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Continuous-time quantum optimization without the adiabatic principle
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Continuous-time quantum algorithms for combinatorial optimization problems, such as quantum annealing,
have previously been motivated by the adiabatic principle. A number of continuous-time approaches exploit
dynamics, however, and therefore are no longer physically motivated by the adiabatic principle. In this work, we
take Planck’s principle as the underlying physical motivation for continuous-time quantum algorithms. Planck’s
principle states that the energy of an isolated system cannot decrease as the result of a cyclic process. We use
this principle to justify monotonic schedules in quantum annealing, which are not adiabatic. This approach also
highlights the limitations of reverse quantum annealing in an isolated system.
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I. INTRODUCTION

Extensive work has gone into how quantum technologies
might be able to solve combinatorial optimization problems
faster than classical techniques. Continuous-time quantum op-
timization (CTQO) broadly refers to using analog quantum
systems to tackle combinatorial optimization problems. Much
of the early work focused on exploiting the adiabatic principle
[1,2]. In adiabatic quantum optimization (AQO) a quantum
system is initialized in the ground state of some easy to pre-
pare Hamiltonian. The initial Hamiltonian is referred to as the
driver Hamiltonian. The combinatorial optimization problem
is encoded into the energy levels of a Hamiltonian, termed the
problem Hamiltonian, with lower-energy states corresponding
to better solutions. The system in AQO is then evolved under
a time-dependent Hamiltonian that interpolates between the
driver and problem Hamiltonian, such that the system always
remains in its instantaneous ground state. This approach is
typically limited by the minimal spectral gap between the
ground state and the first excited state. In many hard prob-
lems, this gap vanishes exponentially with the problem size.
Consequently, AQO must have exponentially increasing run
times [2].

In an attempt to circumvent the vanishing spectral gap,
the adiabatic requirement may be relaxed. Quantum anneal-
ing (QA) more broadly refers to interpolating smoothly (not
necessarily adiabatically) between two Hamiltonians to find
the solution [3,4]. The active decision to cause transitions
is sometimes referred to as diabatic quantum annealing [5].
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Other approaches such as continuous-time quantum walks
(CTQWs) [6] and multistage quantum walks (MSQWs) [7]
embrace large-scale dynamics not seen in AQO. Cyclic ap-
proaches such as reverse quantum annealing (RQA) [8–10]
use nonadiabatic, nonmonotonic schedules, to search locally.
As approaches move away from AQO, the adiabatic theorem
is no longer a reasonable motivation for their performance.
Small system scaling provides compelling evidence for many
of these approaches, but reasoning from an underlying physi-
cal principle is lacking.

Statistical physics has had large success in explaining phe-
nomena where exactly solving a system is not feasible [11]. In
a quantum system, exact diagonalization is often prohibitively
difficult, therefore, we need other tools to reason about the be-
havior of these large quantum systems. In this paper, we apply
pure-state statistical physics [12,13] to provide an analysis of
continuous-time quantum approaches for optimization, where
the adiabatic principle is insufficient.

This paper sets out to demonstrate how Planck’s principle,
an idea from statistical physics, can provide intuition into
CTQO with a range of schedules, where the adiabatic theorem
cannot be applied. Two types of schedules are considered:
monotonically increasing and cyclic schedules. To gain in-
tuition, this paper considers passive states, for these states
it has been demonstrated that Planck’s principle holds [14].
Planck’s principle is used to show that the average quality
of solutions increases for monotonic schedules and decreases
for cyclic approaches compared to its initial value. This is
then combined with the idea that local observables in isolated
systems can be well approximated by a passive state in many
circumstances. This is then used to provide intuition into
CTQO more generally. This is further confirmed by numerical
experiments.

Section II provides the background to the CTQO ap-
proaches considered in this paper. Section III introduces the
statistical physics framework used in the rest of the paper
in more detail. Section IV applies the statistical framework
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FIG. 1. The schedule used in the MSQW example in Fig. 2.

to forward QA approaches, specifically MSQWs. Section V
explores cyclic approaches, specifically RQA in an isolated
quantum system. Throughout this paper we take h̄ = 1 and
kb = 1. The Pauli matrices are denoted by X , Y , and Z . The
numerical simulations are carried out using the Python pack-
age QUTIP [15,16].

II. CONTINUOUS-TIME QUANTUM OPTIMIZATION

The aim of QA is to find (approximate) solutions to a
combinatorial optimization problem [4]. The problem Hamil-
tonian Hp is typically an Ising Hamiltonian, consisting of
few-body (typically two-body) terms. A driver Hamiltonian
Hd , again consisting of few-body terms (typically one-body
terms), drives transitions between eigenstates of Hp to try
to build up amplitude in the low-energy eigenstates of Hp.
In QA, the system is initialized in the ground state of the
driver Hamiltonian. The system is then evolved under the
Hamiltonian

HQA = A(t )Hd + B(t )Hp, (1)

where t denotes time. The time-dependent schedules A(t )
and B(t ) are defined on the interval between t = 0 and t f .
Typically, A(t ) is chosen to decrease monotonically with time,
while B(t ) monotonically increases with time. Ideally, the
schedule is chosen to minimize 〈Hp(t f )〉. Often QA is justi-
fied by its apparent proximity to AQO, for which proofs of
speedup exist [17–19].

Recently, multistage quantum walks (MSQWs) have been
proposed as a method for tackling combinatorial optimiza-
tion problems [7,20]. These approaches consist of repeatedly
quenching the system. The Hamiltonian is given by

HQA = Hd + �(t )Hp, (2)

where �(t ) is a piecewise constant, nondecreasing function.
Figure 1 shows an example schedule. A stage refers to a period
where the Hamiltonian is held constant. The initial state is the
ground state of Hd . It has been numerically observed that the
expectation of Hp decreases (corresponding to better solutions
on average) as �(t ) is increased [7,20]. It is insufficient to
appeal to the adiabatic theorem to explain the performance,
and there are limited theoretical motivations for this approach.
From energy conservation mechanisms, it has been shown

FIG. 2. An example of an MSQW on a 12-qubit graph (shown in
the inset of the figure). The schedule is shown in Fig. 1. The solid
blue line shows the Schrödinger evolution. The dotted purple line
shows E (P)

0 , the ground-state energy of Hp. The dashed red line shows
the time-averaged value of 〈Hp〉. The dashed-dotted green line shows
prediction of 〈Hp〉 according to Assumption 3.

that this approach can always do better than random guess-
ing [7]. As this protocol is piecewise constant with the time
dependence entering through sudden quenches, it makes the
approach more amenable to analytic investigation. For that
reason, we focus on this approach in this paper. A single-
stage MSQW is referred to as a continuous-time quantum
walk (CTQW) [6,7,20]. In this approach, the Hamiltonian has
no time dependence. CTQWs need careful parameter setting
[6,20].

To illustrate MSQWs, we consider a specific example.
Consider the combinatorial optimization problem MaxCut on
binomial graphs (also known as Erdős-Rényi graphs). For a
binomial graph G = (V, E ) consisting of n nodes, each edge
is selected with a given probability. Throughout this paper,
this probability is taken to be 2/3. The optimization problem
is encoded as the Ising Hamiltonian

H (MC)
p =

∑
(i, j)∈E

ZiZ j . (3)

The driver Hamiltonian is taken to be the transverse-field

HTF = −
∑

i

Xi. (4)

These choices of Hamiltonians are typical within the CTQO
literature [1–3,6] and can be experimentally realized [21].
The initial state |+〉 is the ground state of HTF. The inset
of Fig. 2 shows the specific graph considered, and Fig. 1
the associated schedule. Figure 2 shows the time-dependent
value of 〈Hp(t )〉 in blue. At each stage 〈Hp(t )〉 appears to
fluctuate around some constant value. After each stage 〈Hp(t )〉
appears to be lower on average. The ground-state energy of the
problem Hamiltonian, denoted by E (p)

0 , is shown by the dotted
purple line. The value of 〈Hp(t )〉 for the MSQW appears to
be converging to some value above the ground state. The aim
of this paper is to provide some physical reasoning into this
behavior.
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Moving away from monotonic schedules, reverse quantum
annealing (RQA) is where the system starts in an eigenstate
of Hp and Hd is turned on and then off. The idea is to use
this cyclic process to explore the solution space locally [8].
More recently, it was proposed that the many-body localized
phase transition in spin glasses could be used to cyclically
cool the system [9]. This approach is essentially RQA where
a bias Hamiltonian is added that has as its ground state the
initial state. The bias considered was a sum over Pauli Z’s.
We discuss these approaches in Sec. V. RQA is one approach
to warm starting a quantum algorithm. Warm starting refers to
using prior information about the combinatorial optimization
problem to try to increase the performance of the quantum
algorithm, typically by exploiting known reasonable solutions
to the problem [22]. In this text, we refer to approaches such
as conventional QA and MSQWs as examples of forward
approaches that interpolate monotonically between two dis-
tinct initial and final noncommuting Hamiltonians. We refer
to approaches where the initial Hamiltonian is the same as the
final Hamiltonian as cyclic.

III. THERMALIZATION, EXTRACTABLE WORK,
AND DIAGONAL ENTROPY

Our discussion of the continuous-time quantum optimisa-
tion (CTQO) approaches is limited to isolated systems. The
Hamiltonians consist of local terms, and we will restrict our
focus to measuring 〈Hp(t )〉 as the metric of success, which
ideally should be as small as possible.

