Utilising Natural Language Processing to Identify Brain Tumour Patients for Clinical Trials: Development and Initial Evaluation

James Booker, MRCS, Jack Penn, FRCS, Kawsar Noor, PhD, Richard J.B. Dobson, PhD, Naomi Fersht, PhD FRCR, Jonathan P. Funnell, MRCS, Ciaran S. Hill, PhD FRCS, Danyal Z. Khan, MRCS, Nicola Newall, MBChB, Tom Searle, PhD, Siddharth Sinha, MRCS, Lewis Thorne, FRCS, Simon C. Williams, MRCS, Michael Kosmin, PhD FRCR, Hani J. Marcus, PhD FRCS

PII: \$1878-8750(25)00263-3

DOI: https://doi.org/10.1016/j.wneu.2025.123907

Reference: WNEU 123907

To appear in: World Neurosurgery

Received Date: 20 October 2024

Revised Date: 8 March 2025

Accepted Date: 10 March 2025

Please cite this article as: Booker J, Penn J, Noor K, Dobson RJB, Fersht N, Funnell JP, Hill CS, Khan DZ, Newall N, Searle T, Sinha S, Thorne L, Williams SC, Kosmin M, Marcus HJ, Utilising Natural Language Processing to Identify Brain Tumour Patients for Clinical Trials: Development and Initial Evaluation, *World Neurosurgery* (2025), doi: https://doi.org/10.1016/j.wneu.2025.123907.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 The Author(s). Published by Elsevier Inc.

Utilising Natural Language Processing to Identify Brain Tumour Patients for Clinical Trials: Development and Initial Evaluation

James Booker^{1,2} MRCS, Jack Penn^{1,2} FRCS, Kawsar Noor^{3,4} PhD, Richard J.B. Dobson^{3,4,5,6,7} PhD, Naomi Fersht⁸ PhD FRCR, Jonathan P. Funnell^{1,9} MRCS, Ciaran S. Hill^{2,10} PhD FRCS, Danyal Z. Khan^{1,2} MRCS, Nicola Newall^{1,2} MBChB, Tom Searle⁶ PhD, Siddharth Sinha^{1,2} MRCS, Lewis Thorne² FRCS, Simon C. Williams^{1,11} MRCS, Michael Kosmin^{4,8} PhD FRCR & Hani J. Marcus^{1,2} PhD FRCS

¹Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK

²Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK

³Institute for Health Informatics, University College London, London, UK

⁴NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK

⁵Health Data Research UK London, University College London, London, UK

⁶NIHR Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK

⁷Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK

⁸Department of Oncology, National Hospital for Neurology and Neurosurgery, London, UK

⁹Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK

¹⁰UCL Cancer Institute, University College London, London, UK

¹¹Department of Neurosurgery, The Royal London Hospital, London, UK

Corresponding author:

James Booker, MRCS

James.booker.19@ucl.ac.uk

ORCID: 0000-0001-7588-2827

National Hospital for Neurology and Neurosurgery,

London,

WC1N 3BG

Tel: 020 3456 7890

Funding and disclosures

No specific funding was received for this study. The authors have no conflicts of interest to disclose.

Acknowledgements

JB, JP, JPF, DZK, NN, SS, SCW & HJM are supported by the Wellcome (203145Z/16/Z) EPSRC (NS/A000050/1) Centre for Interventional and Surgical Sciences, University College London. JP is supported by the HEE Topol Digital Fellowship. DZK is supported by a NIHR Academic Clinical Fellowship. CSH, KN, RJBD, & HJM are supported by the NIHR Biomedical Research Centre, University College London.

Author contributions

JB, JP, KN, RJBD, NF, JPF, CH, DZK, NN, SS, LT, SCW, MK and HJM contributed to conceiving and designing the study. JB and JP contributed to data extraction, curation, and analysis. KN and RJBD contributed to model design and development. JB, JP, JPF, DZK, NN, SS, SCW and HJM drafted the manuscript. CH, LT, NF, MK and HJM provided supervision of the study. All authors were involved in the writing and approval of the final version of the manuscript.

1 Title: Utilizing Natural Language Processing to Identify Brain Tumor

Patients for Clinical Trials: Development and Initial Evaluation

3

4

Abstract

5 Background

- 6 Identifying patients eligible for clinical trials through eligibility screening is time and
- 7 resource intensive. Natural Language Processing (NLP) models may enhance clinical trial
- 8 screening by extracting data from Electronic Health Records (EHR).

9 **Objective:**

- We aimed to determine whether an NLP model can extract brain tumor diagnoses from
- outpatient clinic letters and link this with ongoing clinical trials.

12 Methods

- 13 This retrospective cohort study reviewed outpatient neuro-oncology clinic letters, to detect
- brain tumor diagnoses. We used an NLP model to perform named-entity-recognition +
- 15 linking algorithm that identified medical concepts in free text and linked them to a
- 16 Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT) ontology, which we
- used to search a clinical trials database. Human annotators reviewed the accuracy of the
- 18 concepts extracted and the relevance of recommended clinical trials. Search results were
- shown on a notification dashboard accessible by clinicians and patients on the EHR. We
- 20 report the model's performance using precision, recall and F1 scores.

