Journal of Cystic Fibrosis 23 (2024) 936-942

Contents lists available at ScienceDirect .
Journal of
Cystic Fibrosis

Journal of Cystic Fibrosis

FI. SEVIER

journal homepage: www.elsevier.com/locate/jcf

Original Article ' :.)

Check for

Demographic factors associated with within-individual variability of lung &=
function for adults with cystic fibrosis: A UK registry study

Marco Palma %, Ruth H Keoghb, Siobhan B Carr ““, Rhonda Szczesniak ef
David Taylor-Robinson ¢, Angela M Wood ", Graciela Muniz-Terrera "/, Jessica K Barrett +*

@ MRC Biostatistics Unit, University of Cambridge, United Kingdom

Y Department of Medical Statistics, London School of Hygiene & Tropical Medicine, United Kingdom

¢ Royal Brompton Hospital, part of Guy’s and St Thomas’ NHS Foundation Trust, United Kingdom

4 National Heart and Lung Institute, Imperial College, London, United Kingdom

¢ Divisions of Biostatistics and Epidemiology and Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, United States
f Department of Pediatrics, University of Cincinnati, United States

& Department of Public Health, Policy and Systems, University of Liverpool, United Kingdom

Y Cardiovascular Epidemiology Unit, University of Cambridge, United Kingdom

1 Ohio University Heritage College of Osteopathic Medicine, United States

I University of Edinburgh, United Kingdom

ARTICLE INFO ABSTRACT

Keywords:

Cystic fibrosis

Lung function variability

Within-individual variability

Mixed-effects location-scale model (MELSM)

Background: Lung function is a key outcome used in the evaluation of disease progression in cystic fibrosis. The
variability of individual lung function measurements over time (within-individual variability) has been shown to
predict subsequent lung function changes. Nevertheless, the association between within-individual lung function
variability and demographic and genetic covariates has not been quantified.

Methods: We performed a longitudinal analysis of data from a cohort of 7099 adults with cystic fibrosis
(between 18 and 49 years old) from the UK cystic fibrosis registry, containing annual review data between 1996
and 2020. A mixed-effects location-scale model is used to quantify mean FEV; (forced expiratory volume in 1 s)
trajectories and FEV; within-individual variability as a function of sex, age at annual review, diagnosis after first
year of life, homozygous F508 genotype and birth cohort.

Results: Mean FEV; decreased with age and lung function variability showed a near-quadratic trend by age.
Males showed higher FEV; mean and variability than females across the whole age range. Earlier diagnosis and
homozygous F508 genotype were also associated with higher FEV; mean and variability. Individuals who died
during follow-up showed on average higher lung function variability than those who survived.

Conclusions: Key variables known to be linked with mean lung function in cystic fibrosis are also associated
with an individual’s lung function variability. This work opens new avenues to understand the role played by
lung function variability in disease progression and its utility in predicting key outcomes such as mortality.

1. Introduction The evolution of lung function over time is a crucial outcome of in-

terest in CF. In Keogh et al. [2], a measure of lung function was identified

The availability of national registries of cystic fibrosis (CF) with
longitudinal measurements of health status has led to improved under-
standing of disease progression and prediction of survival for the CF
population. For example, longitudinal information from the UK CF
registry has been used to develop dynamic prediction models of survival
for people with CF [1,2].
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as the strongest predictor for individual survival. Although previous
studies have mostly focused only on mean trajectories, some have also
investigated the variability of lung function over time, giving novel in-
sights into disease progression. For example, Morgan et al. [3] provided
a working definition of within-individual lung function variability.
Four-year follow-up was split into a first two-year window for evaluating
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lung function variability and a second two-year window for determining
the association with lung function decline. This approach was used to
evaluate the hypothesis that higher within-individual variability could
be linked to stronger subsequent decline in lung capacity in a multi-
center observational study of US individuals with CF. The authors pro-
posed to quantify within-individual variability instead of the count of
pulmonary exacerbations to better reflect changes in lung capacity, as
the latter lack a standardised definition [4]. Heltshe and Szczesniak [5]
argued that such an approach does not leverage the full extent of the
longitudinal information as well as the correlation between measure-
ments taken on the same individual.

Taylor-Robinson et al. [6] instead evaluated lung function variability
in the Danish CF population, splitting it into between-individual, with-
in-individual and measurement error. Their method did not quantify
variability for each individual, but identified useful thresholds to
distinguish clinically relevant changes from short-range fluctuations and
accounted for the long-term correlation between lung function mea-
surement. Those findings were further explored in the US CF Foundation
Patient Registry [7], to monitor disease progression at the individual
level.