Consider the expectation value of some few-body observ-
able A in a closed system with initial state |ψi〉 and evolved
under some time-independent Hamiltonian [13]. The eigen-
vectors and associated eigenvalues of the Hamiltonian are de-
noted by |Ek〉 and Ek , respectively. Let the overlap between the
initial state (|ψi〉) and the kth eigenstate be written as ck (i.e.,
ck = 〈Ek|ψi〉). It follows that the expectation of A is given by

〈A〉 =
∑
m,n

ei(Em−En )t c∗
mcn〈Em|A|En〉 (5)

=
∑

m

|cm|2〈Em|A|Em〉

+
∑
m �=n

ei(Em−En )t c∗
mcn〈Em|A|En〉 (6)

= 〈A〉 + 〈�A〉, (7)

where 〈A〉 corresponds to the time-independent sum in Eq. (6)
and 〈�A〉 the time-dependent sum. As the system evolves, the
difference in energy gaps between pairs of eigenstates will
cause dispersion. As a consequence 〈�A〉 ≈ 0 up to some
negligible fluctuation for large systems. This means that the
expectation of A will approach some steady state after some
time. This timescale will be problem specific; details on how
it might be estimated can be found in [23,24]. It has been
numerically observed and justified that this timescale will not
necessarily be exponential in the problem size [23,25]. This
leads to our first two assumptions:

Assumption 1 (Stationary value). Under evolution by a
time-independent Hamiltonian, the expectation of a local ob-
servable A can be replaced with its steady-state value 〈A〉 after

some time τd . This includes the expectation values of Hp and
Hd . The time τd is the timescale associated with dephasing in
the energy basis.

Assumption 2 (Diagonal in the energy eigenbasis). Once
the system approaches a steady state, we can approximate
the state vector by a density operator diagonal in the energy
eigenbasis [13].

For many systems, it is conjectured that 〈A〉 will be well
approximated by assuming a microcanonical distribution of
energy eigenstates. This is typically referred to as the eigen-
state thermalization hypothesis (ETH) [13,26]. This leads to
our third assumption:

Assumption 3 (ETH). The steady state is locally indistin-
guishable from a Gibbs state. The temperature of ρGibbs is
fixed according to the energy of the system. That is to say,
the steady-state value 〈A〉 can be well approximated by using
the Gibbs state 〈A〉 ≈ Tr(AρGibbs). The inverse temperature β

is fixed by replacing A with the Hamiltonian.
The ETH, as described above, is likely to be a better

approximation for large problem sizes where subextensive
corrections and fluctuations can be ignored [26]. The ETH has
been explored in the context of CTQWs in [20]. To illustrate
how these assumptions manifest in CTQO, specifically in
MSQWs, we return to the MAX-CUT example considered in
Sec. II. Figure 2 shows the Schrödinger evolution of 〈Hp(t )〉.
Each stage oscillates around some constant value after some
short time at each stage, as expected from Assumption 1.
The dashed red line shows 〈Hp〉, which is calculated by as-
suming a density operator diagonal in the energy eigenbasis
(Assumption 2). Finally, the dashed-dotted green line shows
the prediction from the ETH (Assumption 3). As the evolution
continues, the ETH becomes a better approximation to 〈Hp〉.

The final assumption is as follows:
Assumption 4 (Planck’s principle). For any relevant cyclic

process in an isolated system, no work can be extracted. That
is for any cyclic process represented by a unitary U , with
initial Hamiltonian H and initial state ρ, the following holds
true:

W = EInitial − EFinal = Tr[H (ρ − UρU †)] � 0. (8)

This assumption, as we will show in the rest of this paper,
has significant consequences for CTQO. To justify it, we show
its consistency with Assumptions 3 and 2. We also point the
reader to [27] where Goldstein et al. showed that under cer-
tain assumptions, in the closed system setting, the extractable
work is exponentially more likely to decrease than not. The
assumptions include that knowledge of the initial state before
the cyclic process is lost by time averaging under evolution by
a Hamiltonian, which is the case in an MSQW. Assumption 4
is sometimes referred to as Kelvin’s statement of the second
law of thermodynamics [13], or Planck’s principle [27,28].
See also [13,28–31] for further attempts to mathematically
motivate the second law of thermodynamics in closed systems
from the rules of quantum mechanics.

It is known that any Gibbs state, with a positive tempera-
ture, satisfies Eq. (8) [14]. A derivation of this can be found
in Appendix A. If we assume that the ETH (i.e., Assumption
3) holds for the initial state, then it remains to determine if
U †HU is an observable that exhibits thermalization [13,26].
If U †HU , where U corresponds to a cyclic process, does
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FIG. 3. The solid black line sketches the typical density of states
�(E ) for a large nonintegrable system [13]. The solid blue line
shows a possible energy distribution for the initial state. The red line
shows a possible resulting energy distribution as the result of a cyclic
process. The energy distribution has been broadened and has moved
towards the middle of the spectrum.

correspond to a thermalizing observable, then Assumption 4
follows as a consequence of Assumption 3.

A positive temperature Gibbs state is an example of a
passive state. Reference [14] shows that, in the case of passive
states, Planck’s principle applies exactly. A state is passive
given an initial Hamiltonian if

(1) the state is diagonal in the energy basis of the Hamil-
tonian;

(2) the populations of the state in the energy basis are
nonincreasing with energy.

Beyond Gibbs states, other examples include ground states
and uniform distributions with no low-energy cutoff.

For further evidence of Planck’s principle, away from the
ETH, we might look to the diagonal entropy [32]. The diago-
nal entropy is defined as

Sd = −
∑

m

ρmm log ρmm, (9)

where ρdd are the diagonal elements of the density operator
in the energy eigenbasis. If the initial state is diagonal in
the energy eigenbasis (i.e, Assumption 2) it has been shown
the diagonal entropy cannot decrease [32]. Coupled with a
reasonable unimodal model of the density of states (espe-
cially for nonintegrable systems) [13], as sketched in Fig. 3,
this implies Assumption 4. We expect this to hold for initial
Hamiltonians like Hp too (see for example [33]) for a wide
range of problems. Essentially, under a cyclic process, the
system is expected to heat up as there are more states towards
the middle of the spectrum than the edges. Under continued
periodic drive, this is sometimes referred to as Floquet heating
[13,34]. In order to apply Assumption 4, it is required that
the system is more likely to move up in energy than down
in energy. This is unlikely to be the case given an initial
state that is very high in energy (corresponding to a negative
temperature Gibbs state). Typically, the system is expected to
move towards the infinite temperature state as a result of a
cyclic process. This places a restriction on the initial state |ψi〉
for Assumption 4 to hold:

〈ψi|H |ψi〉 <
1

DTrH, (10)

where D is the dimension of the Hilbert space. Perhaps a more
accurate statement of Assumption 4 is that a cyclic process
will move the energy of the system towards its infinite tem-
perature value [13,34]. For the purpose of what is to follow,
Assumption 4 as stated originally is sufficient.

Although there are specific cases which violate each as-
sumption, we expect them to hold true for a wide variety of
problems, drivers, and encodings, especially as the problem
size is increased. The intuition in this paper relies on being
able to approximate the steady-state behavior of these isolated
systems with a passive state. This might not be a valid assump-
tion for all systems. For example, in many-body localized
systems [35–37] and integrable systems [38–42], the ETH
is known not to hold. Determining if a specific observable
of a specific system will correspond to a thermal state is a
challenging problem [26,43,44]. It is typically assumed that
the Hamiltonian is highly nondegenerate and that the observ-
able associated with thermalization is a few-body observable
[45,46]. However, thermalization has been widely observed
numerically [20,46–56] and experimentally [57–61].

Assumptions 2, 3, and 4 all have the effect of imposing an
arrow of time on the evolution. This comes from discarding
the coherences in the energy eigenbasis. In a closed system,
this is a result of dispersion in the energy eigenstates. For an
open system, this could come from being very weakly coupled
to a bath.

The rest of this paper considers forward CTQO approaches
in Sec. IV and cyclic CTQO approaches in Sec. V. Each
section considers passive states, where Planck’s principle can
be straightforwardly applied, to derive statements about the
performance. For example, that 〈Hp(t )〉 can only decrease
compared to its initial value subject to monotonically increas-
ing schedules. Since, under the ETH (i.e., Assumption 3)
observables such as 〈Hp〉 can be approximated by a Gibbs
state: an example of a passive state, this intuition is extended
to the pure state setting. Therefore, in each section, we use the
knowledge gained from studying passive states to provide an
effective and intuitive explanation of CTQO dynamics.

IV. FORWARD APPROACHES

In this section, we consider forward CTQO approaches
with monotonically increasing schedules (categorized as for-
ward approaches). In Sec. IV A we show that for passive
states, 〈Hp(t )〉 is less than or equal to 〈Hp(0)〉, by using
Planck’s principle. Motivated from the ETH (i.e., Assump-
tion 3) we then use this to provide intuition for MSQWs in
Sec. IV B 1. In Sec. IV B 2 some intuition is provided for when
the system is coupled to a bath.

