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A B S T R A C T   

Background: Lung function is a key outcome used in the evaluation of disease progression in cystic fibrosis. The 
variability of individual lung function measurements over time (within-individual variability) has been shown to 
predict subsequent lung function changes. Nevertheless, the association between within-individual lung function 
variability and demographic and genetic covariates has not been quantified. 

Methods: We performed a longitudinal analysis of data from a cohort of 7099 adults with cystic fibrosis 
(between 18 and 49 years old) from the UK cystic fibrosis registry, containing annual review data between 1996 
and 2020. A mixed-effects location-scale model is used to quantify mean FEV1 (forced expiratory volume in 1 s) 
trajectories and FEV1 within-individual variability as a function of sex, age at annual review, diagnosis after first 
year of life, homozygous F508 genotype and birth cohort. 

Results: Mean FEV1 decreased with age and lung function variability showed a near-quadratic trend by age. 
Males showed higher FEV1 mean and variability than females across the whole age range. Earlier diagnosis and 
homozygous F508 genotype were also associated with higher FEV1 mean and variability. Individuals who died 
during follow-up showed on average higher lung function variability than those who survived. 

Conclusions: Key variables known to be linked with mean lung function in cystic fibrosis are also associated 
with an individual’s lung function variability. This work opens new avenues to understand the role played by 
lung function variability in disease progression and its utility in predicting key outcomes such as mortality.   

1. Introduction 

The availability of national registries of cystic fibrosis (CF) with 
longitudinal measurements of health status has led to improved under
standing of disease progression and prediction of survival for the CF 
population. For example, longitudinal information from the UK CF 
registry has been used to develop dynamic prediction models of survival 
for people with CF [1,2]. 

The evolution of lung function over time is a crucial outcome of in
terest in CF. In Keogh et al. [2], a measure of lung function was identified 
as the strongest predictor for individual survival. Although previous 
studies have mostly focused only on mean trajectories, some have also 
investigated the variability of lung function over time, giving novel in
sights into disease progression. For example, Morgan et al. [3] provided 
a working definition of within-individual lung function variability. 
Four-year follow-up was split into a first two-year window for evaluating 
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lung function variability and a second two-year window for determining 
the association with lung function decline. This approach was used to 
evaluate the hypothesis that higher within-individual variability could 
be linked to stronger subsequent decline in lung capacity in a multi
center observational study of US individuals with CF. The authors pro
posed to quantify within-individual variability instead of the count of 
pulmonary exacerbations to better reflect changes in lung capacity, as 
the latter lack a standardised definition [4]. Heltshe and Szczesniak [5] 
argued that such an approach does not leverage the full extent of the 
longitudinal information as well as the correlation between measure
ments taken on the same individual. 

Taylor-Robinson et al. [6] instead evaluated lung function variability 
in the Danish CF population, splitting it into between-individual, with
in-individual and measurement error. Their method did not quantify 
variability for each individual, but identified useful thresholds to 
distinguish clinically relevant changes from short-range fluctuations and 
accounted for the long-term correlation between lung function mea
surement. Those findings were further explored in the US CF Foundation 
Patient Registry [7], to monitor disease progression at the individual 
level. 

The aim of this work is to quantify long-term variability in lung 
function in the UK CF population by using the longitudinal trajectory 
recorded for each individual. We apply the mixed-effects location-scale 
model (MELSM, [8]) to specify the standard deviation as a function of 
covariates of interest as well as a random component which is used to 
account for heterogeneity that is not explained by other factors. In this 
sense, this study extends the previous knowledge about cystic fibrosis by 
quantifying the changes in within-individual lung function variability 
associated with sex, age at annual review, year of birth, diagnosis after 
first year of life, and homozygous F508del genotype. 

2. Materials and methods 

2.1. Data source 

The dataset comes from the UK Cystic Fibrosis (CF) Registry, col
lecting anonymised information about CF patients across the country 
[9]. We used the version available at the time of analysis, which includes 
records from 1996 through December 2020. The individuals who are 
clinically stable have annual reviews approximately every 12 months 
with the care teams in a clinic. The dataset contains data for over 13,000 
individuals. 