The aim of this work is to quantify long-term variability in lung
function in the UK CF population by using the longitudinal trajectory
recorded for each individual. We apply the mixed-effects location-scale
model (MELSM, [8]) to specify the standard deviation as a function of
covariates of interest as well as a random component which is used to
account for heterogeneity that is not explained by other factors. In this
sense, this study extends the previous knowledge about cystic fibrosis by
quantifying the changes in within-individual lung function variability
associated with sex, age at annual review, year of birth, diagnosis after
first year of life, and homozygous F508del genotype.

2. Materials and methods
2.1. Data source

The dataset comes from the UK Cystic Fibrosis (CF) Registry, col-
lecting anonymised information about CF patients across the country
[9]. We used the version available at the time of analysis, which includes
records from 1996 through December 2020. The individuals who are
clinically stable have annual reviews approximately every 12 months
with the care teams in a clinic. The dataset contains data for over 13,000
individuals.

The outcome of interest in the analysis is forced expiratory volume in
1 s (FEV1), which counts the litres of air exhaled in the first second after
maximal inspiration. This outcome was chosen instead of FEV; percent
predicted (the ratio between the individual FEV; and the average FEV,
in a population of similar sex and age) to provide a more interpretable
quantification of within-individual lung function variability in terms of
litres rather than percentage points, while highlighting sex differences in
mean FEV; levels (which are expected). In addition, in the general
population FEV; values do not vary dramatically over the age range
considered.

The covariates used in this analysis are sex, age at each annual re-
view, diagnosis after first year of life, year of birth, homozygous F508
(or F508del) genotype. These covariates are often used in cystic fibrosis
studies [2].

2.2. Inclusion criteria

The analysed dataset consisted of all adults between 18 and 49 years
old in the CF registry with at least one recorded measurement of FEV;.
Setting age thresholds as inclusion criteria is common in cystic fibrosis
studies (e.g. [10,11]): in particular, the older threshold is usually set to
exclude cases which are less representative of the general CF population.

In this work, study entry was defined as the date of the first annual
review at which the age criteria were met. Individuals were followed up
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until death or administrative censoring at the end of December 2020. If
an individual had lung transplant before or during the follow-up period,
annual reviews after the transplant were excluded. Records with missing
FEV; or covariates were removed. If multiple annual reviews were
recorded in a single calendar year (mostly due to transition to a different
CF centre), then only data from the first one were used in the analysis.
This situation was observed for a small number of individuals (440,
equal to 5.3% of the population in the study).

2.3. Statistical analysis

Linear mixed models (or random effects models) are a standard
choice for the analysis of longitudinal data, where multiple observations
for the same individuals are collected over time [12]. In this setting, the
regression terms are often distinguished between fixed effects (or
population-level coefficients) and random effects (or individual-level
coefficients). For example, in a simple model with a random intercept
and no covariates, there is an overall intercept (fixed effect) representing
the population mean and a subject-specific random effect which quan-
tifies the individual departure from the population mean. The random
effects for all subjects are assumed to be normally distributed with zero
mean and a standard deviation which is estimated from the data. A
non-zero standard deviation for the random effect indicates that there is
some heterogeneity among the individuals which is not accounted for by
the covariates in the model.

The mixed-effects location-scale model (MELSM) is used to quantify
within-individual variability in a longitudinal setting [8,13]. It extends
standard mixed models by expressing the error variance as a function of
covariates and a subject-specific random effect. The detailed formula-
tion of the model is reported in the Supplementary Material. The MELSM
is made of three key building blocks: the mean submodel, the variability
submodel and the distribution of the random effects.

The mean submodel is similar to a standard mixed model, where the
outcome of interest is modelled as a function of known covariates as well
as random effects (which capture the correlation of the measurements
within each individual and/or each cluster of individuals). In the vari-
ability submodel, the residual standard deviation is specified as another
function of known covariates as well as a subject-specific random effect.
The distribution of the random effects provides a link between the two
submodels. The random effects are assumed normally distributed with
mean zero; their covariance measures the relationship between the
random effects.