A. Passive states

As mentioned in Sec. III, Planck’s principle holds for ar-
bitrary cyclic unitaries and passive states. The aim of this
section is to make clear a provable statement that follows from
passivity. This section allows for the initial state to be a mixed
state, but the system is otherwise isolated. The Hamiltonian
under consideration is

H (t ) = Hd + γ (t )Hp, (11)
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FIG. 4. The solid blue line sketches a possible γ (t ), which in this
case is monotonically increasing. The green line shows the piecewise
constant function used to approximate γ (t ). The dashed red line
shows the cyclic process used to demonstrate 〈Hp(t )〉 � 〈Hp(0)〉.

with t varying from t = t0 to t f . The initial state is any passive
state with Hamiltonian H (t0). The schedule γ (t ) is approxi-
mated with a stepwise constant function, shown in Fig. 4. The
change in energy as a result of the piecewise constant function
is

〈H (t f )〉 =
f −1∑
k=0

[γ (tk+1) − γ (tk )]〈Hp(tk )〉. (12)

At the end of the anneal we introduce a fictitious quench to
return the Hamiltonian to H (t0). The extractable work from
this process is

W = −
f −1∑
k=0

[γ (tk+1) − γ (tk )]〈Hp(tk )〉

+ [γ (t f ) − γ (t0)]〈Hp(t f )〉. (13)

Since the initial state is passive W � 0, it follows that

〈Hp(t f )〉 �
f −1∑
k=0

[
γ (tk+1) − γ (tk )

γ (t f ) − γ (t0)

]
〈Hp(tk )〉. (14)

That is to say, 〈Hp(t f )〉 is bounded by a weighted average over
the previous stages. Consider now a monotonically increasing
schedule for γ (t ), such that γk+1 > γk . For k = 0, and intro-
ducing a fictitious quench at t1 to create a cyclic process we
have

W10 = [γ (t1) − γ (t0)][〈Hp(t1)〉 − 〈Hp(t0)〉] � 0, (15)

hence

〈Hp(t1)〉 � 〈Hp(t0)〉. (16)

Assuming that

〈Hp(tk )〉 � 〈Hp(t0)〉 (17)

is true for all k � m, it remains to show that it is true for k =
m + 1. Again a fictitious quench is introduced at tm+1 to create
a cyclic process:

Wm+1,0 = −
m∑

k=0

[γ (tk+1) − γ (tk )]〈Hp(tk )〉

+ [γ (tm+1) − γ (t0)]〈Hp(tm+1)〉. (18)

Again, due to passivity, Wm+1,0 � 0. It follows that

〈Hp(tm+1)〉 �
m∑

k=0

[
γ (tk+1) − γ (tk )

γ (tm+1) − γ (t0)

]
〈Hp(tk )〉, (19)

from the assumption stated in Eq. (17)

〈Hp(tm+1)〉 � 〈Hp(t0)〉
m∑

k=0

[
γ (tk+1) − γ (tk )

γ (tm+1) − γ (t0)

]
︸ ︷︷ ︸

=1

. (20)

By induction

〈Hp(tk )〉 � 〈Hp(t0)〉 (21)

for all k � 0 given a monotonically increasing γ (tk ). Making
the time step arbitrarily small and returning to the continuous
limit gives

〈Hp(t )〉 � 〈Hp(t0)〉 (22)

for all t � t0 given a monotonically increasing γ (t ). This has
previously been shown for the case where the initial state
is the ground state of Hd [7]. Here we have extended it to
any passive state, including ground states and Gibbs states
with Hamiltonian Hd + γ (t0)Hp that have a nontrivial value
of 〈Hp(t0)〉. This suggests that passive states might have a
significant role to play in QA.

B. Intuition for forward approaches

1. Multistage quantum walks

An MSQW is given by the following Hamiltonian:

HMS = Hd + �(t )Hp, (23)

the schedule �(t ) being chosen to be monotonically increas-
ing. The schedule is piecewise constant and given by

�(t ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ1 for 0 � t � t1,
γ2 for t1 < t � t2,

· · ·
γk for tk−1 < t � tk,

· · ·
γl for tl−1 < t,

(24)

where γl > · · · > γ2 > γ1 > 0 and tl−1 > · · · > t2 > t1. The
initial state of a MSQW is the ground state of Hd , which is a
passive state. Combined with the nondecreasing schedule, it
follows that MSQWs satisfy 〈Hp(t ) � Hp(0).

We now return to the MSQW example in Fig. 2. From
the ETH we expect that at each stage the system can be well
approximated by a Gibbs state, as shown by the green line in
the figure. At the end of each stage, the system is subjected
to an increasing schedule. Therefore, by approximating the
system as a Gibbs state (a passive state) at the end of each
stage, we conclude that 〈Hp〉 should decrease with each stage
compared to the initial value at each stage. Planck’s principle
combined with the ETH correctly predicts the behavior seen
in Fig. 2. This behavior has also been observed in other nu-
merical experiments [7,20,62].

Given significant dynamics, we would under Planck’s prin-
ciple expect 〈Hp〉 to decrease at each stage. But 〈Hp〉 is
bounded, so cannot decrease forever. As �(t ) becomes very
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large, we might reasonably approximate HMS as �(t )Hp, no
longer driving transitions between eigenstates of Hp. As a
followup, we might ask if this process results in the ground
state of Hp. From Assumption 2, Sd increases with each stage.
This means that Sd = 0 [corresponding to an eigenstate of
Hp in the large �(t ) limit] becomes entropically forbidden
if the system thermalizes to any state with nonzero diagonal
entropy.

From pure-state statistical physics, we have been able to
reason about a typical system without resorting to numeric di-
agonalization or recourse to adiabaticity. Assuming only that
work cannot be extracted from a cyclic process, we have mo-
tivated MSQWs. As long as this always holds true, 〈Hp〉 can
only decrease. At no point was the magnitude of the quenches
specified, allowing for extension to QA-like schedules. This
motivates monotonic schedules in QA. In Appendix B the
continuum limit of a MSQW is explored.

2. Application of a bath

To explore some consequences of open quantum system ef-
fects, we add a time-independent bath with time-independent
couplings to the quantum system. The resulting Hamiltonian
is given by

Htotal = HS (t ) + HSB + HB, (25)

where HB acts on the bath, HS (t ) on the system and HSB is
the system-bath interaction. For simplicity, we take all the
operators to be trace class and the joint system to be isolated.

Consider the case where HS (t ) is time independent and
given by HS (t ) = Hd + γ Hp. After some time, under the ETH
(Assumption 3), the total system will be locally indistinguish-
able from a Gibbs state, with Hamiltonian Htotal. The system’s
state, given by tracing out the bath, need not be a Gibbs state
at all.

The temperature is fixed by the initial conditions

〈Htotal〉 = −∂ logZtotal

∂β
, (26)

where

Ztotal = Tr(e−βHtotal ). (27)

As the system becomes small compared to the bath, the system
can be neglected in Eq. (26). At this point β becomes a
property of the bath and independent of γ .

The expectation value of 〈Hp〉 is given by

〈Htotal〉 = − 1

β

∂ logZtotal

∂γ
. (28)

On the assumption β is fixed such that it is independent of
γ , under the Peierls-Bogoliubov inequality the free energy is
concave [63], i.e.,

− 1

β

∂2 lnZtotal

∂γ 2
� 0. (29)

It follows that
∂〈Hp〉
∂γ

� 0, (30)

so 〈Hp〉 is a monotonically decreasing function of γ for
a fixed-temperature Gibbs state. It follows that the optimal

choice of γ is as large as possible. Beyond a certain point,
the assumption that β is independent of γ breaks down. Note
that this argument only made use of the fact that the joint
system is locally indistinguishable from a Gibbs state, making
no assumptions about the form of the terms beyond being
Hermitian. In summary, optimizing Gibbs states with fixed
temperature is straightforward and is problem-instance inde-
pendent. This simplicity is in stark contrast to the bath-free
case [6,20]. Utilizing a bath to solve optimization problems
has previously been explored by Imparato et al. [62]. They
used ancilla qubits as a bath to tune the effective temperature
of the joint system. The explicit measurement of temperature
is, however, not touched upon.

Further to this, once the joint system has approached ther-
mal equilibrium, if the system is then quenched such that
γ (t ) is increased at t = 0, it follows from the passivity of
the Gibbs state that 〈Hp(t )〉 � 〈Hp(0)〉. This provides insight
into the suggestion CTQO has some inbuilt error resistance.
The inbuilt resistance to errors in QA has been explored in
[64–66].

V. CYCLIC APPROACHES

In this section, we consider cyclic schedules, with Hamil-
tonians of the form

Hcyc(t ) = Hp + G(t )Hd , (31)

where 0 � t � tcyc and G(t ) corresponds to a cyclic process
[i.e., G(t = 0) = G(t = tcyc) = 0]. We refer to this process
as reverse quantum annealing (RQA). Section V A explores
RQA applied to passive states. Section V B explores the
limitations of this approach when energy biases are in-
troduced. Finally, Sec. V C uses the intuition built up in
Sec. V A to explore warm-started continuous-time quantum
walks (CTQWs).

A. Passive states

In this paper, we are considering RQA as a protocol that
maps a classical probability density function of computational
basis states to another probability density function, by an
isolated quantum process. Under this definition, note the fol-
lowing:

(1) The entropy of the resulting distribution is greater than
or equal to the entropy of the original distribution [32]. The
cyclic process causes the distribution to become more spread.

(2) If the initial state is passive, for example, a thermal
state of Hp, then the mean of the resulting distribution can
only increase. That is to say, if the initial state is passive, then
there exists no unitary cyclic process that will reduce 〈Hp〉
averaged over the distribution. This is a direct consequence of
Planck’s principle.

