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Abstract 

Prefabricated construction, especially precast concrete structure, is widely acknowledged for 

its potential in reducing embodied carbon emissions (CE) in the Chinese construction industry. 

Although efforts have been made to enhance sustainability through optimised prefabrication 

design, their practical implementation often falls short due to a lack of real-world 

considerations during the design stage. Therefore, this research aims to address these issues by 

developing a novel design optimisation model aimed at minimizing embodied CE in 

prefabricated construction, considering practical constraints such as architectural design, 

manufacturing, transportation, and assembly. 

Using a parametric approach, the proposed model generates geometric design alternatives 

based on the original architectural design. The finite element analysis and structure design are 

subsequently employed to determine the detailed design of building elements. The 

manufacturing CE is calculated by summing emissions from building materials and casting 

formwork. Next, the transportation CE is estimated by simulating the transportation status of 

building elements using a bin-packing algorithm and calculating transportation emissions with 

a modal analysis model. A genetic algorithm (GA) is then used to identify the feasible solution 

with the lowest emissions from manufacturing and transportation. 

The model was implemented and tested in a real-world project case in China, achieving 

significant reductions in embodied CE: 11.09% in materials, 0.13% in formwork, and 30.82% 

in transportation, leading to an overall 10.06% reduction. A survey of 134 Chinese designers 

further confirmed the model's practicality and effectiveness, with most participants expressing 

willingness to adopt it in their design processes. 

These findings underscore the model’s ability to aid designers and contractors in reducing 

embodied CE in prefabricated projects. Introducing micro-level variables enhances the 

application of conventional design principles and reveals novel carbon reduction strategies. 

Although validated in China, this micro-level approach can be adapted in regions with similar 

regulatory and construction frameworks, offering a path toward a more sustainable built 

environment. Scholars, designers, and policymakers can employ these insights to for greater 

sustainability in project delivery. 
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Impact statement 

This study evaluates existing sustainable design optimisation strategies, providing a 

comprehensive overview of their advantages, application, and limitations. It critically assesses 

the strategies’ practicality and effectiveness via estimating the theoretical assumptions against 

real-word conditions. Scholars are provided a practical perspective on current carbon reduction 

strategies, highlighting their potential variance from reality. 

Unlike the conventional macro-level analysis model, which factors entire building material 

consumption, average energy usage, and general emission factors, this study performs a micro-

level analysis of the design and embodied CE in precast projects. This micro-level analysis 

focuses on the specific impacts of detailed element design, construction operations, and 

transportation plan. The approach introduces detailed variables including building element 

features, connection method, vehicle characteristic, and transportation routines. As a result, a 

practical perspective on existing estimation and optimisation models is provided. 

Results from micro-level analysis reveals that the uncertainty in micro-level design decisions 

may offset the expected carbon reductions from broad design principles. Thus, the significance 

of micro-level analysis in the design and construction process is underscored. Scholars and 

designers are offered with a more practical interpretation of existing macro-level design 

principles. They can use these novel interpretations as general guidelines for sustainable precast 

project design.  

Introducing micro-level variables links detailed project design and embodied CE during 

element manufacturing, construction, and transportation. This approach offers scholars a novel 

and comprehensive understanding of design impact. Novel carbon reduction strategies 

concerning optimising formwork design, element manufacturing, assembly, and transportation 

are unveiled. These strategies can complement existing carbon reduction methods, enabling 

researchers and designers to reduce the environmental impact of precast projects. 

Additionally, this study includes a questionnaire survey with Chinese designers to investigate 

the engineering information formats (EIF) used in design practice. In addition to offering an 

in-depth analysis of EIF utilisations, the survey results establish a relationship between design 

activities and EIF. Scholars can leverage these findings to identify specific EIF for various 

design tasks, paving the way for future studies on sustainable design tools developments and 
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promotions. Designers and contractors can also use the data to identify the most suitable EIF 

in their projects, improving the design and communication efficiency. 

The proposed optimisation model can be directly applied to current design optimisation efforts. 

It equips architects and civil engineers with specific design details and transportation plans. 

This data could guide the design and construction processes towards lower CE, preventing 

potential CE increases from inappropriate decisions in project delivery. It, therefore, facilitates 

the implementation of early-stage design decisions and addresses gaps left by previous early-

stage tools. Additionally, the model considers formwork design and the prefabricated element 

transportation. Manufactures and constructors are provided with detailed formwork blueprints 

and transportation plans. They can use these data to produce efficient formwork pieces and 

arrange efficient element transportation, reducing emissions and construction cost. Although 

this research is based in Chinese context, the proposed optimisation model can be promoted to 

other regions having the similar construction method and delivery process.
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𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓−𝑖𝑖−𝑗𝑗−0 The coordinate of the start point of the 𝑗𝑗-th wall in the 𝑖𝑖-th grid 
on the 𝑓𝑓-th floor in the design alternative 

𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓−𝑖𝑖−𝑗𝑗−1 The coordinate of the end point of the 𝑗𝑗-th wall in the 𝑖𝑖-th grid 
on the 𝑓𝑓-th floor in the design alternative 

𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓−𝑖𝑖−𝑗𝑗 
The length of the 𝑗𝑗-th wall in the 𝑖𝑖-th grid on the 𝑓𝑓-th floor of 
the design alternative 

𝐵𝐵 The set of boxes 
𝐵𝐵′ The set of residual boxes (boxes that are not placed) 
𝑏𝑏𝑖𝑖 The 𝑖𝑖-th box in set 𝐵𝐵 
𝑏𝑏𝑖𝑖′ A parameter set that defines each box 𝑏𝑏𝑖𝑖 in the box set 𝐵𝐵 
𝐵𝐵𝐵𝐵𝑖𝑖 The designed depth of the 𝑖𝑖-th beam (m) 
𝑏𝑏𝑏𝑏𝑏𝑏_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛 The number of tensioned bars on the bottom 
𝑏𝑏𝑏𝑏𝑏𝑏_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 The diameter of tensioned bar on the bottom (m) 
𝑏𝑏𝑏𝑏𝑏𝑏_𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 The selected sequence number of box in set 𝐵𝐵′ 
𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 The reinforcement design of the 𝑖𝑖-th beam 
𝐵𝐵𝐵𝐵𝑖𝑖 The designed width of the 𝑖𝑖-th beam (m) 
𝐶𝐶 The set of containers 
𝐶𝐶𝑖𝑖−𝑗𝑗 The 𝑗𝑗-th container of the 𝑖𝑖-the vehicle 

𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓−𝑑𝑑−𝑖𝑖 
The top reinforcement design of the continuous beams on 𝑖𝑖-th 
axis in 𝑑𝑑 direction on the 𝑓𝑓-th floor 

𝐶𝐶𝐶𝐶𝐶𝐶 The concrete cover depth (m) 
𝐶𝐶𝐶𝐶𝐶𝐶 The axial compressive strength of column concrete (kN/m2) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓−𝑖𝑖−𝑗𝑗 
The coordinates of the 𝑗𝑗-th re-allocated wall in the 𝑖𝑖-th grid on 
the 𝑓𝑓-th floor 
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𝐶𝐶𝐶𝐶 The embodied carbon emissions of the target project 
𝐶𝐶𝐶𝐶3𝐷𝐷−𝑅𝑅𝑅𝑅𝑅𝑅 The CE of 3D-RSO algorithm (kg CO2e) 
𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 The benchmarked CE value (kg CO2e) 
𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸−𝑖𝑖 The CE of the 𝑖𝑖-th element (kg CO2e) 

𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
The carbon emissions generated by moving only prefabricated 
elements to the construction site (kg CO2e) 

𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹−𝑖𝑖 The CE of each piece of formwork (kg CO2e) 
𝐶𝐶𝐶𝐶𝐺𝐺𝐺𝐺 The CE of GA-based algorithm (kg CO2e) 

𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
The carbon emissions generated by moving vehicles without 
freight to the construction site (kg CO2e) 

𝐶𝐶𝐶𝐶(𝐹𝐹) The CE of fleet 𝐹𝐹 (kg CO2e) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗−𝑘𝑘 The 𝑘𝑘-th feasible design of the element 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗 
𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗−𝑘𝑘∗  The element design containing 𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖−𝑗𝑗−𝑘𝑘∗  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗 
The list of all feasible designs of the continual element 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−1 or 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−2 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗∗  The list of coordinated design for continual beams or sub-
beams 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−1 or 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−2 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 
Two continually connected beams or sub-beams (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−1 and 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−2) at the node 𝑖𝑖 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−1/𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−2 Continual connected element at the node 𝑖𝑖 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 The CE coefficient of the concrete (kg CO2e/m3) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹−𝑖𝑖 
The CE coefficient of material of the 𝑖𝑖-th piece of formwork 
(kg CO2e/m2) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 The CE coefficient of the transport method [kg CO2e/(ton∙km)] 
𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅 The CE coefficient of the reinforcement (kg CO2e/kg) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅−𝐶𝐶𝐶𝐶𝐶𝐶 The CE coefficient of the rebar coupler (kg CO2e/kg) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓−𝑖𝑖−𝑗𝑗 
The coordinates of the 𝑗𝑗-th original wall in the 𝑖𝑖-th grid on the 
𝑓𝑓-th floor 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓 The number of columns on the 𝑓𝑓-th floor 
𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 The grade of concrete used in beams 
𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 The grade of concrete used in columns 
𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 The grade of concrete used in floor slabs 
𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 The grade of concrete used in secondary beams 
𝑐𝑐𝑐𝑐𝑐𝑐_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛 The number of constructional rebar on each side 
𝑐𝑐𝑐𝑐𝑐𝑐_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛_0 The number of constructional rebar at node 0 on the top 
𝑐𝑐𝑐𝑐𝑐𝑐_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛_1 The number of constructional rebar at node 1 on the top 
𝑐𝑐𝑐𝑐𝑐𝑐_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚 The number of constructional rebar in the middle of top side 
𝑐𝑐𝑐𝑐𝑐𝑐_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛_𝑤𝑤𝑤𝑤𝑤𝑤 The number of constructional rebar of web 
𝑐𝑐𝑐𝑐𝑐𝑐_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 The diameter of constructional rebar (m) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 The reinforcement design of the 𝑖𝑖-th column 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 
The top reinforcement design of the 𝑖𝑖-th group of continuous 
secondary beams 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗 
The list of all feasible top rebar size of the element 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−1 or 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−2 

𝐶𝐶𝐶𝐶𝑓𝑓 The width of columns on the 𝑓𝑓-th floor (m) 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙 The required cycle times of the 𝑙𝑙-th piece of formwork 

𝐷𝐷𝑓𝑓−𝑖𝑖 
The adjusted lateral stiffness of the 𝑖𝑖-th column on the 𝑓𝑓-th 
floor (kN/m) 

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 The transport distance (km) 

𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓−𝑖𝑖−𝑗𝑗 
The distance between the 𝑗𝑗-th original and corresponding re-
allocated walls in the 𝑖𝑖-th grid on the 𝑓𝑓-th floor (m) 

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 The designed floor-to-floor height of the 𝑖𝑖-th floor (m) 
𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑−𝑖𝑖 The span length of the 𝑖𝑖-th column grid in 𝑑𝑑 direction (m) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖−𝑗𝑗 
The formwork required to manufacture a specific precast 
element 

𝐸𝐸𝐸𝐸𝑓𝑓 The estimated vertical load on the columns of 𝑓𝑓-th floor (kN) 
𝐹𝐹 The set of vehicles 

𝐹𝐹𝐸𝐸𝐸𝐸 The standard value of horizontal seismic action on the entire 
structure (kN) 

𝐹𝐹𝑓𝑓 the standard value of horizontal seismic action on the 𝑓𝑓-th floor 
(kN) 

𝑓𝑓𝑗𝑗 The CE rate of operating mode 𝑗𝑗 (ton/h) 
𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 The fixed mass of the vehicle (ton) 

𝐹𝐹𝑛𝑛′ 
The standard value of horizontal seismic action on the top floor 
(kN) 

𝑓𝑓_0 The emission rate of the vehicle operating with the STP value 
of 0 (kg CO2e/h) 

𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 The CE factor of the transport method 𝑖𝑖 (kg CO2e/km) 
𝐹𝐹𝐹𝐹𝑖𝑖 The designed depth of the 𝑖𝑖-th floor slab (m) 
𝐹𝐹𝐹𝐹 The length of floor slab (m) 
𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 The reinforcement design of the 𝑖𝑖-th floor slab 
𝐹𝐹𝐹𝐹 The width of floor slab (m) 

𝐺𝐺 A set of discrete variables that determines the selection 
between two space generation method in each placing 

𝑔𝑔 The acceleration due to gravity (9.8 m/s2) 
𝐺𝐺𝑒𝑒𝑒𝑒 The equivalent gravity load of the whole structure (kN) 

𝐺𝐺𝑓𝑓 The equivalent gravity loads of structure elements on the 𝑓𝑓-th 
floor (kN) 

𝐺𝐺𝑓𝑓−1 The equivalent gravity loads of structure elements on the (𝑓𝑓 −
1)-th floor (kN) 

𝐺𝐺𝑖𝑖 
The selection of place generation method in the 𝑖𝑖-th time box 
placing 

𝐻𝐻𝑓𝑓 The heights of 𝑓𝑓-th floor (m) 
𝐻𝐻𝑓𝑓−1 The heights of (𝑓𝑓 − 1)-th floor (m) 
ℎ𝑓𝑓−𝑖𝑖 The height of the 𝑖𝑖-th column on the 𝑓𝑓-th floor (m) 
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𝐻𝐻𝑖𝑖 The height of 𝑆𝑆𝑖𝑖 (m) 
𝐻𝐻𝑖𝑖−𝑗𝑗 The height of 𝐶𝐶𝑖𝑖−𝑗𝑗 (m) 
ℎ𝑖𝑖 The height of 𝑏𝑏𝑖𝑖 (m) 
ℎ𝑖𝑖−1 The extension length of the rebar on one of the height sides (m) 
ℎ𝑖𝑖−2 The height of precast concrete (m) 
ℎ𝑖𝑖−3 The extension length of the rebar on the other height side (m) 

ℎ𝑖𝑖−4 The interval between adjacent elements in the height 
dimension (m) 

ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑛𝑛𝑛𝑛𝑛𝑛 The number of hooping limbs 
ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 The diameter of hooping (m) 

𝑘𝑘𝑓𝑓 The coefficient factor of STP and emission rate (1000∙kg2 
CO2e/kWh) 

𝐿𝐿𝑖𝑖 The length of 𝑆𝑆𝑖𝑖 (m) 
𝐿𝐿𝑖𝑖−𝑗𝑗 The length of 𝐶𝐶𝑖𝑖−𝑗𝑗 (m) 
𝑙𝑙𝑖𝑖 The length of 𝑏𝑏𝑖𝑖 (m) 
𝑙𝑙𝑖𝑖−1 The extension length of the rebar on one of the length sides (m) 
𝑙𝑙𝑖𝑖−2 The length of precast concrete (m) 
𝑙𝑙𝑖𝑖−3 The extension length of the rebar on the other length side (m) 

𝑙𝑙𝑖𝑖−4 The interval between adjacent elements in the length 
dimension (m) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 The layer number of 𝑆𝑆𝑖𝑖 
𝐿𝐿𝐿𝐿𝑖𝑖 The 𝑖𝑖-th linear element 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑖𝑖−𝑗𝑗 
The length of the 𝑗𝑗-th surface of the 𝑖𝑖-th elements to which the 
formwork is attached (m) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑙𝑙 The length of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙 (m) 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝐵𝐵′) The number of items in set 𝐵𝐵′ 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑆𝑆′) The number of items in set 𝑆𝑆′ 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 The average load capacity (ton) 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 The load capacity of 𝑆𝑆𝑖𝑖 (ton) 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖−𝑗𝑗 The load capacity of  𝐶𝐶𝑖𝑖−𝑗𝑗 (ton) 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 The average loading rate 
𝑚𝑚 Number of boxes in set 𝐹𝐹 
𝑚𝑚3𝐷𝐷−𝑅𝑅𝑅𝑅𝑅𝑅 The number of vehicles of 3D-RSO algorithm 
𝑚𝑚𝐺𝐺𝐺𝐺 The number of vehicles of GA-based algorithm  

𝑀𝑀𝑖𝑖 
A discrete variable that represents the box placing method 
when 𝑆𝑆𝑖𝑖 is used to place a box 

𝑀𝑀𝑖𝑖−𝑗𝑗 The 𝑗𝑗-th member of the 𝑖𝑖-th linear element 
𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 The material quantity that transported by method 𝑖𝑖 (ton) 

𝑚𝑚_𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙 
The number of the 𝑙𝑙-th piece of formwork requires to be 
produced 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 The total mass of individual vehicle (ton) 
𝑚𝑚𝑚𝑚𝑚𝑚_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 The maximum depth-width ratios of beams 
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𝑚𝑚𝑚𝑚𝑚𝑚_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 The maximum span-depth ratios of beams  
𝑚𝑚𝑚𝑚𝑚𝑚_𝐹𝐹𝐹𝐹 The maximum widths of floor slabs (m) 
𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 The maximum reuse cycles of the formwork piece 
𝑚𝑚𝑚𝑚𝑚𝑚_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 The maximum depth-width ratios of secondary beams 
𝑚𝑚𝑚𝑚𝑚𝑚_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 The maximum span-depth ratios of secondary beams 

𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 
The upper boundary of the tolerance for the floor-to-floor 
height of the 𝑖𝑖-th floor (m) 

𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑−𝑖𝑖 
The upper boundary of the tolerance for the 𝑖𝑖-th span in 𝑑𝑑 
direction (m) 

𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇 The upper boundary of the tolerance of the overall height of 
structure (m) 

𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑 The upper boundary of the tolerance of the overall dimension 
of structure in 𝑑𝑑 direction (m) 

𝑀𝑀𝑀𝑀𝑖𝑖−𝑗𝑗−0 The coordinates of the vertex 0 of the member 𝑀𝑀𝑖𝑖−𝑗𝑗 
𝑀𝑀𝑀𝑀𝑖𝑖−𝑗𝑗−1 The coordinates of the vertex 1 of the member 𝑀𝑀𝑖𝑖−𝑗𝑗 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙 The 𝑙𝑙-th piece of formwork that is going to be manufactured 
𝑚𝑚𝑚𝑚𝑚𝑚_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 The minimum depth-width ratios of beams 
𝑚𝑚𝑚𝑚𝑚𝑚_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 The minimum span-depth ratios of beams 
𝑚𝑚𝑚𝑚𝑚𝑚_𝐹𝐹𝐹𝐹 The minimum widths of floor slabs (m) 
𝑚𝑚𝑚𝑚𝑚𝑚_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 The minimum depth-width ratios of secondary beams 
𝑚𝑚𝑚𝑚𝑚𝑚_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 The minimum span-depth ratios of secondary beams 

𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 
The lower boundary of the tolerance for the floor-to-floor 
height of the 𝑖𝑖-th floor (m) 

𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑−𝑖𝑖 
The lower boundary of the tolerance for the 𝑖𝑖-th span in 𝑑𝑑 
direction (m) 

𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇 The lower boundary of the tolerance of the overall height of 
structure (m) 

𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑 The lower boundary of the tolerance of the overall dimension 
of structure in 𝑑𝑑 direction (m) 

𝑁𝑁 A set of float-type variables that determines the order of boxes 
𝑂𝑂 

𝑛𝑛 Number of boxes in set 𝐵𝐵 

𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓−𝑖𝑖 
The number of beams connected to the 𝑖𝑖-th column on the 𝑓𝑓-th 
floor 

𝑂𝑂 The order of boxes to be packed 

𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓−𝑖𝑖−𝑗𝑗 
The distance between the 𝑗𝑗-th adjusted walls in the 𝑖𝑖-th grid on 
the 𝑓𝑓-th floor and the node of corresponding grid of the 
original design (m) 

𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 The original floor-to-floor height of the 𝑖𝑖-th floor (m) 
𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖−𝑗𝑗 The fraction of time that 𝑉𝑉𝑖𝑖 spent in the operating mode 𝑗𝑗 
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖−𝑗𝑗−𝑘𝑘 The size of the 𝑘𝑘-th opening on the piece of formwork 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖−𝑗𝑗 
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙−𝑘𝑘 The size of the 𝑘𝑘-th opening on the piece of formwork 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙 
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 The list of original floor-to-floor heights 
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𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑 The list of original span length in the 𝑑𝑑 direction 
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 The list of original walls 
𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑−𝑖𝑖 The original length of the 𝑖𝑖-th span in the 𝑑𝑑 direction (m) 

𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓−𝑖𝑖−𝑗𝑗−0 The coordinates of the start point of the 𝑗𝑗-th wall in the 𝑖𝑖-th grid 
on the 𝑓𝑓-th floor 

𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓−𝑖𝑖−𝑗𝑗−1 The coordinates of the end point of the 𝑗𝑗-th wall in the 𝑖𝑖-th grid 
on the 𝑓𝑓-th floor 

𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓−𝑖𝑖−𝑗𝑗 
The length of the 𝑗𝑗-th walls in the 𝑖𝑖-th grid on the 𝑓𝑓-th floor of 
the original design (m) 

𝑃𝑃 A set of float-type variables that determines the selection of a 
specific space in set 𝑆𝑆′ in each placing 

𝑝𝑝 The number of containers in 𝑉𝑉𝑖𝑖 

𝑃𝑃𝑖𝑖 
A float-type variable that determine the selection of a specific 
space in set 𝑆𝑆′ 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 Design parameters of design alternatives 
𝑃𝑃𝑃𝑃𝑖𝑖 The 𝑖𝑖-th plane element 
𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−𝑛𝑛 The coordinates of vertices of the member 𝑃𝑃𝑃𝑃𝑖𝑖 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖−𝑗𝑗−𝑘𝑘 The position of the 𝑘𝑘 -th opening on 𝑗𝑗 -th surface of the 𝑖𝑖 -th 
elements to which the formwork is attached 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙−𝑘𝑘 The position of the 𝑘𝑘-th opening on 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙 
𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶−𝑖𝑖 The quantity of concrete consumed by the 𝑖𝑖-th element (m3) 
𝑞𝑞𝑛𝑛−𝑓𝑓 The estimated load coefficient of the (𝑛𝑛 − 𝑓𝑓)-th floor (kN/m2) 
𝑄𝑄𝑅𝑅𝑅𝑅−𝐶𝐶𝐶𝐶𝐶𝐶−𝑖𝑖 The quantity of rebar coupler consumed by the 𝑖𝑖-th element (kg) 

𝑄𝑄𝑅𝑅𝑅𝑅−𝑖𝑖 
The quantity of reinforcement consumed by the 𝑖𝑖-th element 
(kg) 

𝑟𝑟𝑖𝑖−𝐻𝐻 
The binary variable that determines whether 𝑏𝑏𝑖𝑖  can rotate 
around the height (Z) axis. The value equals to 1 if the box can 
and 0 otherwise. 

𝑟𝑟𝑖𝑖−𝐿𝐿 
The binary variable that determines whether 𝑏𝑏𝑖𝑖  can rotate 
around the length (X) axis. The value equals to 1 if the box can 
and 0 otherwise. 

𝑟𝑟𝑖𝑖−𝑊𝑊 
The binary variable that determines whether 𝑏𝑏𝑖𝑖  can rotate 
around the width (Y) axis. The value equals to 1 if the box can 
and 0 otherwise. 

𝑅𝑅 The range of design paramters 
𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 The grade of tensioned bars used in beams 
𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−ℎ𝑜𝑜𝑜𝑜 The grade of hooping used in beams 
𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 The grade of tensioned bars used in columns 
𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−ℎ𝑜𝑜𝑜𝑜 The grade of hooping used in columns 
𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 The grade of reinforcement used in floor slabs 
𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 The grade of tensioned bars used in secondary beams 
𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−ℎ𝑜𝑜𝑜𝑜 The grade of hooping used in secondary beams 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛_0 The number of tensioned bars at node 0 on the top 
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𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛_1 The number of tensioned bars at node 1 on the top 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚 The number of tensioned bars in the middle of top side 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 The diameter of tensioned bar (m) 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 The spacing of tensioned bars (m) 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙 The 𝑙𝑙-th list of formwork pieces share the similar characteristics 
𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 The aerodynamic drag coefficient (kW∙sec3/m3) 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 The rolling resistance coefficient (kW∙sec/m) 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 The rotational resistance coefficient (kW∙sec2/m2) 

𝑆𝑆 A sequence of parameter sets that defines each space in set of 
containers 𝐶𝐶 

𝑆𝑆′ The set of available space to place box 𝑏𝑏𝑖𝑖 
𝑆𝑆𝑖𝑖 The 𝑖𝑖-th space in the space set 𝑆𝑆 
𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 The designed depth of the 𝑖𝑖-th secondary beam (m) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓−𝑖𝑖 
The number of secondary beams in the 𝑖𝑖-th column grid on the 
𝑓𝑓-th floor 

𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓−𝑖𝑖 
The orientation of secondary beams in the 𝑖𝑖-th column grid on 
the 𝑓𝑓-th floor 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 The reinforcement design of the 𝑖𝑖-th secondary beam 
𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 The designed width of the 𝑖𝑖-th secondary beam (m) 
𝑆𝑆𝑆𝑆𝑖𝑖 The span length of the 𝑖𝑖-th beam or secondary beam (m) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 the selected sequence number of space in set 𝑆𝑆′ 

𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓−𝑖𝑖 
The original linear stiffness of the 𝑖𝑖-th column on the 𝑓𝑓-th floor 
(kN∙m) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓−𝑖𝑖−𝑘𝑘 The linear stiffness of the 𝑘𝑘 -th beam connected to the 𝑖𝑖 -th 
column on the 𝑓𝑓-th floor(kN∙m) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
The STP to move only prefabricated elements to the 
construction site (kW/ton) 

𝑆𝑆𝑆𝑆𝑆𝑆_𝑗𝑗 The STP of operating mode 𝑗𝑗 (kW/ton) 
𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 The STP at time 𝑡𝑡 (kW/ton) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
The STP to move vehicles without freight to the construction 
site (kW/ton) 

𝑇𝑇 A set of discrete variables that determines the selection among 
different vehicle types once a new vehicle is added 

𝑇𝑇𝑖𝑖 The type of 𝑖𝑖-th vehicle in the fleet 𝐹𝐹 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 The operating hours of the 𝑖𝑖-th vehicle (𝑉𝑉𝑖𝑖) in the fleet 𝐹𝐹 (h) 
𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 The diameter of tensioned bar on the top (m) 

𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖−𝑗𝑗−𝑘𝑘∗  The intersection of  
𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 for 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−1 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−2 

𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑥𝑥 The diameter of tensioned bar in the x direction on the top (m) 
𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑦𝑦 The diameter of tensioned bar in the y direction on the top (m) 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓−𝑖𝑖 
The sum of distances between original and corresponding re-
allocated walls in the 𝑖𝑖-th grid on the 𝑓𝑓-th floor (m) 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑛𝑛𝑛𝑛𝑛𝑛 The total number of available vehicle types 
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𝑉𝑉𝑓𝑓𝑓𝑓 
The shear force caused by seismic load on the 𝑖𝑖-th column on 
the 𝑓𝑓-th floor (kN) 

𝑉𝑉𝑖𝑖 The 𝑖𝑖-th vehicle in set 𝐹𝐹 
𝑣𝑣𝑡𝑡 The instantaneous vehicle velocity at time 𝑡𝑡 (m/s) 
𝑣𝑣_𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 The number of vehicles in which 𝑏𝑏𝑖𝑖 is placed 
𝑊𝑊𝑖𝑖 The width of 𝑆𝑆𝑖𝑖 (m) 
𝑤𝑤𝑖𝑖 The width of 𝑏𝑏𝑖𝑖 (m) 
𝑤𝑤𝑖𝑖−1 The extension length of the rebar on one of the width sides (m) 
𝑤𝑤𝑖𝑖−2 The width of precast concrete (m) 
𝑤𝑤𝑖𝑖−3 The extension length of the rebar on the other width side (m) 

𝑤𝑤𝑖𝑖−4 The interval between adjacent elements in the width dimension 
(m) 

𝑊𝑊𝑖𝑖−𝑗𝑗 The width of 𝐶𝐶𝑖𝑖−𝑗𝑗 (m) 
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑖𝑖 The weight of 𝑏𝑏𝑖𝑖 (ton) 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖−𝑗𝑗 
The width of the 𝑗𝑗-th surface of the 𝑖𝑖-th elements to which the 
formwork is attached (m) 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑙𝑙 The width of the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙 (m) 
𝑥𝑥𝑖𝑖 The X coordinate of the box 𝑏𝑏𝑖𝑖’s bottom-left corner 
𝑦𝑦𝑖𝑖 The Y coordinate of the box 𝑏𝑏𝑖𝑖’s bottom-left corner 
𝑧𝑧𝑖𝑖 The Z coordinate of the box 𝑏𝑏𝑖𝑖’s bottom-left corner 
𝛼𝛼1 The horizontal earthquake influence coefficient 
𝛼𝛼𝑑𝑑 The correction factor of stiffness 
𝛼𝛼𝑡𝑡 The instantaneous vehicle acceleration (m/s2) 
𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 The estimated coefficient of compression zone of columns 
𝛿𝛿𝑛𝑛 The additional seismic action coefficient of the top floor 
𝜃𝜃𝑡𝑡 The road grade at time 𝑡𝑡 
𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 The aero drag coefficient of the vehicle 
𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 The rolling resistance coefficient of the vehicle (N/kN) 
𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 The density of the air (1.29 kg/m3) 
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 The density of element material (ton/m3) 
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1 Introduction 

1.1 Background 

In 2020, global carbon emissions (CE) reached 32 billion tons (BP, 2021). The construction 

industry, as the primary contributor, accounts for 36% of global energy consumption and 37% 

of energy-related emissions (United Nations Environment Programme, 2022). Besides 

generating operational emissions from air conditioning, heating, lighting, and operations of 

building equipment, buildings also emit a considerable amount of embodied carbon during 

initial construction, life-cycle maintenance, and final demolition (Dixit, 2019). The 

decarbonisation of energy supply systems and advancement in building energy efficiency have 

shifted operational emissions from its previous dominant position in life-cycle emissions 

(Arslan et al., 2023; E. Marsh et al., 2021). Nevertheless, this change does not necessarily imply 

a net reduction in CE, but a decline in operational emissions offset by an increase in embodied 

emissions (Battisti et al., 2019; Copiello, 2017). The decrease in operational CE and increase 

in embodied CE are expected to raise the latter’s share to 60% in the near future (Dixit, 2017). 

Therefore, the opportunity for embodied CE reduction should not be overlooked (Cabeza et al., 

2014; Jayasinghe et al., 2021). 

In response, China is increasingly adopting prefabrication to mitigate environmental effects 

because the modern method has the potential to reduce 15% of initial embodied CE compared 

to conventional constructions (Hao et al., 2020). Prefabrication involves assembling buildings 

from prefabricated elements (Yuan et al., 2018). Its construction process includes off-site 

manufacturing, transportation from factory to site, and on-site installation of prefabricated 

elements (H. Zhu et al., 2018). By manufacturing elements in a specialised facility, 

prefabrication reduces material consumption and waste  (Z. Li et al., 2014), contributing to 

lower embodied CE.  

Throughout the lifecycle stages of prefabricated projects, design significantly influences the 

environmental performance of prefabricated projects (C. Z. Li et al., 2020). Variance in design 

decisions can lead to a 137–460% difference in building emissions (Cavalliere et al., 2019) and 

a 400-500% difference in emissions from individual building element (such as beam) (X. 

Zhang & Wang, 2022). This variance points out the potential of carbon reduction via project 
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design, attracting significant academic interest in sustainable design optimisation (Jusselme et 

al., 2020).  

In this process, data uncertainty at the design stage, notably the lack of necessary information 

for sustainability estimation and optimisation like material selection and quantity, is identified 

as a crucial challenge (R. Marsh, 2016). On the one hand, data uncertainty contributes to the 

variance in project CE, forming the foundation for sustainable design optimisation. On the 

other, data uncertainty may lead to the consequence that early-stage design decisions based on 

predictions of low environmental impact may result in unsustainable outcomes if actual settings 

differ from initial analyses (J. P. Basbagill et al., 2014; Muthumanickam et al., 2023). Therefore, 

the primary task of design optimisation is to comprehensively predict and compare the 

performance of design alternatives determined by varying decisions. 

To achieve this goal, the parametric approach has been introduced (Roberts et al., 2020). This 

method is built upon the concept of feature-controlled composition (Battisti et al., 2019). The 

parametric approach describes design features using mathematical variables, allowing for the 

automatic creation of alternatives by adjusting these variables (Hollberg & Ruth, 2016). This 

feature underpins optimisation, an iterative process of generating, evaluating, and comparing 

design alternatives (Basic et al., 2019; Muthumanickam et al., 2023). Studies have applied the 

method to assess design sustainability (Basic et al., 2019; Hollberg & Ruth, 2016), optimise 

CE of projects (Al-Obaidy et al., 2022; Jayasinghe et al., 2021; Teng & Pan, 2020), and perform 

multi-objective (usually cost and sustainability) construction optimisation (J. P. Basbagill et 

al., 2014; Gauch et al., 2022; Kanyilmaz et al., 2022; X. Zhang & Zhang, 2021), indicating the 

parametric approach as a promising tool for performance optimisation at the design stage. 

