

Journal of
**Epidemiology &
 Community Health**

Genetic contributions to the educational inequalities in coronary heart disease incidence: a population-based study of 32000 middle-aged men and women

Journal:	<i>Journal of Epidemiology & Community Health</i>
Manuscript ID	jech-2024-222618.R2
Article Type:	Original research
Date Submitted by the Author:	n/a
Complete List of Authors:	Silventoinen, Karri; University of Helsinki, Helsinki Institute for Demography and Population Health Lahtinen, Hannu; University of Helsinki, Helsinki Institute for Demography and Population Health; Max Planck – University of Helsinki Center for Social Inequalities in Population Health Korhonen, Kaarina; University of Helsinki, Helsinki Institute for Demography and Population Health; Max Planck – University of Helsinki Center for Social Inequalities in Population Health Morris, Tim; University College London Martikainen, Pekka; University of Helsinki, Helsinki Institute for Demography and Population Health; Max Planck – University of Helsinki Center for Social Inequalities in Population Health; Max-Planck-Institute for Demographic Research
Keywords:	CORONARY HEART DISEASE, EDUCATION, GENETICS, Health inequalities

SCHOLARONE™
 Manuscripts

1
2
3 Genetic contributions to the educational inequalities in coronary heart disease incidence:
4 a population-based study of 32000 middle-aged men and women
5
6

7 Karri Silventoinen^{1*}, Hannu Lahtinen^{1,2}, Kaarina Korhonen^{1,2}, Tim T Morris³, Pekka
8 Martikainen^{1,2,4}
9

10 1. Helsinki Institute for Demography and Population Health, University of Helsinki, Helsinki,
11 Finland
12 2. Max Planck – University of Helsinki Center for Social Inequalities in Population Health,
13 Helsinki, Finland
14 3. Centre for Longitudinal Studies, Social Research Institute, University College London, London,
15 UK.
16 4. Max-Planck-Institute for Demographic Research, Rostock, Germany
17
18
19
20
21
22
23
24

25 Word count: 3279
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45 *Correspondence address:
46 Karri Silventoinen, PhD
47 Helsinki Institute for Demography and Population Health
48 University of Helsinki
49 P.O. Box 41, FIN-00014 University of Helsinki, Finland
50 tel: +358400-620726
51 E-mail: karri.silventoinen@helsinki.fi
52
53
54
55
56
57
58
59
60

1 2 3 ABSTRACT 4 5 6 7

8 Background: The background of educational disparities in coronary heart disease (CHD) risk is still
9 not well understood. We utilized a polygenic score for education (PGS_{EDU}), socioeconomic
10 indicators, and indicators of CHD risk to investigate whether these disparities result from causality
11 or are influenced by shared factors.
12
13
14
15

16
17
18 Methods: Population-based health surveys including baseline measures on cardiometabolic risk
19 factors at 25 – 70 years of age (N=32,610) and PGS_{EDU} were conducted in Finland between 1992
20 and 2011. Longitudinal information on education, social class, income, and CHD incidence (1716
21 CHD cases up to 2019) were based on national registers. Linear regression, Poisson regression, Cox
22 regression, and linear structural equation models were used.
23
24
25
26
27
28
29

30
31
32 Results: Education and PGS_{EDU} were inversely associated with body mass index (BMI), systolic
33 and diastolic blood pressure, total cholesterol and CHD incidence and positively associated with
34 high-density lipoprotein cholesterol in men and women. Part of the associations of PGS_{EDU} with
35 CHD incidence (57% in men and 28% in women) and cardiometabolic factors (30 – 55% and 31%
36 – 92%, respectively) were mediated by education, social class, and income, but a substantial part of
37 them was independent of socioeconomic factors. These associations were consistent across different
38 levels of education.
39
40
41
42
43
44
45
46
47

48
49
50
51 Conclusion: PGS_{EDU} captures CHD risk that is not solely attributable to education and other
52 socioeconomic indicators. This suggests that not only causality affects the educational disparities of
53 CHD risk, but also factors reflected by PGS_{EDU} can contribute to them. Identifying these factors can
54 help to understand and reduce socioeconomic health disparities.
55
56
57
58
59
60

1
2
3 **KEY MESSAGES**
4
5

- 6 • What is already known on this topic?
7
8 The polygenic score for education is associated with the risk of coronary heart disease, but it
9 remains uncertain whether this association is solely due to education or if there are other
10 mechanisms explaining it.
11
12

- 13 • What this study adds?
14
15

16 The polygenic score for education was found to be associated with the incidence of coronary heart
17 disease and key cardiometabolic risk factors, but only a portion of these associations could be
18 explained by measured education, social class, and income.
19
20

- 21 • How this study might affect research, practice or policy?
22
23

24 Genetic variants related to education provide insight into the risk of coronary heart disease that is
25 not fully captured by direct measures of socioeconomic position.
26
27

1 2 3 INTRODUCTION 4 5 6 7

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Cardiovascular diseases (CVD) are strongly socially patterned (1), and in Northern Europe, they account for a significant proportion of socioeconomic mortality inequalities (2). Behavioral factors, such as smoking, excessive alcohol consumption, and an unhealthy diet, play a crucial role in mediating the link between low social position and a higher risk of CVD, particularly in Northern Europe and North America (3). The impact of health behavior on the social disparities in CVD risk underscores the potential importance of education, as it can improve health through, for example, better health literacy (4). This hypothesis is supported by a natural experiment in the UK, which found that a legislation reform to raise the minimum school leaving age resulted in a lower CVD risk, decreased blood pressure, and reduced smoking rates (5,6). However, no reduction in CVD mortality was observed following a similar school reform in Sweden (7). Therefore, further research is needed to understand the underlying mechanisms linking education and CVD risk.

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Recent advancements in genetic epidemiology provide new opportunities to gain insight into the associations between education and CVD. Previous studies have shown that genetic predisposition to education, as measured by a polygenic score (PGS_{EDU}), is associated with CVD incidence (6,8). However, aside from the direct influence of education on CVD risk, there are mechanisms that may explain this association. Education is a multifactorial trait influenced by genetic and environmental factors (9). PGS_{EDU} correlates with cognitive outcomes (10), and the expression of candidate genes associated with education is enriched in brain tissue (11). Additionally, there is a significant overlap in genetic polymorphisms associated with education between European and East Asian populations (11). This suggests a neurophysiological basis for these genetic influences that is not limited to the Western social context. In addition to IQ, genetic factors associated with education can also be linked to personality factors (12). Since both IQ (13,14) and personality (15) can explain

1
2
3 socioeconomic inequalities in CHD risk, they offer plausible pathways for how PGS_{EDU} can impact
4
5 CHD risk. PGS_{EDU} can also reflect social factors, including childhood family through shared parent-
6
7 offspring genetic effects, that can operate indirectly through pathways such as parental education
8
9 (16), one's own family through assortative mating (17), or surrounding environment through
10
11 selective migration (18). However, associations between PGS_{EDU} and different health outcomes
12
13 have also been found within siblings, suggesting that this association is not solely explained by the
14
15 childhood family environment (19,20). Furthermore, external factors that promote or hinder
16
17 participation in education can explain the associations between education and CHD risk. These can
18
19 be, for example, related to poor material resources leading to lower education than predicted by
20
21 cognitive skills. Thus, it is important to consider mechanisms other than the direct impact of
22
23 education that contribute to the association between education and CHD risk.
24
25
26
27
28
29
30

