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Impact Statement

This thesis presents CLADE (Cycle Loss Augmented Degradation Enhancement),

a completely unsupervised, deep learning approach for super-resolution reconstruc-

tion of anisotropic 3D medical images. By incorporating a cycle-consistent gra-

dient mapping loss and weight demodulation process, CLADE enables resolution

enhancement of MRI and CT images without requiring paired training data. This

work contributes to ongoing efforts in medical imaging research with potential ap-

plications in clinical diagnostics and public health.

CLADE addresses certain limitations in existing super-resolution techniques

for medical imaging. Specifically, traditional methods often rely on paired datasets

that are difficult to obtain in clinical settings, or perhaps even physically impossible

to acquire in settings such as abdominal or motile anatomical studies. Furthermore,

existing approaches applied to natural images can produce high-resolution images,

but at the expense of artifacts and inconsistencies with the risk of hallucination.

This unsupervised framework that learns resolution mapping from disjoint patches

offers an alternative approach to machine learning-based medical image enhance-

ment. This methodology may be applicable to multimodal imaging studies and

different imaging modalities, with opportunities to improve the generalizability of

the model through more diverse datasets. The methodological aspects of this work

may also contribute to applications in other areas of Deep Learning. The unsuper-

vised learning approach could be adapted for other domains that require resolution

enhancement, such as satellite imaging, microscopy, and industrial applications.

With respect to clinical applicability, CLADE shows potential for clinical ap-

plications in radiology and diagnostic imaging. By improving the resolution of
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MRI and CT scans, it has the potential to enhance image-based diagnostics, in turn

leading to better detection of pathologies such as tumors, lesions, or vascular abnor-

malities. This could be particularly useful in resource-limited healthcare settings,

such as the NHS, where rapid high-resolution imaging equipment and protocols are

less accessible. As a potential pre-processing tool in radiology workflows, CLADE

could help improve the quality of lower-resolution scans, potentially reducing the

need for repeated imaging and decreasing patient exposure to radiation in CT pro-

cedures. The resolution enhancement capabilities might also benefit image-guided

interventions and surgical planning. In clinical trials and biomedical research, im-

proved image quality could contribute to more reliable datasets.

The integration of CLADE into healthcare systems could offer economic ben-

efits through the more efficient use of imaging infrastructure. Hospitals can im-

prove their existing imaging capabilities without necessarily investing in new hard-

ware and the contribution to further patient discomfort or burden. Additionally,

if CLADE contributes to earlier disease detection, there could be long-term pub-

lic health benefits through reduced costs associated with late-stage treatment. In

the context of remote diagnostics, which are becoming increasingly more preva-

lent, CLADE could help improve the quality of images from portable or low-power

devices, potentially supporting more accurate remote consultations in underserved

regions. This research therefore contributes to the field of medical image recon-

struction with a focus on developing a proof-of-concept methodology that can be

extended to develop practical tools that have potential to improve healthcare imag-

ing capabilities across different imaging centres and modalities.



Abstract

Three-dimensional (3D) imaging plays a crucial role in various medical applica-

tions, particularly in fields such as radiology and neurology, where detailed anatom-

ical insights are crucial. However, in many clinical settings, anisotropic 3D vol-

umes—characterized by uneven spatial resolution across different axes—are com-

monly acquired to balance scan quality and acquisition time. These anisotropic

datasets often result from thick slices with low spatial resolution, which, while re-

ducing scan time, can pose challenges for accurate analysis and interpretation. Deep

learning (DL) offers a solution to recover high-resolution features through super-

resolution reconstruction (SRR). Unfortunately, paired training data is unavailable

in many 3D medical applications and therefore a novel unpaired approach is pro-

posed; CLADE (Cycle Loss Augmented Degradation Enhancement). CLADE uses

a modified CycleGAN-based architecture with a cycle-consistent gradient mapping

loss and weight demodulation process. This approach is trained in an unsuper-

vised fashion to learn SRR of the low-resolution dimension, from disjoint patches

of the high-resolution plane within the anisotropic 3D volume data itself via resolu-

tion domain transfer. The feasibility of CLADE in abdominal Magnetic Resonance

Imaging (MRI) and abdominal Computed Tomography (CT) imaging is demon-

strated, with improvements in CLADE image quality over low-resolution volumes,

conventional Cycle-GAN and state-of-the-art self-supervised SRR; SMORE (Syn-

thetic Multi-Orientation Resolution Enhancement).
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Chapter 1

Introduction

1.1 3D Medical Imaging
Three-dimensional (3D) Computed Tomography (CT) and Magnetic Resonance

Imaging (MRI) have become integral components of medical diagnosis, facilitat-

ing a comprehensive evaluation of anatomy. These imaging modalities enable the

visualisation of internal structures in great detail, providing critical insights that aid

in the diagnosis, treatment planning, and monitoring of various medical conditions.

1.1.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) operates by utilising radio-frequency (RF)

pulses and magnetic gradients to generate detailed images of internal body struc-

tures. RF pulses are applied to the body within a strong magnetic field, causing the

alignment of hydrogen atoms in tissues to temporarily shift away from their align-

ment with the main magnetic field. As these atoms return to their original alignment,

they emit signals that are detected by the MRI detector coils. The process of acquir-

ing MRI images is inherently slow because each data point in so-called k-space is

collected sequentially, often resulting in long acquisition times. Numerous advance-

ments have emerged to expedite the imaging processes, including trajectory opti-

misation, under-sampling, and partial Fourier acquisitions [4]. These accelerated

acquisition techniques necessitate sophisticated image reconstruction algorithms to

faithfully recreate the acquired images. Despite the use of these methods for ac-

celerating acquisition, simple 3D anisotropic methods remain advantageous due to
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their efficiency in capturing relevant anatomical information, while reducing acqui-

sition time and maintaining image quality in two of the spatial dimensions. These

anisotropic methods are particularly valuable due to their applicability to simple,

widely accessible “out-of-the-box” sequences, with fast and simple reconstructions.

Figure 1.1: A 3D representation of an image of a skull, outlining the differences between
pixels, voxels and slice thickness. Image used under fair use from [5].

K-space is a critical concept in MRI, referring to the data acquisition domain

where spatial frequencies are collected. The centre of k-space contains information

about the overall contrast and structure of the image, while the edges of k-space

contain data related to the finer details and resolution. In 3D MRI, voxels (3D

pixels) in k-space are sampled across the x, y, and z axes and a Fourier transform

is then applied (along the kx, ky, and kz axis) to convert the data into the 3D spatial

image domain, revealing the anatomical structures of the scanned object (see Figure

1.2).

The sequential nature of the acquisition of MRI data can be time-consuming,

particularly for high-resolution 3D imaging, leading to prolonged scan times and

potential distortions due to physiological or voluntary motion, such as breathing.
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Figure 1.2: A 2D slice reconstruction of the brain (b) as reconstructed using an Inverse
Fourier Transform from its corresponding k-space acquisition (a). Image used
under Creative Commons Licensing from [6].

1.1.2 Computed Tomography

Computed Tomography (CT) imaging is another popular diagnostic tool within

medical imaging, providing detailed cross-sectional images of the internal struc-

tures of the human body. The principle underlying CT imaging involves the at-

tenuation of X-rays as they pass through the body, as different tissues within the

body attenuate X-rays to varying degrees, depending on their density and compo-

sition. Dense structures such as bones attenuate more X-rays, appearing as bright

areas on the resulting images, while less dense tissues like muscles and organs at-

tenuate fewer X-rays, appearing darker. During a CT scan, an X-ray source rotates

around the patient, emitting a narrow beam of X-rays. Detectors opposite the source

measure the intensity of the X-rays after they have traversed through the body. By

collecting a series of 2D image slices from multiple angles, these images are then

processed to reconstruct a 3D representation of the imaged anatomy (see Figure

1.3).

Despite the popularity of CT imaging due to its simplicity and relative speed,

it results in substantially higher radiation exposure than conventional X-ray proce-

dures. Repeated exposure to such high doses of ionising radiation has been linked

to an increased risk of cancer. Therefore, anisotropic 3D imaging has emerged as

a widely employed approach, offering expedited acquisition times and diminished
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Figure 1.3: An example of the CT acquisition strategy (image derived from [7] under fair
use).

radiation dosage in the context of CT imaging.

1.1.3 Anisotropic Medical Imaging

In isotropic imaging the spatial resolution is uniform in all directions, however

anisotropic imaging (Figure 1.4) allows for differential resolution along distinct spa-

tial dimensions. This variability in resolution can be influenced by factors such as

imaging system parameters and acquisition geometry.

In the context of 3D MRI, anisotropic imaging is normally achieved by main-

taining the spacing between the k-space lines but collecting fewer phase-encoding

steps in the kz-direction. This means that we do not collect as much high-

frequency/resolution information in the kz/z-direction, resulting in image voxels

which are lower resolution in one of the 3D image directions (z). The high-

resolution x-y plane is commonly referred to as in-plane, whereas the lower-

resolution the z plane is referred to as through-plane. Although collecting fewer

kz lines reduces the scan time, the resulting discrepancy in resolution can present

challenges in accurately representing anatomical structures, potentially compromis-
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Figure 1.4: An example of an image from a 3D anisotropic MRI acquisition. In this ex-
ample, two directions have high spatial resolution (≈ 1mm), while the third
direction (shown in both the Sagittal and Transverse view) has lower spatial
resolution (≈ 6mm).

ing diagnostic accuracy and subsequent image analysis procedures. 2D multi-slice

MRI can sometimes be used as an alternative to 3D MRI, whereby 2D multi-slice

MRI acquires individual slices separately, often with gaps. This leads to potential

misalignment and lower through-plane resolution. In contrast, 3D MRI captures an

entire volume at once, providing higher isotropic resolution and allowing for im-

proved signal-to-noise ratio across the entire volume compared to the separate 2D

slice acquisitions.

In comparison to MRI, CT achieves higher spatial resolution due to its use

of X-rays, which have short wavelengths and can capture fine structural details,

while MRI excels in tissue contrast by exploiting differences in proton density and

relaxation times. The primary reasons for the lack of isotropy in CT imaging can be

attributed to the characteristics of the X-ray beam and the reconstruction algorithms

employed. X-ray beams in CT scanners are typically collimated into a thin fan or

cone shape, resulting in higher resolution in the plane perpendicular to the beam’s

direction.

1.1.4 Clinical Needs & Requirements

For super-resolution reconstruction (SRR) to be clinically viable, it must satisfy

several key requirements that address the specific needs of radiological diagnosis.
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In MRI applications, a primary objective is to enhance through-plane resolution

to match in-plane resolution, typically achieving isotropic voxels of approximately

1mm³ or better. Similarly, for CT imaging, resolution enhancement must improve

soft tissue differentiation while maintaining anatomical accuracy. This level of de-

tail is critical for detecting subtle pathological features that might otherwise remain

hidden in standard-resolution images, including early-stage tumors, fine vascular

networks, and microstructural tissue abnormalities.

Clinical utility demands that the super-resolution method preserves essential

anatomical details without introducing artifacts that could lead to misdiagnosis.

Particularly important is the accurate representation of small but clinically signif-

icant structures, such as tumors, vessel wall characteristics, and nuanced textural

variations in tissue. The preservation of these details directly impacts diagnostic

confidence and accuracy.

Beyond image quality considerations, practical implementation requirements

are equally important. The SRR method must integrate seamlessly into existing

radiological workflows, maintaining compatibility with DICOM standards without

necessitating significant procedural modifications. Processing speed is another crit-

ical factor, with real-time or near-real-time performance necessary to avoid intro-

ducing delays in the diagnostic process. Furthermore, an ideal super-resolution

approach should demonstrate robust generalizability across diverse imaging modal-

ities and anatomical regions. This versatility ensures broader clinical applicability

without requiring extensive retraining for each new application context.

When these specifications are met, super-resolution technology can substan-

tially enhance medical imaging capabilities, potentially improving diagnostic pre-

cision, facilitating earlier disease detection, and optimizing treatment planning—all

without increasing scan duration, radiation exposure, or equipment costs.

