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Awake replay: off the clock but on the job 
Highlights 
Hippocampal replay is commonly 
thought to serve a dual purpose: online 
decision-making (while awake) and 
offline memory consolidation (during 
sleep). In this article, we highlight experi-
mental evidence inconsistent with 
awake replay’s postulated role in online 
decision-making. 

One alternative role for awake replay is to 
improve future goal-oriented behavior by 
internally simulating past experiences 
Matthijs A.A. van der Meer1 ,3 , * and Daniel Bendor 2 ,3, * 

Hippocampal replay is widely thought to support two key cognitive functions: 
online decision-making and offline memory consolidation. In this review, we 
take a closer look at the hypothesized link between awake replay and online 
decision-making in rodents, and find only marginal evidence in support of 
this role. By contrast, the consolidation view is bolstered by new computational 
ideas and recent data, suggesting that (i) replay performs offline fictive learning 
for later goal-oriented behavior; and (ii) replay tags memories prior to sleep, prior-
itizing them for consolidation. Based on these recent advances, we favor an up-
dated and refined role for awake replay – that is, supporting prioritized offline 
learning and tagging outside the hippocampus – rather than a direct, online role 
in guiding behavior. 
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and using them to adjust estimates of 
future rewards, prioritizing those value 
updates that best align decisions with 
newly encountered outcomes. 

A second alternative role for awake 
replay is memory tagging, where sa-
lient experiences are reactivated, to 
create a latent excitable state within 
hippocampal–cortical circuits. This la-
tent state helps prioritize these mem-
ories for replay during sleep, leading 
to their consolidation. 

We hypothesize that the likelihood for a 
spatial trajectory to reactivate during 
awake replay increases with prediction 
error, including novelty and unexpected 
changes to reward, stimulus, and con-
text.
Does hippocampal replay live a double life? 
Among the most striking phenomena in the electrical activity of neurons is the hippocampal 
sharp wave-ripple (SWR) (see Glossary): a sudden, spontaneously generated, highly synchro-
nous burst of spikes whose reverberations are felt throughout the brain [1–4]. Why would the 
brain invest in such a brief but metabolically demanding event? A leading hypothesis is that 
SWRs serve memory consolidation [5–31]: the fast-learning hippocampus ‘trains’ a more distrib-
uted, slower-learning knowledge network elsewhere, through the replay of recent memories 
(‘systems-level consolidation’) (Box 1). In support of this idea, early studies showed that the con-
tent of replay during sleep reflects recent experience and that disruptions of sleep SWRs interfere 
with learning [5,6,8,21,22]. It should be noted that while some SWRs contain sequential firing pat-
terns of neuronal ensembles, depicting specific spatio-temporal trajectories (replay), other SWRs 
do not contain decodable sequences, but may nonetheless contribute to consolidation through 
other means (e.g., non-sequential reactivation of cell assemblies, or promoting an excitable state 
in downstream networks) [30,31]. 

While most prevalent during sleep, SWRs and replay also occur during awake rest [32–36]. Ini-
tially, awake replay was hypothesized to support memory consolidation in much the same way 
as sleep replay [37], but work in rodents showed striking relationships between awake replay 
content and the animal’s immediate next action, including trajectory events to a goal location 
[38,39]. Moreover, in rats, disruption of awake SWRs were shown to impair performance on 
the working memory-guided component (but not the procedural-guided component) of a T-
maze alternation task [40]. Further studies expanded on these observations by showing correla-
tions between SWR content and subsequent behavior, and improvement of performance by 
prolonging awake SWRs [41–44]. These findings suggested that SWRs could also play a role 
in supporting task performance in the moment (i.e., online and for immediate use) rather than 
in the service of learning for an unspecified later purpose. Processes such as the generation 
and evaluation of future possibilities (i.e., planning) and retrieval of relevant episodic memories 
are thought to underlie this online role. Several excellent recent reviews have helped canonize 
this prevailing view that SWRs and replay can serve dual functions: offline consolidation and 
online task performance [45–47]. 
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Box 1. Why is replay good for memory consolidation? 

