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ABSTRACT: 

Single-cell/-nuclei transcriptomics (sc/snRNAseq) is a powerful tool for identifying cell types and 

states. However, the gene expression information must be validated, and its functional 

relevance needs to be established. The choice of validation depends on numerous factors. 

Here, we present types of orthogonal and functional validation experiments to strengthen 
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preliminary findings obtained using sc/snRNA-seq as well as the challenges and limitations of 

these approaches.   



MAIN TEXT: 

Single-cell/-nuclei transcriptomics (sc/snRNAseq) is a powerful tool for studying various aspects 

of biology, evolution, and diseases, such as identifying and characterizing cell types and cell 

states, detecting gene expression and epigenetic changes in disease and dysfunction, inferring 

developmental trajectories and cell state transitions, predicting gene regulatory mechanisms, 

and comparing evolutionary modifications in the specific tissues across species. However, the 

high-throughput nature of these experiments and the ever-growing array of computational tools 

for analyzing data they produce also increases the risk of false discoveries. Therefore, to 

confirm the preliminary findings of single-cell genomics experiments, validation experiments 

ought to be performed using orthogonal and functional methods (Figure 1, Table 1). The choice 

of validation experiments depends on the specific single-cell finding being tested and the 

evolutionary hypothesis being addressed. In this review, we discuss several general use cases 

and examples of single-cell findings that can be validated using different approaches (see BOX 

1, Table 1). In BOX 3, we discuss why evolutionary comparisons are important for the 

neuroscience field from both a basic science and a translational perspective. We also discuss 

the challenges and limitations of single-cell genomics for evolutionary comparisons, such as 

disentangling homology versus convergent evolution, relating in vitro models to in vivo biology, 

and accounting for technical and biological variability. 

 

We present some examples of single-cell findings that may require validation experiments, 

covering a variety of common scenarios and methods. These are not exhaustive, but illustrate 

how different types of validation can complement and confirm single-cell results. The simplest 

confirmatory experiments are those which seek to validate the expression of a small number of 

genes in situ. In the first two examples above, such an approach using in situ hybridization with 

probes targeting a cell type-specific gene and the gene of interest would provide confirmation of 

the single-cell finding. Protein-level validation could also be examined using immunostaining. 

However, these methods of validation are not suitable for validation of large numbers of gene 

expression changes, or in cases when several genes are necessary for the identification of a 

cellular state or multiple states (BOX 1, use case #3). To validate such claims, multiplex in situ 

methods like MERFISH or genome wide spatial sequencing methods like 10X Visium may be 

necessary. With a growing array of spatial transcriptomics and proteomics methods, careful 

consideration of the pros and cons of each method is warranted. Finally, many single-cell 

analysis findings reach beyond description of gene expression and infer putative function and 

gene regulatory mechanisms, as in the cases of cell-cell communication analysis and gene 

regulatory network inference1. While spatial visualization of gene expression or downstream 

protein abundance may be useful for demonstrating co-localization of a ligand and receptor, for 

example, visualization alone is not sufficient to demonstrate biologically meaningful functions, 

bona fide cell-cell communication, or transcription factor-enhancer/promoter interactions. 

Validating these mechanistic and functional inferences may require perturbation experiments 

(see Figure 2) and further functional studies, which we discuss in depth below. 

  

Primary validation approaches 

Validation of clusters versus validation of individual differentially expressed genes 



Single cell genomics is a powerful approach to identify molecular phenotypes that contribute to 

cellular diversity2. By facilitating the simultaneous comparison of profiles from a collection of 

cells, single cell genomics can define clusters based on identified differentially expressed genes 

(DEGs)3-5. However, algorithms used to process and analyze single cell datasets are designed 

to detect transcriptional differences, and depending on the resolution specified, they will 

continue to subset cells even if the differences are so minute that they constitute noise6. It is 

essential to set several resolutions in clustering followed by iterations of computational post-hoc 

validation prior to biological validation (see companion piece on sequencing technologies). The 

inherent features of the clustering algorithms that provide modularity of the system also 

reinforce the importance of post-hoc validation methods to ensure cluster numbers reflect real 

biology. 

 

An important first step is loyal cell type calling by integrating novel experimental datasets into 

large-scale atlases or databases. The tools used can be either classical integration methods 

with the external dataset of interest (to understand if the cell type at question has an exact 

correspondence to the published cell type), or transcriptomic similarity approaches (to 

understand if the new cell type is similar to an existing cell type). The latter can be 

accomplished by using tools like AddModuleScore() in Suerat7, or tools like Celltypist8 and 

CellHint9. Further computational methods to validate clustering numbers include visualization of 

most highly enriched transcripts per cluster (top 10 or top 100) and projection across all cells by 

cluster10. This method allows to see the level of transcriptional discernment between cells in 

each group: the best clustering illustrates a diagonal line where each transcript is enriched 

relatively uniform across all cells in a cluster, but is lowly expressed in all other cells across 

other clusters (dot plots, violin plots, and heatmaps are routinely used). If there is high 

expression of cluster-enriched genes outside of the candidate cluster, this indicates that there is 

overclustering and too high of a resolution indicated, and that clusters likely represent the same 

cells or subtle changes between cell states. It is best to initially set the resolution high to 

overcluster before modifying the resolution, slightly lowering it until robust cluster separation is 

able to be visualized. 

 

An additional computational method to ensure clustering isn’t an artifact of similar cells being 

inputted into analysis and the algorithm forcing differences that aren’t there is to pulse in a 

known disparate cell types to see if the prior clusters collapse. For example, many groups 

subcluster cells from larger datasets to allow identification of more subtle, cellular subtypes or 

states that are otherwise hidden in larger datasets due to divergent cell types in the larger 

dataset. While this method is standard and acceptable, adding in a different cell type is a 

stringent method to determine if these subtypes or states are in fact truly different.  

 

Finally, and most importantly, all clustering by single cell data necessitates post-hoc validation 

in biological samples11. Single cell data should be viewed as a prediction of biology that allows 

for guided hypothesis generation. Single cell data should not be considered fact or provide 

conclusions in the absence of confirmation in tissue or cells12. Different visualization methods 

can be employed to validate clusters by assessing cluster-enriched or cluster-specific 

transcripts or proteins in cells or tissue; these methods are discussed below. Targets should be 



visualized overlapping with other cluster-enriched or cluster-specific markers, but separate from 

other clusters. These methods also allow for detection of DEGs between clusters.  

 

DEGs can thus be extrapolated as rudimentary markers of cell types and/or states. However, 

these transcriptomic profiles only provide a snapshot of cellular behaviors. Given that 

identification of DEGs is an inherently comparative process, additional genes that may be 

playing a pivotal role in driving cell identity may escape the radar of DEG analysis. For example, 

a pivotal interaction between two genes may be necessary for supporting a cell’s function. In the 

absence of one of those genes, a different population of cells is actually losing the combined 

effect of both; while this first gene may appear in a DEG analysis between these two clusters, 

the second gene will go largely unnoticed12-14. Herein lies the need for orthogonal and functional 

validation of individual DEGs, as the complex mechanisms and interplay of DEGs remain largely 

hidden within transcriptomic data. 

 

Standard approaches for orthogonal validation aim to recapitulate the DEGs identified by 

sequencing data. As a first-pass check, orthogonal validation is a crucial intermediate in 

determining whether a DEG derived from a cluster is recapitulated within a cellular context 

relevant to the biological question at-hand. Depending on the parameters used for DEG 

discovery, as well as the condition of samples prior to sequencing, DEGs that define a cluster in 

a given dataset may not translate back to a tissue setting. The expression level of DEGs may 

also fluctuate even within a cell’s normal state, thus cell types or identities cannot be declared in 

lieu of lineage tracing and developmental analysis. It then becomes important to demonstrate 

that any genes of interest are truly and consistently being expressed at different levels between 

cell states of interest before moving towards mechanistic interrogation, this orthogonal evidence 

includes but is not limited to the description of the epigenomic, morphological, spatial, and 

biophysical properties or function of cells11. 