Now we will consider the ground-state probability. In order
to do this, we will outline our model of RQA in more detail.
The initial state is the ensemble

ρ0 =
∑

s

p(s)|s〉〈s|, (32)

where |s〉 is an eigenstate of Hp with eigenvalue s. Denoting
the unitary associated with one RQA cycle to be Ucyc, then the
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transition probability between states |s〉 and | j〉 is given by

p( j|s) = |〈 j|Ucyc|s〉|2. (33)

Note that the elements p( j|s) constitute a doubly stochastic
matrix P [13]. From Birkhoff’s theorem [13,67], P can be
written as a convex sum of permutation matrices �α , such
that the resulting state ρ1 can be written as

ρ1 = Pρ0, (34)

ρ1 =
∑

α

qα�αρ0, (35)

where 0 � qα � 1 and
∑

α qα = 1. Here ρi, i = 0, 1, can be
viewed as the diagonal part of the density operator in the
computational basis. Interpreting qα as a probability, we can
then view RQA as applying a permutation �α with probability
qα . The distribution of qα is determined by the schedule of
the RQA protocol. This is likely to consist of some local and
global moves, with locality being driver dependent.

The doubly stochastic evolution places restrictions on the
resulting distribution ρ1. For instance, if ρ0 is passive, then
P can only reduce the average quality of solution. We can
also look at the change in ground-state probability �p(0) with
initial ground-state probability p(0):

�p(0) =
∑

m

p(0|m)p(m) − p(m|0)p(0), (36)

�p(0) =
∑

m

p(0|m)(p(m) − p(0)), (37)

where we have used p(0|m) = p(m|0). Bounding �p(0) gives

min
m

[p(m) − p(0)]
∑

m

p(0|m) � �p(0)

� max
m

[p(m) − p(0)]
∑

m

p(0|m). (38)

Since P is doubly stochastic,

min
m

[p(m) − p(0)] � �p(0) � max
m

[p(m) − p(0)]. (39)

This means if the ground state is already the most likely state
(even if it is exponentially small) P can only reduce the prob-
ability of finding the ground state. If the ground state is the
least likely state, then RQA can only improve the ground-state
probability. More generally, the ground-state probability is
bounded by maxm p(m), which if exponentially small restricts
finding the ground state to being exponentially unlikely. If
p(m) is sampled from a system with an extensive amount
of entropy, then this is likely the case. For passive states
the ground state is already the most likely state, hence, the
ground-state probability cannot be increased for these states
by RQA.

B. Biasing means that the system is no longer isolated

In this section, we discuss the limitations of the above
analysis when a bias is applied. Consider biasing the RQA
Hamiltonian, such that the modified Hamiltonian is given by

Hcyc(t ) = Hp + Hb + G(t )Hd , (40)

where Hb is the biasing Hamiltonian, which is diagonal in the
computational basis. To distinguish RQA from RQA with a

bias, we refer to this as biased quantum annealing (BQA).
Consider the following BQA process, where the initial state

ρ0 =
∑

z

pz|z〉〈z| (41)

is diagonal in the computational basis. For each run, the state
|z〉 is fed into the quantum annealer with probability pz. The
initial Hamiltonian is Hp. The system interpolates between
Hp and Hb, where Hb has been chosen such that |z〉 is the
ground state of Hb. The system is then adiabatically evolved
to the ground state of Hd (which by assumption commutes
with neither Hp nor Hb). From here, the system is adiabat-
ically evolved to the ground state of Hp. The result of this
cyclic process is to take ρ0 and map it to the ground state
of the problem Hamiltonian. Hence, we have constructed a
cyclic process that leads to extractable work and a decrease in
entropy, violating the second law of thermodynamics. This is
true even for passive states. This process is typically referred
to as adiabatic reverse quantum annealing [68,69].

The apparent violation arises because the evolution is not
unitary (hence not isolated), evidenced by the change in von
Neumann entropy. The choice of cyclic process is predicated
on the initial state loaded into the quantum annealer. There-
fore, Planck’s principle cannot be applied. This is explored
further in Appendix C. This has also been exploited in works
such as [9,10].

C. Warm-starting continuous-time quantum walks

Under Assumption 4, the total energy of the system has to
rise as a result of a cyclic process. This rules out cooling Hp

cyclically to find good quality solutions given a Hamiltonian
of the form shown in Eq. (31). This is at odds with approaches
such as RQA. But an average increase in 〈Hp〉 does not rule
out finding states with a lower value of 〈Hp〉: this is simply not
the average case. Since in RQA the system starts in an energy
eigenstate, the uncertainty can only increase as a result of the
cyclic process. Provided the shift in average energy is less
than the increased uncertainty in energy, RQA has a chance
of doing better than its initial guess.

In this section, we numerically investigate warm-started
CTQWs. This is an example of a cyclic process, as an example
of RQA. As discussed in Sec. II warm starting refers to using
previously obtained information to boost the performance of
the algorithm. Here we consider the case of a CTQW, where
instead of starting in an eigenstate of Hd we start in an eigen-
state of Hp. In order to apply Assumption 4, we require that
the initial state |z∗〉 is better than random guessing (see Sec. III
for further discussion):

〈z∗|Hp|z∗〉 < Tr′Hp. (42)

We consider the Hamiltonian

HWS = G(t )Hd + Hp, (43)

where

G(t ) =
⎧⎨
⎩

0 for t � 0,

g for 0 < t � t1,
0 for t1 � t .

(44)
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FIG. 5. The time evolution of 〈Hp〉 for a 12-qubit MaxCut in-
stance. The dashed green line shows the infinite-time average 〈Hp〉.

Note that the time-dependent schedule is now appended to
Hd , not Hp. The period between 0 < t � t1 corresponds to a
CTQW.

In order to provide numerical evidence of the challenges
of warm-starting CTQWs, we consider MaxCut on binomial
graphs with each edge is selected with probability 2/3. The
Ising Hamiltonian for MaxCut is shown in Fig. 3. We take
Hd to be the transverse-field driver [shown in Eq. (4)]. The
problems in this section consist of 12 qubits. Figure 5 shows
a MaxCut instance with g = 1, where g is the coefficient in
front of Hd . The evolution after some time approaches a steady
state, as expected for a time-independent Hamiltonian. The
dashed green line shows the infinite-time average of 〈Hp〉,
denoted by 〈Hp〉. As predicted by Assumption 4, 〈Hp〉 is
always greater than its initial value.

As mentioned, since the initial state is an energy eigenstate,
the uncertainty can only increase, giving the warm-started
CTQW a chance to find better solutions. To see this for the
warm-started CTQWs, we look at the probability distribution
of observing a given value of 〈Hp〉 for the infinite-time av-
eraged density operator. We consider the same example as
Fig. 5. The distribution of 〈Hp〉 for the MaxCut instance can
be found in Fig. 6. Despite the average value of 〈Hp〉 having
increased, there is significant overlap with states with a lower
value of 〈Hp〉 than the initial state.

To demonstrate that the average increase in 〈Hp〉 is not
specific to the choice of g, Fig. 7 shows how 〈Hp〉 varies with
g. The problem instance is the same as Fig. 5. It demonstrates
clear heating, as for any value of g the value of 〈Hp〉 increases
or stays the same compared to its initial value. The initial
value of 〈Hp〉 corresponds to g = 0. So for the cyclic process
set out in Sec. V C there is an increase in energy, this corre-
sponds to heating.

Figure 8 shows how 〈Hp〉 compares with the initial value of
〈Hp(t = 0)〉 for 100 instances of the MaxCut problem. In each
instance g = 0.5. The dashed green line marks no change in
〈Hp〉. For a few initial states, there is a minor cooling effect
from the CTQW. This is perhaps reflective of the problem
having more structure than the bell shape sketched in Fig. 3.

FIG. 6. The time-averaged distribution of 〈Hp〉 for the problem
instance shown in Fig. 5. The dashed green line shows the origi-
nal value of 〈Hp〉. The dashed red line shows the average of the
distribution.

In each instance so far we have shown what has happened
when the system is initialized randomly in an eigenstate of
Hp, that satisfies the condition 〈s|Hp|s〉 < 0 where |s〉 is the
initial state. For a few instances in Fig. 8 we have seen 〈Hp〉
decrease; does this imply cooling and contradict the work in
the previous section? First, we have taken Planck’s principle
to be a physically motivated principle and broadly true. Sec-
ond, this cooling effect disappears once the system is averaged
over the full ensemble, taking into account all possible starting
states. The full ensemble can be taken into account by using
the density operator

ρ0 = 1

N
∑

s:〈s|Hp|s〉<Tr′Hp

|s〉〈s|, (45)

FIG. 7. The time-averaged value of 〈Hp〉 as g is varied for the
MaxCut instance considered in Fig. 5.
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FIG. 8. The initial value of 〈Hp〉 for a warm-started CTQW com-
pared to the infinite-time-averaged value. For each instance g = 0.5.
The blue circles show 100 MaxCut instances.The number of qubits
is 12 in all cases. The initial state is randomly selected given that it
satisfies Eq. (42).

where |s〉 is an eigenstate of Hp with eigenvalue s. The nor-
malization N of the initial state is

N =
∑

s:〈s|Hp|s〉<0

1. (46)

Repeating Fig. 8 with Eq. (45) gives Fig. 9. Note that ρ0 is a
passive state. From Fig. 9 it is clear that by averaging over the
ensemble given by Eq. (45) there is no exception.

In summary, Planck’s principle remains a good predictor of
the behavior of cyclic approaches. Further numerical studies
can be found in Appendix C 2.

FIG. 9. The initial value of 〈Hp〉 for a warm-started CTQW com-
pared to the infinite-time-averaged value. For each instance g = 0.5.
The blue circles show 100 MaxCut instances. The number of qubits
is 12 in all cases. The initial state is given by Eq. (45).