The outcome of interest in the analysis is forced expiratory volume in 
1 s (FEV1), which counts the litres of air exhaled in the first second after 
maximal inspiration. This outcome was chosen instead of FEV1 percent 
predicted (the ratio between the individual FEV1 and the average FEV1 
in a population of similar sex and age) to provide a more interpretable 
quantification of within-individual lung function variability in terms of 
litres rather than percentage points, while highlighting sex differences in 
mean FEV1 levels (which are expected). In addition, in the general 
population FEV1 values do not vary dramatically over the age range 
considered. 

The covariates used in this analysis are sex, age at each annual re
view, diagnosis after first year of life, year of birth, homozygous F508 
(or F508del) genotype. These covariates are often used in cystic fibrosis 
studies [2]. 

2.2. Inclusion criteria 

The analysed dataset consisted of all adults between 18 and 49 years 
old in the CF registry with at least one recorded measurement of FEV1. 
Setting age thresholds as inclusion criteria is common in cystic fibrosis 
studies (e.g. [10,11]): in particular, the older threshold is usually set to 
exclude cases which are less representative of the general CF population. 

In this work, study entry was defined as the date of the first annual 
review at which the age criteria were met. Individuals were followed up 

until death or administrative censoring at the end of December 2020. If 
an individual had lung transplant before or during the follow-up period, 
annual reviews after the transplant were excluded. Records with missing 
FEV1 or covariates were removed. If multiple annual reviews were 
recorded in a single calendar year (mostly due to transition to a different 
CF centre), then only data from the first one were used in the analysis. 
This situation was observed for a small number of individuals (440, 
equal to 5.3% of the population in the study). 

2.3. Statistical analysis 

Linear mixed models (or random effects models) are a standard 
choice for the analysis of longitudinal data, where multiple observations 
for the same individuals are collected over time [12]. In this setting, the 
regression terms are often distinguished between fixed effects (or 
population-level coefficients) and random effects (or individual-level 
coefficients). For example, in a simple model with a random intercept 
and no covariates, there is an overall intercept (fixed effect) representing 
the population mean and a subject-specific random effect which quan
tifies the individual departure from the population mean. The random 
effects for all subjects are assumed to be normally distributed with zero 
mean and a standard deviation which is estimated from the data. A 
non-zero standard deviation for the random effect indicates that there is 
some heterogeneity among the individuals which is not accounted for by 
the covariates in the model. 

The mixed-effects location-scale model (MELSM) is used to quantify 
within-individual variability in a longitudinal setting [8,13]. It extends 
standard mixed models by expressing the error variance as a function of 
covariates and a subject-specific random effect. The detailed formula
tion of the model is reported in the Supplementary Material. The MELSM 
is made of three key building blocks: the mean submodel, the variability 
submodel and the distribution of the random effects. 

The mean submodel is similar to a standard mixed model, where the 
outcome of interest is modelled as a function of known covariates as well 
as random effects (which capture the correlation of the measurements 
within each individual and/or each cluster of individuals). In the vari
ability submodel, the residual standard deviation is specified as another 
function of known covariates as well as a subject-specific random effect. 
The distribution of the random effects provides a link between the two 
submodels. The random effects are assumed normally distributed with 
mean zero; their covariance measures the relationship between the 
random effects. 

In this work, we use MELSM to evaluate changes in the mean and 
standard deviation of FEV1 as functions of sex, age at annual review, age 
at diagnosis, year of birth and F508 genotype. Age-sex interactions are 
included in both submodels, to show how the mean and variability 
change over time within each sex. Age at diagnosis is dichotomised into 
diagnosis before 1 year of age and diagnosis after 1 year. For simplicity, 
F508 genotype is also transformed into a binary covariate: 2 alleles 
versus 1, 0, missing or unknown. The association with age is modelled 
using natural cubic splines with 5 basis functions and knots placed at the 
quintiles of the covariates. A random intercept is included in both the 
mean and variability submodels, and also a correlation parameter be
tween the mean and variability random intercepts to account for the 
dependence between within-individual variability and mean. 

