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Abstract

The emergence of the disruption score provides a new perspective that differs from tradi-
tional metrics of citations and novelty in research evaluation. Motivated by current studies
on the differences among these metrics, we examine the relationship between disruption
scores and citation counts. Intuitively, one would expect disruptive scientific work to be
rewarded by high volumes of citations and, symmetrically, impactful work to also be disrup-
tive. A number of recent studies have instead shown that such intuition is often at odds with
reality. In this paper, we break down the relationship between impact and disruption with a
detailed correlation analysis in two large data sets of publications in Computer Science and
Physics. We find that highly disruptive papers tend to receive a higher number of citations
than average. Contrastingly, the opposite is not true, as we do not find highly cited papers to
be particularly disruptive. Notably, these results qualitatively hold even within individual sci-
entific careers, as we find that—on average—an author’s most disruptive work tends to be
well cited, whereas their most cited work does not tend to be disruptive. We discuss the
implications of our findings in the context of academic evaluation systems, and show how
they can contribute to reconcile seemingly contradictory results in the literature.

Introduction

In an increasingly competitive academic environment, the quality of scientific output and the
performance of researchers are constantly monitored, quantified, and ranked across a variety
of aspects. Some of these can be measured rather objectively (e.g., productivity, citation counts,
ability to attract funding, etc. [1-3]), while others are more elusive, such as the ability to dis-
rupt and/or to produce impactful research [4, 5]. Conventionally, the most prevalent metrics
in bibliometric analyses are citations and citation-based indicators [6-8]. These include simple
citation counts as well as more sophisticated bibliometric indicators, such as the well-known
h-index [9], g-index [10], or indicators of an author’s performance relative to their field (see,
e.g., [11]). These metrics reflect the extent to which research outputs are recognized by the sci-
entific community. They also play an increasingly pervasive role in research evaluation sys-
tems, influencing research rankings, grant allocations, tenure and promotion decisions [12-
16].
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However, as the reliance on citations has grown, so too has the scrutiny regarding their use
and implications. Nowadays, citation-based metrics have been increasingly scrutinized by the
academic community and have become somewhat controversial [12, 17-20]. One of the major
concerns is that such indicators—and citations in general—primarily measure the amount of
academic impact [12, 17, 21]. However, academic impact is a multifaceted concept encompass-
ing various dimensions of scientific publications [22-25]. In particular, citations fall short in
capturing the nature of academic impact [21], which is more accurately reflected by an emerg-
ing indicator for scientific disruption, known as the CD index [26] or the disruption score
[27].

The fundamental idea of the disruption score is that a highly disruptive paper can eclipse
attention towards its prior works, making subsequent publications more inclined to cite the
focal paper rather than the references listed in its bibliography [26]. Since its introduction by
Funk et al. [26], the disruption score has been employed in a variety of studies [27-30], dem-
onstrating its effectiveness to distinguish between disruptive and developmental contributions
[27-30]. Following its surging popularity, a number of variants has been developed to adjust
certain aspects of the original metric [26, 31, 32]. For example, Wu et al. explore several indica-
tors of disruption by manipulating the one from [26] and suggest removing the citation impact
of prior works as calculated from the bipartite network of the focal paper [32]. A recent study
compares these variants with peer review assessments and shows that they essentially measure
similar latent information in medical data, with none proving significantly superior to the oth-
ers [33]. Based on these observations, we will focus on the original version of the disruption
score, as its robustness has been validated in a variety of empirical studies [26, 27, 29].

Prior to the introduction of the disruption score, early efforts to quantify scientific break-
throughs proposed novelty metrics in bibliometric studies, which conceptualize new discover-
ies in science as a recombination of existing pieces of knowledge [34-39]. Within this
framework, Uzzi et al. assess novelty by analyzing references cited by a paper, focusing on how
typical or atypical the combinations of these references are (as represented by journal pairs)
[38]. Similarly, Wang et al. use journal pairs to study knowledge recombination, but they place
more emphasis on previously unseen journal pairs in bibliographies [39, 40]. The relationship
between novelty and citation has also been examined in various studies. These studies identify
an inverted U-shaped relationship between these metrics [38, 41], suggesting that the most-
cited papers often draw heavily from conventional combinations of research while also incor-
porating unusual knowledge combinations [38, 42]. Other studies use regression analysis to
investigate this relationship, finding that papers featuring novel or rare knowledge combina-
tions are more likely to receive a higher number of citations [39, 43, 44].