Hippocampal replay is classically thought of as the sequential reactivation of place cells during sharp wave-ripples (SWRs), 
providing a memory trace of a previously experienced spatial trajectory [7]. Many of the characteristics of the firing patterns 
of neurons present during the behavioral episode can be reinstated during a replay event, including which neurons fire, 
when they fire, and even the relative magnitude of their firing rates [6,8,9]. In rodents, replay can be directly studied by an-
alyzing the sequential patterns of spiking activity from neuronal ensembles. In contrast, human replay studies often need to 
infer sequential content from indirect measures [19,20,29]. Although direct evidence of replay causing changes in synaptic 
strength remains to be demonstrated, the key properties of replay believed to be central to its role in memory include the 
following (see also Figure I): 

1) Compression: replay sequences are temporally compressed during SWRs (~10×) compared with the same se-
quences during behavior, bringing behavioral sequences within the timescale of spike-time dependent plasticity 
favorable for long-term storage [8,10]. 

2) Context-specificity: because place cells remap when a rodent explores a new environment, different behavioral 
episodes get mapped onto different place cell sequences [11–13]. This creates different replay sequences for 
each context, minimizing interference while enhancing decoding of these memories [14]. 

3) Content-addressability: awake SWR content is biased to the animal’s current location, and cortical activity prior to 
a SWR is informative about SWR content, demonstrating that SWR content is not random but can be ‘queried’ by 
neural activity in cortical (and likely other) brain areas [15,16]. This is an important property because it ensures that 
SWRs replay information that is relevant to consolidation-related activity in the cortex [17]. 

4) Compositionality: the retrieval of one SWR can initiate retrieval of a next, related one. For instance, an SWR may 
start at the location where the previous one ended, a.k.a. ‘chaining’, thereby creating long sequences or even 
shortcuts that were not directly experienced [10,18]. This property supports the discovery of indirect or implied 
associations (e.g., transitive inference) [19,20,29]. 
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Figure I. Properties of hippocampal replay advantageous for memory consolidation. Different place cell 
sequences are observed for different spatial trajectories and contexts. During replay, these same sequences are 
reinstated both in the same temporal order, albeit compressed compared with the timescale of behavior (1), and using 
the same context-specific ensembles of place cells (2). Hippocampal replay content can be influenced both by cortical 
networks: content-addressability (3) and by the previously replayed trajectory in the hippocampus: compositionality (4), 
thought to be important for communication and inference, respectively. Image for panel (3) adapted from doi.org/10. 
5281/zenodo.3925923, creative commons license (CC-BY). 