Given the influence of design parameters, carbon reduction strategies are heavily dependent on 

uncertain design variables employed in CE estimation (Xiang, Mahamadu, Florez-Perez, et al., 

2024). For instance, Alotaibi et al. (2022) estimated construction emissions of projects by 

factoring building material quantities and corresponding emission factors, leading to carbon 

reduction strategies like optimising material utilisation for less material consumption and using 

less carbon-intensive materials for smaller emission factors. Dong et al. (2015) analysed 

transportation emissions during prefabrication delivery based on material quantity, 

transportation distance, and transportation emission factors per weight of load per kilometre, 

leading to potential reduction strategy of selecting suitable suppliers for shorter transportation 

distance.  
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However, most studies (like  Xu et al. (2022) and Hao et al. (2020)) and emission estimation 

standards (like Calculation standard of building carbon emissions GB/T 51366-2019 (2014)) 

fail to provide specific estimation methods for prefabricated projects. Additionally, the design 

of prefabricated projects shows minor differences to conventional projects in the original 

design files (Polat, 2008). Therefore, the unique characteristics of prefabrication are often 

ignored in sustainability studies, leading to biased emission results and carbon reduction 

strategies (Xiang et al., 2022).  

1.2 Problem statement 

1.2.1 Disadvantages of existing carbon reduction strategies 

Buildings generate over 80% of their embodied CE in the manufacturing stage by consuming 

building materials (Teng & Pan, 2020). The reinforced concrete structure, as a prevalent 

structure form(Cabeza et al., 2021), is a significant producer of building embodied CE (X. 

Zhang & Zhang, 2021). The main materials it consumes, steel and cement, are emissions-

intensive and have proven difficult to decarbonize (Nidheesh & Kumar, 2019). Hence, scholars 

have concentrated on reducing embodied CE by optimising the consumption of emission-

intensive materials(Arehart et al., 2022). 

Considering that material quantity and material emission factors have the most mitigation 

potential of embodied CE (C. Zhu et al., 2022), there are generally two strategies to embodied 

CE reduction: using less-carbon-intensive materials and structure design optimisation. 

Approaches of the former strategy include structure material substitution (e.g., replacing 

reinforced concrete with timber), recycled material utilisation, and by-production integration 

(e.g., substitute cement by fly ash), through which scholars claim that 15-70% embodied carbon 

can be saved (Minunno et al., 2021). 

However, implementing these approaches in practice remains challenging (Giesekam et al., 

2016). For instance, it is claimed that replacing 35-75% of cement in concrete with 

supplementary cementing materials (e.g., fly ash and ground-granulated slag) can reduce 

embodied energy by 10-20% (Gan et al., 2017). Yet, the limited global availability of these 

materials (which is only 16% of global Portland cement production and is likely to decrease 

due to decarbonisation of energy and steel (Moncaster et al., 2022)) impedes their widespread 

adoption. Moreover, the use of recycled building materials (e.g., recycled concrete aggregates) 
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has uncertain impacts on decreasing the embodied CE due to the additional treatment process 

(which consumes extra energy and might compromise CE savings) (S. Chen et al., 2023). 

An alternative promising strategy for mitigating embodied CE lies in reducing building 

material consumption through design optimisation (Jayasinghe et al., 2021, 2022). This 

strategy, which targets absolute reduction in total material quantity rather than substituting 

emissions-intensive materials (e.g., steel and concrete) with sustainable alternatives (e.g., 

timber), is material-independent and thus applicable in most situations. Additionally, reducing 

material consumption also causes cost savings, which aligns with the objective of conventional 

design optimisation (Trinh et al., 2021; X. Zhang & Wang, 2022), making the approach 

economically attractive to contractors.  

Despite this, material inefficiency remains a prevalent issue in design practice, leading to an 

average of 50% material waste (Orr et al., 2019). Given that sustainability is seldom prioritised 

in projects, constraints from more overarching requirements (e.g., cost limitations, real-world 

construction conditions, aesthetics requirements, and the preferences of clients and designers 

(Chan et al., 2022; Nawarathna et al., 2021)) limit the available design alternatives to a narrow 

range (Gauch et al., 2023). Additionally, owing to the complexity of building design (which 

involves a huge number of variables (Gauch et al., 2023)), it is impractical for designers to 

evaluate all possible solutions and determine the most sustainable solutions among them 

(Kanyilmaz et al., 2022). As a result, designers often resort to feasible design alternatives based 

on their experience or common practices (Y. Zhou et al., 2023), potentially causing carbon-

intensive outcomes due to the inability to precisely predict the environment impacts of each 

design decision (W. Wang et al., 2005).  

1.2.2 Side-effects of prefabrication in embodied carbon emissions 

Despite reducing material usage and waste via controlled factory production is widely believed 

to significantly contribute toward sustainability in prefabrication (Iacovidou et al., 2021), Teng 

et al. (2018) challenged the assertion that prefabrication can necessarily lead to reduced CE, 

particularly when excluding material reusability. Sebaibi and Boutouil (2020) reinforced this 

argument, finding that precast elements have a higher environmental impact than cast-in-situ 

elements. They attributed the increased CE to thermal treatment processes in factory production. 

Hong et al. (2016) compared CE calculation methods in prefabrication and claimed that the CE 

result of the input-output hybrid model is 50% higher than that of either the pure input-output 
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model or process-based model. Their findings indicate that conventional analysis may neglect 

additional emissions from intensive transportation tasks and complex manufacturing and 

construction processes (Xiang et al., 2022). 

Regarding transportation, many studies indicate it contributes to only 1%-8% of the life-cycle 

CE (Chau et al., 2015). Researchers often estimate transportation CE using average or assumed 

data without practical analysis (Abd Rashid & Yusoff, 2015), reporting a minimal and same-

as-cast-in-situ transportation contribution (Du et al., 2019; Hao et al., 2020). However, a 

significant side effect of prefabrication is the decrease in transportation and hanging efficiency 

(Anvari et al., 2016; Fenner et al., 2017), which leads to higher CE. Specifically, prefabricated 

elements occupy more space than raw materials, thus requiring more vehicles. Meanwhile, the 

solid state of elements precludes the use of efficient transportation methods, like pumping. 

Dong et al. (2015) observed an increase in the transportation CE share from 12% to 18% with 

the shift from cast-in-situ to prefabrication. The increase in transportation CE (4% of the total 

CE) was attributed to the transportation of prefabricated elements from precast yards to 

construction sites. Considering prefabrication waste reduction reduces approximately 3% of 

the total CE (Dong et al., 2015; Mao et al., 2013), the extra emissions caused by inefficient 

element transportation will, without effective management, offset or conceal environmental 

advantages during the manufacturing process.  

Furthermore, overlooking details in manufacturing and construction may overvalue the benefit 

of existing optimisation strategies. One of the cases is the principle of standardisation, which 

has been a longstanding strategy for prefabrication design (Bo, 2018; Yuan et al., 2018). 

Although using standardised precast elements contribute to CE reduction of precast 

constructions, primarily by facilitating the reuse and recycling of formwork—since it decreases 

the diversity and volume of concrete formwork (Dong et al., 2015; Wong & Tang, 2012)—

there are side effects as well. The dimensions of structural elements have significant impacts 

on the material consumption and embodied CE (Gascón Alvarez et al., 2022; Ismail & Mueller, 

2021; X. Zhang & Zhang, 2021). Consequently, using standardised elements (e.g., columns) 

may inadvertently lead to an escalation in structural material use and associated CE (Hart et al., 

2021). The trade-off between the consumption of structure material and formwork in 

optimising structure CE has been highlighted (Guilherme Fleith de Medeiros & Moacir Kripka, 

2014) while seldom considered in current sustainability analysis (X. Zhang & Wang, 2022), 

potentially leading to errors.  
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1.2.3 Summary 

According to the previous analysis, existing carbon reduction strategies are theoretically 

effective but fail to account for real-world conditions, making their application in design 

practice challenging. Likewise, sustainability assessments of prefabrication neglect detailed 

project delivery considerations, overlooking emissions from complex construction processes 

and intensive transportation demands. Consequently, accurately estimating embodied CE in 

prefabricated projects and effectively reducing these emissions through design optimisation 

remain significant challenges in sustainable prefabrication design. 

These issues are more obvious in Chinese construction industry, which provide service across 

the area of 9.6 million km2. Although Chinese government establish the code, Calculation 

standard of building carbon emissions GB/T 51366-2019 (2014), to guide the life-cycle 

emission estimation of projects, it only provides average emission factors across various project 

type and areas, leading to variance in emissions estimation. On the one hand, the average 

emission factors neglect variance from prefabrication and conventional construction methods, 

as mentioned before. On the other hand, the emission factors, especially the energy emission 

factors significantly vary across regions in China (W. Li et al., 2021; LÜ et al., 2021). Utilising 

national-wide average emission factors and statistic-based emission estimation methods lead 

to errors in project-specific emission estimation. Therefore, refining existing emission 

estimation and optimisation methods by consider real-world project delivery conditions is 

significant for providing effective and practical carbon reduction strategies in Chinese 

construction industry. 

1.3 Research questions and hypothesis 

1.3.1 Research questions 

To address these issues, the following key questions are posed: 

1) How can embodied CE from prefabricated constructions be calculated more accurately 

using current estimation methods and accessible data? 

2) What is the practical approach of predicting and optimising embodied CE of prefabricated 

projects in the design stage? 

3) To what extent can design optimisation be applied and what is the most appropriate way 

of implementing optimisation as a guidance to designers in prefabricated design?  
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1.3.2 Research hypothesis 

This research is based on the following hypothesis: 

1) Design decisions (represented by difference in design parameters) lead to variations in 

project embodied CE. 

2) The original design does not have the lowest CE, thus there remains potential for 

optimisation of prefabricated design 

3) At least one parameter in the parameter set of design decisions is variable, allowing for 

modifications to the original design and its embodied CE. This enables to generate design 

alternatives. 

4) Each parameter in the parameter set has a specific range, indicating a finite set of design 

alternatives and a predictable lower boundary for embodied CE. 

5) Optimising micro-level design variables enables further reductions in embodied CE of 

prefabricated construction than conventional methods. 

6) Design content influence the selection of engineering information format (EIF) used in 

design. 

7) The design and its optimisation are implemented in Chinese construction industry. 

1.4 Aims and objectives 

This research aims to develop a novel micro-level optimisation model for identifying the most 

sustainable design with minimal embodied CE in prefabricated construction in China.  

Unlike the conventional macro-level optimisation models, which simply reduce CE by 

reducing material consumption and utilising less carbon-intensive materials, this micro-level 

optimisation model enables carbon reduction through optimising element design, construction 

management, and transportation plan. Besides conventional variables like material type and 

building dimensions, this micro-level model can introduce detailed variables including 

building element features, connection method, vehicle characteristic, and transportation 

routines. 

To address the aim, the following objectives are undertaken: 

1) Identify the stages, impact variables, calculation methods, and available database for 

calculating embodied CE of prefabricated constructions.  
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These elements establish a foundational understanding of construction CE calculation, 

defining the scope of research. The research focus then shifts to optimising elements within 

this defined range. 

2) Analyse embodied CE of prefabricated construction using micro-level design variables. 

This research will integrate variables used in conventional embodied CE methods and in 

current design practices. The proposed analysis method aims to establish a direct and 

accurate relationship between design decisions and their corresponding sustainability 

performance. 

3) Generate design alternatives and compare their CE to identify the most sustainable design.  

This study will employ the parametric design approach to generate alternatives by varying 

parameter values within specific ranges. Their CE are predicted by the method studied in 

objective 2. With the single objective of minimising embodied CE values, an optimisation 

algorithm is going to be employed to identify the alternative with the lowest CE as the 

feasible solution. 

4) Develop a practical method to communicate the optimisation outputs to designers 

effectively.  

While the parameter set identified in objective 4 is valuable for sustainability analysis, it 

is not easily applicable in architectural design due to the difficulty architects face in 

evaluating designs through numbers alone. Thus, the parameter set of the feasible solution 

is presented into a designer-friendly format to aid decision-making. 

For clarity, Table 1-1 gives information on the interrelationship among research questions, 

objectives, and hypothesis, and identifies the corresponding sections. 
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Table 1-1: Correspondence among research questions, objectives, hypothesis, and thesis 

sections.   

Research  
questions 

Research  
objectives 

Research  
hypothesis 

Sections 

Question 1:  
How can embodied CE 
from prefabricated 
constructions be 
calculated more 
accurately using current 
estimation methods and 
accessible data? 

Objective 1:  
Identify the stages, 
impact variables, 
calculation methods, 
and available database 
for calculating 
embodied CE of 
prefabricated 
constructions 

Hypothesis 7:   
The design and its 
optimisation are 
implemented in 
Chinese construction 
industry 

Section 
2 

Objective 2:  
Analyse embodied CE 
of prefabricated 
construction using 
micro-level design 
variables. 

Hypothesis 5: 
Optimising micro-level 
design variables 
enables further 
reductions in embodied 
CE of prefabricated 
construction than 
conventional methods. 

Sections 
4, 5 

Question 2:  
What is the practical 
approach of predicting 
and optimising 
embodied CE of 
prefabricated 
constructions in the 
design stage? 

Objective 3:  
Generate design 
alternatives and 
compare their CE to 
identify the most 
sustainable design. 

Hypothesis 1: 
Design decisions 
(represented by 
difference in design 
parameters) lead to 
variations in project 
embodied CE. 

Sections 
4, 5, 7 

Hypothesis 2: 
The original design 
does not have the 
lowest CE, thus there 
remains potential for 
optimisation of 
prefabricated design 
Hypothesis 3: 
At least one parameter 
in the parameter set of 
design decisions is 
variable, allowing for 
modifications to the 
original design and its 
embodied CE. This 
enables to generate 
design alternatives. 
Hypothesis 4: 
Each parameter in the 
parameter set has a 
specific range, 
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indicating a finite set of 
design alternatives and 
a predictable lower 
boundary for embodied 
CE. 

Question 3:  
To what extent can 
design optimisation be 
applied and what is the 
most appropriate way 
of implementing 
optimisation as a 
guidance to designers in 
prefabricated design? 

Objective 4:  
Develop a practical 
method to communicate 
the optimisation outputs 
to designers effectively. 

Hypothesis 6: 
Design content 
influence the selection 
of engineering 
information format 
(EIF) used in design. 

Sections 
6, 7 

1.5 Expected contributions 

This study evaluates existing sustainable design optimisation strategies, providing a 

comprehensive overview of their advantages, application, and limitations. It critically assesses 

the strategies’ practicality and effectiveness via estimating the theoretical assumptions against 

real-word conditions. Scholars are provided a practical perspective on current carbon reduction 

strategies, highlighting their potential variance from reality. 

Unlike the conventional macro-level analysis model, which factors entire building material 

consumption, average energy usage, and general emission factors, this study performs a micro-

level analysis of the design and embodied CE in precast projects. This micro-level analysis 

focuses on the specific impacts of detailed element design, construction operations, and 

transportation plan. The approach introduces detailed variables including building element 

features, connection method, vehicle characteristic, and transportation routines. As a result, a 

practical perspective on existing macro-level model is provided. 

Results from micro-level analysis reveals that the uncertainty in micro-level design decisions 

may offset the expected carbon reductions from broad design principles. Thus, the significance 

of micro-level analysis in the design and construction process is underscored. Scholars and 

designers are offered with a more practical interpretation of existing macro-level design 

principles. They can use these novel interpretations as general guidelines for sustainable precast 

project design.  

Introducing micro-level variables links detailed project design and embodied CE during 

element manufacturing, construction, and transportation. This approach offers scholars a novel 
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and comprehensive understanding of design impact. Novel carbon reduction strategies 

concerning optimising formwork design, element manufacturing, assembly, and transportation 

are unveiled. These strategies can complement existing carbon reduction methods, enabling 

researchers and designers to reduce the environmental impact of precast projects. 

Additionally, this study includes a questionnaire survey with Chinese designers to investigate 

the engineering information formats (EIF) used in design practice. In addition to offering an 

in-depth analysis of EIF utilisations, the survey results establish a relationship between design 

activities and EIF. Scholars can leverage these findings to identify the most suitable EIF for 

various design tasks, paving the way for future studies on sustainable design tools 

developments and promotions. Designers and contractors can also use the data to identify the 

most suitable EIF in their projects, improving the design and communication efficiency. 

The proposed optimisation model can be directly applied to current design optimisation efforts. 

It equips architects and civil engineers with specific design details and transportation plans. 

This data could guide the design and construction towards lower CE, preventing potential CE 

increases from inappropriate decisions in project delivery. It, therefore, facilitates the 

implementation of early-stage design decisions and addresses gaps left by previous early-stage 

tools. Additionally, the model considers formwork design and the prefabricated element 

transportation. Manufactures and constructers are provided with detailed formwork blueprints 

and transportation plans. They can use these data to produce efficient formwork pieces and 

arrange efficient element transportation, reducing emissions and construction cost. Although 

this research is based in Chinese context, the proposed optimisation model can be promoted to 

other regions having the similar construction method and delivery process.  
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2 Literature review 

2.1 Environmental impact of buildings 

The environmental impact of buildings refers to the influence on the natural environment and 

ecosystems resulting from activities, products, and services in the delivery and use of 

construction projects (ISO 14001:2015: Environmental management systems — Requirements 

with guidance for use, 2015). Such impacts include climate change, air pollution, water 

pollution, and land pollution (EN 15978:2011: Sustainability of construction works - 

Assessment of environmental performance of buildings. Calculation method, 2011), among 

which, climate change is considered the most pervasive threat (United Nations, 2021) as it 

generates significant effects on the ecosystems and human health (Farinha et al., 2021). Given 

the energy-related greenhouse gas emissions contributes the most to climate change over the 

past decades (Stocker et al., 2014), indicators like primary energy demand and greenhouse gas 

emissions are widely used to estimate projects’ environmental impacts (EN 15978:2011: 

Sustainability of construction works - Assessment of environmental performance of buildings. 

Calculation method, 2011).  

Greenhouse gas includes CO2, CH4, N2O, and fluorinated gases like HFCs, PFCs, SF6, and NF3, 

where CO2 is the most prevalent greenhouse gas, contributing to 79.7% of the amount (EPA, 

2023). For estimating emissions with varied greenhouse gas combinations, the unit CO2 

equivalent (CO2-eq) is introduced. It converts the amounts of other greenhouse gas to the 

equivalent amount of CO2 with the same global warming potential (Eurostat, 2023). 

Simultaneously, scholars use the term 'carbon emissions' synonymously with 'greenhouse gas 

emissions' to describe the release of climate-altering gases into the atmosphere (Giesekam et 

al., 2014; C. Guo et al., 2019; Hong et al., 2015; Mao et al., 2013; C. Zhang et al., 2020). 

According to the Global Statues Report for Buildings and Construction (United Nations 

environment programme, 2024), CE from the construction industry reached new highs in 2022, 

making up 37% of global CE to 10 billion tons. Construction projects generate CE in two 

categories: namely embodied emissions, and operational emissions (Dixit et al., 2013). 

Operational emissions are those associated with the operation of built environment. These 

include activities such as space heating, lighting, and air conditioning (Giesekam et al., 2014). 

Embodied emissions refer to those generate in life cycle stages other than the operation, 

including initial construction, life cycle maintenance, and final demolition (Dixit, 2019).  
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Compared to embodied emissions, operational emissions usually constitute a relatively larger 

proportion of a building’s total life cycle emissions (Dixit et al., 2012). The ratio of operational 

emissions was around 80% as reported by previous studies (Giesekam et al., 2014; T. K. Lim 

et al., 2016). However, the dominant contribution of operational emissions is decreasing with 

the improved building energy efficiency (Arslan et al., 2023; E. Marsh et al., 2021). The ratio 

of operational emissions reduced from 80-94% in conventional buildings to 67-89% in passive 

projects, 43-74% in low energy buildings, and 0-26% in nearly zero energy buildings (Chastas 

et al., 2016). An average ratio of embodied emissions is predicted to be up to 60% in the future 

(Roberts et al., 2020), underscoring the environmental significance of embodied energy (Dixit 

et al., 2012). 

2.2 Embodied carbon emissions analysis  

2.2.1 System boundaries for embodied carbon emissions 

System boundary defines the processes and products involved in manufacturing an objective 

product (Dixit et al., 2013; ISO 14040:2006: Environmental management - Life cycle 

assessment - Principles and framework, 2006). It identifies the energy and material inputs, as 

well as waste and emission outputs, involved in the embodied CE analysis of a construction 

project (Dixit et al., 2013). Typically, five system boundaries are recognised for buildings and 

their components (Pan et al., 2018): 

1) The “cradle to gate” system boundary includes upstream process from the raw material 

extraction to the end of manufacturing and prefabrication, where the finished product 

leaves the factory gate. 

2) The “cradle to site” system boundary covers the “cradle to gate” process and transportation 

process of finished construction products to the construction site. 

3) The “cradle to end of construction” system boundary further involves the construction and 

assembly on-site and wastage disposal processes. 

4) The “cradle to grave” system boundary considers the use phase with operations, 

maintenance, renovation, refurbishment and retrofit activities. 

5) The “cradle to cradle” system boundary considers the end-of-life phase with processes like 

building demolition, waste sorting, hauling, and disposal, and material recycling and reuse. 
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Variance in system boundaries results in an up to 600% discrepancy in project CE analysis 

(Dixit et al., 2013; Pan et al., 2018). Thus, analysis results using different system boundaries 

cannot be directly compared or combined (Hong et al., 2016). The system boundaries must be 

consistently defined across the analysis to align with the objective of the study (ISO 

14040:2006: Environmental management - Life cycle assessment - Principles and framework, 

2006), varying from a broad perspective emphasizing the general life cycle of a building to a 

more detailed examination of specific upstream and downstream processes (Dixit et al., 2013). 

Embodied carbon emissions are categorised according to the system boundary: 1) into direct 

and indirect emissions (Dixit et al., 2013) and 2) into initial, recurrent, and demolition 

emissions (Dixit, 2019). Regarding the first categorisation, direct emissions arise from the main 

construction process while indirect emissions occur in finite or infinite upstream stages that 

include input of goods and services (e.g., emissions generated in the manufacturing of 

construction equipment). Concerning the second categorisation, initial emissions represent 

those from onsite and offsite construction, transportation, management, and consulting 

processes; recurrent emissions generate in maintenance, repair, replacement, and renewal 

activities after the building is complete and occupied; demolition emissions refer to those 

generated in materials and systems recycle, reuse, and dispose when the building is taken apart. 

Given the availability of data, most studies focusing on the analysis of the initial direct 

embodied emissions of buildings (Dixit, 2019). Lifecycle analysis reveals that prefabricated 

projects generate most initial direct embodied CE in the manufacturing (82.9%), transportation 

(9.3%), and on-site construction (7.8%) phases (Teng & Pan, 2020). The emission ratios of 

each phase can vary based on project characteristics, especially those for transportation and on-

site construction (X. juan Li et al., 2022; Tian & Spatari, 2022). For instance, transportation 

emissions are influenced by the distance between prefabrication factories and construction sites 

(Dong et al., 2015), while project height affects on-site vertical transportation emissions (Hasan 

et al., 2013; Wu et al., 2020). Thus, “cradle to gate” (G. Liu et al., 2019), “cradle to site” (Wong 

& Tang, 2012), and “cradle to end of construction” (G. Liu, Chen, et al., 2020) system 

boundaries are all observed in exiting studies. Considering the emission contributions and 

available data, manufacturing and transportation stages are the most potential stages for carbon 

reduction. 
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2.2.2 Estimation methods of embodied carbon emissions 

Typically, CE evaluation employs three approaches: life cycle analysis (LCA), economic 

integration analysis, and direct measurement. However, the definitions of these approaches 

sometimes overlap with those of the CE calculation methods (Zhao et al., 2018) or the LCA 

method (T. K. Lim et al., 2016), causing confusion. Therefore, terms with minimum cross-

references are adopted in Table 2-1 for classification. 

Table 2-1: Classification of construction carbon emissions analysis approach 

Approach Method Application Input Data 

LCA 

Process-based 
LCA CE factor Specific Operation Construction 

quantity 
Input-output 
LCA Mass balance Material Level Material 

Consumption 

Hybrid LCA Mass balance Specific Operation Material 
Consumption 

Economic Analysis Mass balance Economies & 
Industry 

Material 
Consumption 

Direct Measurement Measurement All  None 

LCA evaluates the environmental impacts through the project’s life cycle (ISO 14040:2006: 

Environmental management - Life cycle assessment - Principles and framework, 2006). It is 

further categorised into three sub-approaches: 1) process-based LCA, 2) input-output LCA, 

and 3) hybrid LCA (G. Liu et al., 2019). The process-based LCA, ideal for assessing CE from 

specific construction methods, directly evaluates CE attributable to construction items (e.g., 

equipment, labour, and material) (T. K. Lim et al., 2016). Fang et al. (2018) employed this 

approach to determine the CE distribution across construction operations and equipment. Liu 

et al. (2020) developed a real-time process-based LCA model for construction CE monitoring. 

Conversely, the input-output LCA is applied broadly to explore CE driving factors in the 

construction sector (Cui et al., 2019). It is also adopted when material are the primary focus, 

calculating CE from the bill of material quantities (Cang et al., 2020; Lu et al., 2019). Specific 

studies have compared CE across materials (C. Zhang et al., 2020) and analysed carbon 

reduction through material selection and quantity optimisation (J. P. Basbagill et al., 2014; 

Basic et al., 2019; R. Marsh, 2016). Hybrid LCA, integrating these two methods, transforms 

the detailed CE of process-based LCA into the bill of material quantities used in input-output 

LCA (G. Liu et al., 2019). It is considered to offer a more comprehensive analysis than either 

process-based or input-output LCA along (Hong et al., 2016). 
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The link between a nation’s energy use and its Gross Domestic Product (GDP) forms the 

foundation of the economic analysis approach (Dixit et al., 2013). Unlike LCA, this approach 

assesses sustainability on a macro scale, focusing on economies (Han et al., 2020) or industries 

(Jindao Chen et al., 2019). These studies aim to address suggestions for policy or regulation, 

differing from this research’s objectives, and are therefore excluded. As for direct measurement, 

Liu et al. (2020) detailed its application in construction CE monitoring. The technologies they 

mentioned (e.g., GIS, video camera) are primarily adopted for visualization rather than 

calculation or analysis. However, Christen et al. (2011) proposed using direct eddy-covariance 

measurements for urban-scale CE calculation. Their model, effective for scales ranging from 

100m (size of the construction site) to 10km, highlights the potential for construction 

applications.  

Regarding CE calculation, the CE factor method, mass balance method, and actual 

measurement method are three prevalent methods (Zhao et al., 2018). There is an apparent 

consistency between the selection of analysis approaches and calculation methods. The CE 

factor method, multiplying the product of item quantities and emission factors, is exclusive to 

process-based LCA due to the demand of detailed construction quantities (Abey & Anand, 

2019; Karlsson et al., 2020; D. Li et al., 2016). The mass balance method, assessing CE by the 

material difference entering and exiting a process, is used in input-output LCA, hybrid LCA, 

and economic analysis (Hong et al., 2016; G. Liu, Chen, et al., 2020). Finally, although actual 

measurement can estimate CE in all the aforementioned approaches, its practical application in 

construction is currently limited (G. Liu et al., 2019). The method has only been observed in 

studies utilising a direct measurement approach (Christen et al., 2011).  

In China, the hybrid LCA and mass balance method are widely used in estimating embodied 

CE. Calculation standard of building carbon emissions GB/T 51366-2019 (2014) offers 

process-based hybrid LCA estimation methods and equations across manufacturing, 

transportation, construction, operation, maintenance, and demolition phases of construction 

projects. It offers national-wide average emission factors for building materials and energy 

consumption. Besides, China Products Carbon Footprint Factors Database (CCG, 2022) 

provides more detailed and up-to-data emission factors for building products in China. These 

two tools have been widely used in estimating manufacturing (W. Chen et al., 2022; Xiang, 

Mahamadu, Florez-Perez, et al., 2024), transportation (H. Wang et al., 2023; Xiang et al., 2022), 
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and lifecycle emissions (Y. Wang et al., 2022; X. Yang et al., 2021), suggesting them reliable 

and suitable for project-level CE estimation. 

2.3 Prefabricated construction 

2.3.1 Application of prefabricated construction in China 

Prefabricated construction refers to the construction process involving producing construction 

element in a manufacturing factory, transporting complete element or semi-elements to 

construction sites, and assembling the component to create buildings (Hong et al., 2018). It is 

regarded as the first level of building industrialisation, which is followed by mechanisation, 

automation, robotics, and reproduction (Richard, 2005). Prefabricated construction has been 

referred to as prefabrication, off-site construction, industrialised construction, and modern 

methods of construction (MMC) etc (Z. Li et al., 2014). 

Generally, prefabricated construction is categorised into four levels according to the degree of 

prefabrication implemented on the product: 1) element manufacturing and subassembly that 

are always done in a factory and not considered for onsite production, 2) non-volumetric pre-

assembly that refers to pre-assembled elements not enclosing usable space, such as timber roof 

trusses, 3) volumetric pre-assembly that refers to pre-assembled elements enclosing usable 

space and usually being manufactured inside factories but do not from a part of building 

structure, such as modular toilet and bathroom, and 4) entire buildings that refer to pre-

assembled volumetric elements forming the actual structure and fabric of building, such as 

modular residence (Gibb, 1999). 

Prefabricated construction serves an effective alternative to the traditional construction 

methods due to the inherent technology superiority, including reducing construction waste, 

noise, dust, operation time, construction cost, labour demand, and resource depletion, and 

improving quality control, health and safety (Z. Li et al., 2014). Such advantages improved the 

performance of the entire construction industry and attracts the favour of developed and 

developing countries like China, the US, the UK, Japan, and Singapore (Hong et al., 2018). 

The Chinese government has promoted this modern construction method since 1999 (Yue Gao 

& Tian, 2020). With the introduction of prefabrication standards (e.g., GB/T 51231-2016) and 

promotion polices (e.g., Opinions on Further Strengthening the Management of Urban 

Planning and Construction), prefabrication experienced a significant growth in China from 
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2016 (Luo et al., 2021; Yuna Wang et al., 2020). According to the reports of the Ministry of 

Housing and Urban-Rural Development, in 2020, the new-built prefabricated projects achieved 

740 million m2, representing 24.5% of the year’s total construction area (MOHURD, 2022).  

Generally, prefabrication technologies adopted in China can be classified into three types 

according to the structure material: prefabricated concrete, steel, and timber structure (Ji et al., 

2017). Among these three types, prefabricated concrete structure is predominant in Chinese 

construction industry (L. Li et al., 2020; G. Zhou et al., 2018). In 2021, this type of structure 

accounted for 67.7% of the new-built prefabricated projects in China (MOHURD, 2022), 

making it a primary focus of prefabrication studies (L. Li et al., 2020; Yuan et al., 2018; G. 

Zhou et al., 2018).  

The implementation of prefabrication technologies includes preliminary studies and primary 

project design (Hollberg & Ruth, 2016), prefabricated elements production and transportation, 

and onsite construction (G. Liu, Chen, et al., 2020). These parts are usually separately divided 

and undertook by independent companies (Xiang, 2020). Specifically, design institute is 

responsible for preliminary studies and primary project design. They provide the subsequent 

links with determined geometry features, determined the design details, and technical 

specifications. (Hollberg & Ruth, 2016). After that, design files are handed over to industrial 

experts for a deeper technical design, which details the design files into manufacture-oriented 

drawings concerning the data of each single prefabricated element (S. Gao et al., 2019). Then, 

the manufacture factory and project contractor are responsible for the manufacture and 

assembly of prefabricated elements based on these design files, respectively (Yuan et al., 2018). 

2.3.2 Design of prefabricated elements 

The design process generally consists of three steps: concept design, developed design, and 

technical design (RIBA, 2020). Specifically, concept design determines the number of stories, 

building orientation, and building massing; developed design settles the final geometry and the 

primary construction material; and the technical design addresses design details and technical 

specifications (Hollberg & Ruth, 2016). Within this framework, the design of prefabricated 

elements follows these steps: 1) architects and civil engineers initially select the primary shape 

and form of structures during conceptual design; 2) Following the developed design stage 

(when the architecture functional plan is determined), civil engineers are responsible for 

detailed structural design, including sizing and detailing of structural elements (Anwar & 
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Najam, 2017); 3) Finally, engineers from manufacture industry or civil engineers divide the 

prefabricated parts into prefabricated elements and refine the elements design to meet the 

requirements of manufacturability and buildability (S. Gao et al., 2019; Yuan et al., 2018). 

The design and structure analysis of precast elements is not much different from that of 

conventional structure elements (Polat, 2008). The process typically involves three 

interdependent steps: 1) select the primary shape and form of structure as well as gravity and 

lateral load-resisting systems, 2) analysis the expected response of structure elements under all 

kinds of loadings, and 3) detail the design of elements based on analysis results (Anwar & 

Najam, 2017). A manual trail-and-error method, i.e., repeated cycles of identify, test, evaluate, 

and modify the proposed element design until achieving optimal performance and safety, is 

normally employed in this procedure (Trinh et al., 2021).  

Building codes establish rules and guidelines, specifying the minimum standards for both 

modelling and analysis, to ensure design quality and safety (Anwar & Najam, 2017). In China, 

the design of prefabricated elements must fulfil the general requirements of the corresponding 

structure system, like GB 55006-2021 for the steel structure and GB 55008-2021 for the 

concrete structure, as well as the specifications for prefabrications like JGJ1-2014 for precast 

concrete structures. These specifications set additional test criteria and technical requirements 

for element design to ensure the prefabricated structures achieve comparable performance to 

conventional structures under equivalent conditions. 

