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Impact Statement

Abstract

The central aim of this thesis is to develop a new computational methodology
for calculating linestrengths, Einstein coefficients and absorption intensities
of electric quadrupole and magnetic dipole transition moments in diatomic
molecules. The system chosen to demonstrate this methodology is the 16O2
molecule, and specifically the atmospheric and infrared transitions.

A unified treatment of the electric quadrupole and magnetic dipole mo-
ments has been developed a priori from the molecular Hamiltonian in the
Born-Oppenheimer approximation. Using this treatment, expressions for the
line strengths, Einstein coefficients and absorption intensities for transitions
generated by these multipole interactions have been derived and implemented
in computer code as an extension to the Duo program. This implementation
has been tested and demonstrated for a range of homonuclear and heteronu-
clear diatomic molecules.

Using symmetry properties of these transition moments, and a reduction
to the irreducible tensor representation, straightforward expressions have been
given for the transformation from the basis of Abelian symmetry groups to the
of Hund’s case (a) basis. A set of potential energy, quadrupole moment, elec-
tronic angular momentum and spin-orbit coupling curves have been produced
using high-level electronic structure calculations for seven electronic states of
16O2. A property-based procedure for diabatising electronic structure proper-
ties has been presented and successfully used to transform electronic structure
properties of some highly excited Π states of molecular oxygen to the adiabatic
representation. This is a key step in accurately reproducing the complicated
rotational structure of the electric quadrupole absorption bands.

This diabatic model has subsequently been used to produce the first com-
plete rovibronic line list for transitions between the three lowest lying electronic
states (X 3Σ−g , a 1∆g, and b 1Σ+

g ) using the extended ExoMol methodology for
higher order transition moments. This line list has been produced through
empirical refinement of the spectroscopic model and is widely applicable for a
range of temperatures and in the wavenumber range 0–20 000 cm−1.
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Impact Statement

Molecular oxygen plays an important role across many areas of physics. The
absorption characteristics of 16O2 are crucial for atmospheric modelling and
remote sensing, and hence for characterising weather and climate patterns
and monitoring greenhouse gases in Earth’s atmosphere. Beyond our own
atmosphere, molecular oxygen is also a key target molecule for exoplanetary
retrievals, acting as a bio-signature for habitable planets and helping to under-
stand the geochemistry of hot rocky exoplanets. Results published during the
course of this doctoral study have already been used in exoplanetary retrievals
to characterise the atmospheres of the exoplanets WASP 39b and HAT-P-26
b [1, 2] and to model oxygen-rich AGB stars [3]. Further work presented in
this thesis provides a complete spectroscopic model for the infrared and at-
mospheric bands of 16O2, along with an associated line list. This line list will
facilitate the detection of molecular oxygen in exoplanetary atmospheres and
enable a deeper understanding of the geophysical and geochemical process that
govern their formation and dynamics. It also allows for the possibility of de-
tecting abiotic sources of 16O2 and establishing the existence of life beyond our
own solar system.

The general framework for calculating the electric quadrupole and mag-
netic dipole absorption spectra of diatomic molecules developed as part of
this thesis will also find general utility in producing similar line lists for other
molecules. This is especially true for homonuclear diatomic molecules, where
these higher-order interaction mechanisms dominate, but is also relevant for
heteronuclear diatomic molecules with a strongly asymmetric electron distri-
bution. The software developed and implemented within the Duo program
may be used to provide new insight into the infrared absorption and emission
spectra of molecules such as S2, N2 and C2, which are also important molecules
for exoplanetary studies.

The electronic structure calculations for 16O2 presented in this thesis rep-
resent the most accurate and complete ab initio calculation of the permanent
quadrupole moment to date, and the first prediction of other permanent and
transition quadrupole moments for excited electronic states. These results will
be of interest to the chemical community as they play an important role the
molecular dynamics and chemical reactions. The spin-orbit interaction be-
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tween the lowest lying electronic states also plays a role in oxidative metabolic
processes of living organisms and in enzymatic reaction pathways. Better un-
derstanding the magnetic and electric properties of this molecules will help to
more accurately model these biological processes.
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1. General Introduction

Chapter 1

General Introduction

In recent decades, the discovery and detection of exoplanets has been a core
focus of numerous astronomical surveys. As a result, there are over 5,000
known exoplanets across more than 4,000 planetary systems. At present there
is an increasing focus on characterising the bulk and atmospheric compositions
of these exoplanets, with a particular interest in the Earth-like class of rocky
exoplanets [16–19]. A new generation of space telescopes is already being
deployed to serve this mission, with CHEOPS, JWST, Twinkle, PLATO and
Ariel among the best placed to perform these observations [20–24]. In each
case these missions rely on transit spectroscopy - a method by which light
from the host star is observed as it passes through the planet’s atmosphere -
to characterise exoplanetary atmospheres. The proportion of light absorbed
in this way at a given wavelength is dependent on the constituent molecules
in the atmosphere. Thus, given an observed spectrum and a list of candidate
molecules, astronomers can infer the most likely composition using statistical
methods - a technique known as atmospheric retrieval.

In order to support this ongoing body of exoplanetary research, a consid-
erable wealth of spectroscopic data is needed for the numerous molecules of
interest. The ExoMol project was created with the specific aim of producing
such a database of ‘line lists’ for diatomic and small polyatomic molecules.
A large number of molecular systems have already been studied, and this
database of molecular opacities has already enabled the detection of numerous
novel species in the atmospheres of extrasolar planets [25]. However, there is a
unique and important class of molecules for which much of the necessary data
is still outstanding. Specifically, these are systems for which transitions are
forbidden in the electric dipole approximation of molecular spectroscopy. In
particular, the 16O2 molecule is of critical importance in exoplanetary studies
due to it’s potential to act as a biosignature in the atmospheres of habitable
exoplanets.

Molecular oxygen has long been proposed as a potential biosignature due to
its role as an electron donor in photosythensis reactions. An oxygenic biosig-
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nature is favoured in the search for life because the key ingredients (CO2 and
H2O) are thought to be present in large quantities on many habitable plan-
ets [26]. Chemotrophic life is, on the other hand, limited by the availability
of alternative electron donors such as H2 or Fe2+. Moreover, the substan-
tial abundance of 16O2 in Earth’s atmosphere is a result of oxygenic photo-
sythensis, with very few known non-biological sources [27–29]. The primary
non-biological source for persistent 16O2 is photodissociation of oxygen-bearing
species such as CO2, but this is largely dependent on the spectral energy dis-
tribution of the host star [30–35]. As a result, the detection of a persistent
abundance of 16O2 in an exoplanetary atmosphere (primarily in the presence of
O3 and CH4) along with an accurate characterisation of the host star’s spectral
flux, could provide a strong indication for the presence of life [36–38].

Beyond its role as a biosignature, detecting the presence or absence of
oxygen in the proto-atmospheres of early Earth-like rocky planets also plays
an important role in understanding their formation and geological evolution.
It affects magma ocean cooling, rock melting and oxidation rates [39–41], and
plays an important role in determining the abundance of other key atmospheric
species such as H2O, CO2 and H2 [42, 43, 39, 44, 45]. The next generation of
space and ground-based telescopes will, in principle, enable detection of 16O2
in exoplanetary atmospheres [46–48]. However, atmospheric retrieval relies
on knowledge of the candidate molecule’s absorption spectrum across a wide
range of wavelengths. Molecular oxygen plays an important role in Earth’s
own atmosphere, with several key absorption bands used to in atmospheric
modelling to characterise weather and climate patterns or monitor greenhouse
gases [49–54]. The absorption spectrum for oxygen is well characterised in the
narrow wavelength regions relevant to Earth-based applications, but knowl-
edge of the temperature dependence of these bands, and of the absorption
strength of other bands in the infrared region is currently insufficient for accu-
rate exoplanetary retrieval methods. While experiment can provide accurate
absorption strengths for a few spectral lines in the narrow bandwidth of the
available instrumentation, and at a handful of temperatures, they cannot pro-
vide the broad spectral coverage required for the statistical methods employed
by retrieval codes such as TauREx [55]. The large-scale line list production re-
quired for these applications is usually performed using computational methods
that can accurately simulate the quantum mechanical interactions of molecules
with electromagnetic radiation at arbitrary wavelengths and temperatures.

The transitions probabilities themselves are determined by both the eigen-
states of the molecule and by various multipole interactions that allow the
molecule to absorb and emit photons of electromagnetic radiation. Pure ro-
tation and vibration transitions, which account for the infrared spectra of
diatomic molecules, are forbidden for homonuclear diatomic molecules in the
electric dipole approximation as a result of molecular symmetry. Similarly,
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transitions between electronic states of the same symmetry are also forbidden.
This means the lowest energy electric dipole moment transitions for many
homonuclear diatomic molecules fall in the UV region of the spectrum, which
cannot be observed in astronomical contexts due to absorption by interstellar
dust. Broadly speaking, all homonuclear diatomic molecules (including N2, S2,
and crucially O2) fall into this class - with only a few notable exceptions such
as C2, where closely spaced electronic states of different symmetries allow for
electric dipole moment transitions with wavelengths longer than UV or visible
light.

The infrared and visible spectra of most homonuclear diatomic molecules
are instead dominated by higher order electric quadrupole and magnetic dipole
moment transitions. These transitions moments arise from higher order terms
in the multipole expansion of the light-matter interaction. Typically they are
several orders of magnitude weaker than electric dipole transitions, but can
nonetheless form the dominant contributions to absorption cross-sections in
the absence of electric dipole radiation. In many cases, the relative strengths
of the electric quadrupole and magnetic dipole moments are similar and so both
sources of absorption must be considered simultaneously in the production of
a line list. In the case of 16O2 the magnetic dipole transitions generally provide
the strongest contributions, and are responsible for the well-known atmospheric
δ, γ, B, and A-bands. However, electric quadrupole transitions have also been
observed in atmospheric and solar spectra [56–58]. Rovibrational transitions in
the X 3Σ−g ground electronic state of 16O2 are likely to be the most important for
exoplanetary retrieval. In particular, the X 3Σ−g (v = 1 → 0) band lies firmly
within the spectral range of specialist telescopes such as ARIEL, and contains
contributions of approximately equal strength from both electric quadrupole
and magnetic dipole moments [59, 60].

Producing a line list requires numerically solving the Schrödinger equa-
tion for the molecular Hamiltonian to obtain the rotational, vibrational and
electronic (rovibronic) wavefunctions and energy levels of the molecule. This
information can in turn be used to calculate transition probabilities between
these same energy levels. Typically the Schrödinger equation for the electronic
degrees of freedom is solved first, at a range of internuclear geometries, to
produce a set of electronic potential energy curves (or potential energy sur-
faces in the case of polyatomic molecules). These potential energy curves can
subsequently be used to solve the nuclear Schrödinger equation and obtain
the vibrational and rotational energy levels and wavefunctions. Knowledge of
the rotational, vibrational and electronic wavefunctions allows one to calculate
transition probabilities and absorption intensities for transitions between these
combined ‘rovibronic’ levels.

Generally, the electronic Schrödinger equation is solved, and the electronic
structure properties obtained, using quantum chemistry codes such as Mol-

26 of 146



1. General Introduction

pro, Gaussian, or CFOUR [61–63]. Meanwhile the nuclear Schrödinger
equation and transition probabilities can be solved using programs such as
Duo, which was also produced as part of the ExoMol project [64]. This nu-
clear motion code is capable of solving the molecular Hamiltonian with an
arbitrary number of couplings between electronic states, including spin-orbit,
spin-rotation, spin-spin and other coupling terms.

Like many spectroscopic treatments, the Duo program has, until now, pro-
duced molecular spectra by assuming the validity of the electric dipole approx-
imation. In this thesis, I introduce significant extensions to the Duo program
that enable the calculation of higher order transition probabilities, and thus fa-
cilitate the production of line lists for homonuclear molecules, as well as other
electronic systems for which transitions are forbidden by the electric dipole
moment selection rules. This forms part of a novel computational method-
ology for calculating both electric quadrupole and magnetic dipole transition
probabilities, which is subsequently used to produce a high-resolution line list
for molecular oxygen across a large range of wavelengths.

The outline of this thesis is as follows. In the first chapter I introduce
the electric dipole approximation and provide a rigorous theoretical basis for
the higher order electric quadrupole and magnetic dipole interactions. I also
derive the form of the operators that govern the strength of these interactions
and relate them to the Einstein A-coefficients for spontaneous emission. I
then introduce the irreducible representation for these tensor operators, which
plays an important role in the determining expressions for the matrix elements
and hence intensities of the magnetic dipole and electric quadrupole moments.
In the final part of this chapter I introduce the rotational, vibrational and
electronic basis sets used by the Duo program, and use them to derive ex-
plicit expressions for the absorption intensity. These expressions have been
implemented programmatically in the Duo program. In the second chapter I
provide background on the method for producing a spectroscopic model of a
homonuclear molecule. I begin by introducing the Born-Oppenheimer approx-
imation, which underpins the spectroscopic approach, and dictates how the
Schrödinger equation for the molecular Hamiltonian is solved, first by solv-
ing for the electronic degrees of freedom, and then for the nuclear degrees of
freedom. I also outline the adiabatic approximation, and the implication this
has on the solution to the nuclear motion, and how I account for the effects of
non-adiabatic interactions between the electronic states of a diatomic molecule.
In this chapter I also introduce the representation of the electronic structure
properties and how it is transformed after solving the electronic degrees of
freedom in order to facilitate the nuclear solution.

In the subsequent chapter I bring the theoretical elements together to pro-
vide a spectroscopic model and a computational line list for the 16O2 molecule.
I start by outlining the structure of the infrared bands, and the electronic states

27 of 146



1. General Introduction

and couplings that form their major contributions. I then detail the electronic
structure calculations that form the basis of the spectroscopic model. At the
end of this chapter I outline the nuclear motion calculations performed with
Duo and present the line list for the infrared and visible spectrum of 16O2 for
use in astronomical applications. Initially I present the ab initio line list as a
direct result of the electronic structure calculations. This line list is then em-
pirically refined by fitting analytic representations of several electronic struc-
ture properties to experimentally measured state energies. In the appendix I
present additional spectroscopic calculations that were performed during the
production of this thesis. Including the infrared spectrum of H2, CO, and HF,
which were used as initial validations of the implemented quadrupole code for
pure rotation-vibration transitions and for electronic transitions, respectively.
Lastly I present calculations of the infrared electric quadrupole spectra for
HF and CO. Although these are both heteronuclear diatomic molecules with
allowed electric dipole transitions, they are also examples of heteronuclear sys-
tems with strong quadrupole moments. They therefore serve to represent the
generality of the implementation beyond homonuclear diatomics.

I conclude the thesis by outlining potential directions for future on this
subject matter, and outlining some of the outstanding points that remain
unresolved.
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Chapter 2

Transition Moments

2.1 Introduction
In the treatment of molecular spectra, the mechanism by which electrons ab-
sorb or emit a photon of light is usually approximated to first order. This is
known as the electric dipole approximation, and in most cases proves sufficient
for modelling molecular spectra. Higher order mechanisms such as the electric
quadrupole or magnetic dipole interactions are orders of magnitude weaker and
therefore ordinarily contribute negligibly to the absorption cross-section of a
molecule. In the case of homonuclear molecules however the electric dipole
selection rules (which govern the pairs of quantum states between which a
molecule can transition) forbid transitions between rotational or vibrational
states of a molecule, or electronic transitions between states of the same sym-
metry. As a result, these higher order mechanisms become the dominant means
by which molecules absorb and emit light.

Such transitions are often challenging to measure in the laboratory, ow-
ing to their weaker relative intensity and the longer path lengths required for
appreciable absorption [65, 66]. Nevertheless, they are often present in atmo-
spheric spectra where sufficiently long path lengths are regularly achievable
[57, 67, 60, 68, 58, 69]. In many spectroscopic contexts, such as the HITRAN
database, the higher order moments are treated using effective Hamiltonians,
with the rotational line intensities modelled via Hönl-London factors. How-
ever, a variational methodology that provides a complete description of the
molecular eigenstates is preferred for accurate high-resolution line lists, and
this is the approach adopted by the ExoMol project.

In order to treat electric quadrupole and magnetic dipole absorption, I have
derived explicit expressions for the intensity of these transitions in terms of
the rovibronic basis states and electronic structure properties. In this chapter
I will present the full derivation of these expressions, as well as the final form
that has been implemented programmatically in Duo.
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2.2 Origin of the Higher Order Moments
In this section I briefly outline the theoretical basis for the higher order tran-
sition moments. Starting from the full molecular Hamiltonian in the pres-
ence of an external electromagnetic field, and employing the Schrödinger-Pauli
equation I derive expressions for the electric dipole, electric quadrupole and
magnetic dipole moment operators. I then show how these are linked to the
transition linestrengths and Einstein A-coefficients via the corresponding rate
equations.

2.2.1 Electromagnetic Interaction
I start by defining the electromagnetic field in terms of the scalar and vector
potentials φ and ~A, with electric and magnetic components ~E = −∇φ − ∂ ~A

∂t

and ~B = ∇× ~A respectively. The molecular electron has mass me, charge −e,
and is subject to a molecular potential V (~r, ~R) that depends on the position of
the electron ~r and the molecular geometry ~R. The Schrödinger-Pauli equation
for this system takes the form

(
p̂+ e ~A

)2

2me

+ eh̄

2me

~σ · ~B − eφ+ V (~r, ~R)

 |Ψ〉 = ih̄
∂

∂t
|Ψ〉 (2.2.1)

where ~σ is the vector of Pauli operators acting on the electronic spin angular
momentum. The first term of Eq. (2.2.1) can the be expanded to obtain the
Hamiltonian as a power series in the vector potential ~A

H = ~p2

2me

− e ~A · ~p
me

+ e2 ~A2

2me

− e

me

~S · ~B − eφ+ V (~r, ~R) (2.2.2)

where Ŝ = h̄
2~σ is the spin operator. If the field strength is weak, then the

second order term ( ~A2) can be neglected. Note also that the electromagnetic
field can be expressed as a linear combination of monochromatic plane waves
with polarisation ε̂ and wave vector ~k. In this case we can make a choice
of gauge such that φ = 0, and the Hamiltonian can be written as a sum of
field-free and field-dependent terms

H0 = ~p2

2me

+ V (~r, ~R) (2.2.3)

H1 =− e ~A · ~p
me

− e

me

~S · ~B (2.2.4)

this is known as the Weyl gauge, and gives a vector potential of the form

~A(~r, t) =
∫ ∞
−∞

A0(ω)ε̂
2

(
exp

[
i(~k · ~r − ωt)

]
+ exp

[
−i(~k · ~r − ωt)

])
dω (2.2.5)
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Initially let us consider only the first term in Eq. (2.2.4), which gives rise
to the electric dipole, electric quadrupole and magnetic dipole moments via
a Taylor expansion of the plane wave components. Later, in Sec. 2.2.3, we
will see how the second term also generates an additional contribution to the
magnetic dipole transition moment.

Perturbation theory gives the probability that a monochromatic plane wave
of frequency ωba induces a transition between two states of a quantum system
a and b as [70, 71]:

Pba(t) = |Cba(t)|2 (2.2.6)
where

Cba(t) = i

}

∫ t

0
Hba(t′) exp[iωbat

′] dt′ (2.2.7)

where Hba is the Hamiltonian (2.2.2) in the presence of a time-dependent
electromagnetic field. Substituting in the first term of Eq. (2.2.4) we obtain

Cba(t) = ieA0

2}me

∫ t

0
〈b|exp

[
i(~k · ~r − ωt′)

]
ε̂ · ~p|a〉 exp[iωbat

′]

+ 〈b|exp
[
−i(~k · ~r − ωt′)

]
ε̂ · ~p|a〉 exp[iωbat

′] dt′
(2.2.8)

= ieA0

2}me

∫ t

0
〈b|exp

[
i(~k · ~r)

]
ε̂ · ~p|a〉 exp[−iωt′] exp[iωbat

′]

+ 〈b|exp
[
−i(~k · ~r)

]
ε̂ · ~p|a〉 exp[iωt′] exp[iωbat

′] dt′
(2.2.9)

Then, integrating this expression with the initial condition Pba(t = 0) = 0,

Cba(t) = iA0(ω)t2
2}

(
Mba exp

[
−i(ω − ωba) t2

]
sinc

[
(ω − ωba) t2

]
+M †

ba exp
[
i(ω + ωba) t2

]
sinc

[
(ω + ωba) t2

])
(2.2.10)

Where we have separated the expression in Eq. (2.2.6) into the sum of absorp-
tion and emission terms and defined the transition matrix element

Mba = e

me

〈b|exp
[
i~k · ~r

]
ε̂ · ~p|a〉 (2.2.11)

This matrix element is the characteristic quantity that determines the strength
of the light-matter interaction.

Thus, for an arbitrary time-independent electromagnetic field, we can write
the transition probability at time t as

Pb←a(t) =
∫ ∞
−∞

|A0(ω)|2t2
4}2 |Mba|2 sinc2

[
(ω − ωba) t2

]
dω (2.2.12)

Pb→a(t) =
∫ ∞
−∞

|A0(ω)|2t2
4}2

∣∣∣M †
ba

∣∣∣2 sinc2
[
(ω + ωba) t2

]
dω (2.2.13)
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2.2.2 Electric Dipole Moment Approximation
In this section I will show how the general form of the matrix element given
previously can be expanded to derive the electric dipole approximation, as well
as the higher order interactions. The exponential term in the matrix element
Eq. (2.2.11) can be expanded as a power series in the exponent:

exp
[
i~k · ~r

]
= 1 + (i~k · ~r) + 1

2(i~k · ~r)2 + ... (2.2.14)

Truncation at the first term gives the matrix element Mba as:

Mba(ω) ' e

me

〈b|ε̂ · ~p|a〉 (2.2.15)

= e

me

ε̂ · 〈b|−ime

}
[~r,H0]|a〉 (2.2.16)

=− ie

}
ε̂ ·
(
〈b|~rH0|a〉 − 〈b|H†0~r|a〉

)
(2.2.17)

=− ie

}
ε̂ · ( 〈b|~rEa|a〉 − 〈b|Eb~r|a〉) (2.2.18)

=ieωbaε̂ · 〈b|~r|a〉 (2.2.19)

Such that the transition probability becomes

P
(E1)
b←a (t) =

∫ ∞
−∞

|A0(ω)|2t2
4}2 ω2

ba

∣∣∣ε̂ · ~Dba

∣∣∣2 sinc2
[
(ω − ωba) t2

]
dω (2.2.20)

where ~Dba = 〈b| ~D|a〉 = 〈b|e~r|a〉 is the transition electric dipole (E1) moment
between the two states. This truncation is known as the electric dipole approx-
imation, and it gives the probability of a transition between an initial state
|a〉 and a final state |b〉 in the presence of a moderate or weak electromagnetic
field under the following conditions:

1. The electromagnetic field is sufficiently weak that it can be treated per-
turbatively, and second order field effects can be neglected.

2. The electric dipole moment, ~Dab between the inital and final states is
non-vanishing.

The electric dipole moment itself contains both permanent and induced mo-
ments

~D = ~D(0) + ~D(1) + ~D(2) + ... (2.2.21)

The permanent electric dipole, ~D(0), is due to the field-free charge distribution
of the molecule, whilst the induced electric dipole moments arise as a result
of the interaction between the molecule’s charge distribution and the incident
electric field, ~E(t). If the first condition above does not hold then we must
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consider the first order induced dipole moment arising from the molecule’s
polarisability

~D
(1)
j = αij

~Ej(t) (2.2.22)
or the second order induced dipole moment arising from the molecule’s hyper-
polarisability

~D
(2)
j = βijk

~Ek(t) ~Ej(t) (2.2.23)
These time-dependent effects usually need only be considered when the field
strength is strong or varies quickly with time, for example in the presence of
laser radiation, and thus do not play a role in the production of an absorption
line list.

