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ABSTRACT:

Single-cell/-nuclei transcriptomics (sc/snRNAseq) is a powerful tool for identifying cell types and
states. However, the gene expression information must be validated, and its functional
relevance needs to be established. The choice of validation depends on numerous factors.
Here, we present types of orthogonal and functional validation experiments to strengthen
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preliminary findings obtained using sc/snRNA-seq as well as the challenges and limitations of
these approaches.



MAIN TEXT:

Single-cell/-nuclei transcriptomics (sc/snRNAseq) is a powerful tool for studying various aspects
of biology, evolution, and diseases, such as identifying and characterizing cell types and cell
states, detecting gene expression and epigenetic changes in disease and dysfunction, inferring
developmental trajectories and cell state transitions, predicting gene regulatory mechanisms,
and comparing evolutionary modifications in the specific tissues across species. However, the
high-throughput nature of these experiments and the ever-growing array of computational tools
for analyzing data they produce also increases the risk of false discoveries. Therefore, to
confirm the preliminary findings of single-cell genomics experiments, validation experiments
ought to be performed using orthogonal and functional methods (Figure 1, Table 1). The choice
of validation experiments depends on the specific single-cell finding being tested and the
evolutionary hypothesis being addressed. In this review, we discuss several general use cases
and examples of single-cell findings that can be validated using different approaches (see BOX
1, Table 1). In BOX 3, we discuss why evolutionary comparisons are important for the
neuroscience field from both a basic science and a translational perspective. We also discuss
the challenges and limitations of single-cell genomics for evolutionary comparisons, such as
disentangling homology versus convergent evolution, relating in vitro models to in vivo biology,
and accounting for technical and biological variability.

We present some examples of single-cell findings that may require validation experiments,
covering a variety of common scenarios and methods. These are not exhaustive, but illustrate
how different types of validation can complement and confirm single-cell results. The simplest
confirmatory experiments are those which seek to validate the expression of a small number of
genes in situ. In the first two examples above, such an approach using in situ hybridization with
probes targeting a cell type-specific gene and the gene of interest would provide confirmation of
the single-cell finding. Protein-level validation could also be examined using immunostaining.
However, these methods of validation are not suitable for validation of large numbers of gene
expression changes, or in cases when several genes are necessary for the identification of a
cellular state or multiple states (BOX 1, use case #3). To validate such claims, multiplex in situ
methods like MERFISH or genome wide spatial sequencing methods like 10X Visium may be
necessary. With a growing array of spatial transcriptomics and proteomics methods, careful
consideration of the pros and cons of each method is warranted. Finally, many single-cell
analysis findings reach beyond description of gene expression and infer putative function and
gene regulatory mechanismes, as in the cases of cell-cell communication analysis and gene
regulatory network inference!. While spatial visualization of gene expression or downstream
protein abundance may be useful for demonstrating co-localization of a ligand and receptor, for
example, visualization alone is not sufficient to demonstrate biologically meaningful functions,
bona fide cell-cell communication, or transcription factor-enhancer/promoter interactions.
Validating these mechanistic and functional inferences may require perturbation experiments
(see Figure 2) and further functional studies, which we discuss in depth below.

Primary validation approaches
Validation of clusters versus validation of individual differentially expressed genes




Single cell genomics is a powerful approach to identify molecular phenotypes that contribute to
cellular diversity?. By facilitating the simultaneous comparison of profiles from a collection of
cells, single cell genomics can define clusters based on identified differentially expressed genes
(DEGSs)*®. However, algorithms used to process and analyze single cell datasets are designed
to detect transcriptional differences, and depending on the resolution specified, they will
continue to subset cells even if the differences are so minute that they constitute noise®. It is
essential to set several resolutions in clustering followed by iterations of computational post-hoc
validation prior to biological validation (see companion piece on sequencing technologies). The
inherent features of the clustering algorithms that provide modularity of the system also
reinforce the importance of post-hoc validation methods to ensure cluster numbers reflect real
biology.

An important first step is loyal cell type calling by integrating novel experimental datasets into
large-scale atlases or databases. The tools used can be either classical integration methods
with the external dataset of interest (to understand if the cell type at question has an exact
correspondence to the published cell type), or transcriptomic similarity approaches (to
understand if the new cell type is similar to an existing cell type). The latter can be
accomplished by using tools like AddModuleScore() in Suerat’, or tools like Celltypist® and
CellHint®. Further computational methods to validate clustering numbers include visualization of
most highly enriched transcripts per cluster (top 10 or top 100) and projection across all cells by
cluster'®. This method allows to see the level of transcriptional discernment between cells in
each group: the best clustering illustrates a diagonal line where each transcript is enriched
relatively uniform across all cells in a cluster, but is lowly expressed in all other cells across
other clusters (dot plots, violin plots, and heatmaps are routinely used). If there is high
expression of cluster-enriched genes outside of the candidate cluster, this indicates that there is
overclustering and too high of a resolution indicated, and that clusters likely represent the same
cells or subtle changes between cell states. It is best to initially set the resolution high to
overcluster before modifying the resolution, slightly lowering it until robust cluster separation is
able to be visualized.

An additional computational method to ensure clustering isn’t an artifact of similar cells being
inputted into analysis and the algorithm forcing differences that aren’t there is to pulse in a
known disparate cell types to see if the prior clusters collapse. For example, many groups
subcluster cells from larger datasets to allow identification of more subtle, cellular subtypes or
states that are otherwise hidden in larger datasets due to divergent cell types in the larger
dataset. While this method is standard and acceptable, adding in a different cell type is a
stringent method to determine if these subtypes or states are in fact truly different.

Finally, and most importantly, all clustering by single cell data necessitates post-hoc validation
in biological samples?!. Single cell data should be viewed as a prediction of biology that allows
for guided hypothesis generation. Single cell data should not be considered fact or provide
conclusions in the absence of confirmation in tissue or cells*?. Different visualization methods
can be employed to validate clusters by assessing cluster-enriched or cluster-specific
transcripts or proteins in cells or tissue; these methods are discussed below. Targets should be



visualized overlapping with other cluster-enriched or cluster-specific markers, but separate from
other clusters. These methods also allow for detection of DEGs between clusters.

DEGs can thus be extrapolated as rudimentary markers of cell types and/or states. However,
these transcriptomic profiles only provide a snapshot of cellular behaviors. Given that
identification of DEGs is an inherently comparative process, additional genes that may be
playing a pivotal role in driving cell identity may escape the radar of DEG analysis. For example,
a pivotal interaction between two genes may be necessary for supporting a cell’s function. In the
absence of one of those genes, a different population of cells is actually losing the combined
effect of both; while this first gene may appear in a DEG analysis between these two clusters,
the second gene will go largely unnoticed!?4. Herein lies the need for orthogonal and functional
validation of individual DEGs, as the complex mechanisms and interplay of DEGs remain largely
hidden within transcriptomic data.

Standard approaches for orthogonal validation aim to recapitulate the DEGs identified by
sequencing data. As a first-pass check, orthogonal validation is a crucial intermediate in
determining whether a DEG derived from a cluster is recapitulated within a cellular context
relevant to the biological question at-hand. Depending on the parameters used for DEG
discovery, as well as the condition of samples prior to sequencing, DEGs that define a cluster in
a given dataset may not translate back to a tissue setting. The expression level of DEGs may
also fluctuate even within a cell’s normal state, thus cell types or identities cannot be declared in
lieu of lineage tracing and developmental analysis. It then becomes important to demonstrate
that any genes of interest are truly and consistently being expressed at different levels between
cell states of interest before moving towards mechanistic interrogation, this orthogonal evidence
includes but is not limited to the description of the epigenomic, morphological, spatial, and
biophysical properties or function of cells'?.

