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 Abstract 60 

Systemic sclerosis (SSc) remains a challenging and enigmatic systemic autoimmune disease owing to its 61 

complex pathogenesis, clinical and molecular heterogeneity and the lack of effective disease-modifying 62 

treatments. Despite a century of research in SSc, the interconnections between microvascular dysfunction, 63 

autoimmune phenomena, and tissue fibrosis in SSc remain unclear. The absence of validated biomarkers and 64 

reliable animal models complicates diagnosis and treatment, contributing to high morbidity and mortality. 65 

advances, such as single-cell RNA sequencing, next-generation sequencing, spatial biology, transcriptomics, 66 

genomics, proteomics, metabolomics, microbiome profiling and artificial intelligence, offer new avenues for 67 

identifying the early pathogenetic events which, once treated, could change the clinical history of SSc. 68 

Collaborative global efforts to integrate these approaches are crucial to develop a comprehensive, mechanistic 69 

understanding and enable personalized therapies. Challenges include disease classification, clinical 70 

heterogeneity and the establishment of robust biomarkers for disease activity and progression. Innovative 71 

clinical trial designs and patient-centred approaches are essential for developing effective treatments. 72 

Emerging therapies, including cell-based and fibroblast-targeting treatments, show promise. Global 73 

cooperation, standardized protocols and interdisciplinary research are vital for advancing SSc research and 74 

improving patient outcomes. The integration of advanced research techniques holds the potential for 75 

significant breakthroughs in the diagnosis, treatment and care of individuals with SSc.  76 

 77 

[H1] Introduction. 78 

 79 

  80 

Sir Winston Churchill's definition of the Soviet Union as "a riddle, wrapped in a mystery, inside an enigma" 81 

could also apply to systemic sclerosis (SSc, also known as scleroderma. The pathogenesis of SSc, lack of animal 82 

models, clinical heterogeneity, absence of validated biomarkers, difficult classification, problematic monitoring 83 

of treatment response and lack of well-designed randomized control trials contribute towards the complexity 84 

of SSc [1,2]. Consequently, diagnosis is often delayed, the assessment of disease activity is challenging, there 85 

is a lack of reliable disease-modifying drugs, and morbidity and mortality are high, resulting in a substantial 86 

[burden on patients and the healthcare system [3,4]. Despite more than a century of clinical and experimental 87 

investigations into SSc since the first descriptions of the disease, [5,6] the precise relationship among the 88 

hallmark features of SSc — microvascular dysfunction, autoimmune phenomena and pathological tissue 89 

fibrosis — remains elusive. It is unclear whether these events are interlinked, triggered by the same or different 90 

agents, or occur as a cascade. Additionally, the heterogeneous nature of SSc raises questions about whether it 91 

is one disease with distinct subsets and stages or a collection of closely related diseases with similar symptoms 92 

(Figure 1). 93 

 94 

As no animal model encompasses all features of SSc, insights gained from animal studies remain limited [7] 95 

Most evidence suggests that vascular abnormalities or immunological dysregulation occur at early stages of 96 

the disease and precede fibrosis. This model of pathogenesis, however, has not translated into therapeutic 97 
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advances. Most treatment strategies target single-organ manifestations, often improving quality of life and 98 

survival but falling short of being disease-modifying therapy. Unclear definitions, variability in patient subsets, 99 

small and underpowered studies and difficulties in obtaining patient samples contribute to these challenges. 100 

Examples include studies with tocilizumab (anti-IL6 receptor therapy), abatacept (CTLA-4 co-stimulation 101 

blocker), and pan-PPARγ agonists which failed to meet the primary endpoints [  Although the anti-fibrotic agent 102 

nintedanib was shown to have beneficial effects for patients with interstitial lung disease (ILD) [8], and some 103 

studies with TGFβ inhibitors showed promising effects  [9,10], much remains to be done to effectively manage 104 

all the manifestations of SSc. 105 

 106 

There has been substantial progress   in molecular and cell biology and cellular immunology, coupled with 107 

technological breakthroughs in next-generation sequencing, single-cell RNA sequencing, spatial 108 

transcriptomics, proteomics and metabolomics. Integrating these research technologies into SSc research 109 

requires computational biology, statistical and artificial intelligence (AI) to properly analyse the data generated 110 

in studies using them and to link them to clinical information. These unprecedented recent   developments 111 

now provide the field with a unique opportunity to integrate the new approaches into SSc research in a 112 

systematic fashion to generate a more detailed mechanistic understanding of disease pathogenesis and to 113 

make personalised medicine in SSc a reality by identifying specific and effective treatments tailored for 114 

individual patients. Organized global cooperation is a prerequisite for the success of such an endeavour. With 115 

this aim, an international consensus workshop was held in Portonovo (Ancona) Italy in October 2023 . The goals 116 

of the workshop were to provide a foundation for bringing the international SSc research community together, 117 

to develop a common understanding of the disease pathobiology, to explore innovation in clinical trial designs 118 

and outcome measures, as well as to educate healthcare professionals, patients, the general public, regulators, 119 