1.2 Image Super-Resolution

There are many types of interpolation techniques which are frequently employed

to mitigate the resolution disparities caused by anisotropic imaging, however often
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they do not completely compensate for the loss of detail in the through-plane di-

rection. Thus, careful consideration and optimisation of acquisition parameters are

essential to minimise these concerns and ensure attainment of high-quality imaging

outcomes.

To address the issues that arise with interpolation-based techniques, Super-

resolution (SR) [8] can be employed. In the context of imaging, SR techniques per-

tain to the procedure of augmenting the resolution of an image beyond its original

resolution by utilising one (or more) observations of the same scene. SR methods

can be broadly described by two main approaches: Single Image Super-Resolution

(SISR) and Multiple Image Super-Resolution (MISR). As indicated by its name,

SISR enables the enhancement of the target image resolution, without necessitating

the acquisition of any additional data. In the context of this thesis, we will focus on

SISR approaches exclusively.

1.2.1 Problem Formulation and Notation

Given a set of low-resolution images Y ⊂ Rm×n, where each image y ∈ Y , the

goal of SISR is to estimate a high-resolution image x ∈ X , where X ⊂ RM×N ;

with M > m ∈ Z and N > n ∈ Z.

Let H : X → Y denote the downsampling operator that maps a high-resolution im-

age to a low-resolution image. The relationship between the low-resolution image

y and the high-resolution image x can be modelled as:

y = H(x) + ϵ (1.1)

where ϵ represents noise and other distortions in the imaging process. The goal

of SISR is to find an estimate x̂ of the high-resolution image x given the observed

low-resolution image y; this can be formulated as a typical optimisation problem:

x̂ = argmin
x
L(x,y) (1.2)

where L(x,y) is an arbitrary loss function that penalises the discrepancy be-
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tween the observed low-resolution image y and the reconstructed high-resolution

image x̂. The main challenge in solving the SISR problem, lies in the ill-posed na-

ture of the inverse problem, where multiple high-resolution images can lead to the

same low-resolution image.

Traditional super-resolution methods rely on interpolation techniques, such as

nearest neighbour, bilinear, bi-cubic, B-spline, or Lanczos resampling. However,

these interpolant-based approaches often result in “blocky” edges or blurring, due

to the extrapolation of missing high-frequency information form neighbouring pix-

els [9]. Alternatively, traditional reconstruction methods have sought to address the

ill-posed inverse problem directly, by incorporating prior knowledge or constraints

into the reconstruction to regularise the solution. These traditional techniques com-

monly fall into two categories: Constrained Least Squares (CLS) minimisation

methods, which rely on assumptions such as the smoothness of the image, and

Bayesian-based maximum a posteriori (MAP) stochastic approaches, which neces-

sitate knowledge of the posterior probability density function (PDF) of the original

image [8]. Traditional approaches are grounded in well-established mathematical

principles, ensuring consistent and interpretable results. However, they must be tai-

lored on a case-by-case basis, resulting in a lack of adaptability and generalisability.

Additionally, the mathematical assumptions may not hold for diverse datasets, po-

tentially leading to reduced image quality and robustness in reconstruction. Recent

advancements in Machine Learning (ML) have significantly enhanced and, in many

cases, replaced traditional Super-Resolution Reconstruction (SRR) methodologies

by overcoming these limitations. Nonetheless, these ML approaches have their own

limitations, including the need for large datasets, challenges with network inter-

pretability, and potential issues with robustness due to network hallucination [10].

1.3 Machine Learning Background

A neural network is a machine learning computational model, inspired by the bio-

logical neurons found in the human brain. This section offers a formal, mathemati-

cal exposition of the foundational components that constitute neural networks.
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1.3.1 Neurons, Layers, and Activation Functions

A neural network is organised into layers, denoted as l, with each layer consisting

of multiple neurons. Let a(l) represent the activations of layer l, and z(l) denote

the pre-activation outputs (which form the inputs to the activation function) of the

neurons in layer l. Each neuron in l has associated weights W(l) and biases b(l),

where the pre-activation outputs z(l) are computed as:

z(l) = W(l)a(l−1) + b(l) (1.3)

where a(l−1) is the activation vector from the previous layer.

Subsequently, the activations a(l) of layer l are obtained by applying an activa-

tion function f to the pre-activation outputs z(l):

a(l) = f(z(l)) (1.4)

Each neuron’s output z(l) is then passed through an activation function σ(l)(·)

to introduce non-linearity into the network:

a(l) = σ(l)(z(l)) (1.5)

where σ(l)(·) is typically a non-linear function such as ReLU [11], sigmoid, or

tanh. These activation functions allow the neural network to learn complex patterns

in the data by transforming the weighted sum of inputs into the neuron’s output.

In summary, the computation of layer l of a neural network can be expressed

as:

a(l) = σ(l)(W(l)a(l−1) + b(l)) (1.6)

1.3.2 Convolutional Neural Networks

The majority of ML-driven methodologies, particularly those pertaining to image-

related tasks, heavily rely on the utilisation of Deep Learning (DL) techniques;

specifically, Convolutional Neural Networks (CNNs) [12]. CNNs are a specialised
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class of deep neural networks, designed specifically for the processing of visuospa-

tial data, drawing inspiration from an abstracted variant of the human visual system.

Fundamentally, these networks aim to simulate the capability of the human brain to

identify shapes and objects through the systematic dissection of images into smaller

(potentially related) entities known as features.

1.3.3 Convolutional Kernels

Convolutional kernels play a crucial role in the extraction of features from the in-

put data in CNNs. These kernels are small matrices that are applied to the input

data through convolution operations; by element-wise multiplication of the kernel

values with the corresponding input values at each spatial location, followed by the

summation of the results.

Formally, in the case of a 2D image, let I denote the 2D input data matrix of

size N ×M , and C represent the convolutional kernel matrix of size K × L. The

resulting feature map F is computed as follows:

F (i, j) =
K∑

m=1

L∑
n=1

I(i−m, j − n) · C(m,n), (1.7)

where i and j iterate over the spatial dimensions of the feature map, m and n iterate

over the spatial dimensions of the convolutional kernel (see Figure 1.5).

These operations generate feature maps that effectively highlight specific pat-

terns or features present in the input data. In a CNN, multiple kernels are simultane-

ously applied to the input data, enabling the extraction of diverse features. The opti-

mised weights (and biases) for each kernel are learnt through the iterative process of

training (using backpropagation 1.3.5 and gradient descent 1.3.4), based on the dis-

crepancy between the predicted and actual outputs. As a result, CNNs are capable

of autonomously acquiring hierarchical representations of features from intricate

data, rendering them highly effective tools for tasks including image recognition,

object detection, and classification and SRR.
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Figure 1.5: A simple illustration of a 2D Convolutional Kernel showing the calculation of a
feature map from the element-wise product of the input tensor with the kernel.
Image used under fair use from [13].

1.3.4 Gradient Descent

Gradient descent is an optimisation algorithm used to minimise an arbitrary loss

function, L(θ), where θ represents the parameters of the model (weights and biases).

Intuitively, gradient descent works by iteratively adjusting the parameters in the

direction that reduces the loss the most.

Mathematically, the update rule for gradient descent is given by:

θ ← θ − η∇θL(θ), (1.8)

where η is the learning rate, a small positive number that controls the step size, and

∇θL(θ) is the gradient of the loss function with respect to the parameters of the

model. This gradient points in the direction of the steepest ascent, so subtracting it

moves the parameters in the direction of the steepest descent.

1.3.5 Backpropagation

Backpropagation is an algorithm used to efficiently compute the gradients of the

loss function with respect to the parameters of the model, which is essential for

gradient descent. Backpropagation utilises the chain rule of calculus to propagate
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the error backward through the network layers, where the error term for each layer

δ(l) , is calculated as:

δ(L) = ∇a(L)L⊙ σ′(z(L)), (1.9)

δ(l) = (W(l+1))T δ(l+1) ⊙ σ′(z(l)), (1.10)

where ⊙ denotes the element-wise multiplication, δ(L) is the error term for the out-

put layer, and σ′ is the derivative of the activation function.

Finally, the gradients of the loss function, L, with respect to the weights and

biases are given by:

∇W(l)L = δ(l)(a(l−1))T , (1.11)

∇b(l)L = δ(l). (1.12)

By combining these gradients with the gradient descent update rule, we can

iteratively adjust the network’s parameters to minimise the loss function, thereby

training the neural network.

1.3.6 Supervised vs. Unsupervised Learning

When training neural networks, two primary paradigms are typically considered:

supervised learning and unsupervised learning. Supervised Learning addresses the

task of learning a mapping function from input-output pairs provided in a labelled

dataset. Let D = {(xi, yi)}Ni=1 represent a labelled dataset, where xi ∈ Rd denotes

the input features and yi ∈ Y denotes the corresponding labels. The goal in su-

pervised learning is to infer a function f : Rd → Y that maps inputs to outputs.

This function is learned by minimising a loss function L(f(x), y) over the training

dataset D, where L quantifies the discrepancy between predicted outputs and true

labels.

In contrast, Unsupervised Learning operates on datasets lacking explicit output

labels, instead aiming to discover hidden patterns or structures inherent in the data.

Given an unlabelled dataset D = {xi}Ni=1, where xi ∈ Rd, the objective in unsu-

pervised learning is to learn meaningful representations, clusters, or distributions

from the data. Clustering (partitioning data into groups based on similarity mea-
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sures), dimensionality reduction (extracting a compact representation of the data

by capturing its essential characteristics in a lower-dimensional space), and density

estimation (modelling the underlying distribution of the data points) are common

tasks in unsupervised learning.

1.3.7 Generative Adversarial Networks (GANs)

While supervised and unsupervised learning form the foundational pillars of ma-

chine learning, recent advancements have introduced innovative techniques that

transcend traditional paradigms. One such paradigm-shifting methodology is Gen-

erative Adversarial Networks (GANs), proposed by Goodfellow et al. [14]. GANs

represent a framework for training generative models by pitting two neural net-

works against each other in a competitive setting. The core idea behind GANs

involves training two neural networks concurrently: a generator (G) and a discrim-

inator (D). The generator aims to produce synthetic data samples (ŷ) that closely

resemble the true data distribution (Y , with elements y ∈ Y ), while the discrimi-

nator endeavours to distinguish between genuine samples (y) and synthetic samples

(ŷ). The generator and discriminator models are trained in a zero-sum, two-player

minimax game with an adversarial loss function, Ladv (Equation 1.13):

min
G

max
D
Ladv(D,G) = Ey∼pdata(y)[logD(y)] + Ez∼pz(z)[log(1−D(G(z)))]

(1.13)

The networks iteratively improve their performance until an equilibrium, known as

the Nash equilibrium, is reached, where the generator generates realistic samples

indistinguishable from true data according to the discriminator.

1.3.8 CycleGAN

The CycleGAN [15] expands the GAN concept to enable image-to-image style

transfer between two disjoint image collections X and Y (with images defined as

x ∈ X and y ∈ Y ). The CycleGAN attempts to translate features from domain X

to domain Y (and vice-versa) using two generators to simultaneously learn the for-

ward and backward generator mapping functions, GX : X → Y and GY : Y → X ,
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respectively. Each generator is paired with a corresponding discriminator, DX and

DY , respectively, which are trained to distinguish whether an image from the oppo-

site domain is real or generated (see Figure 1.6(a)).

The adversarial loss is calculated for the forward and backward generator map-

pings, as defined in Equation 1.14 and Equation 1.15, respectively.

Ladv(DY , GX) = Ey∼pdata(y)[logDY (y)] + Ex∼pdata(x)[log(1−DY (GX(x)))]

(1.14)

Ladv(DX , GY ) = Ex∼pdata(x)[logDX(x)] + Ey∼pdata(y)[log(1−DX(GY (y)))]

(1.15)

Furthermore, to constrain the space of possible mapping functions, the Cy-

cleGAN imposes cycle-consistency, which means that the mappings must be ap-

proximately bijective and therefore mapping between the two domains should be

invertible. Cycle-consistency is achieved through forward and backward cycle-

consistency functions, which are defined as GX(GY (y)) ≈ y and GY (GX(x)) ≈ x,

respectively (see Figure 1.6(b) and Figure 1.6(c)), where the cycle-consistency loss

is defined in Equation 1.16.