After orthogonal validation has been completed, functional validation approaches can be utilized
to investigate how DEGs may be driving cell state. Typically, functional validation is reliant on
the conclusions of both genomic analyses and orthogonal validations, as these studies can
provide insight into possible gene interactions and correspondent cell states that correlate to a
DEG of interest. Functional studies continue to serve as the gold standard, as the physiological
relevance of different clusters cannot be inferred from the transcriptional state, it can only serve
as a guide towards cell type assessment.

Understandably, prior cell type classification schemes have been heavily weighted towards
molecular assays due to the unprecedented scale and throughput of single-cell genomics?®®.
However, as noted above, there are a number of issues that can arise when single-cell
genomics assays are interpreted in a vacuum: 1) it is difficult to distinguish molecular features
that define stable cell types from transient cell states, 2) the resulting cell type atlases may vary
depending on the sample size and analytical parameters used for clustering, leading to lack of
reproducibility with no clear ground truth and 3) the functional relevance of molecularly-defined
cell types is unclear. Recent multimodal single cell analyses call into question the very notion of
discrete cell types, suggesting that continuous and correlated variation in cellular morphology,



biophysical properties and molecular features contributes substantially to cellular diversity within
broad transcriptomic classes?®. True validation of transcriptomic clusters, i.e. confirming that
they are meaningful and worthwhile to study, requires orthogonal and functional validation. One
of the major reasons for requiring such orthogonal validation of in silico clusters is that many
large cell atlas studies are grossly underpowered for lowly abundant or rare cells or cell states,
often leading to artifacts of clustering. Some methods have been developed to overcome this,
such as FINDseq (focused interrogation of cells by nucleic acid detection and sequencing)!’ —
developed for the study of rare astrocyte populations isolated on the basis of the expression of a
few mMRNA markers. Additional validation steps, including alternative sequencing efforts, multi-
dataset integration and meta-analyses, visualization (e.g. in situ, MERSCOPE, etc.) are integral
to validate the biological truth behind computational modeling and clustering.

Orthogonal validation of transcriptomic clusters rests on the hypothesis that bona fide cell types
should form discrete entities regardless of the particular assay used. In other words, if a group
of cells segregates as a distinct population using multiple assays, this would support its
designation as a valid cell type or cell state. The number and type of assays needed to validate
a new cell type remain unclear, but at a minimum it is recommended that findings from
sc/snRNAseq be validated using at least one independent assay (e.g. visualization using in situ
or spatial transcriptomics, SCATAC to highlight chromatin accessibility for DEGs, or functional
assay). However, we would encourage investigators and the field as whole to move beyond this
minimum requirement to validate new cell types not only at the level of individual genes and
transcripts, but at the level of proteins, cellular physiology, developmental lineage, morphology,
connectivity and in vivo function. These additional axes of phenotypic variability will establish
the robustness of the cell type under investigation and provide a more mechanistic
understanding of its functional role in the nervous system in vivo.

Methods of validation by visualization

Spatial transcriptomics

Spatial transcriptomics, in conjunction with in situ hybridization (ISH), including single molecule
ISH or RNAscope), immunofluorescence (IF), and immunohistochemistry (IHC), represents a
powerful combination of techniques for comprehensive characterization of gene expression and
protein localization within tissues. While sc/snRNAseq provides information on transcriptomes at
the single-cell /-nuclei level, ISH enables the visualization of specific RNA molecules directly
within intact tissues, confirming their spatial distribution and validating sequencing results.
Furthermore, IF and IHC techniques allow the detection and localization of proteins within tissue
sections, providing additional information on cell types, protein-protein interactions, and cellular
functions. Integrating these complementary techniques not only verifies sc/snRNAseq findings
but also allows researchers to study the co-expression of genes and proteins in the context of
tissue architecture, providing a more comprehensive understanding of cellular behavior and
molecular interactions within complex biological systems. By leveraging the strengths of spatial
transcriptomics, ISH, IF, and IHC, researchers can unravel the intricate spatial dynamics of
gene expression and protein localization, advancing our understanding of tissue development,
disease pathogenesis, and potential therapeutic targets.



While each of these methods requires the a priori knowledge of DEGs from sc/snRNAseq
experiments, the advent of spatial transcriptomics has revolutionized the validation of
sequencing data by enabling the integration of spatial information with transcriptomics analysis
— often without having a starting dataset. There are two general categories of spatial
transcriptomics technologies: sequencing based, and in situ based. The genome wide, nature of
Visium enables the researcher to localize groups of DEGs (often called ‘gene modules’) in
tissue sections. Visium captures 3’ ends of transcripts via poly-A tail. Therefore, although pre-
selection of targets is not required, non-poly-A transcripts are missed. By combining spatially
resolved gene expression profiling with high-throughput sequencing, Visium technology allows
researchers to validate and complement sequencing data.

Sequencing based methods such as Visium and Slide-seq® employ a spatially barcoded array
of capture probes, enabling the simultaneous capture of gene expression information from
multiple spatially defined regions within a tissue sample. The resulting genome-wide, untargeted
spatial transcriptomics data provides a comprehensive view of gene expression patterns in their
native tissue context, with 50-100 pum resolution. In situ-based methods such as MERFISH?®,
STARmap? , and in situ sequencing? provide high-throughput, direct identification of RNA
transcripts at sub-cellular resolution of panels of several hundred genes by single molecule
fluorescence in situ hybridization (FISH) with sequential imaging and signal amplification
techniques. Since in situ imaging-based methods readout facilitates the visualization of spatial
gene expression patterns in the context of tissue morphology, enabling a more comprehensive
understanding of cellular organization and function.

Both technologies provide a validation step for sequencing experiments enhances our
understanding of the spatial organization of gene expression, cell-cell interactions, and tissue
architecture. They offer the flexibility to study both coding and non-coding RNA species to
corroborate sequencing findings, unravel novel biological insights, and identify spatially
restricted gene expression gradients. Through the integration of spatial transcriptomics,
researchers can attain a deeper understanding of the spatial dynamics of gene expression,
ultimately advancing our knowledge of tissue development, disease mechanisms, and potential
therapeutic targets.

Gene expression versus protein

Use of spatial transcriptomics or imaging-based RNA visualization to validate the results of
sc/snRNAseq results, and/or the elucidate spatial context of results, provides important context
and orthogonal validation. However, it is critical when inferring potential functional
consequences of results to consider protein-level validation. While transcript and protein levels
often exhibit fairly good agreement there are a number of regulatory and other mechanisms that
can lead to dichotomy in transcript:protein ratios?>?4, One area where protein-level validation
provides critical information is in the inference of cell-to-cell communication. The power of
analysis on the level of single cells have led to a rapid expansion of methods to assess/infer
cell-to-cell communication through ligand-receptor interactions from scRNAseq and/or spatial
transcriptomics data®>?’. Results from these tools, however, should be considered hypothesis
generating and not hypothesis validating. Beyond assessing whether ligands and receptors truly



interact, a lack of confirmation that ligands and receptors are expressed at the protein level and
in appropriate spatial context represents a critical hole in many of these analyses. Expression
and/or spatial colocalization can be accomplished by relatively straightforward techniques such
as IHC or flow cytometry/cyTOF and examining physical interaction can be performed via co-IP
or newer techniques such as “nativeomics”?®. Finally, functional studies to alter a proposed cell-
to-cell communication network provide a critical piece of the puzzle which also must be
assessed.

Methods of validation by interrogation

Single-cell transcriptomic approaches uncover differentially expressed genes and transcriptomic
signatures between different cell types and cell states. These data are descriptive and do not
establish causality or mechanism. However, they can generate mechanistic and functional
hypotheses for properties of different transcriptomic states and signatures, and for upstream
regulators of transcriptomic signatures. Perturbation-based approaches can test these
functional hypotheses, interrogate causality, and link gene expression to cellular function.