industry leaders and policymakers (Figure 2).   120 

 121 

[H1] The complexity of SSc and organ-based complications. 122 

 123 

SSc is an acquired autoimmune disease with a strong female sex bias and is characterized by vascular damage 124 

and immunological abnormalities that lead to immune dysfunction, autoantibody production and the 125 

development of skin and internal organ fibrosis [1-3]. Its complexity arises from disease heterogeneity, the 126 

involvement of multiple organ systems and a blend of inherited, environmental and lifestyle factors. Recent 127 

research deploying advanced omics and analytic approaches has unveiled novel pathways, cell types, circuits 128 

and mechanisms involved in SSc, offering new therapeutic targets and insights into disease pathogenesis SSc 129 

is highly heterogeneous and can be readily separated into two major disease subsets, limited cutaneous SSc 130 

(lcSSc) or diffuse cutaneous SSc (dcSSc), according to the extent of skin involvement (Figure 1) [1-3]. Other 131 

aspects of disease diversity include variations in clinical manifestations, disease progression, organ 132 

involvement, treatment response and molecular heterogeneity [11], thus emphasising the need for 133 

personalized treatment approaches. 134 

 135 

Advances in genomic and proteomic platform technologies have accelerated the identification of molecular 136 

pathways underlying SSc pathogenesis. In addition to well-known signalling pathways (such as the TGF, CCN, 137 

platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor binding protein, IL-6 and 138 

IL-31 signalling pathways) novel mechanisms have been implicated, such as Notch, Hedgehog, Wnt–139 

−Catenin, CXCL4, and various extracellular matrix (ECM) remodelling pathways [12-16]. Understanding the 140 

interconnections between these pathways is critical for identifying new therapies. The pathology of SSc is 141 

traditionally defined by vascular dysfunction, inflammation, autoimmunity and hyperactivation of 142 

myofibroblasts.  Recent approaches including single-cell and spatial analysis, have extended the knowledge 143 

of the cell types that are involved in SSc and the communication of these cells with each other and the ECM, 144 

known to be a major contributor in disease pathogenesis [17-19]. Researchers have uncovered novel aspects 145 

of fibroblasts and myofibroblasts that highlights the plasticity of these cells.  The fibrotic tissue in patients 146 

with SSc contains multiple transcriptionally distinct fibroblast subsets [17], some of which have critical  ]  roles 147 
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in the initiation, progression and persistence of pathology (Figure 3).  Recent studies have also focused on 148 

the pathogenetic role of the microbiota of the skin, lungs and gut; however, establishing the effects of 149 

microbial dysbiosis in different organs on the initiation and progression of SSc features remains challenging 150 

[20,21].   151 

 152 

Genomic studies have identified nearly 30 loci associated with SSc, highlighting the contribution of immune 153 

cell activation, type I interferon signatures, cytokine signalling, inflammation, apoptosis and autophagy to the 154 

disease process [22]; these studies also provide insight into vascular and ECM fibrotic pathology. The 155 

assessment of shared genetic factors and cross-phenotype genome-wide association studies have uncovered 156 

new pathways by identifying shared genetic factors between SSc and other autoimmune diseases [23]. This 157 

overlap provides opportunities to extend applications for specific drugs, potentially accelerating the 158 

development of effective therapies for SSc. Future directions in SSc genomics include trans-ethnic genome-159 

wide association studies, whole-genome sequencing, studying structural and non-coding RNA variants and 160 

epigenetic studies. The integration of genomic data with epigenomic, transcriptomic and proteomic data can 161 

help elucidate the functional effect of genetic variants [24-25]. Deciphering the interplay between genetic 162 

predisposition, environmental exposures and social factors will increase the understanding of SSc 163 

pathogenesis. Environmental factors, such as occupational exposures, infections and lifestyle factors can 164 

increase disease risk and could trigger onset and influence progression of SSc. 165 

Besides skin involvement and Raynaud phenomenon, organ-based complications are a key feature in SSc and 166 

can involve several internal organs, including the kidney, gastrointestinal tract and cardiopulmonary system 167 

[1]. The underlying pathophysiology seems similar, with some organ-specific pathogenic mechanism(s) Skin 168 

involvement in SSc can cause substantial morbidity; management of skin manifestations consists of 169 

vasodilators and immune-based therapies [1]. Gastrointestinal tract involvement is common and represents 170 

an important unmet clinical need, with underlying molecular and cellular alterations still being investigated.  171 

SSc-associated pulmonary complications (pulmonary arterial hypertension (PAH) and ILD) are complex, life-172 

threatening and require early recognition, accurate diagnosis and comprehensive management [26]. Recent  173 

research into pulmonary vascular disease has provided genetic insights and new concepts regarding the 174 

pathophysiology of SSc-associated PAH [27-28]. Around 5% of patients with SSc have pathological coding 175 

variants in PAH-related genes. Advances in the treatment of PAH focus on vasodilation and targeting the 176 

underlying pathobiology of the disease. New  therapeutic agents, such as sotatercept, an activin signalling 177 

inhibitor, show promise but raise concerns about adverse effects   such as vascular malformations. Other 178 

potential treatments include small molecule tyrosine kinase inhibitors, poly (ADP-ribose) polymerase 179 

inhibitors, bromodomain-containing protein 4 inhibitors   senolytics, elastase inhibition, stem cell therapy, 180 

autologous hematopoietic stem cell transplantation (HSCT) and chimeric antigen receptor (CAR) T cell therapy 181 