21 Results

- 22 The model recognized 399 concepts across 196 letters with macro-precision=0.994, macro-
- recall=0.964 and macro-F1=0.977. Linking the model results with a clinical trials database
- 24 identified 1,417 ongoing clinical trials, of these 755 were highly relevant to the individual
- 25 patient, who met the eligibility criteria for trial recruitment.

Conclusions

- NLP can be used effectively to extract brain tumor diagnoses from free-text EHR records
- with minimal additional training. The extracted concepts can then be linked to ongoing

29	clinical trials. While further analysis is required to assess the impact on clinical outcomes,
30	these findings suggest a potential application for integrating NLP algorithms into clinical
31	care.
32	(257 words)
33	
34	Running Title
35	NLP to improve screening for clinical trials.
36	
37	Keywords
38	Natural language processing, machine learning, clinical trials, recruitment, brain tumors,
39	neuro-oncology.
40	
41	Abbreviations
42	EHR, Electronic Health Records; NLP, Natural Language Processing; NER+L, Named Entity
43	Recognition + Linking; SNOMED-CT, Systematized Nomenclature of Medicine Clinical
44	Terms.

45	Managarint Tart (2104
45	Manuscript Text (3194 words)
46	
47	Introduction
48	A major challenge to the successful completion of clinical trials is patient recruitment. It is
49	the most common cause of clinical trials discontinuation, with 53% of publicly funded
50	randomized control trials (RCTs) not reaching recruitment targets. 1 This has a number of
51	repercussions: (1) completed studies are underpowered; (2) if the study is extended to
52	increase recruitment this raises costs; ² (3) if the study is discontinued it is a waste of research
53	resources. Therefore, the cost of patient recruitment is the main contributor to the \$1 billion
54	cost of new drug development. ³ A major barrier to enrolling patients into clinical trials is
55	eligibility screening, which is a labor-intensive process involving the manual review of
56	patient medical histories and has a large time and financial cost. ⁴ This restricts the number of
57	patients that can be screened for a trial and increases the risk of an insufficient study size.
58	
59	As more healthcare providers move towards using electronic health records (EHR) the
60	possibility to leverage the digitized patient data to tackle this problem becomes possible. The
61	EHR data represents a rich data asset since it combines structured data (e.g., demographic
62	data) with unstructured data (e.g., clinical free-text notes). NLP, is a subfield of artificial
63	intelligence (AI) concerned with using computers to interpret and process free text, can be
64	used to extract data from clinical documents. ⁵ The primary advantage of NLP lies in its
65	ability to rapidly and consistently analyze large volumes of free text without the risk of
66	fatigue or performance degradation, which can occur with human reviewers during repetitive
67	tasks.6 In previous applications, NLP has been used to identify characteristic features of
68	under-recognized disease to reduce the time to diagnosis. In a recent study, NLP analyzed
69	over one million clinical documents including clinical letters, referrals and radiological
70	reports were analyzed to identify shared characteristics of patients with shunt-responsive
71	normal pressure hydrocephalus. ⁷ This information is vital to improving patient outcomes in

For some time, there has been interest to use this data to power various downstream tasks,

72

75

this under-treated cohort.

74 including clinical trial recruitment.⁵ NLP has previously been shown to dramatically reduce

the time required for eligibility screening for clinical trials of common conditions when

76	provided with large numbers of clinical documents per patient. ^{8–11} In addition, NLP has been
77	used in cancer trial enrollment with comparable performance to manual screening. 12
78	However, previous cancer trials have had access to a wealth of clinical data and the results
79	are skewed by cancers with high prevalence such as lung, breast and prostate. It is unclear if
80	an NLP can be as effective when used in an outpatient setting to link a heterogenous cohort
81	of patients with brain tumors to clinical trials based on limited clinical information. We aim
82	to evaluate the utility of NLP to screen clinical notes to identify a brain tumor diagnosis.
83	Secondly, we aim to use the NLP output to automatically search a clinical trial database and
84	recommend suitable trails for enrolment.
85	