Lcyc(GX , GY ) = Ex∼pdata(x) [∥GY (GX(x))− x∥1] +

Ey∼pdata(y) [∥GX(GY (y))− y∥1] ,
(1.16)

where ∥ · ∥1 denotes an L1 norm. Therefore, the overall loss function for a

conventional CycleGAN, LGAN , consists of the weighted sum of the adversarial

losses and the cycle-consistency loss, as defined in Equation 1.17.

LGAN(DX , DY , GX , GY ) = Ladv(DY , GX) +

Ladv(DX , GY ) +

λcycLcyc(GX , GY ),

(1.17)

where λcyc is the weighting for the cycle-consistency loss term.
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(a) Abstracted CycleGAN model, showing the bijective generator mappings and corresponding dis-
criminators.

(b) Forward cycle-consistency loss, showing the discrepancy between the original element x and the
“cycled” element x′ in the direction X → Y → X .

(c) Backward cycle-consistency loss, showing the discrepancy between the original element y and
the “cycled” element y′ in the direction Y → X → Y .

Figure 1.6: Constituents of the CycleGAN architecture
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1.4 Machine Learning for Super-Resolution
Supervised deep learning super-resolution methods leverage CNNs to learn to effec-

tively capture and exploit intricate image features, enabling them to generate high-

quality, realistic-looking images from large datasets of low-resolution and high-

resolution image pairs. Compared to traditional methods, these deep learning ap-

proaches have demonstrated superior SRR performance in terms of image quality,

preservation of details, and reduction of artifacts. However, often in the context

of medical imaging, high-quality datasets are either unavailable or impossible to

acquire (due to scan time, or physiological motion). As a result, fully supervised

training methods prove difficult, and so unsupervised super-resolution techniques

are often required to mitigate these limitations.

1.4.1 Supervised SRR Approaches

One of the simplest architectures to perform supervised super-resolution involves

the use of a 3D Convolutional Neural Network with paired training data sam-

ples. One such approach (SR-CNN3D) [16], was originally developed to en-

hance the resolution of 3D MRI brain images, where paired low-resolution images

were synthetically created through Gaussian blurring and downsampling of high-

resolution images (by an isotropic scale factor of 2). Subsequently, 3D patches,

sized 25 × 25 × 25, were utilised to train the SR-CNN3D network for the low-

resolution to high-resolution mapping.

Building on the ideas behind SR-CNN3D, and drawing inspiration from

DenseNet [17], a widely recognised architecture for object recognition tasks, 3D

Densely Connected Convolutional Neural Networks (3D-DCSRN) [18] were in-

troduced. This architecture stands out due to its accelerated training process,

lightweight nature facilitated by weight sharing, and reduced over-fitting owing to

parameter reduction and feature reuse. Here, a novel architecture was introduced

specifically tailored for further improving the resolution of 3D structural brain MRI

images, demonstrating 4x resolution enhancement, via the use of patch-based train-

ing scheme which uses the densely-connected blocks as described in the original

DenseNet architecture.
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Figure 1.7: 3D-DCSRN Architecture (image derived under fair use from [18]).

In contrast to these methods, ResCNN [19] specifically focuses on super-

resolving anisotropic 3D MRI images. In this work, the authors introduce a tech-

nique based around residual learning, incorporating both long and short skip con-

nections into the network. This dual strategy not only mitigates the vanishing gra-

dient issue, but also effectively restores high-frequency details inherent in the target

MRI images.

Figure 1.8: ResCNN Architecture (image derived under Creative Commons Licensing
from [19]).

Furthermore, the authors optimise memory usage and computational complex-

ity by exploiting the cross-plane self-similarity within the MRI images. Although

ResCNN requires synthetic generation of low-resolution images to create paired
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training data, the authors utilise 2D patches to reconstruct the 3D volumes, exploit-

ing the inherent self-similarity within the images, which represents a departure from

traditional 3D patches.

Other studies have tried to eliminate the need for training multiple networks

tailored to specific resolution scales. Arbitrary Scale Super-Resolution (ArSRR)

[20] adopts a continuous implicit neural function to model both low-resolution and

high-resolution images, accommodating varying sampling rates. Leveraging the

seamless continuity of this learned implicit function, the network theoretically al-

lows for arbitrary super-resolution scaling from any low-resolution input image.

Figure 1.9: ArSRR Architecture (image derived under Creative Commons Licensing from
[20]).

Despite this advancement, the ArSRR network still relies on synthetically gen-

erated paired 3D low-resolution and high-resolution image patches, created using

cubic interpolation with a scale factor, k, randomly sampled from a uniform distri-

bution U(2, 4).

Building on the foundation of traditional super-resolution techniques, gener-

ative adversarial networks (GANs) emerged as a powerful alternative, offering in-

novative approaches to enhance image resolution. Among the earliest GAN-based

approaches for super-resolution, SRGAN [21] introduced a novel perceptual loss

function, alongside a state-of-the-art super-resolution architecture.

The authors used a ResNet [22] architecture (specifically an SRResNet) ,where

the content-loss is acquired via sampling of feature maps from a pre-trained VGG

network [23] and by calculation of the Euclidean distance between the feature rep-
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Figure 1.10: SRGAN Generator and Discriminator architecture (image derived under fair
use from [21]).

resentations of their reconstructed and reference images.

Another GAN-based method, G-GANISR [24], utilises a generator and dis-

criminator trained adversarially to achieve superior super-resolution results. Its

architecture combines dense and skip connections, enhancing its ability to learn

complex image features.

Figure 1.11: G-GAINSR Architecture (image derived funder Creative Commons Licensing
from [24]).
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The effectiveness of G-GANISR is showcased through its ability to achieve

up to 8x super-resolution on synthetically degraded natural images (created through

Gaussian filtering, followed by downsampling). Unlike conventional methods that

rely on patch-based approaches, G-GANISR operates directly on full-size images,

offering a streamlined approach that doesn’t necessitate further pre/post-processing.

An alternative GAN-based method is Single Image Super-Resolution with Fea-

ture Discrimination (SRFeat) [25] which aims to increase the fidelity of the result-

ing output images, by addressing a notable drawback of GANs: their tendency to

neglect high-frequency noise within input images. SRFeat integrates an extra dis-

criminator model, which operates directly on the feature maps of the images (rather

than image pixels), guiding the generator to emphasise structural high-frequency

image components while suppressing unwanted noisy artifacts.

Figure 1.12: SRFeat Generator Architecture (image derived under fair use from [25]).

Figure 1.13: SRFeat Discriminator Architecture (image derived under fair use from [25]).

In addition, SRFeat introduced a tailored feature loss function that operates in

tandem with the feature discriminator, facilitating further guidance for the generator

during training. Moreover, the generator architecture is enhanced through the incor-

poration of both long and short skip connections, aimed at augmenting the model’s

proficiency in capturing and reconstructing high-frequency image features.
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1.4.2 Unsupervised Approaches

Inspired by the CycleGAN [15], Cycle-in-Cycle GANs (CinCGAN) [26] were pro-

posed for SISR on unpaired datasets of natural images. It should be noted that

although this is an unsupervised approach, it relies on a pre-trained EDSR [27]

network for super-resolution.

Figure 1.14: CinCGAN architecture, where G1, G2 and G3 are generators and SR is a pre-
trained EDSR network. D1 and D2 are discriminators. The G1, G2 and D1

compose the first LR → clean LR CycleGAN model, mapping the degraded
LR images to clean LR images. The G1, SR, G3 and D2 compose the second
LR → HR CycleGAN model, mapping the LR images to HR images (image
and caption derived under fair use from [26]).

The CinCGAN acts to super-resolve images between two disjoint sets of LR

and HR images respectively. It achieves this task by taking the noisy input image

and maps it to a noise-free low-resolution latent space. Then, the intermediate image

is up-sampled using a pre-trained EDSR network, followed by fine-tuning during

training to achieve a high-resolution output image (see Figure 1.14). It is important

to note here that the authors make a distinction between “clean” LR images and

standard LR images. Specifically, in the first stage of the architecture, a mapping is

learned from a real-world LR image x ∈ X to a “clean” LR image y ∈ Y . These

“clean” images are derived via bi-cubic downsampling of HR images z ∈ Z, where

it can be assumed that each z is noise-free. The use of a Cycle Consistency Loss

(as described in Equation 1.16), permits the unsupervised fine-tuning step within

the network. Furthermore, the authors include a total variation (TV) [28] loss to

impose spatial smoothness during the training process.
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Unsupervised arbitrary scale super-resolution reconstruction (UASSR) [29],

is a truly unsupervised CycleGAN method based on disentangled representation

learning. It was developed for arbitrary SRR of anisotropic 3D medical images.

UASSR can be deconstructed into three main components which are jointly opti-

mised to perform super-resolution on the disjoint sets of images (the architectural

configuration is illustrated in Figure 1.15):

1. Resolution Translation: acts by encoding an input image into a domain-

invariant content space C and a domain-specific resolution space A.

2. Disentangled Representation Learning: by training for self-reconstruction

and cycle-consistent reconstruction (as described in Section 1.3.8). This uses

both the content and resolution content of each image to translate between the

two (as well as between itself for self-reconstruction).

3. Structure Invariant Learning: by preserving image content and spatial

structure within images during the cross-domain translation process, via the

use of a perceptual loss (which uses a pre-trained VGG16 network [23] as a

feature extractor).

Another popular self-supervised super-resolution technique is Synthetic

Multi-Orientation Resolution Enhancement (SMORE) [31]. SMORE utilises true

anisotropic image volumes to generate synthetic (LR, HR) image pairs, using two

EDSR [27] networks to remove aliasing and perform super-resolution, respectively.

Building on this foundation, a newer variant of SMORE [32] has been proposed,

which eliminates the need for two EDSR networks by accurately simulating LR

images from true anisotropic data. This is achieved using the ESPRESO (Estimate

the Slice Profile for Resolution Enhancement from a Single Image Only) [33] algo-

rithm to estimate the Point Spread Function (PSF), which is then used to simulate

the LR degradation kernel.

SMORE first estimate the PSF of the anisotropic input volume using

ESPRESO (see Figure 1.16 (A)). This is used during training, to degrade 2D

patches which are extracted from high-resolution data, creating paired training data
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Figure 1.15: The network architecture of UASSR, which consists of (A) disentangled res-
olution translation, (B) self reconstruction and (C) cross-cycle reconstruction.
Specifically, the inputs l and h are unpaired LR and HR images. Different
colours show different domains, i.e., yellow represents the LR domain, green
represents the HR domain and white shows the shared content space (image
and caption derived under fair use from [30]).

for the Wide Activation Super-Resolution (WDSR) [34] network (see Figure 1.16

(B)). At inference, the low-resolution through-plane 2D slices are super-resolved

using the trained WDSR, and then stacked and averaged to produce an isotropic

output 3D volume (see Figure 1.16 (C)). For simplicity, any further reference to

SMORE in this thesis will pertain to this newer variant.
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Figure 1.16: High-level outline of the SMORE super-resolution pipeline. The pipeline con-
sists a PSF estimation framework (A), synthetic data generation and training
of WDSR network (B) and inference pipeline (C) (image derived under fair
use from [32]).

1.5 Hypothesis

Many of the methods described in Section 1.4 (specifically, SRGAN [21], G-

GANISR [24] and SRFeat [25]) are primarily designed for the super-resolution of

natural images. While the underlying network architectures and techniques are sim-

ilar, their application in medical image super-resolution presents distinct challenges.

Specifically, the degradation kernels inherent to various medical imaging modalities

are significantly more complex and challenging to simulate, compared to those in

natural images, which typically exhibit simpler and more predictable noise char-

acteristics, allowing for straightforward assumptions and simulations. In scenarios

where the degradation kernels are unknown or difficult to accurately simulate, many

supervised methods do not perform optimally due to incorrect assumptions or inade-

quate simulation of these kernels. Simpler degradation techniques, such as Gaussian

blurring or bi-cubic downsampling, as seen in Ar-SRR [20], may be insufficient for

accurately representing the complex and modality-specific degradation processes

present in many medical imaging modalities. Another important consideration is
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that many medical imaging modalities are inherently anisotropic, meaning that they

cannot physically facilitate the acquisition of truly “paired” imaging datasets and

although these can be simulated, there are a lack of approaches that permit truly

unsupervised super-resolution of this kind.