31 We aim to analyze the association between PGS_{EDU} and coronary heart disease (CHD) risk, both
32
33 before and after adjusting for measured education. We present the following hypotheses regarding
34
35 the relationship between education and CHD risk: i) If the association is solely due to the direct
36
37 effect of education, PGS_{EDU} is not associated with CHD risk after adjusting for education. ii) If
38
39 cognitive and other factors represented by PGS_{EDU} contribute to this association, PGS_{EDU} adjusted
40
41 for education is inversely associated with CHD risk. iii) If external factors that either promote or
42
43 hinder education contribute to this association, PGS_{EDU} adjusted for education is positively
44
45 associated with CHD risk. Our results can help to untangle various biases that can affect the
46
47 phenotypic level associations between education and CHD risk found in observational studies and
48
49 thus contribute to the triangulation of these findings (21). We will also adjust the results for other
50
51 social indicators, as they can capture different aspects of social variation than education (22).
52
53 Additionally, we will analyze whether the effect of PGS_{EDU} varies across educational categories.
54
55
56
57
58
59
60

1
2
3 CHD risk is assessed using CHD incidence and cardiometabolic risk factors allowing us to consider
4
5 the role of potentially preventable risk factors behind CHD incidence.
6
7
8
9

10 **DATA AND METHODS**
11
12
13
14

15 **Data source**
16
17
18

19 Finnish population-based health surveys (FINRISK 1992, 1997, 2002, 2007, and 2012 surveys,
20 Health 2000 and 2011 surveys, and FinHealth 2017 survey) with the proportions of respondents
21 ranging from 65% to 93% were combined (23). During the baseline examination, participants had
22 their body mass index (BMI), systolic blood pressure (SBP), and diastolic blood pressure (DBP)
23 measured. They also provided blood samples for genotyping and assessment of total cholesterol and
24 high-density lipoprotein (HDL) cholesterol levels and self-reported their smoking status (never
25 smoker, former smoker, current smoker) and the number of alcoholic drinks consumed per week.
26 Alcohol consumption was converted to pure alcohol and categorized as 0, 1–47, 48–191, and more
27 than 191 grams of pure alcohol per week (24). These baseline data were linked to several
28 population-based registers. Due to restrictions on register coverage for socioeconomic indicators,
29 we selected participants born between 1935 and 1980. After this restriction, all participants were 25
30 years of age or older at the time of the clinical examination. Participants older than 70 years
31 (N=1567) were removed to make the data more homogeneous by age. Following these adjustments,
32 the study cohort consisted of 35,413 participants.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The longitudinal information on CHD incident cases was obtained from the Hospital Discharge
Register for non-fatal cases (ICD-9 codes 410 or 4110 and ICD-10 codes I20.0 and I21 – I22) and
the National Mortality Register for fatal cases without previous hospitalization (ICD-9 codes 410 –

1
2
3 414 and 798, excluding 7980A and ICD-10 codes I20 – I25, I46, R96 and R98), covering the entire
4
5 Finnish population. We excluded individuals with pre-baseline CHD events (N=464), as well as
6
7 those with missing data (N=68) or outlier measures (N=521) of the cardiometabolic factors.
8
9 Additionally, we randomly removed one individual from pairs with an identity-by-descent (IBD)
10
11 value ≥ 0.178 (N=1750), indicating at least second-degree relatives. Our final sample size used in all
12
13 analyses was 32,610 participants (17,474 women). Participants with missing information on
14
15 smoking (N=175) and alcohol consumption (N= 592) were removed from analyses adjusted for
16
17 health behavior. By the end of follow-up on December 31, 2019, we had 1716 CHD cases during
18
19 the 479,248 person-years.
20
21
22

23
24
25 Education and occupation-based social class were derived from the Finnish population register.
26
27 Education was based on the highest completed degree up to the end of 2019 and classified into four
28
29 categories: basic, secondary, lower tertiary, and higher tertiary education. Secondary education was
30
31 the largest category for both men (42%) and women (38%), while a minority of participants (11%
32
33 of men and 13% of women) had higher tertiary education (Supplementary table 1). Social class was
34
35 measured at the age of 40 or, if missing, at the most recent previous measurement when the
36
37 individual was employed and classified into five categories (manual workers, lower non-manual
38
39 workers, upper non-manual workers, entrepreneurs, and farmers). Income was based on personal
40
41 taxable income from the Tax register. We first calculated the yearly income percentiles among the
42
43 35 – 40-year-old population for each year an individual belonged within this age group. Then, we
44
45 took the mean of these percentile ranks and split them further into quintiles to also allow for non-
46
47 linear associations. Information for education and income was available every 5-years between
48
49 1970 and 1985 and yearly between 1987 and 2019. Information on social class was available every
50
51 5-years between 1970 and 2005 and yearly between 2006 and 2018. For social class and income,
52
53 4055 persons had missing values and were removed from analyses adjusted for these variables.
54
55
56
57
58
59
60

We calculated PGS_{EDU} using the summary scores from the genome-wide association (GWA) study conducted by Okbay and colleagues (10). Participants in the 23andMe data collection were excluded from these summary scores due to privacy policies. Additionally, individuals overlapping with our analysis sample were also excluded to prevent overfitting of PGS_{EDU}. PGS_{EDU} was defined by SBayesR, which generates linkage disequilibrium-weighted scores using the summary GWA scores and an external banded linkage disequilibrium matrix from HapMap3 single nucleotide polymorphisms with a minor allele frequency of at least 0.01 in our data (25). Linkage disequilibrium adjustment of PGS_{EDU} GWA scores was conducted with GCTB 2.03 and genetic principal components, genetic relatedness, and PGS_{EDU} with PLINK 1.9–2.0 software. In our data, the correlation between PGS_{EDU} and education was 0.28 in men and 0.27 in women. Furthermore, we observed that PGS_{EDU} was 0.05 standard deviations (SD) higher in men than in women (95% confidence intervals (CI) 0.03 – 0.08), suggesting that men are more selected than women in these cohorts.

Statistical modeling

We initiated the statistical modeling by analyzing the associations between measured education and cardiometabolic factors (BMI, SBP, DBP, HDL cholesterol, and total cholesterol) using linear regression and CHD incidence using Poisson regression model. All results were adjusted for age at baseline, region of residence, the first 10 principal components of genetic population structure, and the survey round-genotyping batch combination to account for possible population stratification or subtle differences between genotyping and data collection rounds. Next, we examined the association between PGS_{EDU} and cardiometabolic factors first at the population level and then stratified by education. Subsequently, we adjusted the results for education, social class, and

1
2
3 income. We extended these analyses to examine CHD incidence using the Cox proportional hazards
4 regression model. In these longitudinal analyses, we initially adjusted the models for age and
5 population structure indicators, followed by education, social class, and income, then for
6
7 cardiometabolic risk factors, and finally for smoking and alcohol consumption as indicators of
8 health behavior. Given the correlation between SBP and DBP (0.59 in men and 0.60 in women
9 when adjusted for age and age square) and the weak association of DBP with CHD incidence in the
10 model including SBP ($p=0.726$ and 0.515, respectively), we only included SBP in the models to
11 avoid multicollinearity. Following these analyses, we quantified the direct and indirect effects of
12 PGS_{EDU} (i.e., effects mediated via observed education) on cardiometabolic factors and CHD risk
13 using structural equation methodology (Supplementary figure 1). The modeling was performed
14 using Stata 16.1 statistical software. Huber-White standard errors were utilized to address potential
15 heteroscedasticity of residuals in the regression models. P-values were calculated using the
16 goodness of fit statistics of the nested models.