The complementary approach to the observation of transcriptomic changes is the targeted
manipulation of transcript levels. A number of methods exist for the perturbation of genes in
cultured cells and model organisms. RNA interference technology enables knockdown of
MRNASs by synthetic short interfering RNAs (siRNASs) or transgenically expressed short hairpin
RNAs (shRNAs), but suffers from pervasive off-target effects.

CRISPR-based approaches have fewer off-target effects and provide an expanding toolkit to
manipulate genes and their products, including genome and epigenome editing, control of gene
expression and post-transcriptional mMRNA processing. CRISPR technology, which enables
gene knockout to achieve a complete loss of function, has transformed our ability to interrogate
gene function in a scalable and precise manner?®. CRISPR-based approaches, including base
editors and prime editors, can also introduce precise genome edits to interrogate the genome
with high resolution®. The CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa)
approaches use a catalytically inactive Cas9 protein to recruit transcriptional regulators to
genomic sites of interest, enabling the modulation of expression levels of endogenous genes
over many orders of magnitude3®!, and thereby providing a strategy to directly model changes in
expression levels of specific genes that are observed in single-cell transcriptomic studies.
CRISPRI/a also can target distal regulatory elements, such as enhancers, to establish their
function in controlling gene expression®?23, Other CRISPR-based tools can edit the
epigenome®* or affect post-transcriptional processes such as splicing and mRNA stability°.

CRISPR-based gene perturbation can target genes of interest in individual experiments, but
also in large, massively parallel screens using pooled sgRNA libraries targeting genes of
interest. Pooled screens can be conducted for a large range of phenotypes, including cell
survival, cellular functions and states read out by fluorescent markers or reporters, and single-
cell RNA sequencing (using the Perturb-seq®3° or CROP-seq® approaches). They can also be
used for screening of cis-regulatory regions (e.g. in iPSC-derived microglia*®) and lincRNAs*!.
Such CRISPR screens can also be implemented with spatial readouts, using pooled optical



screening approaches, or spatial transcriptomics that uncover sgRNA identity by in situ
sequencing.

CRISPR-based screens have recently been implemented in cell types relevant to neuroscience,
including human iPSC-derived neurons*?, microglia®®, astrocytes**, and brain organoids*®, and in
mouse brains in vivo*®4’. CRISPR-based screens in relevant cell types provide a scalable
approach to generate a genome-wide “look-up-table” for the impact of expression levels of a
given gene on relevant cellular functions. When possible, these CRISPR-based validation
studies should be performed in vivo, to minimize artifacts linked to some in vitro, cell isolated,
systems*®, This can then be used to predict functional consequences of changes in gene
expression that are observed in single-cell transcriptomic datasets

Functional validation

Following transcript level validation (and characterizing translational status) as described above,
it is crucial to consider whether distinct clusters of cells possess defining functional properties.
Such inference is not trivial and, as alluded to above, transcriptionally distinct clusters should
not be assumed to always associate with functional differences within a cell type or cell type
differences. Indeed, due to the heuristic nature of clustering tools, some separation of single cell
RNAseq data is almost inevitable and so must be interpreted with appropriate caution in terms
of its biological relevance. Cluster fidelity has been successfully studied through evolutionary
conservation®, It is noteworthy that fleeting changes in cell state such as stage within the cell
cycle may have greater transcriptomic impact than that cell type or substate®. The degree of
functional plasticity in this context should also not be underestimated®!. These issues
notwithstanding, single cell sequencing has revealed relatively consistent signatures across
adult differentiated tissues, predictably correlating with changes in cellular morphology for
example®,

One reductionist approach to begin to interrogate function of a cluster of cells involves use of
(induced or embryonic) pluripotent stem cell (PSC) models, either using two or three
dimensional culture systems®-°, Through ontogeny-recapitulating directed differentiation or
forward programming approaches, these can be used to generate enriched populations of ¢
differentiated cells for further study®®°’. Astrocyte reactive state can be used as an exemplar,
with the comparison of untreated PSC-derived astrocytes versus an induced reactive state
following treatment with TNF, IL1a, and C1g°®*°. Clusters of interest can be isolated through live
sorting (e.g. FACS or MACS) and after revalidation of transcriptional state, consensus
homeostatic functional attributes can be interrogated (e.g. sodium dependent glutamate uptake,
synaptogenesis assays, cytokine secretome, non-cell autonomous neuronal survival etc.) and
separately the gain of entirely new functions (e.g. neurotoxicity for astrocytes). These could
represent ‘workhorse assays’ in trying to infer a functional correlate for transcriptomically
defined heterogeneous states, perhaps comparing to other cluster(s) that lack the transcriptional
profile of interest. Identification of transcripts within a functionally defined cell can alternatively /
also be performed retroactively through post-hoc RNA FISH or analogous approaches
decreased above.



Reducing this approach to practice in general terms would mean generating and isolating cell
cultures with particular transcriptomic signatures that are viable for such functional
characterization assays, which may present different challenges for different cell types and/or
sub-states. Validation by genetic manipulation approaches listed above is critical before ‘final’
sub-state assignment. Where single genes or gene sets implicated by statistical prioritization
(e.g. by significance and effect size), necessity and sufficiency for a particular function (or set of
functions) can be genetically interrogated using the approaches described above. The detection
of functional differences would have good positive predictive value for the role of a particular
gene or gene set. However, if a functional difference is not detected the negative predictive
value is somewhat limited because there may be specific functions that have not been
considered or are not easy to assay. Additionally, the requisite functional validation may vary by
cell type, cellular sub-state and must be defined in relation to the research question / scope of
analysis. Orthogonal validation of key findings is crucial e.g. using ex vivo or in vivo approaches
and indeed in human postmortem tissue where applicable.

Additional functional validation can be seeded by results from new methods for the study of cell-
cell interactions between cells. Examples include recent investigations involving astrocytes and
other glial cells, such as RABID-seq (rabies barcode interaction detection followed by
sequencing®’), SPEAC-seq (systematic perturbation of encapsulated associated cells followed
by sequencing) which enables droplet-based culture of putative interactive cells®, and LIPSTIC
(Labelling Immune Partnerships by SorTagging Intercellular Contacts®?) for cell-cell interactions
first used to uncover interactions between T cells and dendritic cells.

Notwithstanding all these excellent tools, both new and old, some confusion still exists about
what the definition of ‘functional validation’ means. Broadly the field uses this term to link the
“genotype” as measured through RNAseq data with a “phenotype” as a way to confirm that the
gene modules identified in sc/snRNAseq are biologically meaningful. Recently, in vivo imaging
of neuronal activity has been combined with post-hoc with spatial transcriptomics®2-%* to provide
functional validation of putative molecularly defined cell types. These experiments demonstrate
a general workflow allows for many relevant phenotypes (neuronal activity, structural plasticity,
neuron migration, etc) measured using fluorescence-based live cell imaging technologies (two-
photon microscopy, confocal microscopy, lightsheet microscopy etc) to followed up with gene
expression measurements to assess their validity.

There are a number of defining features of CNS cells (i.e. neurons and glia) that allow them to
be grouped into different types. The unique morphology of different neuron and glia types was
documented by Ramon y Cajal as one of the first examples of cataloging and classifying distinct
cell types in the nervous system. With the advent of electrophysiological recording methods,
different types of neurons could also be characterized by their intrinsic membrane properties
and synaptic properties. Developments in neural circuit tracing have allowed the dissection of
neighboring neuron types that participate in distinct circuits (e.g. direct and indirect pathway
neurons of the striatum). More recently, optogenetic and chemogenetic tools have allowed
selective manipulation of specific cell populations to probe their behavioral functions. These
classically defined morphological and functional properties of neural cells can now be integrated



with transcriptomic and molecular features as discussed above to provide a more complete
cellular taxonomy of the nervous system®.