In this work, we use MELSM to evaluate changes in the mean and
standard deviation of FEV; as functions of sex, age at annual review, age
at diagnosis, year of birth and F508 genotype. Age-sex interactions are
included in both submodels, to show how the mean and variability
change over time within each sex. Age at diagnosis is dichotomised into
diagnosis before 1 year of age and diagnosis after 1 year. For simplicity,
F508 genotype is also transformed into a binary covariate: 2 alleles
versus 1, 0, missing or unknown. The association with age is modelled
using natural cubic splines with 5 basis functions and knots placed at the
quintiles of the covariates. A random intercept is included in both the
mean and variability submodels, and also a correlation parameter be-
tween the mean and variability random intercepts to account for the
dependence between within-individual variability and mean.

In the variability submodel, the estimated coefficients represent the
association between the covariates and the variability (measured in
units of log standard deviations) of the FEV; measurements. To report
the association on the standard deviation scale (i.e. the FEV; scale), the
exponential of the coefficient is computed. This modelling choice
returns by default estimates for the standard deviation parameter, which
has the same unit of measurement as the mean. By combining the co-
efficient with the values of the covariates and the subject-specific loca-
tion and scale random effects, the mean FEV; and variability trajectory
over time can be computed for each individual in the dataset. The
average computed at each age point returns a description of the CF
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population mean and variability.

As in Williams et al. [14,15], we fit the model in a Bayesian frame-
work using the R package brms [16]. Standard prior distributions were
specified (normal distribution for fixed effects, exponential distribution
for random effects) with informative prior values. More details are
available in the Supplementary Material. The estimation procedure is
based on a Markov chain Monte Carlo algorithm with 2400 iterations (of
which 1200 warm-up). We provide the posterior estimates for the co-
efficients and the corresponding 95% posterior credible interval in
brackets.

3. Results
3.1. Data description

The total number of individuals in the dataset analysed is 7099 with
65,522 annual reviews. A diagram of inclusion criteria is provided in
Figure S.1 in the Supplementary Material.

Table 1 describes the characteristics of the dataset by sex. Females
account for less than half of the population in the sample.

The distribution of individuals by number of annual reviews is dis-
played in Figure S.2 in the Supplementary Material. The maximum
number observed is 24, which corresponds to the number of years
spanned by the current version of the registry, while the mode is at 5
reviews and the median is 9 reviews. For each individual, the follow-up
in years matches approximately the number of annual encounters.
Figure S.3 in the Supplementary Material shows both the average levels
of FEV; for males and females and the sex distribution over the age range
observed in the dataset.

3.2. Association between covariates and lung function mean and
variability

The estimates of the parameters in both mean and variability sub-
models of the MELSM are reported Table 2 (for categorical covariates)
and Fig. 1 (for continuous covariates). The FEV; intercept in the mean
submodel (common for all individuals) is close to 2 litres, while for the
variability submodel is equal to -1.48, which corresponds to a standard
deviation of e"1*® = 0.23 litres. These represent “baseline” values before
including the parameter estimates for the covariates in the model, or
equivalently they refer to the case when all the other coefficients are
multiplied by zero.

Those diagnosed after the first year from birth seem to show on
average higher FEV; (by 0.05 litres) and lower FEV; variability than
those diagnosed before the first year of age after adjusting for other
covariates (including the genotype). In particular, the former have
approximately 100-e %% = 96.1% of the variability of the latter with

Table 1

Demographic and clinical characteristics of cystic fibrosis individuals included
in the analysis. Reported are number (%) for categorical variables and median
(interquartile range: 25th percentile and 75th percentile) for continuous
variables.

Females Males Total
Number of individuals 3287 (46.4%) 3814 (53.6%) 7099
Median number of annual 8 (5-12) 9 (5-13) 9 (5-13)
reviews per individual
Median age at diagnosis in 0.67 0.53 0.58
years (0.12-4.04) (0.12-3.97) (0.12-3.99)

Diagnosed within the first year
after birth

Homozygous for F508

Number of individuals with
one FEV; measure

FEV; (in litres) at first annual
review

Number of deaths

1807 (55.0%) 2190 (57.4%) 3997 (56.3%)
1589 (48.3%)

176 (5.4%)

1924 (50.5%)
191 (5.0%)

3513 (49.5%)
367 (5.2%)

2.02
(1.41-2.63)
1028 (31.3%)

2.4
(1.64-3.21)
2015 (28.4%)

2.9(1.98-3.7)

987 (25.9%)
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Table 2
Posterior estimates with 95% CI (credible interval) for the linear fixed param-
eters and random effects in the model.