In addition to the conventional requirements, like safety (Anwar & Najam, 2017), economy 

(Alkhadashi et al., 2022), material-efficiency (Orr et al., 2019), and sustainablility (Jayasinghe 

et al., 2021), the design of prefabricated elements emphasises standardisation (Bo, 2018), 

which is essential to the application of prefabrication technology. Standardisation origins from 

the design for manufacture (O’driscoll, 2002), aims to minimise the variety and quantity of 

prefabricated elements, thereby enhancing the efficiency of both off-site manufacture and on-

site assembly (Gerth et al., 2013; Kremer, 2018). It is commonly implemented in the design by 

adopting standardised building products (Polat, 2008).  

Considering that building elements with standardised dimensions and connections have a 

higher capability of reuse, employing the principle of standardisation advances the 

decarbonisation of prefabricated projects (Anastasiades et al., 2021).  However, due to the lack 

of necessary engineering knowledge and experience (Bröchner et al., 2002), the sake of 
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employment is normally converted to employing uniform cross-section dimensions and 

minimising the number of prefabricated elements (Xiang, Mahamadu, Florez-Perez, et al., 

2024), leading to potential material waste as descripted in section 1.2.1. 

2.3.3 Manufacture of prefabricated elements 

Currently, there are two methods of prefabricated element manufacture in China: static 

production and linear production (G. Liu et al., 2019). Specifically, static production involves 

manufacturing prefabricated elements in a fixed position. Materials, equipment, services, and 

labourers are brought to the manufacturing position. After production, the element is lifted out 

by crane, forklift, or other equipment. It is then either stored temporarily or transported 

dir(Hough & Lawson, 2019)ion site (Hough & Lawson, 2019). 

Linear production refers to the manufacturing process conducted in multiple stages at varied 

positions. The prefabricated element is manufactured on wheels, trolleys, or production lines 

and moved between stations by electrical vehicles, motorised trolleys, roller tracks, or conveyor 

belts. Correspondingly, the materials, facilities, and labourers are prepared in batches around 

each manufacturing position (Hough & Lawson, 2019). 

According to the lifecycle analysis on the manufacturing process, building materials are the 

main source of manufacturing CE, accounting for 96.2%. The emissions from equipment usage 

and labourers are 3.65% and 0.16%, respectively. The result highlights the significance of 

optimising the design to reduce material input for lowering the embodied CE from 

manufacturing process. 

2.3.4 Transportation of prefabricated projects 

Transportation is essential in building delivery and generates non-negligible effects on the 

environmental impact of buildings. Excluding or ignoring transportation energy may cause a 

variation equal to 5%-7% of the total life-cycle embodied energy (Dixit, 2017). This ratio may 

increase to more than 10% when the prefabrication is adopted (Dong et al., 2015; Yu; Gao et 

al., 2018). Mao et al. (2013) identified the transportation phases in prefabrication construction 

as 1)  transporting building materials from a distribution centre to the off-site prefabrication 

factory and from a distribution centre to the project site, 2) transporting prefabricated elements 

from off-site prefabrication factory to the project site, 3) transporting construction waste and 

soil from off-site prefabrication factory to landfill, or from project site to landfill, and 4) 



 21 

transporting construction equipment and workers. Among these four phases, phases 3 and 4 

contribute to a limited percentage of the total life-cycle energy (both less than 1%) (Chastas et 

al., 2016). Most research attention is thus drawn to the other two phases (Chau et al., 2015), 

especially the transportation of prefabricated elements that crucially affects the environmental 

benefits of prefabrication (Mao et al., 2013).  

From the literature reviewed, there are two assumptions that impact the calculation and analysis 

on transportation CE: freight status and vehicle operation mode. 

2.3.4.1 Freight status 

In construction transportation analysis, freights have traditionally been considered as non-solid 

substances without fixed shapes. All vehicles are also assumed to reach an identical loading 

status and generate an average emissions value. Therefore, it is the material weight rather than 

size that dominates the transportation quantity in traditional transportation estimation. This 

assumption is widely used in the transportation CE calculation of cast-in-situ construction. For 

instance, D. Li et al. (2016) calculated the transportation CE of a cast-in-situ residential 

building. The researchers considered the material weight, transport distance, and vehicle type 

(i.e., diesel-powered truck, electric locomotive) as variables and reported a 2% total CE 

contribution of transportation. Similar calculation formulas were seen in the research of Jafary 

Nasab et al. (2020), who analysed the carbon footprint in the construction phase of high‑rise 

construction in Tehran.  

Abey & Anand (2019) adopted the above assumption in their prefabrication transportation CE 

calculations and reported a similar transportation CE contribution between prefabrication and 

cast-in-situ construction (3%-5%). Hao et al. (2020) employed the same assumption and 

claimed that only 1% CE is generated in the transportation stage of either prefabrication or 

cast-in-situ construction.  

However, (H. Wang et al., 2021) claimed that the assumption (i.e., all vehicles achieve an 

identical loading rate) could not be directly applied to the CE calculation of prefabrication 

transportation because the actual loading rates of prefabricated elements vary based on the size 

limit, stacking layer limit, and installation sequence. For instance, prefabrication design codes 

set different maximum stacking layers for different prefabricated element types (China Institute 

of Building Standard Design & Research, 2015). Real-world constraints conflict with 
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calculation assumptions and challenge the results of previous studies, especially at the project 

level. 

G. Liu, Chen, et al. (2020) and G. Liu, Yang, et al. (2020) managed to overcome this defect 

using micro-level CE calculations. Both sets of researchers divided prefabricated elements into 

several branches according to the actual transportation plan. CE was calculated based on 

vehicles concerning specific load, distance, and transport approach. However, their system 

realises CE monitoring rather than prediction. Detailed results are also provided during or after 

the construction process. Meanwhile, the emission factors the researchers used were cited from 

Y. Chen & Zhu (2010), which is out-of-date and does not vary for different vehicle types and 

loading statuses.  

2.3.4.2 Vehicle operation mode 

In the studies mentioned in section 2.3.4.1, vehicles were assumed to operate in controlled 

environments with idealised loading rate, stable speed, and temperate conditions. Therefore, 

average emission factors from macro-level statistics and laboratory measurements were 

adopted (H. Wang et al., 2021). Yet these statistical data have significant variances from real-

world emissions (Tu et al., 2021) due to the difference in driving cycles, vehicle technology, 

and emission regulations in different regions (A. Wang et al., 2022).  

The modal model (e.g., EMFAC, MOVES3, and HBEFA) allows for calculations considering 

real-world driving status by providing specific emission factors for different ‘operation modes’, 

which are defined by internal observed (e.g., engine parameters) or externally observed (e.g., 

speed, acceleration, weight) variables (A. Wang et al., 2022). For instance, MOVES3 provides 

specific emission rates according to pollutant, emission process, fuel type, regulatory class, 

operating mode, and vehicle age (EPA, 2020b). Comparative studies between the modal model 

and statistical model (i.e., calculation using statistical data) show that the modal provides a 

more accurate emission estimation (Fujita et al., 2012; Vallamsundar & Lin, 2011; Wallace et 

al., 2012). The modal model is, therefore, preferable in micro-level transportation CE analysis 

(A. Wang et al., 2022; L. Zhang et al., 2017). 

The development and application of the portable emission measurement system (PEMS) 

provide the emission characteristics of vehicles on actual roads, thus bringing the assumption 

of vehicle operation closer to reality (Shen et al., 2021). Scholars have used actual measured 

data to identify the real-world emission characteristics of light-duty vehicles (Chung et al., 
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2012), heavy-duty vehicles (Shen et al., 2021; J. Wang et al., 2022), and non-road mobile 

machines (Desouza et al., 2020; Muresan et al., 2015; Tu et al., 2021). These characteristics 

allow scholars to verify and adjust the general modal model, as shown in studies conducted by 

A. Wang et al. (2022) and Seo et al. (2022). However, the sample size of studies using PEMS 

generally remains limited (1-2), which could be unrepresentative. Such studies also focused on 

the general situation in the logistic industry rather than practices in the prefabricated 

construction context. 

2.4 Design optimisation for embodied carbon reduction 

2.4.1 Stages for design optimisation 

Building design is a sequential decision-making process involving various stakeholders (Gauch 

et al., 2023). It is believed to have a dominant impact on the environmental performance of 

projects (C. Z. Li et al., 2020), in which, designers, including architects and civil engineers 

exert the greatest influence over design decisions (Stephan & Stephan, 2016). According to the 

Royal Institute of British Architects (RIBA) plan of work, the design process typically consists 

of three steps: concept design, developed design (spatial coordination), and technical design 

(RIBA, 2020). Specifically, concept design determines the number of stories, building 

orientation, and building massing; developed design settles the final geometry and the primary 

construction material; and the technical design addresses design details and technical 

specifications (Hollberg & Ruth, 2016).  

Lotteau et al. claimed that design decisions related to the overall building massing (e.g., 

external dimensions of buildings) have a greater influence on the embodied CE than those 

related to element details (e.g., the thickness of walls) (Lotteau et al., 2017). It is because these 

decisions set the fundamental constraints for subsequent ones (Paulson, 1976). From a 

statistical perspective, each decision made in the design process affects the distribution of CE 

within a certain range. The more decisions are made, the more design variables are fixed, the 

narrower the result scale, and the higher the concentration on a specific value (J. Basbagill et 

al., 2013). As a result, scholars have dedicated considerable effort to optimising design 

decisions at the early design stage (i.e., the concept design), e.g., the overall shape and 

dimensions of projects (Alwan & Ilhan Jones, 2022; Bernett et al., 2021; Kreiner et al., 2015). 
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However, continuous monitoring on the variation of CE distribution across different design 

stages reveals that design decisions made during the developed stage has enough influence to 

impact the overall sustainability of projects (J. P. Basbagill et al., 2014; Muthumanickam et al., 

2023). It indicates that considerable margins to reduce embodied CE are remained in later 

stages (Dunant et al., 2018; Moynihan & Allwood, 2014). Moreover, the exclusive adoption of 

design decisions with low environmental impact predictions at the early stages may still 

culminate in unsustainable results if subsequent decisions are not made judiciously. Therefore, 

the optimisation of variables determined at the developed design stage warrants further 

investigation. 

2.4.2 Optimisation methods 

The uncertainty in design decisions leads to the variance in the CE of projects and thus forming 

the foundation for sustainable design optimisation. For instance, Cavalliere et al. reported a 

137–460% difference between the minimum and maximum emissions of building design 

alternatives by making different decisions(Cavalliere et al., 2019). Similarly, the difference in 

variables for a single building element (beam) can cause a 400-500% difference in CE (X. 

Zhang & Wang, 2022).  

Therefore, the primary task of design optimisation is to predict and compare the performance 

of design alternatives determined by different design decisions (Xiang et al., 2021). Typically, 

previous studies have addressed the issue of data uncertainty through data refining or model 

simplification. Data refining refers to use information from the later phase for more accurate 

CE calculations (Hao et al., 2020; D. Li et al., 2016; Lin et al., 2019) and replacing uncertain 

data with assumed or empirical values (Dixit, 2019).  

Obviously, this data refining method is delayed or inaccurate in these scenarios. Therefore, 

more studies opt for simplifying and adjusting the model to match data quality. Kanafani et al. 

(2019) categorised model simplification into horizontal approach (i.e., reducing parameters in 

analysis) and vertical approach (i.e., reducing data quality and allowing generic data). For 

instance, using the horizontal approach, Victoria & Perera (2018) suggested to design with 

emphasis on carbon intensity and focusing on the carbon hotspots (elements contributing over 

80% of total CE). Rodrigues et al. (2018) reinforced this approach by predicting a robust 

environmental performance using less than ten design attributes.  
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Although the horizontal approach claims to be effective and efficient, it is less applied than the 

vertical approach, which evaluates more design alternatives for comprehensive results (e.g., 

Shadram & Mukkavaara (2018) evaluated 14,630,112 alternatives). The vertical approach 

leverages design uncertainty to form the alternative space by distributing uncertain design 

parameters. This method generates results through the exploration of optimised parameter sets. 

For instance, Hester et al. (2018) established a design space by varying parameters such as 

building geometry, occupant behaviour, and material selection. Their design guidance, an 

optimised scale of crucial attributes, was derived from quasi-optimum solutions (i.e., 

alternatives possessed 75% of the maximum potential). A similar idea was adopted but not 

limited to the research of J. Basbagill et al. (2013) and Feng et al. (2019). These studies suggest 

the vertical approach a suitable method for addressing data uncertainty and result 

comprehension in early-stage design optimisation. 

2.4.3 Parametric approach 

Conventionally, designers incorporate design decisions such as design aspects and dimensions 

of buildings into geometric elements. Once drawn, an initial model with fixed geometry is 

generated. Changing design decisions necessitates a redrawing of initial geometry (Hollberg & 

Ruth, 2016). This process is time-consuming and relies on manual efforts (Eltaweel & SU, 

2017), preventing designers from evaluating many design alternatives and achieving a global 

optimum result (Kanyilmaz et al., 2022).  

In contrast, the parametric approach treats all design decisions as parameters, such as location, 

orientation, shape, solar radiation, etc. (Eltaweel & SU, 2017). It defines a building design 

using these parameters and the mathematical relationships between them (Monedero, 2000).  

With algorithms or tools like Grasshopper, any change of parameters leads to an immediate 

and comprehensive update in design output (Eltaweel & SU, 2017). This allows the automated 

generation of design alternatives by varying design parameters, forming the foundation for 

computer-aided design optimisation (Hollberg & Ruth, 2016).  

The parametric approach transforms design from a concrete representation of geometry to the 

abstraction of design parameters and their relationships (Monedero, 2000), shifting the focus 

from evaluating design alternatives to establishing computational logic of design parameters 

(Tabadkani et al., 2018). This attempt demands comprehensive knowledge of design and 

engineering logic across design and construction (Coenders, 2021).  
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Furthermore, the parametric approach necessitates reconsidering or even abandoning 

conventional design typology (Brown & Mueller, 2019).  Such typology, widely employed in 

conventional design, tends to analyse and solve the design problems using the designer’s 

habitual and fixed patterns. Utilising such pattern makes design results dependent on specific 

decisions made during the formulation of design problem (Brown & Mueller, 2019), thus 

limiting the diversity in design alternative exploration and impairing optimisation efficiency. 

Previous studies, such as Xiang et al. (2024), indicate that excluding experience-based design 

strategies during parametric design problem formulation results in better optimisation 

outcomes and counterintuitive solutions. 

Currently, parametric approach has been employed to formulate design problems in 

architecture design (Nembrini et al., 2014; Shiel et al., 2018), structure design (Jayasinghe et 

al., 2022; X. Zhang & Wang, 2022), urban planning (Abdollahzadeh & Biloria, 2022; Ibrahim 

et al., 2021), in-door built environment (Tabadkani et al., 2018; J. Zhang et al., 2021), etc. 

Regarding sustainable design optimisation, scholars employed the method to assess design 

sustainability (Basic et al., 2019; Hollberg & Ruth, 2016), optimise CE of projects (Al-Obaidy 

et al., 2022; Jayasinghe et al., 2021; Teng & Pan, 2020), and perform multi-objective (usually 

cost and sustainability) construction optimisation (J. P. Basbagill et al., 2014; Gauch et al., 

2022; Kanyilmaz et al., 2022; X. Zhang & Zhang, 2021), indicating the parametric approach 

as a promising tool in design optimisation. 

2.5 Communicating of optimisation results 

2.5.1 Engineering information formats in building design 

The design process necessitates collaboration among multi-disciplinary design teams, with 

diverse backgrounds, expertise, and perspectives of creativity (Muthumanickam et al., 2023), 

to balance competing objectives (e.g., safety, reliability, cost, etc.) (Ren et al., 2013). In this 

collaborative environment, design information is retrieved, revised, and renewed multiple 

times by multiple individuals and organizations (Y. Liu et al., 2017), making the control of 

information crucial for optimal project performances (Davidson et al., 1988). 

However, the construction sector remains highly fragmented (Giesekam et al., 2016). 

Information is, therefore, transferred in segments across design phases (Tribelsky & Sacks, 

2010), causing inevitable errors and inefficiencies in the design process (Murti & Muslim, 
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2023). For decades, the primary information medium in the construction sector has remained 

2D-drawings (Dadi, Taylor, et al., 2014; Mattern & König, 2017). It allows designers to 

represent the geometric features and engineering details of projects using various projection 

planes in paper-based drawings, which can be convenient delivered and reviewed on-site 

(Sweany et al., 2016). However, this two-dimensional information exchange mode involves 

frequent message processing (i.e., encoding and decoding) and manipulation of multiple 

drawing sheets to obtain a comprehensive understanding of building systems (Stephen Emmitt 

& Christopher A. Gorse, 2003), leading to potential information loss (Antwi-Afari et al., 2018). 

As a result, design information is often harder for recipients to comprehend than for its original 

creators (Stephen Emmitt & Christopher A. Gorse, 2003). Misunderstandings can occur even 

when referencing the original design files (Pauwels et al., 2011).  

To address the issue, Building Information Modelling (BIM), as a shared digital representation 

of the physical and functional characteristics of any construction works, has emerged as a 

superior format of engineering information (Urbieta et al., 2023). BIM supersedes the 

conventional information format based on descriptive geometry (Sweany et al., 2016) by both 

comprehensive geometric and semantic data (Antwi-Afari et al., 2018). Project documents in 

this format allows professionals from various backgrounds and design phases to create, store, 

and retrieve information consistently and cohesively (Abanda et al., 2017; Ozturk et al., 2016; 

Tan et al., 2021). Hence BIM is posited to enhance both the quality of engineering information 

(Andersson & Lessing, 2017; Urbieta et al., 2023) and the efficiency of information exchange 

(Charef et al., 2018; H. Liu et al., 2018; Yingnan Yang et al., 2023). A considerable number of 

studies conduct sustainable design estimation and optimisation based on this modern data 

format (Cavalliere et al., 2019; El-Diraby et al., 2017; Fonseca Arenas & Shafique, 2023; 

Shadram et al., 2016; Xu et al., 2022). 

Recognising the benefits of BIM, governments have promoted this modern information format 

worldwide (Yonghong Chen et al., 2023). For instance, the Singapore government mandated 

that all new architectural plans be submitted in BIM format in 2013 through series of codes 

from Building and Construction Authority (BCA) (Liao et al., 2021). Similarly, Hong Kong 

identified mandatory and optional BIM use in construction project via the technical circular 

“Adoption of Building Information Modelling for Capital Works Projects in Hong Kong” since 

2017 (Adoption of Building Information Modelling for Capital Works Projects in Hong Kong, 

2021). Despite these efforts, the application of BIM has encountered considerable challenges 
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(Olanrewaju et al., 2022). Liao et al. reported that BIM adoption in Singapore is often 

compliance-driven rather than value-driven, sometimes making it a “token” action in project 

delivery (Liao et al., 2021). The Construction Industry Council of Hong Kong found that 73% 

of contractors had never engaged in any BIM-assisted projects (Yu Yang et al., 2024).  

Such a challenge is even more pronounced in China, where BIM is promoted rather than 

mandated (Yonghong Chen & Ding, 2023). Although Chinese designers are aware of BIM 

benefits and basic operations through education and policy promotion (J. Li et al., 2020; Yu 

Yang et al., 2024), they show significant resistance in adopting BIM during design, especially 

when there is no client requirement for BIM usage (Wei & Hu, 2014). Approximately half of 

Chinese designers are at the lowest level of BIM application and more than 75% of enterprises 

use BIM for less than 50% of their projects, including the “token” use to meet government 

requirements (Deng et al., 2020).  

The evidence suggests that while BIM models are beneficial for information exchange, they 

may not be feasible or valuable across all stages due to the complexity of projects. BIM does 

not always meet the expectations set by academia nor necessarily yield benefits in practical 

applications (Lidelöw et al., 2023) because BIM may not be apt for certain design phases due 

to its limitation in executing specific tasks (Y. Liu et al., 2017). This is particularly evident in 

early design stages, e.g., the concept design stage. At this stage, design data are fluid, allowing 

designers to explore various design alternatives to optimise performance (J. P. Basbagill et al., 

2014; Muthumanickam et al., 2023). Designers often use general massing instead of 

determined building elements to investigate the basic shape, form, and layout of projects, 

leading to ambiguous element types and relationships. However, the semantic ambiguity from 

general massing in concept design can cause BIM models to fail (H. Liu et al., 2018), as BIM 

models demand design certainty and well-defined building elements (Leon & Laing, 2022). 

Although BIM software provides specific functions, like massing in Revit, for designers, their 

application in early design stages is limited (Lidelöw et al., 2023).       

Moreover, design activities in the concept design phase are often viewed in a “black box”, with 

undefined processes (Y. Liu et al., 2017). The information exchange among designers often 

surpasses mere drawing or BIM file exchanges, potentially exceeding the capacity of BIM 

(Tribelsky & Sacks, 2010). While BIM offers benefits in collision control, visualisation, 

providing foundation for simulations and drawing generation (Lidelöw et al., 2023), they are 

not the primary focus in the early design stage. Here, rapid modelling and design alternative 
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evaluation are paramount, amplifying BIM’s disadvantages of complex modelling (H. Liu et 

al., 2018). In these instances, designers often gravitate towards simpler and familiar tools (e.g., 

Rhino, SketchUp) (Y. Liu et al., 2017). Consequently, BIM adoption is rarer in initial phases 

but more prevalent in advanced project stages (Lidelöw et al., 2023). Obviously, this adoption 

of BIM is conflict with the proposed application scenario of those BIM-based sustainable 

design optimisation methods, which aim to provide design assistance in the early design stages, 

leading to a limited practicality. Thus, conventional EIF (e.g., 2D drawings and 3D graphs) 

should not be excluded from expressing design data.  

Studies grounded in experimentation shed light on the efficacy of various EIF in detailed design 

tasks. The experiments using simplified model suggests that 2D drawings more effectively 

convey relative positioning than perspective or isometric drawings, while 3D displays offer 

superior depth and shape comprehension (Dadi, Goodrum, Taylor, & Maloney, 2014). 

Therefore, for tasks emphasizing the relative positioning of building elements in two 

dimensions, 2D drawings are favoured, while 3D displays are chosen for shape recognition and 

multi-dimensional tasks (Dadi, Goodrum, Taylor, & Maloney, 2014). Overall, the efficiency 

difference between 3D and 2D engineering information format in data cognition is insignificant 

(Dadi, Goodrum, Taylor, & Carswell, 2014). In practical applications, experts report a notably 

increased cognitive demand when working with 3D model compared to 2D drawings (Shi, Du, 

& Worthy, 2020). Hardison et al. (2020) observed no marked difference in hazard recognition 

performance across different information formats. Therefore, it is challenging to assert that a 

particular format of engineering information holds overarching advantages or could universally 

supplant the others, let along claiming that BIM is suitable for all design tasks. 

The nature of design tasks dictates the process of receiving, creating, processing, and delivering 

information. Engineering information formats currently in use have been reasonably selected 

and verified over time, being specifically tailored to particular design tasks. However, 

contemporary BIM promotion strategies, which emphasize fundamentally altering existing 

design practices to adopt standardized BIM formats (Tan et al., 2021), tend to oversimplify the 

design file as merely an information carrier. This simplification overlooks its role in facilitating 

the creativity of designers and may lead to a misalignment between the tools provided by BIM 

and the actual needs of designers. Coupled with BIM’s failure to realise benefits in 

conventional design tasks (Y. Liu et al., 2017), those abrupt promotion approaches encounter 

significant resistance in the design industry (Ahmed, 2018; Tan et al., 2019). Practitioners are 
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reluctant to shift from their traditional practices without clear benefits and defined application 

contexts (Lidelöw et al., 2023). 

The definition BIM, the process of generating and managing information about a building 

during its entire life (Fu, 2018), indicates the difference between applying BIM in design 

process and using BIM model for project design, suggesting for a flexible BIM application. 

Given the lessons learned from Singapore and Hong Kong (Liao et al., 2021; Yu Yang et al., 

2024), where using BIM sometimes become a compliance-driven operation, integrating BIM 

and conventional EIF in design is crucial.  

2.5.2 Methods for optimisation results communication  

Generally, sustainable design optimisations are normally conducted via three approaches 

(Roberts et al., 2020), as given in Table 2-2:  

1) cooperation of design and analysis software (J. P. Basbagill et al., 2014);  

2) design integrated plug-in tool (Basic et al., 2019);  

3) numeric values and tables (Cang et al., 2020);  

Approaches 1 and 2 enable architects to evaluate sustainability performance and aesthetics 

requirements simultaneously (Hollberg & Ruth, 2016). The outputs of these two methods are 

conveyed via building models, drawings, and corresponding numeric emission values.  

Table 2-2: Engineering information format utilisation in design optimisation tools 

Design optimisation tools Engineering information format 
Design & Analysis software 3D/BIM models, 2D graphs, and numeric values 
Design integrated plug-in tool 3D/BIM models, 2D graphs, and numeric values 
Numeric values and tables numeric values 

In approach 1, the design data are normally transferred across varies EIFs and software 

environments. For instance, Shadram & Mukkavaara (2018) converted BIM data into numeric 

parameters for optimisation. The optimisation results from algorithms, in parameter form, are 

then re-applied in Revit for visualisation. This approach fully utilises existing tools but 

demands additional EIF transformation process across software environments. 

In contrast, approach 2 integrates data processing, sustainability analysis, design optimisation, 

and results visualisation within a single design software. For example, Basic et al. (2019) 

implemented real-time CE calculation within Rhino 3D using its embedded programming tool, 
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Grasshopper. Although approach 2 reduces the need for EIF transformation, its computing and 

optimisation efficiency is usually constrained by the default settings of design software rather 

than hardware, making it less efficient than approach 1.  

Compared to approaches 1 and 2, approach 3 is weaker in visualisation but is software-

independent and easy to implement. For instance, Lu et al. (2019) used Microsoft Excel for CE 

calculation. However, this approach is less user-friendly for designers, as it is difficult to 

establish direct relationships between design decisions and numeric emission values, hindering 

design optimisation for better sustainability. Therefore, scholars have integrated numeric-

value- or table-based sustainability certification tools (e.g., LEED (USGBC, 2024) and 

BREEAM (BRE Global Limited, 2024)) with BIM for improved application (Cascone, 2023; 

Dubljević et al., 2023). This integration ultimately aligns with the frameworks of approaches 

1 and 2. 

Beyond the aforementioned EIFs for optimisation results communication, J. P. Basbagill et al. 

(2014) proposed a novel approach that represents the probability distribution of remaining 

alternatives after each decision is fixed. This approach directed designers to decisions with the 

highest potential for carbon reduction, balancing design flexibility and sustainability. 

2.6 Summary 

The review highlights scholars' extensive efforts to enhance sustainability in the design stages, 

offering effective strategies for estimating and optimising embodied CE. Figure 2-1 depicts the 

concepts derived from the literature review, which is organized into three key processes: 1) 

design alternative generation, 2) CE analysis, and 3) optimised solution output. These processes 

are represented by the vertical colour-coded blocks on the left side of the figure. Within these 

processes, previous concepts address five pertinent topics: 1) identifying design tasks in 

different stages, 2) managing design uncertainties, 3) defining system boundaries, 4) estimating 

CE, and 5) integrating CE optimisation into design. These topics are detailed in the vertical 

blocks on the right side. Variables in each topic, concerning design content, design data, 

delivery stage, measured item, reference data, optimisation tool, and EIF, are presented in 

individual black blocks. Concepts are defined and differentiated by the set of variables they 

encompass, as indicated by the color-coded blocks surrounding them. 
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Figure 2-1 Summary of concepts from literature review.  
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3 Methodology 

3.1 Research philosophy and approach 

This research adheres to a postpositivist worldview, positing that causes probably determine 

effects or outcomes. This perspective holds that complicated problems can be tackled through 

breaking them into smaller, discrete units for testing. Therefore, knowledge development from 

a postpositivist perspective relies on the observation and measurement of the objective reality 

in practice. (Creswell & Creswell, 2013).  

Adopting a postpositivist worldview, this research design is premised on the following 

assumptions (Phillips & Burbules, 2000): 

1) Knowledge is tentative, and evidence derived in research is inherently imperfect and prone 

to error. Therefore, research findings do not confirm a hypothesis; rather, they indicate an 

inability to reject it. 

2) Research involves making claims and then refining or discarding them in favour of more 

substantiated claims. Thus, research usually starts with the test of theories. 

3) Knowledge is shaped by data, evidence, and rational considerations. Consequently, the 

primary method for data collection is through measurement and observations. 

4) Research seeks to develop statements that explain concerns or describe causal relationships. 

As a result, relationships among variables are highlighted through questions or hypotheses. 

5) Being objective is an essential aspect of competent inquiry. Research methods and 

conclusions must be examined for bias. 

Given postpositivist philosophy and the abundant studies in sustainable design, this study 

employs a deductive approach, which relies on facts and previous knowledge (Kyngäs & 

Kaakinen, 2020). This approach starts with general premises, like existing theories, and aims 

to draw specific conclusions (Gray & Grove, 2020). Typically, deductive reasoning entails 

reviewing existing theories, formulating testable hypothesis based on those theories, collecting 

data for hypothesis test, analysing the data, and concluding whether to reject the hypotheses 

(Elo & Kyngäs, 2008).  

Considering the goal to develop a practical design optimisation model for reducing embodied 

CE in prefabricated projects, this study’s specific application of the deductive method includes: 
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1) Examining prior research on carbon reduction in prefabricated projects. 

2) Identifying potential design variables and strategies for carbon reduction. 

3) Assessing the impact of these variables and the effectiveness of proposed strategies. 

4) Analysing the test results. 

5) Concluding on the effectiveness of the proposed design optimisation model. 

3.2 Research strategy 

The development of the proposed optimisation model utilises a quantitative research strategy, 

as illustrated in Figure 3-1. According to hypothesis (1) (section 1.3.2), variables critical to 

developing the design optimisation model encompass design decisions and embodied CE. 

Typically, design decisions are predominantly represented as continuous variables, such as 

dimensions. The rest, like the selection of building materials and products, are considered as 

categorical variables. These categorical variables can be transformed into quantitative features, 

such as the compressive strength of concrete. As a result, all design decisions can be quantified 

as the numerical features of project. Given the quantitative nature of embodied CE, this study 

establishes quantitative relationships among project design, design features, and project 

emissions. 

Specifically, embodied carbon emissions 𝐶𝐶𝐶𝐶 are chosen as the indicator for design estimation 

(i.e., dependent variable) in this study. Design decisions will be converted into a series of 

quantitative design parameters (i.e., independent variables) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The range of each parameter, 

denoted as set 𝑅𝑅, is defined according to industrial practise. The goal of the optimisation model 

can be stated as: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∈𝑅𝑅

𝐶𝐶𝐶𝐶(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) (3-1) 

The result of equation (3-1) is explored by experimental analysis, which seeks to determine 

how a change in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 influence 𝐶𝐶𝐶𝐶. The influence of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 on 𝐶𝐶𝐶𝐶 is assessed by providing a 

specific adjustment to 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  in one case compare its 𝐶𝐶𝐶𝐶  to another without (Creswell & 

Creswell, 2013). 

Hypothesis (6) (section 1.3.2) indicates that the model output form is determined by two 

variables: design tasks and designers’ attitude towards specific EIFs. This study utilises a 

quantitative survey to measure designer’s design tasks and their attitudes towards specific EIFs. 
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Through analysing the quantitative relationships between these variables, it is possible to 

predict a specific designer group’s preferred EIF based on its population characteristics. 

 

Figure 3-1 Research strategy. 

3.3 Research design 

3.3.1 Determination of research scope 

This study focuses on reducing the embodied CE of prefabricated projects in China. Therefore, 

the research context is embedded in current Chinese construction industry. The common design 

process and existing design codes are considered as the foundation and requirement of study 

design. Considering the variance in technology difference across varied prefabrication methods, 
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like precast concrete structure, prefabricated steel structure, etc., this study selected the 

mainstream prefabrication type in China, precast concrete structure, as the prototype.   

CE, calculated in CO2 equivalent (CO2-eq), serves as the sole indicator for embodied emissions 

estimation in this study because it represents the projects’ primary environmental impacts 

(Section 2.1). LCA on the construction CE reveals that manufacturing and transportation of 

building elements present the greatest opportunities for carbon reduction in prefabrication 

(Teng & Pan, 2020). Restricting the system boundary to these stages could yield the most 

efficient carbon reduction strategies. Therefore, the system boundary of this study is set to 

embodied CE from the manufacturing and transportation stages of prefabricated projects. 

Specifically, it includes the emissions from building materials, formwork, and transportation 

of prefabricated elements.  

Emissions from producing and assembling the prefabricated elements are excluded due to their 

limited contribution to the overall embodied CE (around 5%), as stated in section 2.2.1. 

Emissions of project demolition and material reuse and recycling are excluded due to lacking 

standardised emission data, calculation method, and estimation scenarios (Wen et al., 2024). 

Additionally, the transportation of building materials is ignored because this process is similar 

between cast-in-situ construction and prefabricated construction, leading to limited emission 

reduction potential. 

Section 2 indicates that early-stage design decisions have the most carbon reduction potential, 

while their reliability in reducing CE remains questioned. In contrast, the effect of optimisation 

in later stages is more reliable but less significant. However, the sporadic results from material 

optimisation of single structure elements (e.g., beams and floors) demonstrate the potential of 

reducing embodied CE optimising the size or shape of structures (Xiang, Mahamadu, Florez-

Perez, et al., 2024). Considering the balance between effectiveness and reliability, it is valuable 

to estimate and utilise the carbon reduction potential of design decisions in the developed and 

technical design stages, i.e., micro-level design variables. 

