This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2025.3552492

Neural Network-Assisted Hybrid Model Based
Message Passing for Parametric Holographic MIMO
Near Field Channel Estimation

Zhengdao Yuan, Yabo Guo, Dawei Gao, Qinghua Guo, Senior Member, IEEE, Zhongyong Wang, Chongwen Huang,
Ming Jin, Senior Member, IEEE and Kai-Kit Wong, Fellow, IEEE

Abstract—Holographic multiple-input and multiple-output
(HMIMO) is a promising technology with the potential to achieve
high energy and spectral efficiencies, enhance system capacity and
diversity, etc. In this work, we address the challenge of HMIMO
near field (NF) channel estimation, which is complicated by the
intricate model introduced by the dyadic Green’s function. Despite
its complexity, the channel model is governed by a limited set
of parameters. This makes parametric channel estimation highly
attractive, offering substantial performance enhancements and
enabling the extraction of valuable sensing parameters, such as
user locations, which are particularly beneficial in mobile networks.
However, the relationship between these parameters and channel
gains is nonlinear and compounded by integration, making the
estimation a formidable task. To tackle this problem, we propose
a novel neural network (NN) assisted hybrid method. With the as-
sistance of NNs, we first develop a novel hybrid channel model with
a significantly simplified expression compared to the original one,
thereby enabling parametric channel estimation. Using the readily
available training data derived from the original channel model, the
NNs in the hybrid channel model can be effectively trained offline.
Then, building upon this hybrid channel model, we formulate
the parametric channel estimation problem with a probabilistic
framework and design a factor graph representation for Bayesian
estimation. Leveraging the factor graph representation and unitary
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approximate message passing (UAMP), we develop an effective
message passing-based Bayesian channel estimation algorithm.
Extensive simulations demonstrate the superior performance of
the proposed method.

Index Terms—Holographic MIMO, near field, Green’s function,
channel estimation, neural networks, message passing.

I. INTRODUCTION

OLOGRAPHIC multiple-input multiple-output (HMIMO)

fulfills the deployment of extremely large and near spatial
continuous surfaces within a compact space, harnessing the
potential of electromagnetic (EM) channels. Recognized as a
key enabling technology in future wireless communications,
particularly in light of its potential integration into 6G networks,
HMIMO holds substantial benefits in achieving high spectral
and energy efficiencies, improves the system capacity and
diversity, enhances massive connectivity, etc [1]]—[S8]

Recently, there has been a notable surge in research on
HMIMO, leading to a multitude of investigations into its diverse
applications in communication systems. Assuming perfect chan-
nel state information (CSI), studies such as those in [[1]] and [8]]
have delved into beamforming designs employing HMIMO for
wireless communications. Research efforts like those in [3]] and
[4]] have concentrated on tailored precoding designs for HMIMO
systems, while others, such as those in [9] and [10], have
addressed the holographic positioning problem. Additionally,
integrated holographic sensing and communications have been
explored in works such as [5]] and [11]. Moreover, wireless
power transfer has been extended to HMIMO systems [6]. Fur-
ther exploration into wavenumber-division multiplexing within
line-of-sight HMIMO communications has been undertaken
in [7]. To leverage the full potential of HMIMO, efficient
acquisition of accurate CSI is indispensable.

Some channel estimation methods have been proposed for
HMIMO communications. In [12], considering both non-
isotropic scattering and directive antennas, a channel model
containing angle information for HMIMO was developed, and a
novel channel estimation scheme was proposed, which exploits
the rank deficiency induced by the array geometry and does
not require exact channel statistics. With proper approximations
to the channel covariance matrix, the work in [13]] designed a
low-complexity scheme to perform HMIMO channel estimation,
which can achieve the same performance as the optimal mini-
mum mean square error (MMSE) estimator. The work in [[14]]
proposed a self-supervised machine learning channel estimation
algorithm, which is designed to operate under more relaxed
prior information. The work in [15] proposed decomposition and
compressed deconstruction-based variational Bayesian inference
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to estimate azimuth and elevation angles, distance parameters,
and sparse channels. In [16]], leveraging the specific structure
of the radiated beams generated by the continuous surface, a
method based on a parametric physical channel model was
proposed to estimate the line-of-sight dominated HMIMO chan-
nels in millimeter or THz bands. The aforementioned chan-
nel estimation methods are based on some simplified channel
models with far-field assumption, which either break down at
the near-field (NF) region or cannot capture the full-polarized
information of EM fields [17], [18]]. However, due to the large
aperture of HMIMO surface and the use of high frequency band,
which lead to a large Rayleigh distance, there is a need to
consider HMIMO communications in NF. A low-complexity
Bayes-optimal channel estimator operating in unknown EM
environments was proposed in [19] for HMIMO systems, which
has no requirements on priors or supervision, and relies on a
statistical channel model. Model-driven deep learning methods
have also been explored for HMIMO or extremely large MIMO
channel estimation [20]], [21]. HMIMIO channel estimation in
the wavenumber domain has also been investigated [22], [23].
All of these methods are based on simplified channel models.
However, to accurately characterize NF HMIMO channels, the
use of the dyadic Green’s function is necessitated, leading to
intractable integration and nonlinearity in the channel model [4]],
[24]. To the best of our knowledge, the estimation of HMIMO
NF channels characterized by dyadic Green’s function has not
been well addressed in the literature.

Despite the complexity of the channel model introduced by
the dyadic Green’s function, it is governed by a limited set
of parameters. Compared to direct channel estimation methods
that directly estimate a huge number of channel coefficients,
parametric channel estimation is expected to achieve substan-
tial performance enhancement. In addition, parametric channel
estimation enables the extraction of valuable parameters, such as
user locations, facilitating sensing in the networks. However, the
relationship between the parameters and channel coefficients in
HMIMO exhibits a convoluted nonlinearity compounded by in-
tegration, rendering parametric channel estimation a formidable
task. To tackle this challenge, we propose a novel neural network
(NN)-assisted hybrid approach. With the assistance of NNs, we
first develop a novel hybrid HMIMO channel model, featuring
a significantly simplified expression compared to the original
one. This hybrid channel model enables parametric channel
estimation. Using readily available training data derived from
the original channel model, the NNs in the hybrid channel
model can be effectively trained, which can be carried out
offline. Subsequently, building upon this hybrid channel model,
we formulate the parametric channel estimation problem in a
probabilistic form for Bayesian estimation. With a factor graph
representation of the parametric channel estimation problem and
leveraging the unitary approximate message passing (UAMP)
[25]-[27]], an effective message passing-based Bayesian channel
estimation algorithm is developed. Extensive simulation results
are provided to demonstrate the superior performance of the
proposed method. The main contributions of this work are
summarized as follows:

o To the best of our knowledge, this is the first work on
parametric channel estimation of HMIMO NF channels that
are characterized using the Dyadic Green’s function.

o Considering that HMIMO NF channels are %overned by a
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small set of parameters, we estimate the parameters and
subsequently reconstruct the channels, rather than directly
estimating a large number of channel coefficients. This
parametric approach leads to superior performance as the
number of variables to be estimated is drastically reduced,
and it also facilitates the sensing function in the system.

o To deal with the intractable dyadic Green’s function based
channel model, we propose an NN-assisted hybrid channel
model, which can be well-trained offline. The NN-assisted
hybrid channel model plays a crucial role in designing a
practical HMIMO channel estimation algorithm.

o Building on the hybrid channel model, we formulate the
parametric channel estimation problem into a probabilis-
tic form and develop an effective message passing-based
Bayesian channel estimation algorithm, leveraging UAMP.