VI. CONCLUSION

Planck’s principle is a physically reasonable assumption in
a broad range of circumstances. In this work, we have used it
to motivate continuous-time quantum optimization (CTQO)
without appealing to the adiabatic theorem. Pure state sta-
tistical physics provides a novel way of investigating CTQO
without appealing to the minutiae of the energy spectrum that
would typically be inaccessible for large quantum systems.
Statistical physics also provides new ways of discussing and
reasoning about CTQO, by invoking (for example) tempera-
ture.

Planck’s principle motivates forward quantum annealing
(QA) with monotonic schedules, but raises questions over
cyclic processes (such as reverse quantum annealing). We
demonstrated that 〈Hp〉 can only improve under monotonic
quenching. Planck’s principle was also able to capture the
behavior of both monotonic schedules and cyclic sched-
ules, despite their obvious differences. In this work we have
demonstrated that Planck’s principle can provide an intuitive
explanation for CTQO, reflected in the numerical experiments
considered.

With improved knowledge of how systems behave away
from the adiabatic limit, it may be possible to design better
heuristic continuous-time quantum algorithms for optimiza-
tion. Studying CTQO is to understand the limitations of
Planck’s principle or, equivalently, Kelvin’s statement of the
second law of thermodynamics, within the quantum regime.

ACKNOWLEDGMENTS

We gratefully acknowledge H. Chew, N. Feinstein, and
L. Guerrero for inspiring discussion and helpful comments.
The authors acknowledge the use of the UCL Myriad High
Performance Computing Facility (Myriad-UCL), and asso-
ciated support services, in the completion of this work.
This work was supported by the Engineering and Physical
Sciences Research Council through the Centre for Doc-
toral Training in Delivering Quantum Technologies (Grant
No. EP/S021582/1).

APPENDIX A: A SIMPLE DERIVATION
OF THE PASSIVITY OF GIBBS STATES

In this Appendix, we provide a very simple derivation of
the passivity of Gibbs states. The initial state ρ0 is a Gibbs
state at inverse temperature β with Hamiltonian H . The state
after unitary evolution is denoted by ρ(t ). The Gibbs state
minimizes the free energy

TrHρ0 − 1

β
S(ρ0) � TrHρ(t ) − 1

β
S[ρ(t )], (A1)

where S(·) is the von Neumann entropy. Rearranging the
above gives

S[ρ(t )] − S(ρ0) � β[TrHρ(t ) − TrHρ0]. (A2)

Since the von Neumann entropy is conserved under unitary
evolution,

0 � β[TrHρ(t ) − TrHρ0], (A3)
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FIG. 10. Comparing the PSTQA equations to the Schrödinger equation for a 10-qubit MaxCut graph, shown in the inset of Fig. 10(b).
(a) Schedule. (b) A comparison of 〈Hp(t )〉 calculated from the Schrödinger equation (red) and the PSTQA equations (blue). (c) The diagonal
entropy calculated from the Schrödinger equation. (d) The inverse temperature calculated from the PSTQA equations.

provided the temperature is positive

TrHρ0 � TrHρ(t ). (A4)

Hence, for any unitary (including cyclic unitaries) the energy
can only increase for a Gibbs state, meaning Gibbs states
satisfy Planck’s principle.

APPENDIX B: PURE STATE THERMAL
QUANTUM ANNEALING

In this Appendix, we consider the continuum limit of an
MSQW, such that the rate at which �(t ) changes is sufficiently
slow compared to the dephasing timescale of the system. By
applying the ETH (Assumption 3), we then model the system
as a Gibbs state at all times. We also allow the coefficient in
front of the driver Hamiltonian to change too, under the same
assumptions. The Hamiltonian is given by

HTQA = A(t )Hd + B(t )Hp, (B1)

where A(t ) and B(t ) are changed slowly compared to the de-
phasing timescale. Intuition into this timescale can be found in
[23–25]. We refer to this limit as pure-state thermal quantum
annealing (PSTQA). Since the system is isolated, we can write

d〈HTQA(t )〉
dt

=
〈
∂HTQA

∂t

〉
(B2)

= Ȧ(t )〈Hd〉 + Ḃ(t )〈Hp〉, (B3)

where the overdot denotes a time derivative. Denoting the
time-dependent partition function of the system as Z (t ), we
have

〈HTQA(t )〉 = − ∂ lnZ (t )

∂β
, (B4)

〈Hd (t )〉 = − 1

β(t )

∂ lnZ (t )

∂A
, (B5)

〈Hp(t )〉 = − 1

β(t )

∂ lnZ (t )

∂B
, (B6)
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FIG. 11. A second 10-qubit MaxCut example. The schedule is a
linear ramp, with a minimum value of 0.3 and maximum value 1.3.
(a) The time evolution of 〈Hp(t )〉. The red line shows the Schrödinger
evolution. The blue line shows the solution of the PSTQA equa-
tions for this instance. (b) The inverse temperature from the PSTQA
equations. (c) The diagonal entropy from the Schrödinger equation.

where β is the inverse temperature. The rest of this
Appendix investigates the consequences of these equations.

1. Pure state thermal quantum annealing is path independent

Returning to Eq. (B3), the equation can be rewritten into
normalized time with the substitution s = t/t f :

d〈HTQA(s)〉
ds

= 〈Hd〉dA(s)

ds
+ 〈Hp〉dB(s)

ds
. (B7)

The above equation depends only on the normalized time and
the expectation values depend only on A, B, and β and not
their derivatives. This implies 〈Hp〉 in the thermal model is
independent of scaling by t f , although obviously too small a
t f will cause the thermal predictions to break down. Further
rewriting Eq. (B7) gives

〈HTQA(1)〉 =
∫ A(1),B(1)

A(0),B(0)

(〈Hd〉
〈Hp〉

)(
dA
dB

)
, (B8)

hence we can view Eq. (B7) as a path integral under the
“force”

	D = −
(〈Hd〉

〈Hp〉
)

= −	∇F, (B9)

where F is the Helmholtz free energy, F = − ln(Z )/β, and
	∇ = (∂A, ∂B)T . Since each of 〈Hd〉 and 〈Hp〉 depend only on
A and B and not their derivatives and the force can be written
as the gradient of a scalar field, 〈HTQA〉 is path independent. It
follows that 〈Hp〉 will also be path independent.

2. Diagonal entropy is conserved

The diagonal entropy, assuming a Gibbs state, is given by

Sd (β, E , A, B) = lnZ (β, A, B) + βE , (B10)

where E = 〈HTQA(t )〉. Taking the time derivative of Sd gives

dSd

dt
= ∂ lnZ

∂A

dA

dt
+ ∂ lnZ

∂B

dB

dt

+
(

∂ lnZ
∂β

+ E

)
dβ

dt
+ β

dE

dt
, (B11)

substituting in Eq. (B4) gives

dSd

dt
= ∂ lnZ

∂A

dA

dt
+ ∂ lnZ

∂B

dB

dt
+ β

dE

dt
. (B12)

Using Eqs. (B5), (B6), and (B3) we conclude

dSd

dt
= 0. (B13)

In conclusion, PSTQA is the adiabatic limit of an MSQW,
with Assumption 3. The standard quantum adiabatic theorem
would imply that the relevant timescale would be associated
with the minimum spectral gap, hence, a timescale that grows
exponentially with the number of qubits. But to reach PSTQA
the relevant timescale invoked was the dephasing timescale.
To make Assumption 3 we assumed that nonextensive correc-
tions to the observables could be neglected. Since Sd is an
extensive quantity, it is perhaps more reasonable to say that
PSTQA is adiabatic up to nonextensive corrections.
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FIG. 12. A box plot showing [〈Hp(t f )〉 − 〈Hp(t f )〉TQA]/〈Hp(t f )〉
for MaxCut on 10-qubit binomial graphs. The final value of the
Schrödinger evolution is denoted by 〈Hp(t f )〉. The value predicted
by the PSTQA equations is denoted by 〈Hp(t f )〉TQA. In each case, a
linear schedule is used with A(0) = B(t f ) = 1.3 and A(t f ) = B(0) =
0.3. At each value of t f , 90 instances are considered.

3. Numerical evidence of PSTQA

To illustrate PSTQA we numerically consider an example.
The example is a single instance of MaxCut on a randomly
generated graph with 10 qubits, with Hp = HMC [Eq. (3)]
and Hd = HTF [Eq. (4)]. Each edge in the graph has been
selected with probability 2/3. The MaxCut graph is shown in
the inset of Figs. 10(b). The schedule is shown in Fig. 10(a),
where B(0) �= 0 and A(t f ) �= 0 breaking integrability and the
conventional assumption in AQO.

Figure 10(b) shows 〈Hp(t )〉 for the MaxCut example.
The red line shows the Schrödinger equation. The blue line
shows the prediction from directly solving the PSTQA equa-
tions [i.e., Eqs. (B3)–(B6)]. There is very good agreement
throughout the evolution. Figure 10(c) shows the diagonal
entropy for the same evolution, according to the Schrödinger
evolution. The change is relatively small, however nonzero.
This is evidence of diabatic transitions between energy eigen-
states. Indeed, at the end of the evolution, there is a net
increase in diagonal entropy. The inverse temperature calcu-
lated from Eq. (B4) is shown in Fig. 10(d). Generally, the
temperature is seen to be decreasing, except at around t ≈ 11
where the system heats. Changing both Hd and Hp creates ef-
fects not previously observed in MSQWs [20], such as cooling
as the system progresses.