[29-32].  182 

In SSc-associated ILD (SSc-ILD), inflammation and fibrosis of the lungs can substantially impair lung function 183 

and, hence, quality of life, and is associated with high mortality. The course of SSc-ILD is highly variable and 184 

predicting individual disease progression is problematic owing to the lack of reliable biomarkers, which hinders 185 

the implementation of  personalised therapy [1-3]. Current treatments for SSc-ILD focus on slowing disease 186 

progression, managing symptoms and improving patient outcomes. Typical treatments include 187 

immunosuppressants (mycophenolate mofetil, cyclophosphamide and rituximab) and new antifibrotic agents 188 

(nintedanib) [8, 29-33]. Additionally, in a subset of patients with SSc, treatment with tocilizumab can help 189 

manage symptoms and improve functional capacity [34-35]. Ongoing research continues to explore new 190 

therapeutic options and strategies to identify early events in the pathogenesis of SSc-ILD and better address 191 

SSc-ILD and its effect on patients. The use of the 2019 classification criteria [36] for the early identification of 192 

scleroderma renal crisis should facilitate early treatment with angiotensin-converting enzyme inhibitors and 193 

improve the prognosis of this rare but severe complication. Vasodilators used in PAH (endothelin receptor 194 

antagonists and prostacyclin analogues) have not demonstrated efficacy in this setting but could, in the future, 195 

along with complement inhibitors (eculizumab) help improve the prognosis of renal crisis in SSc. Heart 196 
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involvement is the third leading cause of death related to organ involvement in SSc; heart involvement in SSc 197 

represents an unmet clinical need as only symptomatic non-specific treatments are proposed for these 198 

patients. This cardiac involvement remains an understudied area of research in SSc [37]. Patients with SSc can 199 

undergo organ transplantation, particularly for the lungs, heart and, in some cases, the kidneys. Organ 200 

transplantation is considered for patients with severe, end-stage organ involvement that is refractory to other 201 

treatments [1-3]. 202 

 203 

The association of SSc with aging markers   provides fresh insights into its pathogenesis [38-41]. Biological 204 

clocks indicate an apparent acceleration of aging in individuals with SSc, and cellular senescence is greatly 205 

augmented in affected organs    [42]. Senescent cells, which are characterized by irreversible cell cycle arrest 206 

and the senescence-associated secretory phenotype, increase in abundance with age and correlate with 207 

chronic inflammation [43]. Senolytics and senomorphic therapies aim to eliminate or reduce the effect of 208 

senescent cells, but the reparative role of senescent fibroblasts requires careful investigation [44]. Accurately 209 

measuring biological aging and cellular senescence in SSc and understanding their contributions to 210 

pathogenesis can provide new therapeutic targets. 211 

 212 

A compelling need exists to better understand the natural history of SSc and the various subtypes of this 213 

disease. Long-term, multicentre, and multinational longitudinal studies are crucial for capturing disease 214 

progression, identifying biomarkers and evaluating therapies. Although these studies present challenges, such 215 

as patient recruitment and standardizing data collection, the potential benefits outweigh these obstacles, 216 

offering improved patient outcomes and a deeper understanding of SSc. 217 

 218 

[H1] Overcoming major barriers for research in SSc 219 

 220 

Research in SSc faces several hurdles that hinder progress toward effective therapies; for example, the 221 

difficulties in defining and classifying SSc, the relative rarity and clinical heterogeneity of the disease, the 222 

complex heritability and mysterious aetiology and perhaps, most notably, the incomplete understanding of 223 

underlying molecular mechanisms. These factors and operational changes in outcome assessment  , impede 224 

efforts to generate definitive evidence for altering clinical practice. Many of these issues are interconnected. 225 

Untangling the complex and dynamic temporal and pathogenic relationships linking fibrosis, vascular injury 226 

and immune activation remains elusive. A more complete understanding of the pathogenesis of SSc will 227 

probably emerge from a combination of both unbiased and hypothesis-driven approaches that address all 228 

three hallmark features: vascular, immunological and fibrotic changes. 229 

 230 

 The striking female bias in SSc, similar to many other autoimmune diseases, remains unexplained, with 231 

multiple competing, although not mutually exclusive, proposed underlying mechanisms. Exciting recent   232 

findings suggest a potential role for X-chromosome inactivation escape and Xist ribonucleoproteins    [47]. 233 