35 RESULTS

36
37
38
39
40 Table 1 presents the means of cardiometabolic traits and CHD incidence by education and sex
41 adjusted for age and population stratification (the unadjusted statistics are available in
42 Supplementary tables 1 and 2). Women had healthier cardiometabolic values (lower BMI, blood
43 pressure, and total cholesterol and higher HDL-cholesterol) and lower CHD incidence compared to
44 men. In both men and women, those with higher education had a lower risk of CHD. When all
45 educational coefficients were tested together, they showed associations with cardiometabolic factors
46 ($p<0.00001$) and CHD incidence ($p<0.00001$ in men and $p=0.0002$ in women). However, these
47 social gradients were more pronounced in women than in men, as indicated by the interaction
48 effects between sex and education used as a categorized variable ($p<0.00001$ for BMI and blood
49 pressure, $p<0.00001$ for total cholesterol, $p=0.0002$ for HDL-cholesterol, and $p=0.0002$ for CHD
50 incidence).
51
52
53
54
55
56
57
58
59
60

1
2
3 pressure, $p=0.030$ for total cholesterol, and $p=0.0803$ for HDL-cholesterol; the interaction
4
5 parameters are available in Supplementary table 3).

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Table 2 presents the mean differences of cardiometabolic traits per 1 SD of PGS_{EDU} (for HDL and total cholesterol, the regression coefficients were multiplied by 100 to reduce the number of decimals). Higher PGS_{EDU} was associated with healthier cardiometabolic values (lower BMI, blood pressure, and total cholesterol and higher HDL-cholesterol) in both men and women (Model 1). When comparing the regression coefficients of PGS_{EDU} between sexes and testing for interaction effects, the associations with PGS_{EDU} were stronger for women than for men in BMI ($p<0.0001$) and HDL-cholesterol ($p=0.0039$). Sex interactions for SBP and DBP were small and could be attributed to sampling error. For total cholesterol, the association with PGS_{EDU} was slightly stronger in men than in women ($p=0.0600$). After adjusting for education, social class, and income (Model 2), the associations between PGS_{EDU} and cardiometabolic traits decreased by 31% to 52% but remained statistically significant. The only exception was total cholesterol in women, where the association was almost fully explained (92%). PGS_{EDU} was associated with cardiometabolic traits across all educational categories (Model 1) without significant differences between them (p -values of the interactions between classified education and PGS_{EDU} 0.0316 – 0.9351). Adjustments for social class and income explained a portion of the associations in analyses stratified by education (Model 2), but the decrease in the estimates was generally smaller than what was found in the analyses including all men and women.

51
52
53
54
55
56
57
58
59
60
Next, we analyzed how PGS_{EDU} was associated with CHD incidence (Table 3). Higher PGS_{EDU} was found to be associated with a lower risk of CHD, with hazard ratios per 1 SD of PGS_{EDU} being consistent in both men ($HR=0.86$) and women ($HR=0.86$) (p -value of the interaction between sex and PGS_{EDU} 0.6566) (Model 1). When studying all participants, adjustments for education, income,

1
2
3 and social class explained a portion of this association (57% in men and 28% in women), yet
4
5 PGS_{EDU} remained associated with CHD incidence (Model 2). Further adjustments for
6
7 cardiometabolic factors (Model 3) weakened these associations (additional 15% in men 21% in
8
9 women compared to Model 1). Finally, the adjustments for smoking and alcohol consumption fully
10
11 explained the association between PGS_{EDU} and CHD incidence in men (Model 4). When stratified
12
13 by education, PGS_{EDU} showed a weak association with CHD (Model 1). The associations between
14
15 PGS_{EDU} and CHD incidence were consistent across educational categories, with the p-values of
16
17 interaction effects between PGS_{EDU} and categorized education not reaching statistical significance
18
19 ($p=0.6315 - 0.8130$). Adjustments for income and social class (Model 2) and cardiometabolic
20
21 factors (Model 3) further reduced the associations between PGS_{EDU} and CHD incidence and the
22
23 adjustments for smoking and alcohol consumption fully explained them in men (Model 4) when
24
25 stratified by education.
26
27
28
29

30
31
32 Finally, we estimated the direct and indirect effects of PGS_{EDU} (mediated via observed education)
33
34 on cardiometabolic factors and CHD risk (Table 4) using structural equation modeling
35
36 (Supplementary figure 1). The proportions of mediated influences of PGS_{EDU} varied from 20% for
37
38 DBP in females to 84% for total cholesterol in females. However, both the direct and indirect
39
40 influences of PGS_{EDU} were statistically significant.
41
42
43

44 45 46 47 DISCUSSION

48 49 50 51 Main findings

52
53
54
55 In this large population-based study, we found that genetic liability for higher education, as
56
57 measured by PGS_{EDU}, was associated with lower CHD incidence and healthier cardiometabolic risk
58
59
60

1
2 profiles. These associations were partially explained by measured education, occupational-based
3 social class, and income, but they persisted even after these adjustments. PGS_{EDU} was also
4 associated with CHD incidence and cardiometabolic risk factors in a similar way across different
5 levels of education. The adjustment for metabolic and behavioral risk factors of CHD largely
6 explained the association between PGS_{EDU} and CHD incidence supporting the idea that behavioral
7 factors are important mediators between genetic liability for education and CHD risk. Previous
8 studies have shown associations between PGS_{EDU} and CHD risk (6,8), and similar associations
9 between PGS_{EDU} and various health outcomes have also been found within sibling pairs (19,20).
10 Our results suggest that the associations from PGS_{EDU} to CHD risk are not solely through education
11 or other socioeconomic indicators associated with education, but rather there may be additional
12 mechanisms mediating these associations. Genetic variants related to education, and more broadly
13 socioeconomic status, can thus provide new insights into the mechanisms mediating the impact of
14 low socioeconomic status on adverse health outcomes that have been discussed for decades (26).
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Possible explanations

PGS_{EDU} reflects psychological and social factors that likely contribute to the direct effect of PGS_{EDU} on CHD risk. In contrast, external factors that hinder or promote education do not seem to affect CHD risk. PGS_{EDU} is associated with cognitive outcomes (10), and the expression of candidate genes related to education is enriched in brain tissue suggesting that cognitive factors play a significant role (11). Additionally, personality can explain the genetic liability of education (12). Both IQ (13,14) and personality (15) are linked to CHD risk, supporting their contribution to the association between PGS_{EDU} and CHD risk. We also found that the association between PGS_{EDU} and CHD risk remains consistent across all levels of educational classification including those with only basic education. This aligns with a previous study indicating that IQ measured in early