 

After orthogonal validation has been completed, functional validation approaches can be utilized 

to investigate how DEGs may be driving cell state. Typically, functional validation is reliant on 

the conclusions of both genomic analyses and orthogonal validations, as these studies can 

provide insight into possible gene interactions and correspondent cell states that correlate to a 

DEG of interest. Functional studies continue to serve as the gold standard, as the physiological 

relevance of different clusters cannot be inferred from the transcriptional state, it can only serve 

as a guide towards cell type assessment. 

 

Understandably, prior cell type classification schemes have been heavily weighted towards 

molecular assays due to the unprecedented scale and throughput of single-cell genomics15. 

However, as noted above, there are a number of issues that can arise when single-cell 

genomics assays are interpreted in a vacuum: 1) it is difficult to distinguish molecular features 

that define stable cell types from transient cell states, 2) the resulting cell type atlases may vary 

depending on the sample size and analytical parameters used for clustering, leading to lack of 

reproducibility with no clear ground truth and 3) the functional relevance of molecularly-defined 

cell types is unclear. Recent multimodal single cell analyses call into question the very notion of 

discrete cell types, suggesting that continuous and correlated variation in cellular morphology, 



biophysical properties and molecular features contributes substantially to cellular diversity within 

broad transcriptomic classes16. True validation of transcriptomic clusters, i.e. confirming that 

they are meaningful and worthwhile to study, requires orthogonal and functional validation. One 

of the major reasons for requiring such orthogonal validation of in silico clusters is that many 

large cell atlas studies are grossly underpowered for lowly abundant or rare cells or cell states, 

often leading to artifacts of clustering. Some methods have been developed to overcome this, 

such as FINDseq (focused interrogation of cells by nucleic acid detection and sequencing)17 – 

developed for the study of rare astrocyte populations isolated on the basis of the expression of a 

few mRNA markers. Additional validation steps, including alternative sequencing efforts, multi-

dataset integration and meta-analyses, visualization (e.g. in situ, MERSCOPE, etc.) are integral 

to validate the biological truth behind computational modeling and clustering. 

 

Orthogonal validation of transcriptomic clusters rests on the hypothesis that bona fide cell types 

should form discrete entities regardless of the particular assay used. In other words, if a group 

of cells segregates as a distinct population using multiple assays, this would support its 

designation as a valid cell type or cell state. The number and type of assays needed to validate 

a new cell type remain unclear, but at a minimum it is recommended that findings from 

sc/snRNAseq be validated using at least one independent assay (e.g. visualization using in situ 

or spatial transcriptomics, scATAC to highlight chromatin accessibility for DEGs, or functional 

assay). However, we would encourage investigators and the field as whole to move beyond this 

minimum requirement to validate new cell types not only at the level of individual genes and 

transcripts, but at the level of proteins, cellular physiology, developmental lineage, morphology, 

connectivity and in vivo function. These additional axes of phenotypic variability will establish 

the robustness of the cell type under investigation and provide a more mechanistic 

understanding of its functional role in the nervous system in vivo. 

  

Methods of validation by visualization 

Spatial transcriptomics 

Spatial transcriptomics, in conjunction with in situ hybridization (ISH), including single molecule 

ISH or RNAscope), immunofluorescence (IF), and immunohistochemistry (IHC), represents a 

powerful combination of techniques for comprehensive characterization of gene expression and 

protein localization within tissues. While sc/snRNAseq provides information on transcriptomes at 

the single-cell /-nuclei level, ISH enables the visualization of specific RNA molecules directly 

within intact tissues, confirming their spatial distribution and validating sequencing results. 

Furthermore, IF and IHC techniques allow the detection and localization of proteins within tissue 

sections, providing additional information on cell types, protein-protein interactions, and cellular 

functions. Integrating these complementary techniques not only verifies sc/snRNAseq findings 

but also allows researchers to study the co-expression of genes and proteins in the context of 

tissue architecture, providing a more comprehensive understanding of cellular behavior and 

molecular interactions within complex biological systems. By leveraging the strengths of spatial 

transcriptomics, ISH, IF, and IHC, researchers can unravel the intricate spatial dynamics of 

gene expression and protein localization, advancing our understanding of tissue development, 

disease pathogenesis, and potential therapeutic targets. 

 



While each of these methods requires the a priori knowledge of DEGs from sc/snRNAseq 

experiments, the advent of spatial transcriptomics has revolutionized the validation of 

sequencing data by enabling the integration of spatial information with transcriptomics analysis 

– often without having a starting dataset. There are two general categories of spatial 

transcriptomics technologies: sequencing based, and in situ based. The genome wide, nature of 

Visium enables the researcher to localize groups of DEGs (often called ‘gene modules’) in 

tissue sections. Visium captures 3’ ends of transcripts via poly-A tail. Therefore, although pre-

selection of targets is not required, non-poly-A transcripts are missed. By combining spatially 

resolved gene expression profiling with high-throughput sequencing, Visium technology allows 

researchers to validate and complement sequencing data.  

 

Sequencing based methods such as Visium and Slide-seq18 employ a spatially barcoded array 

of capture probes, enabling the simultaneous capture of gene expression information from 

multiple spatially defined regions within a tissue sample. The resulting genome-wide, untargeted 

spatial transcriptomics data provides a comprehensive view of gene expression patterns in their 

native tissue context, with 50-100 µm resolution. In situ-based methods such as MERFISH19, 

STARmap20 , and in situ sequencing21 provide high-throughput, direct identification of RNA 

transcripts at sub-cellular resolution of panels of several hundred genes by single molecule 

fluorescence in situ hybridization (FISH) with sequential imaging and signal amplification 

techniques. Since in situ imaging-based methods readout facilitates the visualization of spatial 

gene expression patterns in the context of tissue morphology, enabling a more comprehensive 

understanding of cellular organization and function. 

 

Both technologies provide a validation step for sequencing experiments enhances our 

understanding of the spatial organization of gene expression, cell-cell interactions, and tissue 

architecture. They offer the flexibility to study both coding and non-coding RNA species to 

corroborate sequencing findings, unravel novel biological insights, and identify spatially 

restricted gene expression gradients. Through the integration of spatial transcriptomics, 

researchers can attain a deeper understanding of the spatial dynamics of gene expression, 

ultimately advancing our knowledge of tissue development, disease mechanisms, and potential 

therapeutic targets. 

 

Gene expression versus protein 

Use of spatial transcriptomics or imaging-based RNA visualization to validate the results of 

sc/snRNAseq results, and/or the elucidate spatial context of results, provides important context 

and orthogonal validation. However, it is critical when inferring potential functional 

consequences of results to consider protein-level validation. While transcript and protein levels 

often exhibit fairly good agreement there are a number of regulatory and other mechanisms that 

can lead to dichotomy in transcript:protein ratios22-24. One area where protein-level validation 

provides critical information is in the inference of cell-to-cell communication. The power of 

analysis on the level of single cells have led to a rapid expansion of methods to assess/infer 

cell-to-cell communication through ligand-receptor interactions from scRNAseq and/or spatial 

transcriptomics data25-27. Results from these tools, however, should be considered hypothesis 

generating and not hypothesis validating. Beyond assessing whether ligands and receptors truly 



interact, a lack of confirmation that ligands and receptors are expressed at the protein level and 

in appropriate spatial context represents a critical hole in many of these analyses. Expression 

and/or spatial colocalization can be accomplished by relatively straightforward techniques such 

as IHC or flow cytometry/cyTOF and examining physical interaction can be performed via co-IP 

or newer techniques such as “nativeomics”28. Finally, functional studies to alter a proposed cell-

to-cell communication network provide a critical piece of the puzzle which also must be 

assessed. 

