data Deduplication: Remove duplicate entries to ensure data quality.

The second phase, prompt construction, is the fifth step of the methodology
(Figure B.1). It involved constructing prompts that guide LLMs in identifying vul-
nerabilities in code samples.

The third phase, vulnerability prediction, includes the sixth and seventh steps
of the methodology (Figure B.1). It focused on predicting vulnerabilities in method-

level code samples using LLMs.

1. Method Source Code Input: Provide method-level code samples to LLMs

for vulnerability prediction.

2. Binary Classification: Obtain a binary response from LLMs, classifying

methods as vulnerable or non-vulnerable.

The last phase, performance evaluation, is the final step of the methodology
(Figure B.1). It used ground truth information to evaluate LLM performance in
vulnerability prediction using precision, recall, and F1 score metrics.

The methodology provides a structured approach for analysing LLLMs’ effec-
tiveness in vulnerability prediction. The following subsections detail the dataset,

preprocessing, and model evaluation.

B.4. Methodology 347

Where possible, we refer the reader to relevant sections in previous chapters,
where concepts, resources, or methodological techniques have already been dis-

cussed, rather than repeating the information here to avoid redundancy.

B.4.2 Dataset

To facilitate performance comparison with our information retrieval-driven tech-
nique from previous chapters, we used the same datasets from Chapters 4 and 6: one
comprising multiple releases of a single software system, i.e., within-project dataset
and another comprising multiple software systems, i.e., mixed-project dataset.

The first dataset is Apache Tomcat 7, an open-source web server. It includes 76
releases from 7.0.0 to 7.0.108, each containing Java source code files. For details,
see Chapter 4, specifically Subsection 4.4.2 and Subsubsections 4.4.2.1, 4.4.2.2,
and 4.4.3.4. We used this dataset for within-project vulnerability prediction.

The second dataset comprises code artefacts from multiple software systems
from Al Debeyan et al. [2022] and Reis and Abreu [2021]. For details, see Chap-
ter 6, specifically Subsection 6.3.2 and Subsubsections 6.3.2.1 and 6.3.2.2. We used

this dataset for mixed-project vulnerability prediction.

B.4.3 Data Processing
The data processing steps are similar to those in Chapters 4 and 6: preprocessing
source code, extracting method-level details, annotating methods with vulnerability

labels, and removing duplicates.

B.4.3.1 Data Preprocessing

We utilised JavaParser to parse source code files, removing irrelevant information
to focus on the code’s logic and structure. Irrelevant code artefacts, such as ab-
stract and test methods, were excluded to ensure the use of only relevant data for

vulnerability prediction.

B.4.3.2 Source Code Extraction
We used JavaParser to extract method-level code samples from the source code files.
This process resulted in two datasets of method-level code samples: a within-project

method-level dataset and a mixed-project method-level dataset.

B.4. Methodology 348

Unlike previous chapters, which used token-based and code-based represen-
tations, this study employed raw code samples as input. We provided the code
samples directly to the LLMs for vulnerability prediction without any transforma-

tion.

B.4.4 Ground Truth: Estimation

Ground truth is essential for evaluating LLM performance. We annotated the
datasets with vulnerability status labels. For detailed ground truth estimation for
each of the two datasets, see Chapter 4, specifically, Subsubsections 4.4.2.2 &
4.4.3.4, and Chapter 6, specifically, Subsubsections 6.3.2.2.

B.4.5 Data Deduplication

Although data leakage is not a concern in this study due to the use of pre-trained
LLMs, we have deduplicated our data to ensure data quality. Removing duplicates
enhances computational efficiency, storage, and performance metrics and reduces

the financial costs associated with using the OpenAl API service.

B.4.6 OpenAl API

We utilised the OpenAI API” through HTTP requests to interact with LLMs. The
API provides access to various models for text generation, classification, and other
Natural Language Processing tasks. The API offers a straightforward interface for
interacting with LLMs, allowing users to submit requests and receive responses.
The API documentation provides comprehensive guidance on model usage, request

formats, response structures, and streamlining interaction with LLMs.

B.4.7 Prompt Construction

Prompt construction is crucial for guiding the responses of LLMs. We carefully
constructed prompts to direct the models to predict vulnerabilities based purely on
code logic and structure, excluding external context.

We employed two prompts®: system prompts and user prompts. The system

prompt instructed the LLMs to assess Java methods for vulnerabilities based on their

"https://platform.openai.com/docs/api-reference
8https://platform.openai.com/docs/guides/prompt—engineering

https://platform.openai.com/docs/api-reference
https://platform.openai.com/docs/guides/prompt-engineering

B.4. Methodology 349

source code. The user prompt presented the code, guiding the models in classifying
potential vulnerabilities in a binary manner through logical analysis.

You are an advanced vulnerability prediction system that analyses Java
method source code. Your task is to predict whether a given Java method
contains a security vulnerability based on its source code.

When provided with the source code of a Java method, analyse it
thoroughly and determine if it has any security vulnerabilities. Your
response should be “1” if a vulnerability is present and “0” if no vulnerability
is detected.

Make sure to base your predictions solely on the code provided. Do not
consider any external factors or additional context.

Figure B.2: System Prompt for Vulnerability Prediction

Figure B.2 shows the system prompt for vulnerability prediction. It directs the
LLMs to assess Java method source code, focusing exclusively on code logic and
structure without considering any external context.

Analyse the following Java method source code for any security
vulnerabilities. Return your analysis in a JSON object that follows this
schema: {"prediction": PREDICTED_VALUE}.

Assign "1" to the prediction property if the method contains a security

vulnerability; otherwise, assign "0" to the prediction property.
Method Source Code:[METHOD_SOURCE_CODE]

Figure B.3: User Prompt for Vulnerability Prediction

Figure B.3 presents the user prompt for vulnerability prediction. It di-
rects the LLM to analyse Java method source code for security vulnera-
bilities and return a binary classification. The prompt includes two place-
holders: ‘[PREDICTED_VALUE]’ for the predicted vulnerability status and
‘IMETHOD_SOURCE_CODE]’ for the method’s source code.

B.4.8 Evaluation Metrics

We evaluated the LLMs’ vulnerability prediction performance using precision, re-
call, and F1 score metrics. These metrics are particularly suitable for imbalanced
datasets in binary classification, offering valuable insights into the models’ effec-

tiveness in identifying vulnerabilities. Additionally, the F1 score is particularly

B.4. Methodology 350

useful in this study because it not only facilitates comparison with previous chap-
ters but also places less emphasis on true negatives, which are of lesser interest in

vulnerability prediction tasks, as noted in Subsubsection 4.4.5.3 in Chapter 4.

B.4.9 Approach to Research Question

The experiments in this chapter addressed the research question: How well do Large
Language Models perform on method-level vulnerability prediction tasks?

To explore this research question, we pursued the following objectives:

1. Evaluate the effectiveness of Large Language Models, particularly ChatGPT,

in identifying vulnerabilities within code samples without external context.

2. Compare the performance of Large Language Models with our models in

Chapters 4, 5, and 6.

B.4.9.1 Objective 1

Evaluate the effectiveness of Large Language Models, particularly ChatGPT, in
identifying vulnerabilities within code samples without external context.

We approached this objective from two perspectives: evaluating the perfor-
mance of our LLMs using standard evaluation metrics and assessing their perfor-
mance improvements over time.

We used the OpenAl API's LLMs, specifically GPT-3.5-turbo-0125, GPT-40-
mini, and GPT-40, to predict vulnerabilities from method-level code samples. The
models provided binary classifications indicating the presence or absence of vulner-
abilities, which we evaluated using precision, recall, and F1 score metrics.

To compare the LLLMs’ performance, we completed inter-series and intra-series
comparisons. First, we compared the vulnerability prediction performance of the
GPT-3 and GPT-4 models, i.e., an inter-series comparison, to assess the improve-
ments between the two series. This analysis highlighted the advancements in the
GPT series over time. Next, we evaluated the performance differences within the
GPT-4 series models, i.e., intra-series comparison. This comparison showcased the

capabilities of the latest models in the GPT-4 series.

B.4. Methodology 351

For inter-series advancements, we compared the GPT-3.5-turbo-0125 model
with the GPT-40-mini and GPT-40 models, using GPT-3.5-turbo-0125 as a base-
line. We performed performance ratio analyses across all evaluation metrics on our
within- and mixed-project datasets.

Following the inter-series comparison, we conducted an intra-series analysis to
evaluate the vulnerability prediction performance of the GPT-4 series models, using
GPT-40-mini as the baseline. Specifically, we compared GPT-40-mini and GPT-40
on our within- and mixed-project datasets.

For both inter-series and intra-series comparisons, we calculated performance
improvement ratios and percentages to quantify the advancements in the GPT series
models.

We calculated the performance improvement ratio PIR as follows:
P
PIR = 7

P, and P, represent the performance of the model under evaluation and the
baseline model for the evaluation metric, respectively.

The performance improvement percentage PIP was then derived as follows:
PIP = (PIR — 1) x 100%

These comparisons offered a comprehensive analysis of the vulnerability pre-
diction capabilities of the GPT-3 and GPT-4 series models, highlighting their ad-

vancements.

B.4.9.2 Objective 2
Compare the performance of Large Language Models with our models in Chap-
ters 4, 5, and 6.

The second objective was to compare the performance of LLMs with the best-
performing models developed in Chapters 4, 5, and 6. We used precision, recall,
and F1 score metrics to evaluate the LLMs’ vulnerability prediction performance
and compared the results with those from the earlier chapters.

This comparison provided insights into the effectiveness of LLMs in vulnera-

bility prediction without external context and highlighted their potential in software

B.4. Methodology 352

security tasks. The following section presents the results from our experiments on

both the within- and mixed-project datasets.

B.5. Results 353

B.5 Results

B.5.1 Objective 1 Results

Evaluate the effectiveness of Large Language Models, particularly ChatGPT, in
identifying vulnerabilities within code samples without external context.

This objective aimed to assess the effectiveness of LLMs in identifying vulner-
abilities in code samples without relying on external context or prior knowledge of

known vulnerability patterns.

Table B.1: Large Language Model Performances on the Within-Project Dataset

Metric GPT-3.5-turbo-0125 GPT-40-mini GPT-4o0

Precision 0.03006 0.04428 0.04826
Recall 0.12698 0.43915 0.68519
F1 score 0.04861 0.08046 0.09017

Table B.1 shows the performance of GPT-3.5-turbo-0125, GPT-40-mini, and
GPT-40 models on the within-project dataset. The models exhibited varying preci-
sion, recall, and F1 scores, reflecting differences in their effectiveness at identifying
vulnerabilities. The models demonstrated low performance, particularly in terms of

precision and F1 score.

Table B.2: Large Language Model Performances on the Mixed-Project Dataset

Metric GPT-3.5-turbo-0125 GPT-40-mini GPT-40

Precision 0.12750 0.13406 0.13383
Recall 0.14154 0.36448 0.56614
F1 score 0.13415 0.19602 0.21648

Table B.2 shows the performance of GPT-3.5-turbo-0125, GPT-40-mini, and
GPT-40 models on the mixed-project dataset. The models displayed varying preci-
sion, recall, and F1 scores, reflecting differences in their ability to identify vulner-
abilities. Performance (based on F1 score) was slightly better on the mixed-project
dataset than on the within-project dataset, but precision and F1 scores remained

suboptimal.

B.5. Results 354

Metric GPT-40-mini (%) GPT-40 (%)

Precision 47 61
Recall 246 440
F1 score 66 85

(a) Within-Project Dataset
Metric GPT-40-mini (%) GPT-40 (%)

Precision 5 5
Recall 158 300
F1 score 46 61

(b) Mixed-Project Dataset

Figure B.4: Performance Improvement Percentages: GPT-4 Over GPT-3 Series (Inter-
Series Comparison)

Figure B.4 shows the performance improvement percentages of GPT-4 models
compared to the GPT-3 model on the within- and mixed-project datasets, calcu-
lated using the PIP formula from Subsubsection B.4.9.1. These percentages reflect
advancements in the GPT series for out-of-the-box vulnerability prediction tasks.

Recall showed the highest improvement across GPT-4 models on both datasets,
while precision had the lowest. The F1 score showed moderate improvement, indi-

cating overall progress between the GPT series.

Metric GPT-40 (%) Metric GPT-40 (%)
Precision 9 Precision 0
Recall 56 Recall 55
F1 score 12 F1 score 10
(a) Within-Project Dataset (b) Mixed-Project Dataset

Figure B.S: Performance Improvement Percentages: GPT-40 Over GPT-40 Mini (Intra-
Series Comparison)

Figure B.5 shows the performance improvement percentages of the GPT-4o
model over the GPT-40-mini model on the within- and mixed-project datasets, cal-
culated using the PIP formula from Subsubsection B.4.9.1. These percentages re-
flect intra-series advancements in the GPT-4 models for vulnerability prediction.

As expected, the improvements were less significant than those in the inter-

series comparison, indicating that GPT-40 did not outperform GPT-40-mini as dra-

B.5. Results 355

matically as the GPT-4 models outperformed the GPT-3 model, but the improve-
ments were still notable.

Similar to the inter-series comparison, recall showed the highest improvement
between the two GPT-4 models on both datasets, while precision had the lowest.
The F1 score showed moderate improvement, indicating a continued upward trend

in the GPT series’ performance.

u
o
o

500

GPT-40-mini (%) GPT-40-mini (%)
EE GPT-40 (%) EE GPT-40 (%)

I
o
=)
IN
o
S

-
o
=)
=
o
S

Percentage
N w
o o
o o

Percentage
N w
o o
o o

Precision Recall F1-Score 0 Precision Recall F1-Score
(a) Within-Project Dataset (b) Mixed-Project Dataset
500 500
N GPT-40 (%) B GPT-40 (%)
400 400
[[
& 300 300
c C
] g
3 200 3 200
100 100
0L e 0 —
Precision Recall F1-Score Precision Recall F1-Score
(c¢) Within-Project Dataset (d) Mixed-Project Dataset

Figure B.6: Performance Improvement Percentages: Inter- (GPT-4 Over GPT-3 Series) and
Intra-Series (GPT-40 Over GPT-40 Mini) Comparisons

Figure B.6 presents bar charts showing the performance improvement percent-
ages of GPT-4 models over GPT-3 models and GPT-40 over GPT-40-mini on our
within- and mixed-project datasets, based on the data from Tables B.4 and B.5. The
bar charts visually highlight the advancements in the GPT series for out-of-the-box
vulnerability prediction tasks.