1
2
3 childhood was associated with CHD mortality across various levels of parental education, own
4 education, and social class (27). PGS_{EDU} can also reflect social factors, especially the childhood
5 home (16), one's own family (17), and the neighborhood of residence (18), all of which can impact
6
7 CHD risk (28). While we cannot separate these social effects from individual-level psychological
8 factors, our results indicate that if they have impact on CHD risk, these associations can be
9 independent of education and other social indicators. It is also possible that educational
10 classification may not capture all variation in education that could lead to lower CHD risk. For
11 instance, high family social position increases the likelihood of studying fields like law, economics,
12 and medicine in Finland, which typically result in high social status (29). However, even after
13 adjusting for occupation-based social position and incomes, PGS_{EDU} remained associated with CHD
14 risk.
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Sex differences

Even though educational disparities in CHD incidence and cardiometabolic factors were evident in both sexes, these associations were systematically stronger in women than in men. Previous studies have shown that while social differences in smoking (30) and alcohol consumption (31) are larger in men than in women, social differences in obesity are typically larger in women (32). Thus, the sex interactions with social indicators can vary between health outcomes. Interestingly, we found that when using PGS_{EDU}, the sex interactions were not as consistent as those found for education, and stronger associations in women were evident only for BMI and HDL-cholesterol. These findings may reflect lower statistical power for PGS_{EDU} compared to observed education, but they may also indicate real differences in the background of educational health inequalities between men and women. For example, it is possible that in women, education is more directly associated with CHD risk than in men due to stronger cultural pressure on health-related behaviors among highly

1
2
3 educated women. This has been observed in relation to BMI (32), but solid evidence is still lacking
4
5 for other potential health behaviors affecting CHD risk, such as diet and physical exercise.
6
7
8
9

10 **Strengths and limitations**

11

12

13

14

15 Our data have both strengths and limitations. The strengths of our data include a large sample size
16 that allowed us to reliably estimate the associations between PGS_{EDU} and CHD risk, as well as the
17 high response rates for the baseline surveys that reduced biases related to participant selectivity. All
18 social indicators were register-based eliminating recall bias. Additionally, we were able to reduce
19 measurement heterogeneity by assessing social position at the same age. Our register-based follow-
20 up of fatal and non-fatal CHD incidence minimized bias due to selective drop-out. However, despite
21 the high response rates, there is likely selection bias in our data, as participation rates are higher
22 among those with higher education (33). This bias may be more pronounced in men, as we observed
23 slightly higher PGS_{EDU} in men. The correlation between PGS_{EDU} and education was lower in our
24 data than in the original GWA study (10), which may be because of genetic differences between
25 Finnish and other European populations (34).
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CONCLUSIONS

43
44
45
46
47 We found that PGS_{EDU} is associated with CHD incidence and cardiometabolic factors. These
48 associations are only partially mediated by education itself or other indicators of social position.
49
50 While educational gradients were steeper in women compared to men, there was less evidence for
51 sex interactions with PGS_{EDU}. Our results suggest that PGS_{EDU} captures CHD risk that is not solely
52 attributable to education or other socioeconomic indicators. This suggests that PGS_{EDU} may capture
53 residual variation in social position that is not measured by available socioeconomic indicators, but
54
55
56
57
58
59
60

1
2
3 it can also indicate different mechanisms than causal effects contributing to educational disparities
4 in CHD risk. Genetic-level data may provide new insights into the underlying mechanisms of social
5
6 disparities in CHD incidence.
7
8

9
10
11 Ethical approval: This study involves human participants. The Statistics Finland Board of Ethics
12 (TK/2041/07.03.00/2023) and the Finnish Social and Health Data Permit Authority Findata
13 (THL/706/14.06.00/2024) have accepted the use of clinical data and the data linkage to the Finnish
14 population registers. All participants gave informed consent when participating in the study. The
15 samples/data used for the research were obtained from THL Biobank (study number:
16
17 THLBB2023_51).
18
19
20
21
22
23
24
25
26
27

28 Data availability statement: The data underlying this article were provided by third party by
29 permission and is not publicly available. Data will be shared on request to the corresponding author
30 with permission of third party.
31
32
33

34
35 Author contributions: All authors contributed to the study conception and design. KS performed the
36 analyses and prepared the first draft of the manuscript. HL created the polygenic risk score and
37 helped in the genetic part of the analyses. HL, KK, TTM and PM revised the manuscript critically
38 for important intellectual content. All authors approved the final version of the manuscript are agree
39 to be accountable for all aspects of the work. KS acts as the guarantor for the paper.
40
41
42
43
44
45
46
47
48
49
50

51 Funding: PM and HL were supported by the European Research Council under the European
52 Union's Horizon 2020 research and innovation programme (grant agreement No 101019329), the
53 Strategic Research Council (SRC) within the Academy of Finland grants for ACElife (#352543-
54 352572) and LIFECON (# 345219), and grants to the Max Planck – University of Helsinki Center
55
56
57
58
59
60

1
2
3 from the Jane and Aatos Erkko Foundation (#210046), the Max Planck Society (# 5714240218),
4
5 University of Helsinki (#77204227), and Cities of Helsinki, Vantaa and Espoo. TTM is funded by
6
7 the Economic and Social Research Council (ESRC) [ES/W013142/1].
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acknowledgements: We thank all study participants for their generous participation in biobank research.

Conflict of interests statement: None declared.

References

1. Veronesi G, Ferrario MM, Kuulasmaa K, Bobak M, Chambless LE, Salomaa V, et al. Educational class inequalities in the incidence of coronary heart disease in Europe. *Heart*. 2016;102(12):958–65.
2. Kulhánová I, Bacigalupe A, Eikemo TA, Borrell C, Regidor E, Esnaola S, et al. Why does Spain have smaller inequalities in mortality? An exploration of potential explanations. *Eur J Public Health*. 2014;24(3):370–7.
3. Petrovic D, de Mestral C, Bochud M, Bartley M, Kivimäki M, Vineis P, et al. The contribution of health behaviors to socioeconomic inequalities in health: A systematic review. *Prev Med*. 2018;113:15–31.
4. Sørensen K, Pelikan JM, Röthlin F, Ganahl K, Slonska Z, Doyle G, et al. Health literacy in Europe: comparative results of the European health literacy survey (HLS-EU). *Eur J Public Health*. 2015;25(6):1053–8.
5. Davies NM, Dickson M, Davey Smith G, van den Berg GJ, Windmeijer F. The causal effects of education on health outcomes in the UK Biobank. *Nat Hum Behav*. 2018 Feb;2(2):117–25.
6. Davies NM, Dickson M, Davey Smith G, Windmeijer F, van den Berg GJ. The causal effects of education on adult health, mortality and income: evidence from Mendelian randomization and the raising of the school leaving age. *Int J Epidemiol*. 2023;52(6):1878–86.
7. Lager ACJ, Torssander J. Causal effect of education on mortality in a quasi-experiment on 1.2 million Swedes. *Proc Natl Acad Sci U S A*. 2012;109(22):8461–6.
8. Tillmann T, Vaucher J, Okbay A, Pikhart H, Peasey A, Kubanova R, et al. Education and coronary heart disease: mendelian randomisation study. *BMJ*. 2017;358:j3542.
9. Silventoinen K, Jelenkovic A, Sund R, Latvala A, Honda C, Inui F, et al. Genetic and environmental variation in educational attainment: an individual-based analysis of 28 twin cohorts. *Sci Rep*. 2020;10(1):12681.