 

Methods of validation by interrogation 

Single-cell transcriptomic approaches uncover differentially expressed genes and transcriptomic 

signatures between different cell types and cell states. These data are descriptive and do not 

establish causality or mechanism. However, they can generate mechanistic and functional 

hypotheses for properties of different transcriptomic states and signatures, and for upstream 

regulators of transcriptomic signatures. Perturbation-based approaches can test these 

functional hypotheses, interrogate causality, and link gene expression to cellular function. 

 

The complementary approach to the observation of transcriptomic changes is the targeted 

manipulation of transcript levels. A number of methods exist for the perturbation of genes in 

cultured cells and model organisms. RNA interference technology enables knockdown of 

mRNAs by synthetic short interfering RNAs (siRNAs) or transgenically expressed short hairpin 

RNAs (shRNAs), but suffers from pervasive off-target effects. 

 

CRISPR-based approaches have fewer off-target effects and provide an expanding toolkit to 

manipulate genes and their products, including genome and epigenome editing, control of gene 

expression and post-transcriptional mRNA processing. CRISPR technology, which enables 

gene knockout to achieve a complete loss of function, has transformed our ability to interrogate 

gene function in a scalable and precise manner29. CRISPR-based approaches, including base 

editors and prime editors, can also introduce precise genome edits to interrogate the genome 

with high resolution30. The CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) 

approaches use a catalytically inactive Cas9 protein to recruit transcriptional regulators to 

genomic sites of interest, enabling the modulation of expression levels of endogenous genes 

over many orders of magnitude31, and thereby providing a strategy to directly model changes in 

expression levels of specific genes that are observed in single-cell transcriptomic studies. 

CRISPRi/a also can target distal regulatory elements, such as enhancers, to establish their 

function in controlling gene expression32,33. Other CRISPR-based tools can edit the 

epigenome34 or affect post-transcriptional processes such as splicing and mRNA stability35. 

 

CRISPR-based gene perturbation can target genes of interest in individual experiments, but 

also in large, massively parallel screens using pooled sgRNA libraries targeting genes of 

interest. Pooled screens can be conducted for a large range of phenotypes, including cell 

survival, cellular functions and states read out by fluorescent markers or reporters, and single-

cell RNA sequencing (using the Perturb-seq36-39 or CROP-seq38 approaches). They can also be 

used for screening of cis-regulatory regions (e.g. in iPSC-derived microglia40) and lincRNAs41. 

Such CRISPR screens can also be implemented with spatial readouts, using pooled optical 



screening approaches, or spatial transcriptomics that uncover sgRNA identity by in situ 

sequencing. 

 

CRISPR-based screens have recently been implemented in cell types relevant to neuroscience, 

including human iPSC-derived neurons42, microglia43, astrocytes44, and brain organoids45, and in 

mouse brains in vivo46,47. CRISPR-based screens in relevant cell types provide a scalable 

approach to generate a genome-wide “look-up-table” for the impact of expression levels of a 

given gene on relevant cellular functions. When possible, these CRISPR-based validation 

studies should be performed in vivo, to minimize artifacts linked to some in vitro, cell isolated, 

systems48. This can then be used to predict functional consequences of changes in gene 

expression that are observed in single-cell transcriptomic datasets 

 

Functional validation 

Following transcript level validation (and characterizing translational status) as described above, 

it is crucial to consider whether distinct clusters of cells possess defining functional properties. 

Such inference is not trivial and, as alluded to above, transcriptionally distinct clusters should 

not be assumed to always associate with functional differences within a cell type or cell type 

differences. Indeed, due to the heuristic nature of clustering tools, some separation of single cell 

RNAseq data is almost inevitable and so must be interpreted with appropriate caution in terms 

of its biological relevance. Cluster fidelity has been successfully studied through evolutionary 

conservation49. It is noteworthy that fleeting changes in cell state such as stage within the cell 

cycle may have greater transcriptomic impact than that cell type or substate50. The degree of 

functional plasticity in this context should also not be underestimated51. These issues 

notwithstanding, single cell sequencing has revealed relatively consistent signatures across 

adult differentiated tissues, predictably correlating with changes in cellular morphology for 

example52. 

 

One reductionist approach to begin to interrogate function of a cluster of cells involves use of 

(induced or embryonic) pluripotent stem cell (PSC) models, either using two or three 

dimensional culture systems53-55. Through ontogeny-recapitulating directed differentiation or 

forward programming approaches, these can be used to generate enriched populations of c 

differentiated cells for further study56,57. Astrocyte reactive state can be used as an exemplar, 

with the comparison of untreated PSC-derived astrocytes versus an induced reactive state 

following treatment with TNF, IL1α, and C1q58,59. Clusters of interest can be isolated through live 

sorting (e.g. FACS or MACS) and after revalidation of transcriptional state, consensus 

homeostatic functional attributes can be interrogated (e.g. sodium dependent glutamate uptake, 

synaptogenesis assays, cytokine secretome, non-cell autonomous neuronal survival etc.) and 

separately the gain of entirely new functions (e.g. neurotoxicity for astrocytes). These could 

represent ‘workhorse assays’ in trying to infer a functional correlate for transcriptomically 

defined heterogeneous states, perhaps comparing to other cluster(s) that lack the transcriptional 

profile of interest. Identification of transcripts within a functionally defined cell can alternatively / 

also be performed retroactively through post-hoc RNA FISH or analogous approaches 

decreased above.  

 



Reducing this approach to practice in general terms would mean generating and isolating cell 

cultures with particular transcriptomic signatures that are viable for such functional 

characterization assays, which may present different challenges for different cell types and/or 

sub-states. Validation by genetic manipulation approaches listed above is critical before ‘final’ 

sub-state assignment. Where single genes or gene sets implicated by statistical prioritization 

(e.g. by significance and effect size), necessity and sufficiency for a particular function (or set of 

functions) can be genetically interrogated using the approaches described above. The detection 

of functional differences would have good positive predictive value for the role of a particular 

gene or gene set. However, if a functional difference is not detected the negative predictive 

value is somewhat limited because there may be specific functions that have not been 

considered or are not easy to assay. Additionally, the requisite functional validation may vary by 

cell type, cellular sub-state and must be defined in relation to the research question / scope of 

analysis. Orthogonal validation of key findings is crucial e.g. using ex vivo or in vivo approaches 

and indeed in human postmortem tissue where applicable.  

 

Additional functional validation can be seeded by results from new methods for the study of cell-

cell interactions between cells. Examples include recent investigations involving astrocytes and 

other glial cells, such as RABID-seq (rabies barcode interaction detection followed by 

sequencing60), SPEAC-seq (systematic perturbation of encapsulated associated cells followed 

by sequencing) which enables droplet-based culture of putative interactive cells39, and LIPSTIC 

(Labelling Immune Partnerships by SorTagging Intercellular Contacts61) for cell-cell interactions 

first used to uncover interactions between T cells and dendritic cells. 

 

Notwithstanding all these excellent tools, both new and old, some confusion still exists about 

what the definition of ‘functional validation’ means. Broadly the field uses this term to link the 

“genotype” as measured through RNAseq data with a “phenotype” as a way to confirm that the 

gene modules identified in sc/snRNAseq are biologically meaningful. Recently, in vivo imaging 

of neuronal activity has been combined with post-hoc with spatial transcriptomics62-64 to provide 

functional validation of putative molecularly defined cell types. These experiments demonstrate 

a general workflow allows for many relevant phenotypes (neuronal activity, structural plasticity, 

neuron migration, etc) measured using fluorescence-based live cell imaging technologies (two-

photon microscopy, confocal microscopy, lightsheet microscopy etc) to followed up with gene 

expression measurements to assess their validity. 