Although both novelty metrics and the disruption score are designed as tools to evaluate
the innovativeness of scientific output, research has shown that they essentially capture differ-
ent types of information. Theoretically, novel contributions integrate previously unconnected
knowledge areas, focusing on the recombination of existing elements [38]. By comparison, dis-
ruptive research disrupts prevailing theories and introduces new ideas, emphasizing paradigm
shifts and breaking existing norms [26]. This implies a fundamental difference between the
two metrics [45, 46]. In terms of empirical evidence, Leahey et al. identify three types of nov-
elty: new results, new theories, and new methods. They explore which types are more disrup-
tive, discovering that new methods are typically more disruptive, new theories less so, and new
results do not have a robust effect [21]. These insights, along with other empirical findings,
suggest that novelty indicators and the disruption score should be considered as different met-
rics [21, 41, 45].

Treating the disruption score as different from the novelty metrics suggests that the afore-
mentioned novelty-citation relationship does not apply to the disruption score. Meanwhile,
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the increasing number of studies on the disruption score underscores the importance of
exploring its relationship with citation counts [27, 29, 30, 47, 48]. However, current research
lacks a systematic analysis of this relationship and some studies present conflicting results [30,
47]. A recent investigation by Zeng et al. reports a negative relationship between disruption
scores and citation counts [47], indicating that disruptive papers in science are losing impact
over time. Conversely, Wei et al. analyze Nobel Prize-winning papers and find that such
papers not only garner more citations but also achieve higher disruption scores [30]. These
seemingly contradictory findings prompt us to examine a comprehensive relationship between
disruption scores and citation counts. Additionally, several studies in science of science have
employed the disruption score to examine the performance of researchers. Such studies typi-
cally involve the analysis of both the disruption score and citation counts in scientific careers
[48, 49]. To pave the way for future research in career analysis, we also seek to expand the dis-
ruption-citation relationship to the careers of researchers.

In this paper, we explore a comprehensive relationship between disruptions and citations,
as measured by disruption scores and citation counts. Our analysis is conducted at two levels:
papers and careers. To study this relationship, we propose two essential research questions: (1)
Are disruptive papers highly cited?; and (2) Are highly cited papers disruptive? We address the
first question by breaking down the correlation between disruption scores and citation counts
across each cumulative percentile of the top disruptive papers. Then, we answer the second
question by investigating whether the most cited papers are disruptive. Finally, we extend our
paper-level analysis to careers, examining the relationship between disruption scores and cita-
tion counts within the publication sequences of long-lived researchers.

Results

We collect papers published between 1986 and 2015 in Computer Science and Physics, from
the AMiner citation network dataset (version 12) and the Web of Science database, respec-
tively (see Materials and methods). We quantify disruptions by associating a disruption score
with each paper in our datasets, and measure citations by analyzing the citation counts each
paper accumulates over the first five years after publication, which is a customary proxy in the
literature [29, 47, 50]. Overall, our analysis comprises 898,624 papers in Computer Science and
1,236,016 papers in Physics.

A detailed breakdown on the correlations between disruptions and
citations

We begin our analysis with a detailed breakdown of the correlation between disruptions and
citations. Namely, we rank all the papers in our datasets based on their disruption scores and
citation counts. In the following, we shall refer to the rankings computed via disruption scores
and citations as the ‘disruption rank’ and the ‘citation rank’, respectively.

To break down the correlations, We initially select papers ranked in the top 1% within the
disruption rank and identify their corresponding positions in the citation rank. The Spearman
correlation coefficient for the top 1% of disruptive papers is calculated using these two position
vectors. Then, we expand our analysis to include the next percentile of disruptive papers, i.e.,
the top 2% of disruptive papers, computing the correlation coefficient for the cumulative top
2% (including both the top 1% and top 2%) of disruptive papers. We further repeat this process
for papers in the cumulative top 3%, top 4%, etc., until all papers in Computer Science
(898,624 papers in total, 8,986 papers in each percentile) and Physics (1,236,016 papers in
total, 12,360 papers in each percentile) have been included. Following this procedure, we