1
2
3 10. Okbay A, Wu Y, Wang N, Jayashankar H, Bennett M, Nehzati SM, et al. Polygenic
4 prediction of educational attainment within and between families from genome-wide association
5 analyses in 3 million individuals. *Nat Genet*. 2022 Apr;54(4):437–49.
6
7 11. Chen TT, Kim J, Lam M, Chuang YF, Chiu YL, Lin SC, et al. Shared genetic
8 architectures of educational attainment in East Asian and European populations. *Nat Hum Behav*.
9 2024 Mar;8(3):562–75.
10
11 12. Starr A, Riemann R. Common genetic and environmental effects on cognitive ability,
12 conscientiousness, self-perceived abilities, and school performance. *Intelligence*.
13 2022;93:101664.
14
15 13. Batty GD, Der G, Macintyre S, Deary IJ. Does IQ explain socioeconomic inequalities
16 in health? Evidence from a population based cohort study in the west of Scotland. *BMJ*. 2006
17 Mar 11;332(7541):580–4.
18
19 14. Batty GD, Shipley MJ, Dundas R, Macintyre S, Der G, Mortensen LH, et al. Does IQ
20 explain socio-economic differentials in total and cardiovascular disease mortality? Comparison
21 with the explanatory power of traditional cardiovascular disease risk factors in the Vietnam
22 Experience Study. *Eur Heart J*. 2009 Aug;30(15):1903–9.
23
24 15. Nabi H, Kivimäki M, Marmot MG, Ferrie J, Zins M, Ducimetière P, et al. Does
25 personality explain social inequalities in mortality? The French GAZEL cohort study. *Int J
26 Epidemiol*. 2008;37(3):591–602.
27
28 16. Wang B, Baldwin JR, Schoeler T, Cheesman R, Barkhuizen W, Dudbridge F, et al.
29 Robust genetic nurture effects on education: A systematic review and meta-analysis based on
30 38,654 families across 8 cohorts. *Am J Hum Genet*. 2021;108(9):1780–91.
31
32 17. Gonggrijp BMA, Silventoinen K, Dolan CV, Boomsma DI, Kaprio J, Willemsen G.
33 The mechanism of assortative mating for educational attainment: a study of Finnish and Dutch
34 twins and their spouses. *Front Genet*. 2023;14:1150697.
35
36 18. Abdellaoui A, Dolan CV, Verweij KJH, Nivard MG. Gene-environment correlations
37 across geographic regions affect genome-wide association studies. *Nat Genet*. 2022;54(9):1345–
38 54.
39
40 19. Howe LJ, Rasheed H, Jones PR, Boomsma DI, Evans DM, Giannelis A, et al.
41 Educational attainment, health outcomes and mortality: a within-sibship Mendelian
42 randomization study. *Int J Epidemiol*. 2023;52(5):1579–91.
43
44 20. Ericsson M, Finch B, Karlsson IK, Gatz M, Reynolds CA, Pedersen NL, et al.
45 Educational influences on late-life health: genetic propensity and attained education. *J Gerontol
46 B Psychol Sci Soc Sci*. 2024;79(1):gbad153.
47
48 21. Lawlor DA, Tilling K, Davey Smith G. Triangulation in aetiological epidemiology.
49 *Int J Epidemiol*. 2016 Dec 1;45(6):1866–86.
50
51 22. Galobardes B, Lynch J, Smith GD. Measuring socioeconomic position in health
52 research. *Br Med Bull*. 2007;81–82:21–37.
53
54
55
56
57
58
59
60

1
2
3 23. Paalanen L, Härkänen T, Tolonen H. Protocol of a research project “Projections of the
4 burden of disease and disability in Finland - health policy prospects” using cross-sectional health
5 surveys and register-based follow-up. *BMJ Open*. 2019;9(6):e029338.

6
7 24. Salonsalmi A, Laaksonen M, Lahelma E, Rahkonen O. Drinking habits and sickness
8 absence: the contribution of working conditions. *Scand J Public Health*. 2009 Nov;37(8):846–54.

9
10 25. Lloyd-Jones LR, Zeng J, Sidorenko J, Yengo L, Moser G, Kemper KE, et al.
11 Improved polygenic prediction by Bayesian multiple regression on summary statistics. *Nat
12 Commun*. 2019 Nov 8;10(1):5086.

13
14 26. Batty GD. We must move on: taking stock (yet again) of the evidence for socio-
15 economic differentials in health. *J Epidemiol Community Health*. 2011 Nov;65(11):947–8.

16
17 27. Silventoinen K, Modig-Wennerstad K, Tynelius P, Rasmussen F. Association between
18 intelligence and coronary heart disease mortality: a population-based cohort study of 682 361
19 Swedish men. *Eur J Cardiovasc Prev Rehabil*. 2007 Aug;14(4):555–60.

20
21 28. Teshale AB, Htun HL, Owen A, Gasevic D, Phyoe AZZ, Fancourt D, et al. The role of
22 social determinants of health in cardiovascular diseases: an umbrella review. *J Am Heart Assoc*.
23 2023;12(13):e029765.

24
25 29. Lehti H, Kinnari H. Student's cultural and economic family background and duration
26 of university studies in Finland. *European Education*. 2024;56:32–49.

27
28 30. Silventoinen K, Piirtola M, Jelenkovic A, Sund R, Tarnoki AD, Tarnoki DL, et al.
29 Smoking remains associated with education after controlling for social background and genetic
30 factors in a study of 18 twin cohorts. *Sci Rep*. 2022;12(1):13148.

31
32 31. Bloomfield K, Grittner U, Kramer S, Gmel G. Social inequalities in alcohol
33 consumption and alcohol-related problems in the study countries of the EU concerted action
34 “Gender, Culture and Alcohol Problems: a Multi-national Study.” *Alcohol Alcohol Suppl*.
35 2006;41(1):i26-36.

36
37 32. McLaren L. Socioeconomic status and obesity. *Epidemiol Rev*. 2007;29:29–48.

38
39 33. Reinikainen J, Tolonen H, Borodulin K, Härkänen T, Jousilahti P, Karvanen J, et al.
40 Participation rates by educational levels have diverged during 25 years in Finnish health
41 examination surveys. *Eur J Public Health*. 2018;28(2):237–43.

42
43 34. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis
44 of protein-coding genetic variation in 60,706 humans. *Nature*. 2016;536(7616):285–91.

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table 1. Model based means of cardiometabolic factors and coronary heart disease incidence by education and sex.