 

There are a number of defining features of CNS cells (i.e. neurons and glia) that allow them to 

be grouped into different types. The unique morphology of different neuron and glia types was 

documented by Ramon y Cajal as one of the first examples of cataloging and classifying distinct 

cell types in the nervous system. With the advent of electrophysiological recording methods, 

different types of neurons could also be characterized by their intrinsic membrane properties 

and synaptic properties. Developments in neural circuit tracing have allowed the dissection of 

neighboring neuron types that participate in distinct circuits (e.g. direct and indirect pathway 

neurons of the striatum). More recently, optogenetic and chemogenetic tools have allowed 

selective manipulation of specific cell populations to probe their behavioral functions. These 

classically defined morphological and functional properties of neural cells can now be integrated 



with transcriptomic and molecular features as discussed above to provide a more complete 

cellular taxonomy of the nervous system65. 

 

For cell types that have been described by scRNAseq, it is important to perform functional 

validation to 1) ensure that these transcriptionally-defined clusters represent a true cell type and 

2) understand their properties in order to place them into the context of the larger circuit or brain 

region. To do this in animal models, it may be necessary to generate genetic reporter animals 

that label a given cell type based on its expression of a marker gene66,67. This strategy has been 

valuable to catalog the properties of many different types of neurons in the brain68. In many 

cases, however, cell types cannot be selectively labeled by expression of one marker gene 

alone, as other cell types may also express that gene to some extent. In that case, it can be 

useful to employ an intersectional strategy whereby cells expressing two genes (or expressing 

one gene but not another) can be selectively targeted69. As an example, this strategy has been 

used to study different types of neuromodulatory neurons, including dopamine and serotonin 

neurons, which have been shown by single cell profiling to be highly heterogeneous70-73. These 

studies have demonstrated that specific subpopulations of these cells, initially defined 

transcriptionally, indeed have different anatomical localization, cellular morphology, connectivity, 

and/or electrophysiological properties. These genetic reporter animals can also be useful for 

mapping the in vivo properties of cell types in the nervous system including their activity 

patterns and contributions to behavior.  

 

Functional validation of neuron types has been performed in several large-scale cellular 

taxonomy papers65. A more general strategy moving forward could be to start with cell types 

defined by sc/snRNAseq, then perform spatial transcriptomics to demonstrate anatomical 

localization (discussed above), then record from and fill cells with a fluorescent dye to examine 

intrinsic membrane (or synaptic) properties, and perform morphological reconstruction (measure 

the properties of dendrites/spines/axons, etc), or perform Patch-seq to pair electrophysiological 

recordings with gene expression data from the same cell74,75. A further step could include 

generating a reporter animal that labels that cell population, which may require an intersectional 

approach with two or more gene drivers defining the cell type. The in vivo circuit connectivity 

and behavioral relevance of that specific cell population can then be tested. This workflow need 

not only be relevant to animal models without the need to have a different strategy for functional 

validation of cell types identified in brain organoids. Recent work in human iPSC-derived 

neuron/astrocyte organoid provided functional validation of astrocytes from these organoids at 

several ‘ages’, performing a variety of assays that probe known astrocyte functions (e.g. 

phagocytosis ability, calcium signaling, synaptogenic properties, developmental outgrowth of 

branches76). In organoids, cell morphology, protein expression (IHC), differentiation potential 

(for progenitors) and intrinsic physiological properties (for neurons) can still be measured as 

functional validation. Similarly, functional validation of astrocytes in different ‘reactive’ and 

disease states has also seen success. Starting with transcriptomic data as a roadmap for ‘what’ 

a reactive sub-state of astrocytes look like in vivo, researchers can isolate primary rodent or 

iPSC-derived human astrocytes, recapitulate the original gene expression signature, then 

continue with functional validation to determine if any loss-of- or gain-of-function changes are 

present in each sub-state. Several examples exist for this method producing high throughput 



and controllable platforms for validating astrocyte disease biology58,59,77-79. And while many fields 

struggle with an internal dialogue about the biological relevance of in vitro cell-based systems, it 

is important to note that nearly all cell functions have been identified using these systems – 

which then require validation back in vivo to ensure discovered functions are not artifacts of the 

culture system. This includes neuron trophic support80,81, synaptogenesis82,83, synapse 

pruning/phagocytosis84,85, neurotoxicity58,59,78, among many more. In the case of astrocytes, it is 

hard to state a single astrocyte function that was discovered in vivo. 

 

How to distinguish “cell types” from “cell states” in snRNA-seq data 

A complicated question raised when interpreting sc/snRNAseq data is whether clusters defined 

by DEGs are in fact terminally differentiated cell types/states, or if they are transient clusters 

that are some way along a trajectory of differentiation to a terminal state. While both options are 

likely important and of interest to understanding much complex underlying biology, validation (in 

particular functional validation) of transient cell states is difficult. 

 

Perhaps the most fundamental question is ‘what is this cell?’ – a focus on which cell types have 

been collected and sequenced. By analyzing the gene expression profiles obtained from 

sc/snRNAseq data, researchers can identify distinct transcriptomic signatures associated with 

different cell types. Cell types are characterized by a set of specific marker genes that are 

consistently expressed across cells of the same type. These marker genes define the core 

identity of a cell type and help distinguish it from other cell types. While some cells can be 

defined by individual genes (e.g. Rbfox3 for neurons, or Aldh1l1 for astrocytes in the CNS), 

others may require multiple markers to disentangle closely-related cell types (e.g. specific 

combination of genes encoding multiple neurotransmitters for neuron). On the other hand, cell 

states refer to transient or context-dependent changes in gene expression within a given cell 

type – often in response to external stimuli like infection, disease, or trauma. By examining the 

expression levels of marker genes and assessing their consistency across cells, researchers 

can differentiate between stable cell types and variable cell states within a population, however 

determining how reliable these states are has caused some confusion in particular fields. 

 

This can be somewhat mitigated by sequencing large numbers of the cell of interest, either by 

pre-enrichment, isolation using genetically encoded fluorophores or surface antigens, or by 

brute force and sequencing millions of cells. Cluster analysis can be applied to these well-

powered datasets to identify distinct cell populations based on gene expression patterns. 

Clustering algorithms group cells with similar gene expression profiles together, enabling the 

separation of different cell types. However, it is important to consider that clustering alone may 

not completely distinguish cell types from cell states, as it may group cells with similar 

transcriptional profiles into subpopulations representing different cell states within the same cell 

type. Further analysis, such as trajectory inference or pseudotime analysis, can help identify cell 

states along developmental or activation trajectories within a particular cell type, though these 

methods may also have problems (see below). 

 

Some differentiation trajectories can be determined using traditional fate mapping of cells86-89, or 

they can be predicted in silico by sequencing multiple timepoints across a developmental time 



period or reactive/disease response by an individual cell type. Such trajectory inference 

methods allow researchers to explore the continuous transitions and cell fate trajectories within 

a homogeneous cell type, but heterogeneous cell state population. By ordering cells along a 

trajectory based on their transcriptomic profiles, it becomes possible to capture both cell types 

and cell states. Trajectory inference methods reveal the underlying biological processes, such 

as cell differentiation, lineage commitment, or cellular response to stimuli. By visualizing the 

trajectory and examining gene expression changes along it, researchers can distinguish stable 

cell types that represent distinct branches and transient cell states that occur along the 

trajectory. 