Covariates Estimate (95% CI)

Mean submodel

Intercept

Diagnosis after 1 year old
Homozygous for F508
Variability submodel (log SD)
Intercept

Diagnosis after 1 years old
Homozygous for F508

Random effect distribution
SD for location random effects
SD for scale random effects
Correlation between random effects

2.01 (1.99; 2.03)
0.05 (0.03; 0.07)
— 0.05 (- 0.06; — 0.03)

—1.48 (— 1.51; — 1.46)
—0.04 (- 0.07; —0.02)
0.06 (0.03; 0.08)

1.04 (1.02; 1.06)
0.45 (0.44; 0.46)
0.16 (0.13; 0.20)

the same features. In addition, those homozygous for F508 tend to have
lower FEV; but slightly higher lung function variability (by a factor of
approximately %% = 1.06) than non-homozygous individuals.

Fig. 1 shows the estimates of the age association for males and fe-
males. For the mean submodel, decreasing mean FEV; with age is
observed across the whole age range. The decrease in FEV; appears to be
almost linear with a slope of approximately 0.038 litres per year for
males and 0.035 litres per year for females. The year of birth shows a
non-linear relationship with mean FEV; with the maximum reached
around the cohort of 1960. Those born in this year show higher FEV; on
average than people born earlier or after, keeping all the other cova-
riates constant. The minimum is obtained between 1980 and 1985: in-
dividuals in this cohort tend to have lower FEV; than younger people
with the same features.

In the variability submodel, we observe an almost quadratic pattern
for both females and males: the variability tends to decrease until
approximately 30 years, and then, between the age of 30 and 40, the
variability for females seems to remain flat, while for males the vari-
ability keeps declining although at a lower rate. For the cohort effect, the
variability keeps increasing until the cohort between 1960 and 1965,
then it decreases.

Additional heterogeneity across individuals in the lung function
mean and variability is captured via the random effects in the model, as
indicated by the non-zero standard deviations of the location and scale
random effects in Table 2. The estimated correlation parameter indicates
that those with higher FEV; on average tend to show higher within-
individual variability, given the other covariates in the model (as
shown also in Figure S.6 in the Supplementary Material).

3.3. Average lung function trajectories in the CF population

For each individual in the dataset, two trajectories (one for the mean,
one for the standard deviation) are fitted from the model, covering the
same age interval as for the observed FEV; measurements. As a simple
descriptive summary of the CF adult population, the average of all the
individual fitted trajectories for mean and variability are reported in
solid black lines in Fig. 2. These predictions show the combined effects
of all the covariates for each individual in the dataset. The population
variability for both males and females reaches the minimum at the age of
25, then it increases for older ages. In particular, for males up to 40 years
old there is a stronger increase of the variability. Populations trajectories
stratified by those who died during follow-up and those still alive at the
end of 2020 show a higher variability for the former group across almost
all the age range considered (Fig. 2, bottom plot).

We can also predict the FEV; mean and standard deviation trajec-
tories for specific covariate values. When we jointly consider the binary
variables for genotype and age at diagnosis (Fig. 3), the cluster of late-
diagnosed non-homozygous patients is clearly separated from the
others, having a higher mean lung function and a lower FEV; variability
across the whole age range. Additional plots are available in Figure S.4
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Fig. 1. Posterior estimates of the factor-smooth interaction terms in the model described in the Equations (1) and (2) with the sex main effects added, conditional on
the other covariates in the model. Top: association of age and year of birth with the mean of FEV;. Bottom: association of age and year of birth with the standard

deviation of FEV;.
in the Supplementary Material.
4. Discussion

In this work we investigated long-term (or year-to-year) lung func-
tion within-individual variability across adults in the UK CF registry
dataset. The mixed-effects location-scale model allows for a flexible
model of within-individual variability accounting for its relationship
with covariates as well as subject-specific deviations from the popula-
tion average. The results indicate that both the mean and the variability
are highly heterogeneous across individuals, and only a fraction of that
heterogeneity could be explained by the factors considered in the study.

As a first main result, we quantified the association of the covariates
in the model with both mean FEV; and within-individual variability. As
age increases, the constant decline in mean lung function accompanies
an approximately quadratic association with the variability for males,
with minimal variability reached around age 40. The pattern of vari-
ability seems to flatten for females between 25 and 33. Further work is
needed to determine whether this relates to the lower life expectancy,
which is observed in the female UK CF population, and whether it could
play a role in survival prediction [17]. For both females and males, FEV;
variability increases after age 40, indicating higher fluctuations for older
ages, despite lower mean FEV;.