	BMI (kg/m ²) ¹	SBP (mmHg) ¹	DBP (mmHg) ¹	HDL-cholesterol (mmol/L) ¹	Total cholesterol (mmol/L) ¹	CHD incidence cases/1000 person years ²
	mean (95% CI)	mean (95% CI)	mean (95% CI)	mean (95% CI)	mean (95% CI)	rate (95% CI)
Men						
All	27.1 (27.0, 27.1)	135 (135, 135)	83.1 (83.0, 83.3)	1.30 (1.30, 1.31)	5.54 (5.53, 5.56)	2.85 (1.92, 4.24)
Basic	27.5 (27.4, 27.7)	137 (136, 137)	83.9 (83.5, 84.2)	1.29 (1.28, 1.30)	5.63 (5.60, 5.67)	3.77 (2.29, 6.20)
Secondary	27.2 (27.1, 27.3)	135 (135, 136)	83.3 (83.0, 83.5)	1.30 (1.29, 1.31)	5.58 (5.55, 5.60)	3.37 (2.06, 5.51)
Lower tertiary	27.0 (26.8, 27.1)	135 (134, 135)	83.3 (82.9, 83.6)	1.30 (1.29, 1.31)	5.50 (5.46, 5.53)	2.43 (1.47, 4.03)
Higher tertiary	26.1 (26.0, 26.3)	133 (132, 134)	82.0 (81.5, 82.5)	1.33 (1.32, 1.35)	5.42 (5.37, 5.46)	1.73 (1.00, 2.99)
p-value education ³	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Women						
All	26.3 (26.3, 26.4)	130 (130, 130)	78.7 (78.5, 78.8)	1.57 (1.56, 1.58)	5.46 (5.45, 5.48)	1.15 (0.77, 1.71)
Basic	27.3 (27.1, 27.5)	132 (132, 133)	79.3 (78.9, 79.7)	1.54 (1.53, 1.56)	5.54 (5.51, 5.58)	1.45 (0.72, 2.94)
Secondary	26.6 (26.5, 26.7)	130 (130, 131)	78.7 (78.4, 78.9)	1.56 (1.55, 1.57)	5.47 (5.45, 5.50)	1.28 (0.64, 2.55)
Lower tertiary	25.9 (25.8, 26.0)	129 (128, 129)	78.4 (78.1, 78.6)	1.58 (1.57, 1.59)	5.39 (5.37, 5.42)	0.87 (0.43, 1.76)
Higher tertiary	24.9 (24.8, 25.1)	127 (126, 128)	77.6 (77.2, 78.0)	1.62 (1.61, 1.64)	5.39 (5.35, 5.43)	0.74 (0.34, 1.61)
p-value education ³	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	0.0002
p-value sex*education ⁴	<0.00001	<0.00001	<0.00001	0.0803	0.0303	0.4428

¹Values based on linear regression models holding control variables (age, age squared, 10 first principal components of population structure, region of residence, and the combination of data collection and genotyping batch) at their observed values.

²Values based on Poisson regression model holding control variables (age centralized as mean age of population, 10 first principal components of population structure, region of residence, and the combination of data collection and genotyping batch) at their observed values.

³P-value of the main effect of education used as a categorized variable.

⁴P-value of the interaction effect between sex and education used as a categorized variable.

Abbreviations: BMI, body mass index; CHD, coronary heart disease; CI, confidence interval, DBP, diastolic blood pressure; HDL, high density lipoprotein; LL, lower limit; SBP, systolic blood pressure; UL, upper limit

1
2 Table 2. The regression coefficients (β) per one standard deviation of PGS of education on cardiometabolic factors stratified by education and
3 sex.¹
4

	Model 1			Model 2		
	Men	Women	p-value sex*PGS ²	Men	Women	p-value sex*PGS ²
	β (95% CI)	β (95% CI)		β (95% CI)	β (95% CI)	
BMI (kg/m²)						
All	-0.28 (-0.35, -0.22)	-0.50 (-0.57, -0.43)	<0.00001	-0.19 (-0.27, -0.12)	-0.34 (-0.42, -0.27)	<0.00001
Basic	-0.15 (-0.29, -0.01)	-0.48 (-0.65, -0.30)	0.0082	-0.13 (-0.28, 0.01)	-0.45 (-0.63, -0.27)	0.0172
Secondary	-0.19 (-0.29, -0.08)	-0.32 (-0.44, -0.20)	0.0690	-0.21 (-0.32, -0.10)	-0.33 (-0.45, -0.20)	0.0946
Lower tertiary	-0.19 (-0.33, -0.05)	-0.32 (-0.45, -0.19)	0.4147	-0.19 (-0.34, -0.04)	-0.34 (-0.48, -0.19)	0.3154
Higher tertiary	-0.35 (-0.53, -0.17)	-0.18 (-0.34, -0.01)	0.1424	-0.30 (-0.49, -0.11)	-0.24 (-0.41, -0.07)	0.5009
p-value education*PGS ³	0.1879	0.2186		0.3980	0.5720	
SBP (mmHg)						
All	-0.87 (-1.13, -0.62)	-1.07 (-1.31, -0.83)	0.3613	-0.61 (-0.90, -0.32)	-0.63 (-0.89, -0.36)	0.7302
Basic	-0.12 (-0.69, 0.46)	-0.26 (-0.87, 0.35)	0.9537	-0.07 (-0.69, 0.54)	-0.11 (-0.76, 0.54)	0.6489
Secondary	-0.74 (-1.15, -0.34)	-0.68 (-1.09, -0.27)	0.3178	-0.67 (-1.10, -0.23)	-0.59 (-1.02, -0.15)	0.3370
Lower tertiary	-1.02 (-1.59, -0.45)	-0.91 (-1.35, -0.47)	0.2664	-1.16 (-1.77, -0.55)	-0.84 (-1.31, -0.38)	0.1226
Higher tertiary	-0.76 (-1.56, 0.04)	-0.95 (-1.58, -0.32)	0.6354	-0.82 (-1.69, 0.06)	-1.04 (-1.71, -0.37)	0.5605
p-value education*PGS ³	0.0883	0.1860		0.0698	0.0986	
DBP (mmHg)						
All	-0.31 (-0.47, -0.14)	-0.49 (-0.63, -0.35)	0.1879	-0.19 (-0.38, 0.00)	-0.39 (-0.55, -0.23)	0.2343
Basic	0.16 (-0.19, 0.52)	-0.17 (-0.51, 0.17)	0.2274	0.19 (-0.18, 0.56)	-0.17 (-0.53, 0.20)	0.2679
Secondary	-0.22 (-0.48, 0.05)	-0.38 (-0.63, -0.14)	0.7567	-0.15 (-0.44, 0.14)	-0.38 (-0.64, -0.12)	0.5311
Lower tertiary	-0.57 (-0.95, -0.19)	-0.41 (-0.70, -0.13)	0.2466	-0.65 (-1.06, -0.24)	-0.41 (-0.71, -0.11)	0.2428
Higher tertiary	-0.28 (-0.81, 0.25)	-0.71 (-1.11, -0.32)	0.2716	-0.40 (-0.99, 0.19)	-0.69 (-1.11, -0.26)	0.5136
p-value education*PGS ³	0.0316	0.1886		0.0339	0.2419	
HDL-cholesterol (100*mmol/L)						
All	0.69 (0.17, 1.22)	1.72 (1.18, 2.26)	0.0039	0.45 (-0.14, 1.04)	1.19 (0.58, 1.81)	0.0042