 

Distinguishing cell types from cell states in sc/snRNAseq data, while seeming simple, remains 

one of the most hotly contested spaces in modern biology. Some computational methods exist, 

for instance one can take the mRNA splicing information of a cell and perform an automatic 

computation of whether the cell state is terminal or not (i.e. the “CellRank” package90). 

Moreover, recent tools have been developed to address whether perturbations in transcription 

factor states correspond to cell state emergence as opposed to cell type91. Researchers use an 

array of methods including analyzing transcriptomic signatures and marker gene expression 

consistency, clustering to separate cell populations, and employing trajectory inference methods 

to capture dynamic cell states along developmental or activation trajectories. Validating and 

characterizing these cell states through functional experiments is crucial for a comprehensive 

understanding of cellular heterogeneity and the functional implications of different states within a 

given cell type, and it is often only at this validation stage that a failure to recapitulate a 

particular gene expression signature is realized as the discovery of a transient state (see also 

companion piece on planning and executing sequencing experiments). 

 

When and how does validation fail? 

Often validation fails due to poorly designed initial sequencing experiments. This can be due to 

contamination of cell types of interest in bulk sequencing efforts, or more common with the 

uptick in sc/snRNAseq studies – a failure to properly power the cell type of interest (an example 

is the gross underpowering of astrocytes in whole CNS cell atlases – often less than 5% of all 

cells sequenced92). Similar artifacts arise when insufficient biological replicates are sequenced – 

often due to high costs of single cell/nuclei sequencing experiments93-95. Even when these initial 

pitfalls are overcome, computational errors can cause havoc for the validating biologist. While 

great computation power exists, and new tools are produced continuously, “grey” areas still 

exist in the field, which could explain why validation fails in some instances. BOX 2 provides a 

brief overview of common validation difficulties from a computation standpoint. 

 

The process of validating single-cell/nuclei sequencing experiments is complex and fraught with 

potential pitfalls. Poorly designed initial sequencing experiments, such as contamination or 

underpowering of cell types of interest, can undermine subsequent validation efforts. 

Computational errors and limitations in existing technologies further contribute to the challenges 

faced by validating biologists. The directionality of RNA velocity analyses can be perturbed by 

overlaying it on existing two-dimensional spaces, and tools for cell tracing and stage prediction 

have limitations that require further investigation. Assumptions about mRNA-protein correlation 



in cell-cell communication analyses and the reliance on databases for known interactions 

introduce potential inaccuracies. Data integration tools are valuable but may artificially smooth 

analyses and obscure real biological differences. Additionally, the functional validation of 

aligned cell types across organisms remains essential, as conservation of circuitry and 

functional properties cannot be assumed. Although challenges exist, emerging technologies 

such as RNA editing and cell-based assays offer promise for improved validation across 

species. Careful consideration and exploration of validation options are necessary to ensure the 

reliability and robustness of single-cell/nuclei sequencing findings. 

  

Cross-species comparisons 

Single cell sequencing provides a molecular ‘common language’ definition of cell types across 

any species with a quality genome. While the definition of a cell type typically invokes other 

features (e.g., connectivity, function, and morphology), these features can be difficult or 

impossible to acquire in many species or in high throughput15,96. Moreover, cell-autonomous 

gene expression programs are the foundation on which many (but not all) structural and 

functional features of a cell are built97. This foundation of shared gene expression programs and 

functional properties across species enables an inference process termed ‘homology mapping.’ 

Properties such as connectivity and physiology are far easier to study in genetically tractable 

and experimentally accessible animal models (e.g., Mus musculus or Drosophila), and then can 

be ‘transferred’ through anchoring to homologous cell types in other species, even humans98. 

  

Identifying homologous cell types across species ideally involves identifying sets of cells in each 

species that access similar regulatory programs for their differentiation99. Single cell sequencing 

combined with lineage tracing or fate mapping is powerful for reconstructing the developmental 

history of cell types100, and hence their relationships across closely related species. We still 

have a fragmented understanding of lineages of transcriptionally-defined cell types in any one 

species101-104 and few comparative studies have attempted to match progenitor classes across 

species (but see98,105). The challenge with matching homologous types from adult data alone is 

distinguishing shared evolutionary history from phenotypic convergence101,106, although with 

large enough sets of species this challenge can be alleviated107. Transcription factors (TFs) 

potently specify cell type identity, suggesting that prioritizing TFs in cross-species cell type 

mapping may improve homology assignments. A single TF or small set of factors can be 

sufficient to switch the fate and ultimate cellular identity. However, TFs are developmentally 

regulated and may not be conserved between the early stages of specification and adulthood. 

  

Across species, cell types change their abundance, gene expression profiles, and spatial 

context. Each of these carries its own challenges for cross-species comparisons. In general, cell 

type similarity decreases – and homology mapping becomes less accurate – with increasing 

evolutionary distance98,107-111. snRNA-seq has been used to reveal conservation and novelty of 

brain cell types across 500 million years of evolution106,107,112,113. Integrating transcriptional 

profiles from single cells across species can be difficult because approaches may rely on 

assumptions of 1:1 orthologous genes114, and gene duplications, losses, and sequence level 

divergence increase with evolutionary distance. Evolutionary modifications of cell types may 

result from neutral drift, physical constraints associated with brain reorganization, or new 



functional requirements. Overall patterns of transcriptional divergence have been linked to 

neutral drift among primates coupled with stabilizing selection over longer time scales at the 

level of tissues and cell types107,115.  

 

Understanding the neuroanatomical and/or physical constraints that drive evolutionary features 

such as proportional shifts in cell types across species remains challenging. In some cases, 

increases in the abundance of a cell type across species can be intuitively linked to species-

specific adaptations, such as the proportional increase of a retinal ganglion cell subtype in 

primates that may relate to neocortically-driven adaptations to high visual acuity107. However, 

sometimes the mechanism driving the differential modification of each cell type is difficult to 

resolve. For example, the observed reduced proportions of subcortically-projecting cortical 

neurons in larger mammalian brains116 may relate to functional requirements to maintain scaling 

relationships between upper and lower motor neurons despite disproportionate cortical 

expansion, or to shifts in the migration of homologous types during development, with either 

mechanism leading to different anatomical distributions. Another example is the recently 

observed relative increase in the proportion of oligodendrocyte progenitor cells compared to 

mature oligodendrocytes in human compared to non-human primate brain117. This difference 

might support enhanced neuronal or myelin plasticity in the adult human brain or perhaps some 

other phenotype that has not yet been linked to oligodendrocyte function. Increased sampling 

through single cell genomics surveys both across species and across individuals within a 

species will help to distinguish between processes of drift and selection, while further analysis of 

scaling relationships and functional changes will be required to resolve the contribution of 

physical constraints and new cellular specializations. Arbitrating between such possibilities 

would enable a better understanding of the targets of evolutionary selection. Finally, and as 

discussed in other sections, issues like overfitting to a single species “reference” dataset, and 

differences in genome quality across species both add technical complexity to cross-species 

comparisons. 

 

Conceptual limitations of transcriptomic-based homology inference 

Importantly, homology describes phylogenetic relationships and is not a synonym of “similarity”. 

Cell types may have similar transcriptomes because they descend from a common ancestor, or 

because they acquired these properties by convergence after evolving under similar selective 

pressures (see Figure 3). The ideal way to discriminate between these two possibilities is to 

sample many species and reconstruct ancestral states using the principle of parsimony 

(convergent characters tend to lack “phylogenetic continuity”). Because this is not always 

feasible for detailed single cell genomic characterization, here we highlight some observations 

that may help with comparing transcriptomic data across species.  