The comparison among process-based LCA, input-output LCA, hybrid LCA, economic 

analysis, and direct measurement (Section 2.2.2) suggests that hybrid LCA is the optimal 

method for estimating embodied CE at the project level. The integration of process-based 

analysis and material-consumption-based CE calculation allows to consider detailed design 

variables and utilise of existing reliable emission data. This approach is well suited to be 
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adopted in the micro-level analysis model. Therefore, emission analysis in this study employs 

the principles and general methods of hybrid LCA. However, introducing micro-level analysis 

variables differ the estimation process from standard hybrid LCA methods. Furthermore, due 

to the ongoing confusion about LCA terminology (Section 2.2.2), this study adopts the general 

term “emission estimation/analysis” for clarity and consistency in subsequent sections. 

Regarding the application of sustainable design optimisation, integrating design software and 

estimation tool is considered the most effective strategy. However, although BIM being the 

preferred format for sustainable design, its practical effectiveness remains unclear. A 

comprehensive investigation of design practice is essential to determining the most appropriate 

method for implementing sustainable design optimisation in the construction industry. 

Based on these findings, this study outlines the scope of the optimisation model, as illustrated 

in Figure 3-2. Specifically, the optimisation model incorporates design variables from both 

developed and technical design stages, utilising a parametric design approach (a vertical 

adjustment method) to address design uncertainty. The model employs the Hybrid LCA to 

estimate and optimise cradle-to-site CE of projects. Through the integration of design and 

analysis software, the optimised solution is rendered in both 3D models and 2D graphs. 

 

Figure 3-2 The scope of the optimisation model. 
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3.3.2 Conceptual model 

Figure 3-3 depicts the modules and workflow of the design optimisation model. The 

optimisation comprises four modules: 1) design data extraction, 2) manufacturing CE 

optimisation, 3) transportation CE optimisation, and 4) feasible solution visualisation.  

 

Figure 3-3 The workflow of optimisation model. 

The input to the optimisation model is an original architectural design at the LOD 100 to LOD 

200 level. Module 1 converts the original design into a set of parameters representing geometric 

features. Subsequently, module 2 processes these parameters to identify an optimised element 

design with the lowest manufacturing CE. Module 3 then uses the element data from module 

2 to determine an optimised transportation plan with the lowest transportation CE. Finally, 

module 4 processes results from modules 2 and 3 for visualisation in a designer-friendly format. 

Notably, the optimisation model separates the optimisation for manufacturing and 

transportation CE into two distinct modules instead of integrating them into a single 

comprehensive module. Results from Xiang et al. (2024) and Xiang et al. (2022) show that 

optimising CE solely during manufacturing or transportation requires 24-48 hours, nearing the 

maximum acceptable optimisation period (Jusselme et al., 2020). Integrating both 

optimisations could lead to an overcomplicated model and reduced optimisation efficiency, 
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exceeding the acceptable optimisation period. Given that manufacturing contributes to a 

significantly larger portion of embodied CE than transportation (82.9% vs. 9.3% (Teng & Pan, 

2020)), sequential optimisation of manufacturing and transportation CE may offer an efficient 

and effective carbon reduction. 

3.3.3 Research framework 

The research design of this study involves six steps: 1) literature review, 2) development of 

module 2 for manufacturing CE optimisation, 3) development of module 3 for transportation 

CE optimisation, 4) development of module 1 and 4 for design data processing, 5) case study, 

and 6) research validation, as illustrated in Figure 3-4 .  

The literature review identifies design variables, system boundaries, and emission factors for 

module 2 and 3, as well as design activities for module 1 and 4, detailed in section 2. Based on 

a review of current design activities, a questionnaire is created to gather data on design content 

and EIF utilised in design practices. Statistical analysis of the questionnaire results reveals the 

quantitative relationship between design tasks and EIF. Estimating design tasks at the 

developed and technical stages helps identify the most likely EIFs for the original design and 

visualised solution. Module 1 and 4, which convert the original design into parameters and the 

feasible solution’s parameters into a design model, respectively, are developed based on these 

EIFs. 

The system boundary determined from the literature review sets the scope for modules 2 and 

3. Module 2 uses variables identified from the literature review to generate design alternatives 

based on original design parameters. Emission factors from prior studies are employed to 

estimate and compare the CE of each design alternative, identifying the feasible one with the 

lowest manufacturing CE. This feasible alternative is then processed by module 3, which 

follows a workflow similar to module 2, to determine the feasible transportation plan with the 

lowest CE. Module 4 processes the feasible design alternative and transportation plan from 

modules 2 and 3, respectively, to output a visualised solution for designers. A case study is 

used to test each module of the optimisation model, ensuring its reliability in processing 

representative project designs. 

The effectiveness and practicality of the optimisation are confirmed through internal and 

external validation, respectively. Internal validation involves comparing the CE between the 

optimisation model and existing design methods. The optimisation model is deemed effective 
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if its CE is lower than that of existing methods. External validation involves gathering design 

variables used in practice and designers’ attitude towards the optimisation model. The 

optimisation model is deemed practical if it satisfies most design practice requirements. 

For clarity, this thesis first discusses the development of modules 2 and 3 in sections 4 and 5, 

respectively. The development of modules 1 and 4 is then detailed in section 6. A case study 

that testing the entire model is described in section 7.2. Section 7.3 details the validation of the 

model. 

 

Figure 3-4 The research framework. 
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4 Optimisation of manufacturing CE 

4.1 Introduction 

As evidenced from the above review, scholars have devoted considerable effort to optimise the 

sustainability in the design stages, providing effective approaches for CE estimation and 

optimisation. However, the system boundaries of previous optimisation studies are typically 

limited to the CE generated from manufacturing structure materials (e.g., steel and concrete), 

while excluding CE from auxiliary materials (e.g., formwork) (X. Zhang & Wang, 2022). There 

is a scarcity of research considering the trade-off between CE from formwork and structural 

material. Additionally, the findings from existing studies aim to provide generalised guidance 

for architects before or during the concept design phase. The implementation of these 

guidelines is challenging to monitor as the design progresses. There is a notable absence of 

optimisation methods offering more specific suggestions in the developed design stage.  

Therefore, this module seeks to explore the CE reduction potential during the developed design 

stage, through design optimisation. It considers emissions from both building materials and 

formwork and introduces variables from both architecture and structure design to maximise the 

optimisation effects. The content in this chapter has been published in the study of Xiang et al. 

(2024). 

4.2 Optimisation method  

The methods employed in this module involves five steps: 1) generate design alternatives using 

a parametric approach, 2) analysis the response of structure under loadings, 3) detail the 

structure design according to structure analysis, 4) calculate the CE of design alternatives, and 

5) explore the solution with the lowest embodied CE, as illustrated in Figure 4-1.  

The analysis and optimisation are restricted to the superstructure, excluding foundations 

because the design of foundation is highly site-specific and project-specific. Restricting the 

analysis to superstructures helps to improve the generalisability of the method (Hart et al., 

2021). The methods are based on the following postulations, which are normally adopted in 

prefabrication design: 

1) All grids in the framework are rectangular; 

2) Secondary beams are evenly distributed in each grid; 
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3) All walls are directly supported by beams or secondary beams; 

4) The cross-section of each structure elements is rectangular and consistent; 

5) The cross-section of columns on the same floor is an identical square. 

 

Figure 4-1 Framework of module 2.  
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4.2.1 Design alternative generation 

4.2.1.1 Original design parameter extraction 

Module 2 considers design files at the developed design stage as the start point. The geometric 

features concerning the span length, floor-to-floor height, and the distribution of walls (both 

internal and external walls) are extracted from design files as lists below: 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑 = {𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑−1, … ,𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑−𝑖𝑖 , … ,𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑−𝑛𝑛}(𝑑𝑑 = 𝑋𝑋 𝑜𝑜𝑜𝑜 𝑌𝑌) (4-1) 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = {𝑂𝑂𝑂𝑂𝑂𝑂1, … ,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 , … ,𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛} (4-2) 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �𝑂𝑂𝑊𝑊1−1−1, … ,𝑂𝑂𝑂𝑂𝑓𝑓−𝑖𝑖−𝑗𝑗 , … ,𝑂𝑂𝑂𝑂𝑚𝑚−𝑛𝑛−𝑜𝑜� (4-3) 

𝑂𝑂𝑂𝑂𝑓𝑓−𝑖𝑖−𝑗𝑗 = �𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓−𝑖𝑖−𝑗𝑗−0,𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓−𝑖𝑖−𝑗𝑗−1� (4-4) 

where, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑 is the list of original span length in the 𝑑𝑑 direction; 𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑−𝑖𝑖 is the 

original length of the 𝑖𝑖-th span in the 𝑑𝑑  direction (m); 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  is the list of 

original floor-to-floor heights (m); 𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 is the original floor-to-floor height of the 𝑖𝑖-th floor 

(m); 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the list of original walls, 𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓−𝑖𝑖−𝑗𝑗−0  and 𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓−𝑖𝑖−𝑗𝑗−1  are the 

coordinates of the start and end points of the 𝑗𝑗-th wall in the 𝑖𝑖-th grid on the 𝑓𝑓-th floor, 

respectively.  

4.2.1.2 Primary definition of design alternatives 

Each design alternative is defined by a series of parameters, as listed in Table 4-1 and Figure 

4-2. The parameters are categorised into four types, determining the shape of entire structure, 

the shape of each structure element, the detailed design of each element, and the performance 

of construction materials, respectively. Design alternatives are generated by varying the value 

of these parameters within a certain range. The distribution of these parameters is subject to 

the constraints described by equations (4-5)-(4-13). 

𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑−𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑−𝑖𝑖 ≤ 𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑−𝑖𝑖 ≤ 𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑−𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑−𝑖𝑖 (4-5) 

𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ≤ 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≤ 𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 (4-6) 

�𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑−𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑 ≤�𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑−𝑖𝑖 ≤�𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑−𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑 (4-7) 
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�𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇 ≤�𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≤�𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇 (4-8) 

𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑−𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚_𝐹𝐹𝐹𝐹

≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓−𝑖𝑖 + 1 ≤
𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑−𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚_𝐹𝐹𝐹𝐹

 (4-9) 

𝑆𝑆𝑆𝑆𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

≤ 𝐵𝐵𝐵𝐵𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶 × 2 ≤
𝑆𝑆𝑆𝑆𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
 (4-10) 

𝐵𝐵𝐵𝐵𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶 × 2
𝑚𝑚𝑚𝑚𝑚𝑚_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

≤ 𝐵𝐵𝐵𝐵𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶 × 2 ≤
𝐵𝐵𝐵𝐵𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶 × 2
𝑚𝑚𝑚𝑚𝑚𝑚_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 (4-11) 

𝑆𝑆𝑆𝑆𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶 × 2 ≤
𝑆𝑆𝑆𝑆𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
 (4-12) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶 × 2
𝑚𝑚𝑚𝑚𝑚𝑚_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶 × 2 ≤
𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶 × 2
𝑚𝑚𝑚𝑚𝑚𝑚_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 (4-13) 

where, 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑−𝑖𝑖 and 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑−𝑖𝑖 denote the lower upper boundary of the tolerance for the 

𝑖𝑖-th span in 𝑑𝑑 direction (m); similarly, 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 and 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖, 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑 and 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑, 

and 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇  and 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇 describe the tolerance of the floor-to-floor height of the 𝑖𝑖-th 

floor, the tolerance of the overall dimension of structure in 𝑑𝑑 direction, the tolerance of the 

overall height of structure, respectively (m); 𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑−𝑖𝑖  signifies the span length of the 𝑖𝑖 -th 

column grid in 𝑑𝑑 direction (m); 𝑚𝑚𝑚𝑚𝑚𝑚_𝐹𝐹𝐹𝐹 and 𝑚𝑚𝑚𝑚𝑚𝑚_𝐹𝐹𝐹𝐹 represent the maximum and minimum 

widths of floor slabs, respectively (m); 𝐶𝐶𝐶𝐶𝐶𝐶 is the concrete cover depth (m); 𝑆𝑆𝑆𝑆𝑖𝑖 is the span 

length of the 𝑖𝑖-th beam or secondary beam (m); 𝑚𝑚𝑚𝑚𝑚𝑚_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and 𝑚𝑚𝑚𝑚𝑚𝑚_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 are the maximum 

and minimum span-depth ratios of beams, respectively (m); 𝑚𝑚𝑚𝑚𝑚𝑚_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and 𝑚𝑚𝑚𝑚𝑚𝑚_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 

refer to the maximum and minimum depth-width ratios of beams, respectively; 𝑚𝑚𝑚𝑚𝑚𝑚_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

and 𝑚𝑚𝑚𝑚𝑚𝑚_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 represent the maximum and minimum span-depth ratios of secondary beams; 

and 𝑚𝑚𝑚𝑚𝑚𝑚_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑚𝑚𝑚𝑚𝑚𝑚_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 are the maximum and minimum depth-width ratios of 

secondary beams, respectively. 

Equation (4-5)-(4-8) allows minor changes to the geometric dimensions of the original 

structure within design alternatives. Typically, architects set identical span length for grids 

based on their experience and preferences. However, the net distances between columns may 

vary from the original design due to adjustments in element size (e.g., extending column size 

for load bearing) and locations (e.g., offsetting columns from the axis). Consequently, minor 

adjustments to span dimensions (normally less than half of the column edge length) are 
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common and acceptable in design practices. Comprehensive adjustments to these dimensions 

may lower embodied CE in manufacture and assembly processes (e.g., by reducing the type 

and number of formwork) as they may standardise the actual size of elements. Equations (4-9)-

(4-13) constrain the solution space, reducing the risk of structurally unfeasible design 

alternatives, within which the required amount of reinforcement of some elements exceeds the 

maximum reinforcement due to the geometry of cross section. For the same reason, the sizes 

of columns in each design alternative are calculated by equations (4-14)-(4-15) 

𝐸𝐸𝐸𝐸𝑓𝑓 = �𝑞𝑞𝑛𝑛−𝑓𝑓 × 𝐴𝐴𝑛𝑛−𝑓𝑓 (4-14) 

𝐶𝐶𝐶𝐶𝑓𝑓 = �
𝐸𝐸𝐸𝐸𝑓𝑓

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓 × (𝐶𝐶𝐶𝐶𝐶𝐶 × 𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝐶𝐶𝐶𝐶𝐶𝐶 × 2 
(4-15) 

where, 𝐸𝐸𝐸𝐸𝑓𝑓  is the estimated vertical load on the columns of 𝑓𝑓-th floor (kN);  𝑛𝑛 is the total 

number of floors; 𝑞𝑞𝑛𝑛−𝑓𝑓 and 𝐴𝐴𝑛𝑛−𝑓𝑓 represent the estimated load coefficient (kN/m2) and the area 

(m2) of the (𝑛𝑛 − 𝑓𝑓)-th floor, respectively;  𝐶𝐶𝐶𝐶𝑓𝑓  is the width of columns on the 𝑓𝑓-th floor 

(m); 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓  is the number of columns on the 𝑓𝑓 -th floor; 𝐶𝐶𝐶𝐶𝐶𝐶  denotes the axial 

compressive strength of column concrete (kN/m2); 𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the estimated coefficient of 

compression zone of columns. 

Table 4-1 Parameters employed in the generation of design alternatives. 

Type of 
parameters 

Parameter Meaning 

The shape of structure 

 𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑−𝑖𝑖 
Designed length of the 𝑖𝑖-th span in 𝑑𝑑 
direction 

 
𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 Designed floor-to-floor height of the 𝑖𝑖-th 

floor 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓−𝑖𝑖 The number of secondary beams in the 𝑖𝑖-th 

column grid on the 𝑓𝑓-th floor 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓−𝑖𝑖 The orientation of secondary beams in the 

𝑖𝑖-th column grid on the 𝑓𝑓-th floor 
The shape of structure elements 

 
𝐵𝐵𝐵𝐵𝑖𝑖 The designed depth of the  𝑖𝑖-th beam 

 
𝐵𝐵𝐵𝐵𝑖𝑖 The designed width of the 𝑖𝑖-th beam 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 The designed width of the 𝑖𝑖-th secondary 

beam 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 The designed width of the 𝑖𝑖-th secondary 

beam 

 
𝐹𝐹𝐹𝐹𝑖𝑖 The designed depth of the 𝑖𝑖-th floor slab 

The details of structure elements 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 The reinforcement design of the 𝑖𝑖-th 

column 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓−𝑑𝑑−𝑖𝑖 The top reinforcement design of the 

continuous beams on 𝑖𝑖-th axis in 𝑑𝑑 
direction on the 𝑓𝑓-th floor 

 
𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 The reinforcement design of the 𝑖𝑖-th beam 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 The top reinforcement design of the 𝑖𝑖-th 

group of continuous secondary beams 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 The reinforcement design of the 𝑖𝑖-th 

secondary beam 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 The reinforcement design of the 𝑖𝑖-th floor 

slab 
The performance of materials 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 The grade of concrete used in columns 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 The grade of concrete used in beams 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 The grade of concrete used in secondary 

beams 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 The grade of concrete used in floor slabs 

 
𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 The grade of tensioned bars used in 

columns 

 
𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 The grade of tensioned bars used in beams 

 
𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 The grade of tensioned bars used in 

secondary beams 

 
𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 The grade of reinforcement used in floor 

slabs 

 
𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−ℎ𝑜𝑜𝑜𝑜 The grade of hooping used in columns 

 
𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−ℎ𝑜𝑜𝑜𝑜 The grade of hooping used in beams 

 
𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−ℎ𝑜𝑜𝑜𝑜 The grade of hooping used in secondary 

beams 
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Figure 4-2 Parameter definition in the generation of design alternatives.  

Each wall in 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  is scaled to an adjusted location according to equations 

(4-16)-(4-19): 

𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓−𝑖𝑖−𝑗𝑗 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓−𝑖𝑖−𝑗𝑗 ×
𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑−𝑖𝑖
𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑−𝑖𝑖

 (4-16) 

𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓−𝑖𝑖−𝑗𝑗 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓−𝑖𝑖−𝑗𝑗 ×
𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑−𝑖𝑖
𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑−𝑖𝑖

 (4-17) 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �𝐴𝐴𝑊𝑊1−1−1, … ,𝐴𝐴𝐴𝐴𝑓𝑓−𝑖𝑖−𝑗𝑗 , … ,𝐴𝐴𝐴𝐴𝑚𝑚−𝑛𝑛−𝑜𝑜� (4-18) 

𝐴𝐴𝐴𝐴𝑓𝑓−𝑖𝑖−𝑗𝑗 = �𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓−𝑖𝑖−𝑗𝑗−0,𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓−𝑖𝑖−𝑗𝑗−1� (4-19) 

where, 𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓−𝑖𝑖−𝑗𝑗 is the distance between the 𝑗𝑗-th adjusted walls in the 𝑖𝑖-th grid on the 𝑓𝑓-th 

floor and the node of corresponding grid of the design alternative (m);  𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓−𝑖𝑖−𝑗𝑗  is the 

distance between the 𝑗𝑗-th adjusted walls in the 𝑖𝑖-th grid on the 𝑓𝑓-th floor and the node of 

corresponding grid of the original design (m); 𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓−𝑖𝑖−𝑗𝑗 and 𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓−𝑖𝑖−𝑗𝑗 are lengths of the 𝑗𝑗-

th walls in the 𝑖𝑖 -th grid on the 𝑓𝑓 -th floor of the design alternative and original design, 
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respectively (m); 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  is the list of walls after scaling, 𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓−𝑖𝑖−𝑗𝑗−0  and 

𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓−𝑖𝑖−𝑗𝑗−1 are the coordinates of the start and end points of the 𝑗𝑗-th wall in the 𝑖𝑖-th grid on 

the 𝑓𝑓-th floor in the design alternative, respectively. 

 

Figure 4-3 The generation of adjusted walls.  

4.2.1.3 Detailed adjustment of design alternatives 

Following the primary scaling, the distribution of secondary beams and internal walls are 

mutually adjusted based on the postulation that the loads of walls are resisted by secondary 

beams directly. This process is illustrated in Figure 4-4. Firstly, the original distribution of 

internal walls in the 𝑖𝑖-th grid is examined to obtain the orientation of majority of internal walls 

(equal to or greater than 50%). If this orientation differs from 𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓−𝑖𝑖, the parameter is adjusted 

(Figure 4-4 (a)-(b)). Secondary beams in this grid are then evenly distributed according to  

𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓−𝑖𝑖 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓−𝑖𝑖. Secondly, the internal walls in the same direction of adjusted 𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓−𝑖𝑖 are 

re-allocated to the location of the nearest secondary beams. The distance between the original 

and re-allocated walls is then calculated according to equations (4-20)-(4-21): 

𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓−𝑖𝑖−𝑗𝑗 = ��𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓−𝑖𝑖−𝑗𝑗 −  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓−𝑖𝑖−𝑗𝑗�
2
 

(4-20) 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓−𝑖𝑖 = �𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓−𝑖𝑖−𝑗𝑗 (4-21) 

where, 𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓−𝑖𝑖−𝑗𝑗  represents the distance between the 𝑗𝑗 -th original and corresponding re-

allocated walls in the 𝑖𝑖 -th grid on the 𝑓𝑓 -th floor (m); 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓−𝑖𝑖−𝑗𝑗  and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓−𝑖𝑖−𝑗𝑗  are 

coordinates of the 𝑗𝑗-th original and corresponding re-allocated walls in the 𝑖𝑖-th grid on the 𝑓𝑓-
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th floor; 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓−𝑖𝑖 is the sum of distances between original and corresponding re-allocated 

walls in the 𝑖𝑖-th grid on the 𝑓𝑓-th floor (m). 

Thirdly, if 𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓−𝑖𝑖−𝑗𝑗  exceeds a given threshold 𝑇𝑇𝑇𝑇𝑇𝑇  (indicating that the design alternative 

generates excessive change to the original design), 𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓−𝑖𝑖 is adjusted by traversing all feasible 

value of 𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓−𝑖𝑖  (in accordance with equation (4-9)). The value with the smallest 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓−𝑖𝑖 is selected as the final result. Subsequently, the internal walls in this gird are re-

allocated again according to the adjusted 𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓−𝑖𝑖 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓−𝑖𝑖. Lastly, if there are walls in the 

opposite direction of 𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓−𝑖𝑖, additional secondary beams are added beneath them.  

 

Figure 4-4 The process of re-allocating internal walls and secondary beams.  

4.2.2 Analysis of the structure response 

The design and structure analysis of precast elements is not much different from that of cast-

in-situ reinforced concrete structures (Polat, 2008). Given the maturity of existing methods for 

precast structure design and considering the focus of this study is on exploring the balance 

between the use of standardised and custom precast elements, commonly accepted structure 

analysis and design methods are adopted. Given the studied case introduced in section 4.3.3.1, 

the analyses and designs in this research adhere to the requirements stipulated by the following 
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Chinese codes: GB55001-2021, GB55002-2021, GB55008-2021, GB50011-2010(2016), 

GB50010-2010(2015), GB50009-2012, GB/T51231-2016, JGJ1-2014, 13J104, 15G366-1, and 

22G101-1. The content in section 4.2.2 and 4.2.3 forego detailed processes in favour of 

introducing the workflow and significant settings. 

The parametric design alternative is converted into a structure model to calculate the expected 

response of the structure under loadings, as depicted in Figure 4-5. Linear elements (i.e., 

columns, beams, and secondary beams) are represented by a series of nodes and members, 

forming a node list (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) and a member list (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) according to equations 

(4-22)-(4-25). Each linear element is evenly divided into several (𝑛𝑛) members to obtain the 

internal stress and limiting response. Plane elements (i.e., floor slabs and walls) are 

subsequently defined by coordinates of vertices, which are represented by the nearest node in 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, as demonstrated in equations (4-26)-(4-27).  

𝐿𝐿𝐿𝐿𝑖𝑖 = �𝑀𝑀𝑖𝑖−1, … ,𝑀𝑀𝑖𝑖−𝑗𝑗 , … ,𝑀𝑀𝑖𝑖−𝑛𝑛� (4-22) 

𝑀𝑀𝑖𝑖−𝑗𝑗 = �𝑀𝑀𝑀𝑀𝑖𝑖−𝑗𝑗−0,𝑀𝑀𝑀𝑀𝑖𝑖−𝑗𝑗−1� (4-23) 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �𝑀𝑀𝑀𝑀1−1−0,𝑀𝑀𝑀𝑀1−1−1 … ,𝑀𝑀𝑀𝑀𝑖𝑖−𝑗𝑗−0,𝑀𝑀𝑀𝑀𝑖𝑖−𝑗𝑗−1, … ,𝑀𝑀𝑚𝑚−𝑛𝑛−0,𝑀𝑀𝑚𝑚−𝑛𝑛−1� (4-24) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �𝑀𝑀1−1, … ,𝑀𝑀𝑖𝑖−𝑗𝑗 , … ,𝑀𝑀𝑚𝑚−𝑛𝑛� (4-25) 

𝑃𝑃𝑃𝑃𝑖𝑖 = {𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−1,𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−2,𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−3,𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−4 } (4-26) 

{𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−1,𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−2,𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−3,𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−4 } ∈ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (4-27) 

where, 𝐿𝐿𝐿𝐿𝑖𝑖 is the 𝑖𝑖-th linear element; 𝑀𝑀𝑖𝑖−𝑗𝑗 represents the 𝑗𝑗-th member of the 𝑖𝑖-th linear element; 

𝑀𝑀𝑀𝑀𝑖𝑖−𝑗𝑗−0 and 𝑀𝑀𝑀𝑀𝑖𝑖−𝑗𝑗−1 are the coordinates of the two vertices of the member 𝑀𝑀𝑖𝑖−𝑗𝑗, respectively; 

𝑃𝑃𝑃𝑃𝑖𝑖 refers to the 𝑖𝑖-th plane element; 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−1, 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−2, 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−3, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−4 are coordinates of 

four vertices of the member 𝑃𝑃𝑃𝑃𝑖𝑖. 
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Figure 4-5 The generation of nodes and members for structure analysis.  

Regarding the type of joints, widely adopted structural analysis postulations, customary in the 

field of practice, are employed. Specifically, rigid connections are presumed at the joints of 

members within the same structure element, column-beam joints, continuous joints of 

continuous secondary beams and continuous floor slabs, and joints of secondary beams in 

divergent directions. All remaining joints are postulated as hinged connections. 

To represent a close to practice reinforcement design, this study considers dead loads, live 

loads, snow loads, seismic loads, and the load combinations listed in section 4.3.3.3. 

Specifically, dead loads for columns, beams, secondary beams, and floor slabs are postulated 

to be uniformly distributed across these elements. While, dead loads of walls are considered as 

line load, which are exerted on beams or secondary beams below. Live loads are uniformly 

distributed across the area of floor slabs, and snow loads are similarly uniformly distributed 

over the roof. Given the characteristics of the studied case (section 4.3.3.1), seismic loads are 

calculated using the equivalent base shear method as illustrated in the GB 50011-2010(2015). 

It is briefly described by equations (4-28)-(4-30). 

𝐹𝐹𝐸𝐸𝐸𝐸 = 𝛼𝛼1𝐺𝐺𝑒𝑒𝑒𝑒 (4-28) 

𝐹𝐹𝑓𝑓 =
𝐺𝐺𝑓𝑓𝐻𝐻𝑓𝑓

∑𝐺𝐺𝑓𝑓−1𝐻𝐻𝑓𝑓−1
𝐹𝐹𝐸𝐸𝐸𝐸(1 − 𝛿𝛿𝑛𝑛) 

(4-29) 

𝐹𝐹𝑛𝑛′ = 𝐹𝐹𝑛𝑛 + 𝛿𝛿𝑛𝑛𝐹𝐹𝐸𝐸𝐸𝐸 (4-30) 

where, 𝐹𝐹𝐸𝐸𝐸𝐸 is the standard value of horizontal seismic action on the entire structure (kN); 𝛼𝛼1 

represents the horizontal earthquake influence coefficient; 𝐺𝐺𝑒𝑒𝑒𝑒 is the equivalent gravity load of 

the whole structure (kN); 𝐹𝐹𝑓𝑓 is the standard value of horizontal seismic action on the 𝑓𝑓-th floor 
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(kN);  𝐺𝐺𝑓𝑓 and 𝐺𝐺𝑓𝑓−1 correspond to the equivalent gravity loads of structure elements on the 𝑓𝑓-

th and (𝑓𝑓 − 1)-th floor, respectively (kN); 𝐻𝐻𝑓𝑓 and 𝐻𝐻𝑓𝑓−1 are the heights of 𝑓𝑓-th and (𝑓𝑓 − 1)-th 

floor, respectively (m); 𝛿𝛿𝑛𝑛  is the additional seismic action coefficient of the top floor; 𝐹𝐹𝑛𝑛′ 

represents the standard value of horizontal seismic action on the top floor (kN). 

The horizontal seismic action on each floor is distributed among the columns on that floor, as 

described by equations (4-31)-(4-35): 

𝑉𝑉𝑓𝑓−𝑖𝑖 =
𝐷𝐷𝑓𝑓−𝑖𝑖
∑𝐷𝐷𝑓𝑓−𝑗𝑗

𝐹𝐹𝑓𝑓 
(4-31) 

𝐷𝐷𝑓𝑓−𝑖𝑖 = 𝛼𝛼𝑑𝑑
12𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓−𝑖𝑖
ℎ𝑓𝑓−𝑖𝑖2  

(4-32) 

𝛼𝛼𝑑𝑑 =
𝐾𝐾𝑓𝑓−𝑖𝑖

2 + 𝐾𝐾𝑓𝑓−𝑖𝑖
(𝑖𝑖𝑖𝑖 𝑓𝑓 > 1) 

(4-33) 

𝛼𝛼𝑑𝑑 =
0.5 + 𝐾𝐾𝑓𝑓−𝑖𝑖
2 + 𝐾𝐾𝑓𝑓−𝑖𝑖

(𝑖𝑖𝑖𝑖 𝑓𝑓 = 1) 
(4-34) 

𝐾𝐾𝑓𝑓−𝑖𝑖 =
∑𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓−𝑖𝑖−𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓−𝑖𝑖 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓−𝑖𝑖 2⁄
 

(4-35) 

where, 𝑉𝑉𝑓𝑓𝑓𝑓 is the shear force caused by seismic load on the 𝑖𝑖-th column on the 𝑓𝑓-th floor (kN); 

𝐷𝐷𝑓𝑓−𝑖𝑖  represents the adjusted lateral stiffness of the 𝑖𝑖-th column on the 𝑓𝑓-th floor (kN/m); 

∑𝐷𝐷𝑓𝑓−𝑗𝑗 is the sum of the adjusted lateral stiffness of all columns on the 𝑓𝑓-th floor (kN/m); 𝛼𝛼𝑑𝑑 

denotes the correction factor of stiffness; 𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓−𝑖𝑖  is the original linear stiffness of the 𝑖𝑖 -th 

column on the 𝑓𝑓-th floor (kN∙m); ℎf−i is the height of the 𝑖𝑖-th column on the 𝑓𝑓-th floor (m); 

𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓−𝑖𝑖−𝑘𝑘 represents the linear stiffness of the 𝑘𝑘-th beam connected to the 𝑖𝑖-th column on the 𝑓𝑓-

th floor (only beams in the same direction as the seismic load is included) (kN∙m); 𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓−𝑖𝑖 is 

the number of beams connected to the 𝑖𝑖-th column on the 𝑓𝑓-th floor. 

A finite element analysis programme developed in Python (Sean Carroll, 2023) is used to 

estimate the response of structural framework under loadings. This program transforms the 

effects of loads into equivalent loads on structure nodes (in 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) and calculates the 

actions of each member at the node for the detailed design of structure elements.  
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4.2.3 Detailed design of structure elements 

The detailed design of each structure elements is defined by input and output variables listed 

in Table 4-2. Input variables concerning the geometric features and material selection are 

inherit from the parameters mentioned in section 4.2.1. The other input variables are 

determined by combining the available values of building products (e.g., the diameter of rebar). 

The model traverses the combinations of values and checks for feasible element designs. Each 

feasible design with a given set of (input) variables is determined by calculating the values of 

corresponding output variables. Notably, there is no output variable of floor slab designs, 

meaning that potential combinations of input variables are considered feasible if they can resist 

the stress (obtained in section 4.2.2). 

Table 4-2 Variables adopted in the detailed design of structure elements. 