1	Basic	0.24 (-0.89, 1.38)	1.52 (0.21, 2.82)	0.1061	0.19 (-1.02, 1.40)	1.29 (-0.10, 2.69)	0.1204
2	Secondary	0.32 (-0.50, 1.15)	0.82 (-0.10, 1.75)	0.2573	0.36 (-0.55, 1.26)	0.96 (-0.04, 1.96)	0.2097
3	Lower tertiary	0.67 (-0.48, 1.82)	1.60 (0.52, 2.67)	0.2632	0.58 (-0.68, 1.85)	1.59 (0.44, 2.74)	0.2775
4	Higher tertiary	0.30 (-1.42, 2.02)	0.76 (-0.77, 2.29)	0.5462	0.54 (-1.28, 2.37)	1.02 (-0.64, 2.69)	0.5653
5	p-value	0.8334	0.6663		0.8471	0.8214	
6	education*PGS ³						
7	Total cholesterol						
8	(100*mmol/L)						
9	All	-3.51 (-5.14, -1.87)	-2.00 (-3.41, -0.59)	0.0600	-1.59 (-3.42, 0.23)	-0.17 (-1.76, 1.42)	0.0338
10	Basic	-0.47 (-3.95, 3.01)	-2.88 (-6.30, 0.55)	0.8468	-0.86 (-4.59, 2.87)	-1.78 (-5.41, 1.85)	0.5422
11	Secondary	-2.11 (-4.76, 0.53)	1.36 (-1.05, 3.78)	0.0023	-1.80 (-4.65, 1.05)	1.13 (-1.47, 3.74)	0.0060
12	Lower tertiary	-2.77 (-6.35, 0.80)	-0.99 (-3.72, 1.73)	0.1220	-2.07 (-5.95, 1.80)	-0.15 (-3.10, 2.81)	0.1717
13	Higher tertiary	-2.06 (-7.00, 2.89)	-1.98 (-6.00, 2.03)	0.5375	-0.96 (-6.26, 4.35)	-1.23 (-5.56, 3.09)	0.7481
14	p-value	0.7906	0.1376		0.9351	0.3259	
15	education*PGS ³						

Model 1= age, age squared, 10 first principal components of population structure, region of residence, and the combination of data collection and genotyping batch

Model 2=Model 1 + education (only for the analyses including all men and women) + occupational based social class + incomes

¹A separate model was conducted for each cardiometabolic outcome.

²P-value of interaction between sex and PGS_{EDU} within each educational category.

³P-value of interaction between categorical education and PGS_{EDU}.

Abbreviations: BMI, body mass index; CHD, coronary heart disease; CI, confidence interval, DBP, diastolic blood pressure; HDL, high density lipoprotein; LL, lower limit; PGS, polygenic score; SBP, systolic blood pressure; UL, upper limit

Table 3. Hazard ratios (HR) of coronary heart disease incidence for one SD change of PGS of education by education and sex.

	Men	Women	p-value sex*PGS ¹
	HR (95% CI)	HR (95% CI)	
Model 1			
All	0.88 (0.83, 0.94)	0.86 (0.79, 0.94)	0.6566
Basic	0.93 (0.85, 1.02)	0.95 (0.82, 1.09)	0.6011
Secondary	0.92 (0.83, 1.01)	0.85 (0.73, 1.00)	0.5656
Lower tertiary	0.95 (0.81, 1.12)	0.89 (0.70, 1.14)	0.4422
Higher tertiary	0.99 (0.72, 1.36)	0.79 (0.48, 1.30)	0.5373
p-value education*PGS ²	0.8130	0.7538	
Model 2			
All	0.95 (0.89, 1.01)	0.90 (0.82, 0.99)	0.4529
Basic	0.95 (0.87, 1.05)	0.96 (0.83, 1.11)	0.7247
Secondary	0.92 (0.83, 1.02)	0.86 (0.73, 1.00)	0.5063
Lower tertiary	0.97 (0.82, 1.14)	0.89 (0.69, 1.14)	0.2894
Higher tertiary	1.08 (0.77, 1.53)	0.84 (0.50, 1.14)	0.3224
p-value education*PGS ²	0.6918	0.6751	
Model 3			
All	0.97 (0.91, 1.03)	0.92 (0.83, 1.01)	0.4760
Basic	0.97 (0.88, 1.06)	0.97 (0.84, 1.12)	0.6965
Secondary	0.93 (0.84, 1.04)	0.87 (0.74, 1.02)	0.4518
Lower tertiary	1.00 (0.85, 1.18)	0.89 (0.70, 1.15)	0.2168
Higher tertiary	1.06 (0.74, 1.52)	0.87 (0.50, 1.51)	0.3244
p-value education*PGS ²	0.6245	0.6928	
Model 4			
All	0.99 (0.93, 1.05)	0.92 (0.84, 1.02)	0.4206
Basic	0.99 (0.90, 1.09)	0.99 (0.85, 1.15)	0.7808
Secondary	0.96 (0.87, 1.07)	0.87 (0.74, 1.02)	0.3242
Lower tertiary	0.99 (0.84, 1.17)	0.87 (0.68, 1.13)	0.2737
Higher tertiary	1.11 (0.75, 1.62)	0.85 (0.47, 1.54)	0.2919
p-value education*PGS ²	0.7935	0.6132	

Model 1=age, age squared, 10 first principal components of population structure, region of residence, and the combination of data collection and genotyping batch

Model 2=Model 1 + education (only for the analyses including all men and women) + occupational based social class + incomes

Model 3=Model 2 + BMI + SBP + HDL-cholesterol + total cholesterol

Model 4=Model 2 + BMI + SBP + HDL-cholesterol + total cholesterol + smoking status + alcohol consumption

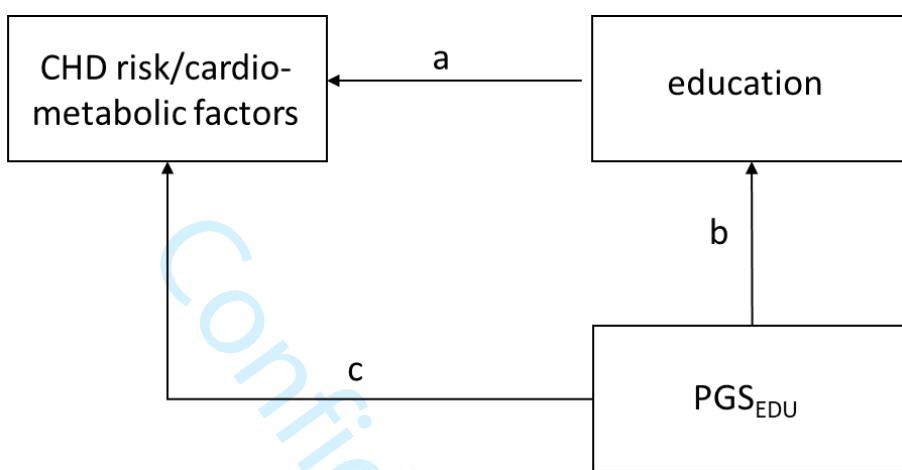
¹P-value of interaction between sex and PGS_{EDU} within each educational category.

²P-value of interaction between categorical education and PGS_{EDU}.