87	Methods
88	Study overview, design, and setting
89	This study presents a retrospective review of patients' EHRs who sequentially presented to a
90	tertiary neurosurgery center in the United Kingdom (UK) and were given a histological
91	diagnosis of a brain tumor. Collected data was extracted using the unstructured data retrieval
92	platform CogStack. ¹³ The data was then analyzed by an NLP model within CogStack known
93	as the Medical Concept Annotation Toolkit (MedCAT). Ground truth data was established by
94	two neurosurgical doctors manually identifying and documenting specific brain tumor
95	diagnosis concepts within the text of a clinic letter. Subsequently, the model was tasked to
96	extract brain tumor diagnosis concepts, and the results were compared to the ground truth
97	data. Identified brain tumor diagnoses were then linked to ongoing clinical trials by searching
98	a widely used clinical trial database.
99	
100	Doublishouts
100	Participants
101	Patients were identified using a prospectively maintained EHR system Epic (Epic systems
102	corporation, Wisconsin, USA). Inclusion criteria were patients diagnosed with a brain tumor
103	(primary or metastatic) from June to October 2022 via resection or biopsy. A broad inclusion
104	criterion was used to ensure generalizability of the results. The timeframe allowed for 200
105	patients to be included, encompassing, new and recurrent/progressive cases. This target was
106	set with a data engineer to allow adequate evaluation of the NLP model that had previously
107	undergone validation in neurosurgical datasets. ^{7,14,15} Patients were excluded if aged below 18
108	years at admission or histological analysis showed non-neoplastic tissue.
109	
110	AI System
111	The NLP model is an open source Named Entity Recognition + Linking (NER+L) algorithm
112	that is trained to detect medical concepts in free text and link to a Systematized Nomenclature
113	of Medicine Clinical Terms (SNOMED-CT) ontology.
114	The NLP model used in this study is an open-source algorithm designed for Named Entity

Recognition and Linking (NER+L). The model can automatically identify important medical

116	terms, such as diseases, symptoms, or treatments, from unstructured text. Once the model
117	finds these medical concepts, it connects them to a standardized medical database called
118	SNOMED-CT (Systematized Nomenclature of Medicine - Clinical Terms). SNOMED-CT is
119	a comprehensive medical dictionary that helps ensure the terms are universally understood
120	and consistent across healthcare systems. Through this process, the model translates the free
121	text into structured medical information that can be used for further analysis or decision-
122	making. For further info on model, see Supplement 1.
123	
124	Data sources and measurements
125	Clinical documentation was reviewed from EHR after patients received a histological brain
126	tumor diagnosis. Outpatient clinic letters were used because they are key communication
127	tools between physicians and patients. Integrating the NLP model into these letters will aid in
128	discussing trial recruitment. Two neurosurgical doctors selected the most detailed letter for
129	each patient, from diagnosis to repeat surgery or death. Baseline characteristics, including
130	age, gender, ethnicity, comorbidities, and histological diagnosis using the 2021 World Health
131	Organization Classification of tumors ¹⁶ were manually collected.
132	
133	Model evaluation
134	Patients' clinical documentation was manually reviewed and brain tumor diagnoses as
135	SNOMED-CT concepts were identified. Following this, the NLP was tested on its ability to
136	identify brain tumor diagnoses on a clinical documentation of patients from a prespecified list
137	of SNOMED-CT terms (Supplement 2). Manual assessors reviewed the NLP outputs and
138	either 'rejected' or 'accepted' the results using the MedCAT annotation tool. 17 This was
139	compared against a ground truth histological diagnosis identified by the manual assessors.
140	Each concept identified was mutually exclusive. In addition, brain tumor diagnosis terms that
141	were not identified by the model were recorded as false negatives against the relevant
142	SNOMED-CT concept. To ensure the NLP system could identify variations in language used
143	to describe the same medical diagnosis, we incorporated specific "rules" into the program
144	(Supplement 3). These rules help the NLP model recognize synonyms or variations of
145	medical terms that might be used in doctors' notes. For example, "GBM" and another uses

"glioblastoma multiforme" the system would know that both refer to the same condition and

147	link them to the same medical term in the SNOMED-CT database. Comparison between the
148	NLP and ground truth manual assesses was done to create a precision, recall and F1 score for
149	each discrete histological diagnosis. Precision measures the accuracy of the positive
150	predictions made by the NLP model. It is calculated as the ratio of true positive diagnoses
151	(correctly identified by the model) to the total number of positive predictions (both true and
152	false positives). Recall (or sensitivity) measures the model's ability to correctly identify all
153	relevant cases. It is calculated as the ratio of true positive diagnoses to the total number of
154	actual positive cases (true positives plus false negatives). The F1 score is the harmonic mean
155	of precision and recall, providing a single metric that balances the trade-off between them.
156	Macro average metrics were calculated to assess the overall performance of the model.
157	
158	Finally, histological diagnoses identified by the model were linked with ongoing brain tumor
159	trials by searching a multinational, clinical trial database $-$ clinical trials. gov. This was chosen
160	because it is regularly updated, includes global trials, and has quality-reviewed mandatory
161	data fields, including eligibility criteria. 18 Using this single source ensures comprehensive,
162	efficient, and appropriate trial linking for the study cohort. The filters: study status =
163	recruiting or not yet recruiting studies, location = UK and $Age = Adult$ (18-64) or older adult
164	(65+). This was done to identify relevant clinical trials for the study cohort. Results of the
165	search were displayed on a notification dashboard developed within the EHR. Manual
166	assessors reviewed the linked trials for relevance by reviewing the EHR of each patient.
167	Linked trials were classified as relevant or not relevant based on the inclusion and exclusion
168	criteria for the trials. Precision scores were calculated for each patient and an overall average
169	precision was calculated for the study cohort. See Figure 1 for a study workflow diagram.
170	
171	Ethical approval
172	The study was registered as part of a service evaluation and approved by the Clinical
173	Governance Committee. Informed consent was not required for this study.
174	
175	Reporting guidelines
176	DECIDE-AI ¹⁹ reporting checklist was used.