Multiple studies have reported that the intestinal microbiome of patients with SSc is different from that of 234 

healthy individuals [48, 49]; however, the pathogenic role of gut dysbiosis, and the potential mechanisms 235 

involved, remain completely unknown and merit further study [50, 51].   236 

 237 

 238 

As already noted, current animal models of SSc fail to capture all aspects of human disease. Alternate preclinical 239 

model systems, such as precision-cut skin slices and 3D organ cultures that are populated with multiple cell 240 

types (such as monocytes, fibroblasts or endothelial cells), might aid the efforts to better understand 241 

pathogenesis and for preclinical drug testing [52-57]. It is widely accepted now that improved disease models 242 

are essential for assessing the efficacy of new therapies and understanding drug interactions in clinical trials. 243 

These models are promising, especially when leveraging emerging technologies with single-cell level 244 

resolution, such as single-cell RNA sequencing, single-cell ATAC-sequencing and spatial transcriptomics 245 

[17,19,58-60]. Incorporating the potential environmental exposures and acquired genetic and/or epigenetic 246 
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changes [61-63] are expected to yield novel insights into pathogenesis and enable more predictive 247 

determination of efficacy of therapeutics. In addition, emerging interest in leveraging endogenous anti-fibrotic 248 

pathways offers new opportunities for boosting blunted or suppressed anti-fibrotic responses in SSc and other 249 

fibrosing diseases [64,65].  250 

 251 

Detecting early-stage SSc remains an important challenge as this stage of disease could be the most responsive 252 

to disease-modifying therapies (Figure 1.). The VEDOSS (Very Early Diagnosis of Systemic Sclerosis) 253 

classification criteria help identify disease risk, but studies   [66] show that autoantibodies often appear years 254 

before the onset of overt disease. Antibodies to Ro52, Ro60 and CENP-A are elevated decades before disease 255 

manifests and remain high, whereas anti-RNA polymerase III and anti-topoisomerase I antibodies increase 256 

progressively and more rapidly as clinical diagnosis approaches. Interestingly both Ro52 and Ro60 proteins are 257 

linked to interferon, and a type I interferon signature in monocytes has been found at the earliest phases of 258 

SSc before overt fibrosis, suggesting that it is also an early event in the pathogenesis of the disease [67-69]. 259 

This relationship   should be explored in more depth since it can provide hints as to what triggers the disease. 260 

These findings   suggest that early biomarkers could be crucial for understanding and predicting disease onset; 261 

however, reliable biomarkers for disease activity and progression are still lacking. Deploying powerful new 262 

technologies in the framework of collaborative networks to share biological samples from well-characterized 263 

and diverse patient cohorts is crucial. Research should also focus on unique populations with high disease 264 

prevalence or specific genotypes, and twin studies that can offer insights into the complex interplay and 265 

relative roles of genetics and environmental factors that affect the epigenome are key to understanding the 266 

disease [45, 46] . Leveraging interdisciplinary research, international collaboration, and standardized data 267 

collection will help identify new biomarkers. Integrating multi-omics data and refining preclinical models will 268 

advance SSc research and facilitate patient selection for clinical trials. 269 

 270 

[H1] Novel technological breakthroughs and biomarker discovery 271 

 272 

Clinical progress often results from technological breakthroughs; for example, the discovery of the patch clamp 273 

technology, the invention of cryo-electron microscopy, the development of state-of-the-art light microscopy, 274 

the advancement of genomic technologies and the improvements in computational methods. Technological 275 

advances have had a notable influence on SSc research. Innovations such as next-generation sequencing have 276 

accelerated analyses of genome sequence variation, of gene expression and of epigenetic markers. Next-277 

generation sequencing has demonstrated that messenger RNA expression varies with clinical subsets of SSc, 278 

and with progression of the disease [11, 70-74]. Molecular classifications have been used to stratify patients in 279 

clinical trials such as for abatacept (as a post-hoc analysis) [75], and in HSCT. In many cases, it is clear that only 280 

a subset of patients responded to a specific treatment. Machine learning algorithms can use gene expression 281 

data for molecular classification in clinical trials, and gene expression could help predict outcomes, such as the 282 

modified Rodnan skin score (mRSS) [76-78]. As the volume of data increases, AI methods will become 283 

increasing important for data analysis.   284 

 285 

Sequencing individual cell transcriptomes from biopsies has permitted detailed characterization of the cell 286 

types that are present, including fibroblasts, macrophages, lymphocytes, endothelial cells and keratinocytes. 287 

Advances in bioinformatics and computational methods have provided insights into spatial interactions 288 

between different cell types and provided a basis for hypotheses about their role in the disease [79-81]. The 289 

advent of spatial transcriptomics, which enables gene expression to be imaged at a single-cell resolution in 290 

histological sections has provided further insight into active gene programs and in interactions among different 291 

cell types involved in disease development [82-84].  Single-cell-resolved spatial protein analysis has also 292 

progressed, including techniques that can pinpoint activity states in cellular signalling cascades by reflecting 293 

dynamic protein interactions and post-translational modifications [85]. Automated detection of numerous 294 

proteins in situ, with advanced bioinformatics, enables comparison of data across labs, which is crucial for 295 

research in rare diseases [86]. Standardization of procedures and the development of novel in vitro systems, 296 

such as organoid models and tissue slices ,could enhance drug testing and understanding of SSc [87]. [  297 
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 298 