2.2.3 Higher Order Moments
In general, any asymmetric molecule will have a non-zero dipole moment as a
result of the differential charge distribution that results from atomic centres
with varying degrees of electronegativity. Conversely, the permanent dipole
moment vanishes in molecules like O2, N2, S2, H2 and other homonuclear
diatomic molecules because the electron distribution is symmetric around both
atomic centres. To describe the spectra of such molecules, we must therefore
look to the second term of the expansion (2.2.14), which generates the matrix
elements of the magnetic dipole moment and electric quadrupole moment.

Mba = e

me

〈b|(i~k · ~r)(ε̂ · ~p)|a〉 (2.2.24)

The electric quadrupole moment is generally non-zero even for homonuclear
molecules, due to the spherically asymmetric charge distribution that results
from the molecular bond. Similarly, the magnetic dipole moment is non-zero
for molecules with electronic angular momentum. In this section I will de-
rive independent expressions for the magnetic dipole operator and the electric
quadrupole moment operators.

First, consider briefly the commutator
[
Ĥ0, (ε̂ · ~r)(~k · ~r)

]
, which we can

expand as

ime

h̄

[
Ĥ, (ε̂ · ~r)(~k · ~r)

]
= ime

h̄
εikj

[
Ĥ, rirj

]
(2.2.25)

= ime

h̄
εikj

(
ri

[
Ĥ, rj

]
+
[
Ĥ, ri

]
rj

)
(2.2.26)

= εikj(ripj + pirj) (2.2.27)
= (ε̂ · ~r)

(
~k · ~p

)
+ (~k · ~r)(~ε · ~p) (2.2.28)

where the canonical commutation relation ~p = [Ĥ0, ~r] has been used in
Eq. (2.2.27). Next, using the identity (~k ·~r)(ε̂ ·~p) = (~k× ε̂) ·(~r×~p)+(ε̂ ·~r)(~k ·~p),
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we can re-write the matrix element (2.2.24) as

Mba(ω) = ie

me

(
〈b|(~k × ε̂) · (~r × ~p)|a〉+ 〈b|(ε̂ · ~r)(~k · ~p)|a〉

)
(2.2.29)

Then rearranging Eq.(2.2.28) and substituting the result in place of the second
term in the expression above we can write

Mba(ω) = ie

me

(
〈b|(~k × ε̂) · (~r × ~p)|a〉

+ 〈b|ime

h̄

[
Ĥ, (ε̂ · ~r)(~k · ~r)

]
|a〉 − 〈a|(ε̂ · ~r)(~k · ~p)|a〉

) (2.2.30)

= ie

2me

〈b|(~k × ε̂) · (~r × ~p)|a〉 − 1
2h̄ 〈b|

[
Ĥ0, (ε̂ · ~r)(~k · ~r)

]
|a〉 (2.2.31)

where we have also used Eq. (2.2.24) to obtain the factor of 1/2 in Eq. (2.2.31).
The final step is to write the commutator explicitly, and apply the Hamiltonian
in the same way as for the electric dipole moment in Eq. (2.2.19),

Mba(ω) = ie

2me

〈b|(~k × ε̂) · (~r × ~p)|a〉 − ieωba

2} 〈b|(ε̂ · ~r)(
~k · ~r)|a〉 (2.2.32)

This expression for the matrix element arising due to the second order term in
the expansion of the electromagnetic field contains two terms, which I will now
show can be identified as the magnetic dipole moment and electric quadrupole
moment respectively.

Magnetic Dipole Moment

The first term can be identified as the magnetic dipole moment by substituting
~l = ~r × ~p and (~k × ε̂) = kb̂ (with k = |~k| the wavenumber)

P
(M1)
b←a =

∫ ∞
−∞

|A0(ω)|2t2
4}2

ω2
ba

4π2c2

∣∣∣b̂ · ~dba

∣∣∣2 sinc2
[
(ω − ωba) t2

]
dω (2.2.33)

where b̂ is the magnetic unit vector. The magnetic dipole (M1) moment due
to the molecule’s angular momentum as has thus been defined as

d̂ = − e

2me

l̂ (2.2.34)

An additional contribution to the magnetic dipole moment arises from the
second term in Eq. (2.2.4). From the definition of the magnetic field ~B = ∇× ~A,
we can write an expression for ~B of similar form to Eq. (2.2.5)

~B(~r, t) =
∫ ∞
−∞

iA0ωb̂

c

(
exp

[
i(~k · ~r − ωt)

]
− exp

[
−i(~k · ~r − ωt)

])
dω (2.2.35)
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where b̂ is the magnetic field polarisation. Following the same procedure as
outlined for the first term in Eq. (2.2.4) produces a Taylor expansion, of which
the zeroth order term has the form

d̂ = − e

2me

gsŝ (2.2.36)

Thus, for a spin-1/2 particle, the total magnetic dipole moment becomes the
sum of orbital and spin contributions

d̂ = − e

2me

(
l̂ + gsŝ

)
(2.2.37)

where gs is the Landé g-factor. The total magnetic dipole moment operator
for a system of n electrons is, by extension, therefore

d̂ = − e

2me

n∑
i

(
l̂i + gsŝi

)
= − e

2me

(
L̂+ gsŜ

)
(2.2.38)

We have thus obtained, from the Hamiltonian for a molecular electron in the
presence of an electromagnetic field, an expression for the magnetic dipole
moment of a system of n electrons.

Electric Quadrupole Moment

To derive an expression for the electric quadrupole moment operator we turn
to the second term in Eq. (2.2.32), which can be expressed using Einstein’s
notation as

(ε̂ · ~r)(~k · ~r) = εikjrirj (2.2.39)

The definition of the electromagnetic field ensures that the electric field vector,
ε̂, and the wave vector, ~k, are orthogonal, such that

ε̂ · ~k = εiki = εxkx + εyky + εzkz = 0 (2.2.40)

We now deliberately chose to make a trivial subtraction of this zero-value
quantity ε̂ · ~k in order to define the electric quadrupole moment as a trace-
less quantity, which will later prove to be useful in transforming it between
rotational reference frames,

(ε̂ · ~r)(~k · ~r) =(ε̂ · ~r)(~k · ~r)− ε̂ · ~k (2.2.41)

=εikjrirj −
1
3εikj(rxrx + ryry + rzrz)δij (2.2.42)

=εi

(
rirj − δij

1
3 ||~r||

2
)
kj (2.2.43)

35 of 146



2.3. The Irreducible Representation 2. Transition Moments

This second second rank tensor is then defined as the electric quadrupole mo-
ment

Q = −e2

(
rirj − δij

1
3 ||~r||

2
)

(2.2.44)

In Sec. 2.3 we will see that defining the quadrupole in this way, such that
its trace is zero, simplifies considerably the calculation of its matrix elements.
The transition probability for the electric quadrupole moment is

P
(E2)
b←a =

∫ ∞
−∞

|A0(ω)|2t2
4}2

ω4
ba

4π2c4

∣∣∣ε̂ ·Qba · k̂
∣∣∣2 sinc2

[
(ω − ωba) t2

]
dω (2.2.45)

where k̂ is the unit wave vector and Qba, the transition electric quadrupole
(E2) moment. The total quadrupole operator for a system of electrons is, by
extension, defined as

Q̂ = −e2

n∑
l=0

rilrjl − δij
1
3 ||~rl||2 (2.2.46)

where l indexes over the n electrons, with position vectors ~rl. Different
sources employ definitions of the quadrupole operator with varying constant
pre-factors [61–63, 4, 72]. The definition of the quadrupole operator given
by Eq. (2.2.44) is the natural quadrupole moment. An equivalent definition
derived by Buckingham [73], and quoted throughout the literature is larger
by a factor of three

Q̂ = −e2

n∑
l=0

(
3rilrjl − δij||~rl||2

)
(2.2.47)

In which case the integrand in Eq. (2.2.45) contains an additional constant
factor of 1/9. Hereafter, we use the convention of Buckingham [73], which is
the definition employed by many, such as Werner et al. [74] in the quantum
chemistry program Molpro.

2.3 The Irreducible Representation
Inherent in the description of molecular mechanics is the need to transform be-
tween molecule-fixed, and laboratory-fixed reference frames. The vibrational
and electronic motions of a molecule are most straightforwardly described in
the molecule-fixed reference frame, while the rotational motion must be con-
sidered in the laboratory-fixed frame. One must therefore be able to transform
the relevant tensor operators between the two reference frames. In the case of
rank one tensor operators, such as the electric and magnetic dipole moments,
this transformation is relatively straightforward. Rank one (vector) operators
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transform as the Euclidean basis vectors. However, transforming the second
rank electric quadrupole moment is more complicated and requires an under-
standing of the so-called irreducible representation.

In this section I will outline the requisite theoretical elements for perform-
ing this transformation. I will begin by introducing the Clebsch-Gordan co-
efficients, and the related Wigner 3-j symbols, which allow us to relate the
spherical components of a tensor operator to the irreducible tensor compo-
nents. These irreducible components can in turn be straightforwardly trans-
formed between rotating reference frames by applying the Wigner D-matrices.
I will then employ elements of group theory for the three-dimensional rotation
group SO(3) to derive the relationship between the Cartesian and spherical
elements of the electric quadrupole moment. I will then combine these two ele-
ments to obtain a final expression for the irreducible components of the electric
quadrupole moment in terms of the Cartesian elements defined in Eq. (2.2.47),
and show how these irreducible components can be transformed between the
molecule-fixed and space-fixed reference frames.

2.3.1 Clebsch-Gordan Coefficients

The Clebsch-Gordan coefficients are a set of numbers that arise when deal-
ing with coupled angular momenta in quantum mechanics. They allow one
to decompose coupled angular momenta from a reducible representation to an
irreducible representation, where the total angular momentum can be repre-
sented as a tensor product of two uncoupled angular momenta. Similarly, they
allow us to relate the components of a spherical rank two tensor operator to
the irreducible spherical components of that same operator. An equivalent set
of quantities are the Wigner 3-j symbols, which are often employed in place of
the Clebsch-Gordan coefficients because of their simple symmetry properties.

In this section I will briefly outline the derivation of the Clebsh-Gordan
coefficients, and establish their relation to the 3-j symbols. To begin, note
that a combined system of two angular momenta, j1 and j2, can be expressed
in terms of the direct product between uncoupled representations [75, 76]:

|j1m1, j2m2〉 = |j1m1〉 |j2m2〉 (2.3.1)

where ji = 0, 1, 2, . . . and −ji ≤ mi ≤ ji, with i = 1, 2. The same system can
also be described in terms of the coupled representation |j3m3〉, where:

|j1 − j2|≤ j3 ≤ j1 + j2 and − j3 ≤ m3 ≤ j3 (2.3.2)

These representations both occupy a vector space of dimension (2j1+1)(2j2+1)
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and the two can be related by inserting the resolution of identity:

|j3m3〉 =
j1∑

m1=−j1

j2∑
m2=−j2

|j1m1, j2m2〉〈j1m1, j2m2| |j3m3〉 (2.3.3)

=
j1∑

m1=−j1

j2∑
m2=−j2

C(j1, j2, j3;m1,m2,m3) |j1m1, j2m2〉 (2.3.4)

where the coefficients introduced in the second line

C(j1, j2, j3;m1,m2,m3) = 〈j1m1, j2m2|j3m3〉 = 〈j3m3|j1m1, j2m2〉 (2.3.5)

are the Clebsch-Gordan coefficients. The Clebsch-Gordan coefficients can be
calculated explicitly through a series of recursion relations that are well docu-
mented in the literature. The Wigner 3-j symbols are a closely related set of
quantities that are defined in relation to the Clebsch-Gordan coefficients as

C(j1, j2, j3;m1,m2,m3) = (−1)−j1+j2−m3(2j3 + 1) 1
2

(
j1 j2 j3
m1 m2 −m3

)
(2.3.6)

Although the Clebsch-Gordan coefficients and the Wigner 3-j symbols are
equivalent, the latter have simpler symmetry properties and are therefore more
straightforward to use. Namely the 3-j symbols are invariant under cyclic
permutations of their columns(

j1 j2 j3
m1 m2 m3

)
=
(
j3 j1 j2
m3 m1 m2

)
=
(
j2 j3 j1
m2 m3 m1

)
(2.3.7)

and are zero unless the following conditions are met

m1 +m2 +m3 = 0 (2.3.8)
|j1 − j2|≤ j3 ≤ j1 + j2 (2.3.9)

2.3.2 Irreducible Tensor Components
I now turn to the representation of the tensor operator itself. The first step is
to establish the definition of the quadrupole moment operator in the spherical
basis. The spherical basis itself can be related to the Cartesian basis as follows

~e+1 =− 1√
2

(~ex + i~ey) (2.3.10)

~e−1 = 1√
2

(~ex − i~ey) (2.3.11)

~e0 =~ez (2.3.12)
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In Sec. 2.2.3, the quadrupole moment operator was defined as a second rank
tensor in the Cartesian basis, formed from the product of two Cartesian rank
one tensor (i.e vector) operators, namely the position operator ~r. We can
similarly define a rank two tensor in the spherical basis as the product of two
rank one spherical tensors

Tλµ = (−1)µVλWµ (2.3.13)

with λ, µ ∈ {−1, 0,+1}. The signed factor in this expression is necessitated by
the use of the Condon-Shortley phase factor in definition of the spherical basis
above. The relationship between the spherical quadrupole components and the
Cartesian components defined in Eq. (2.2.47) can be obtained by substituting
the relations (2.3.10) - (2.3.12) and identifying products of the rank one tensor
elements with the Cartesian components of the quadrupole operator

VρWσ := Qρσ (2.3.14)

with ρ, σ ∈ {x, y, z}. Consider, for example, the case where λ = −1 and
µ = +1,

Q−1+1 = V−1W+1 (2.3.15)

= 1
2(Vx − iVy)(Wx + iWy) (2.3.16)

= 1
2(VxWx + iVxWy − iVyWx + VyWy) (2.3.17)

= 1
2(Qxx +Qyy + iQxy − iQyx) (2.3.18)

Following this procedure all the nine spherical components, we obtain a set of
relations that transform between the Cartesian and spherical components of
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the quadrupole moment operator.

Q−1−1 = −1
2(Qxx −Qyy − iQxy − iQyx) (2.3.19)

Q−10 = 1√
2

(Qxz − iQyz) (2.3.20)

Q−1+1 = 1
2(Qxx +Qyy + iQxy − iQyx) (2.3.21)

Q0−1 = − 1√
2

(Qzx − iQzy) (2.3.22)

Q00 = Qzz (2.3.23)

Q0+1 = 1√
2

(Qzx + iQzy) (2.3.24)

Q+1−1 = 1
2(Qxx +Qyy − iQxy + iQyx) (2.3.25)

Q+10 = − 1√
2

(Qxz + iQyz) (2.3.26)

Q+1+1 = −1
2(Qxx −Qyy + iQxy + iQyx) (2.3.27)

The spherical basis vectors, Eqs. (2.3.10) - (2.3.12), transform under rotation
as the angular momentum states |1λ〉 and, by extension, the spherical tensor
components Qλµ transform under rotation as the product of two angular mo-
mentum states |1λ〉 |1µ〉. Thus, from Eq. (2.3.4), we can define the irreducible
components of the quadrupole moment in terms of the spherical components
[77, 76]

Q(k)
m =

1∑
λ=−1

1∑
µ=−1

C(1, 1, k;λ, µ,m)Qλµ (2.3.28)

where the possible values of k are 0, 1 and 2, with −k ≤ m ≤ k. Equivalently,
by using Eq. (2.3.6), we can express the same transformation in terms of the
Wigner 3-j symbols

Q(k)
m =

1∑
λ=−1

1∑
µ=−1

(−1)−1+1−m(2k + 1) 1
2

(
1 1 k
λ µ −m

)
Qλµ (2.3.29)

In general, any second rank tensor can be reduced in this manner and repre-
sented in terms of three irreducible tensors of zeroth, first and second rank.
Explicit calculation of the transformation above relates the nine irreducible
components to the nine Cartesian components via the following expressions
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[76, 78].

Q
(0)
0 = − 1√

3
(Qxx +Qyy +Qzz) (2.3.30)

Q
(1)
0 = i√

2
(Qxy −Qyx) (2.3.31)

Q
(1)
±1 = −1

2 [Qxz −Qzx ± i (Qzy −Qyz)] (2.3.32)

Q
(2)
0 = 1√

6
(2Qzz −Qxx −Qyy) (2.3.33)

Q
(2)
±1 = 1

2 [∓ (Qxz +Qzx)− i (Qyz +Qzy)] (2.3.34)

Q
(2)
±2 = 1

2 [(Qxx −Qyy)± i (Qxy +Qyx)] (2.3.35)

2.3.3 Rotation Transformations
The irreducible representation of a tensor operator is particularly important
because the irreducible components transform under rotation according to the
Wigner D-matrices [76, 77]. This allows one to write the irreducible com-
ponents of the quadrupole moment operator in the laboratory-fixed frame in
terms of the components in the molecule-fixed frame as

Q(k)
m =

k∑
m′=−k

(−1)m−m′
Q

(k)
m′D

(k)
−m−m′ (2.3.36)

where D
(k)
−m,−m′ are the Wigner D-matrices, and Q(k)

m and Q
(k)
m′ (with k =

0, 1, 2, ..., and −k ≤ m,m′ ≤ k) are the spherical irreducible tensor com-
ponents in the laboratory and molecular reference frames, respectively. The
same transformation can be applied to the magnetic dipole moment, which is
a rank one tensor. However, the irreducible components of a rank one ten-
sor are more straightforward to define, as they are identical to the spherical
components defined by Eqs. (2.3.11) - (2.3.12). In other words we can simply
write

dm =
1∑

m′=−1
(−1)m−m′

dm′D
(1)
−m−m′ (2.3.37)

with the spherical components of the magnetic dipole moment defined as

d±1 = ∓ 1√
2

(dx ± dy) d0 = dz (2.3.38)
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2.4 Matrix Elements and Intensities
In Sec. 2.2 I established the theoretical basis for the higher order transi-
tion moments that to describe the infrared spectrum of many homonuclear
molecules. In Sec. 2.2 I presented general expressions for the matrix elements
in terms of arbitrary initial and final states. It now remains to evaluate these
matrix elements in a concrete basis of molecular eigenstates. In this section
I do precisely this, using the basis of rovibronic states available in the Duo
program to develop concrete expressions for the absorption intensities that can
be implemented programmatically to produce line lists for these higher order
transition moments.

I begin by introducing the basis functions used in the Duo program to
represent the solution to the rovibronic Schrödinger equation of the molecular
Hamiltonian. I will then define the absorption intensity in terms of the matrix
elements derived in Sec. 2.2.3, before combining the elements of theory outlined
in Secs. 2.2.3 and 2.3 to derive explicit expressions for matrix elements in
Eqs. (2.2.33) and (2.2.45).

2.4.1 Rovibronic Wavefunctions in Duo

The original Duo program and its methodology is detailed extensively by
Yurchenko et al. [64]. The essential approach is to solve the molecular
Schrödinger equation using the Born-Oppenheimer approximation. The elec-
tronic Schrödinger equation is assumed to have been solved a priori, such that
a set of electronic potential energy curves, associated couplings and transition
moment curves have been obtained for the electronic states of interest. The
nuclear vibrational motion is then solved for each uncoupled electronic state
on a discrete spatial grid using the so-called sinc-DVR (discrete variable
representation) to obtain a truncated vibrational basis [79–82]. At the same
time, the vibrational matrix elements of any coupling functions between
electronic states are computed by quadrature integration on the vibrational
grid. The rotational motion of the molecule in the laboratory-fixed frame is
described by the symmetric top states, which are functions of the Euler angles
[83]. The complete coupled rovibronic wavefunction is then represented as an
expansion in Hund’s case (a) basis states

|φi〉 = |ξΛ〉 |SΣ〉 |ξv〉 |JΩM〉 (2.4.1)

where i is an index over all basis states, J is the total angular momentum
quantum number, M is the projection of the total angular momentum ~J on the
laboratory Z-axis, S is the total electronic spin angular momentum quantum
number, Σ is the projection of the electronic spin angular momentum vector
~S on the molecular z-axis, ξ indexes the electronic states, Λ is the projection
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of the electronic orbital angular momentum vector on the molecular z-axis,
Ω = Λ + Σ is the projection of the total angular momentum vector on the
molecular z-axis, and v is the vibrational quantum number.

The full molecular Hamiltonian, including any coupling terms between
electronic states, is then built in the basis of Eq. (2.4.1), and subsequently
diagonalised to obtain the final eigenstates, corresponding to the rotational,
vibrational and electronic energy levels of the molecule as linear combinations
of the basis states

|ΨJMτ 〉 =
∑

ξΛSΣvΩ
CJτ (ξΛSΣvΩ) |ξλ〉 |SΣ〉 |ξv〉 |JΩM〉 (2.4.2)

where CJτ (ξΛSΣvΩ) = CJτ (φ) are the expansion coefficients obtained through
the variational solution to the coupled Schrödinger equation. In the case of
heteronuclear diatomic molecules, τ represents the parity τ = − (odd) or
τ = + (even) of the wavefunction with respect to an inversion or, equivalently,
a reflection through the molecule-fixed xz plane. For homonuclear molecules,
the symmetry τ also describes the parity with respect to a permutation of the
nuclei, and includes the g/u parity (molecule-fixed inversion), where g and u
stand for “gerade” and “ungerade”, respectively. In general, the good quantum
numbers are J , τ and the g/u parity, however other quantum numbers are
assigned on the basis of the largest coefficient CJτ (φ) in the expansion (2.4.2)
[64].

2.4.2 Einstein A Coefficients
I begin by relating the matrix elements derived in Sec. 2.2.3 to the absorption
intensity of the transitions they produce. The derivation of this relationship
has been treated extensively in the literature, in the present context it suf-
fices to note that the intensity of a transition, regardless of the mechanism
that generates that transition, can be related to the Einstein A coefficient for
spontaneous emission by the following expression

Ifi = 1
8πc

e−Eiβ
(
1− e−hcνfiβ

)
ν2

fiQ(T ) gns(2Jf + 1)Afi (2.4.3)

where φf and φi are defined as in Eq. 2.4.2, and index the basis states that
contribute to a given J, τ eigenstate, Ei and Ef are the energies of the initial
and final states, respectively, νfi = (Ef−Ei)/hc is the transition wavenumber,
β = 1/kBT with the kB the Boltzmann factor and T the temperature, Q(T ) is
the partition function and gns is the nuclear spin statistical weight factor. In
particular, note that Eq.(2.4.3) illustrates the temperature-dependent nature
of molecular absorption. Briefly, in order for a population of molecules to
absorb a photon of energy with frequency νfi by transitioning from some initial
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state to some higher energy final state, there must be some of that population
occupying the initial state prior to the absorption. Thus the intensity of a
transition depends on the initial distribution of molecules across the various
molecular eigenstates. In general this distribution can be shown to have a
statistical dependence on temperature, via the Boltzmann distribution, and
also depends on the multiplicity of states with a given energy.

The Einstein coefficients are particularly useful because they are given in
units of s−1 and so are invariant in all systems of units. The form of the Einstein
A-coefficient in Eq. (2.4.3) can be obtained in terms of the transition moments
given by Eqs. (2.2.20), (2.2.33), and (2.2.45) from a quantum electrodynamic
treatment [84].