PLOS ONE | https://doi.org/10.1371/journal.pone.0313268 December 19, 2024 3/17


https://doi.org/10.1371/journal.pone.0313268

PLOS ONE

Breaking down the relationship between disruption scores and citation counts

0.05

0.04

=

S

(98)
1

o

o

!
1

Correlation Coefficients
Proportion of Citations

0.01
~0.4
(@)

T
0 20 40 60 80 100
The Cumulative Percentiles of Top N% Disruptive Papers

0.00 T T T T T T
80 100

The Top N% Disruptive Papers

0.05

0.04

=

S

w
1

S

S

S}
1

Correlation Coefficients
Proportion of Citations

0.01

©

(d)
. 0.00
0 20 40 60 80 100 0
The Cumulative Percentiles of Top N% Disruptive Papers

20 40 60 80
The Top N% Disruptive Papers

100

Fig 1. Correlation coefficients across various camulative percentiles of disruptive papers in both disciplines. (a) Trajectory of correlation
coefficients in Computer Science. The thick blue curve is derived from all publications, while dashed lines represent the correlation coefficients
corresponding to the 1986-1995, 1996-2005, and 2006-2015 groups. (b) The proportion of citations received by each percentile of Computer Science
papers. The correlation pattern observed in (a) can be explained by the proportion of citations received as shown in (b). (c) and (d) are the equivalent
versions of the correlation trajectory and the proportion of received citations in Physics. They can be interpreted in a similar way to (a) and (b).

https://doi.org/10.1371/journal.pone.0313268.9001

analyze correlations not only for a selected subset of highly disruptive papers but also across
the entire publication dataset.

In Fig 1(a)-1(c) we plot the aforementioned correlation coefficients across various cumula-
tive percentiles of top disruptive papers in Computer Science and Physics. We observe a posi-
tive correlation coefficient between disruptions and citations for papers in the upper
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percentiles of the disruption rank. Such correlation increases as we incorporate more percen-
tiles into our analysis, reaching a peak value around the top 25th percentile, then declining to
negative values. To explain such a pattern, in Fig 1(b)-1(d) we report the proportion of cita-
tions received by papers in each percentile of the disruption rank. We find that the papers
receiving the lowest share of citations are those around the 25th percentile, i.e., where we
observe the peak in correlation between disruptions and citations. After that, less disruptive
papers progressively become more cited, which causes the correlation coefficient to decrease.
Eventually, the correlation coefficient becomes negative when we consider a large enough por-
tion of papers in our dataset, which supports the result by Zeng et al. on the negative correla-
tion between disruptions and citations.

Fig 1(b)-1(d) also show that the most disruptive papers are quite well recognized, as evi-
denced by the relatively higher proportion of citations received by the most disruptive papers
in both Computer Science and Physics, although with remarkable differences. In fact, highly
disruptive papers in Computer Science are cited much more frequently than one would expect
from a random baseline (i.e., all percentiles receiving a 1% share of all citations). The same
cannot be said for Physics, where the most disruptive papers receive citations slightly lower
than the random baseline. These differences are responsible for the positive (negative) correla-
tion between disruptions and citations observed in the top percentiles of the disruption distri-
bution in Computer Science (Physics).

In Fig 2, we present scatter plots depicting the cumulative top 25% (left) and the full dataset
(right) of disruptive papers in Computer Science. This figure serves as an example to illustrate
how the correlation trajectories are derived. In the left panel, data points primarily cluster in
the lower-left and upper-right corners, suggesting a positive correlation between disruptions
and citations. For these papers, the Spearman correlation coefficient is 0.297. The scatter plot
on the right illustrates an ‘increase followed by a decrease’ pattern, with an overall correlation
coefficient of -0.264. All these observations substantiate the correlation trajectory observed in
Fig 1.