Methods have also become available that permit the levels of thousands of proteins to be measured in minute 299 

amounts of sample, such as blood plasma and tissue lysates. Available platforms  are based on detection of 300 

specific blood proteins by DNA-aptamers [88], or using pairs of oligonucleotide-conjugated antibodies [89]. 301 

Thanks to the ongoing  development of AI-based machine analyses, progress in the analysis protein expression 302 

patterns with diagnostic and prognostic value can be anticipated. The analyses can be applied to blood samples 303 

collected by donors themselves from a finger prick and sent by mail for storage in a dry state (90). This 304 

technology paves the way for convenient measurements of protein levels upon repeated sampling, sensitively 305 

reflecting disease processes   Profiling of blood protein levels serves as a diagnostic tool in SSc  [91] as has been 306 

reported for many forms of cancer [92]. Similar methods can also be used for comprehensive measurements 307 

of autoantibody repertoires in individual patients. 308 

To exploit technological breakthroughs in SSc research it will be important to build biobanks with samples that 309 

are compatible with these emerging technologies. Specifically, fresh-frozen or formalin-fixed tissue sections 310 

are required to take advantage of spatial transcriptomics. In patients with ILD, meaningful information can be 311 

provided by lung tissue obtained via cryobiopsy, which serves as an alternative to surgical lung biopsy, when 312 

performed by experienced hands, with standardized protocols [93]. Similarly, blood samples, consecutively 313 

collected from large groups of individuals and inexpensively stored in a dry state, will enable monitoring of 314 

disease progress and responses to therapy. Such samples will also be crucial to the identification of blood 315 

biomarkers and other robust biomarkers, such as collagen-derived peptides, which indicative of ECM  or 316 

degradation, the altered expression of which could be used to predict onset of disease   Protein biomarkers 317 

will assume increasing importance if and when methods become available to avert disease onset Repeated 318 

blood sampling and molecular imaging (such as fibroblast-activation protein quantification with PET-CT) offers 319 

a way to monitor disease-relevant events. Combining these advances with systemic [ research approaches will 320 

help identify new therapeutic targets and biomarkers, paving the way for improved clinical trials and treatment 321 

strategies (Figure 4). 322 

 323 

[H1] Emerging therapies and translational research opportunities 324 

 325 

Numerous novel treatment strategies with a wide variety of distinct mechanisms are being explored in clinical 326 

trials of SSc. The current pharmacologic and non-pharmacologic approaches, such as organ transplantation, 327 

and their clinical development phases have been reviewed elsewhere [94-96]  . Thus far, no therapy that 328 

targets a single  cell or molecule  has induced long-term drug-free full remission of any autoimmune disease. 329 

Cell-based and targeted cellular depletion therapies are emerging as options for selectively modulating the 330 

immune response, mitigating vascular damage and the symptoms of Raynaud phenomenon, and also slowing 331 

or reducing fibrosis in skin and other organs , and promoting tissue repair (Table 2). Important developents   332 

include the use of CAR T cells, particularly CD19-targeting CAR T cells, which were shown to have clinical 333 

efficacy and relative safety in patients with SSc, along with other autoimmune diseases [97-99]. Although 334 

data are still limited, early evidence suggests that treatment with anti-CD19 CAR T cells might be better 335 

tolerated than autologous HSCT. This therapy might offer a more complete depletion of CD19+ cells than B 336 

cell-depleting antibodies such as rituximab [100], potentially resetting the immune system. Despite the 337 

tremendous promise of this treatment and the surrounding great excitement, careful longitudinal studies are 338 

needed to confirm these findings, optimize the treatment protocols and patient selection criteria and explore 339 

the persistence of antibodies against other antigens  Autologous HSCT, which ‘resets’ the immune system, 340 

has demonstrated substantial   clinical benefit in SSc, particularly in improving skin manifestations, vascular 341 

changes and lung function [101-103]; however, HSCT carries a risk for adverse effects [104], but recent   342 

efforts have improved these shortcomings [105]. The use of mesenchymal stem cells and harnessing the 343 

immunomodulatory and anti-inflammatory properties of these cells have shown promise in early clinical 344 
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trials. Ongoing research is focused on optimizing delivery methods, optimal therapeutic range, frequency of 345 

administration and understanding long-term effects. Finally, randomized controlled trials are required to 346 

provide definitive evidence for the efficacy of MSC-based therapy and differences from HSCT [106,107]. 347 

Research into the use of induced pluripotent stem cells, which remains at the preclinical stage, focuses on 348 

the potential of iPSCs to regenerate damaged tissues and the development of patient-specific therapies with 349 

a lower risk of immune rejection   Other cell-based therapies under investigation include modulation of 350 

regulatory T cells that can restore immune tolerance; preclinical studies and early clinical trials have shown 351 

promise for this therapeutic approach [108]. More recently , the role of regulatory B cells has been 352 

investigated in in vivo models of SSc to test the ability of these cells to modulate autoimmunity and fibrosis 353 