Our proposed methodology focuses on addressing the issue of unsupervised

deep learning-based single image super-resolution reconstruction (DL-SRR) within

the framework of 3D anisotropic medical images. Our approach does not rely on

any predefined assumptions regarding degradation kernels or domain feature distri-

butions. Our goal is to “implicitly” learn the degradation kernel and corresponding

inverse mapping in order to produce high-resolution images from low-resolution

image patches originating from separate domains. In order to achieve this, we lever-

age the theory of unpaired image-to-image translation via CycleGAN-based archi-

tectures by redefining our SRR problem as an image-to-image domain translation

task involving separate patches within our 3D images across the LR and HR imag-

ing planes respectively. More concretely, we propose CLADE (Cycle Loss Aug-

mented Degradation Enhancement), an entirely unsupervised DL-SRR approach

for anisotropic 3D medical images that learns directly from the anisotropic volumes

themselves. This avoids the need to learn an explicit degradation kernel, simplify-

ing the overall DL-SRR scheme. The framework relies on the observation that small

two-dimensional (2D) patches extracted from a 3D volume contain similar visual

features, irrespective of their orientation. This is coupled with a 2D patch-based

approach that learns HR features from patches in the HR plane of the anisotropic

volume, to guide DL-SRR in the LR direction in an unpaired fashion.



Chapter 2

Methodology

2.1 Overview
In this chapter we will cover:

• Proposed CLADE Network Architecture

• Proposed Gradient Mapping Cycle-Consistency Loss

• Proposed patch-based reconstruction

• Datasets

• Optimisation of the CLADE framework;

– Loss Weightings (λcyc, λident, λgmap)

– Stride Length

– Number of Epochs

• Comparison of supervised and unsupervised training methods

• Comparison of CLADE with other state-of-the-art SRR methods

2.2 CLADE Architecture
The architecture of the proposed network, CLADE, closely resembles the conven-

tional CycleGAN framework by Zhu et al. [15], but with specific adaptations for

our application. These modifications include:
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• a weight demodulation process within the generators

• integration of an image-based gradient-mapping cycle-consistency loss

• operating on disjoint image patches (rather than complete images) during both

training and inference

• a patch-reconstruction algorithm employed at inference, facilitating the as-

sembly of high-resolution full-sized images from the processed patches

2.2.1 Generator Networks

CLADE contains two generators (GX and GY ), each of which contain an encoder

block, six residual blocks, and a decoder block (Figure 2.1), similar to the conven-

tional CycleGAN.

Figure 2.1: CLADE generator architecture shown for GX : X → Y . ModConv denotes
the 2D modified convolution layers. Each modified convolutional layer per-
forms the weight-demodulation process.

However, unlike the conventional CycleGAN, we replaced instance normalisa-

tion layers with a weight demodulation process applied directly to the convolutional

weights; this aims to reduce the presence of droplet or block-like noise artifacts

which are commonly seen in CycleGANs [35]. This approach is similar to that

used in StyleGAN2 [36], where they substitute instance normalisation with a com-

bination of a weight modulation and demodulation. In StyleGAN2, this eliminates

the stylistic influence vector, s (intrinsic to the StyleGAN architecture), from the

output convolutional feature maps, w, by scaling the weights of the convolutional

filters such that w′ = s · w. As CLADE does not use style vectors, we can assume
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that s = 1 = w′ = w, therefore removing the need for the modulation step entirely.

However, we retain the demodulation step, prior to the convolution operation, by

normalising the convolutional weights themselves by the reciprocal square root of

the sum of squared weights (Equation 2.1):

w′′
ijkl =

w′
ijkl√∑

ijkl(w
′
ijkl)

2 + ϵ
, (2.1)

where i denotes the index of the output channel, j denotes the horizontal po-

sition in the kernel, k denotes the vertical position in the kernel, and l denotes the

input channel index; furthermore, we chose ϵ = 1× 10−8 as our numerical stability

constant to avoid numerical division issues [36].

This technique is directly inspired by weight normalisation [37], a technique

used to improve training stability and convergence speed by directly normalising the

layer weights themselves. It also acts as a form of regularisation, but unlike tech-

niques such as batch normalisation which introduce noise into the gradients, the

dependence on the normalisation process is removed. Although analogous, there

are some distinct differences between traditional weight normalisation and weight

demodulation. Specifically, weight normalisation is a technique used in neural net-

works to rescale the weights before they are used in the model, ensuring that each

weight vector has a consistent magnitude, which helps to stabilise and accelerate

the training process by promoting more consistent updates during learning. Instead,

in weight demodulation, the normalisation occurs after the weights have been used

in each iteration, primarily to stabilise the output.

2.2.2 Discriminator Networks

The discriminator networks in CLADE, DX and DY , are identical to those in the

conventional CycleGAN [15], each containing a PatchGAN [38] (Figure 2.2).

Unlike the generator networks, these discriminators do have instance normali-

sation layers present, as block-like noise artifacts only occur during image genera-

tion and not during the discriminative phase of training.
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Figure 2.2: CLADE PatchGAN discriminator architecture.

2.3 Gradient Mapping Cycle-Consistency Loss

The conventional CycleGAN architecture has been noted to suffer from deformation

errors at the boundaries of soft tissues when applied to anatomical data [39]. Our

proposed CLADE architecture acts on local 2D patches of the image volume, and

therefore the generator has no contextual knowledge of the global image features.

Taking advantage of this fact, we opted to investigate the addition of an absolute

gradient mapping between the local patches of the cycled high-resolution images to

reduce deformation errors, analogous to a Mixed Gradient Loss [40]. This gradient

mapping loss, Lgmap, aims to preserve local edge sharpness between gradient maps

of input images and “cycled” images:

Lgmap(GX , GY ) = Ey∼pdata(y)[∥(Sx(GY (GX(y)))− Sx(y)) +

(Sy(GX(GY (y)))− Sy(y))∥1]],
(2.2)

where Sx and Sy denote the image gradient acquired using a Sobel operator in

the x and y directions, respectively (see Equations 2.3 and 2.4 respectively).

Sx =


1 0 −1

2 0 −2

1 0 −1

 (2.3)

Sy =


1 2 1

0 0 0

−1 −2 −1

 (2.4)
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The Sobel operator was chosen as it is easy to implement, fast to calculate, and

does not require any manual tuning. We combine this gradient mapping loss with

the conventional CycleGAN loss, LGAN (Equation 1.17), to define the CLADE total

loss, LCLADE , as follows:

LCLADE(DX , DY , GX , GY ) = LGAN(DX , DY , GX , GY ) + λgmapLgmap, (2.5)

where λgmap is the scalar loss weighting for Lgmap.

2.4 Patched Training and Reconstruction
The training datasets were created by first pre-processing the anisotropic volumes

using a cubic-spline interpolation, to create isotropic pixels and ensure consis-

tency between the low-resolution and high-resolution data. Multiple patches of size

(32 × 32) were then extracted from these training volumes (see Section 2.6.3.2 for

further information). This patch size was chosen to be (32×32), as this enforces the

network to extract local structural information from within the patches and places

a restriction on the effective receptive field [41]. This, in turn, reduces the like-

lihood of learning specific anatomical features and the potential risk for network

hallucination.

At inference CLADE can be applied to perform SRR on a full-size 3D image

volume, which is not of fixed size. To achieve this, the 3D image volume must first

be pre-processed using cubic-spline interpolation, to create isotropic pixels (in the

same way as is performed for training). The interpolated volume is then split into

2D slices, x ∈ X , of shape m×n, where one of the dimensions of these 2D images

is the original low-resolution (through-plane) dimension. Each of these 2D images

is then deconstructed into overlapping (32×32) pixel patches, where the amount of

overlap between consecutive patches is determined by a given stride length. These

patches are then independently passed through the SRR network to super-resolve

each patch, producing an output patch y ∈ Y . The final images are created using

a sliding-window patch reconstruction algorithm that stitches together the resultant

super-resolved patches and then normalises the images by dividing by the number
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of times each pixel was subsequently sampled (using the Hadamard product).

2.5 Imaging Datasets
Our proposed CLADE approach can be applied to any anisotropic 3D dataset, how-

ever we chose to demonstrated its utility on both 3D MRI and 3D CT anisotropic

images. All SRR networks were trained independently for the MRI and CT datasets

due to differences in resolution and visual contrast of the datasets.

2.5.1 MRI Dataset

Volumetric Interpolated Breath-hold Examination (VIBE) is a popular MRI tech-

nique that enables full abdominal 3D coverage with high in-plane resolution and

lower through-plane resolution, within an achievable breath-hold time of ≈ 20 sec-

onds [42]. VIBE produces T1-weighted anisotropic 3D images and permits simul-

taneous evaluation of soft tissue and vasculature. In this study, data were retro-

spectively collected from 60 patients who undertook abdominal 3D VIBE imaging

after gadolinium-based contrast agent administration as part of a clinical protocol

conducted at University College Hospital, London, UK. The local research ethics

committee approved the study (Ref: 10/H0/720/91). Whole abdominal 3D coverage

was achieved in a breath-hold of 21s, with the following imaging parameters: coro-

nal in-plane orientation, matrix size ≈ 185× 330 (Right-Left, Head-Foot, RL-HF),

≈ 23 slices (in Anterior-Posterior, AP direction), field-of-view: ≈ 225× 400× 150

mm, in-plane resolution ≈ 1.2 × 1.2 mm (range: 0.8-1.6 mm) and through-plane

resolution ≈ 6.6 mm (range: 5.2-7.6 mm). This resulted in a super-resolution fac-

tor of ≈ 5.5, and hence pre-processing using cubic-spline interpolation, resulted

in ≈ 128 slices in the AP direction per 3D volume (range: 90-215). Of these 60

3D MRI VIBE datasets, 45 volumes were used for training (resulting in a total of

23,068 patches, see Section 2.6.3), and 15 volumes were reserved for testing of the

SRR networks .

2.5.2 CT Dataset

The open-source DeepLesion CT dataset [43] comprises of a diverse collection of

32,120 CT slices. In this study, we chose a subset of 60 anisotropic 3D CT volumes
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of the abdomen, with a comparable anisotropy ratio to the MRI data (i.e. a super-

resolution factor of ≈ 5.5). The data were collected with the following imaging

parameters: transverse orientation, matrix size 512× 512 (RL-AP), ≈ 22 slices (in

HF direction, range: 13-83), in-plane resolution≈ 0.95×0.95 mm (range: 0.90-0.98

mm) and through-plane resolution of 5.0 mm. This resulted in a super-resolution

factor of ≈ 5.3, and hence pre-processing using cubic-spline interpolation resulted

in ≈ 118 slices in the HF direction per 3D volume (range: 67-443). The datasets

were all cropped to 320 × 320 matrix in-plane, to remove air around the body. Of

these 60 3D CT datasets, 45 volumes were used for training (resulting in a total of

22,520 patches, see Section 2.6.3), and 15 volumes were reserved for testing of the

SRR networks.

2.6 Experimental Network Setup
We performed a number of experiments, specifically to:

• Optimise the CLADE Network Architecture

• Assess the impact of Weight Demodulation and the Gradient Mapping Loss

• Assess the impact of Supervised vs. Unsupervised training

• Compare the image quality from CLADE to other SRR methods

All networks were trained in Python3 using Tensorflow 2.0 on an NVIDIA

RTX A6000 GPU with 48GB of available memory. Adam [44] was used as the op-

timiser, with a fixed learning rate of 2×10−4 and the default momentum coefficient

β = 0.5.