For cell types that have been described by scRNAseq, it is important to perform functional
validation to 1) ensure that these transcriptionally-defined clusters represent a true cell type and
2) understand their properties in order to place them into the context of the larger circuit or brain
region. To do this in animal models, it may be necessary to generate genetic reporter animals
that label a given cell type based on its expression of a marker gene®%’. This strategy has been
valuable to catalog the properties of many different types of neurons in the brain®. In many
cases, however, cell types cannot be selectively labeled by expression of one marker gene
alone, as other cell types may also express that gene to some extent. In that case, it can be
useful to employ an intersectional strategy whereby cells expressing two genes (or expressing
one gene but not another) can be selectively targeted®®. As an example, this strategy has been
used to study different types of neuromodulatory neurons, including dopamine and serotonin
neurons, which have been shown by single cell profiling to be highly heterogeneous3. These
studies have demonstrated that specific subpopulations of these cells, initially defined
transcriptionally, indeed have different anatomical localization, cellular morphology, connectivity,
and/or electrophysiological properties. These genetic reporter animals can also be useful for
mapping the in vivo properties of cell types in the nervous system including their activity
patterns and contributions to behavior.

Functional validation of neuron types has been performed in several large-scale cellular
taxonomy papers®®. A more general strategy moving forward could be to start with cell types
defined by sc/snRNAseq, then perform spatial transcriptomics to demonstrate anatomical
localization (discussed above), then record from and fill cells with a fluorescent dye to examine
intrinsic membrane (or synaptic) properties, and perform morphological reconstruction (measure
the properties of dendrites/spines/axons, etc), or perform Patch-seq to pair electrophysiological
recordings with gene expression data from the same cell’*">, A further step could include
generating a reporter animal that labels that cell population, which may require an intersectional
approach with two or more gene drivers defining the cell type. The in vivo circuit connectivity
and behavioral relevance of that specific cell population can then be tested. This workflow need
not only be relevant to animal models without the need to have a different strategy for functional
validation of cell types identified in brain organoids. Recent work in human iPSC-derived
neuron/astrocyte organoid provided functional validation of astrocytes from these organoids at
several ‘ages’, performing a variety of assays that probe known astrocyte functions (e.g.
phagocytosis ability, calcium signaling, synaptogenic properties, developmental outgrowth of
branches’®). In organoids, cell morphology, protein expression (IHC), differentiation potential
(for progenitors) and intrinsic physiological properties (for neurons) can still be measured as
functional validation. Similarly, functional validation of astrocytes in different ‘reactive’ and
disease states has also seen success. Starting with transcriptomic data as a roadmap for ‘what’
a reactive sub-state of astrocytes look like in vivo, researchers can isolate primary rodent or
iPSC-derived human astrocytes, recapitulate the original gene expression signature, then
continue with functional validation to determine if any loss-of- or gain-of-function changes are
present in each sub-state. Several examples exist for this method producing high throughput



and controllable platforms for validating astrocyte disease biology®®°®7"7°, And while many fields
struggle with an internal dialogue about the biological relevance of in vitro cell-based systems, it
is important to note that nearly all cell functions have been identified using these systems —
which then require validation back in vivo to ensure discovered functions are not artifacts of the
culture system. This includes neuron trophic support®®8!, synaptogenesis®?83, synapse
pruning/phagocytosis®#, neurotoxicity®®>%’8, among many more. In the case of astrocytes, it is
hard to state a single astrocyte function that was discovered in vivo.

How to distinguish “cell types” from “cell states” in shRNA-seq data

A complicated question raised when interpreting sc/snRNAseq data is whether clusters defined
by DEGs are in fact terminally differentiated cell types/states, or if they are transient clusters
that are some way along a trajectory of differentiation to a terminal state. While both options are
likely important and of interest to understanding much complex underlying biology, validation (in
particular functional validation) of transient cell states is difficult.

Perhaps the most fundamental question is ‘what is this cell?’ — a focus on which cell types have
been collected and sequenced. By analyzing the gene expression profiles obtained from
sc/snRNAseq data, researchers can identify distinct transcriptomic signatures associated with
different cell types. Cell types are characterized by a set of specific marker genes that are
consistently expressed across cells of the same type. These marker genes define the core
identity of a cell type and help distinguish it from other cell types. While some cells can be
defined by individual genes (e.g. Rbfox3 for neurons, or Aldh1l1 for astrocytes in the CNS),
others may require multiple markers to disentangle closely-related cell types (e.g. specific
combination of genes encoding multiple neurotransmitters for neuron). On the other hand, cell
states refer to transient or context-dependent changes in gene expression within a given cell
type — often in response to external stimuli like infection, disease, or trauma. By examining the
expression levels of marker genes and assessing their consistency across cells, researchers
can differentiate between stable cell types and variable cell states within a population, however
determining how reliable these states are has caused some confusion in particular fields.

This can be somewhat mitigated by sequencing large numbers of the cell of interest, either by
pre-enrichment, isolation using genetically encoded fluorophores or surface antigens, or by
brute force and sequencing millions of cells. Cluster analysis can be applied to these well-
powered datasets to identify distinct cell populations based on gene expression patterns.
Clustering algorithms group cells with similar gene expression profiles together, enabling the
separation of different cell types. However, it is important to consider that clustering alone may
not completely distinguish cell types from cell states, as it may group cells with similar
transcriptional profiles into subpopulations representing different cell states within the same cell
type. Further analysis, such as trajectory inference or pseudotime analysis, can help identify cell
states along developmental or activation trajectories within a particular cell type, though these
methods may also have problems (see below).

Some differentiation trajectories can be determined using traditional fate mapping of cells®#°, or
they can be predicted in silico by sequencing multiple timepoints across a developmental time



period or reactive/disease response by an individual cell type. Such trajectory inference
methods allow researchers to explore the continuous transitions and cell fate trajectories within
a homogeneous cell type, but heterogeneous cell state population. By ordering cells along a
trajectory based on their transcriptomic profiles, it becomes possible to capture both cell types
and cell states. Trajectory inference methods reveal the underlying biological processes, such
as cell differentiation, lineage commitment, or cellular response to stimuli. By visualizing the
trajectory and examining gene expression changes along it, researchers can distinguish stable
cell types that represent distinct branches and transient cell states that occur along the
trajectory.

Distinguishing cell types from cell states in sc/snRNAseq data, while seeming simple, remains
one of the most hotly contested spaces in modern biology. Some computational methods exist,
for instance one can take the mRNA splicing information of a cell and perform an automatic
computation of whether the cell state is terminal or not (i.e. the “CellRank” package®).
Moreover, recent tools have been developed to address whether perturbations in transcription
factor states correspond to cell state emergence as opposed to cell type®. Researchers use an
array of methods including analyzing transcriptomic signatures and marker gene expression
consistency, clustering to separate cell populations, and employing trajectory inference methods
to capture dynamic cell states along developmental or activation trajectories. Validating and
characterizing these cell states through functional experiments is crucial for a comprehensive
understanding of cellular heterogeneity and the functional implications of different states within a
given cell type, and it is often only at this validation stage that a failure to recapitulate a
particular gene expression signature is realized as the discovery of a transient state (see also
companion piece on planning and executing sequencing experiments).

When and how does validation fail?