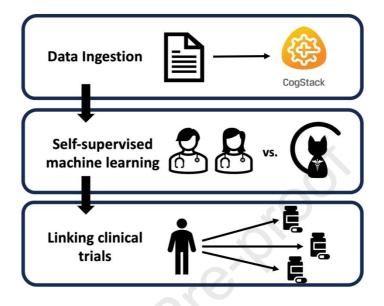


Figure 1. Study Workflow.

This figure illustrates the three key phases of the study workflow. In the 'data ingestion' phase, unstructured data from clinic letters and structured demographic data was retrieved from electronic health records using the CogStack platform. The 'self-supervised machine learning' stage involved the analysis of clinic letters separately using the MedCAT natural language learning tool and expert assessors, to identify brain tumor diagnoses. The brain tumor diagnoses extracted were compared using the expert assessors as ground truth. Finally, in the 'linking clinical trials' stage, each identified diagnosis was linked with relevant clinical trials through queries to the clinicaltrials.gov database.

Results

Descriptive data

Two-hundred patients who underwent either a brain biopsy or a brain tumor resection between June and October 2022 with a histological diagnosis of a brain tumor, had their outpatient clinic letters analyzed. Four patients during this time-period were excluded due to the absence of neoplastic disease (Rathke's cleft cyst n=2, Tuberculoma n=1, lymphangioma n=1), leaving 196 patients included in the analysis. Glioblastoma was the most common histological diagnosis, followed by pituitary adenoma and meningioma (Table 1).

Table 1. Cohort demographics.

Characteristic	$N = 196^{1}$	
Age	54 (42, 67)	
Sex		
Female	93 (47%)	
Male	103 (53%)	
Histological Diagnosis		
Glioblastoma, IDH wildtype	60 (31%)	
Pituitary adenoma	47 (24%)	
Meningioma	29 (14.8%)	
Secondary malignant neoplasm of the brain	19 (9.7%)	
Astrocytoma, CNS WHO Grade 1-3	11 (5.5%)	
CNS Lymphoma	6 (1.0%)	
Oligodendroglioma, CNS WHO Grade 2+3	6 (3.1%)	

Characteristic	$N = 196^{1}$
Chordoma	4 (2.0%)
Craniopharyngioma	3 (1.5%)
Medulloblastoma	3 (1.5%)
Germinoma	2 (1.0%)
Neuroepithelial tumor, CNS WHO grade	2 (1.0%)
Other	4 (2.0%)
IM I' (IOD) (0/)	- (

¹ Median (IQR); n (%)

Main Results

Using the model, 195/196 (99%) letters contained diagnosis concepts that could be extracted and linked with clinical trials. The letter without a diagnosis concept contained a description of a diagnosis of glioma without reference to a specific SNOMED-CT term. The untuned model extracted 311 concepts in clinic letters and linked them with SNOMED-CT terms (precision=0.991, recall=0.735, F1=0.844).

Variations in language used to describe diagnoses existed in the clinic letters. Clinicians would use abbreviations of a diagnosis or synonym e.g., GBM instead of Glioblastoma. This resulted in some concepts being missed as false negatives. Therefore, model tuning was instituted by manually identifying language variations and creating rules to link them with the correct SNOMED-CT term (Supplement 2). In addition, previous brain tumor diagnoses written in the clinic letter were extracted as SNOMED-CT concepts even if not relevant to new histological diagnosis; this led to false positives.

Across the 196 letters, 399 individual concepts were recognized by the tuned model and linked to SNOMED-CT terms. Metrics for the top five most common SNOMED-CT

218 concepts, which comprised of n=303 (76%) of identified concepts, is shown in Figure 2.

Overall macro averages across all concepts are shown in Table 2.

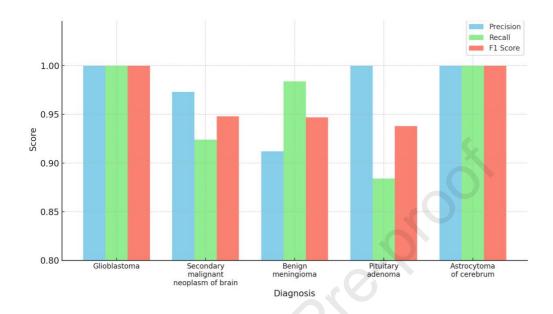


Figure 2. Model performance metrics per SNOMED-CT concept.

Bar chart plot of the precision, recall and F1 scores for the five most common brain tumor diagnoses.