The year of birth is also associated with lung function. In older co-
horts we observe increasing lung function mean as well as increasing
within-individual variability, whereas individuals born after 1980 show
higher mean lung function and at the same time declining variability.
The non-monotonic trend for this covariate suggests that there is an
interplay between a left-truncation effect (as in older cohorts we observe
only those healthier individual who managed to enter the study) and a
cohort effect (capturing for example the improvement of treatments
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occurring over time), where the latter becomes the predominant driver
in younger cohorts.

The second noteworthy result is that some additional heterogeneity
in lung function variability is observed after accounting for the cova-
riates, as indicated by the nonzero standard deviation of the scale
random effect. This result shows that the differences between in-
dividuals are not only observed in the baseline FEV;, but also in the
extent of the fluctuations around the mean trajectory.

Lastly, this study provides some indication that higher lung function
variability could be linked to severity of diseases or more negative
outcomes. For those who died during follow-up, a higher lung function
variability (as well as lower mean function) was observed compared to
those still alive at the end of follow-up. Nevertheless, this analysis does
not take into account the age at death (and the length of the individual
trajectories) and therefore requires additional verification.

In this direction, further study should be conducted to assess if lung
function variability is a predictor of age at death, for example using joint
models of longitudinal and survival outcomes accommodating within-
individual variability [18]. In addition, other longitudinal outcomes in
CF could be explored in the future with this framework. For example,
variability in sugar levels could be added as a marker of “pre-diabetes”
for individuals with CF as in [19].

We have not included infection as a covariate in the analysis, in line
with previous studies of lung function variability. Our measure of
variability therefore captures all components of within-individual vari-
ation, including treated and untreated exacerbations, treatment
received as well as any additional variation due to e.g. CF-related dia-
betes or other comorbidities [3].

This study has several strengths. To our knowledge, this is the first
published study to investigate factors associated with within-individual
lung function variability in individuals with CF. The cohort comprises
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Fig. 2. Posterior predictions of mean and standard deviation of FEV; by sex and
age. Top: the black solid line is the average prediction across the whole pop-
ulation, enclosed in the 95% prediction interval in gray. Bottom: the lines
represent the average trajectory over time of variability over all individuals in
the dead (orange dashed) and alive group (green dotted). The dead population
includes all individuals whose death occurred before the end of 2020. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

almost all the CF population in the United Kingdom and over 20 years of
follow-up. The statistical approach addresses some of the limitations
that emerged in the literature about within-individual variability in CF.
Using the MELSM for modelling within-individual variability allows all
individuals to be included in the analysis without the need to exclude
those with insufficient numbers of reviews, for whom the MELSM bor-
rows information from other individuals with similar covariate values.
The definition of within-individual variability in this setting is not
dependent on the definition of a baseline period. In addition, the model
flexibly accommodates nonlinear associations as for the age-sex
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interaction and can be used with other datasets.

There are some potential limitations of the approach described in
this study. The quantification of within-individual variability depends
on the demographic covariates in the mean submodel because it de-
scribes variation around the mean trajectory. To use this in a clinical
settings, additional studies need to be conducted to find an agreement
about which covariates should be included in the model, and possibly to
identify causal relationships between covariates and the within-
individual variability. The specific choice of the covariates and the age
range means that these results cannot be directly extended to pop-
ulations outside the one considered, such as children, but the same
model structure could be used to obtain results for these cohorts.
Another limitation is that the model does not clearly disentangle the
measurement error from clinically relevant within-individual vari-
ability, nor returns a criterion to decide whether a single observed value
is “outside” some “normal” interval for an individual. Tackling these
issues, along with reducing the computational time, would be useful
towards a potential clinical use of this or other metrics of within-
individual variability.

We have included in the analysis data from the year 2020, when the
start of the COVID-19 pandemic led to missed annual reviews, fewer
infections and more stable FEV during lockdown. In addition, the triple
combination therapy Kaftrio was rolled out in the UK from September
2020, although not all patients received it initially. Further analysis
should be conducted to fully describe the changes induced by these two
events.

The findings of this analysis suggest that modelling the within-
individual variability could lead to a better characterisation of individ-
ual lung function decline in adults with cystic fibrosis and potentially to
improved prediction of disease outcomes.
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