Often validation fails due to poorly designed initial sequencing experiments. This can be due to
contamination of cell types of interest in bulk sequencing efforts, or more common with the
uptick in sc/snRNAseq studies — a failure to properly power the cell type of interest (an example
is the gross underpowering of astrocytes in whole CNS cell atlases — often less than 5% of all
cells sequenced®). Similar artifacts arise when insufficient biological replicates are sequenced —
often due to high costs of single cell/nuclei sequencing experiments®*®, Even when these initial
pitfalls are overcome, computational errors can cause havoc for the validating biologist. While
great computation power exists, and new tools are produced continuously, “grey” areas still
exist in the field, which could explain why validation fails in some instances. BOX 2 provides a
brief overview of common validation difficulties from a computation standpoint.

The process of validating single-cell/nuclei sequencing experiments is complex and fraught with
potential pitfalls. Poorly designed initial sequencing experiments, such as contamination or
underpowering of cell types of interest, can undermine subsequent validation efforts.
Computational errors and limitations in existing technologies further contribute to the challenges
faced by validating biologists. The directionality of RNA velocity analyses can be perturbed by
overlaying it on existing two-dimensional spaces, and tools for cell tracing and stage prediction
have limitations that require further investigation. Assumptions about mRNA-protein correlation



in cell-cell communication analyses and the reliance on databases for known interactions
introduce potential inaccuracies. Data integration tools are valuable but may artificially smooth
analyses and obscure real biological differences. Additionally, the functional validation of
aligned cell types across organisms remains essential, as conservation of circuitry and
functional properties cannot be assumed. Although challenges exist, emerging technologies
such as RNA editing and cell-based assays offer promise for improved validation across
species. Careful consideration and exploration of validation options are necessary to ensure the
reliability and robustness of single-cell/nuclei sequencing findings.

Cross-species comparisons

Single cell sequencing provides a molecular ‘common language’ definition of cell types across
any species with a quality genome. While the definition of a cell type typically invokes other
features (e.g., connectivity, function, and morphology), these features can be difficult or
impossible to acquire in many species or in high throughput>°. Moreover, cell-autonomous
gene expression programs are the foundation on which many (but not all) structural and
functional features of a cell are built®”. This foundation of shared gene expression programs and
functional properties across species enables an inference process termed ‘homology mapping.’
Properties such as connectivity and physiology are far easier to study in genetically tractable
and experimentally accessible animal models (e.g., Mus musculus or Drosophila), and then can
be ‘transferred’ through anchoring to homologous cell types in other species, even humans®.

Identifying homologous cell types across species ideally involves identifying sets of cells in each
species that access similar regulatory programs for their differentiation®®. Single cell sequencing
combined with lineage tracing or fate mapping is powerful for reconstructing the developmental
history of cell types'®, and hence their relationships across closely related species. We still
have a fragmented understanding of lineages of transcriptionally-defined cell types in any one
species!®?1% and few comparative studies have attempted to match progenitor classes across
species (but see®1%), The challenge with matching homologous types from adult data alone is
distinguishing shared evolutionary history from phenotypic convergence!®:1%, although with
large enough sets of species this challenge can be alleviated!®’. Transcription factors (TFs)
potently specify cell type identity, suggesting that prioritizing TFs in cross-species cell type
mapping may improve homology assignments. A single TF or small set of factors can be
sufficient to switch the fate and ultimate cellular identity. However, TFs are developmentally
regulated and may not be conserved between the early stages of specification and adulthood.

Across species, cell types change their abundance, gene expression profiles, and spatial
context. Each of these carries its own challenges for cross-species comparisons. In general, cell
type similarity decreases — and homology mapping becomes less accurate — with increasing
evolutionary distance®197111 snRNA-seq has been used to reveal conservation and novelty of
brain cell types across 500 million years of evolution%107.112113 |ntegrating transcriptional
profiles from single cells across species can be difficult because approaches may rely on
assumptions of 1:1 orthologous genes!!*, and gene duplications, losses, and sequence level
divergence increase with evolutionary distance. Evolutionary modifications of cell types may
result from neutral drift, physical constraints associated with brain reorganization, or new



functional requirements. Overall patterns of transcriptional divergence have been linked to
neutral drift among primates coupled with stabilizing selection over longer time scales at the
level of tissues and cell types®”115,

Understanding the neuroanatomical and/or physical constraints that drive evolutionary features
such as proportional shifts in cell types across species remains challenging. In some cases,
increases in the abundance of a cell type across species can be intuitively linked to species-
specific adaptations, such as the proportional increase of a retinal ganglion cell subtype in
primates that may relate to neocortically-driven adaptations to high visual acuity’®’. However,
sometimes the mechanism driving the differential modification of each cell type is difficult to
resolve. For example, the observed reduced proportions of subcortically-projecting cortical
neurons in larger mammalian brains!!® may relate to functional requirements to maintain scaling
relationships between upper and lower motor neurons despite disproportionate cortical
expansion, or to shifts in the migration of homologous types during development, with either
mechanism leading to different anatomical distributions. Another example is the recently
observed relative increase in the proportion of oligodendrocyte progenitor cells compared to
mature oligodendrocytes in human compared to non-human primate brain*'’. This difference
might support enhanced neuronal or myelin plasticity in the adult human brain or perhaps some
other phenotype that has not yet been linked to oligodendrocyte function. Increased sampling
through single cell genomics surveys both across species and across individuals within a
species will help to distinguish between processes of drift and selection, while further analysis of
scaling relationships and functional changes will be required to resolve the contribution of
physical constraints and new cellular specializations. Arbitrating between such possibilities
would enable a better understanding of the targets of evolutionary selection. Finally, and as
discussed in other sections, issues like overfitting to a single species “reference” dataset, and
differences in genome quality across species both add technical complexity to cross-species
comparisons.

Conceptual limitations of transcriptomic-based homology inference

Importantly, homology describes phylogenetic relationships and is not a synonym of “similarity”.
Cell types may have similar transcriptomes because they descend from a common ancestor, or
because they acquired these properties by convergence after evolving under similar selective
pressures (see Figure 3). The ideal way to discriminate between these two possibilities is to
sample many species and reconstruct ancestral states using the principle of parsimony
(convergent characters tend to lack “phylogenetic continuity”). Because this is not always
feasible for detailed single cell genomic characterization, here we highlight some observations
that may help with comparing transcriptomic data across species.

Data from neuronal cell types where homologies were established by independent criteria (e.g.,
morphology, input-output connectivity, etc.), offer two key insights. First, although the
transcriptomic divergence of homologous neurons is generally a function of their phylogenetic
distance!?”19%116 the rate of transcriptomic divergence is cell-type specific: in the primate
cerebral cortex, for example, non-neuronal cells diverged more rapidly than neurons!®. Second,
transcriptomic divergence is not even across gene families. TFs known for specifying cell



identity have conserved expression in homologous neuron types, whereas the expression of
terminal markers or “effector genes” may switch more rapidly®. This indicates that homologous
neurons may acquire species-specific functions, such as new electrophysiological properties?*,
without changes to their core genetic identity.

These observations are in line with an evolutionary definition of cell type, whereby homologous
cells share the expression of TFs that establish and maintain their genetic identity*'8. Comparing
the expression of TFs can help disambiguate homology and convergent evolution in cell type
comparisons of distantly-related vertebrate species'®¢110.112119-121 'Eqr example, distinct classes
of cortical GABAergic interneurons in amphibians, reptiles, birds, and mammals express the
same TFs defining class identity; however, the expression of certain effector genes such as the
calcium-binding protein parvalbumin, which marks a class of mammalian GABAergic
interneurons, is not conserved across species06:110.112.119

Are all genes equally informative?