Table 2. Model macro average performance metrics

Count	True positive	False positive	False negative	Precision	Recall	F1
399	390	9	21	0.994	0.964	0.977

• • •

Linking extracted terms with clinical trials

A notification dashboard was developed offline within the Epic to display the search results of the identified brain tumor diagnosis on clinicaltrials.gov. Each patient had a unique

dashboard, which displayed basic patient info, patient letters, extracted SNOMED-CT brain tumor diagnoses and linked clinical trials. The dashboard contained several tabs displaying
different information clinicians are given the option to either 'accept' or 'reject' the clinical
trial recommendation.
Using the clinical trials dashboard 1,417 trials were linked to 176 patient diagnoses. There
was large variation in the number of trials that were linked to diagnostic SNOMED-CT
terms, ranging from 54 for B-cell lymphoma to zero for medulloblastoma. Of the linked
trials, 755 were highly relevant to individual patient, who met the eligibility criteria for trial
recruitment. Linked trials were at a variety of translational stages including observational
studies and phase I-III. There were 662 trials that were linked, but the individual patient did
not meet the eligibility criteria. Clinical trial linking precision was highest for meningioma
(average precision 1.00) and lowest for pituitary adenomas (average precision 0.331). Poor
performance status, unresectable tumor and tumor recurrence were common reasons for
patients being non-eligible. The average precision of this clinical trial linking stage using the
clinicaltrial.gov search engine was 0.578.

250	Discussion
251	This study demonstrated the effectiveness of NLP in screening clinical notes for the
252	identification of brain tumor diagnoses. Additionally, the study utilized the NLP-generated
253	outputs to automatically query a clinical trial database and recommend appropriate trials for
254	patient enrollment. The study represents the first attempt in streamlining eligibility screening
255	in brain tumor trials using outpatient letters.
256	Principal Findings
257	Firstly, the model showed high performance metrics on recognizing concepts and linking
258	them with SNOMED-CT terms, despite not being specifically trained in this domain. The
259	NLP had high performance metrics (macro-precision=0.994, macro-recall=0.964 and macro-
260	F1=0.977), despite only using free-text information from a single clinical letter. This
261	surpasses previous performance from the MedCAT model which has used a large number of
262	clinical documents from multiple sources. 20 This is testament to the continued performance
263	improvement seen in the development of the MedCAT model. This demonstrates that the
264	NLP is fit-for-purpose as a clinical tool to aid clinicians in increasing patient access to
265	clinical trials. It is also promising for the integration of the NLP into multiple use cases
266	across different clinical domains because a high performance was achieved without a
267	dedicated training stage.
268	
269	Secondly, the NLP had a limited amount of unstructured data per patient, using one
270	outpatient letter per patient. This is representative of clinical practice; at our center each
271	patient given a new diagnosis of a brain tumor will receive a 'diagnosis appointment' with a
272	clinician who will orchestrate the future management. The clinic letter written from this
273	encounter will have detailed unstructured data pertaining to the brain tumor diagnosis, which
274	was used in this study. Additionally, information from pathology reports and imaging studies
275	is condensed and included in the letter by the clinician. Therefore, including other documents
276	would have led to duplication of information without any marginal gain. In contrast, previous
277	effective published NLPs have used a wealth of clinical data, which may not always be
278	available, especially in patients with glioblastoma in which 82% of patients have an operation
279	within a month of their first scan, having previously been fit and well. ²¹ Also, the model is

locally tunable using the MedCAT user interface for specific scenarios and domains. The

authors added 'rules' to the model to recognize synonyms of diagnoses which further improve the performance metrics of the model, most notably the recall. The performance metrics presented in this study are a conservative representation of what is possible with refinement of the model. Through an iterative process it would be possible to achieve even higher performance metrics by adding a vocabulary of 'rules' linked to corresponding SNOMED-CT concepts to identify all synonyms of all brain tumor diagnoses. The multidomain performance demonstrates that the results observed in this study will be generalizable to other clinical settings, where similar performance would be expected. Importantly this technology is highly scalable and can be integrated into a clinical pathway in multiple use cases to increase the assess of patients to clinical trials.

Thirdly, the retrieval of clinical trials for each patient was displayed using a notification dashboard on the EHR to allow clinicians and patients to see when a clinical trial in their area was recruiting patients with the same brain tumor diagnosis. Quantitative evaluation of the clinical trial dashboard identified that 755 trials across 176 patients were highly relevant to the individual patient met the eligibility criteria for recruitment. The clinical translation of this work is to increase trial recruitment once integrated into clinical practice. The benefit of this process is the NLP works synergistically with humans and allows clinicians to reject the suggestion if they are not relevant. We propose integrating this into clinical practice, with research nurses reviewing clinical trial dashboards for patients seen weekly in clinic and highlighting patients for trial recruitment to physicians. There were 662 trials that were recommended on the clinical trials dashboard, but the individual patient did not meet the eligibility criteria. We found that diagnoses with diverse histological subtypes, such as pituitary adenomas, led to poor precision in trial linking. Whereas, diagnoses with homogenous histological subtypes such as benign meningioma led to broad inclusion criteria and high precision scores. Therefore, physicians acting as the final review of recommended trials limits any unintended harm associated with incorrect trial linking. In addition, the simple pipeline used to search an online international clinical trials database may be integrated in other healthcare settings.

