Franz, Silvio;
Sclocchi, Antonio;
Urbani, Pierfrancesco;
(2020)
Critical energy landscape of linear soft spheres.
SciPost Physics
, 9
(1)
, Article 012. 10.21468/scipostphys.9.1.012.
Preview |
Text
Sclocchi_SciPostPhys_9_1_012.pdf Download (1MB) | Preview |
Abstract
We show that soft spheres interacting with a linear ramp potential when overcompressed beyond the jamming point fall in an amorphous solid phase which is critical, mechanically marginally stable and share many features with the jamming point itself. In the whole phase, the relevant local minima of the potential energy landscape display an isostatic contact network of perfectly touching spheres whose statistics is controlled by an infinite lengthscale. Excitations around such energy minima are non-linear, system spanning, and characterized by a set of non-trivial critical exponents. We perform numerical simulations to measure their values and show that, while they coincide, within numerical precision, with the critical exponents appearing at jamming, the nature of the corresponding excitations is richer. Therefore, linear soft spheres appear as a novel class of finite dimensional systems that self-organize into new, critical, marginally stable, states.
Type: | Article |
---|---|
Title: | Critical energy landscape of linear soft spheres |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.21468/scipostphys.9.1.012 |
Publisher version: | https://doi.org/10.21468/scipostphys.9.1.012 |
Language: | English |
Additional information: | Copyright S. Franz et al. This work is licensed under the Creative Commons Attribution 4.0 International License. Published by the SciPost Foundation. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Gatsby Computational Neurosci Unit |
URI: | https://discovery.ucl.ac.uk/id/eprint/10206014 |




Archive Staff Only
![]() |
View Item |