In the variability submodel, the estimated coefficients represent the 
association between the covariates and the variability (measured in 
units of log standard deviations) of the FEV1 measurements. To report 
the association on the standard deviation scale (i.e. the FEV1 scale), the 
exponential of the coefficient is computed. This modelling choice 
returns by default estimates for the standard deviation parameter, which 
has the same unit of measurement as the mean. By combining the co
efficient with the values of the covariates and the subject-specific loca
tion and scale random effects, the mean FEV1 and variability trajectory 
over time can be computed for each individual in the dataset. The 
average computed at each age point returns a description of the CF 
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population mean and variability. 
As in Williams et al. [14,15], we fit the model in a Bayesian frame

work using the R package brms [16]. Standard prior distributions were 
specified (normal distribution for fixed effects, exponential distribution 
for random effects) with informative prior values. More details are 
available in the Supplementary Material. The estimation procedure is 
based on a Markov chain Monte Carlo algorithm with 2400 iterations (of 
which 1200 warm-up). We provide the posterior estimates for the co
efficients and the corresponding 95% posterior credible interval in 
brackets. 

3. Results 

3.1. Data description 

The total number of individuals in the dataset analysed is 7099 with 
65,522 annual reviews. A diagram of inclusion criteria is provided in 
Figure S.1 in the Supplementary Material. 

Table 1 describes the characteristics of the dataset by sex. Females 
account for less than half of the population in the sample. 

The distribution of individuals by number of annual reviews is dis
played in Figure S.2 in the Supplementary Material. The maximum 
number observed is 24, which corresponds to the number of years 
spanned by the current version of the registry, while the mode is at 5 
reviews and the median is 9 reviews. For each individual, the follow-up 
in years matches approximately the number of annual encounters. 
Figure S.3 in the Supplementary Material shows both the average levels 
of FEV1 for males and females and the sex distribution over the age range 
observed in the dataset. 

3.2. Association between covariates and lung function mean and 
variability 

The estimates of the parameters in both mean and variability sub
models of the MELSM are reported Table 2 (for categorical covariates) 
and Fig. 1 (for continuous covariates). The FEV1 intercept in the mean 
submodel (common for all individuals) is close to 2 litres, while for the 
variability submodel is equal to -1.48, which corresponds to a standard 
deviation of e− 1.48 = 0.23 litres. These represent “baseline” values before 
including the parameter estimates for the covariates in the model, or 
equivalently they refer to the case when all the other coefficients are 
multiplied by zero. 

Those diagnosed after the first year from birth seem to show on 
average higher FEV1 (by 0.05 litres) and lower FEV1 variability than 
those diagnosed before the first year of age after adjusting for other 
covariates (including the genotype). In particular, the former have 
approximately 100⋅e− 0.04 = 96.1% of the variability of the latter with 

the same features. In addition, those homozygous for F508 tend to have 
lower FEV1 but slightly higher lung function variability (by a factor of 
approximately e0.06 = 1.06) than non-homozygous individuals. 

Fig. 1 shows the estimates of the age association for males and fe
males. For the mean submodel, decreasing mean FEV1 with age is 
observed across the whole age range. The decrease in FEV1 appears to be 
almost linear with a slope of approximately 0.038 litres per year for 
males and 0.035 litres per year for females. The year of birth shows a 
non-linear relationship with mean FEV1 with the maximum reached 
around the cohort of 1960. Those born in this year show higher FEV1 on 
average than people born earlier or after, keeping all the other cova
riates constant. The minimum is obtained between 1980 and 1985: in
dividuals in this cohort tend to have lower FEV1 than younger people 
with the same features. 

In the variability submodel, we observe an almost quadratic pattern 
for both females and males: the variability tends to decrease until 
approximately 30 years, and then, between the age of 30 and 40, the 
variability for females seems to remain flat, while for males the vari
ability keeps declining although at a lower rate. For the cohort effect, the 
variability keeps increasing until the cohort between 1960 and 1965, 
then it decreases. 

Additional heterogeneity across individuals in the lung function 
mean and variability is captured via the random effects in the model, as 
indicated by the non-zero standard deviations of the location and scale 
random effects in Table 2. The estimated correlation parameter indicates 
that those with higher FEV1 on average tend to show higher within- 
individual variability, given the other covariates in the model (as 
shown also in Figure S.6 in the Supplementary Material). 