 

Data from neuronal cell types where homologies were established by independent criteria (e.g., 

morphology, input-output connectivity, etc.), offer two key insights. First, although the 

transcriptomic divergence of homologous neurons is generally a function of their phylogenetic 

distance107,109,116, the rate of transcriptomic divergence is cell-type specific: in the primate 

cerebral cortex, for example, non-neuronal cells diverged more rapidly than neurons109. Second, 

transcriptomic divergence is not even across gene families. TFs known for specifying cell 



identity have conserved expression in homologous neuron types, whereas the expression of 

terminal markers or “effector genes” may switch more rapidly109. This indicates that homologous 

neurons may acquire species-specific functions, such as new electrophysiological properties116, 

without changes to their core genetic identity.  

 

These observations are in line with an evolutionary definition of cell type, whereby homologous 

cells share the expression of TFs that establish and maintain their genetic identity118. Comparing 

the expression of TFs can help disambiguate homology and convergent evolution in cell type 

comparisons of distantly-related vertebrate species106,110,112,119-121. For example, distinct classes 

of cortical GABAergic interneurons in amphibians, reptiles, birds, and mammals express the 

same TFs defining class identity; however, the expression of certain effector genes such as the 

calcium-binding protein parvalbumin, which marks a class of mammalian GABAergic 

interneurons, is not conserved across species106,110,112,119. 

 

Are all genes equally informative? 

Whether and how to give different weights to genes for homology inference remains an open 

question both conceptually and algorithmically. While TFs seem to carry a higher weight for 

homology inference, TF combinatorial codes may themselves drift, for example by paralog 

switching122. Paralog switching is particularly relevant for comparing distantly-related species. 

Standard approaches use one-to-one orthologs, because of the assumption that these genes 

carry the same functions. This assumption cannot be made for paralogs because gene 

duplication may be followed by sub- or neofunctionalization. However, limiting the analysis to 

one-to-one orthologs filters out a considerable fraction of the transcriptome, when the species 

compared are separated by large phylogenetic distances. Computational solutions to solve this 

problem have been proposed recently114,123. 

 

Finally, limiting cross-species comparisons to TFs comes with the risk of providing an 

oversimplified representation of cellular diversity. As the field defines subtler distinctions of 

subtypes within given classes, TF level gradients and or post-translational modifications may be 

identified in eliciting distinct transcriptional programs, making cross-species comparisons more 

complicated. Moreover, the potential developmental regulation of TF expression makes their 

use to define identity challenging from a temporal perspective, even within the same species. 

For example, the comparison of TFs may not be powered to identify cell types that have 

diverged recently (“sister cell types”118), which by virtue of their recent diversification share a 

significant fraction of their transcriptomes. 

  

Are cellular transcriptomes enough to infer neuronal homologies? 

As described above, homology inference becomes harder with increasing phylogenetic 

distance, especially when there are large branch lengths between clades with no extant 

species, e.g., comparing mammals to reptiles. Natural selection “cares” about the output of 

brain activity, i.e., the ability of the brain to support adaptive behaviors in the environment of an 

organism. The substrate of selection is the frequency of allelic variants in the population. 

However, the mapping between genotype and the phenotypes under selection in the brain is 

non-trivial: genes do not control behavior directly (with a few exceptions), rather, they affect 



behavior by instructing cell type identity, neuronal wiring, activity, spatial allocation, etc. 

Transcriptomes alone might be insufficient to infer homology when we do not know the traits 

under selection or how genes are related to those traits. Other comparisons that can help with 

homology inference are defining the developmental origin and neuronal connectivity of a given 

cell, although these criteria have their own caveats. The concordance of developmental origin, 

transcriptomic similarity, and input-output connectivity is ideal for a solid homology inference. 

 

In vitro models  

The inaccessibility of neural tissues in humans and other species can limit experimental 

approaches, making in vitro models particularly valuable tools for neuroscientists124,125, 

especially for evolutionary neurobiology. Neural organoids125, 3D in vitro cell cultures, are 

experimentally tractable systems that can model the cell-type heterogeneity125-131 and spatial 

organization132,133 of in vivo neural tissues. A limitation of organoids is that do not faithfully 

reproduce in vivo spatial organization, only rudimentary cell type heterogeneity and 

developmental trajectories. However, for cross-species comparisons, neural organoids offer 

investigative avenues not typically available in non-model organisms, representing a potential 

medium for expansive comparative analyses. As a striking example, human neural organoids 

have been generated with or without a single amino acid change found in Neanderthals, 

enabling the study of the neurobiological consequences of genetic variation found in an extinct 

species134,135. Single-cell dissection of neural organoids can provide cell-type resolution of 

developmental trajectories136,137, enable perturbation of dynamic gene regulatory networks138, 

model neuro-disease mechanisms139-141 and support neurodevelopmental cross-species 

comparisons130,136,142. However, generalizing observations in organoids to natural biology 

requires evaluation of the resemblance of in vitro derived cell types, and their composition and 

organization to in vivo development.  

  

Single cell and spatial genomics approaches enable assessing these metrics of organoid fidelity 

but require accounting for technical variability and limitations of measurements in single cells. 

For example, single cell comparisons demonstrate the capacity of neural organoids to model 

broad in vivo neural cell-types across numerous genomic modalities126-128,137,143. However, these 

single-cell data comparisons typically use a singular in vivo dataset as a reference, which 

ignores potential variability within the reference data that organoids may not recapitulate. 

Especially with sparse and noisy single-cell data, any individual dataset carries error in the 

biological signal. A neural organoid model that recapitulates signal from a single in vivo dataset 

may in fact be a poor general model if the reference signal is of low quality and fails to replicate. 

Therefore, to avoid overfitting it is useful to incorporate cross-validation of in vivo signal among 

in vivo datasets144. This approach establishes a measure of expected error for reference signal, 

which provides a data-driven threshold for identifying neural organoid datasets that produce 

signal comparable to in vivo data. In vivo cross-validation can consist of quantifying signal 

replicability across the increasing amount of publicly available single-cell data of developing 

neural tissues or, within a single dataset, quantifying signal replicability from a withheld portion 

of the data. For example, quantifying differential gene expression statistics across cell-types and 

collating the p-values and fold-changes of genes derived from individual in vivo datasets 



establishes a benchmark of reference signal for interpreting organoid differential expression 

statistics. 

  

While data generation and benchmarking of in vivo data and neural organoids is an ongoing 

endeavor, much can concurrently be learned using organoid tissue. Environmental145 and 

genetic perturbations138,139 of neural organoids coupled with single-cell technologies provide 

informative tests for the mechanisms underlying how a genome operates in a neural tissue 

setting. For cross-species comparisons, single-cell dissection of neural organoids can resolve 

key developmental differences across species, such as molecular mechanisms underlying 

neural progenitor variation across human and primate organoids130,136. However, observations 

are only robust to the class of variability sampled and assessments should be applied to diverse 

genetic backgrounds (cell lines) or differentiation protocols to identify signals that are not 

specific to an individual cell line or protocol. As examples, different organoid protocols aiming to 

derive similar neural lineages (cortical organoids) have reported biases in differentiation 

patterns143 and cell-line specific effects146,147 can obscure disease variability in organoid models. 

Sampling over increased genetic and/or technical variability increases the likelihood of 

replicable signal and acts as a buffer against overfitting. Future studies employing new spatial 

transcriptomic and cellular barcoding strategies (see companion pieces) to examine organoid 

fidelity to normal development can harness these principles and evaluate additional properties 

beyond cellular transcriptomes, including spatial organization, developmental lineage 

relationships, and connectivity.  