We test the robustness of the aforementioned results in the following ways. First, we split all
papers in our dataset into three groups based on their publication year, namely 1986-1995,

800000 800000
e e
< <
* 600000 A % 600000 -
2 2
s s
O O
= 400000 - = 400000 -
2 2
.2 S
'g 200000 'g 200000
& &~
(s 0
I T T T T T T T T T
0 50000 100000 150000 200000 0 200000 400000 600000 800000
Positions in Disruption Rank Positions in Disruption Rank

Fig 2. Scatter plots of the cumulative top 25% and the full dataset of disruptive papers in Computer Science. Left panel: Scatter plot of the
cumulative top 25% of disruptive papers. The corresponding Spearman correlation coefficient is 0.297. Right panel: Scatter plot of the full dataset (top
100%) of disruptive papers. The correlation coefficient is -0.264.

https://doi.org/10.1371/journal.pone.0313268.9002
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1996-2005, and 2006-2015, and then plot the correlation trajectory for each group. The aim of
this test is to illustrate that our results are robust across different time periods. As can be seen
in Fig 1(a) and 1(c), we find consistent patterns across the three groups. Second, we replicate
our analysis using the CDs metric (see S1 Fig). This metric is computed only from papers pub-
lished in the 5 years following the focal paper, which is frequently used in the literature [27,
29]. Third, we standardize the disruption score (see Materials and methods) of each paper to
account for the fact that papers tend to become less disruptive over time [29]. We repeat our
analysis with the standardized disruption scores, obtaining consistent results across the two
disciplines (see S2 Fig). Finally, we run our analysis against a null model created by reshuffling
the 5 years of accumulated citations received by each paper while keeping their disruptions
intact. By reshuffling citations, we randomize the position of top disruptive papers in the cita-
tion rank, thus the new correlation coefficients are calculated under the null model. We find
that the correlation patterns cannot be explained by the null model, and the correlation coeffi-
cients across different percentiles of disruptive papers are around zero (see S3 Fig).

Most-cited papers are relatively less disruptive

After examining the relationship between disruptions and citations across various cumulative
percentiles of top disruptive papers, we now explore the relationship from the perspective of
citations, i.e, by analyzing different cumulative percentiles of the citation distribution. Similar
to the procedure described in the previous section, we choose the top 1% most cited papers in
the citation rank and identify their respective positions in the disruption rank. We calculate
the correlation coefficient between these two position vectors and repeat the procedure for the
cumulative top 2%, 3%, up to all the papers in both Computer Science and Physics.

As shown in Fig 3, a negative correlation coefficient is apparent across cumulative percen-
tiles of the highly cited papers in both disciplines. The negative correlation strengthens as we
incorporate more percentiles of papers into our analysis. Such a pattern indicates that the
most-cited papers tend to be less disruptive. Moreover, in both disciplines, the correlation
coefficients are generally higher for papers published between 1986 and 1995. In particular, we
can find a positive correlation coefficient in the top 1%-30% of the most-cited Computer Sci-
ence papers. By contrast, for papers published in more recent decades (1996-2005, 2006—

5 [ 1986-95 ot R, e 1986-95
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o224 2006-15 o24 2006-15
0.0
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T T
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Fig 3. Correlation coefficients across various camulative percentiles of the most-cited papers. In both Computer Science (left) and Physics (right),
the patterns of correlation coefficients are very similar, which indicates that the most-cited papers tend to be less disruptive.

https://doi.org/10.1371/journal.pone.0313268.9003
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2015), the correlation trajectory is not only negative over the entire distribution, but the nega-
tive correlation becomes even more pronounced. To further corroborate these results, we per-
form the same analysis with the CDs metric, the standardized disruption scores, and the null
model. Our results are valid under all these robustness checks (see 54 Fig).

The relationship between disruptions and citations in scientific careers

Having established the paper-level relationship, we then extend our investigation to the rela-
tionship between disruptions and citations in scientific careers. To construct author datasets,
we match each paper in our datasets with its respective authors and then identify long-lived
researchers with an active publication record. Specifically, we only include in our analysis
authors who started their careers between 1980 and 2000 and had an academic career of at
least 20 years. Among these authors, we retain only those who published more than 10 papers,
with a publication frequency of at least one paper every 5 years (in line with [51]). Based on
these selection criteria, we are left with 27,598 Computer Scientists and 34,527 Physicists (see
Materials and methods).