Glossary 
Bellman backup: a core concept in 
reinforcement learning. Refers to a 
single value update (of a state, or a 
state–action pair) as a result of a reward 
prediction error in algorithms such as 
temporal-difference reinforcement 
learning. Bellman backups are used to 
iteratively improve estimates of a value 
function by ‘backing up’ information 
about neighboring states to refine 
the value estimate of the 
current state. 
Expected value of backup (EVB): the 
expected improvement in decision-
making performance after performing a 
particular Bellman backup. It evaluates 
how beneficial it is to update the value of 
a given state based on its impact on 
what the agent will do differently 
as a result of the updated 
value function. 
Memory tagging: a mechanism  by  
which neurons active during an 
experience are selectively induced into a 
latent excitable state. During sleep, this 
excitable state is unmasked, leading to 
their increased excitability over other 
‘untagged’ neurons and the 
prioritization of these neurons to 
participate in future replay (and the 
consolidation of these specific 
memories). 
Memory triage: the brain is 
hypothesized to prioritize salient 
experiences for consolidation, replaying 
them first and at a higher rate. 
Experiences judged to be irrelevant for 
future behavior are triaged, leading to an 
insufficient number of replays to be 
consolidated, eventually resulting in their 
forgetting. 
Offline: occurring outside active task 
execution (e.g., rest following reward 
consumption, pauses during inter-trial 
intervals, or sleep). 
Online: occurring during active task 
execution (e.g., when engaged in real-
time behavior such as occurs at a 
decision point). 
Prediction error: a difference  
(mismatch) between an observed and 
expected observation. 
Replay: the spontaneous reactivation 
of a sequential pattern of neural activity 
that has previously occurred during 
behavior. A common example is the 
sequential firing of place cells during 
sleep that mirrors the same activity 
pattern observed when the rat has 
previously run a trajectory through a 
maze.
In this opinion article, we revisit the question of what the role(s) of awake replay are, in the light of 
new evidence and new theoretical ideas. In particular, we cast a critical eye on previous findings 
arguing for awake replay’s role in task performance (the real-time, online execution of tasks) rather 
than learning (the offline optimization of decision-making). Based on recent negative results, as 
well as learning accounts that are hard to distinguish from planning, we highlight a more parsimo-
nious interpretation within the theoretical framework of reinforcement learning. We next review re-
cent studies suggesting that awake replay can also support a previously unexplored intermediate 
stage of memory consolidation: that of tagging memories prior to sleep, so that they are priori-
tized for consolidation over other competing memories. Taken together, we believe the weight 
of evidence favors an updated and refined offline role in learning for awake replay, rather than a 
direct, online role in guiding behavior. 
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Representational drift: the 
phenomenon in which the neural 
representation of specific information, 
such as a stimulus, environment, or task, 
changes over time despite stable 
external conditions and consistent 
behavioral output. 
Reward prediction error: the 
difference between observed and 
expected reward. 
Sharp wave-ripple: transient, high-
frequency oscillatory event observed in 
the hippocampal area CA1 during 
awake rest or sleep. Consists of a sharp 
wave (a large depolarization in the local 
field potential) and a ripple (a fast 
oscillation). SWRs may be accompanied 
by particular patterns of spiking activity, 
which may constitute reactivation or 
replay of specific stimuli,  contexts,  or  
experiences. 
Temporal-difference reinforcement 
learning: a type of machine learning 
algorithm for predicting future rewards 
and learning optimal behaviors by 
updating value functions based on 
reward prediction errors. 
Value function: the expected 
cumulative reward an agent can obtain 
from a given state (or state–action pair). 

Trends in Neurosciences
OPEN ACCESS
The farther backward you can look, the farther forward you can see 
At first glance, replay appears to be a useful mechanism to support online decisions: episodic re-
trieval of a relevant previous experience could influence an animal to do the same thing again (if it 
turned out well last time) [48,49]. Similarly, the imagination of possible upcoming courses of ac-
tion and their outcomes (i.e., prospective planning or ‘rollout’ of future states) could bias decisions 
[38,39,43,50]. However, what is the evidence that awake replay/SWRs support immediate, on-
line decision-making? The literature to date has taken three complementary approaches to inves-
tigate this issue: (i) examining replay content and its relationship to behavior (i.e., what the animal 
chooses to do next); (ii) examining where, when, and how often replay is occurring and how that 
relates to task performance; and (iii) studying what happens when SWRs are disrupted or en-
hanced. We review the evidence from these approaches in turn. 

As previously noted, several studies have found correspondence between what is replayed and 
the next trajectory taken by the animal. This effect is particularly clear in open field navigation sit-
uations, but also found on some linear maze tasks, in apparent support of a role in online deci-
sions [38,41,51,52]. However, other studies have shown replay content that seems hard to 
reconcile with a role in online decision-making. In an eight-arm maze where the rewarded arm 
is changed across blocks of trials, rats tended to replay the previously rewarded arm rather 
than the currently rewarded arm, echoing earlier results showing replay of the non-chosen arm 
on two-arm mazes [18,53,54]. In another set of experiments, after conditioning an animal with 
an aversive stimulus at one end of a linear track, replay was observed to the area actively avoided 
[55]. One interpretation of these data is that online performance may be supported by replay in 
different ways: replay of the goal about to be chosen, the alternative to be avoided, or the previ-
ously taken option could all be useful for decision-making. Alternatively, awake replay can occur in 
different behavioral states (e.g., preparation, consumption, resting) that influence its function. 
How the hippocampus interacts with other brain areas during replay will be critical to understand-
ing this flexibility in function, but it is this very flexibility that complicates our ability to draw clear 
conclusions about replay function from replay content alone [39,47,49]. 