Abbreviations: BMI, body mass index; CI, confidence interval, DBP, diastolic blood pressure; HDL, high density lipoprotein; LL, lower limit; PGS, polygenic score; SBP, systolic blood pressure; UL, upper limit

1
2
3 Table 4. Direct and indirect effects of the PGS of education on cardiometabolic factors and CHD
4 risk.¹
5

	Education (mediator)	PGS _{EDU}		
		Direct effect on outcome	Indirect effect on outcome via mediator	% ³
	Effect on outcome	β/HR ² (95% CI)	β/HR ² (95% CI)	
	β/HR ² (95% CI)	β/HR ² (95% CI)	β/HR ² (95% CI)	
Males				
BMI	-0.36 (-0.43, -0.29)	-0.19 (-0.26, -0.13)	-0.09 (-0.11, -0.07)	32
SBP	-1.20 (-1.49, -0.90)	-0.57 (-0.83, -0.30)	-0.29 (-0.37, -0.22)	34
DBP	-0.48 (-0.67, -0.28)	-0.19 (-0.36, -0.01)	-0.12 (-0.16, -0.07)	39
HDL cholesterol	0.98 (0.38, 1.58)	0.44 (-0.10, 0.98)	0.24 (0.09, 0.39)	35
Total cholesterol	-7.70 (-9.60, -5.80)	-1.50 (-3.22, 0.21)	-1.89 (-2.37, -1.41)	56
CHD risk ⁴	0.85 (0.83, 0.87)	0.92 (0.90, 0.94)	0.96 (0.95, 0.97)	51
Females				
BMI	-0.66 (-0.74, -0.58)	-0.33 (-0.40, -0.26)	-0.17 (-0.19, -0.14)	34
SBP	-1.57 (-1.86, -1.28)	-0.67 (-0.92, -0.42)	-0.40 (-0.47, -0.32)	37
DBP	-0.40 (-0.57, -0.22)	-0.39 (-0.54, -0.23)	-0.10 (-0.14, -0.06)	20
HDL cholesterol	2.00 (1.35, 2.65)	1.21 (0.64, 1.77)	0.50 (0.34, 0.67)	29
Total cholesterol	-6.43 (-8.14, -4.72)	-0.32 (-1.81, 1.16)	-1.62 (-2.06, -1.18)	84
CHD risk ⁴	0.75 (0.73, 0.76)	0.95 (0.93, 0.97)	0.93 (0.92, 0.94)	59


34
35 All variables are adjusted for age, age squared, 10 first principal components of population
36 structure, region of residence, and the combination of data collection and genotyping batch. See
37 Supplementary figure 1 for the model used to estimate direct and indirect effects.

38 ²β-coefficients for cardiometabolic factors and HRs for CHD risk.

39 ³The proportion of indirect effect in relation to total effect.

40 ⁴CHD risk is estimated by using log-hazards in the statistical model and then taking antilogarithm to
41 produce HR.

42 Abbreviations: BMI, body mass index; CHD, coronary heart disease, CI, confidence interval, DBP,
43 diastolic blood pressure, HR, hazard ratio; LL, lower limit, PGS, polygenic score, SBP, systolic
44 blood pressure UL, upper limit

Supplementary figure 1. Structural equation model used to estimate direct and indirect effects of PGS_{EDU} and education on cardiometabolic factors and CHD risk. Estimating effects: the direct effect of education=a, the direct effect of PGS_{EDU}=c, the indirect effect of PGS_{EDU}=b*a. All variables are adjusted for age, age squared, 10 first principal components of population structure, region of residence, and the combination of data collection and genotyping batch (not shown in the figure).

1
2
3 Supplementary table 1. Distribution of participants, person follow-up years, coronary heart disease
4 incidence cases and incidence ratios by education and sex.
5
6

	Men				Women			
	%	person years	CHD cases	cases/1000 person years	%	person years	CHD cases	cases/1000 person years
All	100	216509	1193	5.51	100	262739	523	1.99
Basic	24	53624	516	9.62	20	57197	229	4.00
Secondary	42	89403	438	4.90	38	98411	193	1.96
Lower tertiary	23	49139	184	3.74	29	74367	79	1.06
Higher tertiary	11	24344	55	2.26	13	32764	22	0.67

Supplementary table 2. Descriptive statistics of cardiometabolic factors by education and sex.

	Men		Women	
	mean	SD	mean	SD
BMI (kg/m ²)				
All	27.1	4.01	26.3	4.90
Basic	27.8	4.20	27.8	5.11
Secondary	27.1	4.05	26.6	4.95
Lower tertiary	26.9	3.77	25.7	4.66
Higher tertiary	25.9	3.56	24.4	4.02
SBP (mmHg)				
All	135	16.7	130	18.6
Basic	140	18.1	138	19.9
Secondary	135	16.2	130	18.3
Lower tertiary	134	16.0	127	17.0
Higher tertiary	131	14.8	122	15.7
DBP (mmHg)				
All	83.3	10.94	78.6	10.51
Basic	85.0	10.98	81.3	10.48
Secondary	83.0	11.02	78.7	10.48
Lower tertiary	83.0	10.73	77.7	10.33
Higher tertiary	81.0	10.37	75.8	10.07
HDL cholesterol (mmol/L)				
All	1.30	0.33	1.57	0.37
Basic	1.28	0.34	1.55	0.38
Secondary	1.30	0.33	1.56	0.37
Lower tertiary	1.30	0.32	1.58	0.37
Higher tertiary	1.33	0.32	1.62	0.35
Total cholesterol (mmol/L)				
All	5.55	1.08	5.45	1.03
Basic	5.72	1.11	5.80	1.06
Secondary	5.56	1.08	5.47	1.03
Lower tertiary	5.47	1.03	5.31	0.98
Higher tertiary	5.33	1.02	5.18	0.93

1
2
3 Supplementary table 3. Interaction parameters of regression and Poisson regression models using
4 men and basic education as the reference categories.
5

	Estimate	95% confidence intervals	
		LL	UL
BMI ¹ (kg/m ²)			
Secondary	-0.52	-0.78	-0.26
Lower tertiary	-1.02	-1.29	-0.74
Higher tertiary	-1.28	-1.59	-0.97
SBP ¹ (mmHg)			
Secondary	-2.53	-3.52	-1.54
Lower tertiary	-3.47	-4.53	-2.41
Higher tertiary	-4.24	-5.46	-3.02
DBP ¹ (mmHg)			
Secondary	-0.55	-1.14	0.04
Lower tertiary	-0.85	-1.49	-0.20
Higher tertiary	-0.45	-1.21	0.32
HDL cholesterol ¹ (mmol/L)			
Secondary	-0.01	-0.03	0.01
Lower tertiary	0.02	-0.01	0.04
Higher tertiary	0.02	0.00	0.05
Total cholesterol ¹ (mmol/L)			
Secondary	-0.17	-0.23	-0.11
Lower tertiary	-0.17	-0.23	-0.11
Higher tertiary	-0.13	-0.20	-0.05
CHD incidence ² (cases/1000 persons years)			
Secondary	0.87	0.69	1.09
Lower tertiary	0.80	0.59	1.08
Higher tertiary	0.89	0.53	1.50

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
1 Regression coefficients based on regression models adjusted for the control variables (age, age squared, 10 first principal components of population structure, region of residence, and the combination of data collection and genotyping batch)
2 Incident rate ratios based on Poisson regression models adjusted for the control variables (age, age squared, 10 first principal components of population structure, region of residence, and the combination of data collection and genotyping batch)