Element 
type 

Variable 
Type 

Variable Definition 

Column Input 𝐶𝐶𝐶𝐶 Width of column 
ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Diameter of hooping 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Diameter of tensioned bar 
𝑐𝑐𝑐𝑐𝑐𝑐_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Diameter of constructional 

rebar 
𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Grade of column concrete 
𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Grade of column tensioned 

bars 
𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−ℎ𝑜𝑜𝑜𝑜 Grade of column hooping 

Output 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛 Number of tensioned rebar on 
each side 

𝑐𝑐𝑐𝑐𝑐𝑐_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛 Number of constructional 
rebar on each side 

ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑛𝑛𝑛𝑛𝑛𝑛 Number of hooping limbs 
Beam / 
Secondary 
beam 

Input 𝐵𝐵𝐵𝐵/ 𝑆𝑆𝑆𝑆𝑆𝑆 Depth of beam/secondary 
beam 

𝐵𝐵𝐵𝐵/ 𝑆𝑆𝑆𝑆𝑆𝑆 Width of beam/secondary 
beam 

ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Diameter of hooping 
𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Diameter of tensioned bar on 

the top 
𝑏𝑏𝑏𝑏𝑏𝑏_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Diameter of tensioned bar on 

the bottom 
𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 Grade of beam/secondary 

beam concrete 
𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 Grade of beam / secondary 

beam tensioned bars 
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𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−ℎ𝑜𝑜𝑜𝑜/ 
𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−ℎ𝑜𝑜𝑜𝑜 

Grade of beam/secondary 
beam hooping 

Output 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛_0 Number of tensioned bars at 
node 0 on the top 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚 Number of tensioned bars in 
the middle of top side 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛_1 Number of tensioned bars at 
node 1 on the top 

𝑏𝑏𝑏𝑏𝑏𝑏_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛 Number of tensioned bars on 
the bottom 

ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑛𝑛𝑛𝑛𝑛𝑛 Number of hooping limbs 
𝑐𝑐𝑐𝑐𝑐𝑐_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Diameter of constructional 

rebar 
𝑐𝑐𝑐𝑐𝑐𝑐_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛_0 Number of constructional 

rebar at node 0 on the top 
𝑐𝑐𝑐𝑐𝑐𝑐_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚 Number of constructional 

rebar in the middle of top side 
𝑐𝑐𝑐𝑐𝑐𝑐_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛_1 Number of constructional 

rebar at node 1 on the top 
𝑐𝑐𝑐𝑐𝑐𝑐_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛_𝑤𝑤𝑤𝑤𝑤𝑤 Number of constructional 

rebar of web 
Floor slab Input 𝐹𝐹𝐹𝐹 Depth of floor slab 

𝐹𝐹𝐹𝐹 Length of floor slab 
𝐹𝐹𝐹𝐹 Width of floor slab 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Spacing of tensioned bars 
𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑥𝑥 Diameter of tensioned bar in 

the x direction on the top 
𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑦𝑦 Diameter of tensioned bar in 

the y direction on the top 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Diameter of rebars in the 

reinforcement mesh 
𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Grade of floor slab concrete 
𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Grade of floor slab rebar 

To improve the efficiency of structure design and optimisation, the exploration of feasible 

combinations of variables is limited. For columns, beams, and sub-beams, with tensioned bars 

in given sizes, only the element design with the least quantity of reinforcement is recorded as 

a feasible alternative. Regarding the design of floor slabs (which has no output variables), with 

a given interval of tensioned bars, only the element design with the least quantity of 

reinforcement is recorded as a feasible alternative. 

For continual beams and sub-beams, the feasible designs of element are coordinated according 

to the variables of continual joints to ensure that the rebars on the top are continuous. For 

simplification, the coordination of designs is limited to adopting rebars of the same size on the 

top. It can be restricted to adopting the same size and number of rebars on the top if all feasible 
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combinations of variables are explored. The feasible designs of continual beams and sub-beams 

are subject to equations (4-36)-(4-41). 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = {𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−1,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−2} (4-36) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗 = �𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗−1, … ,𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗−𝑘𝑘, … ,𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗−𝑛𝑛�(𝑗𝑗 = 1 𝑜𝑜𝑜𝑜 2) (4-37) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗−𝑘𝑘 = �𝐵𝐵𝐵𝐵𝑖𝑖−𝑗𝑗−𝑘𝑘�𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖−𝑗𝑗−𝑘𝑘�, … , 𝑐𝑐𝑐𝑐𝑐𝑐_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑛𝑛𝑛𝑛𝑛𝑛_𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖−𝑗𝑗−𝑘𝑘 �(𝑗𝑗 = 1 𝑜𝑜𝑜𝑜 2) (4-38) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗 = �𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖−𝑗𝑗−1, … , 𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖−𝑗𝑗−𝑘𝑘 , … , 𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖−𝑗𝑗−𝑛𝑛�(𝑗𝑗 = 1 𝑜𝑜𝑜𝑜 2)    (4-39) 

𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖−𝑗𝑗−𝑘𝑘∗ ∈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−1 ∩ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−2 (4-40) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗∗ = �… ,𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗−𝑘𝑘∗ , … � (4-41) 

where, 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 is two continually connected beams or sub-beams (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−1 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−2) at the 

node 𝑖𝑖; 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗 represents the list of all feasible designs of the continual element 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−1 or 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−2; 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗−𝑘𝑘 is the 𝑘𝑘-th feasible design of the element 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗, which is consisted of 

input and output variables mentioned before; 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗 denotes the list of all feasible top rebar 

size of the element 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−1  or 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−2 ; the value of 𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖−𝑗𝑗−𝑘𝑘  is marked as 

𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖−𝑗𝑗−𝑘𝑘∗  if it exists in the intersection of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−1 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−2; correspondingly, 

the element design containing 𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖−𝑗𝑗−𝑘𝑘∗  is marked as 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗−𝑘𝑘∗ , which further 

constitutes the list of coordinated design for continual beams or sub-beams (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−𝑗𝑗∗ ). 

Regarding the joints of prefabricated elements, tensioned bars of columns are connected by 

rebar couplers. Discontinuous rebars (due to different number of rebars in columns or different 

column sizes) are anchored to the column-beam joint. Similarly, continuous tensioned bars on 

the top of beams and secondary beams are connected by rebar couplers. Discontinuous 

tensioned bars on the top and tensioned bars on the bottom are anchored to the column-beam 

joint (for beams) or beam-secondary-beam joint (for secondary beams). The tensioned bars of 

floor slabs on the bottom are anchored to the floor-beam joint or floor-secondary-beam joint. 

The support rebars on the top extend to the continuously connected floor slabs if allowed or 

are anchored to the floor-beam joint or floor-secondary-beam joint otherwise. 
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4.2.4 Calculation of embodied carbon 

The system boundary of this article encompasses the embodied carbon emitted from materials 

of superstructures and formwork used in both off-site manufacture and onsite construction. The 

precast elements considered include columns, beams, secondary beams, floor slabs, internal 

walls, external walls. The CE of these elements is calculated using equation (4-42): 

𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸−𝑖𝑖 = 𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶−𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑄𝑄𝑅𝑅𝑅𝑅−𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅 + 𝑄𝑄𝑅𝑅𝑅𝑅−𝐶𝐶𝐶𝐶𝐶𝐶−𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅−𝐶𝐶𝐶𝐶𝐶𝐶 (4-42) 

where, 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸−𝑖𝑖  represents the CE of the 𝑖𝑖 -th element (kg CO2e); 𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶−𝑖𝑖 , 𝑄𝑄𝑅𝑅𝑅𝑅−𝑖𝑖 , and 

𝑄𝑄𝑅𝑅𝑅𝑅−𝐶𝐶𝐶𝐶𝐶𝐶−𝑖𝑖  are the quantity of concrete (m3), reinforcement (kg), and rebar coupler (kg) 

consumed by the 𝑖𝑖 -th element, respectively; 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅 , and 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅−𝐶𝐶𝐶𝐶𝐶𝐶  are the CE 

coefficient of the concrete (kg CO2e/m3), reinforcement (kg CO2e/kg), and rebar coupler (kg 

CO2e/kg), respectively. 

Formwork is categorized into two parts:1) precast formwork and 2) cast-in-situ formwork, as 

shown in Figure 4-6. Precast elements are postulated to be manufactured by production lines 

in the factory, where elements are placed on casting beds (G. Liu et al., 2019). Thus, the top 

and bottom surfaces are excluded from the calculation of formwork area. The cast-in-situ parts 

of each floor are postulated to be constructed after assembling all precast elements. 

Consequently, the top, bottom and some surrounding surfaces of cast-in-situ parts are not 

considered in the calculation of formwork area.  

Each piece of formwork required to manufacture a specific precast element (𝐹𝐹𝐹𝐹𝑖𝑖) is defined 

by equation (4-43): 

𝐹𝐹𝐹𝐹𝑖𝑖−𝑗𝑗 = ��𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑖𝑖−𝑗𝑗 ,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖−𝑗𝑗�, �… , �𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖−𝑗𝑗−𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖−𝑗𝑗−𝑘𝑘�, … �� (4-43) 

where, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑖𝑖−𝑗𝑗 and 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖−𝑗𝑗 are the length (m) and width (m) of the 𝑗𝑗-th surface of the 𝑖𝑖-th 

elements to which the formwork is attached, respectively; 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖−𝑗𝑗−𝑘𝑘  and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖−𝑗𝑗−𝑘𝑘 

represent the size and position of the 𝑘𝑘-th opening on this piece of formwork, respectively.  
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Figure 4-6 The division of precast and cast-in-situ formwork.  

To maximise the formwork reusing, an off-line mode is adopted, i.e., all required formwork 

pieces are assumed to be known prior to manufacturing. Formwork pieces that share the similar 

sizes and identical openings are considered the same and form a new list 𝑅𝑅𝑅𝑅𝑅𝑅. The final 

formwork to be manufactured and is decided by equations (4-44)-(4-46): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙 = �… ,𝐹𝐹𝐹𝐹𝑖𝑖−𝑗𝑗 , … � (4-44) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙 = {[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑙𝑙 ,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑙𝑙], [… , (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙−𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙−𝑘𝑘), … ], 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙} (4-45) 

𝑚𝑚_𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐⁄  (4-46) 

where, 𝑅𝑅𝑅𝑅𝑅𝑅l  is the 𝑙𝑙 -th list of formwork pieces share the similar characteristics; 𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙 

represents the 𝑙𝑙-th piece of formwork that is going to be manufactured, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎl and 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎl are 

the length and width of the 𝑙𝑙-th piece of formwork, they are determined by the maximum length 

and width of formwork pieces in 𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙; 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙−𝑘𝑘 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙−𝑘𝑘 depict the size and position 

of the 𝑘𝑘-th opening on this piece of formwork, respectively. Notably, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙−𝑘𝑘 is dictated by 

the largest size of the 𝑘𝑘-th opening on formwork pieces in 𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙 if the opening is for rebar 
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extension; 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙 refers to the required cycle times of the 𝑙𝑙-th piece of formwork; 𝑚𝑚_𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙 is 

number of the 𝑙𝑙 -th piece of formwork requires to be produced; 𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the 

maximum reuse cycles of the formwork piece. 

Precast elements are postulated to be manufactured separately (i.e., one element a time). Thus, 

the associated required pieces of formwork are counted by each element. In contrast, the cast-

in-situ parts are assumed to be constructed floor by floor. Thus, the required pieces of cast-in-

situ formwork are counted by each floor. Given that different contractors are responsible for 

the manufacture of precast elements and on-site construction, precast and cast-in-situ formwork 

are calculated separately. 

The CE of each piece of formwork (𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹−𝑖𝑖) is calculated using equation (4-47): 

𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹−𝑖𝑖 = (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑖𝑖 × 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖 −�𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖−𝑗𝑗)𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹−𝑖𝑖 (4-47) 

where, ∑A𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖−𝑗𝑗 is the sum of area of openings on the 𝑖𝑖-th piece of formwork (m2); 𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹−𝑖𝑖 

is the CE coefficient of formwork material (kg CO2e/m2). 

The embodied carbon emitted from materials of structure (𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆) is calculated using equation 

(4-48): 

𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆 = �𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸−𝑖𝑖 + �𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹−𝑗𝑗 (4-48) 

4.2.5 Exploration of optimisation results 

The objective of optimisation problem is to minimize the embodied CE of design alternatives 

(𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆) defined by parameters listed in Table 4-1. This study employs a genetic algorithm (GA) 

to search for the minimum value of 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆 and corresponding setting of parameters. The whole 

problem is first defined in standard Python 3.9, and then Geatpy 2.7.0 – a genetic and 

evolutionary algorithm toolbox for Python (Geatpy team, 2022) – is used to explore the 

optimisation results. Detailed settings are provided in section 4.3.3.3.  

A Monte Carlo analysis is adopted to estimate the uncertainties in CE and assess the potential 

for CE reduction during the developed design stage. Specifically, 1000 design alternatives are 

randomly generated to obtain a comprehensive view. Given that the distribution pattern of 
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parameters is unknow in real-world practice, the value of each parameter is randomly 

distributed within the available range. 

4.3 Module validation 

4.3.1 Validation of alternative generation 

Given the research hypotheses mentioned in section 1.3.2, the design alternatives generated via 

parametric design approach object to equations (4-49) and (4-50): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 ≠ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 (4-49) 

𝐶𝐶𝐶𝐶𝑖𝑖 ≠ 𝐶𝐶𝐶𝐶𝑗𝑗 (4-50) 

where, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗  are the parameter sets of design alternatives 𝑖𝑖  and 𝑗𝑗 , 

respectively; 𝐶𝐶𝐶𝐶i and 𝐶𝐶𝐶𝐶𝑗𝑗 are the CE of design alternatives 𝑖𝑖 and 𝑗𝑗, respectively. In the set of 

all design alternatives, there should be at least 1 pair of 𝑖𝑖 and 𝑗𝑗 that fulfil the above equations. 

Additionally, the design alternatives should share the similar geometric characteristics as the 

original design, so that the design optimisation would not sacrifice the sake for architectural 

performance. 

4.3.2 Validation of carbon reduction 

For the novelty of the proposed method, the carbon reduction efficiency should object to the 

following equation: 

𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 < 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (4-51) 

where, 𝐶𝐶𝐶𝐶optimal and 𝐶𝐶𝐶𝐶conventional are the embodied CE of the optimal solution found by GA 

and conventional design optimisation method, respectively. Considering the design 

optimisation adopted in design practice, the conventional design optimisation method is 

defined as design employing the principle of standardisation, which is stated in section 1.2.2. 

A detailed setting of this baseline value is introduced in section 4.3.3.4. 
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4.3.3 Module application 

4.3.3.1 Sample building 

This study employs the module on a real-world case to estimate the applicability of the 

proposed approach. The studied case is a four-storey reinforced-concrete office building 

located in Nanjing, China, as illustrated in Figure 4-7. The project has an area of 2971.16 m2 

and a height of 20.4m. It is a representative case for precast concrete projects in China, 

involving precast solid columns, precast composite beams, precast composite floor slabs, and 

autoclaved aerated concrete wall slabs. The structure is designed with a seismic precautionary 

intensity of degree 7, belongs to designed earthquake group 1, and has a site classification of  

I1. The stairs, lifts and envelope are excluded from analysis and optimisation, because these 

parts are considered the same in all design alternatives (as elaborated in section 4.2.1, where 

the geometric features of all design alternatives remain the same). The results shown in sections 

4.4 further validate this assumption, showing that excluding these parts would not generate 

significant difference to the prefabrication design optimisation. 

4.3.3.2 Data collection 

The data collected include: 1) the geometric features of studied case; 2) constraints and 

requirements on structure design and analysis; 3) carbon emission factor of materials. The 

geometric features are extracted from design files (i.e., the design drawings in developed 

design). Detailed reviews and content analysis is conducted on those drawings to obtain the 

variables in 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑦𝑦 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , and 𝑂𝑂𝑂𝑂𝑓𝑓−𝑖𝑖−𝑗𝑗 . The drawings of sample building are examined and 

verified by all participants to ensure the data quality.  

Regarding the data for structure design and analysis, national codes, regulations, and technical 

standards are the main sources. Cited files include but are not limited to GB55001-2021, 

GB55002-2021, GB55008-2021, GB50011-2010(2016), GB50010-2010(2015), GB50009-

2012, GB/T51231-2016, JGJ1-2014, 13J104, 15G366-1, and 22G101-1. This study employs 

CE data from China Products Carbon Footprint Factors Database (CCG, 2022) and 

Calculation standard of building carbon emissions GB/T51366-2019 (2014).  
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Figure 4-7 The plan of the studied case.  

4.3.3.3 Parameter settings 

Table 4-3 lists the setting of parameters in the structure optimisation of the case study. For 

better practicability, discrete variables are employed. Specifically, continuous variables 

concerning the dimensions of framework (e.g., the span length of each grid) and structural 

elements (e.g., the depth of beams) are transformed into discrete variables with a step of 0.05m, 

the minimum unit in real-world practice. The tolerance of dimensions in either X- or Y-

direction and building height are set to 0 to eliminate the carbon reduction effects from a 



 62 

decreasing building area. Notably, parameters from 𝑚𝑚𝑚𝑚𝑚𝑚_𝐹𝐹𝐹𝐹 to 𝑚𝑚𝑚𝑚𝑚𝑚_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 are set based 

on the experienced value and codes mentioned before. These parameters are also validated to 

ensure that the dimensions and weight of elements fulfil the requirement of transportation and 

hanging. 

The formwork is assumed to be made of aluminium alloy in cast-in-situ construction and steel 

in precast manufacture. The maximum reuse cycle (𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) for both precast and 

cast-in-situ formwork is set at 50. This value references the average reuse cycle of 3mm steel 

formwork in precast factory and the maximum reuse cycle of cast-in-situ metal formwork. 

While precast formwork can sometimes be used up to 100 times (Dong et al., 2015), it does 

not generate significant influence on the results of this study, as a few of precast formwork is 

reused for more than 50 times (according to the results in section 4.4).  

Table 4-3 Parameter settings of structure optimisation. 

Categorize Parameter Value Unit 
Original designs 
 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥 {8.10,8.40,8.10} m 
 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑦𝑦 {8.90,9.00,8.90} m 
 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 {4.80,4.80,4.80,6.00} m 
Variable domains 
 Available diameter of tensioned 

bars 
{16,18,20,22,25,28,32} mm 

 Available diameter of rebars in 
floor slabs 

{8,10,12,16,18,20} mm 

 Available diameter of hooping {8,10,12} mm 
 Available diameter of 

constructional rebars  
{8,10,12} mm 

 Available rebar spacing of floor 
slabs 

{0.10,0.15,0.20} m 

 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑−𝑖𝑖(𝑑𝑑 = 𝑥𝑥 𝑜𝑜𝑜𝑜 𝑦𝑦) −0.30 m 
 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑−𝑖𝑖(𝑑𝑑 = 𝑥𝑥 𝑜𝑜𝑜𝑜 𝑦𝑦) 0.30 m 
 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇 −0.15 m 
 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇 0.15 m 
 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑(𝑑𝑑 = 𝑥𝑥 𝑜𝑜𝑜𝑜 𝑦𝑦) 0.00 m 
 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑(𝑑𝑑 = 𝑥𝑥 𝑜𝑜𝑜𝑜 𝑦𝑦) 0.00 m 
 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇 0.00 m 
 𝑚𝑚𝑚𝑚𝑚𝑚_𝑇𝑇𝑇𝑇𝑇𝑇 0.00 m 
 𝑚𝑚𝑚𝑚𝑚𝑚_𝐹𝐹𝐹𝐹 1.80 m 
 𝑚𝑚𝑚𝑚𝑚𝑚_𝐹𝐹𝐹𝐹 3.00 m 
 𝑚𝑚𝑚𝑚𝑚𝑚_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 10.00 - 
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 𝑚𝑚𝑚𝑚𝑚𝑚_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 12.00 - 
 𝑚𝑚𝑚𝑚𝑚𝑚_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 1.50 - 
 𝑚𝑚𝑚𝑚𝑚𝑚_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 3.00 - 
 𝑚𝑚𝑚𝑚𝑚𝑚_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 12.00 - 
 𝑚𝑚𝑚𝑚𝑚𝑚_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 14.00 - 
 𝑚𝑚𝑚𝑚𝑚𝑚_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 1.50 - 
 𝑚𝑚𝑚𝑚𝑚𝑚_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 3.00 - 
Identical settings 
 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 C35 - 
 𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 C35 - 
 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 C35 - 
 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 C35 - 
 𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 HRB400 - 
 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 HRB400 - 
 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 HRB400 - 
 𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 HRB400 - 
 𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−ℎ𝑜𝑜𝑜𝑜 HRB335 - 
 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−ℎ𝑜𝑜𝑜𝑜 HRB335 - 
 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−ℎ𝑜𝑜𝑜𝑜 HRB335 - 
 𝐶𝐶𝐶𝐶𝐶𝐶 0.02(0.15 for floor 

slabs) 
m 

 Density of steel 7.85 ton/m3 
 Density of concrete 2.42 ton/m3 
 Density of cast-in-situ formwork 

(aluminium alloy) 
25.00* kg/m2 

 Density of precast formwork (steel) 50.00  kg/m2 
 Density of wall slabs (autoclaved 

aerated concrete wall slabs) 
525.00 kg/m3 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 317.50 kg CO2e/m3 
 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅 2.34 kg CO2e/kg 
 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅−𝐶𝐶𝐶𝐶𝐶𝐶 2.34 kg CO2e/kg 
 𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑖𝑖𝑖𝑖−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 7.95 kg CO2e/kg 
 𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 2.67 kg CO2e/kg 
 𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (CE coefficient of the 

autoclaved aerated concrete wall 
slabs) 

297.80 kg CO2e/m3 

 Coefficient of live load 2.50 kN/m2 
 Coefficient of snow load 0.65 kN/m2 
 𝑚𝑚𝑚𝑚𝑚𝑚_reuse_cycle 50 - 
* Baosheng Zhou (2019) 
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The analysis of structure calculates the response of structure elements in five typical load 

combinations, as listed in Table 4-4. The combination coefficients of loads are obtained from 

GB50009-2012 and common practice in real-word projects. Structure analysis employs the 

maximal envelope of element response across these five load combinations.  

Table 4-4 Load combinations. 

Num Combination coefficient of loads 

Dead load Live load Snow load 
Seismic load 
in X direction 

Seismic load 
in Y direction 

1 1.3 0.65 0.65×0.7 1.4 0 
2 1.3 0.65 0.65×0.7 -1.4 0 
3 1.3 0.65 0.65×0.7 0 1.4 
4 1.3 0.65 0.65×0.7 0 -1.4 
5 1.3 1.5 1.5×0.7 0 0 

The computations were performed on a personal desktop equipped with an i7-12700k CPU and 

48GB RAM (3200MHz). Given the typical time consumption observed in practice (Jusselme 

et al., 2020), an upper limit of 48 hours is set for the optimisation period. Consequently, four 

simplification postulations are adopted to yield feasible solutions within this timeframe: 1) the 

cross section of beams in the same span is identical; 2) the cross section of secondary beams in 

the same span is identical; 3) the depth of beams connected to more than four secondary beams 

adopt the maximum value; 4) the width of secondary beams adopts the maximum value if the 

depth is smaller than the lower boundary defined by equation (4-12) (the depth of secondary 

beams may reduce to a small value if it exceeds the depth of beams that it is connected to). 

Postulations 1-2 aim to curtail the number of variables, thus reducing the computing time. 

Postulations 3-4 aim to reduce the risk of structurally unfeasible design alternatives, similar to 

the goal of constraints delineated by equations (4-9)-(4-13). 

After simplification, 728 variables are employed to ensure that the design alternative can be 

defined under the most unfavourable situation. The GA settings are listed in Table 4-5. Notably, 

this study employs a prophet population with four individuals to expedite optimisation. The 

prophet population, a function embedded in Geatpy 2.7.0, allows the input of several sets of 

pre-determined variables presumed to yield good performance. The algorithm assesses the 

performance of prophet population before generating the original population and adopts the 

chromosomes of prophet population as a guidance during optimisation (Geatpy team, 2022). 

The prophet population adopted in this research represents designs with the fewest number of 
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elements, which aligns with principle of standardisation. All the other variables are set to be 

identical for simplification. 

Table 4-5 Parameter settings of GA. 

Parameter Value 
Population size 60 
Prophet population size 4 
Probability of performing crossover 0.7 
Probability of mutation  0.07 
Termination criteria Generation = 100 

4.3.3.4 Baseline scenario 

A baseline scenario is established to estimates CE originating from a design strictly adhering 

to the principle of standardisation. This scenario involves adopting uniform cross-section 

dimensions and minimising the number of building elements. Specifically, the baseline 

scenario maintains the original framework dimensions. Floor slabs are designed with the 

maximum possible width to minimize the number of slabs and secondary beams. Meanwhile, 

formwork is designed and manufactured by the on-line mode, i.e., the dimensions of formwork 

pieces are unknown in advance. Specifically, each required piece of formwork is initially 

compared to a list of existing formwork pieces. If no existing formwork piece can replace the 

required one, a new piece is added.  

Table 4-6 listed the parameters adopted in the baseline scenario. These parameters, grounded 

in practical experience and referenced value from Reinforced Concrete Structure Construction 

Manual (China Nonferrous Engineering Co., 2016), are estimated for least favourable 

conditions in the whole structure to avoid structural unfeasibility. Civil engineers have verified 

these parameters before estimation. Any parameters not specified in this table are assumed to 

be the same as those in Table 4-3. Design details are generated via the process mentioned in 

section 4.2. Notably, the baseline scenario avoids manual design to eliminate biases from 

design experience and personal preferences. This approach ensures that the comparison 

represents the effectiveness of the optimisation strategy.  

Table 4-6 Parameter settings of the baseline scenario. 

Parameter Value (m) 
𝐶𝐶𝐶𝐶 0.6  
𝑐𝑐𝑐𝑐𝑐𝑐_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0.020-0.025 
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𝐵𝐵𝐵𝐵/ 𝑆𝑆𝑆𝑆𝑆𝑆 0.85/0.75 
𝐵𝐵𝐵𝐵/ 𝑆𝑆𝑆𝑆𝑆𝑆 0.40/0.35 
𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/bot_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0.018-0.022 

4.4 Validation results and analysis 

4.4.1 The efficiency of optimisation 

The optimisation lasts 45.93 hours. A feasible solution (the local-optimum result found by GA 

optimisation with CE of 8.05 × 105 kg CO2e) is achieved by the 25th generation, in roughly 

11.48 hours. Figure 4-8 shows that the average objective value rapidly drops within the first 20 

generations and stabilises after the 30th generation (approximately 14 hours), indicating a rapid 

data convergence. The initial generation’s best objective value is 8.18 × 105 kg CO2e. Monte 

Carlo analysis suggests this value would increase to about 9.30 × 105 kg CO2e (13.70% higher) 

with entirely random design alternatives. In the case of fully random population, achieving a 

similar outcome (i.e., attaining the best objective value of 8.18 × 105 kg CO2e) typically 

requires over 80 generations (around 36 hours). Additionally, the model is more likely to 

become trapped in a larger local optimum due to the reduced population diversity during 

optimisation. These results implies that the introduction of prophet population significantly 

improves optimisation efficiency.  

 

Figure 4-8 The variation of objective values across generations.  
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Ultimately, the optimisation yields at least 7 solutions with lower CE, indicating the exploration 

of 7 superior solutions. This is a conservative estimation of the optimisation performance 

because only solutions surpassing the current best solution are recorded. Detailed information 

of the feasible solution regarding the response of structure, design of elements and formwork, 

material consumption of each element, etc., is provided in the Appendix A-D. 

4.4.2 The effectiveness of design alternative generation 

Figure 4-9 illustrates the CE distribution among design alternatives with randomly selected 

parameters (from Monte Carlo analysis), the feasible solution, and the baseline scenario. 

Emissions are categorised into six parts according to their sources. Specifically, the CE from 

concrete and reinforcement accounts for emissions from their use in columns, beams, 

secondary beams, and floor slabs, respectively. CE from wall slabs, cast-in-situ formwork, and 

precast formwork refer to emissions from autoclaved aerated concrete, steel formwork, and 

aluminium alloy, respectively. 

The total CE for designs with randomly selected parameters ranges from 9.39 to 11.45 × 105 

kg CO2e. These variances are smaller than those reported in previous findings (Cavalliere et 

al., 2019; X. Zhang & Wang, 2022) due to constraints on the most influential parameters (e.g., 

dimensions of the floor plan and the floor-to-floor height). Compared with the CE of feasible 

solution, the distribution range suggests a CE variance of 16.64 - 42.24%. It highlights the 

necessity for providing continual design guidance and monitoring the implementation of 

sustainable design decisions throughout the design process. Without such guidance, benefits 

from early-stage decisions could be negated by unsustainable choices in later stages. 

The CE in the baseline scenario is lower or about equal to the minimum CE from the Monte 

Carlo analysis across all categories, as shown in Figure 4-9. This pattern indicates that adopting 

conventional standardisation principle significantly reduces embodied CE and material 

consumption. It aligns with the finding that architects and civil engineers tend to propose 

reasonably good designs based on their experience (Y. Zhou et al., 2023). However, solely 

relying on the standardisation leaves a gap in achieving the lowest embodied CE. Employing 

less standardised designs is likely to result in greater carbon reductions. 
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Figure 4-9  Distribution of CE from the whole structure, concrete, reinforcement, wall slabs, 

and formwork.  

4.4.3 The effectiveness of embodied carbon reduction 

Figure 4-10 and Table 4-7 provide a detailed breakdown of carbon emissions for the baseline 

scenario and feasible solution. Reinforcement, concrete, and wall slabs are the main sources of 

embodied carbon, accounting for approximately 36%, 30%, and 27% of the total CE, 

respectively. The contribution of formwork to CE is relatively minimal, only 5.5%. The 

feasible solution reduces CE from concrete, reinforcement, and precast formwork by 14.32%, 

16.71%, and 10.39%, respectively, while it increases emissions from wall slabs and cast-in-

situ formwork by 1.17% and 71.88%, respectively. Variations in CE from concrete, 

reinforcement, wall slabs, precast formwork, and cast-in-situ formwork result in CE changes 

of -4.49%, -6.31%, +0.30%, +0.48%, and -0.48% in the entire structure, respectively. Overall, 

the feasible solution achieves a 10.51% reduction in embodied CE compared to the baseline 

scenario. 

These finding fulfils the equation (4-51) and implies that the proposed design optimisation 

method provides a better carbon reduction than existing design method (i.e., standardisation). 

This finding implies that optimising the dimensions of precast elements beyond standardisation 

can further reduce material-related CE. Despite the feasible solution employs 66.7% more cast-

in-situ formwork and 11.55% less precast formwork compared to the baseline, it only results 

in a 0.48% increase and a 0.48% decrease in total CE, respectively. Previous research indicates 
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that off-site construction in prefabrication reduces formwork quantity (Cheng et al., 2022; 

Dong et al., 2015; Wong & Tang, 2012). For instance, the adoption of casting bed significantly 

reduces formwork area, as introduced in section 4.2.4. Thus, the impact of formwork is less 

pronounced in comparisons among precast designs than between precast and cast-in-situ 

constructions. Consequently, the advantage of standardisation in reducing formwork CE is not 

as significant as expected. In contrast, the reduced use of building materials in the feasible 

solution achieves a greater carbon reduction (10.5%), making it more sustainable than the 

baseline scenario.  

 

Figure 4-10 Comparison between CE of the baseline scenario and feasible solution.  

Table 4-7 CE of solutions from each source (kg CO2e). 

Source of CE Baseline 
scenario 

Feasible 
solution 

Difference 
between 
feasible 
solution and 
baseline value 

Difference in 
the total CE 

Concrete 281876.29 241498.49 -14.32% -4.49% 
Reinforcement 339820.98 283033.92 -16.71% -6.31% 
Wall slabs 230207.74 232902.54 1.17% 0.30% 
Cast-in-situ 
formwork 

5948.79 10224.50 71.88% 0.48% 

Precast formwork 41774.88 37435.79 -10.39% -0.48% 
Total 899628.68 805095.24 -10.51% -10.51% 
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4.4.4 Analysis on standardisation 

To estimate the influence of standardisation principle, Table 4-8 presents a macro-level 

comparison (from the perspective of dimensions) of the standardisation levels between the 

feasible solution and baseline scenario. While the feasible solution has the same number of 

columns and beams as the baseline scenario, it features more secondary beams and floor slabs. 

Furthermore, the feasible solution has more element types across all three categories of 

elements. These findings indicate that the baseline scenario employs more standardised 

element size and the minimum number of building elements, align with assumptions stated in 

section 4.3.3.4.  

Notably, both the feasible solution and baseline scenario have over 20 types of floor slabs, 

exceeding expectation. This arises from the arrangement of secondary beams, which are evenly 

distributed across each span. Consequently, the size of floor slabs is influenced by both the 

span length and the width of beams and secondary beams, leading to non-negligible disparity. 

It indicates a comprehensive consideration of span length and element size is crucial for higher 

standardisation, underscoring the importance of tolerance in span design as mentioned in 

section 4.2.1.2. However, in this case, the feasible solution does not address the issue (although 

the tolerance is applied). This is due to two reasons: 1) the macro-level element type has minor 

impact on CE, and 2) the discontinuous value of span length prevents a standardised solution 

for all the floor slabs.  

Table 4-8 Estimation of the geometric standardisation. 

 Columns Beams & 
Secondary beams 

Floor slabs 

Feasible solution 
Element type 4 11 29 
Element number 64 221 250 
Baseline scenario 
Element type 2 8 27 
Element number 64 215 238 

Given the benefits of standardisation in reducing element type and number and its drawbacks 

in CE, this study analyses the design of each piece of formwork to elucidate this contradiction. 

Figure 4-11 and Figure 4-12 illustrate the reuse cycles for precast and cast-in-situ formwork, 

respectively. Reuse cycles of each formwork category are represented by a violin plot (on the 

left), a boxplot (on the right), and a scatter plot (dots on the right). The violin plot and boxplot 
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display the distribution of reuse cycles, ranging from 0 to 50 times. In the scatter plot, each dot 

represents an individual formwork piece, with its vertical coordinate indicating the reuse cycle.  

Regarding the precast formwork, the average reuse cycles for beams & secondary beams, 

columns, and floors formwork in the baseline scenario and feasible solution are 26.77, 18.29, 

29.52 and 16.95, 14.22, 16.51, respectively. Generally, precast formwork in the baseline 

scenario is reused for more times than in the feasible solution. As illustrated in Figure 4-11, 

many pieces of precast formwork are reused less than 20 times in the feasible solution, leading 

to lower average reuses cycles compared to the baseline scenario. Such data reflects that 

standardisation enhances the reuse of formwork pieces to a certain extent. 

However, the quantity of formwork and its associated CE in feasible solutions is 10.39% lower 

than in the baseline scenario. This indicates that the reuse cycle of formwork pieces does not 

directly influence formwork quantity. The scatter plot in Figure 4-11 shows that many 

formwork pieces in the baseline scenario are still seldom reused, contributing to a large 

formwork quantity. This pattern may be attributed to the fact that both the dimensions and 

openings contribute to formwork diversity and quantity. Although standardisation tends to 

uniform the formwork dimensions, it often overlooks variations in the size and position of 

openings. As a result, elements with the same dimensions but different openings require 

different formwork sets, increasing the total number of formwork pieces. 