We first generalize the findings concerning the disruptive papers to scientific careers. In
line with the method outlined in the corresponding paper-level analysis, we start by creating
disruption and citation ranks for our pool of researchers. Within each researcher’s publication
sequence, we locate the positions of top 1% disruptive papers within both disruption and cita-
tion ranks and compute the correlation coefficient between these two sets of positions. It
should be noted that in this analysis, correlation coefficients are not computed for each cumu-
lative percentile to avoid an excessive amount of repeated values, which arises from the rela-
tively small number of publications (compared to the paper datasets) a researcher can publish.
Instead, this process is applied selectively for the cumulative top 1%, 5%, 10%, 15%, etc. Fol-
lowing this procedure, each researcher obtains a list of correlation coefficients at various
cumulative percentiles. Finally, we collate correlation coefficients for identical cumulative per-
centiles across all authors in our datasets, and plot the average values of these correlation coef-
ficients in Fig 4(a) and 4(c).

Similar to the previous analysis, we illustrate the proportion of citations received by each
percentile of disruptive papers at the career level in Fig 4(b) and 4(d). We observe that the
overall trends in panels (b) and (d) are comparable to the trends in the paper-level results. It is
noted that the curves in (b) and (d) achieve higher values compared to the results in the paper
datasets. This happens because the same papers can fall within different percentiles when con-
sidering less prolific authors. When we restrict our scope of investigation to researchers who
have more than 100 publications, i.e., no overlaps between percentiles, our results are very
much similar to the paper-level results (see S5 Fig).

As can be seen in Fig 4, the findings we obtain here are fairly similar to those we observe at
the paper level. Specifically, the most disruptive papers in the careers of Computer Scientists
and Physicists still attract a relatively high proportion of citations. The correlation trajectories
in scientific careers also display a pattern of initial increase followed by a decrease, and such a
trajectory can also be explained by the proportion of citations received by each percentile of
papers published in a career. Furthermore, we observe a negative correlation coefficient when
considering all papers in a career, indicating that the overall negative relationship between dis-
ruptions and citations persists at the career level. The only significant difference between our
findings in academic publications and scientific careers is that the correlation coefficients for
the most disruptive papers are now positive in both disciplines. This suggests that the most dis-
ruptive papers within a career are well rewarded in terms of citations by their respective scien-
tific communities.
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Fig 4. Average values of correlation coefficients across various cumulative percentiles of disruptive papers in scientific careers. (a) The average
values of correlation coefficients in the careers of Computer Scientists. (b) The average values of the proportion of citations received by papers at each
percentile in the publication sequence of Computer Science researchers. Again, the correlation pattern observed in (a) can be explained by the proportion
of citations received as depicted in (b). (c) and (d) are the equivalent version of (a) and (b) in Physics. We can observe that in both disciplines, our paper-
level results are consistent in the career-level analysis.

https://doi.org/10.1371/journal.pone.0313268.9004

We then expand our results regarding the correlations for the most-cited papers to the con-
text of scientific careers. To achieve this, we follow the steps outlined in the corresponding
paper-level analysis and compute rank-rank correlations over an increasing number of percen-
tiles of the citation distributions obtained at the career level. The results are illustrated in Fig 5.
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Fig 5. Average values of correlation coefficient across various cumulative percentiles of the most-cited papers. It can be seen that in both Computer
Science (left) and Physics (right), our paper-level results hold true in scientific careers.

https://doi.org/10.1371/journal.pone.0313268.g005

In line with our results at the paper level, we can still observe negative correlation coefficients
across cumulative percentiles in the careers of both Computer Scientists and Physicists. This
reinforces our conclusion that the most-cited papers tend to be less disruptive.

To substantiate our findings, we replicate our career-level study using the CDs metric and
the standardized disruption scores, obtaining consistent results (see S6, S7 and S9 Figs). More-
over, we construct two null models in a similar manner to the previous analysis by reshuffling
the disruption score and the 5-year accumulated citations in each author’s publication
sequence. We then reapply the career-level analysis utilizing these null models, and find that
our conclusions cannot be explained by these null models (see S8 and S9 Figs). Based on all
these results, we conclude that the paper-level relationship between disruptions and citations
qualitatively holds in scientific careers.

Discussion

This study presents the detailed relationship between disruptions and citations, measured in
terms of disruption scores and citation counts, respectively. It fully captures the relationship
between these two metrics through two main research questions, namely (1) are disruptive
papers highly cited?; and (2) are highly cited papers disruptive?