[109-110]. Several other immune cell types are under investigation, such as monocyte and macrophage 354 

subsets, for which direct cell reprogramming and metabolism (via CD38) and polarisation strategies to effect 355 

tissue repair have been the focus. Modulating the activity of both dendritic cells (and other antigen-356 

presenting cells) and natural killer cells is also under investigation; these approaches focus on regulating the 357 

immune responses and harnessing cell cytotoxic potential to treat autoimmune disease [111].   358 

Another promising area involves fibroblast-targeting therapies; in this setting the design of non-viral vectors 359 

for nucleic acid delivery represents a promising perspective. These approaches aim to selectively modulate 360 

disease-relevant pathways in fibroblasts [112], potentially minimizing adverse effects on other cell types. 361 

Cell-surface markers such as fibroblast-activated protein, are being investigated for drug targeting and 362 

liposomal carrier coating [113]. A particularly fast-moving area of research focuses on the identification and 363 

characterization of distinct fibroblast subpopulations. Such cellular heterogeneity, only recently uncovered 364 

with the advent of single-cell transcriptomics, indicates that not all fibroblasts in lesional tissue are the same, 365 

with some subpopulations being relevant to disease progression and associated with specific cell-surface 366 

markers. Cell-based therapies offer hope for more effective and targeted treatments for SSc, although further 367 

research is needed to establish their safety, efficacy, and long-term outcomes. 368 

 369 

Recent advances in the development of in vitro models include precision-cut skin and lung slices, which, when 370 

combined with omics techniques and bioinformatic methods, enable the testing of new therapies and the 371 

personalization of treatments. These precision-cut skin slices retain cellular niches, but unlike ex vivo skin 372 

biopsies, this method ensures that the entire specimen receives adequate oxygen and nutrition supply via 373 

diffusion. Furthermore, multiple slices can be created from a single biopsy, enabling a direct comparison of 374 

different therapies across slices from the same sample. The changes in these skin slices in response to test 375 

compounds or therapies can be analyzed in an unbiased manner through the use of omic approaches. 376 

Precision-cut skin slices can be utilized as an ex vivo trial approach for human SSc skin, but they can also be 377 

used to select optimal treatments for individual patients based on molecular responses [114-116]. Promising 378 

preliminary observations indicate that the molecular response to currently used therapies in precision-cut skin 379 

slices faithfully predicts clinical responses. This approach could thus be used to guide treatment individualised 380 

treatment selection. 3D skin-like tissues provide another in vitro model to study SSc [117, 118]. These tissues 381 

are constructed using SSc cells   and have been shown to recapitulate key features of SSc skin, including 382 

increased tissue thickness, stiffness, fibrotic   , and immune pathway activation. These in vitro tissues enable 383 

cell–cell and cell–matrix interactions that are not captured in 2D culture and provide an alternative preclinical 384 

testing model for potential therapeutics.  385 

 386 

[H1] Designing more successful clinical studies 387 

 388 

As already noted, no approved disease-modifying treatment exists for SSc, partly owing to challenges in 389 

conducting effective clinical trials. The heterogeneous nature of SSc, the absence of reliable biomarkers for 390 

disease monitoring,lack of validated outcome measures and variable clinical course complicates clinical trials 391 

[119]. To overcome these obstacles, the SSc community has collaborated to propose innovative trial designs 392 
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and updated protocols that are based on emerging knowledge (Table 1); recent strategies have focused on 393 

cohort enrichment and outcome measure selection [119,129,130]. For example, the RISE-SSc trial targeted 394 

patients with dcSSc at high risk of skin fibrosis progression  [121]. The trial did not meet its primary endpoint, 395 

as it showed no improvement in mRSS in the placebo group however, rapid mRSS improvement in some 396 

patients highlighted limitations in the approach   [121]. The ASSET trial used a definition of ‘active disease’ for 397 

cohort enrichments; however, mRSS improvement was reported in both the active treatment and placebo 398 

groups, indicating that active disease alone was insufficient for cohort enrichment [120,131]. In the same study, 399 

gene expression profiling of biopsy-obtained skin samples and stratification by molecular subset revealed 400 

differences in mRSS progression and treatment response. One subgroup of patients, termed the ‘ inflammatory 401 

subset’ , had strong activation of the CD28 co-stimulatory pathway targeted by the treatment [120]  The 402 

focuSSced trial applied cohort enrichment based on active disease and inflammatory markers but did not meet 403 

its primary endpoint [35]. Nevertheless, this trial highlighted the effectiveness of tocilizumab in preventing the 404 

decline of forced vital capacity in patients with SSc-ILD, leading to its FDA approval for SSc-ILD [132] (Table 1).  405 

 406 

Key observations are that early disease (duration <18 months) and mild skin thickening are useful for cohort 407 

enrichment [130]. Molecular measures of heterogeneity, such as gene expression in skin or blood  can clearly 408 

be used as secondary endpoints as demonstrated in the ASSET clinical trial. Combining autoantibody 409 

information, such as excluding patients that are anti-centromere antibody-positive, can be informative. 410 