Meanwhile, the common use of on-line mode in formwork production prohibits the maximum 

reuse of formwork pieces. Since a formwork piece can cater to elements of its size or smaller, 

the requirement for additional formworks increases when smaller elements are manufactured 

first. Conversely, employing the off-line mode in formwork manufacture (where the 

dimensions and openings are determined based on the characteristics of all required formwork 

pieces) can yield more adaptable formwork pieces. This approach facilitates the reuse of 

formwork in creating elements with similar dimensions and openings. Thus, this mode can 

decrease the total formwork needed and potentially offer a more effective way to lower both 

formwork quantity and associated CE. 

As for the reuse cycles of cast-in-situ formwork, most formwork pieces are exactly reused 4 

times, as illustrated in Figure 4-12. This is due to the assumption that cast-in-situ concrete is 

constructed floor by floor (stated in section 4.4), which caps the maximum reuse cycle of cast-

in-situ formwork at 4 times. Besides, both the construction plan and diversity of element 
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dimensions influence the result, Specifically, adopting different column sizes for the ground 

floor and other floors in the feasible solution results in fewer reuse cycles and more formwork 

pieces. These finding suggest that benefits of standardisation are more significant in larger 

projects with more floors, where cast-in-situ formwork can be reused for more times.  

 

Figure 4-11 Reuse cycles of precast formwork.  

 

Figure 4-12 Reuse cycles of cast-in-situ formwork.  
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4.5 Summary 

This section presents a parametric design optimisation method for reducing the embodied CE 

from building materials and casting formwork during the developed design stage. Using a 

parametric approach, the method generates design alternatives based on the original 

architecture design. Automatic structure analysis and detailed design are then employed to 

determine the dimensions and material allocation of structure elements. With the objective of 

minimising CE from building materials and formwork, a GA is utilised to explore solutions 

with the lowest CE. 

Applying the method to a case project in China verifies its effectiveness in making minor 

adjustments to the original design and reducing CE. The optimised design alternative results in 

a 10.51% decrease in embodied CE, achieved through reductions in the quantity of concrete, 

reinforcement, and casting formwork by 14.32%, 16.71%, and 10.39% respectively. 
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5 Optimisation of transportation CE 

5.1 Introduction 

The transportation of prefabricated elements crucially impacts the CE of projects. However, 

limited attention has focused on the CE calculation in the transportation stage. Existing studies 

roughly simulated the transportation process as transferring homogeneous non-solid material 

by a fleet of identical vehicles in a stable environment, which deviates from the real-world 

transportation situation. As a result, the CE calculation method using actual transportation 

conditions demands further exploration and, more so, for the prefabricated construction context. 

This pursuit can be divided into two requirements: 1) the simulation of transportation status 

and 2) the CE calculation based on specific situations. To address the issue, this study adopts 

the bin packing (BP) problem for the micro-level analysis on the transportation of prefabricated 

elements in this section. The content in this chapter has been published in the study of Xiang 

et al. (2022). 

5.2 Optimisation method  

The methods employed in this module involve four steps: 1) model the transportation status of 

prefabricated elements as a classic three-dimensional BP problem, 2) calculate the 

transportation CE using the modal analysis model, 3) explore the solution to the BP problem, 

and 4) compare the results to other methods for validation. The research content related to each 

step is explained in detail below. 

5.2.1 Bin packing problem design 

5.2.1.1 Review of Bin packing problem 

The BP problem refers to packing a set of items into a minimum number of bins so that the 

sum of the item sizes in each bin is no greater than the bin capacity (Coffman et al., 2013). The 

problem can be categorised into one-, two-, and three-dimensional conditions for different 

practical applications (Solomon & Weiner, 1986). Specifically, one-dimensional BP problems 

have many applications to problems of data management, scheduling, and resource allocation 

(Hall et al., 1988); two-dimensional BP problems are used to solve problems in the cutting of 

corrugated or decorated material (wood, glass, cloth industries), and the newspapers paging 

(Lodi, Martello, & Monaci, 2002); and three-dimensional BP problems are applied in cutting 
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and loading contexts (e.g., cutting of foam rubber in arm-chair production, container and pallet 

loading, and packaging design) and scheduling problems (Faroe et al., 2003; Lodi, Martello, & 

Vigo, 2002). 

BP problems can be classified by several factors according to the problem type, as shown in 

Table 5-1 (Dyckhoff, 1990; Shang et al., 2020; Wäscher et al., 2007). Generally, all BP 

problems could be considered combinations of these factor alternatives (Shang et al., 2020). 

Wäscher et al. (2007) 's research introduced the detailed definitions of specific BP problems 

and their corresponding factors. 

Table 5-1  The classification of bin packing problems 

Factors Sub-factors Alternatives 
Dimension Dimension One, two, three dimensional 
Item 
features 

Item shape Regular, irregular 
Item 
assortment 

Identical items, weekly heterogeneous assortment, 
strongly heterogeneous assortment 

Item rotation Rotatable, non-rotatable 
Bin 
features 

Bin number One, more than one 
Bin size All dimensions fixed, one or more variable dimensions 
Bin 
assortment 

Identical bins, weekly heterogeneous assortment, 
strongly heterogeneous assortment 

Packing 
process 

Packing 
status 

Orthogonal, non-orthogonal 

Packing mode Online, offline 
Packing 
target 

Specific bin length, area, or volume, specific bin filling 
rate, output value maximisation, input value 
minimisation 

Limitation Limitation Item value, item adjacency, item location 

The BP problem is known to be NP-hard, which means that the existence of an efficient 

(polynomial-time) algorithm is unlikely. Consequently, computation times are expected to 

grow exponentially as the problem size increases. This characteristic motivates the search for 

heuristic, or approximate, solutions to instances of the problem (Hall et al., 1988). Generally, 

most algorithms are employed to find reasonable, feasible solutions in an acceptable timescale 

rather than to search for every possible solution or combination (Munien & Ezugwu, 2021).   

The solution for BP problems can technically be divided into two steps: 1) exploring the 

suitable method to place the item, and 2) searching for the optimum placing result. In the same 

way, the development of solution algorithms can be summarised as 1) developing more 

accurate placing algorithms and 2) introducing more efficient searching algorithms (Shang et 
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al., 2020). Considering the existing advance in computer science, which could provide 

approximate or even exact optimal solutions, a promising research direction is to apply the 

solutions in practical scenarios (Shang et al., 2020).  

Regarding applying BP solutions in transportation, scholars focus on modelling and solving 

actual problems in the logistics industry. The BP solution was originally applied to optimise 

the transportation plan of variable-sized items. Specifically, the prototype problem is defined 

as packing a subset of given rectangular three-dimensional boxes into a given rectangular 

container for the smallest container number and thus the lowest transportation cost (A. Lim et 

al., 2005). The subsequent research added more constraints on the packing method to solve 

specific issues, pushing the BP solutions closer to reality. For instance, Baldi et al. (2012) 

studied the method of packing compulsory and non-compulsory items for the minimum total 

net cost. Other constraints include the weight balance (Moon & Nguyen, 2014), product order 

and destination (Erbayrak et al., 2021), transportation route (Cruz Reyes et al., 2007), and time 

window (Q. Liu et al., 2021).  

5.2.1.2 Problem description 

The transportation of prefabricated elements is considered a three-dimensional BP problem 

with guillotine constraints. Specifically, this problem involves packing a set of three-

dimensional rectangular boxes orthogonally into rectangular containers while satisfying the 

requirement that the packing is guillotine cuttable (i.e., there exists a series of face parallel 

straight cuts that can recursively cut the container into pieces so that each piece contains a box 

and that no box has been intersected by a cut (Amossen & Pisinger, 2010)). Compared with 

simple orthogonal three-dimensional BP problems (which are usually adopted onsite (H. Wang 

et al., 2021)), the guillotine constraints allow for moving the prefabricated elements from the 

top of vehicles, thus reducing the time and difficulty of loading or unloading (Shang et al., 

2020).  

In this problem, prefabricated elements are considered a set of rectangular boxes, each of which 

has seven parameters, as shown in equations(5-1)-(5-6). These equations are represented based 

on precast concrete elements and can be applied to other volumetric or panelised prefabricated 

element types (e.g., timber elements and steel elements) by adjusting the corresponding values. 

𝐵𝐵 = {𝑏𝑏1, … , 𝑏𝑏𝑖𝑖 , … , 𝑏𝑏𝑛𝑛} (5-1) 
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𝑏𝑏𝑖𝑖 = {𝑙𝑙𝑖𝑖 ,𝑤𝑤𝑖𝑖 ,ℎ𝑖𝑖 , 𝑟𝑟𝑖𝑖−𝐿𝐿 , 𝑟𝑟𝑖𝑖−𝑊𝑊, 𝑟𝑟𝑖𝑖−𝐻𝐻 ,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑖𝑖 } (5-2) 

𝑙𝑙𝑖𝑖 = 𝑙𝑙𝑖𝑖−1 + 𝑙𝑙𝑖𝑖−2 + 𝑙𝑙𝑖𝑖−3 + 𝑙𝑙𝑖𝑖−4 (5-3) 

𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑖𝑖−1 + 𝑤𝑤𝑖𝑖−2 + 𝑤𝑤𝑖𝑖−3 + 𝑤𝑤𝑖𝑖−4 (5-4) 

ℎ𝑖𝑖 = ℎ𝑖𝑖−1 + ℎ𝑖𝑖−2 + ℎ𝑖𝑖−3 + ℎ𝑖𝑖−4 (5-5) 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑖𝑖 = 𝑙𝑙𝑖𝑖−2 × 𝑤𝑤𝑖𝑖−2 × ℎ𝑖𝑖−2 × 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (5-6) 

where 𝑛𝑛 is the number of boxes; 𝐵𝐵 is the set of 𝑛𝑛 boxes; 𝑏𝑏𝑖𝑖 is the 𝑖𝑖-th box in the set; 𝑙𝑙𝑖𝑖, 𝑤𝑤𝑖𝑖, and 

ℎ𝑖𝑖  are the length, width, and height (m) of 𝑏𝑏𝑖𝑖 , respectively; 𝑟𝑟𝑖𝑖−𝐿𝐿 , 𝑟𝑟𝑖𝑖−𝑊𝑊 , and 𝑟𝑟𝑖𝑖−𝐻𝐻  are binary 

variables that determine whether the box can be rotated around the length (X), width (Y), and 

height (Z) axes, respectively. The value equals 1 if the box can be rotated and 0 otherwise; 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑖𝑖  is the weight of 𝑏𝑏𝑖𝑖  (ton); 𝑙𝑙𝑖𝑖−1 , 𝑙𝑙𝑖𝑖−3 , 𝑤𝑤𝑖𝑖−1 , 𝑤𝑤𝑖𝑖−3 , ℎ𝑖𝑖−1 , and ℎ𝑖𝑖−3  are the extension 

length of the rebar on each side (m), respectively; 𝑙𝑙𝑖𝑖−2, 𝑤𝑤𝑖𝑖−2, and ℎ𝑖𝑖−2 are the length, width, 

and height of precast concrete (m), respectively; 𝑙𝑙𝑖𝑖−4, 𝑤𝑤𝑖𝑖−4, and ℎ𝑖𝑖−4 are the interval between 

adjacent elements in each dimension (m); and 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is the density of element material 

(ton/m3), which is set to 2.5 ton/m3 in precast concrete elements. The weight of extended rebar 

is excluded in the calculation because their weight only contributes to a minor part of the 

prefabricated elements’ weight, thus leading to the negligible variance of the result. Figure 5-1 

describes the variables mentioned above. 
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Figure 5-1 Variables of the prototype prefabricated element.  

The transportation space of vehicles is considered a set of rectangular containers with four 

parameters, as shown in equations (5-7)-(5-10). 

𝐹𝐹 = {𝑉𝑉1, … ,𝑉𝑉𝑖𝑖 , … ,𝑉𝑉𝑚𝑚} (5-7) 

𝑉𝑉𝑖𝑖 = �𝐶𝐶𝑖𝑖−1, … ,𝐶𝐶𝑖𝑖−𝑗𝑗 , … ,𝐶𝐶𝑝𝑝� (5-8) 
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𝐶𝐶 = �𝐶𝐶1−1, … ,𝐶𝐶𝑖𝑖−𝑗𝑗 , … ,𝐶𝐶𝑚𝑚−𝑝𝑝� (5-9) 

𝐶𝐶𝑖𝑖−𝑗𝑗 = �𝐿𝐿𝑖𝑖−𝑗𝑗 ,𝑊𝑊𝑖𝑖−𝑗𝑗 ,𝐻𝐻𝑖𝑖−𝑗𝑗 , 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖−𝑗𝑗  � (5-10) 

where 𝑚𝑚 is the number of vehicles, 𝐹𝐹 is the set of 𝑚𝑚 vehicles in the transportation fleet; 𝑉𝑉𝑖𝑖 is 

the 𝑖𝑖 -th vehicle in 𝐹𝐹 ; 𝐶𝐶𝑖𝑖−𝑗𝑗  is the 𝑗𝑗 -th container of the 𝑖𝑖 -the vehicle; 𝑝𝑝  is the number of 

containers in 𝑉𝑉𝑖𝑖; 𝐶𝐶 is the set of containers; 𝐿𝐿𝑖𝑖−𝑗𝑗, 𝐻𝐻𝑖𝑖−𝑗𝑗, and 𝑊𝑊𝑖𝑖−𝑗𝑗 are length, width, and height 

of 𝐶𝐶𝑖𝑖−𝑗𝑗 (m), respectively; and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖−𝑗𝑗 is the load capacity of  𝐶𝐶𝑖𝑖−𝑗𝑗 (ton). 

The objective of the BP problem is to pack all the boxes in set 𝐵𝐵 into a suitable container set 

𝐶𝐶, thus minimising the total carbon emissions of fleet 𝐹𝐹. This aim is represented by equation 

(5-11) below: 

𝑚𝑚𝑚𝑚𝑚𝑚[𝐶𝐶𝐶𝐶(𝐹𝐹)] (5-11) 

where 𝐶𝐶𝐶𝐶(𝐹𝐹) is the CE of fleet 𝐹𝐹 (kg CO2e). The calculation method of CE is given in section 

5.2.2. 

This packing problem has the following constraints:  

C-1:  All the boxes are packed orthogonally, i.e., every face of boxes is parallel to the faces of 

the containers. 

C-2:  The rotation of each box is strictly limited by the parameter of 𝑟𝑟𝑖𝑖−𝑋𝑋, 𝑟𝑟𝑖𝑖−𝑌𝑌, and 𝑟𝑟𝑖𝑖−𝑍𝑍. 

C-3:  All the boxes are fully supported by either other boxes or the container, i.e., the bottom 

of each box is not allowed to hang in the air. 

C-4:  The packing is guillotine cuttable. 

C-5:  All the boxes must be packed. 

C-6:  Boxes are placed into containers without exceeding the length, width, height, and weight 

of each container. 

C-7:  The layer of packed boxes cannot exceed the limitation of corresponding codes (specific 

codes are cited in section 5.3.3.3). 

5.2.1.3 Variable determination 

The packing of boxes is considered a recursion of a four-step process: 1) select a specific box, 

2) select an available space to place the box, 3) place the box, and 4) update the available space. 
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Correspondingly, the key to solve this problem is to determine 1) the order of boxes, 2) the 

available space, 3) the method to place the box, and 4) the update method of residual spaces.  

The order of boxes 𝑂𝑂 is determined by a set of float-type variables 𝑁𝑁, according to equations 

(5-12)-(5-16). These equations allow for determining the order of boxes without the limitation 

of box number, and the equations can therefore be used in a recursion process. 

𝑁𝑁 = {𝑁𝑁1, … ,𝑁𝑁𝑖𝑖 , … ,𝑁𝑁𝑛𝑛 } (5-12) 

𝑁𝑁𝑖𝑖 ∈ [0,1] (5-13) 

𝑏𝑏𝑏𝑏𝑏𝑏_𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑁𝑁𝑖𝑖 × 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝐵𝐵′) (5-14) 

𝐵𝐵′ ∈ 𝐵𝐵 (5-15) 

𝑂𝑂 = {𝑏𝑏𝑏𝑏𝑏𝑏_𝑛𝑛𝑛𝑛𝑛𝑛1, … , 𝑏𝑏𝑏𝑏𝑏𝑏_𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖, … , 𝑏𝑏𝑏𝑏𝑏𝑏_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 } (5-16) 

where 𝐵𝐵′ is the set of residual boxes (boxes that are not placed); 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝐵𝐵′) is the number of 

items in 𝐵𝐵′ ; and 𝑏𝑏𝑏𝑏𝑏𝑏_𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖  represents the selected sequence number of box in 𝐵𝐵′  (e.g., 5 

means the fifth box in 𝐵𝐵′). 

The selection of available spaces is combined with the determination of the box placing method. 

Given a box 𝑏𝑏𝑖𝑖, the set of available space to place box 𝑏𝑏𝑖𝑖 is 𝑆𝑆′, and the selection of a specific 

space is determined by a float-type variable 𝑃𝑃𝑖𝑖. It works as shown in equations (5-17)-(5-19) 

𝑃𝑃𝑖𝑖 ∈ [0,1] (5-17) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑃𝑃𝑖𝑖 × 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑆𝑆′) (5-18) 

𝑃𝑃 = {𝑃𝑃1, … ,𝑃𝑃𝑖𝑖 , … ,𝑃𝑃𝑛𝑛 } (5-19) 

where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 represents the selected sequence number of space in 𝑆𝑆′ (e.g., 5 means the 

fifth space in 𝑆𝑆′); 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑆𝑆′) is the number of items in 𝑆𝑆′; and 𝑃𝑃 is the set of 𝑃𝑃𝑖𝑖. Regarding the 

placing method, the bottom-up left-justified method is employed (i.e., always placing the box 

at the lowest and the leftmost corner of a space) (Baker et al., 1978). In this method, six placing 

alternatives exist, as shown in Figure 5-2. Each alternative generates a corresponding available 

space in the set of available space 𝑆𝑆. Thus, the selection among these six alternatives can also 

be represented by 𝑃𝑃𝑖𝑖. 
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Figure 5-2 Placing alternatives of boxes. 

A discrete variable set 𝑇𝑇 determines the selection among different vehicle types once a new 

vehicle is added. It is calculated in equations (5-20)-(5-21). 

𝑇𝑇 = {𝑇𝑇1, … ,𝑇𝑇𝑖𝑖 , … ,𝑇𝑇𝑚𝑚 } (5-20) 

𝑇𝑇𝑖𝑖 ∈ {1, 2, … , 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑛𝑛𝑛𝑛𝑛𝑛} (5-21) 

where 𝑇𝑇𝑖𝑖 represents the type of 𝑖𝑖-th vehicle in the fleet 𝐹𝐹; and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑛𝑛𝑛𝑛𝑛𝑛 is the total number 

of available vehicle types.  

Concerning the update of residual space, once a box is placed, the selected space will be divided 

into several smaller and discrete sub-spaces in two ways due to the constraints of C-3 and C-4 

(Figure 5-3). The selection of these two methods is represented by a set of binary variables 𝐺𝐺, 

as shown in equations (5-22)-(5-23).  

𝐺𝐺 = {𝐺𝐺1, … ,𝐺𝐺𝑖𝑖 , … ,𝐺𝐺𝑛𝑛 } (5-22) 

𝐺𝐺𝑖𝑖 ∈ {0,1} (5-23) 
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where 𝐺𝐺𝑖𝑖 represents the selection of the place generation method in the 𝑖𝑖-th time box placing.  

 

Figure 5-3 Space generation method when 𝐺𝐺𝑖𝑖=0 (a) and 𝐺𝐺𝑖𝑖=1 (b) 

Therefore, the objective of this algorithm is to search for the variable sets 𝑁𝑁, 𝑃𝑃, and 𝐺𝐺 that have 

the lowest CE. Correspondingly, equation (5-11) can be transformed into the following 

equation to represent the objective of this bin packing problem: 

𝑚𝑚𝑚𝑚𝑚𝑚[𝐶𝐶𝐶𝐶(𝑁𝑁,𝑃𝑃,𝑇𝑇,𝐺𝐺)] (5-24) 

5.2.1.4 Algorithm development 

The algorithm defined each box 𝑏𝑏𝑖𝑖 in the box set 𝐵𝐵 by a parameter set 𝑏𝑏𝑖𝑖′ as below: 

𝑏𝑏𝑖𝑖′ = {𝑙𝑙𝑖𝑖 ,𝑤𝑤𝑖𝑖 ,ℎ𝑖𝑖 , 𝑣𝑣_𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖, 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖 , 𝑟𝑟𝑖𝑖−𝑋𝑋, 𝑟𝑟𝑖𝑖−𝑌𝑌, 𝑟𝑟𝑖𝑖−𝑍𝑍,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑖𝑖} (5-25) 

where 𝑣𝑣_𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 is the number of vehicles in which 𝑏𝑏𝑖𝑖 is placed; and 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, and 𝑧𝑧𝑖𝑖 represent the 

coordinates of 𝑏𝑏𝑖𝑖’s bottom-left corner. 

The set of containers 𝐶𝐶 is transformed to the set of spaces 𝑆𝑆, as defined in the equations (5-26)-

(5-28), as below: 

𝑆𝑆 = �𝑆𝑆1, … , 𝑆𝑆𝑖𝑖 , … , 𝑆𝑆𝑞𝑞� (5-26) 
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𝑆𝑆𝑖𝑖 = {𝑣𝑣_𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 , 𝐿𝐿𝑖𝑖 ,𝑊𝑊𝑖𝑖 ,𝐻𝐻𝑖𝑖 ,𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 ,𝑍𝑍𝑖𝑖 , 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 ,𝑀𝑀𝑖𝑖 , 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖} (5-27) 

𝑀𝑀𝑖𝑖 ∈ {0,1,2,3,4,5} (5-28) 

Where 𝑞𝑞 is the number of spaces; 𝑆𝑆𝑖𝑖 is the 𝑖𝑖-th space in the space set 𝑆𝑆; 𝐿𝐿𝑖𝑖, 𝑊𝑊, and 𝐻𝐻𝑖𝑖 are the 

length, width, and height (m) of 𝑆𝑆𝑖𝑖, respectively; 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 is the load capacity (ton) of  𝑆𝑆𝑖𝑖; 𝑀𝑀𝑖𝑖 is 

a variable that represents the box placing method when 𝑆𝑆𝑖𝑖 is used to place a box, as shown in 

Figure 5-2; and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 is the layer number of 𝑆𝑆𝑖𝑖. 

The pseudo-code of the BP algorithm is given as below: 

For each box 𝑏𝑏𝑖𝑖 in the box set 𝐵𝐵: 
    define 𝑏𝑏𝑖𝑖 by parameters as 𝑏𝑏𝑖𝑖′ 
    add 𝑏𝑏𝑖𝑖′ to the residual box set 𝐵𝐵′ 
End 
For 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 in the range [1, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝐵𝐵)]: 
    select a box 𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′ in 𝐵𝐵′ according to 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
    While 𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′ is not placed: 
            For each space 𝑆𝑆𝑖𝑖 in the space set 𝑆𝑆: 
                If 𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′ can be placed in 𝑆𝑆𝑖𝑖 by the method of 𝑀𝑀: 
                    let 𝑆𝑆𝑖𝑖(𝑀𝑀𝑖𝑖) = 𝑀𝑀 
                    add  𝑆𝑆𝑖𝑖 to 𝑆𝑆′ 
                End 
            End 
            If 𝑆𝑆′ is not an empty set: 
                select a space 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 in 𝑆𝑆′ according to 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
                place 𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′ in 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 according to 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 
                If the 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) does not exceed the limitation: 
                    generate the new space 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 according to 𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
                    add 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 to 𝑆𝑆 
                End 
                remove 𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′ from 𝐵𝐵′ 
                identify 𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′ as a placed box 
            Else: 
                    vehicle_num += 1 
                    add a new vehicle and its corresponding space to 𝑆𝑆 according to 𝑇𝑇𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑛𝑛𝑛𝑛𝑛𝑛 
            End 
    End 
End 
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5.2.2 Carbon emissions calculation 

5.2.2.1 Calculation boundary 

The research boundary of this article is the process of transporting the prefabricated elements 

from the factory to the construction site by vehicle. The emission process in this stage includes 

running exhaust, start exhaust, brake wear, tire wear, etc. (EPA, 2020c). Considering that 

running exhaust emissions (i.e., the archetypal mobile source emissions that generate during 

the operation of internal-combustion engines after the engine and emission control systems 

have stabilized at the specific operating temperature (EPA, 2020c)) contribute to 98.85% of 

CE (EPA, 2020a), this study focuses only on emissions in this stage.  

5.2.2.2 Data source 

MOVES3 (The United States Environmental Protection Agency’s Motor Vehicle Emission 

Simulator) is selected as the data source for the CE calculations in the case study of five 

Chinese projects (section 5.3.3.1). It is a set of modelling tools for estimating air pollution 

emissions produced by on-road and nonroad mobile sources (EPA, 2020a). Although MOVES3 

was developed based on the emission data in California, USA, previous studies have reported 

the tool remains accurate in calculations outside California, especially in China (Yue et al., 

2013; L. Zhang et al., 2017). Considering that the national modal emission model in China is 

rare (Huang et al., 2010), employing MOVES3 for CE calculations is reasonable in this country. 

5.2.2.3 Quantitative calculation 

This study employs the calculation method for heavy-duty vehicles (with a gross vehicle weight 

rating of more than 8500 lbs) in the Overview of EPA’s Motor Vehicle Emission Simulator 

(EPA, 2020c). The total running carbon emissions 𝐶𝐶𝐶𝐶 (kg CO2e) of the fleet 𝐹𝐹 is calculated by 

equation (5-29), as shown below:  

𝐶𝐶𝐶𝐶 =  ��𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 × ��𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖−𝑗𝑗 × 𝑓𝑓𝑗𝑗�� (5-29) 

where 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 is the operating hours of the 𝑖𝑖-th vehicle (𝑉𝑉𝑖𝑖) in the fleet 𝐹𝐹 (h);  𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖−𝑗𝑗 is the 

fraction of time that 𝑉𝑉𝑖𝑖 spent in the operating mode 𝑗𝑗; and 𝑓𝑓𝑗𝑗 is the CE rate of operating mode 

𝑗𝑗 (ton/h). 
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MOVES3 classifies the CE rates of operating mode 𝑓𝑓 using scaled tractive power (STP), as 

shown in equations (5-30)-(5-34). 

𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 =  
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑣𝑣𝑡𝑡 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑣𝑣𝑡𝑡2 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣𝑡𝑡3 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑣𝑣𝑡𝑡(𝛼𝛼𝑡𝑡 + 𝑔𝑔 × 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑡𝑡)

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

(5-30) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑔𝑔 × 𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑡𝑡 (5-31) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
1
2

× 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (5-32) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 = 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 (5-33) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑗𝑗 = � 𝑏𝑏𝑖𝑖′
𝑏𝑏𝑖𝑖′(𝑣𝑣𝑖𝑖=𝑗𝑗)

(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑖𝑖) (5-34) 

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡  is the STP at time 𝑡𝑡  (kW/ton); 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  is the rolling resistance coefficient 

(kW ∙sec/m); 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  is the rotational resistance coefficient (kW ∙sec2/m2); 𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  is the 

aerodynamic drag coefficient (kW∙sec3/m3); 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the total mass of the individual vehicle 

(ton); 𝑣𝑣𝑡𝑡 is the instantaneous vehicle velocity at time 𝑡𝑡 (m/s); 𝛼𝛼𝑡𝑡 is the instantaneous vehicle 

acceleration (m/s2); 𝑔𝑔 is the acceleration due to gravity (9.8 m/s2); 𝜃𝜃𝑡𝑡 is the road grade at time 

𝑡𝑡; 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the fixed mass of the vehicle (ton); 𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the rolling resistance coefficient of 

the vehicle (N/kN); 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the aero drag coefficient of the vehicle; 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the density of the 

air (1.29 kg/m3); and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the windward area of the vehicle (m2). 

The carbon emission rate of operating mode 𝑗𝑗 (𝑓𝑓𝑗𝑗) is linearly related to the STP of the operating 

mode (EPA, 2020a), and 𝑓𝑓𝑗𝑗 can be calculated using equation (5-35). 

𝑓𝑓𝑗𝑗 = 𝑘𝑘𝑓𝑓 × 𝑆𝑆𝑇𝑇𝑃𝑃𝑗𝑗 + 𝑓𝑓_0 (5-35) 

where 𝑆𝑆𝑆𝑆𝑆𝑆_𝑗𝑗 is the STP of operating mode 𝑗𝑗 (kW/ton); 𝑓𝑓_0 is the emission rate of the vehicle 

operating with the STP value of 0 (kg CO2e/h); and 𝑘𝑘𝑓𝑓 is the coefficient factor of STP and 

emission rate (1000∙kg2 CO2e/kWh), which can be obtained through regression analysis on the 

emission data of MOVES3. 
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5.2.3 Exploration of solutions 

This study employs a genetic algorithm (GA) to search for solutions to the bin packing problem 

defined in section 3.1. The bin packing problem is first modelled in standard Python 3.8. Then, 

Geatpy 2.6.0—a genetic and evolutionary algorithm toolbox for Python (Geatpy team, 2022)—

is used to explore the result of equation (5-24).  

5.3 Module validation 

5.3.1 Validation of bin packing solutions 

In the assumption that prefabricated elements are transported by identical vehicles on a straight 

road with stable features at a stable speed, and the freight does not change the windward area, 

equation (5-30) can be transformed as shown below: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 =  
�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑔𝑔 × 𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑡𝑡 + 𝐶𝐶𝑣𝑣𝑡𝑡2 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑔𝑔 × 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑡𝑡� × 𝑣𝑣𝑡𝑡

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (5-36) 

=  �𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟×𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑡𝑡+𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑡𝑡�×𝑣𝑣𝑡𝑡𝑔𝑔
𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + �𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟×𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑡𝑡+𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑡𝑡�×𝑣𝑣𝑡𝑡𝑔𝑔
𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐶𝐶𝑣𝑣𝑡𝑡
3

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
  (5-37) 

= 𝐷𝐷 × 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝐸𝐸 (5-38) 

where, 

𝐷𝐷 =
�𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑡𝑡 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑡𝑡� × 𝑣𝑣𝑡𝑡𝑔𝑔

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (5-39) 

𝐸𝐸 = �𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑡𝑡 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑡𝑡� × 𝑣𝑣𝑡𝑡𝑔𝑔 +
𝐶𝐶𝑣𝑣𝑡𝑡3

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (5-40)  

Accordingly, equation (5-29) can be rewritten as follows: 

𝐶𝐶𝐶𝐶 =  �[𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 × 𝑓𝑓𝑖𝑖] (5-41) 

= 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ×  ��𝑘𝑘𝑓𝑓 × �𝑆𝑆𝑇𝑇𝑃𝑃𝑗𝑗 − 𝑆𝑆𝑆𝑆𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚� + 𝑓𝑓_𝑚𝑚𝑚𝑚𝑚𝑚� (5-42) 

= 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ×  ��𝑘𝑘𝑓𝑓 × (𝐷𝐷 × 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝐸𝐸 − 𝑆𝑆𝑆𝑆𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚) + 𝑓𝑓_𝑚𝑚𝑚𝑚𝑚𝑚� (5-43) 
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= 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖��𝑘𝑘𝑓𝑓 × 𝐷𝐷 × 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� + 𝑇𝑇𝑖𝑖��𝑓𝑓_𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑘𝑘𝑓𝑓(𝐸𝐸 − 𝑆𝑆𝑆𝑆𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚)� (5-44) 

= 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 × 𝑘𝑘𝑓𝑓 × 𝐷𝐷 × �𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + �𝑘𝑘𝑓𝑓(𝐸𝐸 − 𝑆𝑆𝑆𝑆𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚) + 𝑓𝑓_𝑚𝑚𝑚𝑚𝑚𝑚� × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 × 𝑚𝑚 (5-45) 

Equations (5-34) and (5-41) can be re-interpreted as equations (5-46) and (5-47), respectively: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (5-46) 

𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (5-47) 

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  is the STP to move only prefabricated elements to the construction site 

(kW/ton); 𝑆𝑆𝑆𝑆𝑆𝑆𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the STP to move vehicles without freight to the construction site 

(kW/ton); 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  is the CE generated by moving only prefabricated elements to the 

construction site (kg CO2e); and 𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the carbon emissions generated by moving 

vehicles without freight to the construction site (kg CO2e). 