A
(E1)
fi = ω3

fi
3πε0}c3

∣∣∣ ~Dfi

∣∣∣2 = 16π3ν3
fi

3ε0hc3
1

(2Jf + 1)S
(E1)
fi (2.4.4)

A
(M1)
fi = µ0ω

3
fi

3π}c3

∣∣∣~dfi

∣∣∣2 = 16π3µ0ν
3
fi

3hc3
1

(2Jf + 1)S
(M1)
fi (2.4.5)

A
(E2)
fi = ω5

fi
40πε0}c5 |Qfi|2 = 8π5ν5

fi
5ε0hc5

1
(2Jf + 1)S

(E2)
fi (2.4.6)

Here we have introduced the linestrength Sfi which is equal to the the square of
the transition moment. We have now established all the requisite elements for
evaluating the matrix elements and deriving expressions for the linestrengths in
Eqs. (2.4.5) and (2.4.6). I derive first the expression for the electric quadrupole
linestrength, and then subsequently that for the magnetic dipole.

2.4.3 Electric Quadrupole Linestrengths

To begin, we take the matrix element and substitute in the rovibronic eigen-
states of Eq. (2.4.2), simultaneously replacing the Cartesian Qij for the irre-
ducible Q(2)

m

〈Ψf |Q̂|Ψi〉 =
∑
φf

C∗Jf τf
(φf )

∑
φi

CJiτi
(φi)

∑
ρ,σ

∑
k,m

Tρσ,km 〈φf |Q(k)
m |φi〉 (2.4.7)

where the coefficients Tρσ,km are the transformation coefficients defined by
Eqs. (2.3.19) - (2.3.27). The next step is to rotate the quadrupole operator from
the space-fixed frame to the molecule-fixed frame using the transformation
in terms of the Wigner D-matrices defined by Eq. (2.3.36). The quadrupole
operator acts only on the electronic coordinates, whilst the Wigner D-matrices
are rotational operators that act on the angular momentum states. Thus, the
matrix element can be separated into a product of its molecule-fixed and space-
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fixed components

〈Ψf |Q̂|Ψi〉 =
∑
ϕf

C∗Jf τf
(ϕf )

∑
ϕi

CJiτi
(ϕi)

∑
ρ,σ

∑
k,m

Tkm,ρσ

∑
m′
δSf Si

δΣf Σi
(−1)m−m′

〈vf | 〈ξfΛf |Q(k)
m′ |ξiΛi〉|vi〉 〈JfMfΩf |D(k)

−m−m′|JiMiΩi〉 (2.4.8)

The electronic matrix element is obtained a priori from electronic structure
calculations and provided as input to the Duo program in the form of a
quadrupole moment coupling curve that depends on the nuclear bond length.

〈ξfΛf |Q(k)
m′ |ξiΛi〉 := Q

(k)
m′ (R; ξf ,Λf , ξi,Λi) (2.4.9)

The vibrational matrix elements are obtained by integrating this function over
the vibrational basis. The action of the Wigner D-matrices on the angular
momentum eigenstates is

|JMΩ〉 =(−1)M−Ω
(2J + 1

8π2

) 1
2
D

(J)
−M−Ω (2.4.10)

〈JMΩ| =
(2J + 1

8π2

) 1
2
D

(J)
MΩ (2.4.11)

Thus the rotational component of the matrix element can be written as the
product of two Wigner 3-j matrices

〈Ψf |Q̂|Ψi〉 =
∑
ϕf

C∗f (ϕf )
∑
ϕi

Ci(ϕi)
∑
ρ,σ

∑
k,m

Tkm,ρσ

∑
m′
δSf Si

δΣf Σi
(−1)m−m′(−1)Mi−Ωi 〈vf | 〈ξfΛf |Q(k)

m′ |ξiΛi〉|vi〉

[(2Jf + 1)(2Ji + 1)]
1
2

(
Ji Jf k
−Mi Mf −m

)(
Ji Jf k
−Ωi Ωf −m′

)
(2.4.12)

where the following property has been used [77]
∫
DC

cc′DA
aa′DB

bb′ sin β dβ dα dγ = 8π2
(
A B C
a b c

)(
A B C
a′ b′ c′

)
(2.4.13)

with α, β, and γ the Euler angles. This in turn allows us to define the selection
rules for electric quadrupole transitions from the properties of the Wigner 3j-
symbols, Eqs. (2.3.8) - (2.3.9)

∆J = Jf − Ji = 0,±1,±2 (2.4.14)

and ∆S = ∆Σ = 0, such that

∆Λ = Λf − Λi = −m = 0,±1,±2 (2.4.15)
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In addition to the following symmetry selection rules,
+↔ +, − ↔ − (2.4.16)
g ↔ g, u↔ u, (2.4.17)

which are enforced due to the symmetry of the quadrupole moment operator
under coordinate inversion (see Eq. (2.2.47)), and the requirement that the
total matrix element is also symmetric under coordinate inversion.

Independent Quadrupole Components

In Sec. 2.3.2 we derived the transformation from the nine Cartesian compo-
nents of a second rank tensor to the nine irreducible components of the same
tensor. These relations hold in general, for any rank two tensor. However, in
the present case of the quadrupole moment tensor we can make additional sim-
plifications to reduce the number of independent components. The quadrupole
moment was defined in Eq. (2.2.47) as rank two tensor, it is straightforward to
see by exchanging the indices i, j that the quadrupole moment is a symmetric
tensor

Qij = Qji (2.4.18)
Additionally, the quadrupole was defined in such a way as to ensure that it
has zero trace

Qxx +Qyy +Qzz = 0 (2.4.19)
Thus, there are only five linearly independent Cartesian components. More-
over, we can substitute these properties into Eqs. (2.3.30) - (2.3.35) to show
that

Q
(0)
0 = Q(1)

m = 0 (2.4.20)
In other words, only the second rank components of the irreducible represen-
tation, Q(2)

m , are non-zero. So that Eq. (2.4.12) can be reduced to

〈Ψf |Q̂|Ψi〉 =
∑
ϕf

C∗f (ϕf )
∑
ϕi

Ci(ϕi)
∑
ρ,σ

∑
m

T2m,ρσ

∑
m′
δSf Si

δΣf Σi
(−1)m−m′(−1)Mi−Ωi 〈vf | 〈ξfΛf |Q(2)

m′ |ξiΛi〉|vi〉

[(2Jf + 1)(2Ji + 1)]
1
2

(
Ji Jf 2
−Mi Mf −m

)(
Ji Jf 2
−Ωi Ωf −m′

)
(2.4.21)

With the second rank irreducible tensor components expressed simply in terms
of the five independent Cartesian components as

Q
(2)
0 = 3√

6
Qzz (2.4.22)

Q
(2)
±1 =∓Qxz − iQyz (2.4.23)

Q
(2)
±2 =± iQxy +Qxx (2.4.24)
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Laboratory Frame Components

Before turning to the magnetic dipole moment linestrengths, it is worth noting
that the expression given by Eq. (2.4.12) can be simplified considerably when
explicit knowledge of the value of the matrix elements in the molecule frame
is not required. The following standard property implies the 3-j symbols con-
taining Mi, Mf and m, which arise as a result of Eq. (2.4.13), can be summed
over Mf , Mi and m and eliminated from Eq. (2.4.21)

k∑
m=−k

J ′∑
M ′=−J ′

J ′′∑
M ′′=−J ′′

(
J ′′ k J ′

M ′′ m −M ′

)2

= 1 (2.4.25)

This simplifies the line strength expression to the following

S
(E2)
fi = gns(2Ji + 1)(2Jf + 1)

∣∣∣∣∣∣
∑
ϕf

C∗Jiτi
(ϕf )

∑
ϕi

CJf τf
(ϕi)

∑
m′
δSf Si

δΣf Σi

× (−1)m′+Ωi 〈vf | 〈ξfΛf |Q(2)
m′ |ξiΛi〉|vi〉

(
Ji Jf 2
−Ωi Ωf −m′

)∣∣∣∣∣
2

(2.4.26)

Note that some applications, such as molecular dynamics calculations with e.g
RichMol require explicit knowledge of the space-fixed frame contributions
to the matrix elements in Eq. (2.4.12) [85, 86]. In order to support these
applications, Duo can perform separate calculations of the space-fixed and
molecule-fixed matrix elements, without applying this simplification.

2.4.4 Magnetic Dipole Linestrengths

A treatment of the magnetic dipole moment is considerably simpler, as all rank
one tensors are irreducible. Thus we need only transform from the Cartesian
to the spherical basis in order to perform a rotation on the magnetic dipole mo-
ment, as the spherical components transform directly under rotation according
to Eq. (2.3.36). Following Eqs. (2.3.10)-(2.3.12), the spherical components of
the magnetic dipole moment are related to the Cartesian components by the
following transformations

d±1 = ∓ 1√
2

(dx ± idy) (2.4.27)

d0 = dz (2.4.28)
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A similar treatment to that outlined above for the electric quadrupole moment
then results in the following expression for the magnetic dipole matrix elements

〈Ψf |d̂|Ψi〉 =
∑
ϕf

C∗f (ϕf )
∑
ϕi

Ci(ϕi)
∑

ρ

∑
m

Tm,ρ

∑
m′
δSf Si

δΣf Σi

(−1)m−m′(−1)Mi−Ωi 〈SfΣf | 〈vf | 〈εfΛf |L̂m′ + gsŜm′ |εiΛi〉|vi〉|SiΣi〉

[(2Jf + 1)(2Ji + 1)]
1
2

(
Ji Jf 1
−Mi Mf −m

)(
Ji Jf 1
−Ωi Ωf −m′

)
(2.4.29)

which can be reduced to the following linestrength expression,

S
(M1)
fi =gns(2Ji + 1)(2Jf + 1)

∣∣∣∣∣∣
∑
ϕf

C∗Jf τf
(ϕf )

∑
ϕi

CJiτi
(ϕi)

∑
m′

(−1)m′+Ωi ×

〈SfΣf | 〈vf | 〈εfΛf |L̂m′ + gsŜm′ |εiΛi〉|vi〉|SiΣi〉
(
Ji Jf 1
−Ωi Ωf −m′

)∣∣∣∣∣
2

(2.4.30)

The key distinction here is that the magnetic dipole matrix elements are func-
tions of the spin wavefunction as well as the electronic states. It is straightfor-
ward to separate the matrix element into spin and orbital angular momentum
contributions.
〈SfΣf | 〈vf | 〈εfΛf |L̂+1 + gsŜ+1|εiΛi〉|vi〉|SiΣi〉

= − 1√
2
[
〈vf |L̂+(r; ξi, ξf )|vi〉 δΣf Σi

δΛf Λi+1

+gs [Si(Si + 1)− Σi(Σi + 1)]
1
2 δvf vi

δξf ξi
δΛf Λi

δΣf Σi+1
]
δSf Si

(2.4.31)

〈SfΣf | 〈vf | 〈εfΛf |L̂−1 + gsŜ−1|εiΛi〉|vi〉|SiΣi〉

= − 1√
2
[
〈vf |L̂−(r; ξi, ξf )|vi〉 δΣf Σi

δΛf Λi−1

+gs [Si(Si + 1)− Σi(Σi − 1)]
1
2 δvf vi

δξf ξi
δΛf Λi

δΣf Σi−1
]
δSf Si

(2.4.32)

〈SfΣf | 〈vf | 〈εfΛf |L̂0 + gsŜ0|εiΛi〉|vi〉|SiΣi〉
= (Λi + gsΣi)δvf vi

δξf ξi
δΛf Λi

δSf Si
δΣf Σi

(2.4.33)

Here we have taken the additional step of replacing the spherical operators
L̂±1 and Ŝ±1 with the raising and lowering operators L̂± and Ŝ±, as well as the
diagonal operators L̂0 and Ŝ0 with the projection operators on the molecular
z-axis. A difference emerges here in the way the orbital and spin angular
momentum contributions to the total magnetic dipole moment are treated.
The former is obtained from electronic structure calculations, as a function
of the internuclear distance in the same way as other coupling curves and
potential energy curves are obtained. The latter can be evaluated analytically
in the Hund’s case (a) basis.
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Chapter 3

Line List Methodology

3.1 Introduction

In the previous chapter I derived expressions for the matrix elements, line
strengths, and absorption intensities of electric quadrupole and magnetic
dipole transitions in diatomic molecules. In this section I will outline the
overall methodology for producing a molecular line list within the framework
of the Duo program. I will begin by outlining the Born-Oppenheimer ap-
proximation, which is applied in order to separate the nuclear and electronic
degrees of freedom. This allows us to solve the electronic Schrödinger equation
independently of the nuclear motion. The electronic Schrödinger equation
can be solved in this way for a range of nuclear geometries to construct
the so-called electronic potential energy curves (PECs), which describe the
electronic energy as a function of nuclear geometry. These potential energy
curves can subsequently be used to solve the nuclear Schrödinger equation
and obtain the rotational and vibrational energy levels. This is usually done
by assuming that the nuclear motion evolves on a single non-interacting
electronic potential, which is known as the adiabatic approximation.

In this chapter I will also briefly outline how to obtain the adiabatic ap-
proximation and will subsequently highlight the conditions under which this
approximation breaks down for the case of diatomic molecules. I will detail
the method used in this thesis to treat the avoided crossings that arise from
the associated non-adiabatic behaviour. In particular, how transforming the
electronic structure properties, including PECs, EQMCs, EAMCs and SOCs,
to the diabatic representation allows the Duo program to solve the nuclear
Schrödinger equation on non-interacting PECs, even in the presence of an
avoided crossing. Subsequently, I will detail the method by which the electronic
structure properties obtained from quantum chemistry programs can be trans-
formed to a representation compatible with the Hund’s case (a) basis employed
by the Duo program. For the particular case of the quadrupole moment oper-
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ator I will apply symmetry properties and selection rules to reduce the number
of components of the quadrupole moment operator that must be calculated to
just one independent component for a given pair of electronic states. Finally
I will briefly outline the method of solving the nuclear Schrödinger equation
employed by the Duo program before detailing the structure of the input to
the Duo program required to calculate the electric quadrupole and magnetic
dipole moment intensities, with concrete examples of the program control.

3.2 Solving the Schrödinger Equation
In general the wavefunction for a diatomic molecule with Ne electrons contains
3Ne + 6 degrees of freedom, and is therefore computationally intractable for
most systems of interest. Separation of the nuclear and electronic degrees of
freedom allows one to solve the electronic Schrödinger equation independently
of the nuclear motion, and to reduce the computational complexity further
by introducing additional approximations for the electronic structure calcula-
tions. The nuclear Schrödinger equation can then be solved using a potential
energy surface obtained by solving the electronic Schrödinger equation at vari-
ous nuclear geometries. This separation of the nuclear and electronic degrees of
freedom is only possible because the motion of the more massive nuclei occurs
on a timescale that is orders of magnitude slower than that of the lighter elec-
trons. This means that the nuclear motion can be approximated as occuring
on a single potential energy surface that evolves adiabatically as the nuclear
coordinates are varied. If the nuclei are sufficiently massive, the non-adiabatic
interactions can be neglected entirely.

3.2.1 Born-Oppenheimer Approximation
I start by outlining the Born-Oppenheimer approximation that gives rise to
the adiabatic representation of the electronic properties, beginning with the
Schrödinger equation with the rovibronic molecular Hamiltonian

Ĥtot |Ψ〉 = Etot |Ψ〉 (3.2.1)

The rotational-vibrational-electronic (rovibronic) motion of a diatomic
molecule in the absence of an external electromagnetic field, and neglecting
nuclear spin contributions is described by a Hamiltonian of the form [87–90]:

Ĥtot. = − h̄2

2me

Ne∑
i=1
∇2

i −
h̄2

2

2∑
α=1

1
Mα

∇2
α + 1

4πε0

Ne∑
i=1

i−1∑
j=1

e2

|r̂i − r̂j|

+ e2

4πε0

Z1Z2

|R̂1 − R̂2|
− e2

4πε0

Ne∑
i=1

2∑
α=1

Zα

|r̂i − R̂α|
(3.2.2)
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The first term is the kinetic energy of the Ne electrons, the second term is that
of the two nuclei, with masses Mi and atomic numbers Zi, and the remaining
three Coulombic terms are the electron-electron repulsion, the electron-nucleus
attraction and the nucleus-nucleus repulsion, with r̂i and R̂i the position op-
erators acting on the electron coordinates and the nuclear coordinates, respec-
tively.

T̂e = − h̄2

2me

Ne∑
i=1
∇2

i (3.2.3)

T̂n = − h̄
2

2

2∑
α=1

1
Mα

∇2
α (3.2.4)

V̂ee = 1
4πε0

Ne∑
i=1

i−1∑
j=1

e2

|r̂i − r̂j|
(3.2.5)

V̂nn = e2

4πε0

Z1Z2

|R̂1 − R̂2|
(3.2.6)

V̂ne = − e2

4πε0

Ne∑
i=1

2∑
α=1

Zi

|r̂i − R̂α|
(3.2.7)

The eigenstates of this Hamiltonian represent an exact solution to the inter-
acting many-body problem, and precisely specify the exact molecular wave-
function. In its complete form, the nuclear-electron Coulomb interaction V̂ne
ensures that the electronic and nuclear degrees of freedom are coupled, such
that the molecular Hamiltonian is not separable into a sum of electronic and
nuclear components. However, due to the orders-of-magnitude difference be-
tween the masses of the nuclei and electrons, a good approximation is to treat
the nuclei as fixed in space on the timescale of electronic dynamics. In this
limit of fixed nuclear coordinates the position operators R̂α are replaced by
constant position vectors ~Rα,[91]

V̂nn −→
e2

4πε0

Z1Z2

|~R1 − ~R2|
(3.2.8)

V̂ne −→ −
e2

4πε0

Ne∑
i=1

2∑
j=1

Zi

|r̂i − ~Rj|
(3.2.9)

The potential energy terms V̂nn and V̂ne thus become only parametrically de-
pendent on the nuclear coordinates. The total Hamiltonian can then be sepa-
rated into nuclear and electronic terms

Ĥtot. = Ĥelec. ⊗ Ĥnucl. −→ Ĥelec. + Ĥnucl. (3.2.10)
with the electronic Hamiltonian given by the sum of the potential energy and
kinetic energy terms,

Ĥelec. = T̂e + V̂ee + V̂nn + V̂ne = T̂e + V (~r; ~R) (3.2.11)
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where ~R = {~Rα} is the complete set of nuclear coordinates, ~r = {~ri} the
complete set of electronic coordinates. In the limit of clamped nuclei the V̂nn
term becomes an additive constant energy that plays no part in the dynamic
problem and so can be absorbed into the potential energy term without loss
of generality. The eigenfunctions of Ĥelec. are the stationary electronic eigen-
states, {|φk〉}. For a given nuclear configuration (i.e a fixed value of ~R) the
Schrödinger equation for the electronic motion is

Ĥelec.(~R) |φk; ~R〉 = Ek(~R) |φk; ~R〉 (3.2.12)

where the parametric dependence of the |φk〉 has been made explicit, and n
is a running index over the electronic states. When the dependence of the
electronic eigenstates on ~R is parametric, it is straightforward to show that
the operators R̂ = |R̂1 − R̂2| and Ĥelec. commute, such that the basis states of
the total molecular Hamiltonian can be written as

|~R, φk; ~R〉 = |~R〉
∣∣∣φk; ~R

〉
(3.2.13)

where |~R〉 are the eigenstates of R̂. Using this fact, we can obtain the nuclear
eigenstates by projecting the total wavefunction Ψ, onto real space

Ψ(~r, ~R) = 〈~r, ~R|Ψ〉 (3.2.14)
=
∑

k

〈~r, ~R|φk; ~R〉
〈
φk; ~R

∣∣∣Ψ〉 (3.2.15)

=
∑

k

〈
~r
∣∣∣φk; ~R

〉
〈~R| 〈φk; ~R|Ψ〉 (3.2.16)

=
∑

k

〈
~r
∣∣∣φk; ~R

〉
〈~R, φk; ~R|Ψ〉 (3.2.17)

=
∑

k

φk(~r; ~R)χk(~R) (3.2.18)

where the resolution of identity ∑
n

∣∣∣φk; ~R
〉〈
φk; ~R

∣∣∣ has been used. In other
words, we have expanded the total molecular wavefunction in the basis of
eigenfunctions of the electronic Hamiltonian, and defined

〈~r |φk;R〉 = φk(~r;R) (3.2.19)
〈~R, φk;R|Ψ〉 = χn(~R) (3.2.20)

We can identify |χk〉 as the eigenstates of the nuclear Schrödinger equation.
Hereafter we drop the explicit dependence on the nuclear and electronic coor-
dinates from the notation for convenience. Substituting the molecular wave-
function above into Eq. (3.2.1), and applying 〈φ|k′ we obtain the Schrödinger
equation in the following form

〈φk′|
[
Ĥelec. + T̂nucl.

]∑
k

|φk〉 |χk〉 = Etot.
∑

k

〈φk′ |φk〉 |χk〉 (3.2.21)
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Since the nuclear Hamiltonian acts on both the nuclear and electronic coordi-
nates, we must apply the chain rule to obtain the action of T̂nucl.

T̂nucl. |φk〉 |χk〉 = − h̄
2

2

2∑
α=1

1
Mα

(
|φk〉∇2

α |χk〉+ 2∇α |φk〉∇α |χk〉+ |χk〉∇2
α |φk〉

)
(3.2.22)

Given that the electronic eigenfunctions are orthonormal such that 〈φk′ |φk〉 =
δk′k, we can write for the electronic Hamiltonian

〈φk′|Ĥelec.|φk〉 |χk〉 = Eelec.,k′δk′k |χk′〉 (3.2.23)

Substituting these into Eq.(3.2.21), we obtain

∑
k

[
Eelec.,k′δk′k |χk′〉 − h̄2

2

2∑
α=1

1
Mα

(
δk′k∇2

α |χk〉+ 2 〈φk′|∇α|φk〉∇α |χk〉

+ 〈φk′|∇2
α|φk〉 |χk〉

)]
= Etot

∑
k

δk′k |χk′〉 (3.2.24)

Which allows us to define a system of coupled eigenvalue equations that de-
scribe the nuclear motion
[
Eelec.,k′ + h̄2

2Mα

∇2
α −

h̄2

2
∑

k

∑
α

1
Mα

(
2 〈φk′ |∇α|φk〉∇α + 〈φk′ |∇2

α|φk〉
)]
|χk′〉 =

Etot. |χk′〉 (3.2.25)

Through the Born-Oppenheimer approximation, we have thus separated the
electronic and nuclear equations of motion, Eqs. (3.2.12) and (3.2.25) respec-
tively. The adiabatic approximation allows us to further simplify the solution
to the nuclear Schrödinger equation by decoupling the system of equations
defined by Eq. (3.2.25).