Whether and how to give different weights to genes for homology inference remains an open
guestion both conceptually and algorithmically. While TFs seem to carry a higher weight for
homology inference, TF combinatorial codes may themselves drift, for example by paralog
switching®?2, Paralog switching is particularly relevant for comparing distantly-related species.
Standard approaches use one-to-one orthologs, because of the assumption that these genes
carry the same functions. This assumption cannot be made for paralogs because gene
duplication may be followed by sub- or neofunctionalization. However, limiting the analysis to
one-to-one orthologs filters out a considerable fraction of the transcriptome, when the species
compared are separated by large phylogenetic distances. Computational solutions to solve this
problem have been proposed recently!'4123,

Finally, limiting cross-species comparisons to TFs comes with the risk of providing an
oversimplified representation of cellular diversity. As the field defines subtler distinctions of
subtypes within given classes, TF level gradients and or post-translational modifications may be
identified in eliciting distinct transcriptional programs, making cross-species comparisons more
complicated. Moreover, the potential developmental regulation of TF expression makes their
use to define identity challenging from a temporal perspective, even within the same species.
For example, the comparison of TFs may not be powered to identify cell types that have
diverged recently (“sister cell types”'8), which by virtue of their recent diversification share a
significant fraction of their transcriptomes.

Are cellular transcriptomes enough to infer neuronal homologies?

As described above, homology inference becomes harder with increasing phylogenetic
distance, especially when there are large branch lengths between clades with no extant
species, e.g., comparing mammals to reptiles. Natural selection “cares” about the output of
brain activity, i.e., the ability of the brain to support adaptive behaviors in the environment of an
organism. The substrate of selection is the frequency of allelic variants in the population.
However, the mapping between genotype and the phenotypes under selection in the brain is
non-trivial: genes do not control behavior directly (with a few exceptions), rather, they affect



behavior by instructing cell type identity, neuronal wiring, activity, spatial allocation, etc.
Transcriptomes alone might be insufficient to infer homology when we do not know the traits
under selection or how genes are related to those traits. Other comparisons that can help with
homology inference are defining the developmental origin and neuronal connectivity of a given
cell, although these criteria have their own caveats. The concordance of developmental origin,
transcriptomic similarity, and input-output connectivity is ideal for a solid homology inference.

In vitro models

The inaccessibility of neural tissues in humans and other species can limit experimental
approaches, making in vitro models particularly valuable tools for neuroscientists?4125,
especially for evolutionary neurobiology. Neural organoids??®, 3D in vitro cell cultures, are
experimentally tractable systems that can model the cell-type heterogeneity!?>3! and spatial
organization'3213 of in vivo neural tissues. A limitation of organoids is that do not faithfully
reproduce in vivo spatial organization, only rudimentary cell type heterogeneity and
developmental trajectories. However, for cross-species comparisons, neural organoids offer
investigative avenues not typically available in non-model organisms, representing a potential
medium for expansive comparative analyses. As a striking example, human neural organoids
have been generated with or without a single amino acid change found in Neanderthals,
enabling the study of the neurobiological consequences of genetic variation found in an extinct
species'® 135, Single-cell dissection of neural organoids can provide cell-type resolution of
developmental trajectories'®¢*37, enable perturbation of dynamic gene regulatory networks*%,
model neuro-disease mechanisms®*%4! and support neurodevelopmental cross-species
comparisons!3%136142 However, generalizing observations in organoids to natural biology
requires evaluation of the resemblance of in vitro derived cell types, and their composition and
organization to in vivo development.

Single cell and spatial genomics approaches enable assessing these metrics of organoid fidelity
but require accounting for technical variability and limitations of measurements in single cells.
For example, single cell comparisons demonstrate the capacity of neural organoids to model
broad in vivo neural cell-types across numerous genomic modalities'?6-128137.143 However, these
single-cell data comparisons typically use a singular in vivo dataset as a reference, which
ignores potential variability within the reference data that organoids may not recapitulate.
Especially with sparse and noisy single-cell data, any individual dataset carries error in the
biological signal. A neural organoid model that recapitulates signal from a single in vivo dataset
may in fact be a poor general model if the reference signal is of low quality and fails to replicate.
Therefore, to avoid overfitting it is useful to incorporate cross-validation of in vivo signal among
in vivo datasets!*. This approach establishes a measure of expected error for reference signal,
which provides a data-driven threshold for identifying neural organoid datasets that produce
signal comparable to in vivo data. In vivo cross-validation can consist of quantifying signal
replicability across the increasing amount of publicly available single-cell data of developing
neural tissues or, within a single dataset, quantifying signal replicability from a withheld portion
of the data. For example, quantifying differential gene expression statistics across cell-types and
collating the p-values and fold-changes of genes derived from individual in vivo datasets



establishes a benchmark of reference signal for interpreting organoid differential expression
statistics.

While data generation and benchmarking of in vivo data and neural organoids is an ongoing
endeavor, much can concurrently be learned using organoid tissue. Environmental'*® and
genetic perturbations313° of neural organoids coupled with single-cell technologies provide
informative tests for the mechanisms underlying how a genome operates in a neural tissue
setting. For cross-species comparisons, single-cell dissection of neural organoids can resolve
key developmental differences across species, such as molecular mechanisms underlying
neural progenitor variation across human and primate organoids3%13¢, However, observations
are only robust to the class of variability sampled and assessments should be applied to diverse
genetic backgrounds (cell lines) or differentiation protocols to identify signals that are not
specific to an individual cell line or protocol. As examples, different organoid protocols aiming to
derive similar neural lineages (cortical organoids) have reported biases in differentiation
patterns'*® and cell-line specific effects'#614’ can obscure disease variability in organoid models.
Sampling over increased genetic and/or technical variability increases the likelihood of
replicable signal and acts as a buffer against overfitting. Future studies employing new spatial
transcriptomic and cellular barcoding strategies (see companion pieces) to examine organoid
fidelity to normal development can harness these principles and evaluate additional properties
beyond cellular transcriptomes, including spatial organization, developmental lineage
relationships, and connectivity.

Technical limitations of transcriptomic-based homology inference

While we have attempted to provide conceptual criteria above, there are computational
challenges with defining cell type homologies because there are no formal or uniformly
accepted criteria. Multiple methods predict homologous cell types, including utilizing shared
nearest neighbors and axes of transcriptional variation!'#148-153 However, integrating across
species can be difficult because identification of homologous cell types often relies on heuristics
such as shared nearest neighbors and non-linear data transformations, rather than formal
models of gene expression divergence and cell type evolution!®*. As such, the inclusion or
exclusion of cell types within a given dataset can alter which cell types appear homologous. For
example, a putative primate-specific cell type thought to be most similar to other striatal
interneurons'®® was determined to actually be more similar to diencephalic neurons when such
cell types were further included in the analysis®®®. This issue is a potential caveat for any type of
comparison whether it is between species, regions, or developmental time periods.
Compositional concerns are especially pressing in the context of in vitro studies, in which
different iPSC lines respond divergently to patterning factors and generate cultures with variable
compositions. It is also important to consider that conserved populations can be repurposed to
different brain structures over development. For example, recent work showed that classes of
inhibitory neurons that migrate to rodent olfactory bulb have been redirected to the expanded
primate white matter'®, and a mammalian conserved interneuron type is most numerous in the
mouse hippocampus but more abundant in the primate neocortex!,

Thus, the challenges in using single cell approaches to study cell types across species are
multiplicative. Even with reliable in vivo data from multiple sources, spatiotemporal context and



biological variation must be considered when modeling homology. In vitro studies have the
same challenges amplified: cell type distributions are untethered to the anatomy that is
reproducibly generated in vivo, with the added concern that the observed cell states
approximate those seen in vivo, heavily layered with various sources of technical variation.
Despite these challenges, existing data and tools wielded with perspicacious judgement have
enabled the discovery of new cell types and shared features and principles of vertebrate brain
development and function.