As the total weight of prefabricated elements is a fixed value, the objective defined by equation 

(5-22) can then be transformed as 

𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚) (5-48) 

The objective defined by equation (5-48) is the same as the aim of classical bin packing 

problems, and thus it can be solved using classical bin packing algorithms. This study adopts 

the results of the three-dimensional residual-space optimised algorithm (3D-RSO) (Shang et 

al., 2020) as the benchmark. The pseudo-code of this algorithm is given below: 

For each box 𝑏𝑏𝑖𝑖 in the box set 𝐵𝐵: 
    define 𝑏𝑏𝑖𝑖 by parameters as 𝑏𝑏𝑖𝑖′ 
    add 𝑏𝑏𝑖𝑖′ to the residual box set 𝐵𝐵′ 
End 
sort  𝐵𝐵′ in descending order according to the maximum possible bottom area of each box 
While 𝐵𝐵′ is not an empty set: 
    select the first box 𝑏𝑏1′ in 𝐵𝐵′ 
    For each space 𝑆𝑆𝑖𝑖 in the space set 𝑆𝑆: 
        If 𝑏𝑏1′ can be placed in 𝑆𝑆𝑖𝑖 by a method: 
            calculate the performance of residual space after placing 𝑏𝑏1′ by this method 
            add 𝑆𝑆𝑖𝑖 to 𝑆𝑆′ 
        End 
    End 
    If S′ is not an empty set: 
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        sort S′ in descending order according to the performance of residual space 
        select the first space 𝑆𝑆1′ in 𝑆𝑆′ 
        place 𝑏𝑏1′ in 𝑆𝑆1′ according to the corresponding method 
        generate new space 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 with the largest residual space 
        add 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 to 𝑆𝑆 
        remove 𝑏𝑏1′ from 𝐵𝐵′ 
    Else:  
        add a new vehicle and its corresponding space to 𝑆𝑆 
    End 
End 

The 3D-RSO algorithm employs predefined formulas to determine the box order, box placing 

method, and generation method of new spaces after box placing, thus producing an acceptable 

result very quickly (less than 1 second). However, a global optimum of solutions can hardly be 

achieved without heuristic algorithms. Therefore, the criterion in bin packing solutions 

validation is that the results from the algorithm with GA (GA-based algorithm) should be equal 

to or better than the results of the 3D-RSO algorithm. This requirement is represented by the 

following equations: 

𝑚𝑚𝐺𝐺𝐺𝐺 ≤ 𝑚𝑚3𝐷𝐷−𝑅𝑅𝑅𝑅𝑅𝑅  (5-49) 

𝐶𝐶𝐶𝐶𝐺𝐺𝐺𝐺 ≤ 𝐶𝐶𝐶𝐶3𝐷𝐷−𝑅𝑅𝑅𝑅𝑅𝑅 (5-50) 

where 𝑚𝑚𝐵𝐵  and 𝑚𝑚3𝐷𝐷−𝑅𝑅𝑅𝑅𝑅𝑅  are the number of vehicles of GA-based algorithm and 3D-RSO 

algorithm, respectively; and 𝐶𝐶𝐶𝐶𝐺𝐺𝐺𝐺 and 𝐶𝐶𝐶𝐶3𝐷𝐷−𝑅𝑅𝑅𝑅𝑅𝑅 are the CE of GA-based algorithm and 3D-

RSO algorithm (kg CO2e), respectively.  

5.3.2 Validation of CE calculation and optimisation 

The CE calculation and optimisation are validated through conducting quantitative 

comparisons between the results of different calculation methods. The benchmarked 

calculation method and emission rate are selected from the China Products Carbon Footprint 

Factors Database (CCG, 2022; LÜ et al., 2021) and the Calculation standard of building 

carbon emissions (2014) GB/T51366-2019. The CE is calculated based on these two sources 

using the following equations: 

𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 × 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  (5-51) 
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𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 =
𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
 (5-52) 

where 𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is the benchmarked CE value (kg CO2e); 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖  is the material quantity 

transported by method 𝑖𝑖 (ton); 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 is the transport distance (km); 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 is the CE coefficient of 

the transport method [kg CO2e/(ton∙km)]; 𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 is the CE factor of the transport method 𝑖𝑖 (kg 

CO2e/km); 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  is the average load capacity (ton); and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖  is the average 

loading rate.  

5.3.3 Module application 

5.3.3.1 Sample buildings 

This article employs five real-built cases using the precast concrete structure to validate the 

transportation carbon emissions calculation of prefabricated elements. The five buildings are 

all located in China: two residential buildings (Project A and B), one apartment building 

(Project C), one office building (Project D), and one education building (Project E), as shown 

in Figure 5-4 and Table 5-2 Summary of sample buildings. Considered element types include 

prefabricated floor slab (floor), shear wall slab (wall), column, and beam.  

Figure 5-5 provides information on the geometric features of prefabricated elements in these 

five projects. In the figure, the x-axis represents the dimension of length (m) and the y-axis 

represents the dimension of width and height (m). Specifically, the 𝑙𝑙𝑖𝑖  and 𝑤𝑤𝑖𝑖  of each 

prefabricated element are shown by the x- and y-coordinates of a dot, respectively. The value 

of ℎ𝑖𝑖 is given by the height of a vertical bar (corresponding to the dot) at the bottom of each 

figure. Figure 5-5 also shows the distribution of elements’ size by colour transparency. A 

darker colour means a greater gathering of points and bars (i.e., more prefabricated elements 

are in such a specific size). 

Table 5-2 Summary of sample buildings 

Description  Project A Project B Project C Project D Project E 

Types Residence Residence Apartment Office School 

Floor area (m2) 454.79 751.54 2083.54 3298.96 1371.43 

Layer number 20 18 17 6 6 
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Floor to floor 
height (m) 

2.90 2.90 3.50 3.82 3.25 

Element types, 
pieces, and 
weight (ton) per 
floor  

Floor 
slab×59 
42.71 

Shear wall 
slab×10  
17.26 

Floor 
slab×110 
74.68 

Shear wall 
slab×20 
32.36 

Floor 
slab×168 
194.93 

Shear wall 
slab×69 
236.01 

Column×10 
34.04 

Beam×41 
13.67 

Floor 
slab×155 
219.08 

Column×20 
65.42 

Beam×119 
429.15 

Floor 
slab×90 
89.59 

Column×44 
104.79 

Total weight of 
prefabricated 
elements per 
floor (ton) 

59.97 107.04 478.65 713.65 194.38 
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Figure 5-4 Plan layout of Project A (a), B (b), C (c), D (d), and E (e) 
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Figure 5-5 Features of prefabricated elements in Project A (a), B (b), C (c), D (d), and E (e)  
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5.3.3.2  Data collection 

The data collected in this study include 1) prefabricated element data, including the type, size, 

weight of elements used in the project; 2) CE data, including emission factor and application 

conditions adopted in either method; 3) vehicle data, including the type, size, load capacity, 

and resistance factor of vehicles; and 4) transportation data, including transportation constraints 

and road features. 

The data of prefabricated elements are extracted from the design files (i.e., the design drawings 

and schedules). Content analysis is then conducted on those drawings to obtain the value of 

variables concerning 𝑙𝑙𝑖𝑖 , 𝑤𝑤𝑖𝑖 , ℎ𝑖𝑖 , and 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑖𝑖 . The drawings of projects are examined and 

verified by all participants to ensure data quality.  

This study employs CE data from MOVES3. Specific value set are selected according to the 

parameters of alternatives vehicles listed in Table 5-3. The table also includes the sources of 

vehicle and transportation data. 

5.3.3.3 Parameter Settings 

The transportation CE calculation is conducted based on the following conditions:  

1) All the prefabricated elements are transported in Jiangsu Province, China, on a sector 

of the G40 road without the consideration of vehicle rotation. 

2) All the vehicles are moving at a stable speed at 0 ℃ with standard atmospheric pressure. 

3) All the prefabricated elements of a project are first divided by floors and then divided 

by their types into different batches (e.g., the floor batch of the first floor). 

4) Elements in the same batch are packed by the off-line mode, i.e., all the elements are 

known before packing. 

Considering the transportation code and current situation in China, this study set two vehicle 

alternatives. Vehicle 1 has a size of 13.75m×3m×4m (Length×Width×Height) and a 15.3-ton 

self-weight. Vehicle 2 has a size of 17.5m×3m×4m and a 16.8-ton self-weight. The upper 

limitation of the gross mass of these two vehicles are both 49 ton; thus, the load capacity of 

vehicles 1 and 2 are 33.7 ton and 33.2 ton, respectively. The transportation space of each 

vehicle is represented by two rectangular containers, as shown in Figure 5-6. 



 94 

 

Figure 5-6 Space division of the vehicle 

Figure 5-7 gives information on the packing status of different element types. All types of 

elements are packed horizontally and allow for rotation around one dimension. A detailed 

description of calculation parameters is provided in Table 5-3. 

 

Figure 5-7 Packing status of prefabricated floors (a), walls (b), columns (c), and beams (d) 

Table 5-3 Variable settings of the CE calculation 

Settings   Value Data source 
Vehicle     
Vehicle 1 Size Length (m) 13.75 A*, B*, C* 
  Width (m) 3  
  Height (m) 4  
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 Load 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿1 (ton) 33.7  
 Weight 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (ton) 15.3  
 Resistance 𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (N/kN) 6.8  
  𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  0.75  
 Fuel  Diesel  
 Space    
 Space 1 Length (m) 4  
  Width (m) 3  
  Height (m) 2.4  
  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿1−1 (ton) 33.7  
 Space 2 Length (m) 9.75  
  Width (m) 3  
  Height (m) 3  
  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿1−2 (ton) 33.7  
Vehicle 2 Size Length (m) 17.5 A*, B*, C* 
  Width (m) 3  
  Height (m) 4  
 Load 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2 (ton) 32.2  
 Weight 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (ton) 16.8  
 Resistance 𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (N/kN) 6.8  
  𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  0.75  
 Fuel  Diesel  
 Space    
 Space 1 Length (m) 4  
  Width (m) 3  
  Height (m) 2.4  
  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2−1 (ton) 32.2  
 Space 2 Length (m) 13.5  
  Width (m) 3  
  Height (m) 2.7  
  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2−2 (ton) 32.2  
Transportation     
Constraints Floor Stack mode  Horizontal D*, E* 
  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖  ≤ 6   
  𝑟𝑟𝑖𝑖−𝐿𝐿  0  
  𝑟𝑟𝑖𝑖−𝑊𝑊  0  
  𝑟𝑟𝑖𝑖−𝐻𝐻  1  
 Wall Stack mode Horizontal  
  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖  ≤ 6   
  𝑟𝑟𝑖𝑖−𝐿𝐿  0  
  𝑟𝑟𝑖𝑖−𝑊𝑊  0  
  𝑟𝑟𝑖𝑖−𝐻𝐻  1  
 Column Stack mode Horizontal  
  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖  ≤ 3   
  𝑟𝑟𝑖𝑖−𝐿𝐿  1  
  𝑟𝑟𝑖𝑖−𝑊𝑊  0  
  𝑟𝑟𝑖𝑖−𝐻𝐻  0  
 Beam Stack mode Horizontal  
  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖  ≤ 2   
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  𝑟𝑟𝑖𝑖−𝐿𝐿  0  
  𝑟𝑟𝑖𝑖−𝑊𝑊  0  
  𝑟𝑟𝑖𝑖−𝐻𝐻  1  
Road tan𝜃𝜃𝑡𝑡 and 

slope in 
percentage 

-0.005 3.88% F*, G* 
 -0.004 30.62%  
 0.000 45.54%  
 0.006 13.57%  
 0.007 6.39%  
 Distance Distance (km) 50  
Speed Speed 𝑣𝑣𝑡𝑡 (km/h) 59.08 H* 
Loading status Loading 

rate 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖  0.40-0.65 A* 

CE 
calculation 

    

 BP method 𝑘𝑘𝑓𝑓 (1000∙kg2 
CO2e/kWh) 

9.82×10-3 I* 

𝑓𝑓_0 (kg CO2e/h) 13.57  
 Validation 

method 1 
𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖_1                                  
[kg 
CO2e/(ton∙km)] 

0.047 H*, J* 

 Validation 
method 2 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖_2                                  
[kg 
CO2e/(ton∙km)] 

0.059 K* 

This study employs a personal laptop to run all the algorithms; the laptop device specification 

includes an Intel Core i7-8665U CPU and 16 GB installed RAM. For an objective comparison 

among algorithms and projects, this study uses the identical parameter settings in the 

computing of each transportation task, as mentioned in this section.  

Table 5-4 Parameter setting of GA-based bin packing algorithm 

Parameter Value 
Population size 3, 200 
Probability of performing crossover 0.7 
Mutation operator F 0.5 
Termination criteria Generation = 1200 

A* School of Transporation and Logistics of Southwest Jiaotong University (2020) 
B* Delgado & Li (2017) 
C* China Automotive Technology and Research Center (2018) 
D* China Institute of Building Standard Design & Research (2015) 
E* Technical specification for precast concrete structures (2014) 
F* Togpographic-map.com (2022) 
G* Google Maps (2022) 
H* LÜ et al. (2021) 
I* EPA (2020a) 
J* CCG (2022) 
K* Calculation standard of building carbon emissions (2014) 
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5.4 Validation Results 

5.4.1 Bin packing solutions 

The GA-based BP algorithm generally shows better performance than the 3D-RSO algorithm 

in packing prefabricated elements of five sample buildings, as shown in Figure 5-8. The 

number of vehicles employed by the GA-based algorithm is equal to or less than 3D-RSO 

algorithms using either vehicle 1 or 2, filling the demand of equation (5-49). Generally, the 

larger the total number of vehicles used, the larger the difference between those two algorithms.  

 

Figure 5-8 Number of vehicles in GA-based BP algorithm and 3D-RSO algorithm 

Meanwhile, the 3D-RSO algorithm employs more vehicles, in most cases, when using vehicle 

1 than vehicle 2. As shown in Table 5-3, vehicle 1 has a larger load capacity and a smaller 

space size than vehicle 2. Therefore, element size rather than element weight has a dominant 

effect on vehicle numbers in the transportation CE analysis on the sample buildings. Notably, 

the 3D-RSO algorithm using vehicle 1 in the transportation of prefabricated beams of Project 

D does not produce any data because the elements’ size exceeds the dimensions of the available 

spaces in vehicle 1. 
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5.4.2 CE calculation 

Figure 5-9 compares the variation of transportation CE with loading rate among the BP method 

and two validation methods. Results show that the CE of these three methods are linearly 

related to the loading rate. In the analysis of vehicle 1, the slopes of the BP method, validation 

method 1 with 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖_1 (0.047), and validation method 2 with 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖_2 (0.059) are 20.02, 79.20, 

and 99.42, respectively. The interceptions of the three methods are 34.51, 0, and 0, respectively. 

The line of BP method is interpreted as following: when transporting prefabricated elements 

on a 50 km section on the G40 road by vehicle 1, the CE of driving an empty vehicle is 34.51 

(kg CO2e); for every 1% increase in the loading rate (i.e., every 0.337-ton increase in the 

loading weight), the CE increases by 0.2002 (kg CO2e). Similarly, lines of validation methods 

1 and 2 mean the CE of driving an empty vehicle is 0 (kg CO2e), and every 1% increase in the 

loading rate will increase the CE by 0.7920 and 0.9942 (kg CO2e), respectively. The same 

analysis can be applied in the case of vehicle 2, where the slopes of the BP method, validation 

method 1, and validation method 2 are 11.42, 75.67, and 94.99, respectively, and the 

interceptions are 33.26, 0, and 0, respectively. 

The line of the BP method intersects with the lines of validation methods 1 and 2 at points 

around 57% and 47%, respectively. Considering a ±10% interval, the intersection range will 

be around 50%-65% (0.047) and 37%-50% (0.059), respectively. These ranges mean that the 

CE calculation result of the BP method is consistent with the result of the China Products 

Carbon Footprint Factors Database (CCG, 2022; LÜ et al., 2021) and the Calculation 

Standard of Building Carbon Emissions GB/T51366-2019 (Calculation standard of building 

carbon emissions GB/T 51366-2019, 2014) when the average loading rate is at 50%-65% and 

37%-50%, respectively. School of Transportation and Logistics of Southwest Jiaotong 

University (2020) reported that the average loading rate of heavy-duty vehicles in Jiangsu 

province is between 40% and 65%, which indicates that the average carbon emissions factor 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖_1 (0.047) is very likely measured with a 0.40-0.65 loading rate (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖), which 

covers the intersection range of 50% - 65%. Therefore, the calculation result of the BP method 

could very likely be close to the average real-world emissions. However, the average loading 

rate of building materials is between 69% and 99%, which is outside the intersection range of 

the BP method and 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖_2 (0.059). As a higher loading rate should lead to a lower carbon 

emission factor 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖, a greater loading rate (69%-99% vs. 40%-65%) with a higher factor value 
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(0.059 vs. 0.047) suggests that the emission factor of 0.059 may not be consistent with the real-

world emissions.  

Additionally, the variance between the BP-algorithm-based method and Chinese official 

emission factor (𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖_1) (CCG, 2022) (validation method 1) becomes significant with the 

loading rate shifting this range. According to equation (5-51), the CE result from the validation 

method 1 is linearly related to the weight of elements but without an original emission value 

(i.e., the interception is 0 in Figure 5-9). This pattern indicates that the validation method 1 

evenly distributes the CE generated by the vehicles themselves to each unit of prefabricated 

elements. The validation method 1 is suitable for estimating CE at a macro level (e.g., 

calculating the transportation CE of a city by multiplying the emission factor and cargo 

throughout) (LÜ et al., 2021). It is not, however, reasonable (accurate) in the micro-level 

application, especially when the loading rate is extremely low or high. In contrast, by 

considering the CE of vehicles, the BP-algorithm-based method provides a more stable 

performance across different loading rates, making it more suitable for micro-level CE 

calculations. 
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Figure 5-9 CE variation with loading rate of vehicle 1 (a) and vehicle 2 (b)  
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5.4.3 Transportation CE of prefabricated elements 

This study estimates the transportation CE of prefabricated elements in five projects (13 

transportation tasks) using the GA-based BP algorithm, 3D-RSO algorithm using vehicle 1, 

3D-RSO algorithm using vehicle 2, validation method 1 using the emission factor of 0.047 [kg 

CO2e/(ton ∙ km)], and validation method 2 using the emission factor of 0.059 [kg 

CO2e/(ton∙km)], as shown in Table 5-5 and Figure 5-10. Appendix E-G provide the detailed 

solutions for the GA-based BP algorithm and 3D-RSO algorithms. 

Generally, the GA-based BP algorithm has the lowest CE compared to other methods. This 

result fulfils equation (5-50) so that the GA-based algorithm has a lower or equal CE to the 

3D-RSO algorithm. The result also remains consistent with section 5.4.1, underscoring that the 

GA-based method employs the least number of vehicles in the same situation comparing to 

other methods. However, no stable relationship exists between the results of 3D-RSO 

algorithms and validation methods 1 and 2. 

Table 5-6 estimates the carbon reduction effects of GA-based algorithm and 3D-RSO 

algorithms. Given that validation method 1 represents the average transportation efficiency of 

prefabricated elements (as mentioned in section 5.4.2), validation method 1 is set as the 

benchmark in this table. The data shows that the GA-based algorithm has 10-30% lower 

emissions than validation method 1 in most transportation tasks. Similar as before, the emission 

difference between 3D-RSO and validation methods 1 is not consistent. These results show 

that employing GA-based algorithm in transportation optimisation can lead to an average of 

10-30% carbon reduction. 

Table 5-5 Transportation CE of prefabricated elements in Projects A-E (kg CO2e) 

Project Elements GA-based 
algorithm 

3D-RSO 
algorithm 
(vehicle 1) 

3D-RSO 
algorithm 
(vehicle 2) 

Validation 
method 1 
(0.047) 

Validation 
method 2 
(0.059) 

A Floor 89.63 197.91 156.16 100.38 126.01 
Wall 42.67 44.83 42.67 40.85 51.29 

B Floor 173.45 320.42 239.98 175.50 220.31 
Wall 53.72 88.23 84.03 76.03 95.45 

C Floor 338.29 529.87 404.82 458.09 575.05 
Wall 393.77 409.83 393.77 554.62 696.23 
Column 84.94 88.01 84.94 79.97 100.39 
Beam 94.98 100.26 94.98 123.61 155.16 

D Floor 384.61 613.23 517.67 514.83 646.28 
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Column 104.93 106.17 135.18 153.74 193.00 
Beam 697.82 - 697.82 1008.50 1265.99 

E Floor 181.51 290.93 248.04 210.53 264.28 
Column 189.73 197.26 189.73 246.25 309.12 

Table 5-6 CE difference to the Validation method 1 (%) 

Project Elements GA-based 
algorithm 

3D-RSO 
algorithm 
(vehicle 1) 

3D-RSO 
algorithm 
(vehicle 2) 

A Floor -10.71 97.16 55.57 
 Wall 4.46 9.74 4.46 
B Floor -1.17 82.58 36.74 
 Wall -29.34 16.05 10.52 
C Floor -26.15 15.67 -11.63 
 Wall -29.00 -26.11 -29.00 
 Column 6.21 10.05 6.21 
 Beam -23.16 -18.89 -23.16 
D Floor -25.29 19.11 0.55 
 Column -31.75 -30.94 -12.07 
 Beam -30.81 - -30.81 
E Floor -13.78 38.19 17.82 
 Column -22.95 -19.89 -22.95 

 

Figure 5-10 Transportation CE of prefabricated elements in Projects A-E 
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As the total CE is mainly affected by the quantity of transported elements, it is more objective 

to compare the CE per unit of prefabricated elements. Therefore, Figure 5-11 compares the 

average CE per unit weight of elements; the dotted lines of 2.35 and 2.95 are two benchmark 

values calculated using 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖_1 (0.047) and 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖_2 (0.059) (i.e., the CE of transporting one ton 

of prefabricated elements for 50km), respectively. The CE values are categorised into four 

groups according to the element types: prefabricated floors, walls, columns, and beams. The 

GA-based algorithm provides the lowest CE in most tasks, except in the transportation of 

prefabricated walls in Project-A and prefabricated columns in Project-D, where the result (2.45 

and 2.49) is minorly higher than the benchmark result of 2.35.  

Regarding the result of 3D-RSO algorithms, when vehicle 1 is adopted, the CE is higher than 

2.35 in all five transportation tasks of prefabricated floors and two of three wall transportation 

tasks. In contrast, results of this method are lower than 2.35 in two of three column 

transportation tasks and in both beam transportation tasks. When vehicle 2 is adopted, the CE 

results are higher than 2.35 in three of five floor transportation tasks, two of three wall 

transportation tasks, and one of three column transportation tasks. The results are lower than 

2.35 in other cases. Generally, the benchmark of 2.95 is higher than the results of all the other 

methods in most cases, as explained in section 5.4.2 when the emission factor of 0.059 is higher 

than real-world emissions. 

Looking into the average CE values, the trend is generally consistent with the task-specific data 

i.e., the result of the GA-based algorithm is the lowest among all results. The results of the 3D-

RSO algorithm using vehicle 1 are higher than 2.35 and 2.95 in the transportation of 

prefabricated floors and are lower than those two benchmarks in the transportation of 

prefabricated walls, columns, and beams. This result suggests that employing GA-based 

algorithms can reduce transportation CE in all the element types, while 3D-RSO algorithms 

are more sustainable in transporting prefabricated walls, columns, and beams. 
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Figure 5-11 Transportation CE per ton of different element types 

The difference in CE per unit prefabricated element can be explained by the difference in 

loading rate, as shown in Figure 5-12, where the transportation CE per unit element decreases 

with the growth of the loading rate. Figure 5-13 illustrates the loading rate of each 

transportation task. The GA-based algorithm obtains the highest average loading rate among 

all four element categories. The loading rate of the 3D-RSO algorithm using vehicle 2 ranks 

the second in prefabricated floors, walls, and beams and ranks the third in columns. This 

sequence is consistent with the sequence of the CE per unit element (i.e., a higher loading rate 

appears accompanied by a lower CE per unit element).  

Besides, the average loading rate of elements varies with the element type, where the 

prefabricated floor has the lowest loading rate with the largest difference among the three 

algorithms. Prefabricated columns, however, have a smaller algorithm difference, while 

prefabricated walls and beams have the highest average loading rate.  



 105 

 

Figure 5-12 The variation of CE of per ton elements with loading rate of vehicle 
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Figure 5-13 Loading rate of different element types 

5.4.4 Algorithm performance 

Figure 5-14 shows the solving process of the GA-based bin packing algorithm, in which the y-

axis represents the value of the objective function (i.e., the CE per hour (kg CO2e/h)), and the 

x-axis represents the generation in computing. The algorithm achieves the lowest CE value 

within the first 600 generations in all 13 transportation tasks. Specifically, the optimum 

solutions are obtained within the first 50 generations in the transportation of prefabricated walls, 

columns, and beams, while the computing of prefabricated floors’ transportation takes 

approximately 250 to 550 generations.  

The average value in each generation is not a smooth curve in b-1 and d-3. Meanwhile, in a-1 

and e-1, the average does not tend to the optimum value. This situation is because the objective 

function is not fully continuous. As shown in equation (5-45), the transportation CE is 

dominated by the number of vehicles, a discrete variable. Therefore, the average value may be 

stuck at a local-optimum value. This reason also explains the existence of fluctuations of 

optimal values in the figures a-1, b-1, b-2, d-1, and e-1.  
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Figure 5-14 Objective function value variation with the generation (x-axis is the value of 

objective function and y-axis is the number of generations) 

Figure 5-15 illustrates the computing time of the GA-based and 3D-RSO algorithms. The GA-

based algorithm takes much more time than the 3D-RSO algorithms. Additionally, the total 
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computing time and the computing time per piece element of the GA-based algorithm is 

growing with the total piece number increasing from 1880.13s (10 pieces in C-column) to 

85542.05 (168 pieces in C-floor) and from 188.01s per piece (C-column) to 509.18s per piece 

(C-floor), respectively. In contrast, the variation in total computing time of the 3D-RSO 

algorithm is not significant across all 13 transportation tasks, between 0.26s and 0.35s, leading 

to a negative relationship between the computing time per element piece and the number of 

prefabricated elements.  

 

Figure 5-15 Variation of the total computing time with the number of prefabricated elements 

(a) and Variation of the computing time per element piece with the number of prefabricated 

elements (b) 

Figure 5-16 illustrates the trade-off of computing time and CE when replacing the 3D-RSO 

algorithm with the GA-based algorithm, in which a closer distribution to the right bottom 
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corner means a more efficient replacement and the opposite when a dot is approaching the left 

top corner.  Generally, the replacement of 3D-RSO algorithm using vehicle 1 shows a more 

significant advantage than the 3D-RSO algorithm using vehicle 2 because of a larger CE 

reduction with a similar increase in computing time. Regarding the difference across element 

types, the CE reduction is more significant in the transportation of floors while less significant 

in the other three, especially in the transportation of columns and beams. This finding indicates 

that it is more efficient to employ the GA-based algorithm than the 3D-RSO algorithm in the 

transportation planning of prefabricated floors.  

 

Figure 5-16 Variation of the increase in computing time with the reduction in total carbon 

emissions 

5.5 Summary 

This section presents a micro-level transportation CE optimisation method that estimates and 

reduces the emissions based on the features of prefabricated elements and vehicles. The method 

simulates the transportation status of prefabricated elements as BP problems. Then, a modal 

analysis model is employed to calculate the CE of each vehicle based on vehicle type, road 
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condition, and freight weight. Considering the minimum transportation CE as objective, a GA 

is employed to search for the optimal solution and its corresponding CE values.  

Application in five case studies demonstrates the method’s effectiveness in reducing 

transportation CE across different prefabricated element types. The optimised results achieve 

the lowest CE in all the transportation tasks. Although it requires longer computing time, this 

method remains feasible for real-world transportation optimisation. 
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6 Communication of optimisation results 

6.1 Introduction 

Sections 4 and 5 describe the development of modules 2 and 3 for reducing CE in the 

manufacturing and transportation of prefabricated projects. Applying such modules in the 

practices demands the data extraction from design files and presentation of optimised solutions 

to the designers. Therefore, modules 1 and 4 are developed in this section. Specifically, Module 

1 is designed to extract design parameters (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, and 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) from original design. Meanwhile, module 4 visualises the feasible design 

alternative identified by module 2 and the feasible transportation plan determined by module 3 

into a designer-friendly format. Developing these two modules necessitates a clear definition 

of EIF for both input and output design files. Consequently, developing module 1 and 4 

involves two steps: 1) identifying EIF used in design practice, and 2) developing tools for 

processing design files in the target EIF. 

6.2 Identification of EIF in design practice 

Given hypothesis 6 (section 1.3.2), which posits that design content influence the selection of 

EIF used in design, this section explores the relationship between design tasks and EIF via the 

survey and statistical analysis of design practice and EIF usage. Specifically, five steps are 

involved: 1) A questionnaire survey with design experts in the Chinese construction industry; 

2) analysis of variance (ANOVA) to explore the design features of experienced designers in 

sustainable and prefabricated constructions; 3) Relevance analysis to identify key factors 

influencing the selection of EIF; 4) Logistic regression analysis to quantify the contribution of 

these factors; 5) Multiple-correspondence analysis (MCA) to visualise the contributions of key 

factors. The content of this section has been published in the study of Xiang, Mahamadu, & 

Florez-Perez (2024). 

6.2.1 Questionnaire survey 

6.2.1.1 Questionnaire design 

The questionnaire is divided into three parts, as given in the Appendix H: 1) Respondents’ 

demographic information (e.g., jobs, qualifications, industry experience, and organisation 

characteristics); 2) Participants’ design habits (e.g., used design software, design optimisation 
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method, and design considerations); and 3) The characteristics of participants’ design activities 

(e.g., EIF used during design). Given the dominance of Chinese in the industry, all questions 

are presented in Chinese.  

The questionnaire includes two types of questions: multiple choice and Likert-scale. As 

architects and civil engineers often have multiple and varied design responsibilities in China, 

Multiple choice and Likert-scale questions are preferred over single choice questions to 

minimise personal biases from summarising complex scenarios into one primary statue. For 

the same reason, factor ranking, as seen in previous studies (H. Guo et al., 2019), is omitted. 

Using Likert-scale questions instead of ranking permits equivalent weighting of items, 

potentially yielding more accurate descriptions.  Quantitative descriptions are added in 

selections to help participants select the most fitting response for their situation. 

6.2.1.2 Data collection 

Target participants are experienced construction industry professionals including designers, 

engineers, and contractors, due to the professional nature of questions. Initially, 30 experts 

were identified and invited via literature review, consulting of data from Ministry of Housing 

and Urban Rural Development of China, and Linkedln groups. Subsequently, a snowball 

sampling method was used to expand participant pool. Participants were invited to fill and 

share the anonymous questionnaire via Microsoft Forms from June to November 2023. The 

data collection method and process were approved and qualified by the University College 

London on 02/11/2022. 

6.2.1.3 Data processing 

Survey results are automatically extracted from Microsoft Forms into a Microsoft Excel file. 

A python script is employed to convert all the answers into selections of single choice questions. 

For instance, the question “what is your responsibility in the design” is divided into five sub-

questions covering involvement in architecture, structure, building system, building products, 

and other design areas. The selection of choice is represented in numerical categories from 1 

to 7. A detailed list of variable names and categories are given in the Appendix H. 
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6.2.2 Data analysis 

6.2.2.1 Analysis of variance 

ANOVA is used to estimate differences among designers with varied design experience in 

sustainable and prefabricated projects. Comparing the “average” selection of designers reveals 

qualitative patterns in design activities. Table 6-1 listed the variables employed in ANOVA. 

Specifically, each analysis estimates a pair of variables: one for design experience and one for 

design activity. 

Table 6-1 Variables adopted in ANOVA. 

Design experience Design activities  
Sustainable percentage Cost increase  
Prefabrication percentage Time increase  
Sustainability Formats of design files 2D graph 

3D model 
3D BIM 
4D BIM 
VR 

Preferred format of design 
constraints 

Preference in text 
Preference in tables 
Preference in 2D 
Preference in 3D 
Preference in BIM 

Preferred format of design 
reference 

Prefer in text 
Prefer in tables 
Prefer in 2D 
Prefer in 3D 
Prefer in BIM 

Sustainability analysis 
method 

Never consider 
sustainability 
Qualitative 
Quantitative 

CE analysis system 
boundary 

Never consider CE 
Construction material 
CE 
Maintenance material 
CE 
Construction CE 
Operational CE 
Demolition CE 
Indirect CE 

Design optimisation method Never optimise 
Experience based 
Less than 5 alternatives 
More than 5 alternatives 
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Algorithm based 

6.2.2.2 Relevance analysis 

The questionnaire results involve two types of variables: ordinal categorical variable and 

nominal categorical variable. Specifically, ordinal categorical variables have a clear to their 

categories. These are used for questions such as “how often do you use the following design 

software”. Conversely, nominal categorical variables represent answers to questions like “what 

kind of building do you usually design”.  

Kendall's Tau-b is employed to measure the relevance between two ordinal categorical 

variables. The calculation involves the following equations: 

𝜏𝜏𝐵𝐵 =
𝑛𝑛𝑐𝑐 − 𝑛𝑛𝑑𝑑

�(𝑛𝑛0 − 𝑛𝑛1)(𝑛𝑛0 − 𝑛𝑛2)
 (6-1) 

𝑛𝑛0 = 𝑛𝑛(𝑛𝑛 − 1) 2⁄  (6-2) 

𝑛𝑛1 = �𝑡𝑡𝑖𝑖(𝑡𝑡𝑖𝑖 − 1) 2⁄
𝑖𝑖

 (6-3) 

𝑛𝑛2 = �𝑢𝑢𝑗𝑗�𝑢𝑢𝑗𝑗 − 1� 2⁄
𝑗𝑗

 (6-4) 

where,  𝜏𝜏𝐵𝐵 is Kendall's Tau-b coefficient; 𝑛𝑛𝑐𝑐 is the number of concordant pairs; 𝑛𝑛𝑑𝑑 represents 

the number of discordant pairs; 𝑛𝑛 is sample size; 𝑡𝑡𝑖𝑖 is the number of tied values in the 𝑖𝑖𝑡𝑡ℎ group 

of ties for the first quantity; 𝑢𝑢𝑗𝑗 is the number of tied values in the 𝑗𝑗𝑡𝑡ℎ group of ties for the 

second quantity. 