Subfigures B.6a and B.6b (in blue) show the performance improvement per-
centages of GPT-4 models over the GPT-3 model on the within- and mixed-project
datasets, respectively.

Subfigures B.6¢c and B.6d (in green) show the comparably less pronounced
performance improvement percentages of GPT-40 over GPT-40-mini on the same

datasets.

B.5. Results 356

In summary, the LLMs performed suboptimally in identifying vulnerabilities
within code samples. All models yielded inadequate results, limiting their practi-
cal utility for vulnerability prediction in code samples. However, we observe that
the GPT-4 models significantly improve upon GPT-3 models in vulnerability predic-
tion tasks. The inter-series comparison showed substantial improvements, while the
intra-series comparison yielded more modest gains, which is expected given that the
models belong to the same generation. This upward trend in performance is promis-
ing for the future, as it indicates advancements in the GPT series for vulnerability

prediction tasks.

B.5.2 Objective 2 Results

Compare the performance of Large Language Models with our models in Chap-

ters 4, 5, and 6.

Table B.3: Within-Project Performance Comparison: Previous Chapters versus Large Lan-

guage Models
Model Precision Recall F1 score
Chapter 4: RF (Token-Based) 0.73635 0.58345 0.64821
Chapter 5: RF (Code2Vec-Based) 0.73171 0.60668 0.66106
GPT-3.5-turbo-0125 0.03006 0.12698 0.04861
GPT-40-mini 0.04428 0.43915 0.08046
GPT-40 0.04826 0.68519 0.09017

Table B.3 presents the within-project performance comparison of our best-
performing models from Chapters 4 and 5 with the GPT-3.5-turbo-0125, GPT-
40-mini, and GPT-40 models. The figures for the chapters’ models are the pre-
hyperparameter tuning values, representing a fair ‘out-of-the-box’ comparison with
the LLMs. Also, we note that ‘RF’ stands for Random Forest classifier.

Table B.4 presents a comparison of the mixed-project performance of our best-
performing models from Chapter 6 with that of the GPT-3.5-turbo-0125, GPT-40-
mini, and GPT-40 models. Like the within-project comparison, the figures for the
chapter’s models are pre-hyperparameter tuning. ‘GNB’ stands for Gaussian Naive

Bayes classifier.

357

B.5. Results
Table B.4: Mixed-Project Performance Comparison: Previous Chapters versus Large Lan-
guage Models
Model Precision Recall F1 score
Chapter 6: GNB (Token-Based) 0.16780 0.29921 0.21477
Chapter 6: GNB (Code2Vec-Based) 0.17859 0.23869 0.20394
GPT-3.5-turbo-0125 0.12750 0.14154 0.13415
GPT-40-mini 0.13406 0.36448 0.19602
GPT-40 0.13383 0.56614 0.21648

Chapter 5: RF Chapter 6: RF GPT-3.5-turbo-0125 GPT-40-mini

(Token-Based) (Code2Vec-Based)

(a) Within-Project Performance Comparison

Metric
B Precision
[Recall
B Fl-Score

0.7 1
0.6
<
S 0.5
2
0.4
0.3
0.2
0.1 III
0.0-

GPT-40

Chapter 7: GNB Chapter 7: GNB GPT-3.5-turbo-0125 GPT-40-mini

(Token-Based) (Code2Vec-Based)

(b) Mixed-Project Performance Comparison

Metric
mmm Precision
- Recall
Bl Fl-Score

GPT-40

Figure B.7: Performance Comparison: Previous Chapters versus LLM

Figure B.7 shows two grouped bar charts comparing the pre-hyperparameter

tuning performance of our best-performing models from Chapters 4, 5, and 6 with

the performance of our LLMs.

B.5. Results 358

Subfigure B.7a compares the performance of the models on the within-project
dataset, while Subfigure B.7b compares the performance on the mixed-project
dataset.

Subfigure B.7a shows the performance of our token-based model (Random
Forest Classifier) from Chapter 4, our Code2vec-based model (Random Forest Clas-
sifier) from Chapter 5, and the three LLMs on the within-project dataset.

Subfigure B.7b shows the performance of our token-based model (Gaussian
Naive Bayes classifier) from Chapter 6, our Code2vec-based model (Gaussian
Naive Bayes classifier) also from Chapter 6, and the three LLMs on the mixed-
project dataset.

The immediate observation from Figure B.7 is that our traditional Random
Forest token- and Code2Vec-based models significantly outperform the LLMs in
all metrics on the Within-Project dataset.

On the other hand, the LLMs perform competitively with our Gaussian Naive
Bayes token- and Code2Vec-based models on the Mixed-Project dataset, with the
GPT-4 models noticeably outperforming the Gaussian Naive Bayes models in re-
call. Although all the results in the Mixed-Project dataset are suboptimal.

In summary, our traditional machine learning models outperformed the LLMs
in a within-project setting, while the LLMs performed competitively with our tra-
ditional models in a mixed-project setting. The LLMs, especially GPT-40, show
the most promise in vulnerability prediction tasks, particularly in recall, but their

precision and F1 scores are currently insufficient for practical use.

B.6. Discussion 359

B.6 Discussion

This study evaluated the effectiveness of LLMs, specifically OpenAl’s GPT series,
in predicting software vulnerabilities at the method level. The research focused on
their out-of-the-box capability to predict vulnerabilities without relying on external
context, such as known vulnerability patterns. The results were compared with tra-
ditional machine learning models developed in Chapters 4, 5, and 6, and we found
that the LLMs’ performance was suboptimal in identifying vulnerabilities within
code samples without external context. While LLMs show promise in this field,
their performance, particularly in terms of precision and F1 score, is insufficient to

replace or surpass existing models.

B.6.1 Effectiveness of Large Language Models in Vulnerability

Prediction

Using within- and mixed-project datasets, we assessed the GPT-3.5-turbo, GPT-
4o0-mini, and GPT-40 models. While the GPT-4 series models showed notable im-
provements in the recall, precision remained low, leading to reduced F1 scores.
This indicates that although LLMs can detect more true positives, they also produce
many false positives, limiting their practical effectiveness in vulnerability predic-
tion. It also indicates that, based on out-of-the-box performance, LLMs in their
current evolution struggle to distinguish subtle differences between vulnerable and

non-vulnerable code patterns, resulting in a high rate of false positives.

B.6.2 Comparison of Large Language Models with Previous

Models

The comparison of LLMs with traditional machine learning models from Chap-
ters 4, 5, and 6 revealed that the latter significantly outperformed the former in
within-project settings. On the other hand, the LLLMs performed competitively with
the traditional models in mixed-project settings, particularly in recall. We theorise
that the traditional models’ superior performance in within-project settings is due to
their ability to learn from specific vulnerability patterns in the training data, which

the LLMs struggle with. In contrast, the LLMs’ competitive performance in mixed-

B.6. Discussion 360

project settings is due to their generalisation capabilities, possibly due to their vast

pre-trained knowledge.

B.6.3 Performance Improvements in the Generative Pre-trained

Transformer Series

The findings highlight clear performance improvements across the GPT series. The
shift from GPT-3.5 to GPT-40-mini and GPT-40 models showed significant gains in
the recall, though precision and, consequently, F1 score improvements were modest.
This suggests that while LLMs are improving in identifying vulnerabilities, they
still need refinement to reduce false positives. The performance ratios between
the GPT-3 and GPT-4 series indicate ongoing advancements, particularly in recall,

which enhance the models’ ability to detect vulnerabilities more effectively.

B.6.4 Limitations of Large Language Models in Vulnerability

Prediction

Despite their potential, the LL.Ms evaluated in this study have notable limitations in
vulnerability prediction. The primary issue is their low precision, which results in a
high rate of false positives. This could prove costly in software security applications
because of the potential for unnecessary alerts and wasted resources in investigating
false positives. Additionally, LLMs are highly sensitive to the quality and specificity
of prompts, making their effectiveness reliant on well-framed input, a sentiment

echoed in most of the reviewed literature in Section B.3.

B.6.5 Context-Aware Large Language Model-based Vulnerabil-
ity Prediction

Given these limitations, future research could explore the development of context-

aware LLMs for vulnerability prediction. These models would use the static knowl-

edge from their training data and dynamically incorporate contextual information,

such as the software environment, system architecture, usage patterns, and emerging

threats. The fine-tuning feature of OpenAI’s LLMs could be leveraged to adapt the

models to specific software contexts, enhancing their precision and reducing false

B.6. Discussion 361

positives. This approach could improve precision by filtering irrelevant information
and focusing on contextually significant code patterns. Additionally, incorporating

real-time feedback could refine predictions and reduce false positives.

Another avenue for creating context-aware LLMs is to leverage Retrieval-
Augmented Generation (RAG) models. RAG is an advanced Al framework that
integrates traditional information retrieval systems with the capabilities of gener-
ative language models. RAG can be integrated into chatbot systems to enhance
conversational abilities in practical applications [Rangan and Yin, 2024]. By lever-
aging external knowledge, RAG-powered chatbots can deliver more comprehensive
and context-aware responses, thereby enhancing the user experience. The external
knowledge sources enhance the accuracy, relevance, and timeliness of the generated

text [Ding et al., 2024].

RAG operates through two main steps. First, it retrieves relevant information
from external data sources, such as web pages, knowledge bases, or, in our case,
vulnerability databases, using sophisticated search algorithms. The retrieved infor-
mation is then pre-processed to ensure it is ready for integration [Izacard and Grave,
2020]. In the second step, this information is incorporated into the LLM, enriching
the model’s understanding and enabling it to generate more precise and contextually
relevant responses [Xiong et al., 2024]. RAG employs vector databases to facilitate

efficient retrieval based on semantic similarity [Sawarkar et al., 2024].

The primary advantages of RAG include access to up-to-date information, im-
proved factual accuracy, and enhanced contextual relevance. Unlike traditional
LLMs, which are limited to pre-trained knowledge, RAG ensures that responses
are accurate and current by accessing external sources [Ding et al., 2024]. Be-
cause RAG conditions output on retrieved factual information, it promotes con-
sistency and reduces the likelihood of inaccuracies. This is particularly useful in
high-precision applications where factual accuracy is paramount, such as vulnera-
bility prediction in software systems. This aspect is crucial in our context, given
that our results have demonstrated the need for improved precision in LLM-based

vulnerability prediction.

B.6. Discussion 362

Overall, RAG represents a significant advancement in Al. It combines the
strengths of information retrieval and language generation to produce more accu-
rate and contextually grounded outputs, enhancing the performance of LLMs in

vulnerability prediction tasks.

B.6.6 Data Challenges in Large Language Model-Based for Vul-
nerability Prediction

In Subsection 6.2.2, we discussed the significant impact of data quality and quan-
tity on vulnerability prediction models. We categorised these challenges into
six themes: data generalisability, data accessibility, data preparation effort, data
scarcity, label noise, and data noise. We explained that models often conform to
the "garbage in, garbage out" principle, i.e., models are susceptible to the data on
which they are trained. Thus, challenges such as the scarcity of high-quality data,
inconsistent reporting practices, and organisations’ reluctance to share vulnerability
data exacerbate these data-related issues.

Although this study shows that advancements in LLMs hold promise for vul-
nerability prediction, their current poor performance still reflects the same data-
related challenges previously discussed. For instance, the need for context-aware
LLMs suggests that data preparation will continue to be a significant challenge,
requiring substantial expertise and resources. This issue is closely tied to other
challenges, such as data generalisability, accessibility, scarcity, and noise. As a re-
sult, the trade-offs between using LLMs and traditional machine learning models in

vulnerability prediction remain critical in the current generation of LLMs.

B.6.7 Implications

The results of this study provide essential insights into the strengths and limita-
tions of LLMs in predicting vulnerabilities in software code. While LLMs, such
as the GPT series, are crucial for text understanding and generation, their appli-
cation in vulnerability prediction still requires substantial refinement, particularly
in terms of precision. Despite their advanced architecture, LLMs may not be en-

tirely suited to vulnerability prediction tasks without significant tuning or additional

B.6. Discussion 363

contextual data. The observed performance improvements across the GPT series in-
dicate progress, but the current state of LLMs warrants caution when using them in
critical security tasks.

These findings have significant implications for both researchers and industry
practitioners. For researchers, the identified performance gaps suggest that further
work is needed to refine LLMs, potentially through hybrid approaches that combine
LLMs with traditional models or domain-specific techniques. For industry practi-
tioners, the findings emphasise the need to consider the limitations of LLMs in
security-critical applications and the importance of rigorous testing and validation

to ensure their reliability and effectiveness.

B.6.8 Recommendations

Based on this study’s findings, several recommendations for future research and
practice in vulnerability prediction can be made. Firstly, researchers should explore
hybrid approaches that combine the strengths of LLMs with traditional machine
learning models to improve precision and specificity. Secondly, developing context-
aware LLMs that adapt to dynamic software environments and emerging threats
is crucial for enhancing real-world effectiveness. Thirdly, practitioners should use
LLMs cautiously in security-critical applications, ensuring thorough testing and val-
idation, especially where precision is critical. Additionally, integrating LLMs with
other security tools could provide a more balanced approach, leveraging LLMs’
strengths in recall while addressing their precision limitations. Additionally, further
exploration of context-aware models through fine-tuning or RAGs is recommended
to enhance the practical utility of LLMs in software security. Finally, future research
should focus on refining the training and tuning processes for LLMs to improve their
performance in vulnerability prediction and address the limitations identified in this

study.

B.7. Threats to Validity 364

B.7 Threats to Validity

The findings of this study are subject to several threats to validity that may impact
the results and conclusions. These threats are discussed below to provide a compre-

hensive understanding of the study’s limitations and potential biases.

B.7.1 Internal Validity

Internal validity refers to the reliability of this study’s results, ensuring they are free

from confounding factors.

B.7.1.1 Dataset Characteristics

The data used to evaluate the LLMs poses a significant threat to internal validity.
Datasets, especially those in cross- and mixed-project settings, may contain biases
or inconsistencies affecting model performance. Noisy labels or incomplete data
could lead to inaccurate assessments. Despite efforts to clean the data, eliminating

these issues is challenging and may have influenced the results.