3.3. Average lung function trajectories in the CF population 

For each individual in the dataset, two trajectories (one for the mean, 
one for the standard deviation) are fitted from the model, covering the 
same age interval as for the observed FEV1 measurements. As a simple 
descriptive summary of the CF adult population, the average of all the 
individual fitted trajectories for mean and variability are reported in 
solid black lines in Fig. 2. These predictions show the combined effects 
of all the covariates for each individual in the dataset. The population 
variability for both males and females reaches the minimum at the age of 
25, then it increases for older ages. In particular, for males up to 40 years 
old there is a stronger increase of the variability. Populations trajectories 
stratified by those who died during follow-up and those still alive at the 
end of 2020 show a higher variability for the former group across almost 
all the age range considered (Fig. 2, bottom plot). 

We can also predict the FEV1 mean and standard deviation trajec
tories for specific covariate values. When we jointly consider the binary 
variables for genotype and age at diagnosis (Fig. 3), the cluster of late- 
diagnosed non-homozygous patients is clearly separated from the 
others, having a higher mean lung function and a lower FEV1 variability 
across the whole age range. Additional plots are available in Figure S.4 

Table 1 
Demographic and clinical characteristics of cystic fibrosis individuals included 
in the analysis. Reported are number (%) for categorical variables and median 
(interquartile range: 25th percentile and 75th percentile) for continuous 
variables.   

Females Males Total 

Number of individuals 3287 (46.4%) 3814 (53.6%) 7099 
Median number of annual 

reviews per individual 
8 (5–12) 9 (5–13) 9 (5–13) 

Median age at diagnosis in 
years 

0.67 
(0.12–4.04) 

0.53 
(0.12–3.97) 

0.58 
(0.12–3.99) 

Diagnosed within the first year 
after birth 

1807 (55.0%) 2190 (57.4%) 3997 (56.3%) 

Homozygous for F508 1589 (48.3%) 1924 (50.5%) 3513 (49.5%) 
Number of individuals with 

one FEV1 measure 
176 (5.4%) 191 (5.0%) 367 (5.2%) 

FEV1 (in litres) at first annual 
review 

2.02 
(1.41–2.63) 

2.9 (1.98–3.7) 2.4 
(1.64–3.21) 

Number of deaths 1028 (31.3%) 987 (25.9%) 2015 (28.4%)  

Table 2 
Posterior estimates with 95% CI (credible interval) for the linear fixed param
eters and random effects in the model.  

Covariates Estimate (95% CI) 

Mean submodel  
Intercept 2.01 (1.99; 2.03) 
Diagnosis after 1 year old 0.05 (0.03; 0.07) 
Homozygous for F508 − 0.05 ( − 0.06; − 0.03) 
Variability submodel (log SD)  
Intercept − 1.48 ( − 1.51; − 1.46) 
Diagnosis after 1 years old − 0.04 ( − 0.07; − 0.02) 
Homozygous for F508 0.06 (0.03; 0.08) 
Random effect distribution  
SD for location random effects 1.04 (1.02; 1.06) 
SD for scale random effects 0.45 (0.44; 0.46) 
Correlation between random effects 0.16 (0.13; 0.20)  
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in the Supplementary Material. 

4. Discussion 

In this work we investigated long-term (or year-to-year) lung func
tion within-individual variability across adults in the UK CF registry 
dataset. The mixed-effects location-scale model allows for a flexible 
model of within-individual variability accounting for its relationship 
with covariates as well as subject-specific deviations from the popula
tion average. The results indicate that both the mean and the variability 
are highly heterogeneous across individuals, and only a fraction of that 
heterogeneity could be explained by the factors considered in the study. 

As a first main result, we quantified the association of the covariates 
in the model with both mean FEV1 and within-individual variability. As 
age increases, the constant decline in mean lung function accompanies 
an approximately quadratic association with the variability for males, 
with minimal variability reached around age 40. The pattern of vari
ability seems to flatten for females between 25 and 33. Further work is 
needed to determine whether this relates to the lower life expectancy, 
which is observed in the female UK CF population, and whether it could 
play a role in survival prediction [17]. For both females and males, FEV1 
variability increases after age 40, indicating higher fluctuations for older 
ages, despite lower mean FEV1. 

The year of birth is also associated with lung function. In older co
horts we observe increasing lung function mean as well as increasing 
within-individual variability, whereas individuals born after 1980 show 
higher mean lung function and at the same time declining variability. 
The non-monotonic trend for this covariate suggests that there is an 
interplay between a left-truncation effect (as in older cohorts we observe 
only those healthier individual who managed to enter the study) and a 
cohort effect (capturing for example the improvement of treatments 

occurring over time), where the latter becomes the predominant driver 
in younger cohorts. 