Technical and biological artifacts

Since evolutionary findings may be challenging to experimentally validate, it is important to
consider experimental factors that could lead to erroneous interpretations. Some of these are
pertinent to evolutionary comparisons, but most are generalizable to other types of comparisons
(and can be mitigated by careful orthogonal validation — see above). Recent studies have
shown that technical artifacts such as doublets and ambient RNA contamination can lead to
misinterpretations?®®. This is exacerbated when datasets are compared without properly
adjusting for single-cell sequencing artifacts. For example, if datasets for one species contained
more artifacts (e.g., higher doublet rate, greater ambient RNA contamination) than the other
species, the result could be misinterpreted as a species-specific effect (see Figure 4). Biological
information can also lead to misinterpretations. It is crucial to obtain demographically and
spatiotemporally similar brain tissues from all species for a proper evolutionary comparison. For
example, if regional boundaries are not rigorously considered during dissection, it is possible to
compare improperly matched brain regions between two species which can also lead to
misclassification of region-specific cellular and molecular features as species-specific effect. We
note that spatial transcriptomics may alleviate this problem for many species with small brain
sizes. In addition to brain regions, developmental time points should be matched across species
to prevent misinterpreting age-specific effects as species-specific effects (see Figure 4).
However, matching developmental timepoints in distantly related species might be impossible
and heterochrony should also be considered as a mechanism for evolutionary change. Finally, it
is important to consider that age-matching often depends on an estimate based on life history
traits and some cell types may be more sensitive to age-effect than others (e.g., glia change
more than neurons in very old age'®’). Thus, interpretation of any species-specific result should
consider the age bracket of the samples.

Conclusions

In this review, we have discussed the applications and challenges of sc/snRNAseq for studying
cellular heterogeneity and evolution across different biological systems, disease states, and
cross-species comparisons. We have highlighted the importance of validating sc/snRNAseq
data through various steps, such as in-depth data analysis, functional characterization, cross-
validation, multi-omics integration, and follow-up validation experiments. Furthermore, sharing
validated scRNAseq data with the scientific community is essential for fostering collaboration
and scientific progress. These steps can help researchers to maximize the utility and impact of
sc/snRNAseq findings, uncover novel insights into cellular dynamics and function, and identify
potential therapeutic targets for complex biological processes or disease contexts. We also
emphasize the need for specific practices to handle confounds in cross-system analyses, such



as sampling broadly within each system, measuring variance, assessing similarity without
merging, and reporting robustness with effect sizes (see also companion pieces). These
practices can help researchers to avoid overfitting and bias, and to provide meaningful cross-
system assessments that can reveal the molecular mechanisms of brain evolution and adaptive
behavioral phenotypes. By applying sc/snRNAseq approaches with careful consideration of the
inherent challenges and limitations, researchers can advance our understanding of cellular
heterogeneity and evolution across different biological systems.



BOXES:

Text Box 1. Questions that can be addressed using single cell/nuclei sequencing.

Single-cell RNA-seq data indicates gene X is expressed by cell type A.

Single-cell RNA data indicates gene Y is upregulated in cell type B during
disease/pathology/etc.

Single-cell data indicates cell type C is composed of three sub-states characterized by
expression of gene X, gene Y, and gene Z, respectively.

Compositional analysis indicates cell type/state D increases/decreases in abundance in
disease/pathology/etc.

Trajectory inference/RNA velocity/etc suggests that gene X is
[upregulated/downregulated] as cells [differentiate/respond to insult or pathology/etc].
Gene regulatory network inference, peak-gene linkage analysis, etc. suggests
transcription factor TF1 (or enhancer/repressor E1) modulates expression of gene A.
Cell-cell communication analysis suggests cell type A modulates cell type B through the
interactions of ligand L1 and receptor R1.

Text Box 2. Current challenges and opportunities in sc/snRNAseq and spatial
transcriptomic analysis

Cell lineage tracing: the current technologies that exist for studying RNA velocity are
limited because the directionality that they output can be perturbed by overlaying it on
already-existing two-dimensional spaces. Moreover, RNA velocity packages were not
validated in in vitro systems, which is a limitation when performing scRNAseq from in
vitro cultures. Also, pseudotime and the pros/cons of these types of “lineage”
approaches are well-known and have been covered elsewhere in great depth®"'%8, For
further reading, see also (Cite accompanying piece).

Cell stage prediction: there are ways of predicting the cell cycle stage by cross-
referencing the genes expressed by the cell to a database of genes annotated for each
stage, though the reliability of this has not been studied in depth. For further reading, see
also (Cite accompanying piece).

Cell-cell communication tools exist, though they are limited, again, as most rely on
databases on known protein-protein interactions, and, furthermore, there is a general
assumption (as in all of scRNAseq) that mRNA levels correlate with protein levels. For
further reading, see also (Cite accompanying piece).

Data integration. See also (Cite accompanying piece) Appropriate and reliable tools
that exist for this in both humans and mice. Cross-species comparison analyses are
definitely possible to do, and should be attempted, though with the exception that there
are genes that do not have a homolog or ortholog in the other species, and this reduces
the scope of the comparison. New tools are being developed with great speed, and
these concerns will be likely overcome soon. One attempt employed by many is to worry
less about exact matching of individual genes, but to instead focus on anchoring gene
expression modules within individual clusters — mitigating the lack of orthologs in some
instances. Methodologies to perform data integration, across datasets, species,
modalities, and more, are invaluable tools in the analysis of single cell and spatial



genomics. However, these technologies present risk as well, in that they can potentially
eliminate or mitigate real biological differences and therefore artificially smooth analyses.
Importantly, and often overlooked, is that once cell types are aligned between organisms
(e.g. rodent and primate) using sScRNAseq, they still need to be functionally validated
across organisms, as the circuitry and functional properties are not necessarily fully
conserved. This becomes challenging as cell type specific tools are lacking outside
rodents, but new RNA editing technologies could hold promise for use in primates, while
the use of cell-based assays and organoids provides some validation options for human
cells/functions.

Text Box 3. Why do we care about evolution?

Evolution is a general biological principle. Thus, understanding the contribution of
evolution to nervous system function provides important foundational basic science
knowledge. In addition, understanding the evolutionary constraints and opportunities that
have occurred in many organisms informs our understanding of the relevance of these
changes in humans.

Understanding the similarity or differences between cell types helps us better interpret
our findings in one organism to another (e.g., from other mammals to humans).
Convergent evolution informs us about the constraints that shape brain evolution in
terms of plasticity and functional organization of the tissue. In this manner, we can focus
on the potential cellular and molecular mechanisms that correlate with convergent
behaviors (e.qg., direct corticospinal connections onto lower motor neurons and fine
motor control).

The implementation of evolutionary approaches can result in adaption of new model
systems that may offer some technical advantages for studying a general problem (e.g.,
the evolution of sleep®?).

Evolved nervous system function may be directly linked to the emergence of many types
of nervous system disorders in humans that are not observable in other species.
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Figure 1. Considerations for orthogonal and functional validation of sequencing data.
Single cell/nuclei RNA sequencing data, regardless of the tissue originally collected form,
requires multiple validation steps to ensure biological validity. In addition to ensuring proper
powering of cell-types-of-interest, additional steps should be applied for best practices. This
includes integration with other datasets (either across disease models, species, or labs),
alternative sequencing methods (e.g. to access chromatin accessibility, or to perturb individual
transcripts), visualization (using immunohistochemistry, FISH, or spatial transcriptomics),
functional validation to ensure sub-types/-states of cells are indeed terminal and no transitory,
and finally cross-species validation (of particular importance when using animal models of
disease to ensure relevance to human patients). One or all of these methods, among others,
may be required to validate a number of differentially expressed genes (DEGSs) identified in
initial single cell/nuclei sequencing experiments.