B.7.1.2 Dataset Vulnerability versus Non-Vulnerability Distribution
The distribution of vulnerable and non-vulnerable code samples in the datasets can
impact model performance. An imbalance in positive and negative samples might
skew results, affecting the models’ vulnerability prediction capabilities. For exam-
ple, the within-project dataset has a 1.48% vulnerability rate (Table 4.11), whereas
the mixed-project dataset has a 5.28% rate (Table 6.2). As shown in Tables B.1
and B.2, the mixed-project dataset yielded better results, likely due to its higher
vulnerability rate, which may have enhanced model performance.

Balancing the datasets could produce different results but also introduce bias,
as this adjustment may not accurately reflect real-world scenarios. Moreover, such
class distribution adjustments would misalign with the study’s aim of evaluating

LLMs’ out-of-the-box performance.

B.7.1.3 Prompt Design Bias

The effectiveness of LLMs in predicting vulnerabilities can be sensitive to the phras-
ing and structure of the prompts. Although this study used carefully designed

prompts to minimise bias, unintended prompt bias remains possible. Different

B.7. Threats to Validity 365

prompts might lead to varying results, introducing subjectivity that could impact

the study’s internal validity.

B.7.1.4 Application Programming Interface Request Parameters

The study’s request configuration, including temperature and other parameters,
could affect LLM performance. Although we followed best practices, these settings
introduced a layer of complexity that may have influenced the models’ predictions.
For instance, the temperature setting, which ranges from 0 (deterministic output) to
1 (more random output), was left at the default value of 0. Changing this setting

could alter the LLMs’ predictions and introduce bias.

B.7.2 [External Validity

External validity concerns the generalisability of the study’s findings beyond its

specific context.

B.7.2.1 Programming Language Generalisability

One significant threat is the exclusive use of Java datasets. While Java is widely
used, the findings may not apply to vulnerability prediction in other programming
languages, as distinct syntax and semantic structures can influence the effectiveness

of LLMs. Therefore, the results may not generalise to projects in other languages.

B.7.2.2 Granularity of Vulnerability Prediction

The focus on method-level vulnerability prediction may limit the study’s generalis-
ability to other levels of granularity. While this granularity enables detailed analysis,
the findings may not apply to other levels, such as class-level or file-level vulnera-
bility prediction. The complexity of vulnerabilities varies with the unit of analysis,

and LLMs may perform differently in broader contexts.

B.7.2.3 Model Generalisability

The reliance on specific versions of GPT models may limit the generalisability of
the results. As LLM technology evolves, newer models might exhibit different

strengths and weaknesses. The findings here are based on GPT-3.5-turbo, GPT-

B.7. Threats to Validity 366

40-mini, and GPT-40, and future models may produce different outcomes. Thus,

generalising these conclusions to future LLM versions should be done cautiously.

B.7.2.4 Absence of Contextual Information

Our exclusion of external contextual data in the experimental setup may not reflect
real-world scenarios where additional context can enhance vulnerability prediction.
The absence of this context could limit the applicability of the findings to real-world

software security tasks where context-aware analysis is beneficial.

B.8. Conclusion 367

B.8 Conclusion

This study utilised LLMs, specifically OpenAl’s GPT series, to predict software
vulnerabilities. It aimed to explore the prospect of enhancing software security by
leveraging advanced Al models to overcome the limitations of traditional machine
learning approaches. The objectives were to assess the out-of-the-box effective-
ness of LLMs in vulnerability prediction, compare their performance with that of
existing models, and evaluate improvements within the GPT series, focusing on
their viability at the method level. Using within-project and mixed-project datasets,
the study evaluated LLMs, including GPT-3.5-turbo, GPT-40-mini, and GPT-40
models, through binary vulnerability prediction classification tasks using precision,

recall, and F1 score metrics as evaluation criteria.

Results indicated that while the GPT-4 series improved recall and F1 score,
precision remained suboptimal. The LLMs performed better than the traditional
models from Chapter 6 on the mixed-project dataset, likely due to their generalisa-
tion capabilities facilitated by a vast pre-trained knowledge base, which, according
to Yu et al. [2023], comprises billions of parameters for the GPT-3 series and up
to a trillion parameters for the GPT-4 series. However, the traditional models from
Chapters 4 and 5 significantly outperformed the LLMs on the within-project dataset,
suggesting that LLMs struggle with recognising and discerning specific vulnerabil-
ity patterns within their vast pre-trained knowledge. The findings suggest that de-
spite their advanced architecture, LLMs are not yet optimised for vulnerability pre-
diction and, thus, produce high false positive rates. Thus, significant improvements
are needed for LLMs to match or surpass traditional machine learning approaches

for vulnerability prediction.

We conclude this study by noting that precision is a significant challenge for
LLMs in vulnerability prediction, limiting their practical utility in software secu-
rity. However, the inter- and intra-generation improvements in the GPT series sug-
gest ongoing advancements that could enhance LLMs’ effectiveness in vulnerability

prediction, especially on the mixed-project front. Until these advancements are re-

B.8. Conclusion 368

alised, context-aware LLMs attained through fine-tuning or RAG models represent

a promising approach to improving LLLMs’ practical utility in software security.

List of Terms

a priori A Latin term meaning "from the earlier" or "from the cause", which refers

to knowledge or information that is deduced from first principles or self-

evident propositions.. '

Abstract Syntax Tree A tree representation of the abstract syntactic structure of

source code, which is used for analysis and transformation.. 32

accuracy The proportion of correct predictions made by a classification model.. 3

actionable The usefulness of a vulnerability prediction model in practice, based on

an average or above-average level of performance.. '8

anomaly detection The process of identifying patterns in data that do not conform

to expected behaviour.. 3

association rule mining A data mining technique that identifies patterns in data,

such as frequent itemsets or co-occurrences.. >4

bias A systematic error in a machine learning model that causes it to predict values

different from the true values consistently.. '43

binary classification A classification problem where the target variable has two

classes, positive and negative.. 33

bug A fault in a computer program that causes it to behave unexpectedly.. 2

bug-fixing change A change made to a software system to fix a bug.. 3

List of Terms 370

bug-inducing change A change made to a software system that introduces a bug..
35

churn The number of times a method has been changed in a software system over

multiple releases or versions.. >

class A blueprint for creating objects in many object-oriented programming lan-

guages, which defines the properties and behaviours of objects.. °

class imbalance The situation where one class in a classification problem has sig-

nificantly more instances than the other class.. '8

classification A type of machine learning problem where the goal is to predict the

class of an instance based on its features.. 10

co-evolution The process by which two or more artefacts evolve together, such as

bug-fixing and bug-inducing changes.. 3

Code2Vec An AST-based code representation model that learns vector representa-

tions of code snippets.. 3

Coefficient of Variation A measure of relative variability used to compare the

spread of data sets with different units of measurement.. >’

Common Vulnerabilities and Exposures A list of publicly known cybersecurity

vulnerabilities.. 2°

Common Weakness Enumeration A list of software weaknesses that lead to vul-

nerabilities.. 149

correlation analysis A statistical technique that measures the strength and direc-

tion of a relationship between two variables.. '3!

cross-project prediction The process of predicting software vulnerabilities in a

project that is different from the one that the model was trained on.. 237

List of Terms 371

Cross-Validation A technique used to evaluate the performance of a machine
learning model by splitting the dataset into training and testing sets multi-

ple times.. 148

data accessibility The ease with which data can be accessed and used for analysis..
244

data generalisability See dataset generalisability.. 238

data heterogeneity The extent to which data points in a dataset differ from those

in other datasets.. 24

data leakage The situation where information from the test set is inadvertently
used to train a machine learning model, leading to overly optimistic perfor-

mance estimates.. 114

data noise Irrelevant or incorrect data in a dataset that can negatively impact the

performance of a machine learning model.. 2**

data preparation effort The time and resources required to prepare a dataset for

machine learning.. 2**

data preprocessing The cleaning and transformation of raw data into a format suit-

able for machine learning algorithms.. 13>

data scarcity The situation where there is an insufficient amount of data to train a

machine learning model.. >**

data variability See data heterogeneity.. 238

dataset generalisability The extent to which a dataset can train a model that gen-

eralises well to unseen data.. 172

deep learning A subset of machine learning that focuses on artificial neural net-

works and learning data representations..

defect See bug.. 3!

List of Terms 372

dependent variable A variable being measured in an experiment and affected by

the independent variable.. '8

detached bug-inducing artefact A code artefact that contributed to the introduc-

tion of a bug but was not involved in its subsequent fix.. 3

diverse Having a variety of different code elements.. '!2

domain adaptation The process of transferring knowledge from one domain to

another to improve the performance of a machine learning model.. 2+

dynamic code analysis The process of analysing source code by executing it to

find bugs, security vulnerabilities, or other issues.. 2°

error See bug.. 23

F1 score The harmonic mean of precision and recall, which is used to evaluate the

performance of a classification model.. 3’
fault See bug..

feature An attribute or property of an instance in a dataset that is used to make

predictions in a machine learning model.. *°

feature engineering The process of selecting and transforming features in a

dataset to improve the performance of a machine learning model.. 44

feature scaling The process of normalising the range of features in a dataset to

improve the performance of a machine learning model.. '33

feature selection The process of choosing a subset of features in a dataset to im-

prove the performance of a machine learning model.. '3

flaw See bug.. %

generalisability The ability of a machine learning model to perform well on unseen

data.. 3*

List of Terms 373

generative artificial intelligence A type of artificial intelligence that generates

new data, such as images, text, or music.. 335

granularity The unit of analysis in a software system, such as the method-level,

class-level, or file-level.. 30

greedy search algorithm An algorithm that makes the best choice at each step to

find the optimal solution.. 12

ground truth The actual true values of the target variable in a dataset, which are

used to evaluate the performance of a machine learning model.. '3’

hit A situation where one or more elements in a target software system method’s
code representation match those of one or more methods in a vulnerability

dataset, facilitated by information retrieval.. !0

hit-dependent metric A metric (feature) type that uses the occurrence of hits be-
tween a target software system method’s code representation and vulnerabil-

ity dataset methods to measure and quantify the similarity between them. See

hit.. 57

hit-independent metric A metric (feature) type that does not rely on hits but in-
stead relies on the target software system method’s code representation alone

to measure the intrinsic properties of the method. See hit.. >’

hyperparameter A parameter that is set before the training process of a machine
learning model and affects its performance.. '3
hyperparameter tuning The process of selecting the best hyperparameters for a

machine learning model to improve its performance.. '3

independent variable A variable manipulated or controlled in an experiment to

determine its effect on the dependent variable.. '3

information retrieval The process of obtaining information from a collection of

documents, such as web pages or source code.. 30

List of Terms 374

interpretability The ability to explain and understand how a machine learning

model makes predictions.. '8

intricate Having many complexly arranged code elements.. !
label noise Incorrect or mislabelled instances in a dataset that can negatively im-

pact the performance of a machine learning model.. 244

Large Language Model A language model trained on a large corpus of text data..
296

machine learning A subset of artificial intelligence that focuses on developing al-
gorithms that allow computers to learn from and make predictions based on

data.. ¥

method A function or procedure in a programming language, usually defined

within a class, that defines the behaviour of an object. See class.. 3°

mixed-project A dataset that contains data from multiple software projects.. 32

mixed-project prediction The process of predicting software vulnerabilities using

a model trained on a mix of projects.. 238

model convergence The point at which a machine learning model has learned the
underlying patterns in the data and stops improving, i.e., where a model’s

parameters or predictions stabilise during training.. '#*

n-gram A contiguous sequence of n items from a given sample of text or speech..
135

object An instance of a class in object-oriented programming that encapsulates

data and methods.. °

path A sequence of node types in an Abstract Syntax Tree that represents a traver-

sal direction.. 4’

List of Terms 375

path context A core Code2Vec concept that is used to capture the context of an

AST path.. 4

pattern matching The process of finding similarities between patterns in data,

such as source code.. 3°

precision The proportion of true positive predictions out of all positive predictions

made by a classification model.. 3’

recall The proportion of true positive predictions from all actual positive instances

in a dataset.. 3’

reinforcement learning A type of machine learning where an agent learns to make

decisions by interacting with an environment and receiving rewards or penal-
ties.. 33

Retrieval-Augmented Generation A technique that combines information re-

trieval and natural language generation to improve the performance of large
language models.. 2%

security-relevant Having implications for the security of a software system.. 3*

Sequential Feature Selection A feature selection technique that selects and com-

bines features one at a time based on the model’s performance to find the best

subset of features.. 38

shingle A set of n consecutive tokens in a sequence of tokens, often presented as a
sliding window or overlapping sequence of all the tokens.. 4

software metric A measure of software characteristics, such as complexity, size,

or maintainability.. 3

source code representation A structured way of representing source code, such as
ASTs, code embeddings, or n-grams.. 32
static code analysis The process of analysing source code without executing it to

find bugs, security vulnerabilities, or other issues.. 29

List of Terms 376

stress test A test that evaluates the performance of a system under extreme condi-

tions, such as high loads or limited resources.. 238

supervised machine learning A machine learning technique that uses labelled
data to train algorithms to predict outcomes. The goal is to create a model

to predict the correct output for new data.. °

Synthetic Minority Oversampling Technique A technique used to balance class

distributions in imbalanced datasets.. 38

SZ7 Algorithm An algorithm that uses bug-fixing commit information to identify
01

the associated bug-inducing commits.. >
target software system The software system for which vulnerabilities are being

predicted.. °

token A single programming language element, such as a keyword, operator, or

identifier.. 32

transaction database A database that stores transactions, such as purchases or in-
teractions, or in our context, code co-changes among artefacts in a version

control system, which are used in association rule mining.. 3!4

transfer learning A machine learning technique that transfers knowledge from

one domain to another to improve the performance of a model.. 243

unsupervised machine learning A type of machine learning where the algorithm
is trained on an unlabelled dataset, meaning it is not provided with output
labels to learn from.. 33

vulnerability A type of bug with security implications that an attacker can exploit

to compromise a software system’s security. See bug.. 2°

vulnerability dataset A publicly available dataset that contains information and

code samples of known software vulnerabilities.. *°

List of Terms 377

vulnerability detection The process of identifying software vulnerabilities.. 23°

vulnerability prediction The process of predicting software vulnerabilities using

machine learning models.. 2°

vulnerability prediction model A machine learning model that predicts software

vulnerabilities.. 2°

vulnerability-fixing change See bug-fixing change.. >’

vulnerability-inducing change See bug-inducing change.. 2

vulnerable code pattern A pattern in source code indicative of a software vulner-

ability.. 3°

within-project In the context of software vulnerability prediction, refers to the

same project that the model was trained on.. 32

within-project prediction The process of predicting software vulnerabilities

within the same project that the model was trained on.. 23’

Bibliography

Mohamad Abdolahi and Moreza Zahedh. Sentence matrix normalization using most
likely n-grams vector. In 2017 IEEE 4th International Conference on Knowledge-
Based Engineering and Innovation (KBEI), pages 0040-0045. IEEE, 2017.