3.2.2 Adiabatic Approximation
To derive the adiabatic approximation we start by noting that the derivative
terms on the left-hand side of Eq. (3.2.25) couple different electronic eigenstates
and thus give rise to the non-adiabatic evolution of the nuclear wavefunction.
The vector term is known as the (first-order) derivative coupling, whilst the
scalar term is known as the (second-order) kinetic coupling

dα
k′k = 〈φk′|∇α|φk〉 (3.2.26)

Dα
k′k = 〈φk′|∇2

α|φk〉 (3.2.27)
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These form the elements of two square matrices with dimension equal to the
number of electronic eigenstates. The kinetic coupling can be written in terms
of the derivative coupling as [92, 91, 93]

Dα
k′k =

∑
l

dα
k′ld

α
lk +∇dα

k′k (3.2.28)

The adiabatic approximation is made by setting these terms equal to zero, in
which case the Schrödinger equation describes a system in which the nuclear
motion evolves on a single electronic potential energy surface Vk(~R) = Eelec., k,
which depends on the nuclear coordinates(

T̂nucl. + Vk(~R)
)
|χk〉 = Etot. |χk〉 (3.2.29)

This approximation is valid when the non-adiabatic coupling (NAC) is van-
ishingly small. Re-writing the first order coupling term, dα

k′k, in terms of the
eigenvalues of the electronic Hamiltonian we obtain the following [94]

dα
k′k =

〈φk′|
[
∇α, Ĥelec.

]
|φk〉

Ek − Ek′
(3.2.30)

It is immediately apparent from Eqs. (3.2.28) and (3.2.30) that the adiabatic
coupling terms are small, and hence the approximation is valid, when two
eigenstates are well separated in energy.

Conversely, when two states of the same symmetry and spin multiplicity
lie close in energy, such that Ek′ ∼ Ek, the Born-Oppenheimer approximation
breaks down and the non-adiabatic behaviour must be accounted for. This can
be done by explicitly calculating the derivative coupling term, often referred
to as the ‘non-adiabatic coupling’ (NAC) correction [95–97]. In this regime the
electronic states become mixed in such a way that the nuclear motion cannot
be considered to evolve on a single PEC [98, 94]. In some cases the electronic
energies of two states converge and become completely degenerate. In diatomic
molecules this results in a so-called ’avoided crossing’, where the PECs (and
indeed any coupling courves obtained from electronic structure calculations)
exhibit strong cusp-like behaviour. Moreover, the NAC becomes singular at
the point of the avoided crossing. This poses significant challenges to solving
the nuclear equations of motion, and it is often more convenient to transform
to the diabatic basis, where the avoided crossings can be elminated entirely.

3.2.3 Diabatic Representation
The key advantage of the diabatic representation is that it removes avoided
crossings. In the diabatic basis the non-adiabatic behaviour appears in the
form of off-diagonal diabatic coupling terms, which are generally broader than
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the sharply-peaked NACs. This alleviates the problem of singular values and
cusp-like behaviour of NACs in the potential energy operator that couple elec-
tronic states [97, 99, 100, 98]. These so-called diabatic couplings (DC) can be
introduced when constructing the full molecular Hamiltonian after solving the
nuclear problem for uncoupled electronic states.

For a diatomic molecule, the diabatisation procedure consists of diagonal-
ising the nuclear kinetic energy operator through the transformation [101, 92],

U(R) =
(

cos β(R) − sin β(R)
sin β(R) cos β(R)

)
(3.2.31)

where β(R) is the so-called mixing angle. This transformation rotates the
adiabatic PECs φi(~r;R) obtained from electronic structure calculations to the
diabatic PECs ϕi(~r;R) according to(

ϕ1(~r;R)
ϕ2(~r;R)

)
=
(

cos β(R) − sin β(R)
sin β(R) cos β(R)

)(
φ1(~r;R)
φ2(~r;R)

)
(3.2.32)

The nuclear kinetic energy is diagonal when the derivative couplings with
respect to the diabatic eigenstates vanish, i.e [102–104, 101]

d̃α
k′k = 〈ϕk′(~r;R)|∇α|ϕk(~r;R)〉 = 0 (3.2.33)

Inserting the ϕi obtained from Eq. (3.2.32) and recognising that dα
k′k = −dα

kk′ ,
we obtain the condition

d̃α
k′k = dα

k′k −∇αβ(R) = 0 (3.2.34)

and hence the mixing angle can be computed as a function of by integrating
the non-adiabatic coupling term over the bond length

β(R) =
∫ R

−∞
dα

k′k(R′) dR′ (3.2.35)

This allows one to reconstruct the transformation matrix given by Eq. (3.2.31).
This matrix can subsequently be used to transform the wavefunctions and elec-
tronic structure properties (transition moments and potential energy curves)
of the two states.

It is worth mentioning at this point that Baer [102] showed that a solution
to Eq. (3.2.34) exists only if the curl of dα

k′k vanishes. Mead and Truhlar [104]
subsequently showed that this is not generally the case for systems with more
than one nuclear coordinate, i.e polyatomic molecules with more than two
atoms. In this case, exactly diabatic states cannot be obtained, and only a
quasi-diabatic transformation is possible.

The Duo program accepts molecular Hamiltonians in either the adiabatic
or diabatic representation, and recent work within the ExoMol group has
shown that the results obtained in either case are numerically equivalent [105].
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3.2.4 Diabatisation Procedure
The diabatisation described in Sec. 3.2.3 can in principal be achieved using a
variety of methods. The most obvious approach is to use electronic structure
methods to explicitly calculate the NAC given by Eq. (3.2.26) and compute the
mixing angle by integrating the NAC according to Eq. (3.2.35). The integration
can in turn be performed either by applying a quadrature method to a dense
grid of ab initio values, or by fitting an analytical form to a smaller sample
of points and integrating the fitted curve. In either case, cumbersome and
computationally expensive calculations of the NACs at various geometries are
required. The alternative is to pursue approximate diabatisation schemes that
do not require explicit calculation of the NAC.

One such method relies on reconstructing the NAC through an optimisation
procedure that maximises the overlap between the ab initio wavefunctions at
neighbouring nuclear geometries. This can be achieved directly by maximising
the overlap of the computed orbitals [106–111]. This approach is often cum-
bersome, and requires highly accurate ab initio calculations of the so-called
‘diabatic molecular orbitals’. An alternative method allows one to maximise
the overlap indirectly by requiring the adiabatic electric dipole and quadrupole
moments to be smooth functions of the nuclear coordinates [112–115]. The
principal drawback of this approach is that it relies on knowledge of both
these electronic structure properties.

Recently Baeck and An [116] developed a similar technique that relies only
on knowledge of the adiabatic potential energy curves. In their work, the NAC
is assumed to have a Lorentzian profile, and the width of the Lorentzian func-
tion is then related to the energy separation of the adiabatic potentials at the
crossing point of the true diabatic potentials. This crossing point is in turn de-
termined by maximising an approximation of the NAC derived using the linear
vibronic coupling model. The advantage of this method is that it requires no
additional electronic structure calculations beyond the adiabatic potential en-
ergy curves which are, in principal, already computed. This method was shown
to be effective in characterising the NAC of several molecules, including the
diatomics LiF and C2. In this thesis I will develop a similar, but numerically
simpler, method derived from the assumption that the NAC which maximally
diabatises the electronic structure properties is that which minimises the sum
over geometries of the second derivatives of those properties in the diabatic
representation. The procedure is straightforward and moreover, allows one to
diabatise any given electronic structure property without the requirement of
auxiliary information.

Firstly a trial form of the NAC function is assumed. For example, a
Lorentzian function with some initial width Γ0 and centre R0

F (R) = 1
π

1/2Γ0

(R−R0)2 + (1/2Γ0)2 (3.2.36)
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The mixing angle β(R) is then calculated according to Eq. (3.2.35) at each
nuclear geometry for which the diabatisation is to be applied, which in turn
allows one to generate the transformation matrix in Eq. (3.2.32) as a function
of nuclear geometry. The diabatic electronic structure properties are then
obtained by applying this transformation and the parameters of the NAC are
iteratively optimised with the cost function

L(~θ) =
∑
R

d2dk′k(R; ~θ)
dR2 (3.2.37)

the sum of second derivatives for a NAC function parameterised by set of
parameters ~θ. This sum can be taken across either some region around the
avoided crossing, or over all geometries for which the electronic structure prop-
erties have been computed. This method has the advantage of being agnostic
to the analytic form of the NAC function, and also of placing no constraints
on the position of the crossing.

Diabatisation of Electronic Structure Properties

In the interest of completeness, it is worth expounding how different electronic
structure properties transform under the diabatisation described above. The
PECs transform between the adiabatic and diabatic representations in the
same way as the eigenstates, according to Eq. (3.2.32). However, for electronic
structure properties that are obtained as matrix elements of some operator the
adiabatic representation at a given nuclear geometry will either form a vector
or a matrix, depending on the property in question. When properties are
obtained as the matrix element of an operator between two electronic states,
and only one of those states exhibits an avoided crossing, the transformation
is given by (

〈ψd|M |φd
1〉

〈ψd|M |φd
2〉

)
= U

(
〈ψa|M |φa

1〉
〈ψa|M |φa

2〉

)
(3.2.38)

where |φ1〉 and |φ2〉 are the mixed electronic states that we wish to diabatise,
and |ψ〉 is a third state which does not contain an avoided crossing. When
the quantity is a matrix element of an operator that couples two states, which
both exhibit an avoided crossing the transformation becomes(

〈ψd
1 |M |φd

1〉 〈ψd
1 |M |φd

2〉
〈ψd

2 |M |φd
1〉 〈ψd

2 |M |φd
2〉

)
= U †

(
〈ψa

1|M |φa
1〉 〈ψa

1|M |φa
2〉

〈ψa
2|M |φa

1〉 〈ψa
2|M |φa

2〉

)
U (3.2.39)

This is also the transformation that must be applied to expectation value
properties of states with an avoided crossing. In this case the |ψ〉 in 3.2.39 is
replaced by the same |φ〉 that forms the ket component.
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3.3 Electronic Structure Properties
In the previous section I derived the Born-Oppenheimer approximation and
showed how electronic structure properties can be transformed between the
adiabatic and diabatic representations. These electronic structure properties
form the basis of a molecular line list, and are pre-requisites for solving the nu-
clear Schrödinger equation within the Duo program. the Born-Oppenheimer
approximation, the first step in the production of a molecular line list is to ob-
tain the various electronic properties required to solve the nuclear Schrödinger
equation. Namely the potential energy curves and the coupling curves of the
various electronic states. The potential energy curves describe the electronic
potential energy over a range of nuclear geometries, while the coupling curves
describe energy contributions to the Hamiltonian due to various correction
terms. These contributions can include various interactions and couplings of
electronic states, such as spin-orbit, spin-spin and spin-rotation [64]. Such
curves can be obtained empirically, or from ab initio electronic structure cal-
culations. The usual procedure is to obtain initial potential energy and cou-
pling curves from ab initio calculations, and subsequently refine an analytic
form by empirically fitting the calculated state energies to accurate energies
obtained by experimental methods. In addition to the potential energy and
coupling curves, which determine the electronic energy levels of the molecule,
line list calculations also require knowledge of the transition moments, which
are similarly calculated ab initio.

3.3.1 Transforming to the Hund’s Case (a) Basis

In general, the quantum chemistry programs used to perform the electronic
structure calculations leverage Abelian point group symmetry to simplify cal-
culations by accounting for the symmetry of the molecular system. The result
is that the wavefunctions are expressed in the Cartesian basis with indices
corresponding to the generators of the irreducible Abelian point group of that
electronic state. The use of Abelian point groups also allows the wavefunction
to be expressed in terms of real-valued components, which is often desireable
for electronic structure calculations.

In this section I will briefly outline the procedure used to transform to
matrix elements of tensor operators between the representation of these elec-
tronic properties used by electronic structure programs, and that used by the
Duo program to calculate the line strengths as given by Eqs. 2.4.26 and Eqs.
2.4.30. I will also derive explicit expressions for the matrix elements of the irre-
ducible spherical tensor components in terms of the Cartesian matrix elements
commonly produced by quantum chemistry programs.

The potential energy curves, quadrupole moment curves, and other elec-
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tronic structure properties are expressed in the Cartesian basis

F |~R= 〈ρΣ|F̂ |σΣ′〉 |~R (3.3.1)

where ~R is a given nuclear geometry, and ρ, σ denote the Cartesian components
of the electronic wavefunction, for example |Πx〉 and |Πy〉 for |Λ|= 1 states or
|∆xx〉 and |∆xy〉 for |Λ|= 2 states. The Duo program, by contrast, expects a
Hund’s case (a) representation of the wavefunction [64]

F |~R= 〈ΛΣ|F̂ |Λ′Σ′〉 |~R (3.3.2)

The Duo wavefunctions are eigenstates of the L̂z operator, and hence have
well-defined values of the orbital electronic angular momentum projection on
the z-axis

|±|Λ|Σ〉 = C±|Λ|ρ |ρΣ〉 ± C±|Λ|σ |σΣ〉 (3.3.3)

The coefficients C±|Λ|ρ and C±|Λ|σ , and hence transformation of the electronic
structure properties from the Cartesian representation to the so-called Λ rep-
resentation can be obtained by diagonalizing the L̂z operator in the Cartesian
basis. In order to preserve the relative phases of the electronic wavefunctions
and electronic structure properties the Cartesian components |ρΣ〉 and |σΣ〉
can be chosen such that the L̂z operator has the following form, up to an
arbitrary phase for states with |Λ|> 0

L̂Cartesian
z =

(
〈ρΣ|L̂z|ρΣ〉 〈ρΣ|L̂z|σΣ〉
〈σΣ|L̂z|ρΣ〉 〈σΣ|L̂z|σΣ〉

)
=
(

0 −ih̄|Λ|
ih̄|Λ| 0

)
(3.3.4)

The corresponding unitary matrix that diagonalizes this operator is

U = 1√
2

(
1 i
1 −i

)
(3.3.5)

FΛ = U †FCartesianU (3.3.6)

Thus, the potential energy and coupling curves obtained from electronic struc-
ture calculations can be expressed in the Λ representation by applying the
basis transformation described by U at each nuclear geometry.

3.3.2 Independent Components of the Electric Quadrupole
In Sec. 2.3.2 we established the relationship between the Cartesian compo-
nents and the irreducible components of the quadrupole moment tensor. Now,
by applying the properties of the Abelian symmetry groups, we can identify
the non-zero Cartesian components that couple electronic states of different
symmetries. We first note that the irreducible Abelian representation of a ma-
trix element of a given operator coupling electronic states i and f , each with
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irreducible Abelian representations Gi and Gf respectively, must be contained
within the Abelian group given by the direct product Gi×Gf [78]. This allows
us to form the product tables 3.1 and 3.2.

Then by identifying the irreducible representation of the different electronic
states, we can make the following identifications for relationship between the
Cartesian and Λ representations of the electric quadrupole moments

〈±|Λ||Q(2)
0 |±|Λ|〉 = 3

2
√

6
[
〈α|Qzz|α〉+ 〈β|Qzz|β〉

]
= 3√

6
〈α|Qzz|α〉 ,

(3.3.7)

〈
Σ+
∣∣∣Q(2)
±1

∣∣∣∓Π
〉

= ∓ 1√
2
[ 〈

Σ+
∣∣∣Qxz

∣∣∣Πx

〉
+
〈
Σ+
∣∣∣Qyz

∣∣∣Πy

〉 ]
= ∓
√

2
〈
Σ+
∣∣∣Qxz

∣∣∣Πx

〉
,

(3.3.8)

〈
Σ−
∣∣∣Q(2)
±1

∣∣∣∓Π
〉

= − i√
2
[ 〈

Σ−
∣∣∣Qxz

∣∣∣Πy

〉
+
〈
Σ−
∣∣∣Qyz

∣∣∣Πx

〉 ]
= −i

√
2
〈
Σ−
∣∣∣Qxz

∣∣∣Πy

〉
,

(3.3.9)

〈
Σ+
∣∣∣Q(2)
±2

∣∣∣∓∆
〉

= + 1√
2
[ 〈

Σ+
∣∣∣Qxx

∣∣∣∆xx

〉
+
〈
Σ+
∣∣∣Qxy

∣∣∣∆xy

〉 ]
= +
√

2
〈
Σ+
∣∣∣Qxx

∣∣∣∆xx

〉
,

(3.3.10)

〈
Σ−
∣∣∣Q(2)
±2

∣∣∣∓∆
〉

= ± i√
2
[ 〈

Σ−
∣∣∣Qxx

∣∣∣∆xy

〉
+
〈
Σ−
∣∣∣Qxy

∣∣∣∆xx

〉 ]
= ±i

√
2
〈
Σ−
∣∣∣Qxx

∣∣∣∆xy

〉
,

(3.3.11)

〈∓Π|Q(2)
±1|∓∆〉 = ∓1

2
[
〈Πx|Qxz|∆xx〉+ 〈Πx|Qyz|∆xy〉−

〈Πy|Qyz|∆xx〉+ 〈Πy|Qxz|∆xy〉
]

= ∓2 〈Πx|Qxz|∆xx〉 ,

(3.3.12)

Here we have made use of the 3-j symbol in Eq. (2.4.26), which ensures
that each irreducible quadrupole component couples electronic states with
∆Λ = m′. The first lines in the expressions above are obtained from
Eqs. (2.3.33)-(2.3.35) by substituting the symmetric components Qzx = Qxz,
Qzx = Qyz, Qxy = Qyx, and Qxx = −Qyy. The second line in each expression
is obtained by setting matrix elements that do not satisfy the selection rule
in Eq. (2.4.15) (e.g 〈Σ+|Q(2)

∓1|∓Π〉, 〈Σ+|Q(2)
∓2|∓∆〉, etc.) equal to zero and

rearranging to obtain relations between different Cartesian components of the
matrix elements. In the case of D2h symmetry, the corresponding equations
(3.3.7)-(3.3.12) are identical except for the addition of the relevant g/u parity
label.
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A1 A2 B1 B2
A1 s xy xz yz
A2 xy s yz xz
B1 xz yz s xy
B2 yz xz xy s

Table 3.1: Product table for the quadratic functions that transform as the
product of different irreducible representations for the C2v point
group.

Ag B1g B2g B3g Au B1u B2u B3u

Ag s xy xz yz
B1g xy s yz xz
B2g xz yz s xy
B3g yz xz xy s
Au s xy xz yz
B1u xy s yz xz
B2u xz yz s xy
B3u yz xz xy s

Table 3.2: Product table for the quadratic functions that transform as the
product of different irreducible representations for the D2h point
group.

Symmetry Components
Ag Σ+

g , (∆g)xx

B1g Σ−g , (∆g)xy

B2g (Πg)x

B3g (Πg)y

Au Σ−u , (∆u)xy

B1u Σ+
u , (∆u)xx

B2u (Πu)y

B3u (Πu)x

Table 3.3: Irreducible representations for homonuclear symmetry groups,
and corresponding components of electronic states.

Symmetry Components
A1 Σ+, ∆xx

A2 Σ−, ∆xy

B1 Πx

B2 Πy

Table 3.4: Irreducible representations for heteronuclear symmetry groups,
and corresponding components of electronic states.
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Chapter 4

Quadrupole Line Lists for
Heteronuclear Diatomics

4.1 Introduction
The heteronuclear molecules CO and HF were selected as case studies for an
initial demonstration of the methodology outlined in the previous chapter. The
rovibrational spectra of the 1Σ ground states of these heteronuclear molecules
exemplify systems with large molecular quadrupole moments in which the
consideration of E2 transitions is necessary to obtain accurate cross-sections.
In this chapter I provide a demonstration of the methodology for creating a
spectroscopic model of a given molecular system in the Duo program. This
includes performing novel ab initio calculations of electronic structure proper-
ties to obtain quadrupole moment curves, and performing electric quadrupole
calculations using the new computational methodology implemented in the
Duo program.

4.2 Carbon Monoxide
Carbon monoxide is a heteronuclear diatomic molecule, and thus electric dipole
transitions are allowed within its ground X 1Σ+ state. However, it also pos-
sesses a strong electric quadrupole moment,[12] and as a result, the electric
dipole infrared spectrum is accompanied by weaker electric quadrupole lines.
We show that many of the E2 spectral lines at room temperature lie higher
in intensity than the minimum spectroscopic cutoff of 10−30 cm/molecule at
the HITRAN reference temperature of T = 296 K, typically applied to E1
spectra. As a result, their inclusion or emission in spectroscopic databases
has significant implications for applications where accurate cross-sections are
required.
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Numerous experimental and ab initio studies have been performed of the
electric dipole moment spectra for the CO molecule. Amonst this work are
the recent accurate calculations by Li et al. [5], who seek to resolve a long-
standing uncertainty in the line intensities of CO E1 spectra. Namely, signifi-
cant differences observed between the intensities predicted by the calculations
of Goorvitch [117] and those of Huré and Roueff [118]. The former uses Chack-
erian’s [119] semi-empirical dipole moment function, obtained from a nonlinear
least-squared fit to vibrational states up to v = 38. The latter uses a purely
ab initio electric dipole moment curve (DMC), computed by Langhoff and
Bauschlicher via ACPF calculations on a 5Z basis set [120] List et al. [71] per-
form new CRDS measurements in order to produce an accurate DMC via a
direct-fit. At long bond lengths, where experimental data is not attainable,
they reproduce the calculations of Langhoff and Bauschlicher [120] but with
a finer grid, and determine that the interpolation used on the original grid
was insufficient to capture the full shape of the DMC. Their PEC of choice is
the analytical MLR3 function obtained by Coxon and Hajigeorgiou [121] via
a direct fit to 21559 spectroscopic lines[121].

Studies of the quadrupole moment of CO are somewhat sparser. Al-
though several experimental measurements exist for the equilibrium molecular
quadrupole moment, only a single study presents a QMC across a range of
geometries. The early work by Truhlar [4] presents simple Hartree-Fock cal-
culations of the quadrupole moment at just 6 internuclear geometries. The
accuracy of the vibrational matrix elements calculated is low, particularly for
weaker transitions corresponding to higher vibrational quantum numbers. In
particular the methodology struggles to accurately describe the quadrupole
moment at intermediate and long internuclear distances, which are necessary
for calculating the vibrational overtones. Coriani et al. [11] compares the re-
sults of CCSD and CC3 calculations on the CO molecule with a variety of basis
sets. The results show that the CCSD level of theory is insufficient to correctly
describe the electric properties of the CO molecule, and that consideration of
triple excitations is vital. They also study the convergence of such calculations
with increasing basis set size, and find the results converge quickly for bases
larger than DZ.

In the present work, following the success of Coriani et al. [11], the
CCSD(T) method is employed with an aug-cc-pwCVQZ basis as imple-
mented in the CFOUR program [63] to calculate the strength of the
non-zero quadrupole component Qzz for 100 nuclear geometries in the
range 1.50–3.78 a0. Divergent behaviour at large internuclear separations
is attributed to CCSD(T)’s inability to account for multireference effects.
The curve is therefore truncated at 3.0 a0. The QMC obtained from these
calculations is shown in Fig. 4.1.

The value of the electric quadrupole moment curve at equilibrium separa-
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Figure 4.1: Electric quadrupole moments in a.u. (ea2
0) for CO obtained in

this work via CCSD(T) calculations compared to Hartree-Fock
calculations by Truhlar [4].

tion Qzz = −1.45 a.u. (a.u. = ea2
0) agrees reasonably well with the Hartree-Fock

calculations of Truhlar [4], which obtain Qzz = −1.33 a.u.. Note that Truhlar
[4] chooses a definition of the quadrupole moment which is a factor of two
larger than the definition employed by MOLPRO and Duo, the value quoted
here is adjusted accordingly. Importantly, we obtain very good agreement
with experimental values of the ZPE-averaged quadrupole moment from the
literature. From the CCSD(T) quadrupole moment shown in Fig. 4.1, Duo
calculates 〈v = 0|Qzz|v = 0〉 = −1.4522 a.u. which agrees closely with the ac-
curate MBERS measurement of Meerts et al. [122], the CC3 calculations of
Coriani et al. [11], and EFGIB measurements from other sources. These com-
parisons are presented in Table 4.1.