« Extensive simulation results demonstrate the superior per-
formance of the proposed method.

o Although this work focuses on HMIMO NF channel esti-
mation, the hybrid model approach can be used to tackle
a generic signal estimation problem involving a system
transfer function, which is intractable using conventional
approaches.

The remainder of this paper is organized as follows. In
Section II, we introduce the signal model and formulate the
HMIMO NF channel estimation problem. In Section III, a new
hybrid channel model is proposed. Then the channel estimation
problem is reformulated, and a factor graph representation is
developed. Leveraging UAMP and the graph representation,
a message passing algorithm is developed in Section IV. In
Section V, we extend the discussion to HMIMO systems with
the more practical hybrid analog-digital structure. Numerical
results are provided in Section VI, followed by conclusions in
Section VII.

Notations: Boldface lower-case and upper-case letters denote
vectors and matrices, respectively. A Gaussian distribution of
x with mean & and covariance matrix V is represented by
CN(x;z,V). The relation f(xz) = cg(x) for some positive
constant ¢ is written as f(z) x g(z), and diag(a) returns
a diagonal matrix with a on its diagonal. We use A - B
and A - /B to denote the element-wise product and division
between A and B, respectively. The notation |A|-? denotes an
element-wise magnitude squared operation for A, and || A|| is
the Frobenius norm of A. We use 1, 0 and I to denote an all-
one matrix, all-zero matrix and identity matrix with a proper
size, respectively. The notation = ~ Ula, b] indicates that x has
a uniform distribution over a and b.

II. CHANNEL MODEL AND PROBLEM FORMULATION FOR
HMIMO NF CHANNEL ESTIMATION

In this section, we introduce the dyadic Green’s function
based HMIMO channel model and the formulation of conven-
tional channel estimation.

A. Channel Model Using the Dyadic Green’s Function

We consider an HMIMO communication system shown
in Fig. [, where the receiver (base station) and transmit-
ter (user) are equipped with holographic surfaces, comprising
M = M, oy X Mcop and N = N, X Neo patch antennas, re-
spectively. Each patch can transmit or receive signals in three
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polarizations [4]. Each transmit patch has a size of A% x A;, and
each receive path has a size of A, x A7, where A7, A7 Al and
AZ denote the horizontal and vertical dimensions of receive and
transmit patches. As shown in Fig. [, we number the transmit
and receive patches row by row. Assume that the receive surface
lays in the zy plane and the center of the first receive patch
is located at the origin of the coordinate system. The transmit
surface is in parallel with the receive surface and the coordinate
of the first transmit patch is denoted as 7t = (2, 4%, 2%). Denote
the m-th receive patch and the n-th transmit patch as S], and
St respectively. The coordinate vectors of the m-th receive
and the n-th transmit patch centers are r" = [  y" 2" |7
and r!, = [2!,y!,2!]T, respectively. Then the coordinates of
the patch centers have the following relationship

o= (G = DAL o = (DA}, 2, =0,
@y, =21+ (¢ — DALy, = y1 + (1, )At Zn =21 (1)
where ¢ = mod(m, M.y), 17, = ceil(m/M.y), ¢!, =

mod(n, Neoy), If, = ceil(n/Neo), mod(-) denotes the modulo
operation and ceil(-) returns an smallest integer that is greater
than or equal to the number in the parentheses.

We use J(r!) to denote the current generated at location 7°
in the transmit surface S, then the radiated electric field E(r")
at the location " in the half free-space is given by the dyadic
Green’s function theorem as [4]], [28]

ziwu/ G(r',r")J(r")ds, (2)
S

where w is permittivity, p is permeability, and G(rt,r") is
dyadic Green’s function [4], [24], [29], [30]

G, 1) = g(r'1") |1 ()L + o (FF ], ©)
where
1 1 3 3%
=14 — — —— - — — _
a(r) + kor  kEr?’ e2(r) k&r?  kor ’

the unit vector 7 = (r* — ") /||r* — r"|| denotes the direction
between the source point and observation point, the scalar r =
[|7t —7"|| denotes their distance, I3 denotes an identity matrix,
ko = 2w/ is the wave number with A being the wavelength,
and the scalar Green’s function g(r’, r") is given as

exp(ikol|r’ —r"|])
4r||rt — r7||

“4)

g(,,,t, Tm) =

Now we consider a single transmit patch S! and a single
receive patch 5] , and assume that the current distribution over
the transmit patch is constant and there is no non-line-of-sight
propagation [4]. Then the wireless channel with polarization
between the n-th transmit patch and the m-th receive patch can

be expressed as
_ Im.+ 3 Um+ 2 "Dn Un
H,, = iwu / / / /
I

G(rt,r )dytdxtdyrdx (5)
We note that H,,,, is a matrix with size 3 x 3, i.e.,
Hmn = h%’Ly'VL h%!n h%’LZTL I (6)
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Fig. 1: Mlustration of antenna patches and their coordinates.

where hf . k€ {zz,zy,x2,yY,y%, 22} denotes the channel
component corresponding to various transmit and receive po-
larization combinations. Considering all transmit and receive
patches, we have the following channel matrix

Hy Hiy
ﬂ' é : c C3M><3N (7)
H H N
We can rearrange the elements in the matrix according to their
polarization combinations, leading to a block matrix

ﬁzz -f_Ixy ﬁzz
Iz[gcy Iiny IE[ZJZ
H;cz Hyz sz

ﬁ-:

where H,. € CM*N denotes the polarized channel matrix with
K € {zz, 1Y, 12,9y, Y2, 22}

B. Problem Formulation for Channel Estimation

We start with the fully digital system, where each patch is
connected to a RF chain. The more practical hybrid analog-
digital architecture will be discussed in Section V of this paper.