To answer question (1), we analyze the correlation coefficients between disruption scores
and citations across different cumulative percentiles of papers ranked by their disruption
scores. In both Computer Science and Physics, we find that the correlation varies when we
observe different samples of disruptive papers, and that the variations in the correlation coeffi-
cients can be explained by the proportion of the citations received by each percentile of papers.
Our results reconcile the seemingly contradictory conclusions between Wei et al. [30] and
Zeng et al. [47]. Specifically, papers with higher levels of disruption exhibit a positive correla-
tion between disruption scores and citation counts. This pattern is consistent with the finding,
e.g., that Nobel Prize-winning papers typically receive more citations and are characterized by
higher disruption scores [30]. However, as we incorporate more percentiles of papers into our
analysis, the correlation coefficient gradually shifts from positive to negative values, and ends
up with a negative correlation when we include most of the papers in our analysis, in line with
findings by Zeng et al. [47]. Concerning question (2), we find a negative correlation between
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disruption scores and citations in both disciplines, which suggests that the most-cited papers
tend to be less disruptive. Moreover, we observe that such a negative correlation intensifies
over time.

Having determined the relationship between disruption scores and citation counts at the
level of academic publications, we then extend our analysis to the publication sequences of
researchers in Computer Science and Physics, concluding that the aforementioned relation-
ship qualitatively holds at the level of careers. Our results suggest that there are two strategies
researchers might adopt to maximize their citations. The first strategy aims to publish truly
disruptive papers. This strategy is beneficial to the development of science as a whole but
requires researchers to accumulate research experience, go through periods of focus and low
productivity [49], and undertake the risk of receiving only a limited number of citations. The
second strategy is to produce papers that attract a large number of citations. Such a strategy
favors the career progression of individual researchers. However, it may also incentivize
researchers to focus excessively on popular research topics and incremental work, which can
be detrimental to the overall diversity and innovation of scientific research [52].

A common criticism of the disruption metric is that the score of a paper can be distorted
upward by receiving only a small number of citations [29], i.e., high scores do not indicate
high research quality but might simply reward papers that are less appreciated by citations.
However, our results show that the top 1% of disruptive papers not only achieve high disrup-
tion score levels but also attract a high proportion of citations. These findings are consistent in
both Computer Science and Physics, and apply to both paper-level and career-level analysis.
Therefore, such a criticism does not apply to papers with very high disruption scores.

The evaluation of research outputs is often based on bibliometric indicators of citations
[53-55]. Our study reveals that papers standing out in this regime tend to be less disruptive.
Similarly, if evaluations were to be purely based on disruption scores, some high-scoring
papers may also exhibit limited academic influence. A more effective approach would integrate
both metrics in research evaluation. Such an approach would enable us to identify papers that
are both disruptive and highly cited. Papers that excel under those criteria are typically recog-
nized as works of very high quality [30]. Therefore, we advocate that scientific evaluation
should be carried out through a comprehensive analysis of publications [8, 56].

This study further substantiates the efforts to conceptualize disruption scores and citation
counts as distinct dimensions of academic impact [21]. Our findings indicate that disruption
scores and citation counts—the most prevalent proxy for academic impact—capture essen-
tially different types of information. These results underscore the multifaceted nature of aca-
demic impact [22-25], providing empirical evidence to inform future scientific policies and
funding decisions based on academic impact.

Materials and methods
Data

We collect publication and citation data pertinent for Computer Science from the AMiner
citation network dataset (version 12). The AMiner dataset extracts papers published between
1960s to 2020 from DBLP, ACM, MAG, and other sources in Computer Science [57], and it
records a total of 4,894,081 papers and 45,564,149 citation relationships. The AMiner dataset
has been utilized in a variety of bibliometric studies [49, 58-60]. For publications in Physics,
we retrieve data from the Web of Science (WOS) database. We extract the papers published by
long-lived researchers who maintain an active publication record, along with the citation net-
work related to their publications. In total, we collect 1,619,039 papers and 12,621,175 citation
relationships from 1985 to 2020.
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While the Computer Science AMiner dataset contains unique identifiers for each
researcher, the Physics WOS database does not provide unique author identifiers. To link
researchers in Physics with their respective publications, we employ the method proposed by
Caron et al. to disambiguate author names [61]. This method determines a similarity score
between pairs of authors by considering a series of attributes, such as ORCID identifiers,
names, affiliations, emails, coauthors, grant numbers, etc. If a pair of authors has a higher simi-
larity score, they are more likely to be identified as the same person. The effectiveness of this
method has been validated by a recent study that employs the WOS database to compare four
different unsupervised approaches to author name disambiguation. It finds that the Caron
method outperforms the other methods, achieving precision and recall scores higher than 90%
[62].