Nuclear motion calculations are performed using the semi-empirical PEC
of Meshkov et al. [125]. This accurate analytical representation of the PEC is
chosen for the Duo solutions in order to improve the quality of the wavefunc-
tions used to calculate the linestrengths. The Duo vibrational grid used for
the calculation consists of 501 equally spaced points in the range 1.50–3.00 a0,
and the first 21 vibrational states are selected to form the contracted basis.
These excitations correspond to energies within the spectroscopically relevant
region (E/hc < 40.000 cm−1) for the room temperature applications.

After solving the Schrödinger equation for rotational quantum numbers
0 ≤ J ≤ 50, transitions with a vibrational transition quadrupole moment
〈ξfvf |Q(2)

0 |ξivi〉 < 1×10−5 a.u. are discarded. It was found by Medvedev et al.
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Table 4.1: A comparison of various electric quadrupole moment values for CO
in a.u. (ea2

0 = 4.486 484(28)×10−40 C m2 [10]) from the literature.
All values are averaged over the vibrational ZPE and are given in
the molecular centre of mass reference frame, Q(CM)

zz = 2Rzµ +
Q(EQC)

zz with the displacement between the centre of mass and the
electric quadrupole centre given by Rz = −5.96 a.u. and a dipole
moment µ = −0.043 159 a.u. [11, 12]

Qzz / a.u. Method Ref.
-1.4522 CCSD(T) This work
-1.445(2) CC3 [11]
-1.43(3) MBERS [122]
-1.440(69) EFGIB [12]
-1.382(31) EFGIB [123, 12]
-1.18(22) EFGIB [124, 12]

[126] that numerically computed transition dipole moments of high overtones
corresponding to large changes in vibrational quanta can suffer from numerical
instabilities and lead to unphysically large intensities. This results in the
appearance of an intensity ‘plateau’ for vibrational bands arising from the high
overtone transitions. This is noticeable in the case of 12C16O for the vibrational
bands above 1000 cm−1. In the case of electric quadrupole transitions however,
the intensity of these high overtone vibrational bands is sufficiently weak that
absorption lines with transition quadrupole moments 〈ξfvf |Q(2)

0 |ξivi〉 < 1 ×
10−5 a.u. (corresponding to high overtone bands) can simply be excluded from
the line list altogether.

The calculated state energies are substituted for those obtained by Li et al.
[5] in a simultaneous direct-fit to experimentally determined energy levels.
This improves the accuracy in the line positions of the final stick spectrum,
obtained via ExoCross [127], but has no effect on the quadrupole Einstein
coefficients or linestrengths. The energy level data of Li et al. [5] is made
available through the HITRAN or ExoMol (exomol.com) databases[25].

The resultant room temperature (T = 296 K) line list for 12C16O with
a cut-off intensity of 10−35 cm molecule−1 consists of 6474 electric quadrupole
transitions between rotational states up to Jmax = 48, and vibrational states
v = 7. A synthetic room temperature E2 spectrum is illustrated in Fig. 4.2,
where it is compared to the E1 spectrum of Li et al. [5]. The difference is
approximately eight orders of magnitude. Nonetheless, many E2 lines - par-
ticularly for the v = 0 ← 0 and v = 1 ← 0 bands - lie above the typical
cutoff intensity used in many spectroscopic databases (∼10−30 cm2 molecule−1
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Figure 4.2: Vibrational bands (left) and rotational v = 0 − 1 transitions
(right) of the E1 and E2 rovibrational spectra in the ground
X 1Σ+ state of the 12C16O molecule. The E1 intensities are
those of Li et al. [5], via the ExoMol database.

at T = 296 K).
The computed electric quadrupole Einstein A coefficients of 12C16O are

combined with the ExoMol E1 line list Li2015 for CO in a form of an E2
Transition file, see an extract in Table 4.2. Apart from the Einstein A E2 co-
efficients (s−1), the Transition file contains the upper and lower state counting
numbers of the Li2015 State file, as illustrated in Table 4.3, which presents an
extract from the ExoMol State file of the 12C16O line list Li2015. For more
details on the ExoMol line list structure see Tennyson et al. [25].

4.3 Hydrogen Fluoride
Like the CO molecule, HF possesses a strong permanent electric dipole
moment[129], it also possesses a strong permanent electric quadrupole mo-
ment[130]. Numerous ab initio studies have been performed for HF, including
several which produce QMCs for the ground X 1Σ+ electronic state.[7, 6, 131]
Piecuch et al. [7] use the orthogonally spin-adapted linear-response coupled-
cluster (LRCC) theory with singly and doubly excited clusters (CCSD)
and obtain quadrupole moments at 15 internuclear geometries in the range
1.126 32–12.1296 a0 Their basis set of choice is that introduced by Sadlej for
correlated calculations of molecular electric properties,[132] which they com-
pare to standard basis sets at the TZ level. They also provide the results of full
CI calculations on a DZ basis set. Maroulis [6] presents all-electron CCSD(T)
calculations of the quadrupole moment at nine internuclear geometries in the
range 0.9328–2.5328 a0 For comparison, the quadrupole moment for the X1Σ+
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f i Afi ν̃fi

94 10 1.0587E-17 10.591935
93 9 1.1546E-17 10.696876
92 8 1.2569E-17 10.801832
91 7 1.3657E-17 10.906802
90 6 1.4815E-17 11.011786
89 5 1.6043E-17 11.116781
88 4 1.7346E-17 11.221787
87 3 1.8725E-17 11.326802
86 2 2.0183E-17 11.431825
85 1 2.1722E-17 11.536856

136 52 1.7502E-16 17.652735

Table 4.2: Extract from the 12C16O electric quadrupole Transition file. It
contains the upper (f) and lower (i) states counting numbers, Ein-
stein A coefficients (s−1) and transition wavenumbers (cm−1).

Table 4.3: Extract from the Li2015 States file for 12C16O.

i E g J v τ

1 0.000000 1 0 0 e
2 2143.271100 1 0 1 e
3 4260.062200 1 0 2 e
4 6350.439100 1 0 3 e
5 8414.469300 1 0 4 e
6 10452.222200 1 0 5 e
7 12463.768600 1 0 6 e
8 14449.181300 1 0 7 e
9 16408.534600 1 0 8 e

10 18341.904400 1 0 9 e
11 20249.368200 1 0 10 e

i: State counting number.
Ẽ: State energy in cm−1.
gi: Total statistical weight, equal to gns(2J + 1).
J : Total angular momentum.
State: Electronic state.
v: State vibrational quantum number.
τ : Rotationless parity e/f [128].
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state is computed via the MRCI method and an aug-cc-pVQZ basis set at 501
internuclear geometries in the range 1.32–6.99 a0 using Molpro.

Table 4.4: A comparison of various ab initio electric quadrupole moment val-
ues for HF in a.u. (ea2

0). All values are given in the molecular
centre of mass reference frame, and at the equilibrium nuclear
geometry.

Qzz / a.u. Method Ref.
1.706 MRCI This work
1.72 CCSD [7]
1.72 CCSD(T) [6]
1.66 CI [7]

The electric quadrupole moments of HF obtained via these various methods
are illustrated in Fig. 4.3. Although the four curves have the same general
shape, significant variation is apparent between the value of Qzz computed at
intermediate bond lengths close to 3.8 a0. Here the strength of the quadrupole
moment is greatest, and difference of more than 0.5 a.u. is apparent between
the full CI and CCSD methods. Table 4.4 shows the differences in the value
of the quadrupole moment at the equilibrium internuclear distance for the
four ab initio methods presented. All four calculations produce similar values
for Qzz(Re), but the coupled-cluster methods systematically overestimate the
strength relative to experimental measurements. Importantly, when averaged
over the vibrational ZPE, the MRCI results obtained in the present work give
good agreement with the experimental MBERS measurement of de Leeuw
and Dymanus [130]. They obtain 〈v = 0|Qzz(r)|v = 0〉 = 1.75(2) a.u., whilst
Duo calculates a value of 1.747 a.u., which is within the range of experimental
uncertainty.

For the PEC, Coxon and Hajigeorgiou [8] provide a very accurate RKR-
style analytical expression for the potential energy and Born-Oppenheimer
breakdown functions of the X1Σ+ ground electronic state of various hydrogen
halide isotopologues, including 1H19F. They devise a novel analytical form
(MLR3) of the diatomic electronic potential and perform a non-linear least
squares fit to experimental energies.

Their analytical representation of the MLR3 potential has been newly im-
plemented in Duo and for the present calculations, the HF MLR3 parameters
obtained by Coxon and Hajigeorgiou [8] are employed, as well as their Born-
Oppenheimer breakdown (BOB) function which is obtained from the Fortran
source code provided in the supplementary material of Coxon and Hajigeorgiou
[8].
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Figure 4.3: Comparison of the quadrupole moment curves in a.u. (ea2
0) for

HF obtained via various ab initio methods. The MRCI calcula-
tions presented in this work, CCSD(T) calculations of Maroulis
[6], and CCSD and full-CI calculations of Piecuch et al. [7].

Fig. 4.4, shows a comparison of the potential energy curves obtained from
our MRCI calculations, the CCSD calculations of Piecuch et al. [7] and the
MLR3 potential of Coxon and Hajigeorgiou [8]. All three methods give sim-
ilar results at short and intermediate bond lengths. The CCSD calculations
overestimate the dissociation energy, relative to the empirical MLR3 potential,
and the MRCI results predict a slightly lower dissociation energy. Fig. 4.5 il-
lustrates the results of calculations from two spectroscopic models. In each
case the potential energies are the same; the MLR3 and BOB curves of Coxon
and Hajigeorgiou [8]; but one model uses the MRCI quadrupole moment pre-
sented in this work, and the other uses Piecuch’s CCSD quadrupole moment.
In both cases nuclear motion calculations are performed for rotational states
0 ≤ J ≤ 41, the vibrational grid is defined for 501 equally spaced points in
the range 0.76–4.40 a0, and the first 20 vibrational states are chosen for the
contracted basis.

For the first three vibrational bands, the absorption intensities predicted
by both spectroscopic models are nearly identical. Higher order vibrational
bands, however, exhibit significant discrepancies. The CCSD intensities begin
to plateau above 20 000 cm−1, we propose that this intensity plateau arises
as a result of the same effect encountered in section 4.2 and detailed by
Medvedev et al. [126]. Comparatively, the MRCI spectrum shows no such
intensity plateau. This may be attributed in part to the fact that the MRCI
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Figure 4.4: Comparison of the potential energy curves for the X1Σ+ ground
state of HF. The MRCI calculations are from this work, empir-
ically fitted MLR3 potential of Coxon and Hajigeorgiou [8], and
the CCSD calculations of Piecuch et al. [7].

quadrupole moment is obtained on a considerably finer grid of internuclear
distances, which more tightly constrains the interpolation performed by the
Duo program. The gradient of CCSD quadrupole moment curve at distances
R > 3 a0 is larger in magnitude than that of the MRCI calculations, which
suggests that the CCSD calculations also over-estimate the intensity of transi-
tions to high vibrational states, resulting in the apparent ‘plateau’. This may
be attributed to improved ability for MRCI calculations to account for electron
correlation effects at long bond lengths. Fig. 4.6 shows the gradient of the
two quadrupole moment functions computed using a central finite difference
scheme on the Duo integration grid.

The MRCI spectrum exhibits a local minimum in intensity for the v = 5←
0 band. A similar abnormal intensity was observed by Medvedev et al. [126]
for the same vibrational band of the electric dipole spectrum. Regardless, the
expected E2 absorption intensities for the v = 5← 0 band is extremely weak,
far weaker than typical spectroscopic cutoff intensity ( 10−30 cm/molecule at
T = 296 K).

Intensities obtained using the MRCI quadrupole moment are chosen for
the final 1H19F spectroscopic model and line list. This is combined with the
ExoMol E1 line list Coxon-Hajig in the form of an E2 Transition file. Fig. 4.7
compares the E2 intensities obtained for room temperature calculations to
the E1 intensities of Coxon and Hajigeorgiou [8]. It consists of 2716 electric
quadrupole transitions between rotational states up to J = 18 and vibrational
states up to v = 9 with a cutoff intensity of 10−35 cm molecule−1 (T = 296 K)
and is available through the ExoMol database (www.exomol.com).
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Figure 4.5: Comparison of the electric quadrupole absorption spectrum for
H19F obtained via spectroscopic models using the CCSD and
MRCI quadrupole moment curves illustrated in Fig. 4.3.
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obtained via MRCI and CCSD methods with respect to internu-
clear distance.
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Figure 4.7: Vibrational bands (left) and rotational v = 0 − 1 transitions
(right) of the E1 and E2 rovibrational spectra in the ground
X1Σ+ state of the H19F molecule as line intensities (cm/-
molecule). The E1 spectrum is that of Coxon and Hajigeorgiou
[8], via the ExoMol database.
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Chapter 5

Molecular Oxygen Line List

5.1 Introduction
In this chapter I will outline the electronic structure calculations that were
performed in order to create a spectroscopic model of the 16O2 molecule. I
begin by outlining the structure of the electronic spectral bands of interest,
namely those in the infrared region of the electromagnetic spectrum. This
includes the electric quadrupole and magnetic dipole moments that generate
the transitions, as well as the spin-orbit terms that couple electronic states
and allow various electronic bands to ‘borrow’ intensity from other electronic
bands. I will show how the numerous such couplings produce the complex
spectral features, particularly those of the atmospheric A-, B, δ- and γ-bands,
which arise from transitions between the ground X 3Σ−g state and the excited
b 1Σ+

g state.
Finally I will detail the electronic structure calculations that were per-

formed in order to produce the seven potential energy curves and 27 coupling
curves required to reproduce the three electronic bands of interest. I will also
explain how these curves are post-processed following the electronic structure
calculations in order to ensure a stable solution of the nuclear Schrödinger
equation. This includes ensuring consistency between the phases of the vari-
ous properties obtained across different nuclear geometries, as well as fitting
analytic representations to ensure the functions are continuous and differen-
tiable.

5.2 Oxygen Band Structure
The three lowest lying electronic states of molecular oxygen are the X 3Σ−g ,
a 1∆g, and b 1Σ+

g states. All three states have gerade symmetry, and so tran-
sitions between them are forbidden in the electric dipole approximation.
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The structure of the infrared bands has been expounded in detail through-
out the literature [133–137]. In particular, we highlight the work of Minaev
et al. [137], who provide a comprehensive account of contributions to the at-
mospheric b 1Σ+

g – X 3Σ−g a 1∆g – X 3Σ−g , and Noxon b 1Σ+
g – a 1∆g bands.

The electric quadrupole transitions are, in general, weaker than magnetic
dipole transitions, but nonetheless have been observed in both the labora-
tory [138–140] and in atmospheric solar spectra [58, 56]. They are present
in both the b 1Σ+

g – X 3Σ−g , and a 1∆g – X 3Σ−g bands. Crucial to an account
of the infrared bands are a set of highly excited Π states, namely the 11Πg,
21Πg, 13Πg, and 23Πg states[141, 136]. The two pairs of states with the same
spin multiplicity each exhibit avoided crossings, with the 23Πg and 21Πg states
being pre-dissociative in nature. In order to treat this collection of Π states
we transform to the diabatic representation [97] to produce the II 1Πg, I 1Πg,
II 3Πg, and I 3Πg states. The II 1Πg and II 3Πg states exhibit shallow poten-
tial wells with minima approximately 60 000 cm−1 above the zero-point energy,
which give rise to a small number of bound vibrational levels.

In order to elucidate the spectroscopic model required to produce the com-
plete set of absorption intensities for 16O2 it is worth explicitly stating the
numerous electric quadrupole moments and magnetic dipole moments that
contribute to this absorption. In this section I will illustrate how the various
spin-orbit couplings between the seven electronic states (X 3Σ−g , a 1∆g, b 1Σ+

g ,
I 1Πg, II 1Πg, I 3Πg, and II 3Πg) allow the different electronic bands to ‘borrow’
intensity from one another to produce the complex band structure observed
in the infrared spectrum of 16O2. I will provide expressions for the perturbed
matrix elements, which appear in the linestrength expressions (2.4.26) and
(2.4.30), in terms of the unperturbed eigenfunctions and the spin-orbit cou-
pling terms that mix them. In each case I consider contributions up to first
order in the spin-orbit perturbation, and neglect any contributions that appear
as a product of two or more spin-orbit couplings. Thus this does not represent
a complete description of the atmospheric and infrared system, but merely
provides an illustration of the major contributions.

5.2.1 Electric Quadrupole Transitions
The rovibrational electric quadrupole transitions within the X 3Σ−g ground
state are the simplest to attribute, since they arise as a result of the diagonal
quadrupole moment of the ground electronic state. The b 1Σ+

g – X 3Σ−g electric
quadrupole intensities are comprised of two quadrupole moments correspond-
ing to components of the irreducible quadrupole moment operator. The first
is the Q(2)

0 moment, which arises as a result of spin-orbit mixing between the
X 3Σ−g and b 1Σ+

g states, and generates two diagonal contributions to the total
intensity for ∆Ω = 0 transitions. The second is the Q(2)

±1 component, which
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generates ∆Ω = ±1 transitions via spin-orbit coupling of the X 3Σ−g state and
the excited 1Πg states. Here Ω = Λ+Σ is the projection of the total electronic
angular momentum on the molecular axis, with Λ and Σ the orbital and spin
angular momenta respectively. The 1Πg states lies far in energy above the
X 3Σ−g , and the thus primary contribution to the b 1Σ+

g – X 3Σ−g band comes
from the difference in permanent electric quadrupole moments of the two Σ
states. Denoting the first-order SOC-perturbed expressions with a subscript
p, we write

〈
b1Σ+

g

∣∣∣Q(2)
0

∣∣∣X3Σ−g,0

〉
p

=

〈
b1Σ+

g

∣∣∣HSO

∣∣∣X3Σ−g,0

〉
E(X3Σ−g,0)− E(b1Σ+

g )
〈
b1Σ+

g

∣∣∣Q(2)
0

∣∣∣b1Σ+
g

〉

+

〈
X3Σ−g,0

∣∣∣HSO

∣∣∣b1Σ+
g

〉∗
E(b1Σ+

g )− E(X3Σ−g,0)
〈
X3Σ−g,0

∣∣∣Q(2)
0

∣∣∣X3Σ−g,0

〉
(5.2.1)

= α0
〈
b1Σ+

g

∣∣∣Q(2)
0

∣∣∣b1Σ+
g

〉
− α0

〈
X3Σ−g,0

∣∣∣Q(2)
0

∣∣∣X3Σ−g,0

〉
(5.2.2)

〈
b1Σg

∣∣∣Q(2)
±1

∣∣∣X3Σ−g,1

〉
p

=
∑

ζ

〈
ζ1Πg

∣∣∣HSO

∣∣∣X3Σ−g,±1

〉
E(X3Σ−g,1)− E(ζ1Πg)

〈
b1Σ+

g

∣∣∣Q(2)
±1

∣∣∣ζ1Πg

〉
(5.2.3)

=
∑

ζ

αζ,X
〈
b1Σ+

g

∣∣∣Q(2)
±1

∣∣∣ζ1Πg

〉
(5.2.4)

where HSO is the Breit-Pauli spin-orbit Hamiltonian [142–144] and the
electronic wave functions are expressed in the Hund’s case (a) basis.

We now turn to the a 1∆g – X 3Σ−g band, which arises primarily as the result
of a Q(2)

±2 quadrupole component, and borrows strength from the Noxon band
(b 1Σ+

g – a 1∆g) via spin-orbit mixing of the X 3Σ−g with the b 1Σ+
g state. There

is an additional contribution to this transition from 3Πg – X 3Σ−g moments due
to spin-orbit mixing of the a 1∆g state and the 3Πg states. This 3Πg – X 3Σ−g
magnetic moment also contributes to a second (weaker) component of the
a 1∆g – X 3Σ−g intensities, via the Q(2)

±1 quadrupole component, together with
the a 1∆g – 1Πg moment due to spin-orbit mixing between the X 3Σ−g and 1Πg

states.
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〈
a1∆g

∣∣∣Q(2)
±2

∣∣∣X3Σ−g,0

〉
p

=

〈
b1Σ+

g

∣∣∣HSO

∣∣∣X3Σ−g,0

〉
E(X3Σ−g,0)− E(b1Σ+

g )
〈
a1∆g

∣∣∣Q(2)
±2

∣∣∣b1Σ+
g

〉
+
∑

ξ

〈ξ3Πg,2|HSO|a1∆g〉∗

E(a1∆g)− E(ξ3Πg,2)
〈
ξ3Πg,2

∣∣∣Q(2)
±2

∣∣∣X3Σ−g,0

〉
(5.2.5)

= αb,X
〈
a1∆g,2

∣∣∣Q(2)
±2

∣∣∣b1Σ+
g,0

〉
+
∑

ξ

α∗ξ,a

〈
ξ3Πg,2

∣∣∣Q(2)
±2

∣∣∣X3Σ−g,0

〉
(5.2.6)

〈
a1∆g

∣∣∣Q(2)
±1

∣∣∣X3Σ−g,1

〉
p

=
∑

ζ

〈
ζ1Πg

∣∣∣HSO

∣∣∣X3Σ−g,1

〉
E(X3Σ−g,1)− E(ζ1Πg)

〈
a1∆g

∣∣∣Q(2)
±1

∣∣∣ζ1Πg

〉

+
∑

ξ

〈ξ3Πg,2|HSO|a1∆g〉∗

E(a1∆g)− E(ξ3Πg,2)
〈
ξ3Πg,2

∣∣∣Q(2)
±1

∣∣∣X3Σ−g,1

〉
(5.2.7)

=
∑

ζ

αζ,X
〈
a1∆g

∣∣∣Q(2)
±1

∣∣∣ζ1Πg

〉
+
∑

ξ

α∗ξ,a

〈
ξ3Πg,2

∣∣∣Q(2)
±1

∣∣∣X3Σ−g,1

〉
(5.2.8)

The dominant contribution to the a 1∆g – X 3Σ−g intensities comes from the
Noxon band, due to the fact that the b 1Σ+

g state and a 1∆g state are closely
separated in energy, and the transition quadrupole moment between them is
reasonably strong. This hypothesis is supported by the work of Mishra et al.
[136], in which the ratio Q(2)

±1/Q
(2)
±2 is calculated for various lines with a value

in the range 0.012–0.055.

5.2.2 Magnetic Dipole Transitions

The strongest of the 16O2 atmospheric transitions are the magnetic dipole tran-
sitions in the b 1Σ+

g – X 3Σ−g band. Magnetic dipole transitions are composed
of both spin and orbital angular moments. However the relative strengths of
the spin-orbit couplings imply that the primary contribution arises as a result
of intensity borrowing from the spin-flip transitions between the Σ = 0 and
Σ = ±1 sub-levels of the X 3Σ−g state through spin-orbit coupling between the
b 1Σ+

g and X 3Σ−g states. Electronic orbital magnetic moments contribute only
weakly to this branch through spin-orbit mixing of the X 3Σ−g and 1Πg states,
and of the b 1Σ+

g and 3Πg states.
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〈
b1Σ+

g

∣∣∣d±1

∣∣∣X3Σ−g,1

〉
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〈
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〉∗
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+
∑

ζ

〈
ζ1Πg

∣∣∣HSO

∣∣∣X3Σ−g,1

〉
E(X3Σ−g,1)− E(ζ1Πg)

〈
b1Σ+

g

∣∣∣L̂±1

∣∣∣ζ1Πg

〉

+
∑

ξ

〈
ξ3Πg,0

∣∣∣HSO

∣∣∣b1Σ+
g

〉∗
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〈
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〉
(5.2.9)

= −αX,b
〈
X3Σ−g,0

∣∣∣Ŝ±1

∣∣∣X3Σ−g,1

〉
+
∑

ζ

αζ,X
〈
b1Σ+

g

∣∣∣L̂±1

∣∣∣ζ1Πg

〉
+
∑

ξ

α∗ξ,b

〈
ξ3Πg,1

∣∣∣L̂±1

∣∣∣X3Σ−g,1

〉
(5.2.10)

Magnetic dipole transitions in the a 1∆g – X 3Σ−g band are considerably
weaker, and enabled only through spin-orbit coupling of the a 1∆g and X 3Σ−g
states with the 3Πg and 1Πg states, respectively.