Vishwanath Akuthota, Raghunandan Kasula, Sabiha Tasnim Sumona, Masud Mo-
hiuddin, Md Tanzim Reza, and Md Mizanur Rahman. Vulnerability Detection
and Monitoring Using LLM. In 2023 IEEE 9th International Women in Engineer-
ing (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE),
pages 309-314, nov 2023. doi: 10.1109/WIECON-ECE60392.2023.10456393.

Sadam Al-Azani and El-Sayed M El-Alfy. Using word embedding and ensemble
learning for highly imbalanced data sentiment analysis in short arabic text. Pro-

cedia Computer Science, 109:359-366, 2017.

Fahad Al Debeyan, Tracy Hall, and David Bowes. Improving the performance
of code vulnerability prediction using abstract syntax tree information. In Pro-
ceedings of the 18th International Conference on Predictive Models and Data

Analytics in Software Engineering, pages 2—11, 2022.

Manar Alohaly and Hassan Takabi. When Do Changes Induce Software Vulnerabil-
ities? In 2017 IEEE 3rd International Conference on Collaboration and Internet

Computing (CIC), pages 59—66, oct 2017. doi: 10.1109/CIC.2017.00020.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning
distributed representations of code. Proceedings of the ACM on Programming

Languages, 3(POPL):1-29, 2019.

BIBLIOGRAPHY 379

Sousuke Amasaki, Tomoyuki Yokogawa, and Aman Hirohisa. An evaluation of
word embeddings on vulnerability prediction with software metrics. WiPiEC

Journal-Works in Progress in Embedded Computing Journal, 9(2), 2023.

Le An and Foutse Khomh. An Empirical Study of Crash-Inducing Commits in
Mozilla Firefox. In Proceedings of the 11th International Conference on Pre-
dictive Models and Data Analytics in Software Engineering, PROMISE 15,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450337151. doi: 10.1145/2810146.2810152. URL https://doi.
org/10.1145/2810146.2810152.

SS Anju, P Harmya, Noopa Jagadeesh, and R Darsana. Malware detection using
assembly code and control flow graph optimization. In Proceedings of the Ist

Amrita ACM-W Celebration on Women in Computing in India, pages 1-4. 2010.

Afsah Anwar, Ahmed Abusnaina, Songqing Chen, Frank Li, and David Mohaisen.
Cleaning the nvd: Comprehensive quality assessment, improvements, and anal-
yses. IEEE Transactions on Dependable and Secure Computing, 19(6):4255—
4269, 2021.

B Arivazhagan, S Pandikumar, S Bharani Sethupandian, and R Shankara Subrama-
nian. Pattern discovery and analysis of customer buying behavior using associa-
tion rules mining algorithm in e-commerce. In 2022 First International Confer-
ence on Electrical, Electronics, Information and Communication Technologies

(ICEEICT), pages 1-5. IEEE, 2022.

Xinbo Ban, Shigang Liu, Chao Chen, and Caslon Chua. A performance evaluation
of deep-learnt features for software vulnerability detection. Concurrency and

Computation: Practice and Experience, 31(19):¢5103, 2019.

Ajay Bandi, Pydi Venkata Satya Ramesh Adapa, and Yudu Eswar Vinay Pratap Ku-
mar Kuchi. The power of generative ai: A review of requirements, models, input—
output formats, evaluation metrics, and challenges. Future Internet, 15(8):260,

2023.

https://doi.org/10.1145/2810146.2810152
https://doi.org/10.1145/2810146.2810152

BIBLIOGRAPHY 380

Ira D Baxter, Andrew Yahin, LLeonardo Moura, Marcelo Sant’ Anna, and Lorraine
Bier. Clone detection using abstract syntax trees. In Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272), pages 368-377.
IEEE, 1998.

Mathias Berggren, Lisa Kaati, Bjorn Pelzer, Harald Stiff, Lukas Lundmark, and
Nazar Akrami. The generalizability of machine learning models of personality
across two text domains. Personality and Individual Differences, 217:112465,

2024.

Guru Bhandari, Amara Naseer, and Leon Moonen. Cvefixes: automated collection
of vulnerabilities and their fixes from open-source software. In Proceedings of
the 17th International Conference on Predictive Models and Data Analytics in

Software Engineering, pages 30-39, 2021.

Zeki Bilgin, Mehmet Akif Ersoy, Elif Ustundag Soykan, Emrah Tomur, Pinar Co-
mak, and Leyli Karacay. Vulnerability prediction from source code using ma-

chine learning. IEEE Access, 8:150672—-150684, 2020.

David Binkley, Leon Moonen, and Sibren Isaacman. Featherweight assisted vul-

nerability discovery. Information and Software Technology, 146:106844, 2022.

Michael Franklin Bosu and Stephen G MacDonell. A taxonomy of data quality
challenges in empirical software engineering. In 2013 22nd Australian Software

Engineering Conference, pages 97-106. IEEE, 2013.

David Bowes, Tracy Hall, Mark Harman, Yue Jia, Federica Sarro, and Fan Wu.
Mutation-aware fault prediction. In Proceedings of the 25th international sym-

posium on software testing and analysis, pages 330-341, 2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners. Advances in neural infor-

mation processing systems, 33:1877-1901, 2020.

BIBLIOGRAPHY 381

Felivel Camilo, Andrew Meneely, and Meiyappan Nagappan. Do bugs foreshadow
vulnerabilities? a study of the chromium project. In 2015 IEEE/ACM 12th Work-
ing Conference on Mining Software Repositories, pages 269-279. IEEE, 2015.

Sicong Cao, Xiaobing Sun, Lili Bo, Ying Wei, and Bin Li. Bgnn4vd: Constructing
bidirectional graph neural-network for vulnerability detection. Information and

Software Technology, 136:106576, 2021.

Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S Yu, and Lichao
Sun. A comprehensive survey of ai-generated content (aigc): A history of gener-

ative ai from gan to chatgpt. arXiv preprint arXiv:2303.04226, 2023.

Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. Deep
learning based vulnerability detection: Are we there yet? IEEE Transactions on

Software Engineering, 48(9):3280-3296, 2021.

Chia-Hui Chang and Ching-Chi Hsu. Enabling concept-based relevance feedback
for information retrieval on the www. [EEE Transactions on Knowledge and

Data Engineering, 11(4):595-609, 1999.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial intelli-

gence research, 16:321-357, 2002.

Deng Chen, Yan-duo Zhang, Wei Wei, Shi-xun Wang, Ru-bing Huang, Xiao-lin
Li, Bin-bin Qu, and Sheng Jiang. Efficient vulnerability detection based on an
optimized rule-checking static analysis technique. Frontiers of Information Tech-

nology & Electronic Engineering, 18(3):332-345, 2017.

Xiao Cheng, Guangin Zhang, Haoyu Wang, and Yulei Sui. Path-sensitive code em-
bedding via contrastive learning for software vulnerability detection. In Proceed-
ings of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 519-531, 2022.

BIBLIOGRAPHY 382

Boris Chernis and Rakesh Verma. Machine Learning Methods for Software Vul-
nerability Detection. In Proceedings of the Fourth ACM International Workshop
on Security and Privacy Analytics, INSPA 18, pages 31-39, New York, NY,
USA, 2018. Association for Computing Machinery. ISBN 9781450356343. doi:
10.1145/3180445.3180453. URL http://doi.org/10.1145/3180445.

3180453.

Jitender Kumar Chhabra and Varun Gupta. A survey of dynamic software metrics.

Journal of computer science and technology, 25(5):1016-1029, 2010.

T Chong, V Anu, and K Z Sultana. Using Software Metrics for Predicting Vulner-
able Code-Components: A Study on Java and Python Open Source Projects. In
2019 IEEE International Conference on Computational Science and Engineering
(CSE) and IEEE International Conference on Embedded and Ubiquitous Com-
puting (EUC), pages 98—103, aug 2019a. doi: 10.1109/CSE/EUC.2019.00028.

Tai-Yin Chong, Vaibhav Anu, and Kazi Zakia Sultana. Using software metrics for
predicting vulnerable code-components: a study on java and python open source
projects. In 2019 IEEE International Conference on Computational Science and
Engineering (CSE) and IEEE International Conference on Embedded and Ubig-
uitous Computing (EUC), pages 98—103. IEEE, 2019b.

Pooja Awana Choudhary and Satwinder Singh. Neural network based bug priority
prediction model using text classification techniques. International Journal of

Advanced Research in Computer Science, 8(5), 2017.

Gobinda G Chowdhury. Introduction to modern information retrieval. Facet pub-

lishing, 2010.

Shaiful Chowdhury, Gias Uddin, Hadi Hemmati, and Reid Holmes. Method-level
bug prediction: Problems and promises. ACM Transactions on Software Engi-

neering and Methodology, 33(4):1-31, 2024.

http://doi.org/10.1145/3180445.3180453
http://doi.org/10.1145/3180445.3180453

BIBLIOGRAPHY 383

Rory Coulter, Qing-Long Han, Lei Pan, Jun Zhang, and Yang Xiang. Code analysis
for intelligent cyber systems: A data-driven approach. Information sciences, 524:

46-58, 2020.

Roland Croft, Dominic Newlands, Ziyu Chen, and M Ali Babar. An empirical study
of rule-based and learning-based approaches for static application security test-
ing. In Proceedings of the 15th ACM/IEEE international symposium on empirical

software engineering and measurement (ESEM), pages 1-12, 2021.

Roland Croft, Yongzheng Xie, and Muhammad Ali Babar. Data preparation for
software vulnerability prediction: A systematic literature review. IEEE Transac-

tions on Software Engineering, 49(3):1044-1063, 2022.

Mike Czech, Eyke Hiillermeier, Marie-Christine Jakobs, and Heike Wehrheim. Pre-
dicting rankings of software verification tools. In Proceedings of the 3rd ACM

SIGSOFT International Workshop on Software Analytics, pages 23-26, 2017.

Daniel Alencar da Costa, Shane McIntosh, Weiyi Shang, Uira Kulesza, Roberta
Coelho, and Ahmed E Hassan. A Framework for Evaluating the Results of the
SZZ Approach for Identifying Bug-Introducing Changes. IEEE Transactions on
Software Engineering, 43(7):641-657, jul 2017. ISSN 0098-5589. doi: 10.1109/
TSE.2016.2616306.

H K Dam, T Tran, T Pham, S W Ng, J Grundy, and A Ghose. Automatic Feature
Learning for Predicting Vulnerable Software Components. [EEE Transactions
on Software Engineering, 47(1):67-85, jan 2021. ISSN 1939-3520. doi: 10.110
9/TSE.2018.2881961.

Debashree Devi, Biswajit Purkayastha, et al. Redundancy-driven modified tomek-
link based undersampling: A solution to class imbalance. Pattern Recognition

Letters, 93:3-12, 2017.

Yujuan Ding, Wenqi Fan, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin,
Tat-Seng Chua, and Qing Li. A survey on rag meets llms: Towards retrieval-

augmented large language models. arXiv preprint arXiv:2405.06211, 2024.

BIBLIOGRAPHY 384

Varun Dogra, Sahil Verma, Kavita, Pushpita Chatterjee, Jana Shafi, Jaeyoung Choi,
and Muhammad Fazal [jaz. A complete process of text classification system

using state-of-the-art nlp models. Computational Intelligence and Neuroscience,

2022(1):1883698, 2022.

Aijuan Dong and Baoying Wang. Domain-based recommendation and retrieval
of relevant materials in e-learning. In 2008 IEEE International Workshop on

Semantic Computing and Applications, pages 103—108. IEEE, 2008.

Maureen Doyle and James Walden. An empirical study of the evolution of php web
application security. In 2011 Third International Workshop on Security Measure-
ments and Metrics, pages 11-20. IEEE, 2011.

Gewangzi Du, Liwei Chen, Tongshuai Wu, Chenguang Zhu, and Gang Shi.
Cpmsvd: Cross-project multiclass software vulnerability detection via fused deep
feature and domain adaptation. In ICASSP 2024-2024 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pages 4950-4954.
IEEE, 2024.

Xiaoning Du, Bihuan Chen, Yuekang Li, Jianmin Guo, Yaqin Zhou, Yang Liu,
and Yu Jiang. Leopard: Identifying vulnerable code for vulnerability assessment
through program metrics. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pages 60-71. IEEE, 2019.

Marco D’ Ambros, Michele Lanza, and Romain Robbes. Evaluating defect predic-
tion approaches: a benchmark and an extensive comparison. Empirical Software

Engineering, 17:531-577, 2012.

Faris Faisal Fadlalla and Huwaida T Elshoush. Input validation vulnerabilities in
web applications: Systematic review, classification, and analysis of the current

state-of-the-art. IEEE Access, 11:40128—-40161, 2023.

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin

Monperrus. Fine-grained and accurate source code differencing. In Proceedings

BIBLIOGRAPHY 385

of the 29th ACM/IEEE international conference on Automated software engineer-

ing, pages 313-324, 2014.

Hantao Feng, Xiaotong Fu, Hongyu Sun, He Wang, and Yuqing Zhang. Efficient
vulnerability detection based on abstract syntax tree and deep learning. In /EEE
INFOCOM 2020-1EEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pages 722-727. IEEE, 2020a.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.081535,

2020b.

Javed Ferzund, Syed Nadeem Ahsan, and Franz Wotawa. Software change classifi-
cation using hunk metrics. In 2009 IEEE International Conference on Software

Maintenance, pages 471-474, 2009. doi: 10.1109/ICSM.2009.5306274.

Beat Fluri, Michael Wursch, Martin PInzger, and Harald Gall. Change distilling:
Tree differencing for fine-grained source code change extraction. /IEEE Transac-

tions on software engineering, 33(11):725-743, 2007.

Jaroslav Fowkes, Pankajan Chanthirasegaran, Razvan Ranca, Miltiadis Allamanis,
Mirella Lapata, and Charles Sutton. Autofolding for source code summarization.