Disease alone is insufficient for cohort enrichment for those with skin progression. Combining biomarkers and 411 

omics data could improve cohort enrichment and treatment-response prediction. Inflammatory gene 412 

expression patterns in skin predict subsequent skin thickening and responses to certain treatments but this 413 

method is not yet viable for patient selection [72]. 414 

 415 

The RESOLVE-1 trial, which had minimal cohort enrichment, used the ACR-CRISS (ACR Composite Response 416 

Index in Systemic Sclerosis) , but the high score in the placebo group indicated that background 417 

immunosuppressive treatments might have influenced results [106]. The SENSCIS trial, by contrast, successfully 418 

demonstrated the efficacy of nintedanib in SSc-ILD, with a significant   reduction in the decline of forced vital 419 

capacity over 52 weeks and enrolled a broad range of patients with SSc-ILD [8] (Table 1.). Challenges remain in 420 

using mRSS as a primary endpoint owing to its tendency to improve over time, necessitating cohort enrichment. 421 

Composite measures such as ACR-CRISS have shown varied results [133], and new endpoints such as revised 422 

CRISS-25 and wearable devices could offer future solutions [134]. In the future, the use of omics data to identify 423 

reliable biomarkers and rapid skin gene expression profiling will be essential for selecting patients likely to 424 

respond to a given therapy and for evaluating therapeutic efficacy. The platform clinical trial  adopted by 425 

CONQUEST could be an alternative trial design that accommodates sample size reduction and robust patient 426 

participation [135]. In this setting , innovative designs such as digital twins   connected devices, AI and 427 

mathematical modelling could be proposed to test or validate personalized therapeutic strategies in groups of 428 

patients stratified according to specific biomarkers. Patient-centred trial design that involves patient 429 

organizations is crucial for addressing real-world medical needs. 430 

 431 

 432 

[H1] Future perspectives   433 

 434 

Studying rare diseases such as SSc and developing therapeutic trials requires a specific approach. International 435 

cooperation on a global level has been successful  in the collection of sufficient data from well-characterised 436 

cohorts of patients. The need for this approach to research has already been recognised by the scientific 437 

community, which is reflected in the many recent publications for several other disease entities, which list 438 

several specialised centres and research groups as co-authors. 439 

There was, therefore, a clear consensus at this symposium that these developments need to be strengthened 440 

and brought from national and regional levels to a global level. The final aim should be to generate a common 441 

database that combines clinical investigations involving regular follow-up of patients with the molecular and 442 

cellular analysis of biopsy-obtained skin samples and blood samples. This approach will require complex 443 
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organization of multiple centres taking into consideration all legal and ethical aspects of data collection and 444 

transmission within and between networks on national, regional and intercontinental levels.  445 

 446 

However, the rapid developments of methods of molecular and cellular analyses combined with computational 447 

methods, including AI and detailed clinical investigations, now offer a unique opportunity to better understand 448 

this complex, heterogeneous disease and to develop personalized therapeutic interventions. Determining a 449 

common definition of SSc and the development of a unified classification for all disease subtypes is essential. 450 

A consensus for common protocols for clinical trials (encompassing both inclusion criteria and treatment 451 

regimens) is required, and systematic cooperation with industrial partners early on   will be mandatory. 452 

Biopsies and blood samples should be collected from all patients under standardized conditions and analyzed 453 

using state-of-the-art technologies, including single-cell RNA sequencing, proteomic and metabolomic 454 

approaches, to generate an atlas for SSc   455 

 456 

There is also need for consensus regarding the selection of animal models and other cell and organoid-based 457 

in vitro models for testing novel hypotheses developed from basic research studies and for screening new 458 

compounds, which again needs to be achieved in cooperation with industrial partners.    459 

 460 

Large data sets obtained from next-generation DNA sequencing techniques (including analysis of noncoding 461 

sequences, somatic mutations and methylation ) need to be correlated with clinical, genetic and additional 462 

molecular data to identify very rare mutations in selected patients and their families as this information could 463 

have important implications for understanding SSc in general. Selecting populations and/or phenotypes that 464 

provide the largest signal-to- noise is critical to success. An excellent example is the GRASP study   which has 465 

focused on African Americans with SSc who have a more severe disease and poorer outcomes   Based on large 466 

cohorts of very well characterized patients these international consortia   will rapidly be able to carry out 467 

specific trials and evaluate distinct currently unanswered questions. Examples of studies that are needed 468 

include studies that determine the value of short-period pilot studies, studies that evaluate the highly efficient 469 

elimination of B cells as a therapeutic advantage and studies that evaluate whether treatment of patients who 470 

meet the VEDOSS criteria for very early SSc VEDOSS might prevent further development of the disease  . 471 