〈
a1∆g

∣∣∣d±1

∣∣∣X3Σ−g,1

〉
p

=
∑

ξ

〈ξ3Πg,2|HSO|a1∆g〉∗

E(a1∆g)− E(ξ3Πg,2)
〈
ξ3Πg,2

∣∣∣L̂±1

∣∣∣X3Σ−g,1

〉

+
∑

ζ

〈
ζ1Πg

∣∣∣HSO

∣∣∣X3Σ−g,1

〉
E(X3Σ−g,1)− E(ζ1Πg)

〈
a1∆g

∣∣∣L̂±1

∣∣∣ζ1Πg

〉
(5.2.11)

=
∑

ξ

α∗ξ,a

〈
ξ3Πg,2

∣∣∣L̂±1

∣∣∣X3Σ−g,1

〉
+
∑

ζ

αζ,X

〈
a1∆g

∣∣∣L̂±1

∣∣∣ζ1Πg

〉
(5.2.12)

Finally, the X 3Σ−g – X 3Σ−g , composed of rotation-vibration and pure rota-
tional transitions arises as a result of two magnetic dipole moments. The first
couples spin sublevels in the X 3Σ−g state, and the second is composed of the
diagonal spin magnetic moment.

〈
X3Σ−g,1

∣∣∣d±1

∣∣∣X3Σ−g,0

〉
p

=
〈
X3Σ−g,1

∣∣∣S±1

∣∣∣X3Σ−g,0

〉
(5.2.13)〈

X3Σ−g,Ω

∣∣∣d0

∣∣∣X3Σ−g,Ω

〉
p

=
〈
X3Σ−g,Ω

∣∣∣Ŝz

∣∣∣X3Σ−g,Ω

〉
(5.2.14)
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5.3 Electronic Structure Calculations

5.3.1 Previous Work

A considerable amount of effort has been devoted to establishing highly accu-
rate potential energy curves for a range of electronic states of 16O2. In this
section we will briefly outline some of the most accurate state-of-the-art calcu-
lations conducted for relevant states before detailing the electronic structure
calculations conducted in the present work.

In 2010 Bytautas et al. [145] employed Dunning’s correlation-consistent
triple and quadruple-zeta basis sets to determine the full configuration inter-
action energy for the three lowest-lying electronic states; X 3Σ−g , a 1∆g, and
b 1Σ+

g , including core-valence correlations and relativistic contributions. Using
a method developed in earlier work, which they term correlation energy ex-
trapolation by intrinsic scaling, they extrapolate these energies to the complete
basis set limit [145, 146]. In 2014 Liu et al. [13] produced accurate PECs for
22 electronic states as well 54 spin-orbit coupling curves via the complete ac-
tive space self-consistent field (CASSCF) method, and a subsequent internally
contracted multireference configuration interaction calculation including the
Davidson correction (icMRCIQ).

By comparison there are few ab initio calculations of the electric quadrupole
moment functions. The earliest calculations of the E2 moment for 16O2 were
made by Kotani et al. [147] in 1957, followed by Sarangi and Varanasi [148]
in 1974. In recent years accurate multipole moment calculations at room tem-
perature were made by Bartolomei et al. [149], and Couling and Ntombela
[150]. In each case however, the quadrupole moment is given for only a single
geometry. As far as the author is aware, the only calculation of a complete
quadrupole moment curve across a range of internuclear geometries was per-
formed in 1997 by Lawson and Harrison [151]. They use the aug-cc-pVQZ basis
and MRCI method to obtain the permanent E2 moment of the X 3Σ−g state
in the range 2–12 a0. The need for further calculations of electric quadrupole
moments in order to obtain a spectroscopic model of the 16O2 infrared bands is
evident, particularly transition moments and the diagonal moments for excited
states

A challenge arises in evaluating the accuracy of ab initio quadrupole mo-
ment curves due to a dearth of experimental data. Typically such mea-
surements consist of only a single value, usually vibrationally averaged over
the v = 0 ground state. In 1968 Buckingham et al. [124] obtained a value
Q

(2)
0 = −0.3 ± 0.1 e a0

2 via pressure induced birefringence. Cohen and Birn-
baum [152], and Birnbaum and Cohen [153] obtain |Q(2)

0 |= 0.25 e a0
2 via far-

infrared spectra, which is in agreement with the measurement of |Q(2)
0 |= 0.22

e a0
2 made by Evans [154]. More recently Couling and Ntombela [150] ac-
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curately measured the quadrupole moment via electric-field-gradient-induced
birefringence (EFGIB) to be Q(2)

0 = −0.230 ± 0.006 e a0
2. The effective tran-

sition quadrupole moments responsible for the b 1Σ+
g – X 3Σ−g band were cal-

culated empirically by Long et al. [140].

5.3.2 Infrared Bands
The necessary set of electric quadrupole moment curves (EQMCs), spin-
orbit coupling curves (SOCs), orbital electronic angular momentum curves
(EAMCs), and potential energy curves (PECs), are obtained with electronic
structure calculations using the Molpro program. Preliminary calculations
using the MRCI program for varying basis sets sizes were used to assess the
convergence. Whilst the energies obtained with smaller basis sets differed sig-
nificantly, comparison of the calculations using aug-cc-pV5Z and aug-cc-pV6Z
basis sets with and without the Davidson correction showed close agreement,
suggesting that the uncorrected aug-cc-pV5Z energies closely approximate the
full configuration interaction energy.

To obtain the complete set of potential energy and coupling curves MC-
SCF calculations were performed with CAS(12,12) and a diffusion augmented,
correlation-consistent, polarized quintuple-zeta basis set (aug-cc-pV5Z). The
optimized orbitals from this MCSCF calculation were then used as the refer-
ence orbitals for a subsequent MRCI calculation in the same active space.

Symmetry (2S + 1) No. States State(s)
Ag 1 2 b 1Σ+

g , a 1∆g(xx)
B1g 3 1 X 3Σ−g
B1g 1 1 a 1∆g(xy)
B2g 1 2 I 1Πg(x), II 1Πg(x)
B3g 1 2 I 1Πg(y), II 1Πg(y)
B2g 3 2 I 3Πg(x), II 3Πg(x)
B3g 3 2 I 3Πg(y), II 3Πg(y)

Table 5.1: This table details the number of states calculated for a given com-
bination of irreducible symmetry group and spin multiplicity. It
also shows the label of the corresponding states obtained from
each calculation.

The MRCI calculations include a variety of symmetry groups and spin
multiplicities in order to obtain a complete set of wavefunctions and potential
energy curves for the required electronic states, and are detailed in Tab. 5.1.
Calculations are made for a number of geometries in the range 0.090–0.300 nm
for the X 3Σ−g , a 1∆g and b 1Σ+

g states, and in the range 0.094–0.300 nm for the
11Πg, 21Πg 13Πg, and 23Πg states.
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The wavefunctions obtained are used in subsequent MRCI calculations of
the seven spin-orbit couplings, nine quadrupole moments, and the six orbital
angular momentum curves required to reproduce the matrix elements in Eqs.
(5.2.1) - (5.2.10). In addition to the quadrupole moments present in Eqs.
(5.2.1) - (5.2.8), the diagonal quadrupole moments of the a 1∆g, and the four
Π states are also obtained.

The calculation at each geometry is performed independently, and for this
reason we find that the CI program fails to converge at certain geometries.
Additionally, some coupling curves exhibit phase differences with respect to
neighbouring geometries due a phase ambiguity in the internal representa-
tion of the wavefunction. These phase flips are resolved by post processing the
electronic structure properties to preserve the relative phases between different
quantities. Additionally, for calculations involving multiple states in the same
irreducible representation, the state that is assigned to a given quantity can
vary between geometries. For example, a quadrupole moment at neighbouring
geometries may alternately be assigned to either the I 1Πgor the II 1Πg. Simi-
larly, this ‘label switching’ behaviour can also be corrected by post-processing
the potential energy and coupling curves. Finally, curves involving the Π states
are transformed to the diabatic representation using the numerical procedure
described in Sec. 3.2.3. These diabatic ab initio curves are represented by the
dots in Figs. 5.1 - 5.5.

5.4 Analytic Representation
After transforming to the diabatic representation, we obtain a set of bound
potential energy curves and corresponding diabatic coupling curves. In order
to fill in gaps in the ab initio data where the MOLPRO calculations fail to con-
verge, and also to eliminate discontinuities that are characteristic of ab initio
calculations across multiple geometries, we subsequently fit analytic functions
for each of the curves described in Sec. 5.3. This also allows one to obtain
spectroscopic parameters for the potential energy curves, and other character-
istic quantities. The fitted parameters for this analytic representation of the
ab initio data can also be used as a starting point for empirical refinement to
experimental state energies.

5.4.1 Potential Energy Curves
To begin we fit the Morse/long-range (MLR) potential energy function to the
five bound states under consideration. The Morse/long-range function was
introduced by Le Roy et al. [155] and later refined by Le Roy et al. [156], and
improves on the well-known Morse potential by accounting for the long-range
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5.4. Analytic Representation 5. Molecular Oxygen Line List

Figure 5.1: The PECs obtained from ab initio electronic structure calcula-
tions (dots) along with the continuous curves (solid lines) ob-
tained by fitting the analytic potential energy functions to these
ab initio data.
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Figure 5.2: The SOCs obtained from ab initio electronic structure calcu-
lations (dots) along with the continuous curves (solid lines) ob-
tained by fitting the analytic coupling functions to these ab initio
data.
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Figure 5.3: The diagonal EQCs obtained from ab initio electronic structure
calculations (dots) along with the continuous curves (solid lines)
obtained by fitting the analytic coupling functions to these ab
initio data.
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Figure 5.4: The off-diagonal EQCs obtained from ab initio electronic struc-
ture calculations (dots) along with the continuous curves (solid
lines) obtained by fitting the analytic coupling functions to these
ab initio data.
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Figure 5.5: The EAMCs obtained from ab initio electronic structure calcu-
lations (dots) along with the continuous curves (solid lines) ob-
tained by fitting the analytic coupling functions to these ab initio
data.

85 of 146



5.4. Analytic Representation 5. Molecular Oxygen Line List

behaviour of molecular potential energy surfaces. We fit a form of the MLR
potential described by the following expression,

V (r) = Te + (Ae − Te)
(

1− u(r)
u(re)

e−β(r)yre
p (r)

)2

(5.4.1)

with Te the potential minimum (at spatial coordinate re) and Ae the dissoci-
ation energy, relative to the zero-point energy. The polynomial function β(r)
and the long-range function u(r) ensure the function has the correct long-range
behaviour,

β(r) = yrref
p (r)β∞

(
1− yrref

p (r)
) Nβ∑

i=0
βi(yrref

q )i (5.4.2)

yrx
p (r) = rp − rp

x

rp + rp
x

(5.4.3)

where p is an integer greater than 1, the value of which is a hyper-parameter
of the fitting procedure. The long-range function is u(r) = ∑

n
Cn

rn , where one
or more of the coefficients Cn may be equal to zero. In the limit r → ∞,
the function approaches the β∞ = ln

(
2De

u(re)

)
where re is the equilibrium bond

length, and rref is some reference geometry. In all fits rref := re is selected for
simplicity.

For the two dissociative potentials (I 1Πg and I 3Πg) we fit a repulsive po-
tential in the form of a Laurent power series in the radial distance,

V (r) = Te +
∑

i

ai

ri
(5.4.4)

where ai are the fitted coefficients. The fits for all potential energy curves
are performed with the Python library scipy, using the Levenberg-Marquadt
(LM) algorithm in the case of the dissociative potentials and the trust region
reflective (TRF) algorithm with a soft L1 loss function in the case of the bound
potentials. For each of the bound potentials we set a single dispersion param-
eter, namely C6, to be non-zero and fix the value as C6 = 2.95 × 105 Ehcm−6

[157]. The equilibrium bond length is bounded to remain within the range
0.9–3.0 Å, and the dissociation and excitation energies are bounded in the
range of positive real numbers.

In Table 5.2 we compare several key spectroscopic parameters obtained
from the bound potentials obtained in this work to experimental and other
ab initio values, whilst Tables 5.3 and 5.4 provide the values of the potential
parameters obtained during the fitting procedure for the five electronic states.
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De (eV) Te (cm−1) Re (nm) ωe (cm−1) Be (cm−1) 102αe (cm−1)
X 3Σ−g 5.2146 0.0 0.12078 1590.16 1.4478 1.6207

Exp. [14] 5.2142 0.0 – – – –
Exp. [15] 5.2132 0.0 0.12075 1580.19 1.4456 1.59
Cal. [13] 5.2203 0.0 0.12068 1581.61 1.4376 1.2539

a 1∆g 4.2313 7930.39 0.12229 1495.69 1.4083 1.4283
Exp. [158] 4.2258 7918.11 0.12157 (1509.3) 1.4263 1.71
Exp. [15] – 7918.1 – [1483.5] 1.4264 1.71
Cal. [13] 4.2258 7776.43 0.12147 1491.07 1.3814 0.4238

b 1Σ+
g 3.5786 13195.4 0.12366 1423.20 1.3798 1.6138

Exp. [158] 3.5772 13195.31 0.12268 (1432.67) 1.4005 1.8169
Cal. [13] 3.6058 13099.92 0.12258 1438.65 1.4030 1.8018

II 3Πg 0.6135 52800.3 0.14880 625.40 0.9520 4.1312
II 1Πg 1.2633 63500.6 0.14540 880.86 0.9964 2.0501

Table 5.2: Key spectroscopic parameters obtained for the bound ab initio po-
tentials presented in this work, compared to those obtained by Liu
et al. [13] and experimental parameters from Ruscic et al. [14] and
Huber and Herzberg [15]. Values in square brackets indicate un-
certain data, and those in rounded brackets indicate vibrationally
averaged values obtained for the ground v = 0 state.

X 3Σ−g a 1∆g b 1Σ+
g II 3Πg II 1Πg

re (Å) 1.208 1.223 1.237 1.488 1.454
De (cm-1) 4.206× 104 4.206× 104 4.206× 104 5.775× 104 7.369× 104

Te (cm-1) 1.000× 10−10 7.930× 103 1.320× 104 5.280× 104 6.350× 104

β0 −1.899 −1.791 −1.721 −2.433 −2.622
β1 −1.447 −1.124 −8.766× 10−1 −8.444× 10−1 −2.224× 10−1

β2 −1.385 −1.206 −1.017 −1.524 −1.562
β3 −1.207× 101 −4.265 −2.894 −1.206× 101 −1.204× 101

β4 7.266× 101 1.470× 101 9.736 7.266× 101 7.267× 101

β5 −2.678× 102 −3.039× 101 −1.947× 101 −2.678× 102 −2.678× 102

β6 5.451× 102 2.222× 101 1.464× 101 5.451× 102 5.451× 102

β7 −5.985× 102 – – −5.985× 102 −5.985× 102

β8 2.781× 102 – – 2.781× 102 2.781× 102

C6 2.950× 105 2.950× 105 2.950× 105 2.950× 105 2.950× 105

Table 5.3: Fitted parameters for the ab initio MLR potential energy curves
for the bound electronic states.

I 1Πg I 3Πg

C0 1.028× 104 4.526× 104

C1 3.159× 105 −2.865× 104

C2 −1.065× 106 1.510× 105

C3 1.328× 106 −4.654× 105

C4 −3.351× 105 5.716× 105

Table 5.4: Fitted repulsive potential parameters for the ab initio PECs of the
two dissociative Π states.
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5.4.2 Spin-Orbit Coupling Curves
The use of a polynomial decay expansion as an analytic representation of the
spin-orbit coupling interaction was introduced by Prajapat et al. [159] and has
been used in a number of diatomic spectroscopic models (see e.g Semenov et al.
[160] or Yurchenko et al. [161]). The polynomial decay function has the form

F (r) =
NB∑
i=0

Biz
i
(
1− yrref

p

)
+ yrref

p B∞ (5.4.5)

where yp is the Šurkus variable defined by equation (5.4.3), and z is taken as
the damped coordinate

z = (r − rref)e−β2(r−rref)2−β4(r−rref)4 (5.4.6)

We use the same representation to parameterize all seven SOCs in the
present work, and the parameters are presented in Table 5.5. Initially we
attempted a 3rd order polynomial fit for all SOCs, using TRF and a linear loss
function. For each SOC the order of the polynomial is then increased until
the fit converges with an R2 value greater than 0.95. This ensures a good fit
whilst minimizing the degree of overfitting.

5.4.3 Quadrupole and Angular Momentum Curves
Analytic representations of the EQMCs have not been widely used in the exist-
ing literature. We find that the LM algorithm is successful in parameterizing
the fourteen quadrupole moment curves with the same polynomial decay func-
tion, although higher order polynomials are often required in order to ensure
convergence.

To obtain good fits of the EAMCs we find a variety of analytic forms are
needed. The polynomial decay function defined by Eqs. (5.4.3) and (5.4.6) is
used to represent the 〈a 1∆g|Ly|II 1Πg〉 curve, with a 6-th order polynomial.
The

〈
X 3Σ−g

∣∣∣Lx

∣∣∣I 3Πg

〉
EAMC is represented by a simple polynomial expansion

of the 10-th order with the form

F (r) = Te + a1(r − rref) + a2(r − rref)2 + · · · (5.4.7)
For all other EAMCs we find a good fit is possible using the so-called

irregular Chebyshev polynomial, which was originally introduced by Medvedev
and Ushakov [162] to represent electronic dipole moment curves and has the
form

F (r) = (1− ec2r)3√
(r2 − c2

3)
2 + c2

4

√
(r2 − c2

5)
2 + c2

6

6∑
k=0

bkTk (z1(r)) (5.4.8)
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where Tk(z) are the Chebyshev polynomials of the first kind, bk are the expan-
sion coefficients and

z1(r) = 1− 2e−c1r (5.4.9)

maps the r ∈ [0,∞] half-infinite interval to the z ∈ [−1,+1] finite interval.
The parameters bi and ci are the fitting parameters. As with the SOCs, we
find a variety of polynomial orders are required to fit individual EAMCs. The
fitted parameters for each of the EAMCs and EQMCs are given in Tables 5.6
- 5.9.

5.4.4 Spin-Spin Curves
In addition to the ab initio curves given above, we must also account for the
spin splitting of the triplet ground state, which is crucial for the production
of the b 1Σ+

g – X 3Σ−g magnetic dipole transitions Eq. (5.2.10). Tinkham and
Strandberg [163] [164] estimated the magnitude of the separation as 1.17 cm−1.
In Duo the spin splitting can produced by the inclusion of the phenomenolog-
ical spin-spin operator[64]. In the absence of ab initio data for the spin-spin
coupling curve, the strength of the coupling is usually obtained by fitting a
functional form to experimental data. Commonly a Šurkus polynomial is used,
of the form

F (r) =
(
1− yrref

p

) NA∑
i=0

Ai

(
yrref

p

)
+ yrref

p A∞ (5.4.10)

where yrref
p is given by Eq. (5.4.9) with rref := re, the equilibrium bond length.

Initially we obtain the spin-spin splitting by manually defining a zeroth order
polynomial such that the energy of the phenomenological operator at the equi-
librium bond length matches the experimentally measured energy separation,
and decays to zero for long bond lengths. This polynomial is parameterised in
Table 5.10.

5.5 The Ab Initio Spectroscopic Model
Using the analytic representation of the ab initio curves obtained in section 5.4,
we build a spectroscopic model for the electric quadrupole and magnetic dipole
transitions of 16O2 in the infrared and visible region of the electromagnetic
spectrum. We include transitions between all states lower in energy than
80 000 cm−1. In solving the nuclear Schrödinger equation, a vibrational sinc-
DVR basis set for each electronic state is defined on a grid of 1001 points in the
range 0.90–3.00 Å. The vibronic basis sets are then truncated to the lowest 30
vibrational levels in the case of the X 3Σ−g , a 1∆g, and b 1Σ+

g states, and to the
lowest 300 vibrational levels for the II 1Πg, II 3Πg, I 1Πg, and I 3Πgstates. We
then solve for rotational levels up to J = 50. A large number of vibrational
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〈
X 3Σ−g

∣∣∣LSz

∣∣∣b 1Σ+
g

〉 〈
X 3Σ−g

∣∣∣LSx

∣∣∣II 1Πg

〉 〈
X 3Σ−g

∣∣∣LSx

∣∣∣I 1Πg

〉
〈a 1∆g|LSx|II 3Πg〉 〈a 1∆g|LSx|I 3Πg〉

〈
b 1Σ+

g

∣∣∣LSx

∣∣∣II 3Πg

〉 〈
b 1Σ+

g

∣∣∣LSx

∣∣∣I 3Πg

〉
re (Å) 5.486× 10−1 1.512 1.479 4.951× 10−1 1.252 1.122 4.355× 10−1

β2 1.913× 10−3 8.349× 10−1 1.053 −2.715× 10−1 9.549 5.933× 10−1 −4.094× 10−1

β4 3.211× 10−2 2.753 2.429 6.886× 10−2 −4.234 6.401× 10−1 4.894× 10−3

B∞ −5.327× 10−4 −5.428× 10−6 −2.091× 10−4 −9.199× 10−5 1.969× 10−4 9.833× 10−5 3.026× 10−4

B0 2.064× 10−2 2.358× 10−4 6.420× 10−5 2.723× 10−2 1.684× 10−4 2.374× 10−4 1.012× 10−1

B1 −8.905× 10−2 3.825× 10−4 4.149× 10−4 −1.160× 10−1 2.998× 10−5 3.962× 10−4 −1.422× 10−1

B2 1.349× 10−1 4.535× 10−4 2.607× 10−4 1.845× 10−1 5.566× 10−4 8.052× 10−4 −2.062× 10−3

B3 −1.248× 10−1 2.741× 10−4 6.368× 10−4 −1.694× 10−1 – – –
B4 – −9.760× 10−4 – 4.355× 10−2 – – –

Table 5.5: Fitted parameters for the polynomial decay functions representing
the ab initio SOCs.

〈a 1∆g|Ly|I 1Πg〉
〈
b 1Σ+

g

∣∣∣Ly

∣∣∣I 1Πg

〉 〈
b 1Σ+

g

∣∣∣Ly

∣∣∣II 1Πg

〉 〈
X 3Σ−g

∣∣∣Lx

∣∣∣II 3Πg

〉
B0 1.375 3.982× 10−1 1.197 2.003× 10−1

B1 9.872× 10−1 1.625 9.279 5.673× 10−1

B2 1.991 1.485 1.955 1.804
B3 1.972 1.226 1.788 1.845
B4 1.651 2.705 1.667 2.017
B5 1.514 −1.050 1.495 1.434
B6 −7.964 6.473× 102 −2.386× 102 3.168× 102

B7 −2.436 4.028× 102 2.321× 102 −8.852× 101

B8 1.355 9.993× 102 2.287× 102 2.229× 102

B9 1.077× 101 2.260× 102 −4.623× 102 −3.072× 102

B10 1.713× 101 4.468× 102 3.699× 102 −1.496× 102

B11 −2.996× 101 5.853× 101 −1.610× 102 −1.546× 102

B12 1.161× 101 8.969× 101 3.288× 101 −5.828× 101

Table 5.6: The fitted parameters for the irregular Chebyshev polynomial
functions representing some of the ab initio EAMCs.