Testable hypotheses from single-cell datasets

roocosssccoe:  Regulatory DNA elements

SO .

Targets of regulation

\Y\Y @» Regulatory RNAs/proteins /®'

soodoooocosoc Differentially expressed genes ——=—»

b

Altering DNA sequence

& sgRNA Cas9

DNA
DNA cleavage > repair

DNA =2

CRISPR-based tools for perturbation

©) Changes in cellular function -
Changes in cell state %

Controlling gene expression

CRISPR Repressor
i -
interference “ .

(CRISPRi) DNA
TSS Gene repressed
or regulatory site

Activator
CRISPR
activation _l..
(CRISPRa)  DNA

TSS Gene induced

or regulatory site

also: prime editing also: CRISPRoff (epigenome editing)

High-throughput strategies for evaluating perturbations

el efl T
et e CRCNONCNO "
O%O L 8 o®e 1 1 ¥ ! 1 Validation of:
PSR ——. ESN ) i X x
ooo Transduce with .:O
Mammalian cells ~Pooled sgRNA
expressing library targeting
CRISPR  regulatory elements,
machinery non-coding RNAs,
or proteins Effect of gene perturbation on transcriptome

Drivers of changes
in gene expression
and cell states
(regulatory DNA
elements and
trans-acting
O% ) Cor;i‘a/;e RNAs/proteins)
High &)} sgl
R ef Fluorescent stain / oo frequencies
oo (@) el el @ or reporter for  FACS sort *
O ——————= O @® —~  based
OOO Transduce with. @®O peh

expression  fluorescence

Droplet-based single-cell RNA-Seq
+ identification of sgRNA

e ef

Effect of differentially
expressed genes

Effect of
oo o on cell states and

perturbation on

Mammalian cells Pooled sgRNA of gene of interest, .
expressing _llbrary targeting cellular state Low\\ o e phenotype cell functions
CRISPR  regulatory elements, or activity =] e} monitored
machinery ~ Non-coding RNAs, () by fluorescence |
or proteins

Figure 2. Overview of perturbation-based validation approaches. a, sc/snRNA-seq datasets
can generate different types of functional or mechanistic hypotheses. b, Examples for CRISPR-
based tools to perturb genome sequence and gene expression. ¢, Experimental strategies for
high-throughput CRISPR-based perturbation experiments to validate and test functional or
mechanistic hypotheses from sc/snRNA-seq datasets.
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Potential pitfalls

Species 1 Species 2
Cell / Nucleus
Droplet i .
Bead | | . Doublet clusters can be misinterpreted
Doublets . * ) /e , . : e
, . as real and species-specific
Species 1 Species 2
_ 1- Empty droplets can be misinterpreted as real
_Native mRNAﬁ - o
Ambient RNA N S S . L
S {./AV:N \‘ Eor s ,{g‘fv\ 2- Ambient RNA contamination imbalance
contamination \Za )| Za) \ )
@ N @/ .. can appear as differential expression
Ambient mRNA
Species 1 Species 2

Comparable Regional differences can be misinterpreted as

brain regions

species-specific differences

Species 1
o .
o Species 2

Comparable Demographics-related differences can be

demographics

$ misinterpreted as species-specific differences

Gene expression

Gene expression

Age Species 1 Species 2
Figure 4. lllustration of technical and biological artifacts. Schematics of how evolutionary
comparisons using single cell genomics could be vulnerable to misinterpretations due to either
biological (e.g., brain region selection/dissection or demographics such as age) and/or technical
(e.g., doublet or ambient RNA) artifacts.



TABLES:

Table 1. Overview of common orthogonal validation methods.

multimodal readouts

Orthogonal validation Readout What is Pros Cons
approach being
validated
RNAscope Molecular RNA Single cell resolution Low throughput
transcripts spatial validation, relatively
inexpensive
MERFISH (Vizgen) Molecular RNA Single cell resolution Costly, requires
transcripts spatial validation specialized equipment
and reagents
Visium (10X) Molecular RNA High throughput and Not single cell resolution;
transcripts anatomical validation requires specialized
reagents
Immunohistochemistry Molecular Protein Easily accessible with no Need validated
specialized reagents antibodies; low
required throughput
Flow cytometry Molecular Protein Quantitative readouts at Validating translation
protein level potential, which may be
discordant from RNA
findings; requires
validated antibodies
CyTOF Molecular Protein Quantification of multiple Validating translation
cellular components potential, which may be
simultaneously (high discordant from RNA
throughput) findings
CRISPR knockout Functional Gene Test necessity of candidate | Low throughput; can be
function genes; relatively costly to test multiple
standardized workflows genes
across model systems
CRISPRi/a Functional Gene Manipulate expression of Variability in degree of
function endogenous genes and interference or activation
monitor phenotypic from gene-to-gene.
consequences; can be Susceptible to epigenetic
multiplexed or performed in | or trans-acting regulatory
pooled screens environment
Perturb-seq Functional Gene Massively parallel Not trivial to design,
function functional readouts of gene | execute, and interpret;
perturbation phenotypes by | costly; require robust
single-cell transcriptomics selective challenge
and individual cell
resolution; can be used
with traditional Cas9 or
CRISPRa/i
CROP-seq Functional Gene Guide RNAs read directly; Not trivial to design,
function simplified workflow for execute, and interpret;
large screens costly; require robust
selective challenge
ECCITE-seq Functional Gene An extension of Perturb- Challenging to
function seg/CROP-seq to implement for

intracellular antigens




entire CNS

RABID-seq Functional Cell-cell High throughput approach Requires specialized
connections interactions | to validate physical cell-cell | reagents and
interactions bioinformatic pipelines
Circuit tracing Functional Cell-cell Can be used to identify May be difficult to label
connections interactions | short and long range deep brain regions
neuronal connections
SPEAC-seq Functional Cell-cell Allows individual gene Requires specialized
connections interactions | perturbations in cells reagents and
cultured in individual bioinformatic pipelines
droplets
Physiological readouts Functional Physical Can match biophysical Requires specialized
(calcium imaging, properties properties of cells to their skillsets
electrophysiology, of cells transcriptional identities; (electrophysiology); may
transporter activity) powerful tools available require either live intact
tissue sections, cell type-
specific genetic labeling,
or robust purification
strategies to target cell
types of interest
Live imaging (migration, | Functional Physical Can be performed in high Requires specialized
proliferation) properties throughput (multiple cells microscopes (2-photon,
of cells per image); provides input | light-sheet) and live cell
on cellular behavior labeling tools
Dye-filing for Morphological | Cell Can provide morphological | Low throughput and
morphological readouts morphology | information that is far more | requires specialized
detailed than equipment
immunohistochemistry
Viral targeting Morphological | Cell High fidelity morphological | May be difficult to label
morphology | information, can provide deep brain regions
sparse labeling for ease of
reconstruction
fluorescent protein Morphological | Cell Can label all cells of one Depending on driver,
expression (driver line) morphology | type/subtype across the labeled cell density could

be too high to identify
individual complex cells

Abbreviations: CRISPR, clustered regularly interspaced short palindromic repeats; CRISPRa,
CRISPR activation; CRISPRI, CRISPR interference; CROP-seq, CRISPR droplet sequencing;
CyTOF, Cytometry by time of flight; ECCITE-seq, expanded CRISPR-compatible cellular
indexing of transcriptomes and epitopes by sequencing; MERFISH, Multiplexed Error-Robust
Fluorescence in situ Hybridization; RABID-seq, rabies barcode interaction detection followed by
sequencing; SPEAC-seq, systematic perturbation of encapsulated associated cells followed by

sequencing.
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