Recent results in rats exploring a behavioral apparatus to find rewards indicate that during stop-
ping periods, replay trajectories initially avoid recently visited locations, a consequence of spike-
frequency adaptation [56]. This may have a different impact on the content of replay, depending 
on whether the behavioral task is balanced (e.g., an open field with a random distribution of tra-
jectories), or unbalanced (e.g., a multi-arm maze with a single rewarded arm receiving the majority 
of trajectories) [57,58]. In a balanced task where the goals of past and future trials are typically in 
different directions, replay avoiding a past trajectory will be more aligned to trajectories towards 
the new goal (prospective replay) [38,56]. This may also provide an explanation for the observed 
bias in prospective replay, during periods of engagement (immediately after stopping and before 
running), for rats running back and forth along an extended linear track [56]. In contrast, in situa-
tions where the rewarded maze arm is fixed across trials (i.e., experience is unbalanced), pro-
spective and retrospective trajectories likely both match the most recently traveled path. This 
account may help explain ‘paradoxical replay’, with avoidance of the past trajectory leading to re-
play of the less visited (or actively avoided) arm of the maze [18,53–55]. 

If replay supports decision-making, then the presence, number, and/or quality of replays on a given 
trial should predict task performance. Given the number of studies with pertinent data, it is notable 
how few positive results there are in the literature. One study in rats found higher quality replay 
events preceding correct compared with error trials, specifically during the early stages of learning 
a W-maze alternation task [41]. Additionally, longer duration SWRs can be observed for correct 
compared with error trials on the same maze; in both cases, effect sizes were modest (e.g.,
Trends in Neurosciences, Month 2025, Vol. xx, No. xx 3
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60% chance of predicting an error, when chance is 50%) [44]. However, there are also negative 
results: using neurofeedback in rats to substantially increase the number of SWRs during the 
delay period within an eight-arm maze task, no behavioral benefit was reported [59]. Thus, there 
is not a consistent relationship between awake replay/SWRs and task performance across studies. 

Perhaps the most critical test of the hypothesis that replay supports online decision-making is observ-
ing whether disrupting (or alternatively prolonging) awake SWRs has a causal effect on task perfor-
mance. However, the key experiments where animals are first trained to meet a performance 
criterion on the task before SWR manipulation is applied do not report whether performance was sig-
nificantly affected during the critical first session [40,44]. Thus, it is possible the main effects found in 
these studies are due to replay contributing to learning (within sessions and/or across days) 
rather than to task performance. Indeed, more recent SWR disruption experiments have 
interpreted these experimental manipulations as affecting within-session learning rather than perfor-
mance [60]. Furthermore, a recent report found a null effect of SWR disruption on two different 
tasks that require trial-unique memory, casting further doubt on the role of awake SWRs on 
decision-making [61]. 

In summary, while awake replay has properties that in theory would make it helpful for online decision-
making, experimental data appears to provide only marginal evidence for such a role. How, then, can 
it be explained why under some experimental conditions replay still looks strikingly like planning? 
Could replay closely follow future choices of the animal when in fact it is doing something else? 
Reinforcement learning, a branch of machine learning concerned with how artificial agents can 
learn from experience what actions lead to the most reward, offers a possible answer to this mystery 
[62,63]. 