IEEE Transactions on Software Engineering, 43(12):1095-1109, 2017.

Georgia Frantzeskou, Stephen MacDonell, Efstathios Stamatatos, and Stefanos
Gritzalis. Examining the significance of high-level programming features in
source code author classification. Journal of Systems and Software, 81(3):447—

460, 2008.

Michael Fu and Chakkrit Tantithamthavorn. Linevul: a transformer-based line-level
vulnerability prediction. In Proceedings of the 19th International Conference on

Mining Software Repositories, pages 608—620, 2022.

BIBLIOGRAPHY 386

Sundarakrishnan Ganesh, Tobias Ohlsson, and Francis Palma. Predicting Security
Vulnerabilities using Source Code Metrics. In 2021 Swedish Workshop on Data
Science (SweDS), pages 1-7, dec 2021. doi: 10.1109/SweDS53855.2021.9638
301.

Rodriguez-Pérez Gema, Gregorio Robles, Serebrenik Alexander, Andy Zaidman,
Daniel M Germén, and Jesus M Gonzalez-Barahona. How bugs are born: a
model to identify how bugs are introduced in software components. Empirical
Software Engineering, 25(2):1294—1340, mar 2020. ISSN 13823256. doi: http:
//dx.doi.org/10.1007/s10664-019-09781-y.

Seyed Mohammad Ghaffarian and Hamid Reza Shahriari. Software vulnerability
analysis and discovery using machine-learning and data-mining techniques: A
survey. ACM Computing Surveys, 50(4), 2017. ISSN 15577341. doi: 10.1145/
3092566. URL http://doi.org/10.1145/3092566.

Emanuel Giger, Martin Pinzger, and Harald C Gall. Comparing fine-grained source
code changes and code churn for bug prediction. In Proceedings of the 8th work-

ing conference on mining software repositories, pages 83-92, 2011.

Emanuel Giger, Marco D’ Ambros, Martin Pinzger, and Harald C Gall. Method-
level bug prediction. In Proceedings of the 2012 ACM-IEEE International Sym-

posium on Empirical Software Engineering and Measurement, pages 171-180.

IEEE, 2012.

Shruti Gujral, Gitika Sharma, Sumit Sharma, et al. Classifying bug severity us-
ing dictionary based approach. In 2015 International Conference on Futuris-
tic Trends on Computational Analysis and Knowledge Management (ABLAZE),
pages 599-602. IEEE, 2015.

Junjun Guo, Zhengyuan Wang, Haonan Li, and Yang Xue. Detecting vulnerability
in source code using cnn and Istm network. Soft computing, 27(2):1131-1141,

2023.

http://doi.org/10.1145/3092566

BIBLIOGRAPHY 387

Aakanshi Gupta, Bharti Suri, Vijay Kumar, and Pragyashree Jain. Extracting rules
for vulnerabilities detection with static metrics using machine learning. Inter-

national Journal of System Assurance Engineering and Management, 12(1, SI):

65-76, feb 2021. doi: 10.1007/s13198-020-01036-0.

Sonia Haiduc, Jairo Aponte, and Andrian Marcus. Supporting program compre-
hension with source code summarization. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 2, pages 223-226,
2010.

John T Hancock and Taghi M Khoshgoftaar. Survey on categorical data for neural
networks. Journal of Big Data, 7(1):1-41, 2020.

Hazim Hanif and Sergio Maffeis. Vulberta: Simplified source code pre-training
for vulnerability detection. In 2022 International Joint Conference on Neural

Networks (IJCNN), pages 1-8. IEEE, 2022.

Hazim Hanif, Mohd Hairul Nizam Md Nasir, Mohd Faizal Ab Razak, Ahmad Fir-
daus, and Nor Badrul Anuar. The rise of software vulnerability: Taxonomy of

software vulnerabilities detection and machine learning approaches. Journal of

Network and Computer Applications, 179:103009, 2021.

Haibo He and Edwardo A Garcia. Learning from imbalanced data. /IEEE Transac-

tions on knowledge and data engineering, 21(9):1263—-1284, 2009.

Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive syn-
thetic sampling approach for imbalanced learning. In 2008 IEEE international

Jjoint conference on neural networks (IEEE world congress on computational in-

telligence), pages 1322—-1328. IEEE, 2008.

Enrique Herrera-Viedma, Javier Lopez Gijon, Sergio Alonso, Josefina Vilchez,
Concha Garcia, Luis Villén, and Antonio Gabriel Lopez-Herrera. Applying ag-
gregation operators for information access systems: An application in digital li-

braries. International Journal of Intelligent Systems, 23(12):1235-1250, 2008.

BIBLIOGRAPHY 388

Toby D Hocking, Joseph R Barr, and Tyler Thatcher. Interpretable linear models for
predicting security vulnerabilities in source code. In 2022 Fourth International

Conference on Transdisciplinary Al (TransAl), pages 149—-155. 1EEE, 2022.

Susan Horwitz and Thomas Reps. The use of program dependence graphs in soft-
ware engineering. In Proceedings of the 14th international conference on Soft-

ware engineering, pages 392411, 1992.

Aram Hovsepyan, Riccardo Scandariato, Wouter Joosen, and James Walden. Soft-
ware Vulnerability Prediction using Text Analysis Techniques. 2012. ISBN
9781450315081. URL http://www.fortify.com/.

Aram Hovsepyan, Riccardo Scandariato, and Wouter Joosen. Is newer always bet-
ter? the case of vulnerability prediction models. In Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, pages 1-6, 2016.

Vinay M Igure and Ronald D Williams. Taxonomies of attacks and vulnerabilities
in computer systems. [EEE Communications Surveys & Tutorials, 10(1):6-19,

2008.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative
models for open domain question answering. arXiv preprint arXiv:2007.01282,

2020.

Hui Jiang, Linfeng Song, Yubin Ge, Fandong Meng, Junfeng Yao, and Jinsong Su.
An ast structure enhanced decoder for code generation. IEEE/ACM Transactions

on Audio, Speech, and Language Processing, 30:468-476, 2021.

Siyuan Jiang, Ameer Armaly, and Collin McMillan. Automatically generating
commit messages from diffs using neural machine translation. In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 135-146. IEEE, 2017.

http://www.fortify.com/

BIBLIOGRAPHY 389

Matthieu Jimenez, Mike Papadakis, and Yves Le Traon. Vulnerability prediction
models: A case study on the linux kernel. In 2016 IEEE 16th International
Working Conference on Source Code Analysis and Manipulation (SCAM), pages
1-10. IEEE, 2016.

Matthieu Jimenez, Renaud Rwemalika, Mike Papadakis, Federica Sarro, Yves
Le Traon, and Mark Harman. The importance of accounting for real-world la-
belling when predicting software vulnerabilities. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering, pages 695-705, 2019.

Rong Jin, Hamed Valizadegan, and Hang Li. Ranking refinement and its application
to information retrieval. In Proceedings of the 17th international conference on

World Wide Web, pages 397-406, 2008.

Zhaoyan Jin and Yang Yu. Current and future research of machine learning based
vulnerability detection. In 2018 Eighth International Conference on Instrumen-
tation & Measurement, Computer, Communication and Control (IMCCC), pages

1562-1566. IEEE, 2018.

Ilias Kalouptsoglou, Miltiadis Siavvas, Dimitrios Tsoukalas, and Dionysios Keha-
gias. Cross-project vulnerability prediction based on software metrics and deep
learning. In Computational Science and Its Applications—ICCSA 2020: 20th In-
ternational Conference, Cagliari, Italy, July 1-4, 2020, Proceedings, Part IV 20,
pages 877-893. Springer, 2020.

Ilias Kalouptsoglou, Miltiadis Siavvas, Dionysios Kehagias, Alexandros Chatzige-
orgiou, and Apostolos Ampatzoglou. Examining the capacity of text mining and

software metrics in vulnerability prediction. Entropy, 24(5):651, 2022.

Ilias Kalouptsoglou, Miltiadis Siavvas, Apostolos Ampatzoglou, Dionysios Keha-
gias, and Alexander Chatzigeorgiou. Software vulnerability prediction: A sys-
tematic mapping study. Information and Software Technology, page 107303,
2023.

BIBLIOGRAPHY 390

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: A multilinguis-
tic token-based code clone detection system for large scale source code. IEEE

transactions on software engineering, 28(7):654-670, 2002.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 4401-4410, 2019.

Arvinder Kaur and Ruchikaa Nayyar. A comparative study of static code analysis
tools for vulnerability detection in c¢/c++ and java source code. Procedia Com-

puter Science, 171:2023-2029, 2020.

Faiza Khan, Summrina Kanwal, Sultan Alamri, and Bushra Mumtaz. Hyper-
parameter optimization of classifiers, using an artificial immune network and its

application to software bug prediction. IEEE Access, 8:20954-20964, 2020.

Sunghun Kim, Thomas Zimmermann, Kai Pan, and E James Jr. Whitehead. Au-
tomatic Identification of Bug-Introducing Changes. In 21st IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE’06), pages 81-90,
2006. doi: 10.1109/ASE.2006.23.

Sunghun Kim, E James Whitehead, and Yi Zhang. Classifying software changes:
Clean or buggy? [EEE Transactions on software engineering, 34(2):181-196,
2008.

K Knill and S Young. Hidden markov models in speech and language process-
ing. In Corpus-based methods in language and speech processing, pages 27-68.

Springer, 1997.

Mei Kobayashi and Koichi Takeda. Information retrieval on the web. ACM com-

puting surveys (CSUR), 32(2):144—173, 2000.

Vladimir Kovalenko, Egor Bogomolov, Timofey Bryksin, and Alberto Bacchelli.

Pathminer: a library for mining of path-based representations of code. In

BIBLIOGRAPHY 391

2019 IEEE/ACM 16th International Conference on Mining Software Reposito-
ries (MSR), pages 13—17. IEEE, 2019.

Triet Huynh Minh Le and M Ali Babar. On the use of fine-grained vulnerable code
statements for software vulnerability assessment models. In Proceedings of the

19th International Conference on Mining Software Repositories, pages 621-633,
2022.

Niklas Leicht, Ivo Blohm, and Jan Marco Leimeister. Leveraging the power of the

crowd for software testing. IEEE Software, 34(2):62-69, 2017.

Liuqging Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. Cclearner: A
deep learning-based clone detection approach. In 2017 IEEE international con-
ference on software maintenance and evolution (ICSME), pages 249-260. IEEE,
2017.

Runhao Li, Chao Feng, Xing Zhang, and Chaojing Tang. A lightweight assisted
vulnerability discovery method using deep neural networks. IEEE Access, 7:

80079-80092, 2019.

Yi Li, Shaohua Wang, and Tien N Nguyen. Vulnerability detection with fine-grained
interpretations. In Proceedings of the 29th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software

Engineering, pages 292-303, 2021.

Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu. VulPecker:
An Automated Vulnerability Detection System Based on Code Similarity Anal-
ysis. 2016. doi: 10.1145/2991079.2991102. URL http://dx.doi.org/1
0.1145/2991079.2991102.

G Lin, S Wen, Q L. Han, J Zhang, and Y Xiang. Software Vulnerability Detection
Using Deep Neural Networks: A Survey. Proceedings of the IEEE, 108(10):
1825-1848, oct 2020a. ISSN 1558-2256. doi: 10.1109/JPROC.2020.2993293.

http://dx.doi.org/10.1145/2991079.2991102
http://dx.doi.org/10.1145/2991079.2991102

BIBLIOGRAPHY 392

Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, Xiang Yang, Olivier De Vel, and Paul
Montague. Cross-Project Transfer Representation Learning for Vulnerable Func-
tion Discovery. IEEE Transactions on Industrial Informatics, 14(7):3289-3297,
2018. ISSN 15513203. doi: http://dx.doi.org/10.1109/T11.2018.2821768.

Guanjun Lin, Sheng Wen, Qing Long Han, Jun Zhang, and Yang Xiang. Software
Vulnerability Detection Using Deep Neural Networks: A Survey. Proceedings of
the IEEE, 108(10):1825-1848, 2020b. ISSN 15582256. doi: 10.1109/JPROC.20
20.2993293.

Mario Linares-Vasquez, Gabriele Bavota, and Camilo Escobar-Veldsquez. An Em-
pirical Study on Android-Related Vulnerabilities. In Proceedings of the 14th
International Conference on Mining Software Repositories, MSR ’17, pages 2—
13. IEEE Press, 2017. ISBN 9781538615447. doi: 10.1109/MSR.2017.60. URL
https://doi.org/10.1109/MSR.2017.60.

Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. An empirical study
on the effectiveness of static ¢ code analyzers for vulnerability detection. In
Proceedings of the 31st ACM SIGSOFT international symposium on software
testing and analysis, pages 544-555, 2022.

Fang Liu, Ge Li, Bolin Wei, Xin Xia, Zhiyi Fu, and Zhi Jin. A unified multi-task
learning model for ast-level and token-level code completion. Empirical Software

Engineering, 27(4):91, 2022a.

Guang-Hong Liu, Gang Wu, Zheng Tao, Jian-Mei Shuai, and Zhuo-Chun Tang.
Vulnerability analysis for x86 executables using genetic algorithm and fuzzing.
In 2008 Third International Conference on Convergence and Hybrid Information

Technology, volume 2, pages 491-497. IEEE, 2008.

Shigang Liu, Guanjun Lin, Qing-Long Han, Sheng Wen, Jun Zhang, and Yang
Xiang. Deepbalance: Deep-learning and fuzzy oversampling for vulnerability

detection. IEEE Transactions on Fuzzy Systems, 28(7):1329-1343, 2019.

https://doi.org/10.1109/MSR.2017.60

BIBLIOGRAPHY 393

Shigang Liu, Guanjun Lin, Lizhen Qu, Jun Zhang, Olivier De Vel, Paul Montague,
and Yang Xiang. Cd-vuld: Cross-domain vulnerability discovery based on deep

domain adaptation. IEEE Transactions on Dependable and Secure Computing,

19(1):438-451, 2022b. doi: 10.1109/TDSC.2020.2984505.

Francesco Lomio, Emanuele Iannone, Andrea De Lucia, Fabio Palomba, and
Valentina Lenarduzzi. Just-in-time software vulnerability detection: Are we there

yet? Journal of Systems and Software, page 111283, 2022.