In Fig. 11(a), we consider other 10-qubit MaxCut instances
with different annealing times. The schedule in each case is
linear with A(0) = B(t f ) = 1.3 and A(t f ) = B(0) = 0.3. First,
we consider a single 10-qubit example with t f = 12. Focus-
ing on 〈Hp(t )〉, shown in Fig. 11(a), the red line shows the
Schrödinger equation and the blue line the PSTQA equations.
There is a gap between the two curves at the beginning of
the evolution, as the coherences in the Schrödinger evolution
hide the thermal state. At the end of the evolution, the PSTQA
equations overestimate the performance of the evolution. The
inverse temperature [shown in Fig. 11(b)] tells a different
story to the MaxCut example in Appendix B. In this exam-
ple, the temperature cools for approximately half the interval

FIG. 13. A box plot showing the change in diagonal entropy for
MaxCut on 10-qubit binomial graphs for the instances shown in
Fig. 12.

before heating up again. The diagonal entropy for this ex-
ample is shown in Fig. 11(c). The evolution is not strictly
adiabatic, evidenced by the varying diagonal entropy.

Figure 12 shows the error between the error between
〈Hp(t f )〉 according to the Schrödinger equation and the pre-
diction from the PSTQA equations [〈Hp(t f )〉TQA] for 90
instances as t f is changed. Each graph is a 10-qubit bino-
mial graph. The error is typically within a few percent and
decreasing on average as the run time increases. Note that in
all instances, the PSTQA equations predict a lower value of
〈Hp(t f )〉 than the true value. This is reflected in Fig. 13 where
there is a net increase in diagonal entropy for each instance
which is not captured by the PSTQA equations. Despite this,
we still see relatively good agreement.

To show that PSTQA is not limited to MaxCut, we consider
a Sherrington-Kirkpatrick (SK) inspired problem, with Ising
Hamiltonian

H (SK)
p =

∑
i> j

Ji, jZiZ j +
n∑
i

hiZi, (B14)

where Ji, j and hi are drawn from a normal distribution with
mean 0 and variance 1. For the driver Hamiltonian, we take
the transverse ield, shown in Eq. (4). The schedule under
consideration is shown in the inset of Fig. 14(a). Figure 14(a)
compares the value of 〈Hp(t )〉 according to the Schrödinger
equation (red line) to the PSTQA equations (blue line) for a
10-qubit example. There is remarkably good agreement. As
in the MaxCut case, Fig. 14(b) shows that the diagonal en-
tropy is changing, so the system has not reached the adiabatic
limit. Figure 14(c) shows the inverse temperature, which is
nonmonotonic with time.

Again, we consider 90 instances of the SK model at various
t f . A similar trend for the error in 〈Hp(t f )〉 as the MaxCut
instances can be found in Fig. 15. The change in diagonal
entropy can be found in Fig. 16, which decreases as the run
time increases.

4. Ansatz-based approach

Directly numerically solving the PSTQA equations [i.e.,
Eqs. (B3)–(B6)] is difficult, requiring repeated matrix
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FIG. 14. A comparison of the PSTQA equations and the
Schrödinger equations for a 10-qubit SK instance. The schedule
is shown in the inset of Fig. 14(a) and consists of linear ramps
between 0.1 and 1.1. (a) A comparison of 〈Hp(t )〉 calculated from
the Schrödinger equation (the solid red line) and the PSTQA equa-
tions (the solid blue line). (b) The diagonal entropy calculated from
the Schrödinger equation. (c) The inverse temperature calculated
from the PSTQA equations.

FIG. 15. A box plot showing [〈Hp(t f )〉 − 〈Hp(t f )〉TQA]/〈Hp(t f )〉
for 10-qubit SK instances. The final value of the Schrödinger evo-
lution is denoted by 〈Hp(t f )〉. The value predicted by the PSTQA
equations is denoted by 〈Hp(t f )〉TQA. In each case a linear schedule
is used with A(0) = B(t f ) = 1.1 and A(t f ) = B(0) = 0.1. At each
value of t f 90 instances are considered.

exponentiation to find β. However, since the PSTQA equa-
tions depend only on the partition function, the equations can
be tackled by making a good choice of Ansatz for Z . Ansätze
for the partition function based on models of the density of
states for MaxCut have been explored in [20] for the time-
independent setting. In Fig. 17 we show a specific ansatz,
based on an exponentially modified Gaussian distribution
for the density-of-states, for the time-dependent setting. The
green line in Fig. 17 shows the Ansatz-based approach, and
the red line again shows the Schrödinger evolution of 〈Hp(t )〉
for the 10-qubit instance considered in the previous section.
Although the agreement is not as good as exactly solving the
PSTQA equations, this approach removes the need for matrix

FIG. 16. A box plot showing the change in diagonal entropy of
the 10-qubit SK instances shown in Fig. 15.
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FIG. 17. PSTQA for the 10-qubit MaxCut graph shown in the
inset of Fig. 14(b). The red line shows the Schrödinger evolution. The
green line shows the prediction from the PSTQA equations when an
exponentially modified Gaussian Ansatz is made for the density of
states.

exponentiation and still provides a good approximation. The
rest of this section details the Ansatz-based calculation, along
with further numerical examples.

We consider two simple models for the density of states,
first introduced for CTQWs for the combinatorial optimiza-
tion problem MaxCut in [20]. The two models are a Gaussian
and an exponentially modified Gaussian. In [20] these mod-
els of the density of states were shown to make reasonable
approximations of observables for CTQWs. We expect these
models to be suitable when the state vector has significant
overlap with energy eigenstates in the middle of the spectrum.
These models have no energy cutoff, so become less suitable
at low (or high) energies. However, they do allow for some
analytic analysis.

5. Gaussian model

First, we assume the density of states associated with
Hamiltonian (B1) can be well modeled by a Gaussian distri-
bution

�(ε, t ) dε = 1√
2πσ 2(t )

e
−(ε−μ(t ))2

2σ2 (t ) dε, (B15)

where μ(t ) is the mean and σ 2(t ) the variance of the density
of states. A Gaussian density of states has been observed
to be a good approximation for the density of states in the
nonintegrable setting for a number of models [20,54,70,71].
The moments of the density of states can be calculated directly
from the eigenvalues of HTQA(t ), denoted be Ek . Again, let D
be the dimension of the state space. And Tr′ = 1/D Tr be the
normalized trace, with the scaled operators H̃p = Hp − Tr′Hp

and H̃d = Hd − Tr′Hd . The mean and variance of the density
of states are then

μ(t ) = 1

D
∑

k

Ek (t )

= Tr′HTQA(t )

= A(t )Tr′Hd + B(t )Tr′Hd , (B16)

σ 2(t ) = 1

D
∑

k

E2
k (t )

= 1

D
TrH2

TQA(t ) − μ(t )2

= A2(t )Tr′H̃2
d + B2(t )Tr′H̃2

p

+ 2A(t )B(t )Tr′H̃d H̃p. (B17)

Evaluating the partition function gives

Z (t ) =
∫ ∞

−∞
e−β(t )ε�(ε, t )dε

= 1√
2πσ 2(t )

∫ ∞

−∞
e−β(t )εe

−(ε−μ(t ))2

2σ2 (t ) dε

= e−β(t )μ(t )+ β(t )2σ2 (t )
2 . (B18)

Evaluating 〈HTQA(t )〉 gives

〈HTQA(t )〉 = −∂ lnZ (t )

∂β

= μ(t ) − βσ 2(t ). (B19)

Hence,

β(t ) = μ(t ) − 〈HTQA(t )〉
σ 2

. (B20)

Evaluating 〈Hd (t )〉 and 〈Hp(t )〉 gives

〈Hd (t )〉 = − 1

β(t )

∂ lnZ (t )

∂A

= Tr′Hd − β(t )
[
A(t )Tr′H̃2

d + B(t )Tr′H̃d H̃p
]
, (B21)

〈Hp(t )〉 = − 1

β(t )

∂ lnZ (t )

∂B

= Tr′Hp − β(t )
[
B(t )Tr′H̃2

p + A(t )Tr′H̃d H̃p
]
. (B22)

Substituting β(t ), 〈Hd (t )〉, and 〈Hp(t )〉 into Eq. (B3) gives

d〈HTQA(t )〉
dt

= Ȧ(t )〈Hd (t )〉 + Ḃ(t )〈Hp(t )〉

= dμ

dt
− μ − 〈HTQA(t )〉

2σ 2

dσ 2

dt
. (B23)

Integrating the above expression gives

〈HTQA(t )〉 = μ(t ) + cσ (t ), (B24)

where c is the constant of integration, which can be fixed
using the boundary condition 〈HTQA(0)〉 = A(0)〈ψi|Hd |ψi〉 +
B(0)〈ψi|Hp|ψi〉. Therefore,

c = 〈HTQA(0)〉 − μ(0)

σ (0)
. (B25)

With an expression for 〈HTQA(t )〉, evaluating β(t ) and 〈Hp(t )〉
becomes trivial:

β(t ) = −c

σ (t )
(B26)
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and

〈Hp〉 = Tr′Hp

+ c

σ (t )

[
B(t )Tr′H̃2

p + A(t )Tr′H̃d H̃p
]
. (B27)

6. Gaussian model applied to MaxCut

The simple structure of the MaxCut problem and the trans-
verse field allow for further simplification. Evaluating the
moments gives

μ(t ) = 0,

σ 2(t ) = A2(t )n + B2(t )κ2,

where κ2 is the number of edges in the MaxCut graph and n is
the number of nodes. Hence,

β = nA(0)√
A2(0)n + B2(0)κ2

√
A2(t )n + B2(t )κ2

,

〈HTQA(t )〉 = −nA(0)
√

A2(t )n + B2(t )κ2√
A2(0)n + B2(0)κ2

,

〈Hp〉 = −nA(0)B(t )κ2√
A2(0)n + B2(0)κ2

√
A2(t )n + B2(t )κ2

.