How many roads must a map replay, before you’ve updated your map? 
A fundamental challenge faced by reinforcement learning agents is the temporal credit assign-
ment problem: feedback from the environment is typically scarce, and it is not obvious which of 
the many actions that preceded that feedback deserve how much of the credit (or blame) for 
the outcome. Early reinforcement learning work noted the value of a replay-like mechanism to 
help solve this credit assignment problem: Rich Sutton’s pioneering Dyna model [64] learned
not only from direct experience (online), but could also learn offline from simulated experience, 
substantially speeding up learning; an idea cited in experimental studies as a potential function 
of reverse replay in particular [32,65,66]. Many reinforcement learning studies have shown the 
benefits of replay since, including a key demonstration from a reinforcement learning agent (a 
‘deep-Q network’) learning to play Atari video games [67]. Among the specific functions  sup-
ported by replay in such models is transitive inference: if you know that A leads to B, and you sep-
arately experience B unexpectedly leading to reward, you should update your reward estimate of 
A even though it has never been paired with reward. By replaying the experience, A→B followed 
by B→reward, it becomes possible to associate A→reward [19,20]. Thus, offline replay serves as 
a kind of fictive learning, fixing inconsistencies in expected reward values for different stimuli or 
states that are connected. A single such update is referred to as a ‘Bellman backup’: a single 
step in the temporal-difference reinforcement learning algorithm for iteratively computing 
the optimal value function [68]. 

Mapping these ideas on to biological systems, it has been previously proposed that replay gen-
erated in the hippocampus could speed up learning in a simulated T-maze task, by providing fic-
tive experience for offline learning that happens outside of the hippocampus [69]. This replayed 
experience was used to update action values stored in the model’s ‘basal ganglia’, which
benefited subsequent task performance. Thus, a key idea introduced by this model architecture
4 Trends in Neurosciences, Month 2025, Vol. xx, No. xx
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is that although the function of hippocampal replay is offline learning, stored in network weights 
elsewhere, these updated weights are available to support task performance the next time the 
animal returns to the task, independently of the hippocampus or replay [68,70–73]. This idea 
blurs the distinction between online and offline roles of replay [64,69,71]. 

In addition to making explicit process-level proposals of how replay could contribute to decision-
making, reinforcement learning models can also make normative predictions about what specific 
content is most useful to replay. As noted earlier, replay is a way to make efficient use of experi-
ence, as illustrated by an animal discovering unexpected reward at a new goal location in an open 
field (Figure 1, left): replay can then be used to increase the future expected reward from all adja-
cent locations, not just those that the animal took to get to the reward. Recent work has consid-
ered the crucial question raised by this scenario: given finite time to replay, what is the most useful 
[68,73]? The normative assumption that replay will prioritize those learning updates that will be 
most useful to the animal in the future (quantified as the product of how big the inconsistencies 
are – ‘gain’ –  and how likely the animal is to encounter them in the future – ‘need’; Figure 1) gen-
erates a predicted pattern of replay content. This ‘expected value of backup’ (EVB) pattern 
matches what is expected from prospective planning even though in this model, the actual role 
of replay is not in online decision-making but to train reward representations located outside 
the hippocampus [38]. In addition to accounting for the experimentally observed replay content 
in many studies, experiments also support the key model requirement that reward prediction 
errors cause replay [71,74,75]. Note that the core idea of using prediction errors to prioritize 
replay is not unique to reward learning, but may also extend to map-learning [76,77]. Thus, 
what may look like replay content indicative of online decision-making may equally well be pre-
dicted by offline learning that prioritizes those updates that are most useful. 

To consolidate or not to consolidate, that is the question 
During a behavioral task, awake replay trajectories typically originate from the animal’s current lo-
cation and represent possible paths within the local environment. By contrast, when replay
Find new goal location 

LowHigh 

Predicted replay content

= 

Value differences 
=value of updates (”gain”) 

Expected future occupancy 
(”need”) 