Arranging L consecutive received signal vectors in a matrix
f/, we have

Y =HS+W, ®)
where Y 2 [f’f,YZ,YZT]T € C3MxL
denoting the polarization direction and Y ,,Y ,, Y, €
§ £ (8,,8,,5.]T € CN<L with §,,8,,5. € CVxL
denoting the pilot matrices in x,y and z polarization, W 2
[VVZ, Wg,VNVZ}T € C3MxL represents the zero mean com-

plex additive white Gaussian noise (AWGN) with precision -y
(i.e., variance

with the subscripts
(CM>< L.
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To facilitate channel estimation, we can rearrange the signal
model into the following form

wa
S. 0 0 S; 5. 0 gu
Y =lo0 5 0 5 0 5||g|tW
N T xy
0o o S8 o 8 S |H,.
H,,

L2 SH+W, ©))
where Y 2 [Y,,Y,,Y.|Te C3LXM § ¢ C3LXN H ¢
CONXM and H,, = fIZ with k € {zz,zy,x2,yy,yz2, 22},
which is given as

oo 1M
H,% | : : (10)
N AR
In addition, W £ [W,, W, ,W_]T ¢ C3*M denotes the

white Gaussian noise.

Our aim is to estimate the channel matrix H based on the
pilot signals S and received signal Y. Regarding this, we have
the following remarks:

e One straightforward method is to estimate the channel
coefficients directly e.g., using the least squares (LS)
method. It is noted the number of the variables to be
estimated is 6M N, which lead to high pilot overhead to
achieve satisfactory performance and high computational
complexity due to the involved large matrix inversion.

o According to (3)), the channel coefficients are parameterized
by 7" and r! (noting that " is known). This motivates
us to perform parametric channel estimation to drastically
reduce the number of variables to be estimated, thereby
achieving significantly enhanced performance. That is, we
first estimate r*, based on which the channel matrix can
be reconstructed. This is the strategy of parametric channel
estimation used in this work.

« It can be seen from (B) that there is a complex relationship
between H ,,,, and r!, leading to challenges in parametric
channel estimation. In [4]], with some approximations, an
approximate analytical expression for the HMIMO channel
is obtained, i.e.,

exp(ikoTmn) "

AT

ko(zy, — xp) AL o ko(ym

sinc sinc
2T mn

H,,, ~iopAtA"

— )AL
Wiy

rmn

where A* = ALA! and A" = A7 A7 represent the area
of transmitter and receiver patch, respectively, 7., =
[[rt — 27 || and Cop = 1 (Fmn) T3 + C2(Fimn )7P7" with
cl(rmn) and co(7y,,) are given in (@) by replacing '
and r" with the r! and 77, respectively. However, the
approximate channel model still has a complex expression
with nonlinear operations, making parametric channel esti-
mation challenging. Moreover, it can also lead to significant
mismatch with the true channel due to the approximations.

e In this work, we propose a novel NN-assisted hybrid
channel model to characterize the nonlinear relationship
between H and r¢, which has a much simpler expression,
enabling efficient parametric channel estimation.

= exp(ikor
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2: (a) and (c): the real part of h{{; (b) and (d): the real
part of h?f/ exp(ikoru).

III. NN-ASSISTED HYBRID CHANNEL MODEL AND
PARAMETRIC CHANNEL ESTIMATION

In this section, we propose an NN-assisted hybrid channel
model and the training of the involved NN, which enables
parametric channel estimation.

A. NN-Assisted Hybrid Channel Model

According to (3), the channel components between the m-th
receive patch and the n-th transmit patch, which is denoted
as hf .. is parameterized by {z!,y’, 2.} (noting that the
coordinates of the receive patch centers are known). An idea is
to develop an NN model with the parameters as input modes to
replace (3). However, this is not the best way. Take the channel
component hf;, which corresponds to the 1st transmit patch
and the Ist receive patch, as an example. In Fig. 2] (a) and
(c), we show the real part of h¥¥ respectively with a fixed z¢
and a fixed 2. We can see that they are rather complex and
change abruptly, which makes it necessary to use NNs with
high expressive capability, leading to the requirement of a large
number of NN parameters. This will result in high complexity in
training and parametric channel estimation channel estimation.

The decayed periodicity-like pattern exhibited in Fig. [2] (a)
and (c) motivates us to examine the variation of the quantity

hiT = hiT(at,yt, 20)/ exp(ikorit), (12)

where 717 = ||r} — 7]|. Its real part is shown in Fig. [2| (b)
and (d), where we can see that it changes much slowly. Hence,
it can be potentially characterized by a much simpler NN. In
particular, we use an NN with a single hidden layer as shown
in Fig. 3] in this work.

It is not hard to show that the channel components between
the m-th receive patch and the m-th transmit patch actually
depends on their relative position. Then we define z,,,, = x! —
Ty Ymn = ny — Yins Zmn = thv —Zm Tmn = [Inmaynmy an]
and 7y, = ||rmn|| Hence, we have

13)
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Fig. 3: Architecture of the neural network.

where k € {xx,zy,xz,yy,yz,2z}. This allows us to use a
single NN to characterize the channel components between any
transmit patch and receive patch, facilitating the NN training
and Bayesian inference algorithm design later.

As shown in Fig. E], we use a real-valued NN, where we sepa-
rate the real and imaginary parts of the relevant variables. Its in-
puts are the releltive coordigates Tomny Ymn and Zpmy, and the out-
puts are {Re{h%, }, Im{hts,, }, k€ {vz,xy,x2,yy,y2, 22}}.
According to Fig. [3] the output of the neural network can be
expressed as

NN<xmn7 Ymmns Zmn)
= nga(wglcxmn + wzfymn + wizmn + bl) + b,

2¢ gRI2XI (14)

where W; = [wf w) wi € RN¥*3 s the input

layer weight matrix with w?,w?, w? € R¥»*1 W, =
[waq, -+ ,wa12] € RNvX12 js the output layer weight
matrix with {wa1, -+, w12} € RY¥»*L output ¢,
NN (Zmns Ymns Zmn) € RY2*1 Ny, is the number of neurons
in the hidden layer, b; € RV+»*! and by, € R'?2*! are bias
vectors in the hidden layer and output layer respectively. The
activation function in the hidden layer g,(-) = tansig(-) and a
linear activation function is used at the output layer.

We put two outputs in Fig. which correspond to the
real and imaginary parts of h?,  together and denote it as
" (Trns Ymn, Zmn)- For example, for the xx polarization, we
combine the first and the 7-th outputs of the neural network
into a complex number, i.e., ©"* (Tmn, Ymn, Zmn) = Emn (1) +
i€,,,(7). Then we have the following hybrid channel model

hfnn ~ SDK (xmny ymna Z’mn) eXp(ikO""mn)a (15)

where ©"(Tyn, Ymn, 2mn) 1S the output of the NN. We can
see that, with the aid of NN, we convert the channel model
with complex expression () to (I3), which has a closed form
with much simpler expression. It is noted that all the operations
involved in and are linear, except the nonlinear
operations due to the activation function g,(-) in the NN and
multiplication operation in (I3). The hybrid channel model
enables tractable Bayesian inference for parametric channel
estimation detailed in Section IV.