311 Safety and errors 312 The main source of errors using the model is the reliance on the SNOMED-CT ontology to 313 link recognized concepts. Large biomedical concepts databases such as SNOMED-CT do 314 contain acronyms, abbreviations, and synonyms of concepts, but they are not exhaustive. 315 Therefore, when certain abbreviations were used the model was unable to identify the 316 concepts and link them to SNOMED-CT terms. For example, the presence "pit adenoma" 317 instead of "pituitary adenoma" in clinical letters. In addition, although this was not observed 318 in the study, rare subtypes of brain tumors may not be listed in the SNOMED-CT ontology. 319 However, the MedCAT user interface allows for rules to be added to the model, which was 320 used effectively in this study, increasing recall performance from 0.735 to 0.964. In addition, 321 standardizing the diagnostic terms used by clinicians would also lead to improve performance 322 of the model. 323 Another source of observed errors was that the MedCAT model cannot differentiate between 324 325 new and previous diagnoses of brain tumors. The SNOMED-CT terms linked to written text 326 can be filtered to just brain tumor diagnoses, which reduces the chance of overlapping 327 concepts being identified. However, when a patient has had multiple brain tumor diagnoses it 328 led to false positives in the performance metrics and decreased precision scores. Also, for 329 meningiomas a higher false positive rate occurred because the model identified patients with 330 atypical meningiomas as having benign meningiomas. Future improvements in the NER+L 331 algorithm underlying the NLP to identify past medical history and subtypes of brain tumor 332 will improve model performance. 333 During the clinical trial linking stage several errors arose, which caused a reduction in the 334 335 precision. This reduction in precision was due to the *clinicaltrials.gov* search engine, which 336 provides a broad search of clinical trials based on keywords. Therefore, although patients 337 were linked to clinical trials investigating the correct diagnosis, exclusion criteria such as 338 poor performance status, large tumor location, multifocal tumor, and tumor recurrence, meant 339 that patients were not eligible for recruitment. In addition, we did account for trials which the 340 patients would have been eligible and were not suggested by the clinical trials database.

Future integration of more clinical data into NLP model and use of more specific search

342	parameters amongst several clinical trial databases will improve the clinical trial
343	recommendations.
344	
345	Strengths and limitations
346	The main strength of this study is the use of a multi-domain, self-supervised NLP which was
347	used without a dedicated training stage and with access to limited unstructured data.
348	Therefore, these results will be reproducible in other healthcare settings without a high
349	upfront time cost of model training. Another strength is that the model has been deployed in
350	several hospitals in the UK within sensitive data silos. This reduces the risk of data breaches,
351	which are much higher with current large language models with external servers. This allows
352	the model to adhere to the strict data governance rules of the National Health Service (NHS).
353	
354	A recognized limitation of this study is its design as a retrospective review of clinical notes
355	from a single neurosurgical center. Future work will assess the MedCAT model's
356	effectiveness in a live clinical setting and its impact on clinical trial recruitment. The model
357	was developed using Epic, the most widely used EHR, but results may not apply to other
358	EHR systems, limiting generalizability. ²² Additionally, the model needs further validation
359	with international datasets. Furthermore, as this study is an early evaluation of the model,
360	only a single clinical trial database was used for trial linking. This resulted in an incomplete
361	retrieval of clinical trials and no recall metric calculation. To overcome these limitations,
362	future work aims to use live patient data, across multiple centers and combine multiple
363	clinical trial databases during the trial linking phase.
364	
365	Conclusions
366	This study presents an early evaluation of an NLP NER+L model using self-supervised
367	learning to extract brain tumor diagnoses from outpatient clinic letters and link them with
368	ongoing clinical trials. The model showed high performance metrics despite no dedicated
369	training stage and is imminently scalable to other healthcare settings. The clinical translation

370	of this model is to automatically notify clinicians and researchers when a patient meets the
371	criteria for a brain tumor trial, streamlining the recruitment process.
372	
373	Code and Data availability
374	The code and data used in this study will be made available upon reasonable request by
375	contacting the corresponding author by email.

3/6	Rei	erences
377	1.	Jacques RM, Ahmed R, Harper J, et al. Open access Recruitment, consent and
378		retention of participants in randomised controlled trials: a review of trials published in
379		the National Institute for Health Research (NIHR) Journals Library (1997-2020). BMJ
380		Open. 2022;12:59230. doi:10.1136/bmjopen-2021-059230
381	2.	Sully BGO, Julious SA, Nicholl J. A reinvestigation of recruitment to randomised,
382		controlled, multicenter trials: a review of trials funded by two UK funding agencies.
383		Trials. 2013;14(1):166. doi:10.1186/1745-6215-14-166
384	3.	Morgan S, Grootendorst P, Lexchin J, Cunningham C, Greyson D. The cost of drug
385		development: a systematic review. Health Policy. 2011;100(1):4-17.
386		doi:10.1016/j.healthpol.2010.12.002
387	4.	Penberthy LT, Dahman BA, Petkov VI, DeShazo JP. Effort required in eligibility
388		screening for clinical trials. J Oncol Pract. 2012;8(6):365-370.
389		doi:10.1200/JOP.2012.000646
390	5.	Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial Intelligence in Surgery:
391		Promises and Perils. Ann Surg. 2018;268(1):70-76.
392		doi:10.1097/SLA.000000000002693
393	6.	Locke S, Bashall A, Al-Adely S, Moore J, Wilson A, Kitchen GB. Natural language
394		processing in medicine: A review. Trends in Anaesthesia and Critical Care.
395		2021;38:4-9. doi:10.1016/j.tacc.2021.02.007
396	7.	Funnell JP, Noor K, Khan DZ, et al. Characterization of patients with idiopathic