〈a 1∆g|Ly|II 1Πg〉
〈
X 3Σ−g

∣∣∣Ly

∣∣∣I 3Πg

〉
rref (Å) 1.485 rref (Å) 1.443
β2 4.062 B0 −2.657× 10−1

β4 2.182 B1 9.715× 10−1

B∞ −1.016 B2 4.254
B0 −5.910× 10−1 B3 −2.404
B1 1.667× 10−1 B4 −2.060× 101

B2 3.980× 10−1 B5 5.022× 101

B3 2.756 B6 −5.535× 101

B4 4.030 B7 3.324× 101

B5 −7.903× 101 B8 −1.041× 101

B9 1.318

Table 5.7: The fitted parameters for the polynomial decay function repre-
senting the ab initio 〈a 1∆g|Ly|II 1Πg〉 EAMC and the polynomial
function representing the ab initio

〈
X 3Σ−g

∣∣∣Ly

∣∣∣I 3Πg

〉
.
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〈
X 3Σ−g

∣∣∣Qzz

∣∣∣X 3Σ−g
〉
〈a 1∆g|Qzz|a 1∆g〉

〈
b 1Σ+

g

∣∣∣Qzz

∣∣∣b 1Σ+
g

〉
〈I 1Πg|Qzz|I 1Πg〉 〈II 1Πg|Qzz|II 1Πg〉 〈I 3Πg|Qzz|I 3Πg〉 〈II 3Πg|Qzz|II 3Πg〉

re (Å) 1.352 1.257 1.326 6.422× 10−1 1.408 1.426 1.326
β2 7.118× 10−1 3.476× 10−1 1.647× 10−1 1.077 8.833× 10−1 5.684 9.386× 10−1

β4 1.065× 10−1 −3.688× 10−2 −2.203× 10−3 −1.511× 10−1 −1.426× 10−1 2.673× 101 −1.492× 10−1

B∞ 1.011 9.879× 10−1 9.648× 10−1 −3.465× 10−1 1.549 −4.390× 10−1 1.576
B0 1.687× 10−1 −1.674× 10−1 −6.842× 10−2 3.732× 103 1.559 −1.656 1.442
B1 5.726× 10−1 −3.340× 10−1 −1.213× 10−1 −2.664× 104 2.650 1.625 2.756
B2 1.710 −4.038× 10−1 −1.712× 10−1 −2.706× 104 2.502 −4.695 2.702
B3 6.305 4.999 3.484 4.053× 105 5.370 3.841× 101 6.643
B4 – – −9.653× 10−1 −6.285× 102 – −3.231× 102 –
B5 – – – −2.557× 106 – −4.050× 103 –
B6 – – – 8.399× 103 – 1.589× 104 –
B7 – – – 1.128× 107 – 3.881× 105 –
B8 – – – −1.084× 107 – −1.926× 106 –

Table 5.8: The fitted parameters for the polynomial decay functions repre-
senting the ab initio diagonal EQMCs.

〈
b 1Σ+

g

∣∣∣Qxz

∣∣∣I 1Πg

〉 〈
b 1Σ+

g

∣∣∣Qxz

∣∣∣II 1Πg

〉 〈
b 1Σ+

g

∣∣∣Qxy

∣∣∣a 1∆g

〉 〈
X 3Σ−g

∣∣∣Qyz

∣∣∣I 3Πg

〉 〈
X 3Σ−g

∣∣∣Qyz

∣∣∣II 3Πg

〉
〈a 1∆g|Qyz|I 1Πg〉 〈a 1∆g|Qyz|II 1Πg〉

re (Å) 8.817× 10−1 1.160 1.249 6.788× 10−1 1.070 1.082 1.162
β2 4.383× 10−1 7.516× 10−1 1.431 3.396× 10−1 1.649× 10−1 5.445× 10−2 6.856× 10−1

β4 −4.011× 10−2 4.139× 10−2 4.539× 10−1 −1.238× 10−4 2.096× 10−1 −8.297× 10−6 5.925× 10−2

B∞ −7.336× 10−1 3.733× 10−3 −1.377 6.542× 10−1 −1.447× 10−2 2.276 2.203× 10−3

B0 −1.792× 10−1 −9.281× 10−1 −1.060 3.453× 102 −1.123 −4.511× 10−1 1.066
B1 1.903× 10−4 −2.325 8.294× 10−1 −1.975× 103 −3.411 −5.007 2.429
B2 1.194× 101 −2.875 −2.960× 10−1 3.825× 103 −2.358 −7.757 2.913
B3 1.391× 101 −1.002× 101 2.645 −2.618× 103 −1.599× 101 −8.816× 101 1.296× 101

B4 – – – – 1.516 1.349× 102 –
B5 – – – – – −1.548× 102 –
B6 – – – – – 1.507× 101 –
B7 – – – – – 1.891× 101 –
B8 – – – – – 1.881× 101 –
B9 – – – – – −1.763× 101 –

Table 5.9: The fitted parameters for the polynomial decay functions repre-
senting the ab initio off-diagonal EQMCs.

Figure 5.6: The ab initio electric quadrupole and magnetic dipole line list at
296 K for 16O2 in the wavenumber range 0–1800 cm−1.
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Figure 5.7: Comparison of the most intense electric quadrupole transitions
in the X 3Σ−g – X 3Σ−g (top), a 1∆g – X 3Σ−g (middle) and b 1Σ+

g

– X 3Σ−g (bottom) bands. Vertical lines indicate the intensities
predicted by the ab initio Duo model, and the pink markers the
transition intensities recorded in the HITRAN database.
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Figure 5.8: Comparison of the most intense magnetic dipole transitions in
the X 3Σ−g – X 3Σ−g (top), a 1∆g – X 3Σ−g (middle) and b 1Σ+

g

– X 3Σ−g (bottom) bands. Vertical lines indicate the intensities
predicted by the ab initio Duo model, and the pink markers the
transition intensities recorded in the HITRAN database.
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〈
X3Σ−g,0

∣∣∣HSS

∣∣∣X3Σ−g,1

〉
rref 1.2075
p 4
A0 1.0570
A∞ 0.0000

Table 5.10: The fitted parameters for the Šurkus polynomial function repre-
senting the spin-spin splitting of the ab initio X 3Σ−g state.

basis states are retained for the weakly bound and dissociative Π state in order
to represent continuum states above the dissociation energy [165, 166].

Initially I present a line list using a purely ab initio model, without em-
pirical refinement of the potential energy or coupling curves. In Fig. 5.6 we
show the absorption intensities for the electric quadrupole and magnetic dipole
moments, respectively, above a threshold of 10−30 cm molecule−1. In Figs. 5.7
and 5.8 we compare the calculated intensities and line positions to accurate
known data from the HITRAN database [167], namely the X 3Σ−g (v = 1) →
X 3Σ−g (v = 0) (E2), X 3Σ−g (v = 0) → X 3Σ−g (v = 0) (M1), a 1∆g(v = 0) →
X 3Σ−g (v = 0), and b 1Σ+

g (v = 0) → X 3Σ−g (v = 0) transitions. In addition
to the six bands vibrational bands present in the HITRAN database, we also
obtain intensities for 14 additional vibrational bands above the threshold in-
tensity of 10−30 cm molecule−1.

The ab initio model reproduces the expected intensities to the correct or-
der of magnitude, with the largest discrepancies observed for the NO and TS
branches of the b 1Σ+

g – X 3Σ−g electric quadrupole transitions. These branches
correspond to ∆N = −3, ∆J = −2 and ∆N = +3, ∆J = +2 transitions,
respectively. Crucially, the combination of PECs and couplings present in the
model successfully reproduces all of the observed rotational bands. To illus-
trate the role of the excited Π states we also reduce the model to a simple
three state model that contains only the X 3Σ−g , a 1∆g, and b 1Σ+

g with their
respective couplings. Without the inclusion of the four Π states, we find that
no intensities for the a 1∆g– X 3Σ−g magnetic dipole transitions are produced,
and the PO and RS branches (∆N = −1, ∆J = −2 and ∆N = +1, ∆J = +2)
of the b 1Σ+

g – X 3Σ−g electric quadrupole transitions are also not reproduced.
In Fig. 5.9 we compare the intensities obtained with and without the inclusion
of the Π states.

5.6 Empirical Refinement
Whilst the ab initio spectroscopic model presented in Sec. 5.5 is sufficient
to generate each of the bands observed experimentally, it can only provide a
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Figure 5.9: A comparison of the magnetic dipole line list obtained using the
only the three low-lying electronic states to that obtained when
the excited Π states are included, which demonstrates the im-
portance of the Π states in producing intensities for the a 1∆g –
X 3Σ−g transitions.

qualitative agreement. In particular, the line positions and intensities of purely
ab initio models tend to compare poorly to experimental measurements owing
to the large number of interactions which can compound inaccuracies in the
various curves, or subtle deviations due to higher order interactions that are
not accounted for. In order to improve the model, and to more confidently
predict the line position and intensity of novel, experimentally unobserved
absorption lines, the model must be empirically refined. This can be done
by iteratively refining the parameters of the analytic potential energy curves
and couplings introduced in Sec. 5.4. The Duo program’s fitting routine allows
one to perform a least-squares fit of the calculated rovibronic state energies to
accurately known state energies, usually derived from experimental data.

In many cases however, it is not possible to obtain direct measurements of
state energies from experimental studies. Instead, experimental spectroscopy
produces a set of accurate transition frequencies. Thus, reconstructing the
state energies becomes an exercise in building a self consistent so-called spec-
troscopic network (SN). A spectroscopic network is an undirected weighted
graph in which state energies are the graph nodes, and transition frequencies
the edges. The MARVEL program [168] is able to perform precisely this task,
namely to create a self-consistent network, or set of networks, of state energies
from experimentally measured transitions frequencies. Crucially, the MAR-
VEL code is also able to assign uncertainties to the state energies, based on
the uncertainty of the transition frequencies used to reconstruct the energy.
This is invaluable for the purpose of empirically refining the spectroscopic
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model as it allows the data points in the fit to be weighted according to their
accuracy.

In this section I outline the SN used in the empirical refinement of the
spectroscopic model outlined in Sec. 5.5. I then elaborate on the refinement
procedure and the additional variables introduced to improve the expressivity
of the spectroscopic model. I also present the optimised parameters of the
refined spectroscopic model and provide an analysis of the predicted absorption
lines.

5.6.1 The Oxygen Spectroscopic Network
The task of producing an accurate spectroscopic model for 16O2 is greatly
aided by the work of Furtenbacher et al. [9] which contains a database of some
15 946 rovibronic energy levels for the X 3Σ−g , a 1∆g, b 1Σ+

g , c 1Σ+
u , A 3Σ+

u ,
A’ 3∆u, and B 3Σ−u states. These energy levels were largely produced through
the MARVEL program. In particular, the SN they present contains a large
number of highly accurate rovibrational energies for the X 3Σ−g , a 1∆g, and
b 1Σ+

g electronic states. Ordinarily, databases created using the MARVEL
methodology contain energy levels determined exclusively from experimentally
measured transitions. However, in the case of 16O2, Furtenbacher et al. found
it was necessary to include data obtained by two additional methods. In this
section I will briefly describe the structure of this SN network and outline the
elements that were used in the empirical refinement of the 16O2 spectroscopic
model presented in Sec. 5.5.

Effective Hamiltonian Levels

The first additional source of energy levels in the Furtenbacher database is an
effective Hamiltonian. In addition to the 4279 energy levels obtained by apply-
ing the usual MARVEL methodology, the database was supplemented by 11
667 energy levels determined from effective Hamiltonians for the X 3Σ−g , a 1∆g,
b 1Σ+

g , c 1Σ+
u , A 3Σ+

u , and A’ 3∆u electronic states. These effective Hamiltonian
levels were included to aid the calculation of partition and thermochemical
functions. Crucially, they favoured completeness over accuracy for this pur-
pose. As a result, their effective Hamiltonians were parameterised by the spec-
troscopic constants presented by Mérienne et al. [169], which may be less ac-
curate than parameters with less coverage from other authors, such as Yoshino
et al. [170].

Many of the state energies obtained via effective Hamiltonians have large
uncertainties associated with them and these are illustrated in Fig. (5.10).
More than 70 % of the energies have an associated uncertainty greater than
1 cm−1, with more than 60 % greater than 10 cm−1. Since large uncertainties
tend to destabilise the refinement procedure the energies in the Furtenbacher
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Figure 5.10: Distribution of uncertainities associated with the energy levels
in the 16O2 database of Furtenbacher et al. [9] that were ob-
tained from an effective Hamiltonian.

et al. database ascribed to an effective Hamiltonian were excluded from the
dataset used to perform the empirical refinement.

Artificial Transitions

The second technique employed by Furtenbacher et al. to improve the con-
nectivity of the SN was the introduction of so-called ‘artifical transitions’ to
the database. These are transitions that were reconstructed from the the
energy levels of Yu et al. [171] by taking their difference from the ground
(J,N, v) = (0, 1, 0) X 3Σ−g state. The artifical transitions were included in or-
der to increase the size of the SN for the three lowest electronic states, which
in turn allowed them to determine the energies of the highly excited electronic
levels. Of the 30 671 transition that contributed to the MARVEL SN, 6295
are so-called artifical transitions. As a consequence, these artificial transitions
do not have associated intensities, but their frequencies generally have a small
uncertainty due to the accurate energy levels used to produce them. These
artificial transitions are retained in the fitting procedure.
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Relevant States

The majority of energy levels that appear in the database presented by Furten-
bacher et al. are those of highly excited ungerade electronic states. Since these
states do not play a role in the infrared electric quadrupole and magnetic dipole
spectra, they are of little value in refining the ab initio spectroscopic model.
Only 11 335 of their energy levels correspond to states relevant to the refine-
ment procedure, and all of these are for the three lowest electronic states,
namely the X 3Σ−g , a 1∆g, and b 1Σ+

g . The primary limitation of the database
presented by Furtenbacher et al. [9] is thus the absence of energies for any
rovibrational levels of the four 3Πg and 1Πg states. Moreover, to the author’s
knowledge, there is no experimental data for transitions involving these Π
states, and thus their inclusion in any SN is not possible at present.

However, because these levels contribute to the energy and intensity of the
infrared bands only indirectly, obtaining accurate potential energy curves for
these states highly excited states is not essential to the production of an accu-
rate linelist. Instead, the required corrections to the state energies can usually
be absorbed into the empirical refinement of the coupling terms (namely spin-
orbit) that connect the Π states to the lower electronic levels.

5.6.2 Spectroscopic Model
In this section I present the empirically refined spectroscopic model, including
the refined analytic representation of the various ab initio curves introduced
previously, as well as the parameterisation of additional correction terms intro-
duced to account for interactions that are not fully described by the ab initio
model. The empirical refinement of ab initio curves takes two forms. For
many curves, it is possible to perform a straightforward fit of some analytic
function that completely parameterises the energy levels, this is usually the
case when the curve in question has good support in the dataset being used
to perform the fitting. When this is not the case, and the dataset is insuffi-
cient to constrain an analytic function, a so-called ‘morphing’ function can be
parameterised instead. In this case the fitted function is convolved with the
ab initio data to produce an empirical curve that can improve the calculated
energies. The advantage of the latter approach is that it allows for additional
support for the empirical model to come from the ab initio data when there is
insufficient coverage in the state energy dataset.

The empirical model is obtained by performing a weighted non-linear
least-squares fit of the state energies predicted by Duo to those contained in
the MARVEL spectroscopic database outlined in Sec. 5.6.1 In all cases the
non-linear least-squares fit is obtained using the LAPACK DGELSS routine
which is supported natively in the Duo program [64]. The least-squares
fit is weighted according to the uncertainties of the energies levels which
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are calculated according to the MARVEL procedure in order to produce a
self-consistent spectroscopic network.

Due to the large number of total parameters available across all PECs and
couplings, and the high degree of correlation between them, it is not usually
possible to perform a simultaneous fit of all the curves. Instead each curve
or a small subset of the curves is usually fitted sequentially on a carefully
selected subset of the dataset that provides greatest support for the selected
curve. Once a reasonable fit has been obtained across multiple curves, the
parameters can be freely varied together for a simultaneous fit of two or more
curves in order to obtain a high-quality self-consistent model.

Potential Energy Curves

The three low-lying electronic states, X 3Σ−g , a 1∆g, and b 1Σ+
g , are parame-

terised in the empirical model using the same MLR function that was intro-
duced in Eq. (5.4.1). The parameters obtained by fitting to the ab initio data
(Table 5.3) are used as initial parameters. The dissociation energy of these
states is well quantified by experimental data, and so the value of De, the dis-
sociation energy relative to the zero point energy of the X 3Σ−g state is initially
fixed according to the value provided by Ruscic et al. [14]. Similarly the min-
imum electronic energies of the a 1∆g and b 1Σ+

g states, and the equilibrium
bond lengths of the X 3Σ−g , a 1∆g, and b 1Σ+

g states are initially fixed at the val-
ues provided by Krupenie [158] and Huber and Herzberg [15]. The remaining
parameters are allowed to vary freely in the non-linear least squares fit which is
obtained using the LAPACK DGELSS routine [64]. The dissipative coefficient
C6 is similarly held constant at the value C6 = 2.95× 105 Ehcm−6 introduced
in Sec. 5.4.1 [157]. Once a stable parameterisation of the polynomial coeffi-
cients βi is obtained, further curves are fitted, as outlined below and finally
the parameters re, De and Te are allowed to vary freely only after no further
improvement in the residuals can be achieved by varying other, empirically
determined, parameters. We note that the final parameterisation of the state
X 3Σ−g , a 1∆g, and b 1Σ+

g , is remarkably consistent with the parameterisation
obtained from the ab initio data, with a mean difference in the absolute value
of the potential across the 1001 vibrational grid points of just 0.0022 %, 0.13 %,
and 0.18 % for the X 3Σ−g , a 1∆g, and b 1Σ+

g states, respectively.
As outlined previously, the MARVEL dataset used to perform the empiri-

cal refinement contains no data about the Π states. The PECs for these states
must therefore be excluded from the refinement procedure, and they are rep-
resented in the empirical model by the same PECs presented in Sec. 5.5. The
close agreement of the empirical and ab initio PECs for the three low lying
states suggests that the MRCI calculations provide an accurate characterisa-
tion of these properties. We can reasonably expect the parameterisation of
the I 1Πg, II 1Πg, I 3Πg, and II 3Πg to be be similarly accurate. Moreover, none
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of the bands of interest involve the Π states directly, and so we expect that
small errors in their energies will not significantly impact the predicted line
positions. The energies of the Π states do, however, appear in the reciprocal
of the coupling coefficients for Eqs (5.2.1)-(5.2.14). Thus we expect any shifts
in the energy of the rovibrational Π states to have some small effect on the
predicted intensity of certain bands where this contribution is not negligible.

X 3Σ−g a 1∆g b 1Σ+
g

re (Å) 1.207 1.216 1.227
De (cm-1) 4.206× 104 4.205× 104 4.205× 104

Te (cm-1) 0.000× 101 7.930× 103 1.319× 104

β0 −1.898 −1.790 −1.719
β1 −1.481 −1.114 −9.098× 10−1

β2 −1.844 −1.172 −1.024
β3 −1.211 −4.779 −2.788
β4 −9.054× 10−1 1.671× 101 9.212
β5 −1.516× 101 −3.392× 101 −1.860× 101

β6 6.995× 101 2.456× 101 1.405× 101

β7 −1.335× 102 – –
β8 9.314× 101 – –
C6 2.950× 105 2.950× 105 2.950× 105

Table 5.11: Fitted MLR parameters for the empirical PECs of the three low
lying states.

Spin-Spin Curves

Once a reasonable fit to the state energies has been obtained by varying the
parameters of the MLR PECs, one can begin to refine the model by varying
the parameters of some coupling curves that contribute to the state energies.
Particularly important in predicting the line positions of the X 3Σ−g state rovi-
brational transitions is the magnitude of the spin splitting for this state. In
Sec.5.4.4 a phenomenological spin-spin operator was introduced with an ap-
proximate parameterisation based on experimental measurements. To obtain
a good qualitative characterisation of the spin splitting in the X 3Σ−g , the pa-
rameters of this coupling curve can be varied freely whilst fitting exclusively
the energies of the spin sub-levels in the X 3Σ−g state. Since the MARVEL
dataset includes only the quantum numbers J , N and v, the assignment of the
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〈
X3Σ−g,0

∣∣∣HSS

∣∣∣X3Σ−g,1

〉
rref 1.2075
p 4
A0 6.125× 10−1

A1 −1.997× 10−1

A∞ 0.0000

Table 5.12: The fitted parameters for the empirical Šurkus polynomial func-
tion representing the spin-spin splitting of the X 3Σ−g .

Σ quantum numbers, which are required to perform the Duo refinement, is
done according to the energy ordering of the three spin sub-levels for a give
J state. To obtain good agreement with the MARVEL dataset, a first order
Šurkus polynomial of the form given by Eq. (5.4.10) is used, with parameters
given in Table 5.12.

Spin-Orbit Curves

The spin-orbit coupling plays an important role in determining both the energy
levels and transition intensities of the 16O2 infrared system. This is especially
true of the X 3Σ−g – b 1Σ+

g spin-orbit coupling, which has a strong effect on the
energies of the X 3Σ−g and b 1Σ+

g states, and on the intensity of the ∆M = 0
X 3Σ−g – b 1Σ+

g band, Eq. (5.2.1). A good fit is found without recourse to
varying the parameters of the spin-orbit curves relative to those obtained by
fitting to the ab initio data, which are presented in Table 5.5.

Electronic Angular Momentum Curves

The primary role of the Lx and Ly operators in the infrared system of 16O2 is
their contribution to the intensities of these transitions via the magnetic dipole
moments outlined in Sec. 5.2.2. However, they also play a role in determining
the energy of the states involved. Specifically, the coupling of the electronic
orbital angular momentum with the rotational motion of the nuclei results in
so-called Λ-doubling, in which the ±Λ degeneracy of states with |Λ|> 0 is lifted
[172]. In the case of 16O2 this Λ-doubling effect is small, particularly for the
a 1∆g state [173]. Nonetheless, it is important to highlight the dual role that
these coupling curves play in the the spectroscopic model, as it means that
changes to the EAMCs in order to improve the prediction of state energies will
also have implications for the intensity calculations, and vice versa.

The ab initio data obtained in Sec. 5.3 indicates that the strongest EAMC
contribution to the b 1Σ+

g – X 3Σ−g magnetic dipole bands arises from the mag-
netic moment between the X 3Σ−g and II 3Πgstates, which lends intensity via the
strong spin-orbit coupling between the II 3Πg and b 1Σ+

g states. The ab initio
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model presented previously underestimates the strength of the b 1Σ+
g – X 3Σ−g

magnetic dipole transitions. In the empirical model, a morphing function of
the form given by Eq. (5.4.5) is applied to the

〈
X 3Σ−g

∣∣∣Lx

∣∣∣II 3Πg

〉
EAMC to im-

prove the intensity predictions of this band. The parameters for this morphing
function are given in Table 5.13.