 

Technical limitations of transcriptomic-based homology inference 

While we have attempted to provide conceptual criteria above, there are computational 

challenges with defining cell type homologies because there are no formal or uniformly 

accepted criteria. Multiple methods predict homologous cell types, including utilizing shared 

nearest neighbors and axes of transcriptional variation114,148-153. However, integrating across 

species can be difficult because identification of homologous cell types often relies on heuristics 

such as shared nearest neighbors and non-linear data transformations, rather than formal 

models of gene expression divergence and cell type evolution154. As such, the inclusion or 

exclusion of cell types within a given dataset can alter which cell types appear homologous. For 

example, a putative primate-specific cell type thought to be most similar to other striatal 

interneurons108 was determined to actually be more similar to diencephalic neurons when such 

cell types were further included in the analysis155. This issue is a potential caveat for any type of 

comparison whether it is between species, regions, or developmental time periods. 

Compositional concerns are especially pressing in the context of in vitro studies, in which 

different iPSC lines respond divergently to patterning factors and generate cultures with variable 

compositions. It is also important to consider that conserved populations can be repurposed to 

different brain structures over development. For example, recent work showed that classes of 

inhibitory neurons that migrate to rodent olfactory bulb have been redirected to the expanded 

primate white matter105, and a mammalian conserved interneuron type is most numerous in the 

mouse hippocampus but more abundant in the primate neocortex108. 

Thus, the challenges in using single cell approaches to study cell types across species are 

multiplicative. Even with reliable in vivo data from multiple sources, spatiotemporal context and 



biological variation must be considered when modeling homology. In vitro studies have the 

same challenges amplified: cell type distributions are untethered to the anatomy that is 

reproducibly generated in vivo, with the added concern that the observed cell states 

approximate those seen in vivo, heavily layered with various sources of technical variation. 

Despite these challenges, existing data and tools wielded with perspicacious judgement have 

enabled the discovery of new cell types and shared features and principles of vertebrate brain 

development and function. 

 

Technical and biological artifacts 

Since evolutionary findings may be challenging to experimentally validate, it is important to 

consider experimental factors that could lead to erroneous interpretations. Some of these are 

pertinent to evolutionary comparisons, but most are generalizable to other types of comparisons 

(and can be mitigated by careful orthogonal validation – see above). Recent studies have 

shown that technical artifacts such as doublets and ambient RNA contamination can lead to 

misinterpretations156. This is exacerbated when datasets are compared without properly 

adjusting for single-cell sequencing artifacts. For example, if datasets for one species contained 

more artifacts (e.g., higher doublet rate, greater ambient RNA contamination) than the other 

species, the result could be misinterpreted as a species-specific effect (see Figure 4). Biological 

information can also lead to misinterpretations. It is crucial to obtain demographically and 

spatiotemporally similar brain tissues from all species for a proper evolutionary comparison. For 

example, if regional boundaries are not rigorously considered during dissection, it is possible to 

compare improperly matched brain regions between two species which can also lead to 

misclassification of region-specific cellular and molecular features as species-specific effect. We 

note that spatial transcriptomics may alleviate this problem for many species with small brain 

sizes. In addition to brain regions, developmental time points should be matched across species 

to prevent misinterpreting age-specific effects as species-specific effects (see Figure 4). 

However, matching developmental timepoints in distantly related species might be impossible 

and heterochrony should also be considered as a mechanism for evolutionary change. Finally, it 

is important to consider that age-matching often depends on an estimate based on life history 

traits and some cell types may be more sensitive to age-effect than others (e.g., glia change 

more than neurons in very old age157). Thus, interpretation of any species-specific result should 

consider the age bracket of the samples.  

 

Conclusions 

In this review, we have discussed the applications and challenges of sc/snRNAseq for studying 

cellular heterogeneity and evolution across different biological systems, disease states, and 

cross-species comparisons. We have highlighted the importance of validating sc/snRNAseq 

data through various steps, such as in-depth data analysis, functional characterization, cross-

validation, multi-omics integration, and follow-up validation experiments. Furthermore, sharing 

validated scRNAseq data with the scientific community is essential for fostering collaboration 

and scientific progress. These steps can help researchers to maximize the utility and impact of 

sc/snRNAseq findings, uncover novel insights into cellular dynamics and function, and identify 

potential therapeutic targets for complex biological processes or disease contexts. We also 

emphasize the need for specific practices to handle confounds in cross-system analyses, such 



as sampling broadly within each system, measuring variance, assessing similarity without 

merging, and reporting robustness with effect sizes (see also companion pieces). These 

practices can help researchers to avoid overfitting and bias, and to provide meaningful cross-

system assessments that can reveal the molecular mechanisms of brain evolution and adaptive 

behavioral phenotypes. By applying sc/snRNAseq approaches with careful consideration of the 

inherent challenges and limitations, researchers can advance our understanding of cellular 

heterogeneity and evolution across different biological systems.  



BOXES: 

 

Text Box 1. Questions that can be addressed using single cell/nuclei sequencing. 

• Single-cell RNA-seq data indicates gene X is expressed by cell type A.  

• Single-cell RNA data indicates gene Y is upregulated in cell type B during 

disease/pathology/etc. 

• Single-cell data indicates cell type C is composed of three sub-states characterized by 

expression of gene X, gene Y, and gene Z, respectively. 

• Compositional analysis indicates cell type/state D increases/decreases in abundance in 

disease/pathology/etc. 

• Trajectory inference/RNA velocity/etc suggests that gene X is 

[upregulated/downregulated] as cells [differentiate/respond to insult or pathology/etc]. 

• Gene regulatory network inference, peak-gene linkage analysis, etc. suggests 

transcription factor TF1 (or enhancer/repressor E1) modulates expression of gene A. 

• Cell-cell communication analysis suggests cell type A modulates cell type B through the 

interactions of ligand L1 and receptor R1.  

 

Text Box 2. Current challenges and opportunities in sc/snRNAseq and spatial 

transcriptomic analysis 

• Cell lineage tracing: the current technologies that exist for studying RNA velocity are 

limited because the directionality that they output can be perturbed by overlaying it on 

already-existing two-dimensional spaces. Moreover, RNA velocity packages were not 

validated in in vitro systems, which is a limitation when performing scRNAseq from in 

vitro cultures. Also, pseudotime and the pros/cons of these types of “lineage” 

approaches are well-known and have been covered elsewhere in great depth87,158. For 

further reading, see also (Cite accompanying piece). 

• Cell stage prediction: there are ways of predicting the cell cycle stage by cross-

referencing the genes expressed by the cell to a database of genes annotated for each 

stage, though the reliability of this has not been studied in depth. For further reading, see 

also (Cite accompanying piece). 

• Cell-cell communication tools exist, though they are limited, again, as most rely on 

databases on known protein-protein interactions, and, furthermore, there is a general 

assumption (as in all of scRNAseq) that mRNA levels correlate with protein levels. For 

further reading, see also (Cite accompanying piece). 

• Data integration. See also (Cite accompanying piece) Appropriate and reliable tools 

that exist for this in both humans and mice. Cross-species comparison analyses are 

definitely possible to do, and should be attempted, though with the exception that there 

are genes that do not have a homolog or ortholog in the other species, and this reduces 

the scope of the comparison. New tools are being developed with great speed, and 

these concerns will be likely overcome soon. One attempt employed by many is to worry 

less about exact matching of individual genes, but to instead focus on anchoring gene 

expression modules within individual clusters – mitigating the lack of orthologs in some 

instances. Methodologies to perform data integration, across datasets, species, 

modalities, and more, are invaluable tools in the analysis of single cell and spatial 



genomics. However, these technologies present risk as well, in that they can potentially 

eliminate or mitigate real biological differences and therefore artificially smooth analyses. 

Importantly, and often overlooked, is that once cell types are aligned between organisms 

(e.g. rodent and primate) using scRNAseq, they still need to be functionally validated 

across organisms, as the circuitry and functional properties are not necessarily fully 

conserved. This becomes challenging as cell type specific tools are lacking outside 

rodents, but new RNA editing technologies could hold promise for use in primates, while 

the use of cell-based assays and organoids provides some validation options for human 

cells/functions. 