Kasper Luckow, Rody Kersten, and Corina Pasareanu. Complexity vulnerability
analysis using symbolic execution. Software Testing, Verification and Reliability,

30(7-8):e1716, 2020.

Yu Luo, Weifeng Xu, and Dianxiang Xu. Compact abstract graphs for detecting
code vulnerability with gnn models. In Proceedings of the 38th Annual Computer

Security Applications Conference, pages 497-507, 2022.

Yuanhua Lv and ChengXiang Zhai. Adaptive relevance feedback in information
retrieval. In Proceedings of the 18th ACM conference on Information and knowl-

edge management, pages 255-264, 2009.

Ruchika Malhotra and Shweta Meena. Empirical validation of machine learning
techniques for heterogeneous cross-project change prediction and within-project

change prediction. Journal of Computational Science, 76:102230, 2024.

Y Malik, C R S Campos, and F Jaafar. Detecting Android Security Vulnerabilities
Using Machine Learning and System Calls Analysis. In 2019 IEEE 19th Inter-
national Conference on Software Quality, Reliability and Security Companion

(ORS-C), pages 109-113, jul 2019. doi: 10.1109/QRS-C.2019.00033.

Christopher D Manning. Introduction to information retrieval. Syngress Publish-

ing,, 2008.

Melvin E Maron. On indexing, retrieval and the meaning of about. Journal of the

american society for information science, 28(1):38-43, 1977.

BIBLIOGRAPHY 394

Melvin Earl Maron and John Larry Kuhns. On relevance, probabilistic indexing and

information retrieval. Journal of the ACM (JACM), 7(3):216-244, 1960.

Alejandro Mazuera-Rozo, Anamaria Mojica-Hanke, Mario Linares-Vasquez, and
Gabriele Bavota. Shallow or deep? an empirical study on detecting vulnerabil-
ities using deep learning. In 2021 IEEE/ACM 29th International Conference on
Program Comprehension (ICPC), pages 276-287. IEEE, 2021.

Nadia Medeiros, Naghmeh Ivaki, Pedro Costa, and Marco Vieira. An Empiri-
cal Study On Software Metrics and Machine Learning to Identify Untrustwor-
thy Code. In 2021 17th European Dependable Computing Conference (EDCC),
pages 87-94, 2021. doi: 10.1109/EDCC53658.2021.00020.

Andrew Meneely, Harshavardhan Srinivasan, Ayemi Musa, Alberto Rodriguez
Tejeda, Matthew Mokary, and Brian Spates. When a Patch Goes Bad: Explor-
ing the Properties of Vulnerability-Contributing Commits. In 2013 ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement,

pages 6574, oct 2013. doi: 10.1109/ESEM.2013.19.

Robert Chisolm Miller. A type-checking preprocessor for Cilk 2, a multithreaded C

language. PhD thesis, Massachusetts Institute of Technology, 1995.

Roweida Mohammed, Jumanah Rawashdeh, and Malak Abdullah. Machine learn-
ing with oversampling and undersampling techniques: overview study and ex-

perimental results. In 2020 11th international conference on information and

communication systems (ICICS), pages 243-248. IEEE, 2020.

Patrick Morrison, Kim Herzig, Brendan Murphy, and Laurie Williams. Challenges
with applying vulnerability prediction models. ACM International Conference

Proceeding Series, 21-22-Apri, 2015. doi: 10.1145/2746194.2746198.

Sara Moshtari, Ashkan Sami, and Mahdi Azimi. Using complexity metrics to im-

prove software security. Computer Fraud & Security, 2013(5):8-17, 2013.

BIBLIOGRAPHY 395

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural networks
over tree structures for programming language processing. In Proceedings of the

AAAI conference on artificial intelligence, volume 30, 2016.

Rebecca Moussa, Danielle Azar, and Federica Sarro. Investigating the use of
one-class support vector machine for software defect prediction. arXiv preprint

arXiv:2202.12074, 2022.

Nuthan Munaiah, Felivel Camilo, Wesley Wigham, Andrew Meneely, and Meiyap-
pan Nagappan. Do bugs foreshadow vulnerabilities? an in-depth study of the

chromium project. Empirical Software Engineering, 22:1305-1347, 2017.

Md Nadim et al. Investigating the Techniques to Detect and Reduce Bug Inducing
Commits During Change Operations in Software Systems. PhD thesis, University
of Saskatchewan, 2020.

Tarak Nandy, Mohd Yamani Idna Bin Idris, Rafidah Md Noor, Laiha Mat Kiah,
Lau Sian Lun, Nor Badrul Annuar Juma’at, Ismail Ahmedy, Norjihan Abdul
Ghani, and Sananda Bhattacharyya. Review on security of internet of things

authentication mechanism. IEEE Access, 7:151054—151089, 2019.

Kollin Napier, Tanmay Bhowmik, and Shaowei Wang. An empirical study of text-
based machine learning models for vulnerability detection. Empirical Software

Engineering, 28(2):38, 2023.

Mohammad Taneem Bin Nazim, Md Jobair Hossain Faruk, Hossain Shahriar,
Md Abdullah Khan, Mohammad Masum, Nazmus Sakib, and Fan Wu. System-
atic analysis of deep learning model for vulnerable code detection. In 2022 IEEE
46th Annual Computers, Software, and Applications Conference (COMPSAC),
pages 1768-1773. IEEE, 2022.

Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller. Pre-
dicting vulnerable software components. In Proceedings of the 14th ACM con-

ference on Computer and communications security, pages 529-540, 2007.

BIBLIOGRAPHY 396

Van Nguyen, Trung Le, Olivier de Vel, Paul Montague, John Grundy, and Dinh
Phung. Dual-component deep domain adaptation: A new approach for cross
project software vulnerability detection. In Advances in Knowledge Discovery
and Data Mining: 24th Pacific-Asia Conference, PAKDD 2020, Singapore, May
11-14, 2020, Proceedings, Part I 24, pages 699-711. Springer, 2020.

Van Nguyen, Trung Le, Chakkrit Tantithamthavorn, John Grundy, and Dinh Phung.
Deep Domain Adaptation With Max-Margin Principle for Cross-Project Imbal-
anced Software Vulnerability Detection. ACM Trans. Softw. Eng. Methodol.,
33(6), jun 2024. ISSN 1049-331X. doi: 10.1145/3664602. URL https:
//doi.org/10.1145/3664602.

Van-Anh Nguyen, Dai Quoc Nguyen, Van Nguyen, Trung Le, Quan Hung Tran,
and Dinh Phung. Regvd: Revisiting graph neural networks for vulnerability
detection. In Proceedings of the ACM/IEEE 44th International Conference on
Software Engineering: Companion Proceedings, pages 178—182, 2022.

Sho Ogino, Yoshiki Higo, and Shinji Kusumoto. Evaluating Bug Prediction under
Realistic Settings. In 2021 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 491-495, mar 2021. doi: 10.110
9/SANER50967.2021.00052.

OWASP. Owasp top ten web application security risksl owasp. 2021. URL https:

//owasp.org/www—project-top-ten/.

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Jingfang Xu, and Xueqi Cheng.
Deeprank: A new deep architecture for relevance ranking in information retrieval.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, pages 257-266, 2017.

Annibale Panichella, Bogdan Dit, Rocco Oliveto, Massimilano Di Penta, Denys
Poshynanyk, and Andrea De Lucia. How to effectively use topic models for

software engineering tasks? an approach based on genetic algorithms. In 2013

https://doi.org/10.1145/3664602
https://doi.org/10.1145/3664602
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

BIBLIOGRAPHY 397

35th International conference on software engineering (ICSE), pages 522-531.
IEEE, 2013.

Garrett Partenza, Trevor Amburgey, Lin Deng, Josh Dehlinger, and Suranjan
Chakraborty. Automatic identification of vulnerable code: Investigations with
an ast-based neural network. In 2021 IEEE 45th Annual Computers, Software,
and Applications Conference (COMPSAC), pages 1475-1482. IEEE, 2021.

Luca Pascarella, Fabio Palomba, and Alberto Bacchelli. Re-evaluating method-
level bug prediction. In 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 592—-601, mar 2018. doi:
10.1109/SANER.2018.8330264.

Santanu Paul and Atul Prakash. A framework for source code search using program

patterns. IEEE Transactions on Software Engineering, 20(6):463-475, 1994.

José D’ Abruzzo Pereira, Jodo R Campos, and Marco Vieira. Machine Learning to
Combine Static Analysis Alerts with Software Metrics to Detect Security Vulner-
abilities: An Empirical Study. In 2021 17th European Dependable Computing
Conference (EDCC), pages 1-8, 2021. doi: 10.1109/EDCC53658.2021.00008.

Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi,
Konrad Rieck, Sascha Fahl, and Yasemin Acar. Vccfinder: Finding potential
vulnerabilities in open-source projects to assist code audits. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pages 426437, 2015.

J Pokropinski, J Gasiorek, P Kramarczyk, and L Madeyski. SZZ Unleashed-RA-C:
An Improved Implementation of the SZZ Algorithm and Empirical Comparison

with Existing Open Source Solutions. Studies in Systems, Decision and Control,

377:181-199, 2022. ISSN 21984182. doi: 10.1007/978-3-030-77916-0_7.

Tommy Pollock. Reducing human error in cyber security using the human factors

analysis classification system (hfacs). 2017.

BIBLIOGRAPHY 398

Rishi Rabheru, Hazim Hanif, and Sergio Maffeis. A hybrid graph neural network
approach for detecting php vulnerabilities. In 2022 IEEE Conference on Depend-
able and Secure Computing (DSC), pages 1-9. IEEE, 2022.

Foyzur Rahman and Premkumar Devanbu. How, and why, process metrics are bet-
ter. In 2013 35th International Conference on Software Engineering (ICSE),
pages 432-441. IEEE, 2013.

Keshav Rangan and Yiqiao Yin. A fine-tuning enhanced rag system with quantized

influence measure as ai judge. arXiv preprint arXiv:2402.17081, 2024.

Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto Bac-
chelli, and Premkumar Devanbu. On the "Naturalness" of Buggy Code. In Pro-
ceedings of the 38th International Conference on Software Engineering, ICSE
16, pages 428-439, New York, NY, USA, 2016. Association for Computing
Machinery. ISBN 9781450339001. doi: 10.1145/2884781.2884848. URL
https://doi.org/10.1145/2884781.2884848.

Sofia Reis and Rui Abreu. A ground-truth dataset of real security patches. arXiv

preprint arXiv:2110.09635, 2021.

Douglas A Reynolds et al. Gaussian mixture models. Encyclopedia of biometrics,

741(659-663), 2009.

Timothé Riom, Arthur Sawadogo, Kevin Allix, Tegawendé F Bissyandé, Naouel
Moha, and Jacques Klein. Revisiting the vecfinder approach for the identification
of vulnerability-contributing commits. Empirical Software Engineering, 26:1—

30, 2021.

Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur
Ozdemir, Paul Ellingwood, and Marc McConley. Automated vulnerability de-
tection in source code using deep representation learning. In 2018 17th IEEE
international conference on machine learning and applications (ICMLA), pages

757-762. IEEE, 2018.

https://doi.org/10.1145/2884781.2884848

BIBLIOGRAPHY 399

Sefa Eren Sahin, Ecem Mine Ozyedierler, and Ayse Tosun. Predicting vulnerability
inducing function versions using node embeddings and graph neural networks.

Information and Software Technology, 145:106822, 2022.

Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. Sourcerercc: Scaling code clone detection to big-code. In Proceedings

of the 38th international conference on software engineering, pages 1157-1168,

2016.

Gerard Salton. Introduction to modern information retrieval. McGraw-Hill, 1983.

Hazem Peter Samoaa, Firas Bayram, Pasquale Salza, and Philipp Leitner. A system-
atic mapping study of source code representation for deep learning in software

engineering. IET Software, 16(4):351-385, 2022.

Tefko Saracevic. Evaluation of evaluation in information retrieval. In Proceed-
ings of the 18th annual international ACM SIGIR conference on Research and

development in information retrieval, pages 138—146, 1995.

Indah Mayang Sari, Dedy Rahman Wijaya, Wahyu Hidayat, and Rathimala Kannan.
An approach to classify rice quality using electronic nose dataset-based naive
bayes classifier. In 2021 International Symposium on Electronics and Smart De-

vices (ISESD), pages 1-5. IEEE, 2021.

Sobhan Sarkar, Nikhil Khatedi, Anima Pramanik, and J Maiti. An ensemble
learning-based undersampling technique for handling class-imbalance problem.
In Proceedings of ICETIT 2019: Emerging Trends in Information Technology,
pages 586-595. Springer, 2020.

Kunal Sawarkar, Abhilasha Mangal, and Shivam Raj Solanki. Blended rag: Im-
proving rag (retriever-augmented generation) accuracy with semantic search and

hybrid query-based retrievers. arXiv preprint arXiv:2404.07220, 2024.

BIBLIOGRAPHY 400

Riccardo Scandariato, James Walden, Aram Hovsepyan, and Wouter Joosen. Pre-
dicting vulnerable software components via text mining. IEEE Transactions on

Software Engineering, 40(10):993-1006, 2014.

Hinrich Schiitze, Christopher D Manning, and Prabhakar Raghavan. Introduction to

information retrieval, volume 39. Cambridge University Press Cambridge, 2008.

Hossain Shahriar and Mohammad Zulkernine. Mitigating program security vulner-
abilities: Approaches and challenges. ACM Computing Surveys (CSUR), 44(3):
146, 2012.

Nowrin Muhaimin Shailee, Api Alam, Tanvir Ahmed, Rifat Al Mamun Rudro, and
Kamruddin Nur. Software bug prediction using machine learning on jm1 dataset.

In 2024 International Conference on Advances in Computing, Communication,

Electrical, and Smart Systems (iCACCESS), pages 01-06. IEEE, 2024.

Zhidong Shen and Si Chen. A survey of automatic software vulnerability detection,
program repair, and defect prediction techniques. Security and Communication

Networks, 2020(1):8858010, 2020.

Yonghee Shin and Laurie Williams. Is complexity really the enemy of software
security? In Proceedings of the 4th ACM workshop on Quality of protection,
pages 47-50, 2008a.

Yonghee Shin and Laurie Williams. An empirical model to predict security vulnera-
bilities using code complexity metrics. In Proceedings of the Second ACM-IEEE
international symposium on Empirical software engineering and measurement,

pages 315-317, 2008b.