According to (I)), the relative coordinates can be expressed

as functions of {zt, yt, 21} or {zf yl 21} Vn,ie.,

t T t t t s t T
Tmn = Tp — Ly =27 + (cn - 1)Aw —Typ=2 + Amn
_ t ro_t t t ro__t y
Ymn = Yp—Ym =Y + (L, — 1)Ay —Ym=Y1 + A%,
z = Zt = Z
mn Authorizéd Iice%sed use limited to: University College London. Downloaded
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Fig. 4: NMSE of channel modeling versus the number of
hidden nodes.

It is noted that the coordinates of the receive patches {x/,, yr }
are known. This means that any channel component [, can
be expressed as a function of the coordinate of the first transmit
patch {z!,y!, 2!}, which will be estimated. With the estimated
coordinate, the channel components can be obtained using (I3).
We define a new function ¢%,, (xf, v’ 2L), which is a shifted
version of O (Zyn, Ymn, Zmn)» 1.€.

K t t t\ K t r t r t
mn(xnvynv Zn) = (In T Yn — Ymo Zn)?

7)

which will be used later in the inference algorithm design.

B. Neural Network Training

The training of the NN can be easily implemented. This is
because, with the original model (3), sufficient training samples
can be easily generated using numerical methods. We note that
the whole training process can be carried out offline. The NN
is trained with the back propagation using the following loss
function

Z H@fnn(mmnv Ymn,s Zmn)_ﬁﬁ(xmm Ymn, Zmn)‘|2

m,n,K

where E“(azmn, Ymn, Zmn) are calculated using (3) and (T3).

The number of hidden nodes has an impact on the accuracy of
the NN model. Fig. @] shows the normalized mean squared error
(NMSE) of the constructed channel using the NN model with
true transmitter locations versus the number of hidden nodes. We
can see that the NMSE performance improves with the number
of hidden nodes. When the number of hidden nodes is larger
than 50, the NMSE reaches about -50dB and the performance
improvement is marginal with the further increase in the number
of hidden nodes. Hence, we choose the number of hidden nodes
to be 50.

1
L=——
MN

IV. PROBABILISTIC FORMULATION, FACTOR GRAPH
REPRESENTATION AND MESSAGE PASSING ALGORITHM

In this section, with the NN-assisted hybrid channel model
in Section III, we formulate the parametric channel estimation
problem in a probabilistic form. We will compute the (approx-
imate) marginals of transmitter coordinates and the HMIMO
channel components, based on which their estimates can be

obtained. It is worth noting that the estimates of the transmitter
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coordinates and the HMIMO channel components admit the
constraint due to the hybrid channel mode, so that accurate
channel estimation can be achieved. With the probabilistic
formulation in Section IV.A, we represent the problem in a
factor graph in Section IV.B, and develop a message passing
algorithm, which involves a forward process in Section IV. C
and a backward process in Section IV.D. The complexity of the
algorithm is also analyzed.

A. Probabilistic Formulation

We develop a Bayesian parametric channel estimation
method, where UAMP, a variant of the AMP algorithm, is
used to achieve low complexity while with high robustness. To
facilitate the use of UAMP, we carry out a unitary transforma-
tion to (9) based on the singular value decomposition (SVD)
S=UAV,ie.,

R=®H +W, (18)
where R = U"Y € C3*M & = U"S € C3L*6N, and
W = UYW e C3*M till represents zero-mean white

Gaussian noise with the same variance because U” is a unitary
matrix.

The conditional joint probability density function of the
unknown variables given the observation matrix R can be
factorized as

p(H, v, {z, v, 2L, n # 1}, 2, yi, 2} | R)
x p(R|H,7) Hn#m (Rl yh, 25)p(2h|27)
X p(Ynly?)p(zn20)p(@))p(y}p(2])P(7)
= fR(Rv H’ 7) Hn;ﬁl,m fhm,n (h'mnv xiu y:m va)fwﬁl (gjiw Itl)
X fyr (W y1) fot (20 20) Fat (@) e (01) Fot (20) fy (), (19)

where ~ is the precision of the noise and it is treated as

a random variable with an improper prior p(y) o« 1/, the
function fr(R,H,y) = CN(R;®H,y 'I), the function
Frpr (R, 2t 3yt 21) can be further decomposed into

Jhomn (hmmxfwyfm zfz) = H f}?mn (hnmmxfw yfw Zfz)a
K

with R, = [R50, B2 )T € COYand ff (2, b, 2h) =
S(hf,, — o exp(ikormn)) (the arguments z!,yt, 2t of the
function ¢, are omitted for notation simplicity), the function
For (ah a) = 8 (ah, — (2} + (¢!, — 1)AL)) according to (T8)
Sz, (z) represents the prior of z}, which is selected to be a non-
informative one, e.g., a Gaussian distribution with an infinite
variance. Other functions fy: (y5,,y1), far (21, 21), fye (y7) and
f21(21) have similar definitions as f,: and f;,, as shown in
Table I. Our aim is to compute the (approximate) marginals of
the coordinates z¢,y!, 2! and the channel components, based
on which their estimates can be obtained.

B. Factor Graph Representation

To facilitate the factor graph representation of the factoriza-
tion in (19), we list the involved notations in Table [l showing
the correspondence between the factor labels and the underlying
distributions they represent, and the specific functional form
assumed by each factor. In_this section, we investigate how to

Fig. 5: Factor graph representation of

efficiently solve the formulated channel estimation problem with
message passing-based Bayesian inference.

The factor graph representation for the factorization in (19)) is
visualized in Fig.[5] where squares and circles represent function
nodes and variable nodes, respectively. It is noted that the
message passing algorithm is performed in an iterative manner,
where each iteration involves a forward message passing process
and backward message passing process in the graph shown in
Fig. |5l We use ma_,p(p) to denote a message passed from
node A to node B, which is a function of . For Gaussian
messages, the arrows above its mean and variance indicate
the message passing direction. In addition, we use b(u) to
denote the belief of a variable p. Note that, if a forward
computation requires backward messages, the relevant messages
in the previous iteration is used by default. Next we elaborate on
the forward and backward message computations. To facilitate
derivations, a scalar representation of the part of the graph is
shown in Fig. [f] to show the detailed relationship between the
hybrid function nodes and variable nodes.