The second noteworthy result is that some additional heterogeneity 
in lung function variability is observed after accounting for the cova
riates, as indicated by the nonzero standard deviation of the scale 
random effect. This result shows that the differences between in
dividuals are not only observed in the baseline FEV1, but also in the 
extent of the fluctuations around the mean trajectory. 

Lastly, this study provides some indication that higher lung function 
variability could be linked to severity of diseases or more negative 
outcomes. For those who died during follow-up, a higher lung function 
variability (as well as lower mean function) was observed compared to 
those still alive at the end of follow-up. Nevertheless, this analysis does 
not take into account the age at death (and the length of the individual 
trajectories) and therefore requires additional verification. 

In this direction, further study should be conducted to assess if lung 
function variability is a predictor of age at death, for example using joint 
models of longitudinal and survival outcomes accommodating within- 
individual variability [18]. In addition, other longitudinal outcomes in 
CF could be explored in the future with this framework. For example, 
variability in sugar levels could be added as a marker of “pre-diabetes” 
for individuals with CF as in [19]. 

We have not included infection as a covariate in the analysis, in line 
with previous studies of lung function variability. Our measure of 
variability therefore captures all components of within-individual vari
ation, including treated and untreated exacerbations, treatment 
received as well as any additional variation due to e.g. CF-related dia
betes or other comorbidities [3]. 

This study has several strengths. To our knowledge, this is the first 
published study to investigate factors associated with within-individual 
lung function variability in individuals with CF. The cohort comprises 

Fig. 1. Posterior estimates of the factor-smooth interaction terms in the model described in the Equations (1) and (2) with the sex main effects added, conditional on 
the other covariates in the model. Top: association of age and year of birth with the mean of FEV1. Bottom: association of age and year of birth with the standard 
deviation of FEV1. 
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almost all the CF population in the United Kingdom and over 20 years of 
follow-up. The statistical approach addresses some of the limitations 
that emerged in the literature about within-individual variability in CF. 
Using the MELSM for modelling within-individual variability allows all 
individuals to be included in the analysis without the need to exclude 
those with insufficient numbers of reviews, for whom the MELSM bor
rows information from other individuals with similar covariate values. 
The definition of within-individual variability in this setting is not 
dependent on the definition of a baseline period. In addition, the model 
flexibly accommodates nonlinear associations as for the age-sex 

interaction and can be used with other datasets. 
There are some potential limitations of the approach described in 

this study. The quantification of within-individual variability depends 
on the demographic covariates in the mean submodel because it de
scribes variation around the mean trajectory. To use this in a clinical 
settings, additional studies need to be conducted to find an agreement 
about which covariates should be included in the model, and possibly to 
identify causal relationships between covariates and the within- 
individual variability. The specific choice of the covariates and the age 
range means that these results cannot be directly extended to pop
ulations outside the one considered, such as children, but the same 
model structure could be used to obtain results for these cohorts. 
Another limitation is that the model does not clearly disentangle the 
measurement error from clinically relevant within-individual vari
ability, nor returns a criterion to decide whether a single observed value 
is “outside” some “normal” interval for an individual. Tackling these 
issues, along with reducing the computational time, would be useful 
towards a potential clinical use of this or other metrics of within- 
individual variability. 

We have included in the analysis data from the year 2020, when the 
start of the COVID-19 pandemic led to missed annual reviews, fewer 
infections and more stable FEV during lockdown. In addition, the triple 
combination therapy Kaftrio was rolled out in the UK from September 
2020, although not all patients received it initially. Further analysis 
should be conducted to fully describe the changes induced by these two 
events. 

The findings of this analysis suggest that modelling the within- 
individual variability could lead to a better characterisation of individ
ual lung function decline in adults with cystic fibrosis and potentially to 
improved prediction of disease outcomes. 
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Fig. 2. Posterior predictions of mean and standard deviation of FEV1 by sex and 
age. Top: the black solid line is the average prediction across the whole pop
ulation, enclosed in the 95% prediction interval in gray. Bottom: the lines 
represent the average trajectory over time of variability over all individuals in 
the dead (orange dashed) and alive group (green dotted). The dead population 
includes all individuals whose death occurred before the end of 2020. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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