Yonghee Shin and Laurie Williams. Can traditional fault prediction models be used
for vulnerability prediction? Empirical Software Engineering, 18(1):25-59, feb
2013. ISSN 13823256. doi: http://dx.doi.org/10.1007/s10664-011-9190-8.

Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A Osborne. Eval-

uating complexity, code churn, and developer activity metrics as indicators of

BIBLIOGRAPHY 401

software vulnerabilities. IEEE transactions on software engineering, 37(6):772—

787, 2010.

Shivkumar Shivaji, E James Whitehead Jr., Ram Akella, and Sunghun Kim. Reduc-
ing Features to Improve Bug Prediction. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, ASE ’09, pages
600-604, USA, 2009. IEEE Computer Society. ISBN 9780769538914. doi: 10
.1109/ASE.2009.76. URL https://doi.org/10.1109/ASE.2009.76.

Shivkumar Shivaji, E James Whitehead, Ram Akella, and Sunghun Kim. Reducing
features to improve code change-based bug prediction. IEEE Transactions on

Software Engineering, 39(4):552-569, 2012.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation

for deep learning. Journal of big data, 6(1):1-48, 2019.

Rui Shu, Tianpei Xia, Laurie Williams, and Tim Menzies. Dazzle: using optimized
generative adversarial networks to address security data class imbalance issue. In
Proceedings of the 19th International Conference on Mining Software Reposito-
ries, pages 144-155, 2022.

Miltiadis Siavvas, Erol Gelenbe, Dionysios Kehagias, and Dimitrios Tzovaras.
Static analysis-based approaches for secure software development. In Security
in Computer and Information Sciences: First International ISCIS Security Work-
shop 2018, Euro-CYBERSEC 2018, London, UK, February 26-27, 2018, Revised

Selected Papers 1, pages 142—157. Springer International Publishing, 2018.

Fatimah Sidi, Payam Hassany Shariat Panahy, Lilly Suriani Affendey, Marzanah A
Jabar, Hamidah Ibrahim, and Aida Mustapha. Data quality: A survey of data
quality dimensions. In 2012 International Conference on Information Retrieval

& Knowledge Management, pages 300-304. IEEE, 2012.

Gurdev Singh, Dilbag Singh, and Vikram Singh. A study of software metrics.
IJCEM International Journal of Computational Engineering & Management, 11
(2011):22-27, 2011.

https://doi.org/10.1109/ASE.2009.76

BIBLIOGRAPHY 402

Sandeep Singh. Analysis of bug tracking tools. International Journal of Scientific

& Engineering Research, 4(7):134-140, 2013.

Shashank Kumar Singh and Amrita Chaturvedi. Applying deep learning for dis-
covery and analysis of software vulnerabilities: A brief survey. Soft Computing:

Theories and Applications: Proceedings of SoOCTA 2019, pages 649—-658, 2020.

Amit Singhal et al. Modern information retrieval: A brief overview. IEEE Data

Eng. Bull., 24(4):35-43, 2001.

Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes

induce fixes? ACM sigsoft software engineering notes, 30(4):1-5, 2005.

Peter Sommerlad, Guido Zgraggen, Thomas Corbat, and Lukas Felber. Retaining
comments when refactoring code. In Companion to the 23rd ACM SIGPLAN con-
ference on Object-oriented programming systems languages and applications,

pages 653-662, 2008.

Fei Song and W Bruce Croft. A general language model for information retrieval.
In Proceedings of the eighth international conference on Information and knowl-

edge management, pages 316-321, 1999.

Quach Sophia, Lamothe Maxime, Kamei Yasutaka, and Shang Weiyi. An empirical
study on the use of SZZ for identifying inducing changes of non-functional bugs.
Empirical Software Engineering, 26(4), jul 2021. ISSN 13823256. doi: http:
/ldx.doi.org/10.1007/s10664-021-09970-8.

Georgios Spanos and Lefteris Angelis. A multi-target approach to estimate soft-
ware vulnerability characteristics and severity scores. Journal of Systems and

Software, 146:152-166, 2018.

Jeffrey Stuckman, James Walden, and Riccardo Scandariato. The effect of dimen-
sionality reduction on software vulnerability prediction models. IEEE Transac-

tions on Reliability, 66(1):17-37, 2016.

BIBLIOGRAPHY 403

Kazi Zakia Sultana. Towards a software vulnerability prediction model using trace-

able code patterns and software metrics, 2017a.

Kazi Zakia Sultana. Towards a software vulnerability prediction model using trace-
able code patterns and software metrics. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 1022—-1025. IEEE,
2017b.

Kazi Zakia Sultana and Tai-Yin Chong. A proposed approach to build an automated
software security assessment framework using mined patterns and metrics. In
2019 IEEFE International Conference on Computational Science and Engineering
(CSE) and IEEE International Conference on Embedded and Ubiquitous Com-
puting (EUC), pages 176-181. IEEE, 2019.

Kazi Zakia Sultana and Byron J Williams. Evaluating micro patterns and software

metrics in vulnerability prediction, 2017.

Kazi Zakia Sultana, Byron J Williams, and Amiangshu Bosu. A Comparison of

Nano-Patterns vs. Software Metrics in Vulnerability Prediction, 2018a.

Kazi Zakia Sultana, Byron J Williams, and Amiangshu Bosu. A comparison of
nano-patterns vs. software metrics in vulnerability prediction. In 2018 25th
Asia-Pacific Software Engineering Conference (APSEC), pages 355-364. IEEE,
2018b.

Kazi Zakia Sultana, Vaibhav Anu, and Tai-Yin Chong. Using software metrics for
predicting vulnerable classes and methods in Java projects: A machine learning
approach. Journal of Software (Online), 33(3), mar 2021. doi: http://dx.doi.org
/10.1002/smr.2303.

Kazi Zakia Sultana, Charles B Boyd, and Byron J Williams. A software vulnera-
bility prediction model using traceable code patterns and software metrics. SN

Computer Science, 4(5):599, 2023.

BIBLIOGRAPHY 404

Zoltan Szab6 and Vilmos Bilicki. A New Approach to Web Application Security:
Utilizing GPT Language Models for Source Code Inspection. Future Internet,
15(10):326, 2023. URL https://www.proquest.com/scholarly—7j
ournals/new—approach—-web—-application-security-utilizi

ng/docview/2882511389/se-2?accountid=14511.

Heping Tang, Shuguang Huang, Yongliang Li, and Lei Bao. Dynamic taint analysis
for vulnerability exploits detection. In 2010 2nd International Conference on

Computer Engineering and Technology, volume 2, pages V2-215. IEEE, 2010.

Wei Tang, Mingwei Tang, Minchao Ban, Ziguo Zhao, and Mingjun Feng. Csgvd:
A deep learning approach combining sequence and graph embedding for source
code vulnerability detection. Journal of Systems and Software, 199:111623,
2023.

Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, Akinori Ihara, and
Kenichi Matsumoto. The impact of mislabelling on the performance and interpre-
tation of defect prediction models. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 1, pages 812—823. IEEE, 2015.

Chakkrit Tantithamthavorn, Shane Mclntosh, Ahmed E Hassan, and Kenichi Mat-
sumoto. An empirical comparison of model validation techniques for defect pre-

diction models. IEEE Transactions on Software Engineering, 43(1):1-18, 2016.

Christopher Theisen and Laurie Williams. Better together: Comparing vulnerability

prediction models. Information and Software Technology, 119:106204, 2020.

Philipp Tholke, Yorguin-Jose Mantilla-Ramos, Hamza Abdelhedi, Charlotte
Maschke, Arthur Dehgan, Yann Harel, Anirudha Kemtur, Loubna Mekki
Berrada, Myriam Sahraoui, Tammy Young, et al. Class imbalance should not
throw you off balance: Choosing the right classifiers and performance metrics

for brain decoding with imbalanced data. Neurolmage, 277:120253, 2023.

Riom Timothé, Arthur Sawadogo, Kevin Allix, Tegawendé F Bissyandé, Moha

Naouel, and Jacques Klein. Revisiting the VCCFinder approach for the identi-

https://www.proquest.com/scholarly-journals/new-approach-web-application-security-utilizing/docview/2882511389/se-2?accountid=14511
https://www.proquest.com/scholarly-journals/new-approach-web-application-security-utilizing/docview/2882511389/se-2?accountid=14511
https://www.proquest.com/scholarly-journals/new-approach-web-application-security-utilizing/docview/2882511389/se-2?accountid=14511

BIBLIOGRAPHY 405

fication of vulnerability-contributing commits. Empirical Software Engineering,
26(3), may 2021. ISSN 13823256. doi: http://dx.doi.org/10.1007/s10664-021-0
9944-w.

Christos Tjortjis. Mining association rules from code (marc) to support legacy soft-

ware management. Software Quality Journal, 28(2):633—-662, 2020.

Ivan Tomek. Two modifications of cnn. IEEE Transactions on Systems, Man, and

Cybernetics, SMC-6(11):769-772, 1976. doi: 10.1109/TSMC.1976.4309452.

Arun Veeramani, Kausik Venkatesan, and K Nalinadevi. Abstract syntax tree based
unified modeling language to object oriented code conversion. In Proceedings
of the 2014 International Conference on Interdisciplinary Advances in Applied

Computing, pages 1-8, 2014.

Andreas Vogelsang and Jannik Fischbach. Using large language models for natural
language processing tasks in requirements engineering: A systematic guideline.

arXiv preprint arXiv:2402.13823, 2024.

James Walden, Jeff Stuckman, and Riccardo Scandariato. Predicting vulnerable
components: Software metrics vs text mining. In 2014 IEEE 25th international

symposium on software reliability engineering, pages 23-33. IEEE, 2014.

H Wang, G Ye, Z Tang, S H Tan, S Huang, D Fang, Y Feng, L Bian, and Z Wang.
Combining Graph-Based Learning With Automated Data Collection for Code

Vulnerability Detection. IEEE Transactions on Information Forensics and Secu-

rity, 16:1943-1958, 2021a. ISSN 1556-6021. doi: 10.1109/TIFS.2020.3044773.

Zhengyuan Wang, Junjun Guo, and Haonan Li. Vulnerability Feature Extraction
Model for Source Code Based on Deep Learning. In 2021 International Confer-
ence on Computer Network, Electronic and Automation (ICCNEA), pages 21-25,
2021b. doi: 10.1109/ICCNEAS53019.2021.00016.

L Wartschinski, Y Noller, T Vogel, T Kehrer, and L. Grunske. VUDENC: Vul-

nerability Detection with Deep Learning on a Natural Codebase for Python.

BIBLIOGRAPHY 406

Information and Software Technology, 144, 2022. ISSN 09505849. doi:
10.1016/j.infsof.2021.106809.

Huihui Wei and Ming Li. Supervised deep features for software functional clone
detection by exploiting lexical and syntactical information in source code. In

1JCAI, pages 3034-3040, 2017.

Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. Auto-
matically finding patches using genetic programming. In 2009 IEEE 31st Inter-
national Conference on Software Engineering, pages 364-374. IEEE, 2009.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer
learning. Journal of Big data, 3:1-40, 2016.

Ming Wen, Rongxin Wu, Yepang Liu, Yongqiang Tian, Xuan Xie, Shing-Chi Che-
ung, and Zhendong Su. Exploring and Exploiting the Correlations between Bug-
Inducing and Bug-Fixing Commits. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2019, pages 326-337. ACM,
2019. ISBN 9781450355728. doi: 10.1145/3338906.3338962.

Martin Weyssow, Xin Zhou, Kisub Kim, David Lo, and Houari Sahraoui. Ex-
ploring parameter-efficient fine-tuning techniques for code generation with large

language models. arXiv preprint arXiv:2308.10462, 2023.

Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
Deep learning code fragments for code clone detection. In Proceedings of the
31st IEEE/ACM international conference on automated software engineering,

pages 87-98, 2016.

Garrett Wilson and Diane J Cook. A survey of unsupervised deep domain adap-
tation. ACM Transactions on Intelligent Systems and Technology (TIST), 11(5):
1-46, 2020.

BIBLIOGRAPHY 407

Bolun Wu, Futai Zou, Ping Yi, Yue Wu, and Liang Zhang. Slicedlocator: Code
vulnerability locator based on sliced dependence graph. Computers & Security,

134:103469, 2023.

Chungqiu Steven Xia and Lingming Zhang. Keep the conversation going: Fixing 162
out of 337 bugs for $0.42 each using chatgpt. arXiv preprint arXiv:2304.00385,
2023.

Lei Xiao, Hao Zhong, Jianjian Liu, Kaiyu Zhang, Qizhen Xu, and Le Chang. A
novel source code representation approach based on multi-head attention. Elec-

tronics, 13(11):2111, 2024.

Haoyi Xiong, Jiang Bian, Yuchen Li, Xuhong Li, Mengnan Du, Shuaiqiang Wang,
Dawei Yin, and Sumi Helal. When search engine services meet large language

models: Visions and challenges. arXiv preprint arXiv:2407.00128, 2024.

Akihisa Yamada and Osamu Mizuno. A Text Filtering Based Approach to Classify
Bug Injected and Fixed Changes. In 2014 IIAI 3rd International Conference on
Advanced Applied Informatics, pages 680-686, aug 2014. doi: 10.1109/1TAI-A
AL2014.141.

Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon, and Konrad Rieck.
Chucky: Exposing missing checks in source code for vulnerability discovery.
In Proceedings of the 2013 ACM SIGSAC conference on Computer & communi-
cations security, pages 499-510, 2013.

Chenyang Yang, Rachel A Brower-Sinning, Grace Lewis, and Christian Késtner.
Data leakage in notebooks: Static detection and better processes. In Proceedings
of the 37th IEEE/ACM International Conference on Automated Software Engi-

neering, pages 1-12, 2022.

Limin Yang, Xiangxue Li, and Yu Yu. VulDigger: A Just-in-Time and Cost-Aware
Tool for Digging Vulnerability-Contributing Changes. In GLOBECOM 2017 -
2017 IEEE Global Communications Conference, pages 1-7, dec 2017. doi: 10.1
109/GLOCOM.2017.8254428.

BIBLIOGRAPHY 408

Xinli Yang, Jingjing Liu, and Denghui Zhang. A comprehensive taxonomy for

prediction models in software engineering. Information, 14(2):111, 2023.

Recep Yildirim, Kerem Aydin, and Orgun Cetin. Evaluating the impact of conven-
tional code analysis against large language models in api vulnerability detection.