In our analysis, we only calculate disruption scores for papers published before 2016,
thereby allowing papers in our pool to accumulate citations for at least 5 years. We set filtering
criteria for researchers in line with [51], performing our career analysis on a total of 27,598
and 34,527 researchers in Computer Science and Physics, respectively.

The disruption score

We employ the disruption score to quantify the disruption level of each paper in our datasets.
The fundamental idea of the disruption score is that a highly disruptive publications can over-
shadow its preceding papers. The subsequent papers are more likely to cite the disruptive work
over the references listed in its bibliography. The disruption score is particularly useful in dif-
ferentiating between disruptive and developmental pieces of work, and it has been validated
using data from academic publications, patents, and software products [26, 27, 29].

To be more specific, we create a citation network centered on a focal papers, combined
with its references (preceding papers) and subsequent papers. The subsequent papers can be
further categorized into three groups: papers citing only the focal paper, those citing both the
focal paper and the references, and those citing only the references of the focal paper. Let us
assume that the number of subsequent papers in the three groups are n;, n; and ny, respectively.
Then the disruption score can be determined as

D= ni_nj
S om+n (1)

where n; — n; quantifies the extent to which the focal paper has eclipsed attention towards pre-
ceding papers, and n; + n; + n; represents the total number of subsequent papers within the
citation network.

According to the above definition, the disruption score spans from -1 to 1. A positive score
indicates that the focal paper draws more attention from subsequent publications than its ref-
erences. By definition, such a focal paper is more disruptive. If a focal paper is disruptive
enough, then its disruption score D should be close to 1. Conversely, a negative score implies
that the focal paper is more likely to be developmental. The focal paper exhibits an increasing
degree of its developmental character as its disruption score approaches to -1. Overall, the dis-
ruption score not only allows us to quantify the disruption of each paper, but also to compare
the disruption level among different publications.

We also note that the disruption score can be represented by an alternative formula given
as

1
D=3 o+ ()

i=1
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where 7 denotes the total number of subsequent papers in the citation network, i represents
the collection of subsequent works that cite the focal paper and/or the focal paper’s references,
fi=1ifionly cites the focal paper and 0 otherwise, and b; = 1 if i cites any predecessors of the
focal paper and 0 otherwise.

These two expressions of the disruption score are mathematically equivalent. For the sec-
ond expression, if a subsequent paper i cites only the focal paper, i.e., belonging to the »;
group, then —-2f;b; + f; = 1 as —2f;b; = 0. When a subsequent paper cites both the focal paper and
its predecessors (within the n; group), then the value of —2f;b; + f; will be -1. If a subsequent
paper belongs to the n; group, then —2fb; + f; equals 0. By summing the —2fb; + f; terms across
all the subsequent papers in the citation network, the result equals to the difference between
the number of #; papers and n; papers, which is the n; — n; term in the first formula.

Having introduced the mathematical expression of the disruption score, we now discuss sev-
eral critical decisions regarding its application throughout this study. Most importantly, we cal-
culate the disruption score of a paper using all subsequent publications, rather than adhering to
the common practice of using those published within a 5-year time window [27, 29], i.e., the
CD; metric. We do this for three primary reasons. First, using an extended time window cir-
cumvents the issue of delayed recognition for disruptive research [39]. Second, incorporating
the full publication record can yield a more accurate representation of a paper’s true disruption
[63], as the most significant difference between citations and disruptions is that citations
increase monotonically with time, whereas the disruption score varies depending on the citation
behaviours of its subsequent works. Third, computing the disruption metric based on a small
number of citations can result in an inflated score. To address this problem, we use the entire
publication record to include more subsequent papers in the calculation of the disruption score.