normal pressure hydrocephalus using natural language processing within an electronic

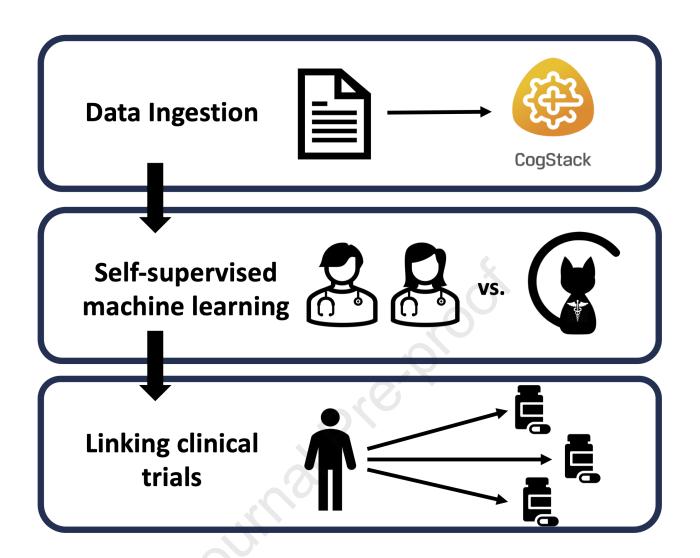
398		healthcare record system. <i>J Neurosurg</i> . Published online November 18, 2022:1-9.
399		doi:10.3171/2022.9.jns221095
400	8.	Cai T, Cai F, Dahal KP, et al. Improving the Efficiency of Clinical Trial Recruitment
401		Using an Ensemble Machine Learning to Assist With Eligibility Screening. ACR Open
402		Rheumatol. 2021;3(9):593-600. doi:10.1002/acr2.11289
403	9.	Ni Y, Wright J, Perentesis J, et al. Increasing the efficiency of trial-patient matching:
404		automated clinical trial eligibility Pre-screening for pediatric oncology patients.
405		Published online 2015. doi:10.1186/s12911-015-0149-3
406	10.	Beauharnais CC, Larkin ME, Zai AH, Boykin EC, Luttrell J, Wexler DJ. Efficacy and
407		cost-effectiveness of an automated screening algorithm in an inpatient clinical trial.
408		Clinical Trials. 2012;9(2):198-203. doi:10.1177/1740774511434844
409	11.	Tissot HC, Shah AD, Brealey D, et al. Natural Language Processing for Mimicking
410		Clinical Trial Recruitment in Critical Care: A Semi-Automated Simulation Based on
411		the LeoPARDS Trial. IEEE J Biomed Health Inform. 2020;24(10):2950-2959.
412		doi:10.1109/JBHI.2020.2977925
413	12.	Chow R, Midroni J, Kaur J, et al. Use of artificial intelligence for cancer clinical trial
414		enrollment: a systematic review and meta-analysis. J Natl Cancer Inst.
415		2023;115(4):365-374. doi:10.1093/jnci/djad013
416	13.	Jackson R, Kartoglu I, Stringer C, et al. CogStack - experiences of deploying
417		integrated information retrieval and extraction services in a large National Health
418		Service Foundation Trust hospital. <i>BMC Med Inform Decis Mak.</i> 2018;18(1):47.
419		doi:10.1186/s12911-018-0623-9