 

Text Box 3. Why do we care about evolution? 

• Evolution is a general biological principle. Thus, understanding the contribution of 

evolution to nervous system function provides important foundational basic science 

knowledge. In addition, understanding the evolutionary constraints and opportunities that 

have occurred in many organisms informs our understanding of the relevance of these 

changes in humans. 

• Understanding the similarity or differences between cell types helps us better interpret 

our findings in one organism to another (e.g., from other mammals to humans). 

• Convergent evolution informs us about the constraints that shape brain evolution in 

terms of plasticity and functional organization of the tissue. In this manner, we can focus 

on the potential cellular and molecular mechanisms that correlate with convergent 

behaviors (e.g., direct corticospinal connections onto lower motor neurons and fine 

motor control). 

• The implementation of evolutionary approaches can result in adaption of new model 

systems that may offer some technical advantages for studying a general problem (e.g., 

the evolution of sleep159). 

• Evolved nervous system function may be directly linked to the emergence of many types 

of nervous system disorders in humans that are not observable in other species.  



FIGURES: 

 
Figure 1. Considerations for orthogonal and functional validation of sequencing data. 

Single cell/nuclei RNA sequencing data, regardless of the tissue originally collected form, 

requires multiple validation steps to ensure biological validity. In addition to ensuring proper 

powering of cell-types-of-interest, additional steps should be applied for best practices. This 

includes integration with other datasets (either across disease models, species, or labs), 

alternative sequencing methods (e.g. to access chromatin accessibility, or to perturb individual 

transcripts), visualization (using immunohistochemistry, FISH, or spatial transcriptomics), 

functional validation to ensure sub-types/-states of cells are indeed terminal and no transitory, 

and finally cross-species validation (of particular importance when using animal models of 

disease to ensure relevance to human patients). One or all of these methods, among others, 

may be required to validate a number of differentially expressed genes (DEGs) identified in 

initial single cell/nuclei sequencing experiments.  



 
Figure 2. Overview of perturbation-based validation approaches. a, sc/snRNA-seq datasets 

can generate different types of functional or mechanistic hypotheses. b, Examples for CRISPR-

based tools to perturb genome sequence and gene expression. c, Experimental strategies for 

high-throughput CRISPR-based perturbation experiments to validate and test functional or 

mechanistic hypotheses from sc/snRNA-seq datasets. 



 
Figure 3. Illustration of cell type homology, convergence, and innovation. A-C) 

Schematics of cell type evolution. Circles indicate transcription factors (TFs). D-F) Examples 

from the literature108,110,119 using single cell genomics to address each type of cell type evolution.  



 
Figure 4. Illustration of technical and biological artifacts. Schematics of how evolutionary 

comparisons using single cell genomics could be vulnerable to misinterpretations due to either 

biological (e.g., brain region selection/dissection or demographics such as age) and/or technical 

(e.g., doublet or ambient RNA) artifacts.  



TABLES: 

 

Table 1. Overview of common orthogonal validation methods. 

Orthogonal validation 

approach 

Readout What is 

being 

validated 

Pros Cons 

RNAscope Molecular RNA 

transcripts 

Single cell resolution 

spatial validation, relatively 

inexpensive 

Low throughput 

MERFISH (Vizgen) Molecular RNA 

transcripts 

Single cell resolution 

spatial validation 

Costly, requires 

specialized equipment 

and reagents 

Visium (10X) Molecular RNA 

transcripts 

High throughput and 

anatomical validation 

Not single cell resolution; 

requires specialized 

reagents 

Immunohistochemistry Molecular Protein Easily accessible with no 

specialized reagents 

required 

Need validated 

antibodies; low 

throughput 

Flow cytometry Molecular Protein Quantitative readouts at 

protein level 

Validating translation 

potential, which may be 

discordant from RNA 

findings; requires 

validated antibodies 

CyTOF Molecular Protein Quantification of multiple 

cellular components 

simultaneously (high 

throughput) 

Validating translation 

potential, which may be 

discordant from RNA 

findings 

CRISPR knockout Functional Gene 

function 

Test necessity of candidate 

genes; relatively 

standardized workflows 

across model systems 

Low throughput; can be 

costly to test multiple 

genes 

CRISPRi/a Functional Gene 

function 

Manipulate expression of 

endogenous genes and 

monitor phenotypic 

consequences; can be 

multiplexed or performed in 

pooled screens 

Variability in degree of 

interference or activation 

from gene-to-gene. 

Susceptible to epigenetic 

or trans-acting regulatory 

environment 

Perturb-seq Functional Gene 

function 

Massively parallel 

functional readouts of gene 

perturbation phenotypes by 

single-cell transcriptomics 

and individual cell 

resolution; can be used 

with traditional Cas9 or 

CRISPRa/i 

Not trivial to design, 

execute, and interpret; 

costly; require robust 

selective challenge 

CROP-seq Functional Gene 

function 

Guide RNAs read directly; 

simplified workflow for 

large screens 

Not trivial to design, 

execute, and interpret; 

costly; require robust 

selective challenge 

ECCITE-seq Functional Gene 

function 

An extension of Perturb-

seq/CROP-seq to 

multimodal readouts 

Challenging to 

implement for 

intracellular antigens 



RABID-seq Functional 

connections 

Cell-cell 

interactions 

High throughput approach 

to validate physical cell-cell 

interactions 

Requires specialized 

reagents and 

bioinformatic pipelines 

Circuit tracing Functional 
connections 

Cell-cell 
interactions 

Can be used to identify 
short and long range 
neuronal connections 

May be difficult to label 
deep brain regions 

SPEAC-seq Functional 
connections 

Cell-cell 
interactions 

Allows individual gene 
perturbations in cells 
cultured in individual 
droplets 

Requires specialized 
reagents and 
bioinformatic pipelines 

Physiological readouts 

(calcium imaging, 

electrophysiology, 

transporter activity) 

Functional Physical 

properties 

of cells 

Can match biophysical 

properties of cells to their 

transcriptional identities; 

powerful tools available 

Requires specialized 

skillsets 

(electrophysiology); may 

require either live intact 

tissue sections, cell type-

specific genetic labeling, 

or robust purification 

strategies to target cell 

types of interest 

Live imaging (migration, 

proliferation) 

Functional Physical 

properties 

of cells 

Can be performed in high 

throughput (multiple cells 

per image); provides input 

on cellular behavior 

Requires specialized 

microscopes (2-photon, 

light-sheet) and live cell 

labeling tools 

Dye-filing for 

morphological readouts 

Morphological Cell 

morphology 

Can provide morphological 

information that is far more 

detailed than 

immunohistochemistry 

Low throughput and 

requires specialized 

equipment 

Viral targeting Morphological Cell 
morphology 

High fidelity morphological 
information, can provide 
sparse labeling for ease of 
reconstruction 

May be difficult to label 
deep brain regions 

fluorescent protein 
expression (driver line) 

Morphological Cell 
morphology 

Can label all cells of one 
type/subtype across the 
entire CNS 

Depending on driver, 
labeled cell density could 
be too high to identify 
individual complex cells 

Abbreviations: CRISPR, clustered regularly interspaced short palindromic repeats; CRISPRa, 

CRISPR activation; CRISPRi, CRISPR interference; CROP-seq, CRISPR droplet sequencing; 

CyTOF, Cytometry by time of flight; ECCITE-seq, expanded CRISPR-compatible cellular 

indexing of transcriptomes and epitopes by sequencing; MERFISH, Multiplexed Error-Robust 

Fluorescence in situ Hybridization; RABID-seq, rabies barcode interaction detection followed by 

sequencing; SPEAC-seq, systematic perturbation of encapsulated associated cells followed by 

sequencing.  
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