C. Forward Message Passing

From the factorization @]) the likelihood function
p(R|H,~) is a linear mixed model and can be handled using
UAMP [25]-[27]]. With UAMP, we can compute the mean
and variances about the entries in matrix H in the following.
Following UAMP, we first compute matrices V p and P as

Vp = |®*Vy,
P = ®H-Vp-Sy,

where H is the mean matrix of H and V i contains the
variances of the corresponding elements in H, which will be

TABLE I: Local functions and distributions in (19)

Factor Distribution Function
fr p(R[H, ) CN(R;®H,y ')
f;:mn p(hmn ‘xiw y'fw Z’fz) Hn O(hin — Spn exp(ikormn))
m bl 5 (s, — (o + (e —1)AL))
" p(ynlyi) 8 (yh, — (yi + (1, = D)AY))
e plenle) (<) - <4)
fz{ ,fy{ ’fzi p(x}),p(yl),p(zt) non-informative
fr p(7) L/
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Fig. 6: Scalar factor graph representation related to the hybrid
local function nodes.

updated in (30) based on the posterior distribution b(H ), and
Sy will be updated (64). The precision of the noise vy can be
estimated as

3ML
|R—Z|?P+Vz’

5 = (20)

where the auxiliary matrices V z and Z can be computed as

Vz=Vp./(hVp +1), (21)
Then, we update intermediate matrices V' g, and Sy as
VSH = 1/(VP +’A}/_1)a
Sy=Vs, (R-P), (23)
and obtain matrices Vg, and Q as
Vo, =1./(18"%Vs,), (24)
Qu=H +Vg,  (®75y). (25)

Matrices Qy and Vg, can be respectively represented as

Qu,,
QH = 9
Qu,.

Vs

Vi = (26)

Vo

where Qp € CNXM and Vr € RNXM o € {2z, ..., 22}
with their (n,m)-th element denoted as g;,,, and v, , respec-
tively. Here g;,,,, and vg , VK, represent the mean and variance
of message MRS, = fus (h ), ie.,

Mhy = fas, (M) = CN (B35 @ qu;m)- (27)

From the factor graph, we can see that the message updates
for zf,yt and 2! are similar. So in the following, we take
x! as an example for the derivation of the message update
rules. It can be seen from (I3) that the local function node
J7; still involves nonlinear operations, leading to intractable

messages. To overcome the problem, we propose using Taylor
Authorized licensed use limited to: University Co

ege London."Downloaded on April 11,2025 at 10:04:55 UTC fronTIEEE Xploren.’ ’Re@t’rictldhs’apply.

expansion to dynamically linearize the node f;' . To this end,
we approximate hr . as

o e 20

A~ A~ A~ / A~ A~ A~ A
R N (B 00, 20) + Bt (20, G 20) (2, — &)

> ~ ’
K K,T
hm,n v

VIR ~ ~ ~ AN ~ ~ ~
B (@ G 20) 0k — ) + B (0, 00, 20) (21 — 20)
— —
R '

~ ~ ! ~ ’ ~ ’
_ LK K,x' ot Ky ~t PR,z 3t

TR,z
hiin

Emn

+ ,It iLI{,ZL’/ + y;ﬁfﬁ%/ + Zt }Aln,z'

n-'mn n-'mn

¢k t 7K,z t 7R,y t 1K,z

(28)

where h;j;fl/ represents the partial derivative of A7, with respect

to 2%, and similarly, h%% and h% are the partial derivatives
with respect to y! and z!, respectively. The partial derivative

’ .
of hi¥ can be obtained as

hn,m’/ _ ah;v@n _ a(b;j%n
mm oxl, oxl,
The derivatives of ¢f,, can be get by
9n

¢
oxt,

v -1 OTmn .
+ or ik Bt )exp(zkormn). (29)

n

= ((w27'€1 + w27f€2) : w%)T

xgo(Tpwi + ypwi + z,wi + by),
where the values of indices k1 and k5 depend on the polarization
parameter x € {zx,...,zz}. For example, if k = zx, we have
k1 = 1 and ko = 7. The derivative of g,(+) is ¢/,(-) = 1—g2(-).
According to (28), we can rewrite the function f,x —as

fh

mn

= 6 (Wi = (G + b Bz + YL B2 + 2L ) B0)

¢
Assume that the backward messages my: fr (yt) and
m.t fr  (2,) are available, which turn out to be Gaussian
(please refer to a similar message e . fn («f) in @) that

is derived later) and can be expressed as
€1y
(32)

Myt —fre (yfl) =CN (yZ§?;n’Dy%n) ’
mag g () = CN (203 Ve, ) -

Then the message from fp,= to x! can be computed as

M fu,, vt (Tn) = / Trgmys— gy Wn)mes gy (20)

K t t K
x mhfymﬁfhrf,m (hmn)dyndzndhmn
t. = -
=CN (2l T, 75 ), (33)
where
ck Try <Kk Tkz
mn il'iz/ ’
mn
— Ty’ 12 — a 792
Sk o VQ:;m + I/y:;m |hfr{r%!n| + VZ;‘;m |han| 35
V-'Kmn - 7 ’ : ( )
|hmc |2
mn

Then, the forward message from z!, to Jx: can be expressed
as

mw‘n%fm;(xﬁl) - Hmf}LfnnHIZ(IﬁL)
m,Kk

= CN(ah, @, Tp)

(36)
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where ﬁx =

ZDY iz
zt, m,K mn

xmn.
be computed as
mfl,% —at (l"i) /f:ct Ml —f.0 (z ;)dx;
= CN (xl,azn,umn), 37

= Uyt . Then, the belief of x}

V(S x1/7,,) and &, =
So the message my , _mg(l"ﬁ) can

where 7, = #%, — w?® and 7,

can be expressed as

= V:c*i Zn :f"n/ljzn

(38)

b(xii) :N(‘/L‘iwfjivyz’i)v

J H
where v, = 1/(Zn 1/1/%) and 7}

D. Backward Message Passing

With belief propagation, the backward message m: s , (x})
can be computed as !

b(x1)
where T/zn = 1/(1/vpe — 1/U,) and T, = Vg, (27 /0
Zp /Uy, ). Then the backward Message 1y, —at, (xf) can be
updated by

Mag g, (T1) = =N, 7s,),  (39)

/fxt m$—>fuzn (xzz)dxfn

= N(z!, xfl,‘f/m%),

My, sat, (z7,) =
(40)

p - - - .
where z, =T, + wy, and Vy: = Uy, . So the belief of xt can
be computed as

my,, —at, (€7)Mat 5, (27)

n)dzy,

b(zt) =
(a) Jmig,, —a (@h)ma g, (2,

n

= N (@n; &, var), (4D
with mean Z, and variance v, given as
Vgt = 1/(1/7/91’; + 1/17912)7 (42)
&l = ver (T, [Tgr + L, [Tyt ). (43)
Based on b(z!)), we have
b(zt)
ty\ _ n
Myt RS Y (xn) - mfh ~>xt (.Z‘%)
= N (@0 T V3,)5 (44)
where mean 7, and variance v,  are given by
Vi = V(e =1/75 ), (45)
iﬁzn = Dg,nﬂ ( n/Vﬂ?’ - ‘rmn/ xmn)' (46)
Then, we can update the message from f;  to hy,, by
Mt W) = [ Fi s o, 22
X Myt — fure (y’fl)mz%‘)fhfnn (Zfz)dxibdyfzdzfz
= N (hinn; mnﬁﬁmn), (47)
where
Vi = En mnh:‘fn *,’th:z%n Zpnlln,  (48)
gr <K nzl‘Q | + 5 |hmz 2 49