x 
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Figure 1. Schematic of the idea that replay implements value function updates from fictive experience
prioritized by how useful those updates are likely to be. After finding a new goal location in an open  field (high
value, tile delineated in red in left panel), the value of nearby tiles is also increased by virtue of their proximity to the goal
creating a mismatch between the true value function (right) and the animal’s current representation of the value function
Replay is a potential mechanism to update these values and make them consistent with each other: in effect, each replay
is a fictive experience that the animal can learn from. If replays are prioritized according to the largest value differences
needing updating (‘gain’, arrowheads in second panel) and which locations the animal is likely to encounter (‘need’
arrowheads in third panel) then replay trajectories look similar to prospective planning (right panel; red arrow) [68]
However, in this account, replay does not play a role in online decision-making process, but rather updates neural circuits
responsible for making decisions. This view also explains why prospective replay is correlated with learning, but may no
always reflect the immediate future choice and can still be observed in the absence of choice, such as a simple linear track
that only involves running from one side to the other [39,43,56]. 
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occurs later during sleep, replayed trajectories can occur in an unbiased fashion (i.e., any trajec-
tory from any previous context can potentially replay) and, while this may give more flexibility for 
what the brain can update or consolidate, the challenge of prioritizing is now even more daunting. 
Recent experiences needing to be replayed reach a bottleneck because there is not enough time 
during sleep to sufficiently replay all our waking experiences. Thus, the brain must select what it 
needs to remember and what it can afford to forget, a process referred to as memory triage 
[78]. Analogous to prioritizing more useful updates in reinforcement learning, those memories 
that are most likely to be relevant in the future also need to be prioritized, replaying first and 
often during sleep, to increase their likelihood of being consolidated. How does the hippocampus 
‘select’ which memories to replay, given that sleep is an internally-driven state and all of the fac-
tors that relate to the salience of the memory are no longer present to inform the brain that this 
memory needs to be prioritized during consolidation? 

Awake replay has recently emerged as a potential solution to this problem [79–81]. First, cortico-
hippocampal circuits active during a behavioral episode are hypothesized to be actively ‘tagged’ 
during awake replay (Figure 2). More salient experiences have more awake replay events cumu-
latively, which strengthens this cortico-hippocampal tag and the associated sleep replay priority. 
How this tag causes more sleep replay is unknown, but one model suggests that cortico-
hippocampal circuits have a latent excitable state, with this excitability proportional to the number 
of times a memory replays prior to sleep (strength of the tag) [82,83]. During sleep, this latent ex-
citable state is unmasked prior to a replay event and this increases the likelihood that the hippo-
campus will remap to the context associated with this ‘tagged’ cortico-hippocampal circuit and 
subsequently replay the memory associated with this context. 

Given that behavioral variables increasing a memory’s salience, such as novelty and reward, 
modulate both awake and sleep replay rates [32,79,84], what is the evidence that awake replay 
is actually doing something different from sleep replay? When a behavioral episode is repeated, 
like when a rat runs multiple spatial trajectories on a novel linear track, the rate of awake replay 
will stay the same or even decrease over time, while the rate of sleep replay will increase propor-
tionally with the number of laps run [79]. However, running more laps will still increase the cumu-
lative number of awake replay events, simply because of more time spent in rest or immobility
Encoding of experience Tagging by awake SWRs

+Inhibition

+Excitation

Synaptic updates 
during sleep SWRs

Track A Track B 

HC 

Cortex

(Inhibition
removed)

HC 

Cortex

SWRs SWRs
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Bottleneck 

Figure 2. Schematic of awake SWRs tagging memories for future consolidation. Different cortical and
hippocampal ensembles will encode each experience (left). Behavioral salience (e.g., novelty, reward) will lead to more
awake SWRs for some experiences compared with others (here, Track B is prioritized). This creates a memory tag by
generating a latent excitable state (middle), by a balanced increase in the strength of excitatory and inhibitory inputs
(middle). In sleep, disinhibition during an up state leads to an unmasking of tagged memory circuits, with their increased
excitability leading to higher participation in sleep replay, prioritizing these memories for consolidation (right). Abbreviations: HC
hippocampus; SWR, sharp wave-ripple. 
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when SWRs generally occur [79]. This highlights that while the rate of awake replay may reflect 
the EVB or salience of a behavioral episode (i.e., higher in a novel vs. familiar track), it is the cumu-
lative number of awake replay events that correlates with the subsequent sleep replay rate (and 
consolidation priority) of the memory. 