Precision medicine approaches that could enrich studies for populations that aremost likely to improve on 472 

specific treatments [could dramatically increase the success rate of trials and ensure that patients get the most 473 

effective treatment.  474 

 475 

The discussion during the workshop demonstrated that the SSc research community has already provided 476 

several examples of how generating networks between centres can work effectively and patient cohorts have 477 

been generated in the USA, Europe, Canada, Australia and Japan. Several of these activities have initially been 478 

funded by national governments but often only for a short initial period. The participants of the workshop 479 

reached agreed that it is now time to join such individual activities to raise awareness for  SSc in the medical 480 

community and the public to facilitate better and earlier diagnosis and treatment and to implement measures 481 

on different levels to secure funding  . The cooperation of the scientific community with industrial partners and 482 

patient organizations should advance research on SSc even further for the benefit of the patients.  483 

 484 

[H1] Conclusions   485 

 486 

The integration of cutting-edge and emerging research techniques into SSc studies is poised to transform the 487 

understanding of this complex disease. Omic analyses including bulk and single-cell analyses, spatial 488 

transcriptomics, proteomics, epigenetics and comprehensive cell and protein atlases, coupled with 489 

computational analyses for pathways, cell types and genetic variations, offer unprecedented insights into the 490 

molecular and cellular underpinnings of SSc. As these technologies continue to evolve, they will have a crucial 491 

role in advancing precision medicine, identifying novel therapeutic targets, and ultimately improve the lives of 492 

patients with SSc. The future of SSc research is bright, with these innovative approaches paving the way for 493 

important breakthroughs in diagnosis, treatment and patient care. 494 
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Trial details Drug mRSS  mRSS 
change 

FVC CRISS HAQ-DI PtGA  PhGA   

faSScinate34 
(n=86, 48 
weeks) 

Tocilizumab 0.06b -3.5  0.03 0.002 0.53 0.51 0.03 

focuSSced35 

(n=212, 48 
weeks) 

Tocilizumab 0.1b -1.73 0.002 0.02 ns ns ns 

ASSET120(n=
88, 52 
weeks) 

Abatacept 0.28 -1.75 0.11 0.03 0.005 0.73 0.03 

RISE-SSc121 
(n=121, 52 
weeks) 

Riociguat 0.08 -2.34 ns  ns ns ns ns 

JBT-101-
SSc122 

(n=38, 16 
weeks)a 

Lenabasum 0.085 -2.6 ns 0.04 0.03 0.1 0.02 

RESOLVE-
1123(n=365, 
52 weeks)a 

Lenabasum ns ns ns ns ns ns ns 

FASST124 
(n=145, 48 
weeks)a 

Lanifibranor ns +0.9 ns N/A N/A 0.08 N/A 

SENSCIS8(n
=580, 52 
weeks)a 

Nintedanib 0.58 -0.2 0.035 ns N/A N/A N/A 

Sanofi IL-4 
and IL-13125 
(n=97, 24 
weeks)a 

Romilkimab 0.03 -2.31 0.10 ns 0.4 0.1 N/A 

NOVESA126 

(n=33, 24 
weeks)a 

Ziritaxestat 0.04 -2.60 N/A N/A N/A N/A N/A 

DESIRES127 

(n=56, 24 
weeks) 

Rituximab 0.001 -8.44 0.044 N/A N/A N/A N/A 

CERTA 
128(n=30, 12 
weeks)a 

FT011 0.43 -1.5 0.018 0.05 0.019 0.94 0.02 

For comparison between active and placebo arms at the end of each trial p-values are shown. For trials in which the primary endpoint 994 

was not met these are nominal values.  995 
aIndicates that trial participants could have background immunosuppressive treatments  996 
bIndicates that there was significant reduction in meaningful worsening of mRSS  997 

ns, not statistically significant; N/A, data not available at time of writing; mRSS, modified Rodnan skin score; FVC, forced vital capacity; 998 

CRISS, Composite Response Index in Systemic Sclerosis; HAQ-DI, Health Assessment Questionnaire Disability Index; PtGA, patient global 999 

assessment of disease status; PhGA, physician global assessment of disease status.  1000 
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Table 2 Approaches to cell-based therapies in SSc 1003 

 1004 

Cells that could be targeted with cellular 
therapy 

Approach to cell-based therapy 

Monocytes Cell ablation and polarisation  

Macrophages Cell polarisation  

Fibroblasts Pathogenic cell subset ablation  

BREG cells Immune modulation (autoantibodies)   

TREG cells Immune suppression (cytokines) 

DCs Cell ablation and cytokine production   

B cells Cell ablation  
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mRSS? Please also clarify this for the other outcomes.  

Commented [HW2]: Au: Is this the ACR-CRISS or the 
CRISS-25 score? 
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NK cells Modulate function  

MSCs Immune modulation and repair 

iPSCs Regeneration and repair 

MDSCs Cell-based therapeutics 

HSCs Cell replacement and immune reset  

CAR T cells Immune cell ablation 
BREG cells, regulatory B cells; TREG cells, regulatory T cells; DCs, dendritic cells; NK cells, natural killer cells; MSCs, mesenchymal stem 1005 

cells; iPSCs, induced pluripotent stem cells; MDSCs, myeloid-derived suppressor cells; HSCs, haematopoietic stem cells; CAR T cells, 1006 

chimeric antigen receptor T cells.  1007 
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