=V,
™ authofized licéhded use I|n4ﬁb!ﬂ

tomU7r71|verS|ty é8ﬂ@ge ["¥hdon. Downloaded on April 11,2025 at 10:04:

Then we can obtain the belief of channel component A, as

b(hn) My —hs,, (Pn) Mg, e (R
= CN(h;n;AZm,vh%n) (50)
where
Ve = 1/(1/v 4+ 1/vgs )
Wi = Vng, P/ 75+ Coon Ve, (5D

We stack vy~ and hfnn, Vm, n, s as matrices V 5y and H. This
is the end of backward message passing.

The message passing algorithm is summarized in Algorithm
[I] which is called NNHMP (NN-assisted hybrid model based
message passing). The iteration can be terminated when it
reaches the preset maximum number of iterations or the dif-
ference between the estimates of two consecutive iterations is

less than a threshold. We can see that the NNHMP algorithm

Algorithm 1 NNHMP for Parametric Channel Estimation

Initialization: IEI = 06N><]\/[, VH = 16N><Ma SH = OSLXM»
k € {zx, 2y, 22,9y, Y2, 22 }.

Repeat

: Vp = |'I>|'2VH

P=®H-Vp-Sy

Vs, =1./(Vp+~y71)

Sy =Vs, (R—P)

Vo = 1/(82Vs,)

Qu=H Vg, (@ 5y)

get v by (20)

. Vn,m, k: Compute h% by hrz ¢r  with (28)
: Vn, m, k: Compute mes  at with (33)

: Vn: Compute my: 7, "with @)

: Vn: Compute my , _)9; with (37)

: Compute belief b(:r:1 ) with (38)

: Vn: Compute m_ o, with (@0)

: Vn: Compute my:_, ;- . Wlth (1Y)

: Vn: Compute belief b(xf) with @I)

: Vn,m, K get myge > w1th (@4)

: Compute me Fur and Mozt = frr
similar to Lines 10-17

18: Vn,m, r: Compute my, . s with @7)

19: Vn,m, k: get b(h’ CN(h’”" Ry Vs, )

’H’LTL) 7an;
20: Stack h”mn, Upe Y1, m, K into H and Vi

R A U o s

L e T e T
~N O AW = O

with the procedure

) by (30)

Until terminated

includes three parts: UAMP part (Lines 1-7), the part related
to the NN-assisted hybrid local function node (Line 9) and the
part producing location estimation (Lines 9-19). The UAMP
part is dominated by matrix multiplication with a complexity
of O(MNL). In the part related to the NN node, in total
M N channel elements are involved, and a multiplication of two
matrices with dimensions 3 x [N, and Ny, x 12 is performed, so
the complexity is O(M N N?), where N}, denotes the number of
hidden nodes. In the remaining part, the highest complexity lies
in the computation of message my,,. (z%),Vn, r in @7),
whose complexity is O(MN). "

V. CHANNEL ESTIMATION WITH HYBRID RECEIVER

In the previous section, we assume a fully digital receiver,

where each antenna 5patch is connected to an RF chain [[12f], [[13]].
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Fig. 7: Factor graph representation of (53).

In this section, we consider a more practical hybrid structure
(19]], [31], where the holographic surface is connected to P
(P < M) RF chains. This leads to a 3P x 3M matrix F' in the
signal model, i.e., the received signal can be expressed as
Y =FHS+W, (52)
o o vl T T 3PXL wih VY Y
where Y 2 [Y Y Y [' €C with Y., Y, and Y, €
CP*L and S, H and W are the same as those in @]) To
facilitate channel estimation, the model is rewritten as

Y = S| +W=S|: |+W
(FH,.)" G-
£ SG+ W, (53)
where Y £ [V, Y, Y,T € C3**F Defne G £

(54)

where H , has the same definition in (9). Comparing it with
model (I8), we can see that the difference lies in the likelihood
function p(R|H, \), which can be expressed as

p(R|G, H, )‘) = p(R|G, 7) Hn p(Gm‘Hﬁ)p(V)
= fR(Ra G?V) Hn fG,‘- (Gm Hli>p(7)

where p(R|G,v) = CN(R;®G,y 'I) and p(G.|H,) =
§(GY — FHT) with ® and R defined in (T9).

(55)

TABLE II: Local functions and distributions in (53]

Factor Distribution Function
fr(R,G,v) p(R|G,7) CN(R; ®G,y~'I)
f6,(Gr,Hy) p(Gr|Hy) §(GY — FHY)

Iy p(7) 1/y

Part of the graph representation in this case is shown in Fig[7]
and the remaining part of the graph representation is the same
as that in Fig[5] Hence, we focus on message passing in Fig[7]
in this section. It can be seen from the factorization (33) that
there are two successive linear mixing operations involved in
the signal model, which are fr(R,G,v) and fg, (G, H,).
To solve the problem, we propose using the cascade of two
UAMP algorithms.

A. UAMP for fr(R,G,~)

We can see from (59) that p(R|G, ~y) has essentially the same

expression as p(R|H ) in (I9). Similar to (62)-(66), we have
the following steps according to UAMP.
We first compute matrices V p, and P¢g by

Vp, =
Pg =

|q)|V2VG7

&G —Vp, - Sq,

where ® = AV and [Ug,Ag, V] = SVD(S).The esti-
mate of the noise precision is updated as

3PL
IR=Za|P+Vz,'

v = (56)
where

Vza
Zg =

1/(;}/“!‘ 1./VPG)7
Vze AR+ Pg./Vpg).

Then the two intermediate matrices can be computed by

1'/(VPG + ;Yil)a
Vs - (R— Pg).