There are several behavioral studies that support this process of memory triage and prioritization 
([85] mice, [86–90] humans). Importantly, in human subjects, the ability to bias memory process-
ing towards more salient experiences requires sleep within a restricted time window and corre-
lates with hippocampal involvement [91]. Additionally, in human subjects, what makes a 
memory salient does not need to occur at the same time that the memory is initially encoded 
(e.g., learning before you go to sleep that you have an exam the next day should be sufficient 
to prioritize your sleep consolidation towards what the subject you studied earlier in the day 
matching the exam topic) [92,93]. Given that awake replay can also occur remotely (in a different 
context to where the memory was originally encoded) allows the brain to use this same mecha-
nism to tag any earlier memory based on new information. While memory tagging does not 
need to be exclusively carried out by hippocampal replay, such a mechanism is particularly ad-
vantageous if offline updating is required. 

It's tough to make predictions, especially about the future 
Which mechanisms could support replay prioritization? Increased prediction error, the result of 
novelty and unexpected changes in stimulus, reward, and context, leads to higher rates of 
awake replay [32,71,74,75,79]. Could prediction error be the main causal driver for prioritizing 
specific trajectories for awake replay (Figure 3)? Unexpected rewards (or the lack of them)
Prioritized 
sleep replay 

! 

Unexpected reward 

Novelty 

Experience 

Neuromodulation

 ↑ DA 

+ 

Representational change 

Mechanism 

SWR

SWR

SWR

Bellman backups

 ↑ Excitation
 ↑ Inhibition 

Memory tagging 

Trains values
elsewhere 

Awake ‘offline’ replay 

Prediction 
error 

SWR
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Figure 3. Proposed roles for awake replay in reinforcement learning and memory prioritization more generally
(Left) Experience: prediction errors, arising from unexpected reward (top) or novelty (bottom) trigger increases in awake replay
through non-exclusive, parallel mechanisms. (Middle) Mechanism: prediction error induces neuromodulation, particularly
dopamine (DA) release, which directly promotes excitability in nearby place fields and can also drive the allocation of new
place fields (orange) and partial remapping of existing place fields (purple). (Right) Awake replay performs Bellman
backups (top) by propagating reward value estimates to preceding states, supporting offline learning outside the
hippocampus. Awake replay also can drive memory tagging (bottom), where excitation–inhibition balance modifies
cortical–hippocampal dynamics, biasing subsequent sleep replay toward more salient experiences. Together, these
processes suggest that awake replay does not serve an online decision-making role but rather facilitates prioritized offline
learning and consolidation. Abbreviation: SWR, sharp wave-ripple.
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Outstanding questions 
The entorhinal cortex provides a 
major input to the hippocampus, 
while receiving reciprocal feedback 
connections. Could the entorhinal 
cortex help prioritize what the 
hippocampus replays, based on the 
difference between the input to the 
hippocampus (from superficial layers 
of entorhinal cortex) and the output 
of the hippocampus (to deep layers 
of entorhinal cortex), with prediction 
error causing bigger mismatches? 

One speculated role of awake replay is 
to ‘tag’ memory circuits so that they 
are prioritized to replay during sleep, 
leading to their consolidation. Where 
is this memory prioritization tag found 
in the cortico-hippocampal circuit? Is 
this distributed throughout the entire 
brain, localized to the hippocampus, 
or restricted to the cortical area driven 
by the salient cue that has led to the 
prioritization of the memory? 

What plastic changes are caused 
by awake replay? Learning updates 
(i.e., Bellman backups) driven by 
awake replay should cause representa-
tional change in cortico-hippocampal 
circuits. On the contrary, memory tag-
ging should only cause a latent excit-
ability in these circuits. If replay can 
serve both roles, what controls the bal-
ance between replay-for-stability and 
replay-for-updating? Or, alternatively, 
are these simply reflections of the 
same common underlying mechanism? 