In European Interdisciplinary Cybersecurity Conference, pages 57-64, 2024.

A A Younis and Y K Malaiya. Using Software Structure to Predict Vulnera-
bility Exploitation Potential. In 2014 IEEE Eighth International Conference
on Software Security and Reliability-Companion, pages 13—18, jun 2014. doi:
10.1109/SERE-C.2014.17.

Awad Younis, Yashwant Malaiya, Charles Anderson, and Indrajit Ray. To fear or
not to fear that is the question: Code characteristics of a vulnerable functionwith
an existing exploit. In Proceedings of the sixth ACM conference on data and

application security and privacy, pages 97-104, 2016.

Ping Yu, Hua Xu, Xia Hu, and Chao Deng. Leveraging generative ai and large lan-
guage models: a comprehensive roadmap for healthcare integration. In Health-

care, volume 11, page 2776. MDPI, 2023.

Chaoning Zhang, Chenshuang Zhang, Sheng Zheng, Yu Qiao, Chenghao Li,
Mengchun Zhang, Sumit Kumar Dam, Chu Myaet Thwal, Ye Lin Tun, Le Lu-
ang Huy, et al. A complete survey on generative ai (aigc): Is chatgpt from gpt-4

to gpt-5 all you need? arXiv preprint arXiv:2303.11717, 2023a.

Chunyong Zhang, Bin Liu, Yang Xin, and Liangwei Yao. CPVD: Cross Project
Vulnerability Detection Based on Graph Attention Network and Domain Adapta-
tion. IEEE Transactions on Software Engineering, 49(8):4152-4168, aug 2023b.
ISSN 1939-3520. doi: 10.1109/TSE.2023.3285910.

Dongping Zhang, Hequn Xian, Jiyang Chen, and Zhiguo Xu. VDCNet: A Vulner-
ability Detection and Classification System in Cross-Project Scenarios. In L Il-

1adis, A Papaleonidas, P Angelov, and C Jayne, editors, ARTIFICIAL NEURAL

BIBLIOGRAPHY 409

NETWORKS AND MACHINE LEARNING, ICANN 2023, PT I, volume 14254 of
Lecture Notes in Computer Science, pages 305-316, 2023c. ISBN 978-3-031-
44206-3; 978-3-031-44207-0. doi: 10.1007/978-3-031-44207-0_26.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. A novel neural source code representation based on abstract syntax tree. In
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE),
pages 783-794. IEEE, 2019.

Tianhang Zhang, Qingfeng Du, Jincheng Xu, Jiechu Li, and Xiaojun Li. Software
defect prediction and localization with attention-based models and ensemble
learning. In 2020 27th Asia-Pacific Software Engineering Conference (APSEC),
pages 81-90. IEEE, 2020.

Ting Zhang, Ivana Clairine Irsan, Ferdian Thung, and David Lo. Cupid: Lever-
aging chatgpt for more accurate duplicate bug report detection. arXiv preprint

arXiv:2308.10022, 2023d.

Ting Zhang, Ivana Clairine Irsan, Ferdian Thung, and David Lo. Revisiting senti-
ment analysis for software engineering in the era of large language models. arXiv

preprint arXiv:2310.11113, 2023e.

Xin Zhang, Hongyu Sun, Zhipeng He, MianXue Gu, Jingyu Feng, and Yuqing
Zhang. Vdbwgdl: Vulnerability detection based on weight graph and deep learn-
ing. In 2022 52nd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W), pages 186—-190. IEEE, 2022.

Yan-Ping Zhang, Li-Na Zhang, and Yong-Cheng Wang. Cluster-based majority
under-sampling approaches for class imbalance learning. In 2010 2nd IEEE In-
ternational Conference on Information and Financial Engineering, pages 400—

404. IEEE, 2010.

Zhehao Zhao, Bo Yang, Ge Li, Huai Liu, and Zhi Jin. Precise learning of source
code contextual semantics via hierarchical dependence structure and graph atten-

tion networks. Journal of Systems and Software, 184:111108, 2022.

BIBLIOGRAPHY 410

Alice Zheng and Amanda Casari. Feature engineering for machine learning: prin-

ciples and techniques for data scientists. " O’Reilly Media, Inc.", 2018.

Wei Zheng, Jialiang Gao, Xiaoxue Wu, Fengyu Liu, Yuxing Xun, Guoliang Liu, and
Xiang Chen. The impact factors on the performance of machine learning-based

vulnerability detection: A comparative study. Journal of Systems and Software,

168:110659, 2020.

Andy Zhou, Kazi Zakia Sultana, and Bharath K Samanthula. Investigating the
Changes in Software Metrics after Vulnerability is Fixed. In 2027 IEEE Inter-
national Conference on Big Data (Big Data), pages 5658-5663, dec 2021. doi:
10.1109/BigData52589.2021.9671334.

Daihong Zhou, Yijian Wu, Lu Xiao, Yuanfang Cai, Xin Peng, Jinrong Fan,
Lu Huang, and Heng Chen. Understanding evolutionary coupling by fine-grained
co-change relationship analysis. In 2019 IEEE/ACM 27th International Confer-
ence on Program Comprehension (ICPC), pages 271-282. IEEE, 2019a.

Xin Zhou, Bowen Xu, Kisub Kim, DongGyun Han, Thanh Le-Cong, Junda He,
Bach Le, and David Lo. Patchzero: Zero-shot automatic patch correctness as-

sessment. arXiv preprint arXiv:2303.00202, 2023.

Xin Zhou, Ting Zhang, and David Lo. Large Language Model for Vulnerability
Detection: Emerging Results and Future Directions. In Proceedings of the 2024
ACMY/IEEE 44th International Conference on Software Engineering: New Ideas
and Emerging Results, ICSE-NIER’24, pages 47-51, New York, NY, USA, 2024.
Association for Computing Machinery. ISBN 9798400705007. doi: 10.1145/36
39476.3639762. URL https://doi.org/10.1145/3639476.363976
2.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign: Ef-
fective vulnerability identification by learning comprehensive program semantics
via graph neural networks. Advances in neural information processing systems,

32,2019b.

https://doi.org/10.1145/3639476.3639762
https://doi.org/10.1145/3639476.3639762

BIBLIOGRAPHY 411

Ziyi Zhou, Huiqun Yu, and Guisheng Fan. Effective approaches to combining lexi-
cal and syntactical information for code summarization. Software: Practice and

Experience, 50(12):2313-2336, 2020.

Yufan Zhuang, Sahil Suneja, Veronika Thost, Giacomo Domeniconi, Alessandro
Morari, and Jim Laredo. Software vulnerability detection via deep learning
over disaggregated code graph representation. arXiv preprint arXiv:2109.03341,
2021.

Noah Ziems and Shaoen Wu. Security Vulnerability Detection Using Deep Learn-

ing Natural Language Processing, may 2021.

Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan Diehl. Min-
ing version histories to guide software changes. IEEE Transactions on Software

Engineering, 31(6):429-445, 2005.

Thomas Zimmermann, Nachiappan Nagappan, and Laurie Williams. Searching for
a needle in a haystack: Predicting security vulnerabilities for windows vista. In
2010 Third international conference on software testing, verification and valida-

tion, pages 421-428. IEEE, 2010.

Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and Hai Jin. uuVulDeePecker:
A Deep Learning-Based System for Multiclass Vulnerability Detection. [IEEE
Transactions on Dependable and Secure Computing, 18(5):2224-2236, 2021.
ISSN 1941-0018. doi: 10.1109/TDSC.2019.2942930.

	Introduction
	Software Bugs
	Software Vulnerabilities
	How Software Vulnerabilities Arise
	The Ever-Present Threat of Software Vulnerabilities

	Motivation
	Research Questions
	Research Scope
	Research Contributions
	Thesis Outline

	Background
	Software Vulnerability Mitigation Techniques
	Software Vulnerability Prediction
	Software Vulnerability Prediction Granularity
	Software Vulnerability Prediction Features

	Source Code Representations
	Token-based Representations
	Abstract Syntax Tree-Based Representations
	Other Source Code Representations

	Information Retrieval (IR)
	Introduction to Information Retrieval
	Information Retrieval System Features
	How We Use Information Retrieval in Our Research

	Literature Review
	Introduction
	Software Vulnerability Prediction
	Vulnerability Prediction Studies Influencing Work
	Machine Learning-Based Vulnerability Prediction
	Deep Learning-Based Vulnerability Prediction
	Systematic Literature Reviews on Vulnerability Prediction
	Comparative Studies on Vulnerability Prediction

	Software Bug Prediction
	Bug Prediction Studies Influencing Work
	Other Bug Prediction Studies

	Observations in the Literature
	Dominance of Deep Learning Techniques
	Success Stories of the Long Short-Term Memory Algorithm
	Random Forest as a Reliable Baseline
	Challenges in Adopting Vulnerability Prediction

	Future Research Directions
	Real-Time Prediction
	Granular Prediction and Contextual Information
	Leveraging Large Language Models (LLMs) for Vulnerability Prediction
	Data Preparation and Standardisation

	Conclusion

	Token-Based Vulnerability Prediction
	Introduction
	Chapter Motivation
	Research Question
	Research Scope
	Significance and Contributions
	Structure of the Chapter

	Background
	Token-Based Source Code Representation
	Granularity Levels in Software Vulnerability Prediction

	Token-Based Software Metrics
	Token-Based Hit-Independent Metrics
	Token-Based Hit-Dependent Metrics
	Token-Based Metrics Calculation: An Illustration

	Methodology
	Overview of the Methodology
	Dataset
	Data Preprocessing
	Information Retrieval
	Machine Learning Analysis
	Approach to Research Question 1

	Results
	Objective 1 Results
	Objective 2 Results
	Objective 3 Results

	Discussion
	The Importance of Interpretability in Prediction Models
	The Significance of Vulnerable Code Patterns
	The Token-Based Relative Instantaneous Code Churn Metric Design
	Feature Interactions: Synergism and Antagonism
	Implications
	Recommendations

	Threats to Validity
	Internal Validity
	External Validity

	Answer to Research Question 1

	Abstract Syntax Tree (AST)-Based Vulnerability Prediction
	Introduction
	Chapter Motivation
	Research Question
	Research Scope
	Significance and Contributions
	Structure of the Chapter

	Background
	Code2Vec Representation: A Revisit
	astminer

	Code2Vec-Based Metrics
	Code2Vec-Based Hit-Independent Metrics
	Code2Vec-Based Hit-Dependent Metrics
	Code2Vec-Based Metrics Calculation: An Illustration
	Token-Based versus Code2Vec-Based Approaches

	Methodology
	Overview of the Methodology
	Dataset
	Data Preprocessing
	Information Retrieval
	Machine Learning Analysis
	Approach to Research Question 2

	Results
	Objective 1 Results
	Objective 2 Results
	Objective 3 Results

	Discussion
	Code2Vec Representation Performance
	Hit-Dependent Metrics Performance
	A Closer Look at the Evaluation Metrics
	Hyperparameter Tuning Impact
	Implications
	Recommendations

	Threats to Validity
	Internal Validity
	External Validity

	Answer to Research Question 2

	A Vulnerability Prediction Dataset Generalisability Study
	Introduction
	Cross-Project vs Mixed-Project Vulnerability Prediction
	Dataset Generalisability: An Introduction
	Chapter Motivation
	Research Question
	Research Scope
	Significance and Contributions
	Structure of the Chapter

	Background
	Cross-Project Vulnerability Prediction
	Data Quality Challenges in Vulnerability Prediction

	Methodology
	Overview of the Methodology
	Dataset
	Data Preprocessing
	Information Retrieval
	Machine Learning Analysis
	Approach to Question 3
	Summary of Methodological Differences Across Chapters

	Results
	Objective 1 Results
	Objective 2 Results
	Objective 3 Results
	Objective 4 Results

	Discussion
	Within- versus Mixed-Project Performance Comparison
	Code Representation Sensitivity
	Data-Related Challenges: A Revisit
	Implications
	Recommendations

	Threats to Validity
	Internal Validity
	External Validity

	Answer to Research Question 3

	Conclusion
	Vulnerability Prediction: A Retrospective and Prospective
	Summary of Research Objectives
	Key Findings
	Token-Based Prediction Performance (Within-Project)
	Code2Vec-Based Prediction Performance (Within-Project)
	Mixed-Project Prediction Performance

	Contributions to the Field
	Limitations of the Study
	Future Research Directions
	Final Thoughts

	Appendix A
	Investigating the Co-Evolution of Software Bugs
	Introduction
	Motivation
	Research Question
	Research Scope
	Significance and Contribution
	Structure of the Study

	Background
	Association Rule Mining
	Co-Evolution of Code Artefacts: A Hypothetical Scenario

	Literature Review
	Methodology
	Overview of the Methodology
	Dataset
	Approach to Research Question
	Phase I: Transaction Database Construction
	Phase II: Measurement of Bug Co-Evolution

	Results
	Absolute Support
	Support
	Confidence
	Co-evolving Files Per Transaction
	Cumulative Averages for all Five Software Systems

	Discussion
	Co-evolution Analysis
	The Effect of Co-evolution Rate
	Bug-Contributing Artefacts
	Implications
	Recommendations

	Threats to Validity
	Internal Validity
	External Validity

	Conclusion

	Appendix B
	Exploring Large Language Model-Based Vulnerability Prediction
	Introduction
	Motivation
	Research Question
	Research Scope
	Significance and Contributions
	Structure of the Study

	Background
	Generative Artificial Intelligence and Large Language Models
	The Generative Pre-trained Transformer Series and ChatGPT
	Large Language Model Applications in Software Vulnerability Prediction

	Literature Review
	Methodology
	Overview of the Methodology
	Dataset
	Data Processing
	Ground Truth: Estimation
	Data Deduplication
	OpenAI API
	Prompt Construction
	Evaluation Metrics
	Approach to Research Question

	Results
	Objective 1 Results
	Objective 2 Results

	Discussion
	Effectiveness of Large Language Models in Vulnerability Prediction
	Comparison of Large Language Models with Previous Models
	Performance Improvements in the Generative Pre-trained Transformer Series
	Limitations of Large Language Models in Vulnerability Prediction
	Context-Aware Large Language Model-based Vulnerability Prediction
	Data Challenges in Large Language Model-Based for Vulnerability Prediction
	Implications
	Recommendations

	Threats to Validity
	Internal Validity
	External Validity

	Conclusion

	List of Terms
	Bibliography