The Gaussian case is primarily of interest as it can be han-
dled analytically. It does not take into account any frustration
in the system. In the next section we explore a model that
begins to take this into account.

7. Exponentially modified Gaussian model

The above can be repeated for an exponentially modified
Gaussian density of states. This model incorporates skewness
into the density-of-states model, but is less tractable. The
partition function for this model is given by

Z (t ) =
(

1 + β(t )

λ(t )

)−1

e−ν(t )β(t )+ 1
2 β(t )2s2

, (B28)

where ν(t ), s(t ), and λ(t ) are fitting parameters related to
the mean [μ(t )], variance [σ 2(t )], and skewness γ (t ) of the
distribution:

ν(t ) = μ(t ) − σ (t )

(
γ (t )

2

) 1
3

= μ(t ) − �(t ), (B29)

s2(t ) = σ 2

[
1 −

(
γ (t )

2

) 2
3

]
= σ 2(t ) − �2(t ), (B30)

λ(t ) = 1

σ (t )

(
γ (t )

2

)− 1
3

= 1

�(t )
, (B31)

where

μ(t ) = Tr′HTQA, (B32)

σ 2(t ) = Tr′(HTQA − Tr′HTQA)2, (B33)

�(t ) = 1
2 (Tr′(HTQA − Tr′HTQA)3)1/3. (B34)

FIG. 18. The evolution of 〈Hp(t )〉 for a MaxCut instance on
13-qubit binomial graph. The schedule is linear with A(0) = B(t f =
10) = 1.1 and A(t f = 10) = B(0) = 0.1. The red line shows the
Schrödinger evolution, and the green line the prediction using an
exponentially modified Gaussian Ansatz for the density of states.

From the partition function, it is straightforward to estimate
the relevant expectation values:

〈HTQA(t )〉 = β2�3(t )

1 + β(t )�(t )
+ μ(t ) − β(t )σ 2(t ). (B35)

Inverting this equation gives

β(t ) = −σ 2 − �[〈HTQA(t )〉 − μ] + ω

2�(t )[σ 2(t ) − �2(t )]
, (B36)

where

ω = {{σ 2(t ) + �(t )[〈HTQA(t )〉 − μ(t )]}2

+ 4�[〈HTQA(t )〉 − μ(t )][�2(t ) − σ 2(t )]}1/2. (B37)

Calculating 〈Hp〉 gives

〈Hp(t )〉 = ∂Bμ − �(t )β(t )

1 + �β(t )
∂B�

− β(t )[σ (t )∂Bσ (t ) − �(t )∂B�(t )]. (B38)

The expression for 〈Hd (t )〉 is the same but with B swapped for
A. Combining the above expressions, the energy of the system
[Eq. (B7)] can be found using numerical integration, without
resorting to full numerical integration of the state-vector.

8. Exponentially modified Gaussian model applied to MaxCut

For MaxCut with a transverse field (and no terms propor-
tional to the identity)

μ = 0, (B39)

σ 2(t ) = A2(t )n + B2(t )κ2, (B40)

�3(t ) = (3κ3)B3(t ). (B41)

Here κ2 is the number of edges and κ3 is the number of trian-
gles in the MaxCut graph. Figure 18 shows the Schrödinger
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FIG. 19. The error between 〈Hp(t f )〉 from the Schrödinger equa-
tion and the exponentially modified Gaussian model 〈Hp(t f )〉EMG.
The figure shows 100 MaxCut instances on 13-qubit binomial
graphs. The schedule is linear with A(0) = B(t f = 10) = 1.1 and
A(t f = 10) = B(0) = 0.1. The prediction from the exponentially
modified Gaussian is denoted by 〈Hp(t f )〉EMG, and the true value by
〈Hp(t f )〉. The x axis shows E p

(0), the ground-state energy of Hp.

evolution (red line) and the prediction from using an expo-
nentially modified Gaussian Ansatz (green line). The instance
considered is a 13-qubit binomial graph with a linear schedule
with A(0) = B(t f = 10) = 1.1 and A(t f = 10) = B(0) = 0.1.
There is good agreement, especially at the end of the evo-
lution. Figure 19 shows the error between the true value of
〈Hp(t f )〉 and the prediction from the Ansatz 〈Hp(t f )〉EMG for
100 13-qubit instances. The schedule is the same as before.
The x axis shows the ground-state energy of the problem
Hamiltonian, which is correlated with the error.

APPENDIX C: BIASED QUANTUM ANNEALING

As discussed in Sec. V B, biased quantum annealing
(BQA) is not isolated and therefore does not satisfy Planck’s
principle. In this section, we explore how this might lead to
cooling.

Since the energy of the system tends to increase a third
term needs to be added to compensate for the global increase
in energy,

Hcyc(t ) = Hp + Hb + G(t )Hd . (C1)

Provided that the increase in energy associated with the bias
Hamiltonian (Hb) is greater than the energy increase as a
result of the cyclic process, the energy associated with Hp will
decrease.

The following protocol is inspired by works such as [9,10].
In these works, the many-body localized phase transition in
spin glasses is used to cyclically cool the system. We argue
that this approach is likely to hold for a broad range of set-
tings. Initially, we assume that we start in an eigenstate of Hp,
denoted by |z∗〉 and Hb = −α|z∗〉〈z∗| with α > 0. This lowers
the energy of the initial state, while all other eigenstates of
Hp remain unchanged. As long as the energy increase �W
from the cyclic process is smaller than the energy shift from

FIG. 20. The effect on the problem Hamiltonian from introduc-
ing Hb. The initial state is highlighted in green. States lower in energy
are colored blue, while states higher in energy are colored red. As
long as |�W | < α, the expectation value of 〈Hp〉 will decrease.

the bias, we will have reduced 〈Hp〉. This is sketched out in
Fig. 20. Note that for this choice of biasing Planck’s princi-
ple no longer holds as a map between classical probability
distributions; this is discussed in Sec. V B. However, we will
assume that the net result of a typical cyclic process with suf-
ficient dynamics is to move towards the bulk of the spectrum,
increasing the energy. For the process to work, nontrivial
dynamics need to take place. Given some starting state, the
process could work as follows:

(1) Run the cyclic process.
(2) If the resulting string corresponds to a better solution,

update the initial state to be this state.
(3) Otherwise, keep the initial starting state but increase α.
In practice, achieving a bias like Hb = −α|z∗〉〈z∗| will be

infeasible. Such a bias would involve all-to-all interactions. A
much more feasible driver is

H (l )
b = −α

n∑
i=1

(−1)z∗[i]Zi, (C2)

where z∗[i] is the ith bit in the n-bit string z∗, and Zi is the Pauli
Z matrix acting on the ith qubit. This Hamiltonian has the
ground state |z∗〉 with energy −nα, and consists of one-local
terms. However, this Hamiltonian will alter the energy of all
the problem states. In the worst case, the energy gap opened
up by H (l )

b becomes primarily occupied by high-energy states
of Hp and no cooling of 〈Hp〉 occurs.

If, however, we assume that the ordering of energy eigen-
states is uncorrelated between H (l )

b and Hp, then the average
energy shift from H (l )

b is 0 with standard deviation α
√

n. So
the typical energy shift of the problem eigenstates is

√
n times

smaller than the shift on the initial state. Therefore, for large
n in the typical case, we would expect this local bias to mimic
−|z∗〉〈z∗|. For this approach, if α is too big H (l )

b will dominate
and the approach will not involve any information from Hp.
We numerically explore the performance of this approach in
Appendix C 2.

1. Computational mechanism

In the previous section, we discussed that if the system
is likely to increase in energy, then the introduction of a
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bias can help improve 〈Hp〉. The idea that a system is more
likely to move towards the bulk of the spectrum than away
is physically reasonable given a sufficient level of dynamics.
Here we elucidate the computational mechanism.

To make the system isolated, consider the introduction of
a second register of qubits. The first register Q contains the
qubits used in the BQA process and contains n qubits. The
second register C contains the same number of bits as Q, and
each qubit in the second register is prepared in |0〉. The joint
initial state is now

ρ
(Q/C)
0 =

∑
z

pz|z〉〈z|Q
n−1⊗
i=0

|0〉〈0|i,C . (C3)

Each qubit in Q is paired with a qubit in C. A controlled-
NOT gate is applied between each pair of qubits such that the
resulting state is

ρ
(Q/C)
1 =

∑
z

pz|z〉〈z|Q ⊗ |z〉〈z|C . (C4)

The unitary

Ut =
∑

z

Uz ⊗ |z〉〈z|, (C5)

where Uz is a unitary dependent on the string z, is applied to
ρ

(Q/C)
1 . In the context of the previous section, this could be

the unitary generated by Eq. (C1) with Hb = −α|z〉〈z| or H (l )
b

with ground state |z〉. The resulting state after application of
Ut is

ρ
(Q/C)
2 =

∑
z

pzUz|z〉〈z|QU †
z ⊗ |z〉〈z|C . (C6)

This process is now unitary and therefore isolated. The di-
agonal entropy of the initial state is S0. At the end of the
process, the diagonal entropy cannot decrease as a result. The
diagonal entropy of the C register (i.e., the diagonal entropy of
TrQρ

(Q/C)
2 ) is exactly S0. Hence, we conclude that the diagonal

entropy of the Q register must be greater than or equal to
zero. For the adiabatic cycle discussed in the beginning of
the section, the second law of thermodynamics is not violated
since all the entropy has been moved from Q to C. Only by
neglecting C does it appear that the entropy of the system is
decreasing. BQA is making use of a bath of classical bits C
prepared in a low-entropy configuration to hopefully reduce
the entropy of Q. Any statement that relies on the system
being isolated requires the inclusion of C. We discuss the
introduction of other baths further in Sec. IV B 2.