2.6.1 CLADE Network Optimisation

We performed hyper-parameter optimisation of CLADE using all of the (unpaired)

training data over one epoch, to optimise:

• The weightings for CLADE cycle-consistency (λcyc ∈ {0.1, 1, 10}), identity

(λident ∈ {0, 1, 10}), and gradient-mapping (λgmap ∈ {1, 5, 10}) losses to

produce the best SRR image quality
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• The number of epochs in training {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

• The patch reconstruction stride length {6, 8, 12, 16, 20} as we observed a

trade-off between image quality and reconstruction time

The no-reference image quality metric, PIQUE (Perception-based Image Qual-

ity Evaluator) [45], subjective image quality and reconstruction time over the test

dataset were assessed for these hyper-parameters. As PIQUE is a 2D metric, we

calculated PIQUE on all 2D slices in the LR orientation, and the mean was used

for comparison. Due to extensive training times, for all models across the entire

dataset, only one epoch was used for all models as a comparison.

2.6.2 Assessing the Importance of the Weight Demodulation and

Gradient Mapping Loss

We wanted to assess the importance of the proposed weight demodulation and gra-

dient mapping loss (with the optimised hyper-parameters from above), therefore we

tested the following networks:

• Conventional CycleGAN

• CLADE without gradient mapping loss (CLADE no Lgmap) i.e. Lgmap = 0

• CLADE with gradient mapping loss (CLADE with Lgmap)

2.6.3 Assessing Supervised vs. Unsupervised Training

As described in the literature section (see Section 1.4), many SRR models are

trained using paired training data, where the low-resolution pairs are synthetically

created from the high-resolution data. It is possible to do this using our in-plane

data. Therefore, we assessed the effectiveness of CLADE when it is trained:

• In a supervised fashion, from synthetic paired training data created from the

high-resolution plane of the anisotropic 3D data

• In a truly unpaired fashion, from independent patches taken from the low-

resolution and high-resolution slice planes of the anisotropic 3D data
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The supervised CLADE networks were assessed on both synthetic low-

resolution data and on the prospective low-resolution data (taken from the sagit-

tal plane for both the MRI and CT data) to assess whether the degradation pro-

cess implicitly learned by the unpaired networks aligns with the simple degradation

model applied to the synthetic data. This approach helps determine if the degra-

dation mechanisms in the prospective datasets are more complex and thus differ

from the uniform degradation assumed in the synthetic data. It allows us to evaluate

whether the unpaired networks can adapt to and accurately handle the complexities

of real-world degradations, highlighting if a standardised physically-based degra-

dation model is inadequate.

2.6.3.1 Creation of Paired Synthetic Training Data

For training of the supervised networks, image pairs were generating by creating

synthetic low-resolution images from the high-resolution plane of the anisotropic

volume (see Algorithm 1):

Algorithm 1 Sinc Interpolation Downsampling

1: Input: High-resolution image Ihigh(x, y), Anisotropy factor α, Number of pix-
els in x-direction Nx

2: Output: Low-resolution image Ilow(x, y)
3: Compute Fourier transform:
4: Ĩhigh(kx, ky)← F [Ihigh(x, y)]
5: Zero-fill in Fourier domain:

6: Ĩlow(kx, ky)←

{
Ĩhigh(kx, ky) if |kx| ≤ α · Nx

2
,

0 otherwise
7: Perform inverse Fourier transform:
8: Ilow(x, y)← F−1[Ĩlow(kx, ky)]
9: return Ilow(x, y)

For training four random 2D patches of size (32× 32) are extracted from each

high-resolution slice in the volume (the high-resolution slices are taken from the

coronal plane for MRI data and the transverse plane for CT data), and the paired

patch taken from the same location in the synthetically generated low-resolution

image.
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2.6.3.2 Creation of Unpaired Training Data

The interpolated 3D volumes are separated into 2D slices in both the low-resolution

and high-resolution planes. For the MRI data, the coronal plane is high-resolution

in both spatial directions, and the sagittal plane was chosen as the low-resolution

plane (although the transverse plane could have been chosen). For the CT data,

the transverse plane is high-resolution in both spatial directions, and the sagittal

plane was chosen as the low-resolution plane (similarly, the coronal plane could

have chosen). To create the training datasets, we extract four 2D patches of size

(32× 32) pixels were extracted from each slice in the training volumes.

2.6.4 Comparison with State-of-the-art SRR Method: SMORE

We will compare the resulting image quality from supervised and unsupervised

CLADE (with Lgmap and no Lgmap) networks to SMORE, a state-of-the-art self-

supervised SRR approach (as described in Section 1.4.21 [31, 32]).

2.7 Image Quality Metrics
To evaluate the image quality of the various network architectures, a selection of

image quality metrics was made based on their ability to accommodate both paired

and unpaired variants. These metrics were chosen to meet the requirement of cal-

culating quality with and without ground truth image pairs.

2.7.1 Ground Truth Image Pairs: PSNR, SSIM, MSE and MAE

Where networks are trained in a supervised manner, using paired synthetic low-

resolution and ground-truth image pairs exist, it was possible to calculate the fol-

lowing imaging metrics: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity

Index (SSIM), Mean Squared Error (MSE) and Mean Absolute Error (MAE).

PSNR is a metric used heavily within image processing and compression algo-

rithms to quantitatively assess the fidelity of reconstructed images compared to their

originals. It measures the ratio of the maximum possible signal power to the power

of corrupting noise, usually expressed in decibels (dB). The Peak Signal-to-Noise

1The SMORE implementation that was used is publicly accessible here: https://gitlab.
com/iacl/smore/-/tree/main

https://gitlab.com/iacl/smore/-/tree/main
https://gitlab.com/iacl/smore/-/tree/main
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Ratio (PSNR) is calculated as:

PSNR =

∞ if MSE = 0

10 · log10
(

P 2
max

MSE

)
if MSE > 0

(2.6)

where Pmax represents the maximum possible pixel value (e.g., 255 for 8-bit im-

ages) and MSE denotes the Mean Squared Error, defined as the average squared

difference between the original and reconstructed images.

Furthermore, SSIM [46, 47] is a metric used to measure the similarity between

two images, x and y, by comparing their luminance, contrast, and structure, provid-

ing a score that reflects perceived visual quality; it is computed as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (2.7)

where x and y represent the compared images, µx and µy denote their respective

means, σ2
x and σ2

y are the variances, and σxy is the covariance between x and y. The

scalar constants c1 and c2 are included to prevent division by zero errors.

The MSE is a metric that measures the average squared difference between

the corresponding pixel values of two images, x and y. It quantifies the cumulative

squared error and is defined as:

MSE(x, y) =
1

N

N∑
i=1

(xi − yi)
2 , (2.8)

where N is the total number of pixels, and xi and yi represent the pixel values of

the two images at the i-th position. A lower MSE value indicates a higher similarity

between the two images.

Similarly, the MAE is a metric that measures the average absolute difference

between the pixel values of two images, x and y, giving a more interpretable error
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than MSE by focusing on the absolute differences:

MAE(x, y) =
1

N

N∑
i=1

|xi − yi| , (2.9)

where N is the number of pixels, and xi and yi are the pixel values at the i-th

position. MAE provides a direct understanding of the average error between the

images.

2.7.2 No Ground Truth: PIQUE, NIQE and BRISQUE

Alternatively, no-reference image quality assessment metrics exist, which evaluate

image quality without needing a reference image or ground truth for comparison.

These were used to assess image quality from both the supervised networks and

unsupervised networks. The no-reference image quality assessment metrics utilised

in this study are PIQUE (Perception-based Image Quality Evaluator) [48], NIQE

(Natural Image Quality Evaluator) [49], and BRISQUE (Blind/Reference-less Im-

age Spatial Quality Evaluator) [50]. PIQUE measures image quality by detecting

perceptually significant artifacts, with lower scores indicating better quality. NIQE

assesses image quality based on statistical features extracted from natural scenes,

where deviations from these natural image statistics are quantified, and lower scores

imply higher quality. BRISQUE evaluates image quality using spatial domain fea-

tures, specifically by analysing scene statistics of locally normalised luminance co-

efficients, where lower scores similarly correspond to better image quality.

2.8 Quantitative Image Quality Assessment
For the final unsupervised networks, quantitative edge sharpness (ES) and esti-

mated Signal-to-Noise Ratio (SNR) image quality metrics were assessed in the test

datasets for MRI and CT images from original low-resolution data, SMORE, the

conventional CycleGAN, CLADE (noLgmap) and CLADE (withLgmap). The quan-

titative edge sharpness and SNR measurements were made using in-house plug-ins

for the OsiriX DICOM viewing platform [51].

Edge sharpness was quantified on 3D MPR images, as described previously
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[52], by measuring the maximum gradient of the pixel intensities perpendicularly

across the border of interest. Pixel intensities were filtered using a Savitzky–Golay

filter to remove the effect of noise (window width = 5 pixels, third-order polyno-

mial) before differentiation. Edge sharpness was taken as the maximum gradient of

the filtered pixel intensities. In the MRI data, Edge sharpness was measured across

four distinct anatomical regions: the abdominal aorta, liver, lower pole of the kid-

ney, and the spleen, and an average edge sharpness value was taken for comparison.

In the CT data, edge sharpness was measured in one region: across a bony structure.

Estimated SNR was calculated by dividing the mean signal intensity in a region

of interest (ROI) (drawn in the kidney - an area of contrast uptake - in MRI, and in

a bony structure in CT) by the standard deviation of the pixel values within a ROI

drawn in an area of no signal (air in the stomach in MRI and air outside the body in

CT).

2.8.1 Statistical Analysis Methodology

Statistical analyses were performed using Python (statsmodels 0.13.5). Quanti-

tative metrics were compared using one-way repeated measures analysis of variance

(ANOVA) with post-hoc testing using Tukey Honest Significant Difference (HSD)

multiple comparisons of means to determine group-wise relationships and signifi-

cant results.



Chapter 3

Results

3.1 CLADE Network Optimisation

3.1.1 Loss Weighting Optimisation

CLADE (with Lgmap) models were trained for one epoch (with a stride of 6) with

varying loss weightings: λcyc ∈ {0.1, 1, 10} , λident ∈ {0, 1, 10} , and λgmap ∈

{1, 5, 10} . Each resulting network was applied to all 15 volumes in the test set, and

the quantitative PIQUE scores calculated for comparison.

3.1.1.1 MRI Loss Optimisation

The quantitative results for the MRI CLADE networks can be found in Table 3.1 and

representative visual image quality seen in Figure 3.1. The final chosen loss weight-

ing for CLADE network for MRI data was λcyc = 1, λident = 1, and λgmap = 5,

based on PIQUE score and visual image quality. Specifically, we are visually eval-

uating network hallucinations, introduction / worsening of noise and visual image

sharpness.

3.1.1.2 CT Loss Optimisation

The quantitative results for the CT CLADE networks can be found in Table 3.2

and representative visual image quality seen in Figure 3.2. The final chosen loss

weighting for CLADE network for CT data was λcyc = 1 , λident = 1 , and λgmap =

10, based on PIQUE score and visual image quality. This is evaluated visually in

the same way as in Section 3.1.1.1.
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Table 3.1: PIQUE scores from MRI CLADE (with Lgmap) hyper-parameter optimisation,
shown in ascending PIQUE order.

λcyc λident λgmap PIQUE (µ ± σ)

0.1 0 1 20.20± 2.98
0.1 0 5 22.51± 4.28
0.1 1 1 22.74± 4.76
0.1 0 10 27.48± 3.94
0.1 1 10 30.98± 5.34
0.1 10 1 31.25± 4.66
0.1 10 5 31.66± 4.28
0.1 1 5 32.15± 4.17
0.1 10 10 35.25± 4.90
1 0 1 31.34± 4.37
1 0 5 30.57± 5.10
1 0 10 30.28± 4.94
1 1 1 37.78± 4.51
1 1 5 25.55± 4.71
1 1 10 31.26± 4.66
1 10 1 27.54± 4.88
1 10 5 26.22± 4.62
1 10 10 32.05± 4.89
10 0 1 44.94± 6.23
10 0 5 29.40± 5.13
10 0 10 38.62± 5.70
10 1 1 36.23± 5.55
10 1 5 34.67± 5.13
10 1 10 38.38± 5.83
10 10 1 36.31± 5.18
10 10 5 36.71± 5.81
10 10 10 36.72± 5.45
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Figure 3.1: Image quality from a MRI test subject, using CLADE (with Lgmap) across the
10 models with the lowest PIQUE scores. Blue boxes show magnified regions;
red box highlights the selected final loss weighting.
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Table 3.2: PIQUE scores from CT CLADE (with Lgmap) hyper-parameter optimisation,
shown in ascending PIQUE order.