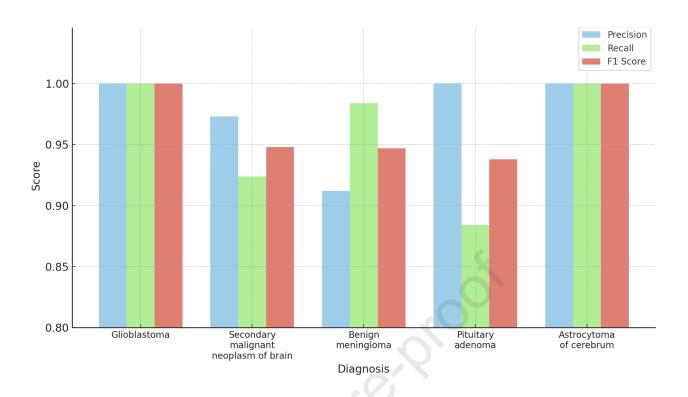
420 14. Williams S, Noor K, Sinha S, et al. Concept Recognition and Characterisation of 421 Patients Undergoing Resection of Vestibular Schwannoma Using Natural Language 422 Processing.; 2024. 423 Booker J, Penn J, Noor K, et al. Early evaluation of a natural language processing tool 15. 424 to improve access to educational resources for surgical patients. Eur Spine J. 425 2024;33(7):2545-2552. doi:10.1007/s00586-024-08315-5 426 16. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of 427 the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231-1251. doi:10.1093/neuonc/noab106 428 Kraljevic Z, Searle T, Shek A, et al. Multi-domain clinical natural language processing 429 17. 430 with MedCAT: The Medical Concept Annotation Toolkit. Artif Intell Med. 2021;117. 431 doi:10.1016/j.artmed.2021.102083 432 18. Zarin DA, Tse T, Williams RJ, Califf RM, Ide NC. The Clinical Trials.gov results database--update and key issues. *N Engl J Med*. 2011;364(9):852-860. 433 434 doi:10.1056/NEJMsa1012065 435 19. Vasey B, Nagendran M, Campbell B, et al. Reporting guideline for the early-stage 436 clinical evaluation of decision support systems driven by artificial intelligence: 437 DECIDE-AI. Nat Med. 2022;28(5):924-933. doi:10.1038/s41591-022-01772-9 438 20. Kraljevic Z, Searle T, Shek A, et al. Multi-domain clinical natural language processing 439 with MedCAT: The Medical Concept Annotation Toolkit. Artif Intell Med. 2021;117:102083. doi:10.1016/j.artmed.2021.102083 440

441	21.	Graus F, Bruna J, Pardo J, et al. Patterns of care and outcome for patients with
442		glioblastoma diagnosed during 2008-2010 in Spain. Neuro Oncol. 2013;15(6):797-
443		805. doi:10.1093/neuonc/not013
444	22.	Chishtie J, Sapiro N, Wiebe N, et al. Use of Epic Electronic Health Record System for
445		Health Care Research: Scoping Review. J Med Internet Res. 2023;25:e51003.
446		doi:10.2196/51003
447		
448		

449	Figure legends
450	Figure 1. Study Workflow.
451	This figure illustrates the three key phases of the study workflow. In the 'data ingestion'
452	phase, unstructured data from clinic letters and structured demographic data was retrieved
453	from electronic health records using the CogStack platform. The 'self-supervised machine
454	learning' stage involved the analysis of clinic letters separately using the MedCAT natural
455	language learning tool and expert assessors, to identify brain tumor diagnoses. The brain
456	tumor diagnoses extracted were compared using the expert assessors as ground truth. Finally,
457	in the 'linking clinical trials' stage, each identified diagnosis was linked with relevant clinical
458	trials through queries to the clinicaltrials.gov database.
459	
460	Figure 2. Model performance metrics per SNOMED-CT concept.
461	Bar chart plot of the precision, recall and F1 scores for the five most common brain tumor
462	diagnoses.

463	Supplement legends
464	Supplement 1. NLP model further information
465	Supplement 2. Prespecified list of SNOMED-CT terms
466	Supplement 3. MedCAT Rules
467	





Abbreviations

EHR, Electronic Health Records; NLP, Natural Language Processing; NER+L, Named Entity Recognition + Linking; SNOMED-CT, Systematized Nomenclature of Medicine Clinical Terms.

Disclosure-Conflict of interest

Funding and disclosures

No specific funding was received for this study. The authors have no conflicts of interest to disclose.

Acknowledgements

JB, JP, JPF, DZK, NN, SS, SCW & HJM are supported by the Wellcome (203145Z/16/Z) EPSRC (NS/A000050/1) Centre for Interventional and Surgical Sciences, University College London. JP is supported by the HEE Topol Digital Fellowship. DZK is supported by a NIHR Academic Clinical Fellowship. CSH, KN, RJBD, & HJM are supported by the NIHR Biomedical Research Centre, University College London.

Author contributions

JB, JP, KN, RJBD, NF, JPF, CH, DZK, NN, SS, LT, SCW, MK and HJM contributed to conceiving and designing the study. JB and JP contributed to data extraction, curation, and analysis. KN and RJBD contributed to model design and development. JB, JP, JPF, DZK, NN, SS, SCW and HJM drafted the manuscript. CH, LT, NF, MK and HJM provided supervision of the study. All authors were involved in the writing and approval of the final version of the manuscript.

I confirm that all authors have met ICMJE criteria for authorship and have no financial interests to disclose. The manuscript is not being considered, in whole or in part, for publication at any other journal. All co-authors have read and approve of this submission. Please do not hesitate to contact me if you require further information or clarification.

Yours sincerely,

Dr James Booker, MD MRCS

Honorary Clinical Research Fellow University College London

Neurosurgery Resident Royal London Hospital James.booker.19@ucl.ac.uk