Nevertheless, these decisions may subject the disruption metric to other biases, such as the
overall decline in papers’ disruptions over time, the changing citation behaviours for papers
published at different times, and the reduced comparability of the disruption metric across
years. To mitigate these biases, we adopt two alternative versions of the disruption score and
use them to validate all of our results throughout the study. The first version is the CD5 metric,
which is computed only from papers published in the 5 years following the focal paper. The
CDs metric is frequently used in the literature [27, 29]. The second version is the standardized
disruption score. We group papers by their respective publication years, and then standardize
their disruption levels by incorporating the mean and standard deviation of that year’s distri-
bution of disruption scores (i.e., transforming into z-scores). In this paper, our findings remain
consistent in both the CDs metric and standardized disruption scores, which further corrobo-
rates the validity of our results.

Supporting information

S1 Fig. The robustness check for Fig 1 under the CDs metric. Left column: Correlation coef-
ficients across cumulative percentiles of top disruptive papers in Computer Science (top) and
Physics (bottom). Right column: The proportion of citations received by each percentile of
Computer Science (top) and Physics (bottom) papers.

(TIF)

S2 Fig. The robustness check for Fig 1 under the standardized disruption score. Left col-
umn: Correlation coefficients across cumulative percentiles of top disruptive papers in Com-
puter Science (top) and Physics (bottom). Right column: The proportion of citations received
by each percentile of Computer Science (top) and Physics (bottom) papers.

(TTF)
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S3 Fig. The robustness check for Fig 1 under the null model. We create the null model by
reshuffling the 5-year accumulated citations received by each paper. Under the null model, the
left column represents correlation coefficients across cumulative percentiles of top disruptive
papers in Computer Science (top) and Physics (bottom), and the right column presents the
proportion of citations received by each percentile of Computer Science (top) and Physics
(bottom) papers.

(TIF)

$4 Fig. The robustness check for Fig 3. Left column: Correlation coefficients across cumula-
tive percentiles of most-cited papers in Computer Science (top) and Physics (bottom) under
the CDs metric. Center column: Correlation trajectories for most-cited papers in Computer
Science (top) and Physics (bottom) under the standardized disruption score. Right column:
Correlation trajectories for most-cited papers in Computer Science (top) and Physics (bottom)
under the null model.

(TIF)

S5 Fig. Proportion of citations received by researchers with more than 100 publications.
Mean values of proportion of citations for each percentile of disruptive papers in the publica-
tion profile of Computer Scientists (top) and Physicists (bottom). The plots are constructed
based on researchers who have more than 100 publications. We can see that these figures are
similar to the curves in (b) and (d) of Fig 1.

(TIF)

S6 Fig. The robustness check for Fig 4 under the CDs metric. Left column: mean values of
correlation coefficients across cumulative percentiles of top disruptive papers in the publica-
tion sequences of Computer Scientists (top) and Physicists (bottom). Right column: mean val-
ues of proportion of citations received by each percentile of papers in the publication profile of
Computer Scientists (top) and Physicists (bottom).

(TIF)

S7 Fig. The robustness check for Fig 4 under the standardized disruption score. Left col-
umn: mean values of correlation coefficients across cumulative percentiles of top disruptive
papers in the publication sequences of Computer Scientists (top) and Physicists (bottom).
Right column: mean values of proportion of citations received by each percentile of papers in
the publication profile of Computer Scientists (top) and Physicists (bottom).

(TIF)

S8 Fig. The robustness check for Fig 4 under the null model. Left column: mean values of
correlation coefficients across cumulative percentiles of top disruptive papers in the publica-
tion sequences of Computer Scientists (top) and Physicists (bottom). Right column: mean val-
ues of proportion of citations received by each percentile of papers in the publication profile of
Computer Scientists (top) and Physicists (bottom). It is apparent that our results in Fig 4 can-
not be explained by the null models.

(TIF)

S9 Fig. The robustness check for Fig 5. Left column: mean values of correlation coefficients
across cumulative percentiles of most-cited papers papers in the publication sequences of
Computer Scientists (top) and Physicists (bottom), as measured by the CDs metric. Center col-
umn: mean values of correlation coefficients for most-cited papers in the publication
sequences of Computer Scientists (top) and Physicists (bottom), as measured by the standard-
ized disruption score. Right column: mean values of correlation coefficients for most-cited
papers in the publication sequences of Computer Scientists (top) and Physicists (bottom)
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under the null model.
(TIF)
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