λcyc λident λgmap PIQUE (µ± σ)

0.1 0 1 27.65± 4.45
0.1 0 5 32.00± 3.23
0.1 0 10 34.78± 3.66
0.1 1 1 35.15± 5.08
0.1 1 5 31.23± 3.06
0.1 1 10 24.47± 3.44
0.1 10 1 35.72± 4.20
0.1 10 5 33.08± 4.23
0.1 10 10 30.73± 3.80
1 0 1 36.29± 3.04
1 0 5 28.26± 4.92
1 0 10 34.34± 3.75
1 1 1 33.67± 5.86
1 1 5 28.97± 3.89
1 1 10 31.24± 3.93
1 10 1 31.77± 3.80
1 10 5 33.51± 4.42
1 10 10 38.91± 4.43

10 0 1 30.86± 4.18
10 0 5 32.14± 5.20
10 0 10 36.45± 5.27
10 1 1 33.79± 3.92
10 1 5 36.91± 5.27
10 1 10 38.68± 4.88
10 10 1 37.91± 4.87
10 10 5 38.23± 5.54
10 10 10 42.68± 5.46
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Figure 3.2: Image quality from a CT test subject, using CLADE (with Lgmap) across the
10 models with the lowest PIQUE scores. Blue boxes show magnified regions;
red box highlights the selected final loss weighting.
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3.1.2 Epoch Optimisation

Training for the CLADE (with Lgmap) models with the optimised loss functions

took ≈ 36 hours for 10 epochs. For each epoch, the network was applied to all 15

volumes in the test set, and the quantitative PIQUE scores calculated for compari-

son.

3.1.2.1 MRI Epoch Optimisation

The quantitative PIQUE scores at each epoch for the MRI data can be found in

Table 3.3 and representative image quality at each epoch seen in Figure 3.3. The

final CLADE (with Lgmap) model was chosen from the ninth epoch for MRI data,

based on PIQUE score and visual image quality.

3.1.2.2 CT Epoch Optimisation

The quantitative PIQUE scores at each epoch for the CT data can be found in Table

3.4 and representative image quality at each epoch seen in Figure 3.4. The final

CLADE (with Lgmap) model was chosen from the tenth epoch for CT data, based

on PIQUE score and visual image quality.
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Table 3.3: PIQUE scores (µ±σ) as calculated across all 15 volumes in the MRI test dataset,
assessed with a stride length of 6. The scores are compared across different
epochs for the final MRI CLADE (with Lgmap) model (λcyc = 1, λident = 1,
λcyc = 5). The chosen number of epochs is outlined in bold, based on PIQUE
score and visual image quality (see Figure 3.3).

Epoch PIQUE (µ± σ)

1 33.73± 3.57
2 44.12± 0.71
3 23.34± 4.75
4 35.53± 5.93
5 26.52± 4.68
6 41.62± 5.18
7 39.08± 5.05
8 31.46± 5.43
9 27.42± 4.19
10 30.44± 4.70
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Figure 3.3: Example image quality from one subject in the MRI test dataset, at each
epoch when training the final MRI CLADE (with Lgmap) (λcyc = 1, λident =
1, λcyc = 5). Magnified regions within the blue box are displayed beneath each
image. PIQUE score shows the mean value across all 15 volumes in the MRI
test dataset. The red box indicates the chosen epoch based on PIQUE scores
(see Table 3.3) as well as visual image quality.
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Table 3.4: PIQUE scores (µ±σ) as calculated across all 15 volumes in the CT test dataset,
assessed with a stride length of 6. The scores are compared across different
epochs for the final CT CLADE (with Lgmap) model (λcyc = 1, λident = 1,
λcyc = 10). The chosen number of epochs is outlined in bold, based on PIQUE
score and visual image quality (see Figure 3.4).

Epoch PIQUE (µ± σ)

1 30.06± 4.68
2 36.28± 4.33
3 33.26± 5.87
4 37.76± 3.90
5 33.00± 5.20
6 34.23± 5.13
7 29.73± 4.83
8 37.67± 3.99
9 29.08± 4.25
10 28.24± 4.45
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Figure 3.4: Example image quality from one subject in the CT test dataset, at each epoch
when training the final CT CLADE (with Lgmap) (λcyc = 1, λident = 1, λcyc =
10). Magnified regions within the blue box are displayed beneath each image.
PIQUE score shows the mean value across all 15 volumes in the CT test dataset.
The red box indicates the chosen epoch based on PIQUE scores (see Table 3.4)
as well as visual image quality.
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3.1.3 Patch Reconstruction Stride Length

Stride length in patch reconstruction affects both image quality and reconstruction

time. We tested stride lengths of 6, 8, 12, 16, and 20, calculating PIQUE scores and

reconstruction times across the 3D test volumes using optimised CLADE models

(with Lgmap). Results for the 15 MRI test volumes are shown in Table 3.5, with

representative images in Figure 3.5, while Table 3.6 and Figure 3.6 present the

results for the 15 CT volumes.

Table 3.5: Impact of stride length on PIQUE scores and inference time across 15 MRI test
volumes for the final MRI CLADE model (λcyc = 1, λident = 1, λgmap = 5, 9
epochs)

.

Stride Length PIQUE (µ± σ) Inference Time per 3D Volume (s) (µ± σ)

6 27.42± 4.19 317± 132
8 29.17± 4.09 195± 80

12 26.61± 3.78 103± 38
16 31.25± 5.32 72± 25
20 25.41± 3.88 53± 16

Table 3.6: Impact of stride length on PIQUE scores and inference time across 15 CT test
volumes for the final CLADE model (λcyc = 1, λident = 1, λgmap = 10, 10
epochs).

Stride Length PIQUE (µ± σ) Inference Time per 3D Volume (s) (µ± σ)

6 28.31± 4.42 292± 133
8 28.20± 4.53 183± 74

12 24.69± 4.53 100± 34
16 28.59± 4.81 73± 19
20 21.49± 4.84 54± 16

The optimal balance between image quality and reconstruction time for MRI

CLADE (with Lgmap) was found with a stride length of 12 pixels. This resulted

in ≈ 204 patches per slice (range: 132-300). The optimal balance between image

quality and reconstruction time for CT CLADE (withLgmap) was found with a stride

length of 6 pixels. This resulted in ≈ 581 patches per slice (range: 294-1078).
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Figure 3.5: Example image quality from one subject in the MRI test dataset, at each stride
length, using the final MRI CLADE during inference. Magnified regions within
the blue box are displayed beneath each image. PIQUE score shows the mean
value across all 15 volumes in the MRI test dataset. The red box indicates
the chosen patch size based on PIQUE score, inference time and visual image
quality .

Figure 3.6: Example image quality from one subject in the CT test dataset, at each stride
length, using the final CT CLADE (with Lgmap) during inference. Magnified
regions within the blue box are displayed beneath each image. PIQUE score
shows the mean value across all 15 volumes in the CT test dataset. The red
box indicates the chosen patch size based on PIQUE score, inference time and
visual image quality.
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3.2 Importance of Weight Demodulation
To assess the impact of the proposed weight demodulation we compared the con-

ventional CycleGAN to CLADE (no Lgmap). These networks were trained using

the same number of epochs, stride length, and the same optimised loss weightings

for λcyc and λident, but with λgmap set to 0.

3.2.1 MRI weight demodulation

When trained and tested using the MRI data, the conventional CycleGAN archi-

tecture (with instance normalisation) resulted in “blocky” grid artifacts with signal

voids in some MRI super-resolved volumes. However, these errors were suc-

cessfully removed when using CLADE (no Lgmap) as seen in Figure 3.7. This

demonstrating the utility of the weight demodulation process in improving MRI

image quality.

Figure 3.7: An example low-resolution sagittal MRI slice from one subject in the test data,
which shows normalisation errors when SRR is applied using a Conventional
CycleGAN. These artifacts are removed when SRR is applied using CLADE
(no Lgmap). Magnified regions within the blue box are displayed beneath each
image.
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3.2.2 CT weight demodulation

When trained and tested using the CT data, the conventional CycleGAN (with in-

stance normalisation) suffered from mode collapse (see Figure 3.8). This may be

due to the lack of visual contrast in the CT datasets, compared to the MRI data,

which will likely have made learning these domain mappings a more challenging

task.

Figure 3.8: The conventional CycleGAN suffered from mode collapse when trained using
the CT data. The top row shows the patched image reconstruction from the
model at epochs 1-5, on one of the test CT volumes, with a stride of 6 (as
used for CLADE). The bottom row shows that where there are no overlapping
patches (i.e. stride length is equal to the patch size), then all patches remain
identical, demonstrating mode collapse.

3.3 Supervised Training
The Conventional CycleGAN, CLADE (no Lgmap) and CLADE (with Lgmap) net-

works were trained using synthetic paired data, and subsequently tested on synthetic

low-resolution data, as well as the prospective low-resolution data. For the synthetic
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test data, we compared paired-image metrics SSIM, PSNR, MSE and MAE, as well

as no-reference image metrics PIQUE, NIQE and BRISQUE, as calculated across

all 15 test volumes.

3.3.1 MRI Supervised Networks

The supervised networks are trained from synthetic low-resolution MRI patches,

taken from the coronal plane. The paired-image metrics from the synthetic test data

(created from the coronal plane) are shown in Table 3.7 and the no-reference metrics

for this synthetic MRI test data are shown in Table 3.8. Furthermore, images for the

paired networks, applied to both paired and prospective datasets are displayed in

Figure 3.9 and Figure 3.10 respectively.

Table 3.7: SSIM, PSNR, MSE and MAE scores (µ ± σ) for the MRI paired networks, ap-
plied to synthetically generated paired test datasets. These values are calculated
across all slices in the test volumes.

Model
SSIM:

Coronal
Orientation

PSNR:
Coronal

Orientation

MSE:
Coronal

Orientation

MAE:
Coronal

Orientation

Conventional CycleGAN 0.583± 0.1 18.8± 2.8 0.01± 0.01 0.1± 0.04
CLADE (no Lgmap) 0.738± 0.08 27.0± 2.6 0.003± 0.006 0.03± 0.02
CLADE (with Lgmap) 0.756± 0.08 27.3± 2.7 0.002± 0.005 0.03± 0.02

Table 3.8: PIQUE, NIQE and BRISQUE scores (µ ± σ) for the MRI paired networks, ap-
plied to synthetically generated paired test datasets. These values are calculated
across all slices in the test volumes.

Model
PIQUE:
Coronal

Orientation

NIQE:
Coronal

Orientation

BRISUQE:
Coronal Orientation

Low-resolution 73.1± 5.50 8.38± 1.68 41.5± 5.40
Conventional CycleGAN 31.5± 11.0 6.68± 1.90 29.7± 14.3
CLADE (no Lgmap) 39.8± 4.39 6.41± 1.53 36.4± 4.11
CLADE (with Lgmap) 23.7± 4.83 6.21± 1.68 23.5± 7.60
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Figure 3.9: MRI paired networks, applied to paired data (coronal). Although there are
some improvements to the resolution, the networks fail to faithfully recostruct
the original ground-truth high resolution images. It can clearly be seen that
although resolution is marginally improved, the downsampling artifacts and
degradations still remain present in the reconstructions.
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These results show that the networks achieve good image quality when trained us-

ing paired synthetic data. On synthetic test data, the CLADE networks outperform

the Conventional CycleGAN in terms of SSIM, PSNR, MSE, MAE. In the case of

the no-reference metrics, CLADE with Lgmap outperforms the Conventional Cy-

cleGAN, but the supervised CLADE network with no Lgmap does not outperform

the Conventional CycleGAN. Furthermore, the supervised CLADE network with

Lgmap, consistently outperforms the supervised CLADE network with no Lgmap on

synthetic data. These networks were also applied to the prospective low-resolution

data, in both the transverse and sagittal planes. The no-reference metrics as calcu-

lated across the 15 test data sets are shown in Table 3.9 and images from one of the

orientations (sagittal) is displayed in Figure 3.10.