The predicted replay content from 
replay-as-online-planning and replay-
as-prioritized-offline-value-learning ac-
counts overlaps. What is needed in 
the design of a strong test of the hy-
pothesis that replay supports online 
decision-making? At a minimum, ani-
mals should be trained to criterion, 
with SWRs disrupted at the decision 
point only on a subset of trials, allowing 
the difference in behavioral perfor-
mance between disrupted and control 
trials to be directly compared.
classically cause changes in the firing of midbrain dopamine neurons, which, in addition to strong 
projections to the striatum, also send projections to the hippocampus (although hippocampal do-
pamine may also, or even primarily, arise from locus coeruleus neurons) [94–97]. Unexpected 
state transitions (e.g., A→C instead of the expected A→B) have been shown to similarly cause 
ventral tegmental area (VTA) activity increases, even in the absence of reward [98]. In turn, hippo-
campal dopamine release enhances hippocampal replay; putting these ideas together, we spec-
ulate that phasic dopamine release increases the latent excitability of recently active place cells, 
increasing their participation in awake SWRs [99,100]. The use of neuromodulatory signals to pri-
oritize replay may not be unique to dopamine, given that acetylcholine and norepinephrine puta-
tively signal for salience and arousal, respectively [101,102].

An alternative or potentially complementary mechanism to support replay prioritization is repre-
sentational change. In a completely novel experience (e.g., a new environment, a new internal 
context inferred by the animal, or a never-before seen stimulus), neurons are ‘allocated’ in the hip-
pocampus to encode that novel experience, manifesting as new ‘emerging’ place fields being 
formed [103–106]. Place cells can change their place fields in other ways, including partial or 
global remapping to sudden changes in the environment and smaller changes over longer time 
scales (i.e., representational drift) [107–109]. Here we group together emerging place fields, 
drift and remapping, as part of the same continuum of representational change and suggest 
that the underlying cause is prediction error. In turn, this representational change drives replay 
priority: awake replay rates are observed to increase proportionally to representational change 
[99,110]. For example, when rats are re-exposed to a linear track, awake replay rates increase 
with the difference in the population vector correlation between the first and second exposure, 
with this difference increasing in less familiar environments [79]. Thus, prediction errors during ex-
perience can be expressed as representational change in the hippocampus, which in turn could 
prioritize associated awake replay activity (Figure 3). 

Concluding remarks and future perspectives 
A widely held view is that hippocampal replay can serve two functional roles: (i) online decision-
making (by retrieving relevant memories and/or generating possible courses of action, i.e., 
planning); and (ii) offline consolidation (i.e., the updating of knowledge structures outside the 
hippocampus). As discussed in the previous sections, we find only marginal experimental support 
for (i), with mixed results that, in our interpretation, are equally or more consistent with a role in learn-
ing rather than in online performance. We next highlighted two alternative offline roles for awake re-
play: (i) fictive learning to update value functions, and (ii) the ‘tagging’ of memories to prioritize their 
later replay during sleep. Note that these hypothesized roles do not need to be exclusively per-
formed by awake replay. For example, theta sequences, the sequential firing of place cells within 
a theta cycle, which generally occur during locomotion and exploration, could also generate trajec-
tories comparable with replay to support planning and fictive learning. Interestingly, while theta se-
quences are required for sleep replay to later occur, the number of theta sequences during a 
behavioral episode does not correlate with the rate of sleep replay (of that experience), suggesting 
that theta sequences are not involved in memory tagging [30,79,111]. 

Moving forward, it is worth noting that while unexpected reward and novelty increase awake re-
play activity, these are also more generally correlated with many other behavioral or neural vari-
ables, including arousal levels, motivational state, neuromodulatory signals, prediction errors, 
and place field remapping and representational drift in the hippocampus and elsewhere. We pro-
pose that prediction error is the main driver guiding which awake replay trajectories are prioritized, 
through the downstream effects of prediction errors on neuromodulatory signals and representa-
tional change, that in turn influence which neurons participate in replay. Understanding the
8 Trends in Neurosciences, Month 2025, Vol. xx, No. xx
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precise role(s) of replay amidst such a tangled web of processes may require thinking more broadly 
and unifying these many strands of experimental evidence (see Outstanding questions). While it is 
technically challenging to simultaneously monitor hippocampal replay in combination with other 
neural or behavioral factors, this may ultimately be required to tease apart the specific contributions  
of replay, including understanding how replay drives and modifies neural circuits in the brain 
[112–116]. Similarly, measuring replay content across different types of behavioral tasks will 
be required to gain insights into the internal logic that helps determine which experiences are 
selected for consolidation during sleep.
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