The same dipole moment is also a contributor to the a 1∆g – X 3Σ−g
transitions. The intensities of these transitions in the ab initio model are
also generally weaker than expected. The morphing function applied to the〈

X 3Σ−g
∣∣∣Lx

∣∣∣II 3Πg

〉
is not sufficient to reproduce the expected intensities,

and so similar morphing functions are applied to the 〈a 1∆g|Lx|II 1Πg〉 and
〈a 1∆g|Ly|I 1Πg〉 moments, which contribute to the a 1∆g – X 3Σ−g band
according to Eq. (5.2.12).

The Duo program does not currently provide support for fitting curves to
the transition intensities, and so the form of the morphing function is chosen
manually to reproduce the expected intensity of known transitions. In all three
cases, a zeroth-order polynomial decay function of the form given by Eq. (5.4.5)
with the parameters in Table 5.13. The morphing function specified by these
parameters has the essential effect of scaling the dipole moment around the
equilibrium bond length, with the scaling approaching unity away from this
point.

Value
rref (Å) 1.21
β2 8× 10−2

β4 2× 10−3

B∞ 1
B0 −1.4× 10−1

Table 5.13: The polynomial decay morphing function applied to the〈
X 3Σ−g

∣∣∣Lx

∣∣∣II 3Πg

〉
, 〈a 1∆g|Lx|II 1Πg〉, and 〈a 1∆g|Ly|I 1Πg〉 mo-

ments to improve the predicted intensities.

Electric Quadrupole Moment Curves

The ab initio model in Sec. 5.5 overestimates the intensity of X 3Σ−g – X 3Σ−g
transitions significantly. Specifically, for the strongest transition in this band,
(v, J) = (1, 9)← (0, 7) the ratio of the predicted intensity to measured inten-
sity of the ab initio model is 1.63. To account for this difference, the diagonal
EQMCs are scaled by a constant factor to reduce the intensity of the predicted
lines. The a 1∆g– X 3Σ−g transitions are similarly overestimated by the ab initio
model, with the most intense line (v, J) = (0, 8)← (0, 8), stronger by a factor
of 1.76. The primary contribution to this band arises from the a 1∆g– b 1Σ+

g
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quadrupole moment, Eq. (5.2.6), which is also reduced by a constant factor to
improve the agreement of the predicted intensities.

5.7 Results and Discussion
The empirical spectroscopic model described previously can be used with the
Duo program to produce a line list with broader spectral coverage than exper-
imental measurements allow, and at a range of temperatures. In this section
I present a line list constructed using the Duo and ExoCross programs
[64, 127]. First I outline the details of the Duo calculation, including the
rotational and vibrational basis used, as well as the thresholds below which
calculated lines are discarded. I then provide a discussion of the results and
compare a subset of the predicted lines to known transitions in order to bench-
mark the accuracy of the spectroscopic model and provide estimates of the
accuracy of novel lines. Finally I present a temperature dependent line list for
a selection of illustrative temperatures between 296–3000 K.

5.7.1 The Oxygen Linelist
The complete line list is presented in two parts in order to separate contribu-
tions from the electric quadrupole and magnetic dipole moments. These stick
spectra can be combined with appropriate line broadening to produce a global
absorption cross-section using the ExoCross program.

ID E (cm−1) g J +/− e/f State v |Ω| Σ |Λ|
1 0.696753 1 0 + e X3Sigma- 0 0 0 0
2 1557.062584 1 0 + e X3Sigma- 1 0 0 0
3 3089.959814 1 0 + e X3Sigma- 2 0 0 0
4 4599.455575 1 0 + e X3Sigma- 3 0 0 0
5 6085.707922 1 0 + e X3Sigma- 4 0 0 0

Table 5.14: Excerpt from the beginning of the states file for 16O2. ID: state
counting number; E: state energy in cm−1; g: total state de-
generacy; J total rotational quantum number; +/− total parity;
e/f rotationless parity; State: electronic state label; v vibra-
tional quantum number; |Ω|: absolute value of the projection of
the total angular momentum; Σ: the electronic spin projection;
|Λ|: absolute value of the projection of the electronic orbital an-
gular momentum.

The solution to the vibrational Schrödinger equation is obtained with vi-
brational grid consisting of 1001 points in the range 0.9–3.0 Å. The contracted
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f i Ifi (cm molecule−1) ν (cm−1)
2521 1 1.5744E-23 2.083529
2522 1 3.8711E-19 16.251618
2523 1 1.0116E-09 1558.436839
2524 1 9.0313E-10 1572.451408
2525 1 2.2777E-10 3091.322823

Table 5.15: Excerpt from the beginning of the transitions file for 16O2. f :
state counting number of the final state; i: state counting number
of the initial state; Ifi absorption intensity in cm molecule−1; ν
transition frequency in cm−1.

basis is then formed from the 40 lowest vibrational states for the X 3Σ−g , a 1∆g,
b 1Σ+

g states and the 300 lowest vibrational states for the I 1Πg, II 1Πg, I 3Πg,
II 3Πg states. A larger vibrational basis is used for the excited Π states in or-
der to account for their dissociative nature. The vibrational wavefunctions for
dissociative electronic states is properly treated as a continuum. However, the
approach taken by the Duo program, which uses a sinc-DVR vibrational basis,
results in particle-in-a-box wavefunctions, and effectively imposes an infinitely
strong potential at the edges of the vibrational grid. Previous studies have
shown that a large vibrational basis of bound states can recover the properties
of overlap integrals associated with continuum states [165, 166]. The coupled
rovibronic Schrödinger equation is then subsequently solved for 0 ≤ J ≤ 300.
Transitions in the range 0–2 × 104 cm−1 with an absorption intensity greater
than 1×10−99 cm molecule−1 at 296.0 K are retained. This low intensity thresh-
old is used to account for transitions that increase significantly in intensity at
higher temperatures. The resultant line list is stored in two files, according
to the ExoMol database format, excerpts from which are given in Tables 5.14
and 5.15 [174].

Before presenting the temperature dependent line list, I benchmark the em-
pirical line list against known transitions. The transitions are compared line
by line, with transitions matched first by rotational quantum numbers of the
upper and lower state, then by vibrational and electronic levels. Finally, be-
cause the HITRAN line list does not assign spin quantum numbers, transitions
that are degenerate in these six quantum numbers are sorted by frequency and
matched according to the closest frequency transition. I present both quali-
tative visual comparisons and numerical results and discuss the structure of
the predicted bands. The numerical metric used to compare line positions is
the absolute difference in frequency, and to compare intensities I use the ratio
between intensities predicted by Duo to those predicted by HITRAN [167],
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∆ν = |νDuo − νHit.| (5.7.1)

RI = IDuo

IHit. (5.7.2)

5.7.2 Electric Quadrupole Transitions
The electric quadrupole absorption lines are relatively weak compared to elec-
tric dipole absorption in other species, or indeed magnetic dipole absorption
in 16O2. Nonetheless, they are in important consideration when performing
exoplanetary retrievals, particularly as the intensity of Noxon band (b 1Σ+

g –
a 1∆g) exhibits a strong temperature dependence, and becomes the dominant
electric quadrupole absorption mechanism in the 5000–5500 cm−1 region at
approximately 1000 K. Figs. 5.11 - 5.13 provide comparisons of the electric
quadrupole line positions and intensities at 296 K predicted by the empirical
model to those from the HITRAN database. In general, there is good agree-
ment between the line lists, and the empirical model presented in Sec. 5.6
reproduces all of the known electric absorption bands. Fig. 5.14 presents a
numerical comparison of the transition frequencies and absorption intensities.
In the X 3Σ−g – X 3Σ−g v = 1 ← 0 band, the empirical model accurately repro-
duces the line positions of the three rotational bands, with the mean arithmetic
difference of ∆ν = 0.0115 cm−1. The mean ratio of intensities for this band
is RI = 0.831. Meanwhile the b 1Σ+

g – X 3Σ−g v = 1 ← 0 band has a mean
frequency difference of ∆ν = 0.008 72 cm−1 with a mean ratio of intensities
RI 1.31. Thus the spectroscopic model tends to significantly overestimate one
electronic band, whilst underestimating another. The matrix element that gov-
erns these transitions (Eq. 5.2.1) is formed as the difference of two quadrupole
moments that are closely separated (Fig. 5.3), and thus are sensitive to small
variations to either quadrupole moment. It is likely that the intensity predic-
tions could be improved significantly by refining the parameters of analytic
quadrupole moments via a fit to experimentally measured intensities. This
is discussed further in Sec. 6.2. Nonetheless, considering that these electric
quadrupole transitions are incredibly weak relative to ordinary electric dipole
or even the 16O2 magnetic dipole transitions, these results represent a very
good quantitative agreement between the model’s prediction and known in-
tensities.

At face value, the agreement for the a 1∆g– X 3Σ−g v = 0 ← 0 band are
less impressive, with a mean difference of ∆ν = 0.101 cm−1 in the line posi-
tions and a mean intensity ratio of RI = 16.4, almost two orders of magni-
tude stronger than the HITRAN intensities. However, this strong disagree-
ment is resolved when only considering transitions with intensity greater than
1 × 10−30 cm molecule−1. The mean difference in line positions for this set of
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Figure 5.11: The electric quadrupole absorption lines of the v = 1 → 0
X 3Σ−g – X 3Σ−g transition, with the predicted intensities (top)
shown in comparison to known intensities (bottom) from the
HITRAN database.

106 of 146



5.7. Results and Discussion 5. Molecular Oxygen Line List

Figure 5.12: The electric quadrupole absorption lines of the v = 1 → 0
a 1∆g– X 3Σ−g transition, with the predicted intensities (top)
shown in comparison to known intensities (bottom) from the
HITRAN database.
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Figure 5.13: The electric quadrupole absorption lines of the v = 1 → 0
b 1Σ+

g – X 3Σ−g transition, with the predicted intensities (top)
shown in comparison to known intensities (bottom) from the
HITRAN database.
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Figure 5.14: Numerical benchmarking of the electric quadrupole absorption
intensities (top) and transition frequencies (bottom) predicted
by the empirical spectroscopic model across the most intense
vibrational bands.

109 of 146



5.7. Results and Discussion 5. Molecular Oxygen Line List

transitions reduces to ∆ν = 0.0744 cm−1 and the ratio of intensities to RI =
1.04. Additionally, closer examination reveals that there is a group of transi-
tions that appear as significant outliers in the ratio of absorption intensities
(see the group of points at RI ∼ 102 in Fig. 5.14). These outliers all correspond
to the branches with odd-numbered Ji, which HITRAN suggests are signifi-
cantly weaker than the even-numbered Ji branches by approximately three
orders of magnitude. In the case of these weaker transitions it is possible that
second-order coupling terms may play a role in determining the absorption
strength. Another possibility is that the 15 overlapping rotational branches
for the a 1∆g – X 3Σ−g v = 0 ← 0 band make experimental measurements of
these transitions challenging and that the intensities have been significantly
overestimated.

5.7.3 Magnetic Dipole Transitions
The magnetic dipole transitions dominate the 16O2 infrared and atmospheric
bands, with the b 1Σ+

g – X 3Σ−g band being approximately four orders of mag-
nitude stronger than the most intense electric quadrupole lines. In Figs. 5.15
– 5.17 I provide comparisons of the magnetic dipole line positions and inten-
sities at 296 K predicted by the empirical model to those from the HITRAN
database. The X 3Σ−g – X 3Σ−g v = 0 ← 0 transitions have a mean arithmetic
difference in the wavenumber of ∆ν = 0.0084 cm−1 and a mean ratio of in-
tensities RI = 1.03. The comparison presented in Fig. 5.15 illustrates this
exceptionally good agreement. These transitions include also the microwave
region around 2 cm−1 that result from zeroth order pure spin-flip transitions.
The dominant contribution to these transitions is, in both cases, the spin mag-
netic moment (Eqs. (5.2.13) and (5.2.14)), which are evaluated analytically in
Duo, thus it is unsurprising that excellent agreement with known intensities
is found for these transition.

The a 1∆g – X 3Σ−g v = 0← 0 transitions have a mean wavenumber differ-
ence of ∆ν = 0.0991 and an intensity ratio of RI = 0.760. This is the most
complicated magnetic dipole band, with intensities that derive strength en-
tirely from the coupling of the X 3Σ−g and a 1∆g states to the highly excited Π
states via two spin-orbit interactions. This complex coupling scheme is sensi-
tive to not only the EAMCs, but also the SOCs, which could not be refined
empirically due to a lack of data for the state energies of the Π states, thus it
is unsurprising that we see weaker agreement for these absorption lines.

Finally, the b 1Σ+
g – X 3Σ−g v = 0 ← 0 transitions, which constitute the

strongest absorption band in this region of the EM spectrum (the oxygen
A-band), have a mean wavenumber difference of ∆ν = 0.0322 cm−1 and an
intensity ratio RI = 1.16. The dominant contribution to these intensities is
from the same spin flips that generate the X 3Σ−g – X 3Σ−g absorption lines, and
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Figure 5.15: The magnetic dipole absorption lines of the v = 0→ 0 X 3Σ−g –
X 3Σ−g transition, with the predicted intensities (top) shown in
comparison to known intensities (bottom) from the HITRAN
database.
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Figure 5.16: The magnetic dipole absorption lines of the v = 1 → 0 a 1∆g–
X 3Σ−g transition, with the predicted intensities (top) shown in
comparison to known intensities (bottom) from the HITRAN
database.
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Figure 5.17: The magnetic dipole absorption lines of the v = 1 → 0 b 1Σ+
g –

X 3Σ−g transition, with the predicted intensities (top) shown in
comparison to known intensities (bottom) from the HITRAN
database.

113 of 146



5.7. Results and Discussion 5. Molecular Oxygen Line List

lend strength to the A-band through spin-orbit of the b 1Σ+
g state. Additional

weaker contributions come from the EAMCs connecting the X 3Σ−g and b 1Σ+
g

to the Π states. The EAMCs and SOCs that govern these contributions were
not included in the refinement procedure so, similarly to the argument previ-
ously for the quadrupole absorption lines, we may expect a greater degree of
accuracy with a more energy dataset and empirical refinement of the EAMCs.

5.7.4 Temperature Dependence
I have previously established that one of the primary objectives for produc-
ing a spectroscopic model for 16O2 is the ability to provide absorption cross-
sections for arbitrary temperatures across a wide range of spectral frequencies,
a task that is not straightforward to achieve experimentally. The specific tem-
peratures and line profiles that determine the absorption cross-section must
be selected on a case-by-case basis according to the relevant application and
physical context. However, for completeness in demonstrating the goal of this
thesis, I provide in this section a demonstrative cross-section for 16O2 in the
infrared region.

In Fig. 5.19 I present a temperature dependent absorption cross section
using a Lorentzian line profile with a HWHM of 0.1 cm−1 for a range of tem-
peratures between 296–3000 K. Here the cross-sections due to the magnetic
dipole and electric quadrupole moments have been summed to accurately pre-
dict the total absorption of closely separated lines with finite line width. As
temperature increases we observe the usual pattern of increasing intensity for
the overtone and hot vibrational bands, accompanied by increasing intensity
for transitions to higher rotational levels.

However, of particular interest is the strong temperature dependence of
the absorption cross in the region 3 × 103–7 × 103 cm−1. These transitions
form the so-called Noxon band (b 1Σ+

g – a 1∆g), which becomes the dominant
quadrupolar absorption mechanism at temperatures of 1500 K or higher. In-
deed, the absorption strength of the fundamental Noxon band v = 0 ← 0,
centred around 5 × 103 cm−1 increases by approximately five orders of mag-
nitude between 296 K and 3000 K. This is because the Noxon band arises as
a result of a direct quadrupole coupling between the two excited states, and
does not rely on spin-orbit coupling to borrow intensity. Thus, as temperature
increases, and a a sizeable population of molecules are excited to the a 1∆g,
the strength of this absorption mechanism quickly dominates over the weaker
transition quadrupole moments that rely on spin-orbit coupling. This temper-
ature dependence will be an important consideration for retrievals of the class
of hot rocky super-Earth planets, which can often experience temperatures
well in excess of 1000 K [175–177].
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Figure 5.18: Numerical benchmarking of the magnetic dipole transition fre-
quencies (top) and absorption intensities (bottom) predicted by
the empirical spectroscopic model across the most intense vi-
brational bands.
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Figure 5.19: The magnetic dipole and electric quadrupole absorption cross
section for a range of temperatures between 296–3000 K. The
cross section was computed using a representative Lorentzian
line profile with a HWHM of 0.1 cm−1.
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Chapter 6

Conclusion and Outlook

6.1 Conclusions
The aim of this thesis was primarily to develop a computational methodology
for calculating electric quadrupole and magnetic dipole transition probabilities
of diatomic molecules. The system and molecule chosen to demonstrate this
methodology was molecular oxygen (16O2), specifically the infrared and atmo-
spheric bands composed of transitions between the three lowest-lying electronic
states. The objective in this example is a temperature-dependent line list with
complete spectral coverage of transitions greater than 1× 10−30 cm molecule−1

in the region 0–2× 104 cm−1.
Chapter 2 describes a unified treatment of the electric quadrupole and mag-

netic dipole line strengths and derives expressions for the intensity of these
transitions in the basis of Hund’s case (a) functions. The calculation of these
quantities was implemented and tested in the Duo program. This method-
ology allows the user to solve the coupled rovibronic Schrödinger equation
of a system with any number of PECs and couplings. These properties can
calculated ab initio using electronic structure programs or obtained through
empirical methods, and represented internally with either an analytic form or
as a 1D grid of values. The method has been demonstrated not only for the
16O2 system presented in this thesis, but also for H2, CO and HF, the results of
which were published in Somogyi et al. [178]. This new methodology presents
the scientific community with the most powerful computational tool available
for calculating higher order transition intensities of diatomic molecules and
will enable the calculation of these transition intensities for other diatomic
molecules in the future.

Chapter 3 outlines the internal methodology employed by the Duo program
for solving the coupled Schrödinger equation and computing the temperature
dependent line list. The procedure for solving the Schrödinger equation has
been extensively used in previous ExoMol publications to produce electric
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dipole transition probabilities, but this thesis has introduced a novel step in the
methodology that was crucial to a successful 16O2 line list. Namely, a procedure
and associated computer code for transforming to the diabatic representation
of the electronic structure properties.

Many diatomic molecules exhibit strong non-adiabatic interactions, where
the nuclear motion evolves on more than one electronic state and as a result
the PECs exhibit strong avoided crossings. The method of solving the vibra-
tional Schrödinger equation employed by the Duo program is ill-suited to the
treatment of quasi-bound PECs which can slow or prevent convergence. By
contrast, the sinc-DVR method is known to converge exponentially for smooth
PECs. Thus a transformation to the diabatic representation is clearly benefi-
cial in solving the vibrational Schrödinger equation. The code developed for
performing this transformation has already yielded novel scientific research an
an accurate linelist for the SO molecule by Brady et al. [97, 93, 105].

Chapter 5 represents the major result of this work. The first part of this
result is the detailed electronic structure calculations of previously unreported
electronic structure properties. These include a number of electric quadrupole
and orbital angular momentum curves for seven electronic states of molecu-
lar oxygen, as well as the potential energy and spin-orbit coupling curves of
those electronic states. These calculations provide the scientific community
with new data that may find application across a range of fields such as ma-
terials science, molecular dynamics, atmospheric and astrophysical chemistry
and biochemistry.

This chapter also provides an empirical spectroscopic model of this
molecule, for which the electronic structure properties presented in Sec. 5.3
were empirically refined by fitting analytic representations to accurate state
energies from the MARVEL database. This in turn has been used to produce
a temperature dependent line list consisting of 375 362 absorption lines of
16O2 in the region 0–2× 104 cm−1 with sub-percent accuracy in the predicted
frequency. This represents an order of magnitude increase in the number of
absorption lines over existing databases, with several previously unmeasured
vibrational bands. It also provides predictions for the absorption intensities
of these transitions across a range of temperatures and has shed light on the
temperature dependence of the absorption cross section. As part of this work
I have presented a complete account of the various first-order contributions to
the intensity of these bands, and shown that the inclusion of highly excited
states is crucial to accurately characterising the infrared and visible spectrum
of 16O2. The predictions made by the empirical model presented in Chapter 5
have been validated by new experimental measurements performed by NIST
for the b 1Σ+

g – X 3Σ−g (0, 0) transitions up to J = 40. Previous work published
during the course of this PhD project has already been applied to atmospheric
retrievals, and this new, more complete line list will undoubtedly find utility
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in the astrophysics community [179, 1–3].

6.2 Outlook
The work of this thesis has shown that the computational methodology I de-
veloped as part of the Duo program can confidently predict absorption in-
tensities for higher order transition moments in diatomic molecules. This has
been demonstrated through the production of a line list for the microwave,
infrared, and atmospheric absorption bands of 16O2.

The line list presented in Chapter 5 using the empirical model obtained in
this thesis represents a step change in the spectroscopic data available to the
astrophysics community for use in exoplanetary retrievals. It is hoped that
investigation into this species will continue and that further refinement of the
model will follow.

There are three major avenues that may be explored for subsequent spectro-
scopic models of these absorption bands. Firstly, the addition of higher order
contributions, such as the 5Πg excited states of 16O2. Secondly, the inclusion
of additional, as yet unavailable, state energy data for the 1Πg and 3Πg states,
which would facilitate an empirical model for their PECs and SOCs. Lastly,
empirical refinement of the electric quadrupole and magnetic dipole moment
curves by fitting to the absorption intensities. This would require substantial
additions to the Duo spectroscopic program, but would undoubtedly provide
a valuable tool for future spectroscopic studies.

The software contribution of this thesis, which forms a large portion of the
work undertaken, will also facilitate similar studies of other diatomic species.
Of particular importance are N2 and H2. The N2 molecule plays an important
role in characterising Earth-like exoplanets, and has been proposed as a partner
molecule to 16O2 for detection as a bio-signature [180–182]. Arguments have
also been made for H2 as a biosignature [183], and it’s presence plays an
important role in characterising a wide array of exoplanets [45, 184]. There
are also a number of heteronuclear diatomic molecules, such as CO and HF,
that exhibit strong quadrupolar absorption and similar systems would be key
target molecules for future investigations of higher order transition moments
[178].
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Appendix A

Symmetry Groups and Term
Symbols

Tables A.1 and A.2 are versions of Tables 3.3 and 3.4 with the addition of
Molpro enumerations for the irreducible representations. Which can be used
to simplify the conversion of Molpro output data to Duo input.

Symmetry Function Molpro No. Components
Ag s 1 Σ+

g , (∆g)xx

B1g xy 4 Σ−g , (∆g)xy

B2g xz 6 (Πg)x

B3g yz 7 (Πg)y

Au xyz 8 Σ−u , (∆u)xy

B1u z 5 Σ+
u , (∆u)xx

B2u y 3 (Πu)y

B3u x 2 (Πu)x

Table A.1: Irreducible representations for homonuclear symmetry groups,
the functions that transform according to the irreducible repre-
sentations, their Molpro enumeration, and corresponding com-
ponents of electronic states.

Symmetry Function(s) Molpro No. Components
A1 s, z 1 Σ+, ∆xx

A2 xy 4 Σ−, ∆xy

B1 x, xz 2 Πx

B2 y, yz 3 Πy

Table A.2: Irreducible representations for heteronuclear symmetry groups,
the functions that transform according to the irreducible repre-
sentations, their Molpro enumeration, and corresponding com-
ponents of electronic states.
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