Vse =
S¢ =
After that we can get Vg, and Qg as
Vae =1./(12"*Vs,),
Qc =G+ V. (2"Sq),

(57)
(58)

They can be represented using block matrices as

Qq,.
Q¢ = :

Q¢
where Vs € RV*P and Qg € CV*F with their (n,m)-th
element being gy, and 7y . They provide the mean and vari-
ance of message Mmgx s f,. (Gmn)s i€ Mgr p (Grn) =
CN(gpns Grn> gr, ). Then the belief of gy, is b(gy,,) =
CN(gfnn; gfrm’ ngim)’ where

V(P + 1/ Vpus )

= Vg, (Gmn/Vgs,,, + Prg,, [Vons )

VQém
Voo = )
VQéz

(59)

yz

Vgr
~K
gm,n

(60)

with pp~ ~and v,  being the (n,m)-th member of Py, and
V p, . and they are updated in (63) and (62). Next, we stack
G and vge ¥m,m, K into matrices G and V . Collectively,
we have matrices

VGN = 1/(1/VQ8 +1'/VPHN>
G = Vg, (Qq,-/Vqs + Pu,./Vp,,).
B. UAMP for fg (G.,H,)

As G: = FHZ, we can construct a pseudo-observation
model of Hz, ie.,

Qi, =FH.+Wg,, (61)

where W, € CV*F denotes a white Gaussian noise matrix,
and the variances of each element is given by the elements in
VTGK’. To use the UAMP algorithm, we transform (61)) into

T H AT T
thm; N - o Be, S URQL = HL + W
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where [Up,Ar, V] = SVD(F), Ri, = U%Q_ € CP*V
and @y = Ay Vy € CP*M_ Then, according to UAMP, two
auxiliary matrices V p, and Py, can be computed by

Vpy, = ®4*V
T
Py, =®yH, — VPHK

(62)
. ‘SffIN ) (63)

with which intermediate matrices Vg,
as

and Sy, are updated

‘/vSHK = 1/(Vg~ + VPHN)a

St = Vsu, - (RG, = Pu,). (64)

Then, we can compute matrices @ and VQHK, with
Ve, =1/(2%Vs,,), (65)
QL =H,+Va, (®4Sn,). (66)

The (n,m)-th elements of Vg, and Qp,_ denoted as gy,
and vy represent the mean and variance of extrinsic message
Mg, fus (Ay). Here message myx .. (h7,,) corre-
sponded to the message (27) in the full digital case So we can
use (28)-(0) to get the belief b(hy;,,,) = CN(h7,,,; . he s ).
Stacking A%, and Vps, ,Vm,n, K into matrices H,Vy com-
pletes the message passing. The message passing procedure is
summarized in Algorithm [2]

Algorithm 2 NNHMP Algorithm for Hybrid Receiver
Initialization: IEI’i = ONst VI‘AIH = 1N><Ms SHK = Opr,
Va = lenxp, G = Ognxp, Sg = O3pxp, ¥ = 1, K €
{za, zy, 22, yy,y2, 22}

Repeat
1: VPG |'I’| 2VG
2: Pg = ‘I’G VPG SG
3 Vg _1/(’7+1/VPG)
4 Zg=Vyzg,- (’?R-ﬁ-Pg./VpG)
5. Compute noise precision 4 by (56)
6: Vg, =1./(Vp, +j‘1)
7. Sg = VSG (R PG)
5 Voo = 1/(2"2Vs)
9: QG_G+VQG ({) Sc) ~
10: Obtain gy7,,, and vy ,¥m,n, k by (60), stack them into G
and Vg
1: Vi, RG;, = UY QG
12: VK, Vp, = \¢H| VT

13: Vl’*i,IDHK = ‘I’HHK — VPHK . SHN
14: VK, Vs, =1/(Vg +Vp,)

15: Y, Sw, = Vi, (RG — Ppy,)
16: Yk, VE?H = 1T/(|'I’ N Vi)
17: V5, Qy, =H, +Vq, -(®4Sn,)

18: Obtain IAJK, V u,., VK by lines 8 — 20 of algorithm |1 I
Until terminated

VI. SIMULATION RESULTS

In this section, we provide extensive numerical results to
demonstrate the performance of the proposed method. The
system settings are as follows. The carrier frequency is set
to f = 3GHz, i.e., the wavelength A = 0.1m. At the base
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station, we assume a surface with 10 x 10 antenna patches,
i.e., M = 100. At the user side, the surface consists of 5 x 5
patches, i.e., N = 25. The patch sizes of the base station and
the user are set to A} = A7 = 0.5\ and AL = Al = 0.1\
respectlvely Hence, the antenna aperture of the base statlon is

= 0.5m, leading to a Fraunhofer distance 2D?/\ = 5m. The
modulation scheme used is QPSK, and the pilot QPSK symbols
are randomly generated. We vary the number of received signal
vectors L from 100 to 500. As mentioned before, the number of
hidden nodes in the NN hidden layer N;, = 50. The coordinate
of the first patch of the base station is (z7,y7,27) = (0,0,0),
and the coordinate of the first patch of the user is randomly
generated with z},y} ~ U[=\, \], and 2} ~ U[20),40)\]. We
evaluate the performance of estimators in terms of the NMSE of
the channel and the location of the user (if an estimator provides
the estimate of the user location), i.e., NMSEy and NMSE,,
which are defined as

|H — H|?
NMSEy = E——¢r——
IH[?
: II[%yl, i] ||

where (2%, 4%, 2¢) and H represent the user coordinate and the
channel matrix, and (2%, 9%, 2¢) and H denote their estimates.

To the best of our knowledge, there are no existing works
on parametric HMIMO channel estimation in the literature. For
comparison, we include the performance of the LS channel
estimation based on @]) which is given as

H; 5= (8"7s)"'sty,

where the channel matrix is directly estimated, and the estimates
of the user locations cannot be provided. It is also interesting to
use the approximate channel model for channel estimation.
Noting that it is still complex, we can also develop an NN-
assisted hybrid model to replace (TI), then derive a message
passing algorithm to achieve parametric channel estimation. As
the channel model used is an approximate one, the related simu-
lation results are indicated by ”AppMod”. We will show that the
approximate model can lead to considerable performance loss
due to its significant mismatch with the actual channel model. In
addition, we also include two performance bounds. One bound is
obtained by assuming the coordinate of the user, i.e., (z}, !, 2t)
is known, so that the channel matrix can be constructed using
(hence the bound will not change with SNR or the pilot
length). Moreover, the CRLB of user location estimation is also
included, and the derivation is shown in Appendix.

The NMSE performance of the estimators versus SNR with
L =200 and 500 are shown in Fig. [8| where (a) and (b) show
NMSEg and NMSE,, respectively. It can be seen from Fig. E]
(a) that, with the increase of the SNR, the performance of the
proposed method gradually approaches the bound with perfect
user location. This is because the estimation accuracy of the
user location is improved with the SNR as shown in Fig. [§| (b).
As expected, the proposed method significantly outperforms the
LS one due to the strategy of parametric estimation. We can
see from Fig. [§] (b) that the performance of proposed method
delivers performance close to the CRLB at low SNRs, while
deviates from the CRLB at high SNRs due to the small model
mismatch. In both Figs. l 8] (a) and (b), we can also see that the

roposed method delivers considerably better Perforrrllance than
ons apply.
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Fig. 10: NMSE performance of the estimators versus M.