Table 3.9: PIQUE, NIQUE and BRISQUE scores (µ ± σ) for the MRI paired networks,
applied to the prospective test datasets. These values are calculated across all
slices in the test volumes.

MRI Orientation PIQUE NIQUE BRISQUE

Transverse
Low-resolution 65.0± 5.48 8.48± 1.40 44.3± 5.86

Conventional CycleGAN 52.0± 6.91 7.68± 1.86 46.8± 5.99
CLADE (no Lgmap) 49.2± 6.39 9.78± 12.41 45.9± 6.87

CLADE (with Lgmap) 36.8± 7.28 8.00± 1.73 34.7± 8.38

Sagittal
Low-resolution 63.3± 6.04 9.56± 2.37 32.3± 6.79

Conventional CycleGAN 48.7± 11.4 8.30± 1.62 28.2± 6.24
CLADE (no Lgmap) 48.9± 6.97 9.24± 2.00 26.4± 5.44

CLADE (with Lgmap) 41.6± 9.39 8.86± 2.26 23.4± 5.20
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Figure 3.10: MRI paired networks, applied to unpaired data (sagittal). In contrast to the
paired data case, the networks fail to perform any reasonable form of super-
resolution across all of the networks. This gives further evidence that the
simple downsampling method used to generate paired data doesn’t faithfully
represent the complex degradations present in the true low-resolution data as
pictured here.
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Comparing the no-reference metrics from the synthetic test data and the

prospective test data, it can be seen that the image quality from the prospective

test data is significantly lower, indicating that the degradation process is not accu-

rately captured when generating the synthetic datasets. Furthermore, although the

respective PIQUE scores indicates that the Conventional CycleGAN outperforms

CLADE (no Lgmap), visually there is the presence of more patching artefacts and

blur (as can be seen in Figure 3.9).

3.3.2 CT Supervised Networks

The supervised CT networks were trained from synthetic low-resolution patches,

taken from the transverse plane. The conventional CycleGAN suffered from model

collapse (as displayed in Figure 3.8), and therefore these results are not included.

The paired-image metrics from the synthetic test data (created from the transverse

plane) are shown in Table 3.10 and the no-reference metrics for this synthetic CT

test data are shown in Table 3.11. Furthermore, images for the paired networks,

applied to both paired and prospective datasets are displayed in Figure 3.11 and

Figure 3.12 respectively.

Table 3.10: SSIM, PSNR, MSE and MAE scores (µ ± σ) for the CT paired networks, ap-
plied to synthetically generated paired test datasets. These values are calculated
across all slices in the test volumes.

Model
SSIM:

Transverse
Orientation

PSNR:
Transverse
Orientation

MSE:
Transverse
Orientation

MAE:
Transverse
Orientation

CLADE (no Lgmap) 0.894± 0.02 28.1± 2.95 0.002± 0.001 0.03± 0.01
CLADE (with Lgmap) 0.914± 0.01 29.7± 3.34 0.001± 0.002 0.03± 0.02



3.3. Supervised Training 77

Table 3.11: PIQUE, NIQE and BRISQUE scores (µ ± σ) for the CT paired networks, ap-
plied to synthetically generated paired test datasets. These values are calculated
across all slices in the test volumes.

Model
PIQUE:

Transverse
Orientation

NIQE:
Transverse
Orientation

BRISUQE:
Transverse
Orientation

Low-resolution 64.4± 6.52 8.31± 0.943 46.9± 6.24
CLADE (no Lgmap) 39.9± 5.57 6.51± 0.910 31.9± 9.11
CLADE (with Lgmap) 39.5± 7.33 7.05± 0.774 33.8± 6.65
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Figure 3.11: CT Paired Network, applied to paired data (in transverse orientation). Here,
we can see that the resolution is increased and the reconstructed images do
begin to sharpen quite significantly. However, we can see that there are many
more artifacts present, alongside some potential hallucinations from the net-
work architectures, particularly in CLADE (no Lgmap).
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These results show that the networks achieve good image quality when trained

using paired synthetic data. On synthetic test data, the CLADE network withLgmap,

consistently outperforms the supervised CLADE network no Lgmap on synthetic

data in terms of SSIM, PSNR, MSE, MAE (and no-reference metrics). These net-

works were also applied to the prospective low-resolution data, in both the coronal

and sagittal planes. The no-reference metrics as calculated across the 15 test data

sets are shown in Table 3.12 and images from one of the orientations (sagittal) is

displayed in Figure 3.12.

Table 3.12: PIQUE, NIQUE and BRISQUE scores (µ ± σ) for the CT paired networks,
applied to the prospective test datasets. These values are calculated across all
slices in the test volumes. Note that the conventional CycleGAN is not included
in the CT results due to model collapse. Furthermore, SMORE is not included
due to its inability to be trained in a paired fashion.

CT Orientation PIQUE NIQUE BRISQUE

Coronal
Low-resolution 77.0± 4.12 11.9± 2.49 33.8± 7.16

CLADE (no Lgmap) 47.6± 8.00 10.7± 2.11 33.8± 8.27
CLADE (with Lgmap) 51.4± 7.40 11.2± 2.20 31.5± 6.52

Sagittal
Low-resolution 73.9± 4.98 11.4± 3.42 48.5± 7.97

CLADE (no Lgmap) 36.3± 9.86 11.6± 2.37 40.9± 8.98
CLADE (with Lgmap) 39.4± 9.35 11.4± 3.54 41.5± 5.94
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Figure 3.12: CT paired networks, applied to paired data (sagittal). Here, we see that
marginal super-resolution is performed by the networks, however there is
some clear hallucination in the case of CLADE (no Lgmap), likely as a result
of the inefficiency of the downsampling method when generating the synthetic
data.
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Comparing the no-reference metrics from the synthetic test data and the

prospective test data, similarly to the MRI data, it can be seen that the CT image

quality from the prospective test data is much lower, which also indicates that the

degradation process was not accurately captured by the network from the synthetic

datasets. Furthermore, the PIQUE scores in the sagittal view of the prospective

dataset look markedly similar to those in the transverse view from the synthetically

generated dataset. In contrast however, there is not a drastic visual difference be-

tween the synthetic and prospective image quality (see Figure 3.11 and Figure 3.12

respectively). This is likely due to the heuristic nature of the no-reference metrics,

which may prioritise different image features more highly than others.

3.4 Unsupervised Training
The Conventional CycleGAN, CLADE (no Lgmap) and CLADE (with Lgmap) net-

works were trained using unpaired data and compared to SMORE. These networks

were subsequently tested on the prospective low-resolution test data. We compared

no-reference image metrics PIQUE, NIQE and BRISQUE, as calculated across all

15 test volumes.

3.4.1 MRI Unsupervised Networks

The unsupervised MRI networks are trained from disjoint high-resolution patches

taken from the coronal plane, and low-resolution patches taken from the sagittal

plane. The no-reference image metrics from the prospective test data are shown

in Table 3.13. Comparing these results to the no-reference metrics calculated from

the prospective test datasets reconstructed from the supervised networks, it can be

seen that the unsupervised networks significantly outperform the supervised net-

works in terms of PIQUE, NIQUE and BRISQUE (with the only exception of the

NIQUE score for the Conventional CycleGAN). It should also be noted that CLADE

significantly outperforms the state-of-the-art SMORE SRR technique, in terms of

PIQUE, NIQUE and BRISQUE, with CLADE (with Lgmap) consistently outper-

forming CLADE (no Lgmap) for the MRI test data. The resultant image quality

from the final unsupervised networks in both the sagittal and transverse orientations
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for the MRI test dataset are displayed in Figure 3.13 and Figure 3.14 respectively.

Table 3.13: PIQUE, NIQUE and BRISQUE scores (µ±σ) for the MRI unpaired networks,
applied to the prospective test datasets. These values are calculated across all
slices in the test volumes.

MRI Orientation PIQUE NIQUE BRISQUE

Transverse
Low-resolution 65.0± 5.5 8.5± 1.4 44.3± 5.9

SMORE 42.1± 7.1 6.7± 1.5 39.7± 5.8
Conventional CycleGAN 43.5± 7.3 12.4± 65 23.5± 15.1

CLADE (no Lgmap) 34.8± 8.2 6.5± 1.0 31.6± 6.9
CLADE (with Lgmap) 29.8± 6.3 6.3± 1.6 17.9± 9.7

Sagittal
Low-resolution 63.3± 6.0 9.5± 2.1 32.0± 5.3

SMORE 40.4± 7.6 7.6± 2.4 26.8± 7.1
Conventional CycleGAN 34.2± 7.5 7.5± 2.4 23.6± 7.1

CLADE (no Lgmap) 34.2± 7.5 7.4± 2.3 23.4± 6.7
CLADE (with Lgmap) 28.0± 5.9 5.6± 3.0 19.8± 9.6
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Figure 3.13: An example of sagittal image quality from SRR applied to a low-resolution
MRI data from one subject in the test dataset. Note that the SRR models
are applied in the low-resolution sagittal plane for the MRI data. Magnified
regions within the blue box are displayed beneath each image.
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Figure 3.14: An example of transverse image quality from SRR applied to a low-resolution
MRI data from one subject in the test dataset. Note that the SRR models are
applied in the low-resolution sagittal plane for the MRI data, where this fig-
ure shows the resulting volume reformatted in the (low-resolution) transverse
plane. Magnified regions within the blue box are displayed beneath each im-
age.
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3.4.2 CT Unsupervised Networks

The unsupervised CT networks are trained from disjoint high-resolution patches

taken from the transverse plane, and low-resolution patches taken from the sagittal

plane. The no-reference image metrics from the prospective CT test data are shown

in Table 3.14.

Table 3.14: PIQUE, NIQUE and BRISQUE scores (µ ± σ) for the CT unpaired networks,
applied to the prospective test datasets. These values are calculated across all
slices in the test volumes. Note that the conventional CycleGAN is not included
in the CT results due to model collapse.

CT Orientation PIQUE NIQUE BRISQUE

Coronal
Low-resolution 77.0± 4.1 11.9± 2.5 33.8± 7.2

SMORE 56.7± 7.4 9.9± 1.9 40.8± 10.0
CLADE (no Lgmap) 36.0± 7.5 8.7± 2.0 30.3± 7.7

CLADE (with Lgmap) 30.3± 7.4 7.5± 1.4 27.8± 7.5

Sagittal
Low-resolution 73.9± 5.0 11.4± 3.4 48.5± 8.0

SMORE 53.9± 9.2 11.1± 4.3 45.4± 12.4
CLADE (no Lgmap) 26.7± 8.4 10.3± 4.7 33.7± 14.1

CLADE (with Lgmap) 22.3± 7.8 8.4± 3.2 31.6± 9.1

The resultant image quality from the final unsupervised networks in both the

sagittal and coronal orientations for the CT test dataset are displayed in Figure 3.15

and Figure 3.16 respectively.
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Figure 3.15: An example of sagittal image quality from SRR applied to a low-resolution
CT data from one subject in the test dataset. Note that the SRR models are
applied in the low-resolution sagittal plane for the CT data. Magnified regions
within the blue box are displayed beneath each image.
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Figure 3.16: An example of coronal image quality from SRR applied to a low-resolution
CT data from one subject in the test dataset. Note that the SRR models are
applied in the low-resolution sagittal plane for the CT data, where this figure
shows the resulting volume reformatted in the (low-resolution) coronal plane.
Magnified regions within the blue box are displayed beneath each image.
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Similar to the MRI data, it can be seen that compared to the no-reference

metrics calculated from the supervised networks, the unsupervised networks sig-

nificantly outperform the supervised networks in terms of PIQUE, NIQUE and

BRISQUE. It should be noted that the Conventional CycleGAN suffered from mode

collapse and so these results are not shown here. It should also be noted that CLADE

significantly outperforms the state-of-the-art SMORE SRR technique, in terms of

PIQUE, NIQUE and BRISQUE, with CLADE (with Lgmap) consistently outper-

forming CLADE (no Lgmap) for the CT test data.