2. Numerically observing cyclic cooling

Section V made two predictions:
(1) Cyclic processes lead to heating, so RQA should lead

to a greater value of 〈Hp〉.
(2) A cyclic process might achieve cooling of 〈Hp〉 with

the introduction of a third term in the Hamiltonian.
In this section, we numerically investigate this for the Max-

Cut problem and SK problem described in Appendix B.
Initially, we focus on reverse quantum annealing (RQA).

With each cycle generated by the Hamiltonian

Hcyc = Hp + G(t )Hd . (C7)

FIG. 21. The schedule G(t ) appended to the driver Hamiltonian,
used for the cyclic processes described in Appendix C 2.

As in Sec. V A, the initial state is the ensemble

ρ0 =
∑

s

p(s)|s〉〈s|, (C8)

where |s〉 is an eigenstate of Hp with eigenvalue s. Denoting
the unitary associated with one cycle to be Ucyc, then the
transition probability between states |s〉 and | j〉 is given by

p( j|s) = |〈 j|Ucyc|s〉|2. (C9)

After each stage, there is some selection criterion to de-
termine if a string is kept or if the RQA cycle is repeated
with the initial string. The selection criterion could be the
Metropolis-Hastings update rule [72] or a more complicated
update [8,73]. In this work, we only keep states that lower the
energy.

FIG. 22. RQA for a 10-node MaxCut graph. The green dots show
〈Hp〉 for the postselected distribution. The blue diamonds show 〈Hp〉
as sampled from application of Ucyc.
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FIG. 23. The diagonal entropy Sd for RQA applied to a 10-node
MaxCut graph. The green dots show Sd for the postselected distri-
bution. The blue diamonds show Sd as sampled after application of
Ucyc. The logarithm used to calculate the diagonal entropy is taken to
be base 2.

The state after k iterations and measurement but before
postselection is given by

ρk = 1

Nk

∑
sk

∑
sk−1<···<s1<s0

p(sk|sk−1)p(sk−1|sk−2)

. . . p(s1|s0)p(s0)|sk〉〈sk|, (C10)

where Nk normalizes the state. The probability of finding a
lower state from this ensemble is

psuc(k) = 1

Nk

∑
sk<sk−1<···<s1<s0

p(sk|sk−1)p(sk−1|sk−2)

. . . p(s1|s0)p(s0). (C11)

This sets a rough estimate for the number of iterations to lower
the energy. If 1/psuc(k) becomes greater than some cutoff, we

FIG. 24. The inverse probability [Eq. (C11)] for each stage of
RQA on a 10-vertex MaxCut graph.

FIG. 25. The performance of QA (green circles), RQA (blue dia-
monds), and BQA (red crosses) for a 12-qubit example. (a) MaxCut.
(b) SK.

terminate the RQA process. If the approach is not terminated,
the state that is fed into the next cyclic iteration is

ρ
(ps)
k = 1

N ′
k

∑
sk<sk−1<···<s1<s0

p(sk|sk−1)p(sk−1|sk−2)

. . . p(s1|s0)p(s0)|sk〉〈sk|. (C12)

To illustrate the analysis found in Sec. V, we consider a
single 10-vertex MaxCut instance, take p(s) to be a uniform
distribution on the interval s < Tr′Hp. The driver Hamiltonian
is taken to be HTF. The schedule for the drive G(t ) is taken
to be a square Gaussian, shown in Fig. 21. For this instance
〈Hp〉 can be seen in Fig. 22. The green circles show 〈Hp〉
for the state after postselection. The blue diamonds show
〈Hp〉 sampled after each single application of Ucyc. At each
stage 〈Hp〉 after the cyclic quantum process is greater than
the postselected state, therefore, the cyclic quantum process is
producing on average worse quality states. This is numeric
evidence of heating at each stage. For this instance, RQA
reaches the ground state.
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FIG. 26. The extractable work W for the 12-qubit instances con-
sidered in Fig. 25. The blue diamonds correspond to RQA. The red
crosses BQA. The green circles show W for BQA neglecting the
change in energy of H (l )

b , i.e., the change in 〈Hp〉. (a) MaxCut. (b) SK.

The diagonal entropy for the same process is shown in
Fig. 23. Again, the blue diamonds show the diagonal entropy
sampling directly after an application of Ucyc. The green dots
show the diagonal entropy of the postselected state. As is
clear at each RQA leads to an increase of diagonal entropy
corresponding to a broadening of the distribution.

Finally, Fig. 24 shows 1/psuc, which gives a sense of the
average number of shots required at each stage. The random-
ness Ucyc introduced allows RQA to find the ground state with
fewer classical evaluations of Hp. This is in spite of the fact
that Ucyc results in a larger value of 〈Hp〉, as we have argued.

Having explored RQA without a bias, we now introduce bi-
ased quantum annealing (BQA). Simulating the full ensemble
at each stage is computationally more expensive than a single
state vector, so from here on the simulations use sampling as
if the approach was being evaluated on an actual quantum
device. The problems considered consist of 12 qubits. For
each instance, up to kmax shots are taken. The initial state is

FIG. 27. The average approximation ratio for the 12-qubit in-
stances at each shot number. Since the approaches terminate at
different shot numbers, the number of instances decreases. The pink
crosses show the average approximation ratio for BQA. The blue
diamonds show the average approximation ratio for RQA. The lines
show one standard deviation. The dashed green line shows an ap-
proximation ratio of 1. The final decrease in approximation ratio
in BQA reflects more difficult problems for BQA since it has not
terminated after numerous shots. (a) MaxCut. (b) SK.

chosen by randomly selecting states until condition (42) is
met. If the result of a run produces a better quality solution
than the initial state, the initial state is updated to be this state.
If the initial state is not updated after k runs, the algorithm
is assumed to have converged. For the numerics, we take
kmax = 100 and k = 10. The schedule for the drive G(t ) is
taken to be a square Gaussian, shown in Fig. 21.

For BQA the biasing term is taken to be H (l )
b [i.e.,

Eq. (C2)]. The initial value of α is taken to be α0 =
√

Tr′(H2
p ).

This is assumed to be typically an overshoot, so α is decreased
with each shot if 〈Hp〉 does not decrease. We take α to de-
crease linearly by α0/k each time.
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FIG. 28. The extractable work for the 12-qubit instances at each
shot number. Since the approaches terminate at different shot num-
bers, the number of instances decreases. The pink crosses show the
average extractable work for the BQA protocol. The blue diamonds
show the average extractable work for RQA. The lines show one
standard deviation. The dashed green circles show the change in 〈Hp〉
for BQA. (a) MaxCut. (b) SK.

With an annealing time of ta = 10, the problems are typi-
cally easy for QA. We consider 100 instances of MaxCut and
SK. QA found the ground state with 100 shots or fewer for
99 of the MaxCut instances and all the SK instances. RQA
found the ground state for 22 of the MaxCut instances and 12
of the SK instances. BQA found the ground state for 78 of the
MaxCut instances and 48 of the SK instances.

Figure 25 shows a specific MaxCut and SK instance. The
green circles show the result from QA. Although clearly not
adiabatic, it finds the ground state in both cases. The blue dia-
monds show the initial value of 〈Hp〉 for RQA. In both cases,
the termination condition is reached before the algorithm finds
the ground state. The red crosses show BQA. BQA managed
to find the ground state in both cases. BQA rapidly converges
towards the ground state compared to RQA and terminates
within 20 shots.

The above shows that BQA and RQA can tackle com-
binatorial optimization problems. The aim of this section is
to discuss heating. Figure 26 shows the extractable work for
each shot for the instances considered in Fig. 25. The RQA
examples generally show a negative value of extractable work,
meaning that 〈Hp〉 decreases: the blue diamonds in Fig. 26.
BQA also shows heating (i.e., W < 0), the pink crosses in
Fig. 26. There are some instances of cooling in the MaxCut
instance for BQA for two shots. The green circles show the
change in 〈Hp〉 for the BQA protocol. We see 〈Hp〉 is decreas-
ing as a result of BQA, i.e., cooling of 〈Hp〉.

Finally, we consider the numerics for all the 100 MAX-
CUT instances and 100 SK instances. Figure 27 shows the
approximation ratio averaged over all instances. The approx-
imation ratio is defined as 〈Hp〉 divided by the ground-state
energy of Hp. If the approach finds the ground state, the
approximation ratio is 1 (and cannot exceed 1). In both cases,
BQA converges much faster than RQA.

Figure 28 shows the extractable work averaged over all the
instances. We observe heating for both protocols as predicted
by Assumption 4. However, at least for the first few shots,
BQA is able to achieve cooling of 〈Hp〉.

We have numerically demonstrated, with this setup, that
RQA leads to heating. This does not rule out RQA finding
better solutions, as evidenced by Fig. 27. It does suggest there
is scope for improvement and cooling 〈Hp〉 by the addition of
a third term.
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