Meunier, Dimitri;
Shen, Zikai;
Mollenhauer, Mattes;
Gretton, Arthur;
Li, Zhu;
(2024)
Optimal Rates for Vector-Valued Spectral
Regularization Learning Algorithms.
In: Globerson, A and Mackey, L and Belgrave, D and Fan, A and Paquet, U and Tomczak, J and Zhang, C, (eds.)
Advances in Neural Information Processing Systems 37 (NeurIPS 2024).
(pp. pp. 1-46).
NeurIPS: Vancouver, BC, Canada.
Preview |
Text
NeurIPS-2024-optimal-rates-for-vector-valued-spectral-regularization-learning-algorithms-Paper-Conference.pdf - Published Version Download (623kB) | Preview |
Abstract
We study theoretical properties of a broad class of regularized algorithms with vector-valued output. These spectral algorithms include kernel ridge regression, kernel principal component regression and various implementations of gradient descent. Our contributions are twofold. First, we rigorously confirm the so-called saturation effect for ridge regression with vector-valued output by deriving a novel lower bound on learning rates; this bound is shown to be suboptimal when the smoothness of the regression function exceeds a certain level.Second, we present an upper bound on the finite sample risk for general vector-valued spectral algorithms, applicable to both well-specified and misspecified scenarios (where the true regression function lies outside of the hypothesis space), and show that this bound is minimax optimal in various regimes. All of our results explicitly allow the case of infinite-dimensional output variables, proving consistency of recent practical applications.
Type: | Proceedings paper |
---|---|
Title: | Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms |
Event: | 38th Conference on Neural Information Processing Systems (NeurIPS 2024) |
ISBN-13: | 9798331314385 |
Open access status: | An open access version is available from UCL Discovery |
Publisher version: | https://papers.nips.cc/paper_files/paper/2024/hash... |
Language: | English |
Additional information: | This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Gatsby Computational Neurosci Unit |
URI: | https://discovery.ucl.ac.uk/id/eprint/10207216 |
Archive Staff Only
![]() |
View Item |