AppMod, as the true channels can be well characterized by the
proposed hybrid channel model. Due to the considerable model
mismatch, AppMod exhibits a high error floor. For the proposed
method, we observe a much lower error floor. This is because
the NN with limited number of hidden nodes cannot perfectly
model the channel.
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Fig. 11: NMSE of the estimators with hybrid receiver versus
SNR.

Then we examine the performance of the methods versus the
number of received signal vectors (i.e., the length of pilot signal)
L in Fig.[9] where the SNR is set to 4dB and 8dB. As expected,
with the increase of L, the performance of the LS and the
proposed estimator improve. However, AppMod has a high error
floor due to the significant model mismatch. We can see that
the proposed estimator delivers significantly better performance
and it approaches the performance bound when L is relatively
large in Fig. Pfa). In Fig. O[b), we can observe significant
gaps between the performance of the proposed method and the
CRLB. This is again because the small model mismatch of the
proposed method dominates the error performance when the
NMSE is very small (e.g., less than -70dB), resulting in an
error floor.

In Fig. [I0] we examine the estimation performance NMSEy
and NMSE,, versus the number of BS antenna patches M at
various SNRs. With the increase of M, the NMSE performance
of the parametric estimators improves until performance floors
appear. Compared to AppMod, the proposed estimator has a
much lower floor thanks to the high modeling capability of the
hybrid channel model. We can also see that the performance of
LS channel estimator does not improve. This is because the LS
estimator is not a parametric one, and the number of channel
coefficients to be estimated also increases with M. Again the
gaps between the proposed method and CRLB is due to the
small modelling error, which dominates the NMSE performance.

Next, we examine the performance of various estimators in
the case of a hybrid receiver. The NMSE performance of the
estimators versus SNR and the number of RF chains P is shown
in Fig[IT] and [T2] From the results, it can be seen that with the
increase of the number of RF chains and SNR, the performance
of the estimators improves as expected. We again observe that
AppMod has a high performance floor in all the cases due to
the significant model mismatch and the LS estimator does not
perform well as the dimension of the received signal vectors
is significantly reduced. The proposed estimator achieves the
best performance and performs significantly better than other
estimators.
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VII. CONCLUSIONS

In this paper, we have investigated the issue of channel
estimation for HMIMO, where the channel is characterized by
the dyadic Green’s function. Considering that the channel matrix
is parameterized with a few parameters, we propose a paramet-
ric channel estimation method to achieve superior estimation
performance. To tackle the challenging complex nonlinear re-
lationship between the parameters and channel coefficients, we
develop a hybrid channel model with the aid of an NN. With
the hybrid channel model, the estimation problem is formulated
in a probabilistic form. Leveraging a factor graph representation
and UAMP, an efficient message passing algorithm is developed.
Extensive simulation results show the superior performance of
the proposed method. Future work includes the extension of this
work to the scenario with non-line-of-sight propagation, where
a more challenging parameter estimation needs to be solved due
to the presence of scatters.

APPENDIX A
CRAMER-RAO LOWER BOUND USING THE HYBRID
CHANNEL MODEL

It is worth mentioning that, regarding the user position
estimation, the hybrid channel model provides a convenient way
to obtain the CRLB thanks to its simpler expression.

According to (@), the received signal Y = (y,,, ...
C3LxM is given as

7yM) €

Y =SH + W,

where W € C3XM is the AWGN with precision v. We
assume that the precision is known in the derivation of the
CRLB, while it is estimated in the proposed method. Define
vector p = [z, yt, 2|7 € R3¥!, which includes the unknown
coordinate. The logarithm of the likelihood function can be

expressed as
Inp(Ylat,yf,20) = = |Y = SH|*y+C
M

== Y — Shul*y+C

m=1
where C is a constant, vectors h,,, = [hj,m7 ey hInN]T, Ry =
[hi,”,fn,h%fn,hfjmh%’n,hﬁfn,hyz ]T € C®%L. Then, we define

where f, 2

= — iy = Shul
;tﬁ'bnﬂed Ilcens)ed use Ilmlte(ﬁo( L)nlversity|El{)ﬁége Londgﬁ.| or\XmIoaded on April 11,2025 at
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The Fisher information matrix (FIM) F(p) € R3*3 can be
obtained as

fp)  ’f(p) 9f(p)

dxtoxt  O2ldy  Oxlozl

— _E |24 22f(p 2%f(p)
’,F<p) =-E 83/8:65 izyay 82}/64
o°fp)  9°f(p) 9 f(p)

0zt ozt 0210y  9z10z1

In the following, we only take element f (g P) as example, and

derivations for other elements will be the same We have

> f(p) _ & fn(p)
O 0y} 0z’ 0yt
where
0 fm Phy | OPhE O*hll
ft (pt) :'V(yanS T ot S Y~ ™ SHShm
ozl oy} oxt oyt O0xioy ozt oyt
L) S ) ?hum
m gH nsts Tt lists )
ozt oyt oyl ox} 0z} 0y}
The partial derivation ag;’;l’" = (8;2,? y s agz"tj” ) and
%h,, _ [ 9*hIr *h¥z,
oo = (f’miayi : 7amf8y ) From (13) we have h”,
o = O (Tmn, Ymns Zmn)
= (pl{(xi + Afrma yl + Agrm’ t)
where AZ ~and AY,  are defined in (T6), representing the offset

of (m,n)-th patch pair in the x,y directions, respectively. So
the first and second partial derivatives are obtained as
t
oz}

_(@¢
= (2
ons,,
dxidy;
o [der,
ot (o0

} (89:5811{ it (G

OTymmn OT,
T mn mn ik ).
ikogr el oyl )) exp(ikoTmn)

ohln

+Zk0¢mn a t )exp(lkOTmn)

Orm,
eXp(lkOrmn)—’_ZkO(bmn a t eXp(Zkormn))

OTmn

AS ¢”r€nn = (wQa"il + w27fv1 )Tga(a:mnwgf + ymnwli’ + Z’mnwf +
b1), the first and second order partial derivatives of ¢  are
given as

0% ,
(;bxt = ((w2>m + w2,nl) 'w1)T g;(cmn)y
1
O Gl ,
g = ((waa+wan)- (wi-wi) gl(emn).
1 1

where ¢,,p, = Tmnwi + ymnwll/ + Zmn w5 + b1, and indices k;
and ko depend on k. The first and second derivatives of g,(+)
are

9a () =29a(-) (g2() —1).

The CRLB off) is Sgslven as CRLB,, = Trace(F ' (p)).
0:04:55 UTC from IEEE X;gfore Restrictions apply.

gg() =1 _gg()7
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