3.5 Quantitative Image Quality
Quantitative scores comparing image quality of the original low-resolution volumes

with DL-SRR using SMORE, conventional CycleGAN, CLADE (no Lgmap) and

CLADE (Lgmap) can be found in Table 3.15, and Figure 3.17 and Figure 3.18 for

MRI and CT respectively. Quantitative edge sharpness and SNR measurements

from all DL-SRR networks are shown in Table 3.16, and Figure 3.17 and Fig-

ure 3.18, for MRI and CT respectively. The PIQUE scores for all DL-SRR net-

works were significantly better than the low-resolution volumes for MRI and CT

(p < 0.05), with the exception of the conventional CycleGAN for the CT data that

did not train. For both MRI and CT, CLADE (Lgmap) produced images with the

significantly better PIQUE scores (p < 0.05) compared to the other DL-SRR meth-

ods including SMORE and CLADE (Lgmap = 0). Importantly, these trends were

the same for PIQUE scores calculated from both low-resolution planes of the MRI

and CT volumes.
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Figure 3.17: Box-plot for MRI Metrics, demonstrating the superiority of CLADE through-
out all other comparisons.
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Figure 3.18: Box-plot for CT Metrics, demonstrating the superiority of CLADE throughout
all other comparisons.
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Table 3.15: PIQUE scores (µ ± σ) as calculated across all slices in the CT and MRI test
volumes. Note that the conventional CycleGAN is not included in the CT re-
sults due to model collapse.

Model
MRI PIQUE:

Sagittal
Orientation**

MRI PIQUE:
Transverse
Orientation

CT PIQUE:
Sagittal

Orientation**

CT PIQUE:
Coronal

Orientation

Low-resolution 62.4± 2.8 64.9± 3.3 74.0± 2.5 75.9± 3.0
SMORE 39.5± 4.5∗ 41.0± 4.7∗ 52.2± 5.7∗ 55.7± 5.5∗

Conventional CycleGAN 41.6± 3.3∗ 46.6± 4.4∗# - -
CLADE (no Lgmap) 45.8± 3.7∗#† 51.1± 3.4∗#† 29.5± 5.5∗# 33.4± 4.3∗#

CLADE (with Lgmap) 26.6± 3.8∗#†‡ 28.4± 4.0∗#†‡ 24.0± 4.9∗#†‡ 28.2± 4.5∗#†‡

** Denotes the orientation that the SRR was applied to.
* Denotes statistical differences from low-resolution data (p < 0.05).

# Denotes statistical differences from SMORE (p < 0.05).
† Denotes statistical differences from conventional CycleGAN (p < 0.05).
‡ Denotes statistical differences from CLADE (no Lgmap) (p < 0.05).

Table 3.16: Quantitative edge sharpness and estimated SNR (µ±σ) as calculated across all
slices in the CT and MRI test volumes. Note that the conventional CycleGAN
is not included in the CT results due to model collapse.

Model Edge Sharpness (mm−1) Signal Noise SNR

MRI
Low-resolution 0.19 ± 0.04 154.5 ± 34.2 3.1 ± 1.2 55.8 ± 21.5

SMORE 0.23 ± 0.05∗ 132.5 ± 46.0 3.6 ± 1.5 39.5 ± 15.4
Conventional CycleGAN 0.21 ± 0.05∗ 147.6 ± 46.4 3.3 ± 1.7 56.6 ± 32.7

CLADE (no Lgmap) 0.22 ± 0.04∗ 163.8 ± 39.8 2.6 ± 1.2 73.9 ± 35.3#

CLADE (with Lgmap) 0.28 ± 0.04∗#†‡ 162.5 ± 36.6 3.2 ± 1.3 56.7 ± 21.9

CT
Low-resolution 0.19 ± 0.03 167.0 ± 53.5 1.5 ± 1.2 153.6 ± 81.5

SMORE 0.26 ± 0.05∗ 101.4 ± 41.5∗ 1.1 ± 0.9 118.2 ± 64.4
CLADE (no Lgmap) 0.29 ± 0.04∗ 167.1 ± 50.4# 1.7 ± 1.2 196.4 ± 124.3

CLADE (with Lgmap) 0.29 ± 0.03∗ 167.3 ± 53.8# 1.4 ± 1.4 130.6 ± 68.4

* Denotes statistical differences from low-resolution data (p < 0.05).
# Denotes statistical differences from SMORE (p < 0.05).

† Denotes statistical differences from conventional CycleGAN (p < 0.05).
‡ Denotes statistical differences from CLADE (no Lgmap) (p < 0.05).

The edge sharpness was significantly higher for all DL-SRR networks com-

pared to the low-resolution volumes (p < 0.05) for both MRI and CT data. In

MRI, CLADE (Lgmap) was found to have a significantly higher edge sharpness than

SMORE, the conventional CycleGAN and CLADE (no Lgmap). No significant dif-

ferences were found in the estimated SNR between the low-resolution data and any

of the DL-SRR networks in either the MRI or CT data. All networks had similar
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estimated SNR, with the only significant difference found between MRI CLADE

(no Lgmap) and MRI SMORE (due to higher signal and lower noise measurements

in CLADE (no Lgmap).



Chapter 4

Discussion

A critical aspect in evaluating CLADE’s clinical applicability involves validation

against established gold standards. Ideally, super-resolution reconstruction methods

should be benchmarked against high-resolution ground-truth images acquired using

high-fidelity imaging protocols. However, obtaining true high-resolution isotropic

datasets in medical imaging often proves challenging due to scan time constraints

and patient motion. Despite these limitations, several validation approaches could

strengthen the robustness of our proposed method.

As included in this thesis, the most direct validation method would involve

acquiring isotropic high-resolution 3D MRI or CT scans and artificially downsam-

pling them to simulate the low-resolution anisotropic data used for CLADE training.

The reconstructed images could then be compared to the original high-resolution

scans using quantitative metrics such as Peak Signal-to-Noise Ratio, Structural Sim-

ilarity Index, and Mean Absolute Error. This approach has been successfully imple-

mented in brain imaging studies, where ultra-high-field MRI serves as a reference

standard compared to standard field strength imaging. Similarly, for CT, reference

data could be derived from high-resolution acquisitions from cadaveric imaging

datasets, phantom-based images or dedicated high-dose scans.

Building on these quantitative assessments, another robust validation approach

involves utilizing longitudinal patient imaging data where high-resolution follow-

up scans exist. In cases where lesions are detected at later stages on high-resolution

scans, their earlier presence could be assessed retrospectively in CLADE-enhanced
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images from previous low-resolution scans. This would demonstrate whether

CLADE enables earlier and more accurate lesion detection in clinical practice.

The main limitation to these approaches, however, is the lack of support for

evaluation of images that contain tissue motility, which would render use in anatom-

ical sites such as the abdomen or heart less robust. To address this challenge, in the

absence of paired high-resolution scans, expert radiologist assessments could offer

an alternative gold standard. Radiologists could review CLADE-enhanced images

alongside original low-resolution scans, evaluating them based on diagnostic con-

fidence, anatomical clarity, and lesion detectability. Blind studies comparing the

clinical usability of CLADE-enhanced images to standard scans could provide real-

world validation of its effectiveness in clinical settings.

While initially demonstrated on abdominal MRI and CT datasets, CLADE’s

principles can extend to other anatomical regions given appropriate training data.

Different anatomical regions present unique challenges and require specific vali-

dation standards. Brain imaging validation could involve ultra-high-field MRI or

histological validation using post-mortem imaging studies, along with comparisons

to diffusion-weighted imaging data to assess white matter microstructure preser-

vation. For cardiac imaging, high-resolution cine MRI or 4D flow imaging could

serve as gold standards, with additional comparisons to contrast-enhanced CT or

late gadolinium enhancement MRI for scar and ischemia detection. Musculoskele-

tal imaging validation might utilize micro-CT or ultra-high-field MRI of joints and

cartilage to assess fine structural preservation, while thoracic imaging could be val-

idated against high-resolution lung CT from dedicated thin-slice protocols, with

additional comparisons to functional imaging modalities to validate anatomical fea-

ture preservation. These expanded validation strategies would not only strengthen

CLADE’s clinical applicability but also pave the way for its potential integra-

tion into routine clinical workflows across multiple medical domains and imaging

modalities.



Chapter 5

Conclusion

In conclusion, this thesis presents CLADE, a novel unsupervised patch-based

method for super-resolving anisotropic medical images, evaluated on true

anisotropic datasets from both MRI and CT scans. One of the key strengths of

CLADE is its versatility across different imaging modalities, including MRI and

CT, without requiring any supervised guidance. This is of significant benefit in med-

ical imaging, where obtaining paired high-resolution and low-resolution datasets is

often infeasible due to limitations in data acquisition. By operating in a completely

unsupervised fashion, CLADE eliminates the need for paired datasets, making it

particularly valuable in clinical contexts where such data is scarce. The model’s

ability to generate high-resolution images from low-resolution inputs without paired

examples opens new possibilities for improving diagnostic imaging.

A distinctive feature of CLADE is its approach to learning a resolution map-

ping between disjoint patches from the low-resolution and high-resolution planes,

enabling effective super-resolution of the entire image. Unlike traditional methods

that require supervision through paired patches, CLADE operates without this con-

straint, allowing it to independently super-resolve patches and reconstruct the full

image without explicit pairing information. This disjoint patch-based approach en-

hances the model’s flexibility, consistently outperforming existing methods such as

SMORE and CycleGAN in terms of image quality, as demonstrated in our experi-

ments.

The incorporation of a weight demodulation process further strengthens
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CLADE by stabilising training and reducing visual artifacts and normalisation er-

rors that typically arise during patch reconstruction. These issues, which may be

prominent in conventional patch-based architectures like the CycleGAN, are effec-

tively addressed via the weight demodulation process, resulting in more accurate

and visually coherent image reconstructions.

Additionally, the introduction of a gradient-mapping loss played a critical role

in enhancing both the sharpness and perceptual quality of the super-resolved im-

ages. By aligning edge gradients between the high-resolution input and the super-

resolved low-resolution output, this loss contributed to improved PIQUE scores and

sharper visual results. However, while effective, this loss is not without limitations;

it acts solely on image gradients, without accounting for underlying motion or noise,

which in some cases could lead to the sharpening of unwanted features or artifacts.

Despite the promising results, there are several limitations to this study. A

key challenge was the difficulty in quantitatively assessing image quality due to the

lack of paired training data in anisotropic medical scans, which inherently do not

have ground-truth comparisons. While no-reference image quality metrics such as

PIQUE, NIQUE, and BRISQUE were used, these metrics remain somewhat heuris-

tical. A more robust evaluation would require expert clinician scoring, which was

logistically unfeasible for this study given its broad experimental scope. More-

over, while CLADE demonstrated superior performance over existing models, this

study did not compare it against some newer architectures due to time constraints

and the unavailability of source code. Future work should address this by incor-

porating comparisons to more recently developed models. Another limitation was

the absence of task-specific evaluations, such as image registration, detection, or

segmentation, which would require high-resolution isotropic data for ground-truth

comparison. Moving forward, it will be important to assess CLADE’s performance

on such tasks with access to high-resolution isotropic 3D data.

Additionally, CLADE does not explicitly handle motion artifacts, such as

ghosting in MRI scans, which may be exacerbated during the super-resolution pro-

cess. Future work should investigate techniques for concurrent motion artifact
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suppression to further enhance image quality. A broader evaluation across larger

datasets, sourced from multiple sites, vendors, and imaging contrasts, will also be

critical to validate the method’s generalisability under domain shift, although the

successful application across both MRI and CT data suggests strong potential for

wide applicability. Finally, the current approach trained CLADE using patches from

a single low-resolution dimension. Future research should explore training with dis-

joint patches from both low-resolution dimensions simultaneously to assess whether

this leads to further improvements.

In summary, while CLADE introduces an effective and flexible method for the

super-resolution of anisotropic medical images, there remain several avenues for

future exploration, including task-specific evaluations, motion artifact suppression,

and testing on larger, more diverse datasets. Addressing these will be key to refining

and expanding CLADE’s utility across various medical imaging applications.
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