Theil’s U, also known as the Uncertainty Coefficient, is employed to assess the degree of 

association between two nominal categorical variables and between a nominal and an ordinal 

categorical variable. This coefficient quantifies the reduction in uncertainty of one random 

variable when another is known. Theil’s U is calculated using the following equations: 

𝑈𝑈(𝑋𝑋|𝑌𝑌) =
𝐻𝐻(𝑋𝑋) − 𝐻𝐻(𝑋𝑋|𝑌𝑌)

𝐻𝐻(𝑋𝑋)  
(6-5) 

𝐻𝐻(𝑋𝑋) = −�𝑝𝑝(𝑥𝑥) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑥𝑥) (6-6) 
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𝐻𝐻(𝑋𝑋|𝑌𝑌) = −�𝑝𝑝(𝑦𝑦, 𝑥𝑥) 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑝𝑝(𝑦𝑦, 𝑥𝑥)
𝑝𝑝(𝑦𝑦) � 

(6-7) 

where, 𝑈𝑈(𝑋𝑋|𝑌𝑌)  is the uncertainty coefficient of 𝑋𝑋  with given 𝑌𝑌 ; 𝐻𝐻(𝑋𝑋)  is the information 

entropy of 𝑋𝑋; 𝐻𝐻(𝑋𝑋|𝑌𝑌) is the conditional information entropy of 𝑋𝑋 with given 𝑌𝑌; 𝑝𝑝(𝑥𝑥) is the 

probability of event X; 𝑝𝑝(𝑦𝑦, 𝑥𝑥) is the joint probability of 𝑋𝑋 and 𝑌𝑌; 𝑝𝑝(𝑦𝑦) is the probability of 

event 𝑌𝑌.  

Since Kendall's Tau-b coefficient and Uncertainty Coefficient share a similar scale, the 

relevance between two variables is estimated as follows (Botsch, 2011): 

|𝜏𝜏𝐵𝐵 or 𝑈𝑈(𝑋𝑋|𝑌𝑌)| ≤ 0.10: very weak 

0.10 < |𝜏𝜏𝐵𝐵 or 𝑈𝑈(𝑋𝑋|𝑌𝑌)| ≤ 0.20: weak 

0.20 < |𝜏𝜏𝐵𝐵 or 𝑈𝑈(𝑋𝑋|𝑌𝑌)| ≤ 0.30: moderate 

0.30 < |𝜏𝜏𝐵𝐵 or 𝑈𝑈(𝑋𝑋|𝑌𝑌)|: strong 

In this study, variables with an absolute coefficient greater than 0.1 are deemed relevant. 

6.2.2.3 Logistic regression analysis 

Three categories of dependent variables are selected: 1) Data format used in the design process 

(i.e., 2D graph, 3D model, and 3D BIM); 2) Preferred data format for preliminary design 

information from previous stages (i.e., Preference in 2D,  Preference in 3D, and Preference in 

BIM); and 3) Preferred data format for decision-assistive design reference information (i.e., 

prefer in 2D graph, prefer in 3D model, and prefer in BIM model). Candidate independent 

variables are chosen based on their relevance estimated in section 6.2.2.2.  

Initially, these candidates are filtered based on the existence of a reasonable relationship 

between dependent and independent variables. For example, the source of design constraints 

(e.g., Codes, Experienced parameters, and Construction situation) are considered independent 

variables for preferred data format for preliminary design information from previous stages 

while excluded for data format used in the design process. Filtered candidates are then used to 

develop multinomial logistics regression models in SPSS. A step-in strategy is employed to 

automatically identify contributing factors to dependent variables. Notably, the ordinal logistic 
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regression model is denied because pilot analysis indicates it fails the test of parallel lines 

assumption. 

6.2.2.4 Multiple-correspondence analysis 

As an extension of correspondence analysis, MCA allows to analyse relationship patterns 

among several categorical dependent variables via point proximities on a low-dimensional map 

(Abdi & Valentin, 2007). This study employs MCA to explore concurrent patterns in various 

design activities and information formats.  Dependent variables, along with their corresponding 

independent variables, as outlined in section 6.2.2.3, form several variable sets. These sets are 

utilized to analyse the characteristics of design activities using specific EIFs. 

6.2.3 Findings from questionnaire survey and data analysis 

6.2.3.1 Descriptive results 

By the end of survey period, 137 questionnaires were submitted, with 131 identified valid 

responses. Submissions from six respondents were excluded due to insufficient experience in 

design and construction. Participants’ responsibilities comprised architecture design (83), 

structure design (24), building system design (9), building products design (8), and other design 

fields (18). Participants are involved in various design stages, including preliminary studies 

(45), concept design (58), developed design (74), technical design (60), product design (29), 

and other design phases (6). Figure 6-1 illustrates the division of these design stages in China 

based on the corresponding design tasks. Detailed definitions of terms used can be found in the 

publications by Hollberg (2016), RIBA (2020), and Jin et al. (2022). 

 

Figure 6-1 Division of design stages.  

Notably, the sums of these results (142 and 272) exceed the total number of valid responses 

(131), indicating that some participants are hold multiple roles in practice. This pattern is also 

observed in other multiple-choice questions. The distribution of participants’ experience in the 
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construction industry is as follows: less than 2 years (16.79%), 3-5 years (31.30%), 6-11 years 

(21.37%), 11-20 years (21.37%), and more than 20 years (9.16%). Of the participants, 22 

(16.79%) obtained national qualifications, including 3 class-2 certified architects, 12 class-1 

certified architects, 5 class-1 certified civil engineers, 1 certified constructor, and 1 certified 

utility engineer.  

As illustrated in Figure 6-2, more than 70% of participants (93) have the experience in 

prefabrication design and 18% of them (23) design prefabricated projects for 40% of their 

design tasks. Regarding their experience in sustainable design, 72% (95) used to design 

sustainable buildings (projects have a particular emphasis on the carbon emissions and energy 

demand), and 23% (30) are experienced in this area (i.e., design sustainable buildings for more 

than 40% of the time).  

 

Figure 6-2 Design experience in prefabricated and sustainable projects.  

Figure 6-3 shows the participants’ tolerance on the trade-offs between sustainability and cost 

and time. Specifically, 87% of participants accept a less-than-30% increase in project budget 

when designing sustainable buildings. However, the tolerance on time increase is less featured 

than that on cost increase. 65% of participants accept to spend less than 12 hours for increasing 

the sustainability of their design, and 95% of them accept to spend less than 72 hours. More 

than 90% of participants (118) consider design optimisation a useful method for carbon 

reduction and 43% (56) think it is very useful in design practice. 



 118 

 

Figure 6-3 The tolerance on time and cost increase.  
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Figure 6-4 Considerations in the design process.  

Figure 6-4 displays the various considerations during the design process. Designers primarily 

focused on aesthetics and visual appeal, functionality and space requirements, environmental 

and cultural context, structural stability and safety, and cost-effectiveness and budget 

constraints. Considerations with the least influence on design includes building retrofitting 

feasibility, building demolition and reuse of building materials, and sustainability and building 

efficiency. 

Regarding the design content, over half of the participants are involved in determining 

geometric features (54.20%), space division (62.60%), and selecting building materials 

(63.36%). Approximately 40% participants are responsible for selecting building products 

(39.69%), construction technology (40.46%), and designing building elements (45.80%). 23.66% 

of participants were involved in selecting building equipment. 87.79% of respondents report 

optimising their designs in practice, with 57.25% (75 designers) relying on personal experience 

and 13.74% (18 designers) using optimisation algorithms. Typically, most designers explore 

the optimum result among less than 5 design alternatives, while only 21 respondents consider 

more than 5 design alternatives. 
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Figure 6-5 Impact of constraints on design practice. 

Figure 6-5 shows that codes, regulations, and technical standards significantly constrain design 

content, as reported by designers. The design brief imposes the second-strict limitation, 

followed by designs from previous stages, commonly used parameters or values, and 

construction equipment and conditions. The availability and characteristics of building 

products have minimal influence on the design decisions of designers. 

Figure 6-6 illustrates the EIFs used by designers during the design process. 2D drawing is the 

predominate format of design files, followed by 3D model and 3D BIM model. Multi-

dimensional BIM model and virtual reality or immersive visualisation are the least used data 

formats. Regarding the design constraints (a detailed description is given in the question 17 to 

19 in the Appendix H), most of them are presented in descriptive text, tables, and 2D drawings. 

Constraints in 3D models and BIM models are seldom encountered in practice. Designers show 

similar preferences for data formats used in design constraints and references (a detailed 

description is given in the question 20 and 21 in the Appendix H). In most cases, designers 

prefer using 3D models and 2D drawings, followed by tables and BIM models. Descriptive text 

is the least welcomed format for both design constraint and references. Most design output are 

presented in 2D drawings with BIM model being the least-used data format for design results. 
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Figure 6-6 Engineering information formats encountered in the design process. 
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6.2.3.2 Analysis of variance 

Figure 6-7 to Figure 6-16 display the results of ANOVA. The horizontal axes of figures 

categorise participants by their design experience levels while the vertical axes delineate the 

characteristics of design activities, referenced in Appendix H. Each bar across the different 

categories represents the proportion of respondents who selected a particular characteristic, 

measured as a percentage. This visual distribution illustrates how frequently each design 

activity characteristic is associated with the respective levels of design experience among the 

participants. Although 33 pairs of variables are estimated in the ANOVA (as listed in Table 

6-1), only 7 pairs are valid. Pairs failing the test for variances homogeneity or lacking statistical 

significance are excluded from this section. 

Figure 6-7 illustrates a significant difference in the choices of Prefabrication percentage_5 

compared to the other groups, with an increase in the percentage of Cost increase_8 and Cost 

increase_7 increases and a decrease in that of Cost increase_1. This pattern suggests that 

designers with extensive prefabrication experience (over 60% of their projects are prefabricated) 

are more tolerant of budget increases for carbon reduction. Similarly, Figure 6-8 indicates that, 

designers who work on sustainable projects for more than 40% of their time are more tolerant 

of project cost increases.  

 

Figure 6-7 The influence of experience in prefabrication design on the tolerance of cost 

increase. 
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Figure 6-8 The influence of experience in sustainable project design on the tolerance of cost 

increase. 

However, experience in either prefabricated or sustainable projects does not significantly affect 

tolerance for extending the design period. Despite so, Figure 6-9 reveals that prioritising 

sustainability during design impacts the tolerance for longer design periods. Specifically, 

designers who deem sustainability and energy efficiency as very or extremely important are 

more accepting of extend design periods, averaging 6-24 hours. 

 

Figure 6-9 The influence of considering sustainability during design on the tolerance of time 

increase. 

Regarding the design information formats, experienced prefabrication designers 

(Prefabrication percentage_5) tend to use 3D BIM models more frequently, as illustrated in 

Figure 6-10. Similarly, designers experienced in sustainable projects (Sustainable 
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percentage_5) show a greater preference for using 3D models compared to others, as indicated 

in Figure 6-11. Figure 6-12 to Figure 6-16 show that an emphasis on the sustainability leads to 

an increased usage of 3D and BIM models, along with a preference for receiving design 

constraints in 2D, 3D, and BIM format.  

 

Figure 6-10 The influence of experience in prefabrication design on BIM model usage. 

 

Figure 6-11 The influence of experience in sustainable project design on 3D model usage. 
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Figure 6-12 The influence of considering sustainability during design on 3D model usage. 

 

Figure 6-13 The influence of considering sustainability during design on BIM model. 

 

Figure 6-14 The influence of considering sustainability during design on the preferring design 

constraints in 2D graph. 
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Figure 6-15 The influence of considering sustainability during design on the preferring design 

constraints in 3D model. 

 

Figure 6-16 The influence of considering sustainability during design on the preferring design 

constraints in BIM model. 
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6.2.3.3 Results of relevance analysis 

 

Figure 6-17 The heatmap of relevant factors. 

Figure 6-17 is a cropped segment from the full-size heatmap (seen in Appendix I), depicting 

the contribution of candidate independent variables. Notably, the analysis excludes the 

relevance between variables within the same category, as it does not indicate the factors’ 

contribution to the EIF. An example of this relevance is that the preferred formats of design 

reference (from prefer in text to prefer in BIM) are highly inter-related. Following this 

relevance analysis, dependant variables and their corresponding candidate independent 

variables are identified and listed in Table 6-2. 
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Table 6-2 Candidate independent variables adopted in analysis. 

Factors Candidate 
independent 
variables 

Contribution 
to the format 
of design 
files 

Contribution 
to the 
preferred 
format of 
design 
constraints 

Contribution 
to the 
preferred 
format of 
design 
reference 

Project 
experience 

Prefabrication 
percentage 

√ √ √ 

Sustainable 
percentage 

Design 
considerations 

Aesthetic √ √ √ 
Function 
Culture 
Built environment 
Sustainability 
Material & 
Construction 
Structure safety 
Cost 
Building system 
Construction period 
Construction 
complexity 
Retrofit 
Reuse 

Design 
content 

Determine 
geometric features 

√ √ √ 

Determine space 
division 
Determine material 
selection 
Determine product 
selection 
Determine tech 
selection 
Determine element 
design 
Determine 
equipment selection 
Other design 

Optimisation 
method 

Never optimise √  √ 
Experience based 
Less than 5 
alternatives 
More than 5 
alternatives 
Algorithm based 
Other method 
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Formats of 
design files 

2D graph  √ √ 
3D model 
3D BIM 
4D BIM 
VR 

Pre-design 
data 

No pre-data √ √  
Text pre-data 
2D pre-data 
3D pre-data 
BIM pre-data 
Other pre-data 

Design 
constraints 

Design brief  √  
Pre-design provided 
Codes 
Experienced 
parameters 
Construction 
situation 
Current product 

Formats of 
design 
constraints 

Constraints in text  √  
Constraints in 
tables 
Constraints in 2D 
Constraints in 3D 
Constraints in BIM 

Design 
reference 

No reference   √ 
Personal experience 
as reference 
Recommendation in 
codes 
Preference of 
contractors 
Results from 
optimisation 
Other reference 

6.2.3.4 Results of logistic regression 

This study employs 5-point Likert scale questions. However, this approach leads to singularity 

in the Hessian matrix during logistic regression analysis, suggesting the needs to merge some 

categorical variables. Consequently, responses to the 5-point Likert scale questions are 

consolidated into fewer categories, as detailed in Table 6-3. 

Table 6-3 The adjustment of Likert scale points 

Num Questions Original Likert scale Adjusted Likert scale 
12 From your experience, 

what is the level of 
1 - Not important at all 2 - Slightly important 2 - Slightly important 
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importance placed on 
the following in your 
design activities? 

3 - Moderately important 3 - Moderately important 
4 - Very important 4 - Very important 5 - Extremely important 

15 Please score the 
frequency of using the 
following types of 
model/drawing in the 
design (express in term 
of percentages of time 
used)? 
2D graph, 3D BIM 

1 - 0% 2 - 0-25% 2 - 1-25% 
3 - 26-50% 3 - 26-50% 
4 - 51-75% 4 - 51-100% 5 - 76-100% 

 

15 Please score the 
frequency of using the 
following types of 
model/drawing in the 
design (express in term 
of percentages of time 
used)? 
3D model 

1 - 0% 1 - 0% 
2 - 1-25% 2 - 1-25% 
3 - 26-50% 3 - 26-50% 
4 - 51-75% 4 - 51-100% 5 - 76-100% 

 

17 To what extent do the 
following constraints 
limit your design 

1 - 0% 2 - 0-25% 2 - 1-25% 
3 - 26-50% 3 - 26-50% 
4 - 51-75% 4 - 51-100% 5 - 76-100% 

18 Which data formats are 
typically used to 
express those design 
constraints? Please 
indicate the 
approximate frequency 
of using the following 
data format. 

1 - 0% 2 - 0-25% 2 - 1-25% 
3 - 26-50% 3 - 26-50% 
4 - 51-75% 4 - 51-100% 5 - 76-100% 

 

19 Please indicate the 
preference for using 
design constraints in 
the following data 
format 

1 - Strongly prefer not to 2 - Prefer not to 2 - Prefer not to 
3 - Neutral 3 - Neutral 
4 - Prefer to use 4 - Prefer to use 5 - Strongly prefer to use 

21 Please indicate the 
preference for using 
reference in the 
following forms. 

1 - Strongly prefer not to 2 - Prefer not to 2 - Prefer not to 
3 - Neutral 3 - Neutral 
4 - Prefer to use 4 - Prefer to use 5 - Strongly prefer to use 

Table 6-4 presents the parameter estimation of logistic regression models, where parameters 

that have significant contributions to dependent variables are highlighted. Notably, there are 

two regression models in analysing the factors contributing to preferring 3D design constraints 
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due to their similar performance. Taking the regression model for 2D drawings in the design 

files as an example, the model is interpreted with its corresponding parameters as followers: 

Using 2D drawings 51-100% of the time, initiating designs with 2D drawings, adopting over 

five design alternatives during optimization, and highly valuing functionality, space 

requirements, cost-effectiveness, and budget constraints were set as reference categories. The 

results indicate: 

 A reduced emphasis on construction cost is associated with a 4.597 to 12.185 times 

increased likelihood of designers using 2D drawings for only 26-50% of their time. 

 Rating the importance of functionality and space requirement as moderate or slight 

increases the likelihood of using 2D drawings 26-50% of the time by factors of 17.315 and 

22.664, respectively. 

 Absence of preliminary 2D drawing data and a slight emphasis on construction budget are 

linked to an increased likelihood (by factors of 23.899 and 23.807, respectively) of 

designers using 2D drawings for less than 25% of their time. 

 Using fewer than five design alternatives during optimization corresponds to a reduced 

likelihood (0.056 times) of using 2D drawings less than 25% of the time. 

To prevent repetition and verbosity in model interpretation, the influences are concisely 

summarised in Table 6-5 and stated as follows: 

 Emphasising functionality, space requirements, cost-effectiveness, and budget constraints, 

coupled with providing basic data in 2D and optimising design wither fewer than five 

alternatives, are likely to increase the use of 2D drawings in the design. 

 Preferring to express design constraints in 2D format is associated with frequent use of 2D 

drawings, prioritising functionality and space requirements, strict adherence to the design 

brief, and omitting determination of construction technology. 

 A preference for 2D drawings for design reference data is linked to a focus on functionality, 

space requirements, and structural stability safety. 

 An increased likelihood of using 3D models correlates with a focus on aesthetics and 

visual appeal, functionality, and space requirement. 

 The considerations of structural stability and safety, integration of building systems, and 

equipment and conditions during construction, and the frequency of using 3D models 
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during design is positively related to preferring the provision of design constraints in 3D 

models. 

 A preference for 3D design references is more likely when emphasising on functionality, 

space requirements, and the complexity of project delivery and not involving determining 

the selection of building product. 

 Increased use of BIM model is associated with greater attention to the complexity of 

project delivery and experience with prefabrication design. 

 Valuing aesthetics and visual appeal, structural stability and safety, the integration of 

building systems, and equipment and conditions in the construction, adherence to the 

design provided by previous stages, and the frequency of using 3D models is positively 

related to preferring adopting design constraints in BIM model. Conversely, the frequent 

use of 2D drawings is negatively associated with preferring design constraints in BIM 

model. 

 Preferring BIM model for design references is likely linked to an emphasis on functionality, 

space requirements, and the complexity of project delivery and involving determining 

construction technology.  

 A lesser preference for BIM design references is more likely when focusing on structural 

stability and safety, involving determining building product, and adopting personal 

experience as design reference. 

Table 6-4 Parameter estimation of regression model. 

  B S.E. Significance Exp(B) 

Reference category is 4 in 2D graph  
2 intercept -2.585 0.992 0.009   

[Function = 2] 1.960 1.352 0.147 7.097 
[Function = 3] 2.224 1.140 0.051 9.244 
[Function = 4] 0       
[Cost = 2] 3.395 1.325 0.010 29.807 
[Cost = 3] 1.520 1.224 0.214 4.572 
[Cost = 4] 0       
[>5 alternatives = 0] -2.891 1.034 0.005 0.056 
[>5 alternatives = 1] 0       
[2D pre-data=0] 3.174 0.954 0.001 23.899 
[2D pre-data=1] 0       

3 intercept -2.978 1.019 0.003   
[Function = 2] 3.121 0.997 0.002 22.664 
[Function = 3] 2.852 0.716 0.000 17.315 
[Function = 4] 0       
[Cost = 2] 2.500 0.947 0.008 12.185 
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[Cost = 3] 1.525 0.745 0.041 4.597 
[Cost = 4] 0       
[>5 alternatives = 0] -0.246 0.981 0.802 0.782 
[>5 alternatives = 1] 0       
[2D pre-data=0] 0.873 0.846 0.302 2.393 
[2D pre-data=1] 0       

Reference category is 4 in Preference in 2D  
2 intercept -2.482 0.609 0.000   

[2D graph=2] 1.347 0.943 0.153 3.845 
[2D graph=3] 1.347 0.796 0.091 3.846 
[2D graph=4] 0       
[Function=2] 0.535 0.941 0.570 1.707 
[Function=3] -0.054 0.916 0.953 0.948 
[Function=4] 0       
[Design brief=2] 1.956 0.735 0.008 7.068 
[Design brief=3] 0.196 0.753 0.795 1.216 
[Design brief=4] 0       
[Determine tech 
selection=0] 

0.551 0.620 0.374 1.735 

[Determine tech 
selection=1] 

0       

3 intercept -2.417 0.587 0.000   
[2D graph=2] 1.931 0.974 0.047 6.893 
[2D graph=3] 2.419 0.813 0.003 11.236 
[2D graph=4] 0       
[Function=2] -0.699 1.039 0.501 0.497 
[Function=3] 1.739 0.797 0.029 5.692 
[Function=4] 0       
[Design brief=2] 1.932 0.812 0.017 6.904 
[Design brief=3] 1.806 0.693 0.009 6.088 
[Design brief=4] 0       
[Determine tech 
selection=0] 

-1.259 0.613 0.040 0.284 

[Determine tech 
selection=1] 

0       

Reference category is 4 in Prefer in 2D 
2 intercept -2.867 0.584 0.000   

[Function=2] 3.001 0.963 0.002 20.106 
[Function=3] 2.174 0.872 0.013 8.793 
[Function=4] 0       
[Structure safety=2] 2.980 0.903 0.001 19.680 
[Structure safety=3] 0.968 0.882 0.273 2.632 
[Structure safety=4] 0       

3 intercept -1.222 0.306 0.000   
[Function=2] 0.910 0.996 0.361 2.483 
[Function=3] 1.935 0.695 0.005 6.924 
[Function=4] 0       
[Structure safety=2] 1.578 0.787 0.045 4.844 
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[Structure safety=3] 0.680 0.620 0.273 1.974 
[Structure safety=4] 0       

Reference category is 4 in 3D model 
1 intercept -2.509 0.521 0.000   

[Aesthetic=2] 3.291 1.399 0.019 26.867 
[Aesthetic=3] 0.860 1.084 0.428 2.363 
[Aesthetic=4] 0       
[Function=2] 2.059 1.448 0.155 7.837 
[Function=3] 2.224 1.222 0.069 9.240 
[Function=4] 0       

2 intercept -2.170 0.443 0.000   
[Aesthetic=2] 2.798 1.388 0.044 16.417 
[Aesthetic=3] -0.076 1.094 0.944 0.926 
[Aesthetic=4] 0       
[Function=2] 1.704 1.531 0.266 5.496 
[Function=3] 3.490 1.214 0.004 32.794 
[Function=4] 0       

3 intercept -1.401 0.322 0.000   
[Aesthetic=2] 0.138 1.535 0.929 1.148 
[Aesthetic=3] -0.069 0.952 0.942 0.933 
[Aesthetic=4] 0       
[Function=2] 3.002 1.455 0.039 20.128 
[Function=3] 3.535 1.129 0.002 34.292 
[Function=4] 0       

Reference category is 1 in Preference in 3D* 
2 intercept -4.558 1.011 0.000   

[Structure safety=2] 1.782 0.840 0.034 5.941 
[Structure safety=3] 1.137 0.844 0.178 3.118 
[Structure safety=4] 0       
[3D model=1] 2.201 1.016 0.030 9.035 
[3D model=2] 1.598 0.942 0.090 4.941 
[3D model=3] 1.574 0.872 0.071 4.828 
[3D model=4] 0       
[Construction 
situation=2] 

3.266 0.927 0.000 26.201 

[Construction 
situation=3] 

0.731 1.117 0.513 2.076 

[Construction 
situation=4] 

0       

3 intercept -4.175 0.787 0.000   
[Structure safety=2] 2.186 0.799 0.006 8.904 
[Structure safety=3] 2.390 0.617 0.000 10.910 
[Structure safety=4] 0       
[3D model=1] 2.257 0.880 0.010 9.559 
[3D model=2] 1.477 0.817 0.071 4.378 
[3D model=3] 1.780 0.660 0.007 5.931 
[3D model=4] 0       
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[Construction 
situation=2] 

1.944 0.773 0.012 6.988 

[Construction 
situation=3] 

1.896 0.708 0.007 6.657 

[Construction 
situation=4] 

0       

Reference category is 4 in Preference in 3D* 
2 intercept -4.710 1.043 0.000   

[3D model=1] 2.964 1.077 0.006 19.378 
[3D model=2] 1.878 0.920 0.041 6.540 
[3D model=3] 1.991 0.894 0.026 7.322 
[3D model=4] 0       
[Construction 
situation=2] 

3.609 0.952 0.000 36.943 

[Construction 
situation=3] 

0.570 1.100 0.605 1.767 

[Construction 
situation=4] 

0       

[Building system=2] 0.755 0.810 0.351 2.128 
[Building system=3] 0.997 0.904 0.270 2.711 
[Building system=4] 0       

3 intercept -5.988 1.146 0.000   
[3D model=1] 3.522 1.058 0.001 33.844 
[3D model=2] 2.190 0.826 0.008 8.938 
[3D model=3] 2.769 0.741 0.000 15.944 
[3D model=4] 0       
[Construction 
situation=2] 

2.175 0.847 0.010 8.801 

[Construction 
situation=3] 

1.823 0.741 0.014 6.192 

[Construction 
situation=4] 

0       

[Building system=2] 2.639 0.922 0.004 13.995 
[Building system=3] 3.761 0.940 0.000 42.993 
[Building system=4] 0       

Reference category is 4 in Prefer in 3D 
2 intercept -2.929 0.803 0.000   

[Function=2] 3.544 0.998 0.000 34.591 
[Function=3] 1.632 0.766 0.033 5.114 
[Function=4] 0       
[Construction 
complexity=2] 

3.069 0.948 0.001 21.526 

[Construction 
complexity=3] 

1.520 0.967 0.116 4.571 

[Construction 
complexity=4] 

0       

[Determine product 
selection=0] 

-1.228 0.700 0.080 0.293 
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[Determine product 
selection=1] 

0       

3 intercept -1.162 0.420 0.006   
[Function=2] 2.190 0.925 0.018 8.938 
[Function=3] 1.762 0.583 0.003 5.826 
[Function=4] 0       
[Construction 
complexity=2] 

2.013 0.633 0.001 7.485 

[Construction 
complexity=3] 

1.197 0.589 0.042 3.311 

[Construction 
complexity=4] 

0       

[Determine product 
selection=0] 

-1.380 0.528 0.009 0.252 

[Determine product 
selection=1] 

0       

Reference category is 4 in 3D BIM 
2 intercept -1.660 0.562 0.003   

[Construction 
complexity=2] 

1.865 0.600 0.002 6.454 

[Construction 
complexity=3] 

0.307 0.681 0.652 1.359 

[Construction 
complexity=4] 

0       

[Prefabrication 
percentage=1] 

1.423 0.623 0.022 4.148 

[Prefabrication 
percentage=2] 

-0.445 0.638 0.485 0.641 

[Prefabrication 
percentage=3] 

0       

3 intercept -1.377 0.480 0.004   
[Construction 
complexity=2] 

1.229 0.532 0.021 3.417 

[Construction 
complexity=3] 

1.008 0.497 0.042 2.739 

[Construction 
complexity=4] 

0       

[Prefabrication 
percentage=1] 

1.340 0.578 0.020 3.821 

[Prefabrication 
percentage=2] 

0.663 0.487 0.173 1.940 

[Prefabrication 
percentage=3] 

0       

Reference category is 4 in Preference in BIM 
2 intercept -4.357 1.188 0.000   

[Aesthetic=2] 2.892 1.382 0.036 18.020 
[Aesthetic=3] -0.692 1.033 0.503 0.500 
[Aesthetic=4] 0       
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[Structure safety=2] -0.532 1.253 0.671 0.588 
[Structure safety=3] 1.441 1.097 0.189 4.227 
[Structure safety=4] 0       
[Building system=2] 1.499 1.113 0.178 4.478 
[Building system=3] 1.915 0.998 0.055 6.784 
[Building system=4] 0       
[2D graph=2] 0.593 1.454 0.683 1.810 
[2D graph=3] -1.517 1.216 0.212 0.219 
[2D graph=4] 0       
[3D model=1] -1.107 1.515 0.465 0.331 
[3D model=2] 1.466 1.284 0.254 4.331 
[3D model=3] 2.431 1.256 0.053 11.373 
[3D model=4] 0       
[Pre-design 
provided=2] 

0.332 0.951 0.727 1.394 

[Pre-design 
provided=3] 

-0.485 0.921 0.599 0.616 

[Pre-design 
provided=4] 

0       

[Construction 
situation=2] 

3.613 1.116 0.001 37.065 

[Construction 
situation=3] 

1.484 1.017 0.144 4.410 

[Construction 
situation=4] 

0       

3 intercept -8.700 1.874 0.000   
[Aesthetic=2] -0.721 1.478 0.626 0.486 
[Aesthetic=3] -1.791 1.084 0.099 0.167 
[Aesthetic=4] 0       
[Structure safety=2] -1.091 1.142 0.339 0.336 
[Structure safety=3] 2.545 0.959 0.008 12.740 
[Structure safety=4] 0       
[Building system=2] 4.959 1.369 0.000 142.520 
[Building system=3] 4.428 1.345 0.001 83.725 
[Building system=4] 0       
[2D graph=2] -1.813 1.557 0.244 0.163 
[2D graph=3] -3.737 1.321 0.005 0.024 
[2D graph=4] 0       
[3D model=1] 2.822 1.573 0.073 16.813 
[3D model=2] 3.480 1.328 0.009 32.454 
[3D model=3] 5.391 1.563 0.001 219.322 
[3D model=4] 0       
[Pre-design 
provided=2] 

3.103 1.080 0.004 22.274 

[Pre-design 
provided=3] 

2.346 0.996 0.019 10.440 

[Pre-design 
provided=4] 

0       

[Construction 
situation=2] 

2.952 1.094 0.007 19.136 
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[Construction 
situation=3] 

2.886 1.002 0.004 17.914 

[Construction 
situation=4] 

0       

Reference category is 4 in Prefer in BIM 
2 intercept -1.386 0.626 0.027   

[Function=2] 3.651 1.066 0.001 38.524 
[Function=3] 3.998 1.080 0.000 54.515 
[Function=4] 0       
[Structure safety=2] -1.039 1.163 0.372 0.354 
[Structure safety=3] -1.134 1.063 0.286 0.322 
[Structure safety=4] 0       
[Construction 
complexity=2] 

1.873 1.059 0.077 6.510 

[Construction 
complexity=3] 

-0.246 0.899 0.784 0.782 

[Construction 
complexity=4] 

0       

[Determine product 
selection=0] 

-2.496 0.807 0.002 0.082 

[Determine product 
selection=1] 

0       

[Determine tech 
selection=0] 

2.397 0.754 0.001 10.994 

[Determine tech 
selection=1] 

0       

[personal experience 
as reference=0] 

-1.322 0.654 0.043 0.266 

[personal experience 
as reference=1] 

0       

3 intercept -2.410 0.696 0.001   
[Function=2] 2.011 0.994 0.043 7.474 
[Function=3] 2.696 0.836 0.001 14.815 
[Function=4] 0       
[Structure safety=2] -2.698 1.069 0.012 0.067 
[Structure safety=3] -0.737 0.767 0.336 0.479 
[Structure safety=4] 0       
[Construction 
complexity=2] 

3.520 0.927 0.000 33.772 

[Construction 
complexity=3] 

1.251 0.687 0.068 3.495 

[Construction 
complexity=4] 

0       

[Determine product 
selection=0] 

-1.051 0.619 0.090 0.349 

[Determine product 
selection=1] 

0       

[Determine tech 
selection=0] 

1.561 0.605 0.010 4.764 
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[Determine tech 
selection=1] 

0       

[personal experience 
as reference=0] 

0.648 0.590 0.272 1.912 

[personal experience 
as reference=1] 

0       

Table 6-5 Qualitative relationships between dependant and independent variables. 

Dependant variable Independent variable  
 Positively related Negatively related 
2D graph Function > 5 alternatives 
 Cost  
 2D pre-data  
Preference in 2D 2D graph Determine tech selection 
 Function  
 Design brief  
Prefer in 2D Function  
 Structure safety  
3D model Aesthetic  
 Function  
Preference in 3D 3D model  
 Structure safety  
 Building system  
 Construction situation  
Prefer in 3D Function Determine product selection 
 Construction complexity  
BIM model Prefabrication percentage  
 Construction complexity  
Preference in BIM Aesthetic 2D graph 
 Structure safety  
 Building system  
 3D model  
 Pre-design provided  
 Construction situation  
Prefer in BIM Function Structure safety 
 Construction complexity Determine product selection 
 Determine tech selection Personal experience as reference 

6.2.3.5 Results of multiple-correspondence analysis 

The results of MCA visualise the relationships between the independent and dependent 

variables within each regression model. As depicted in Figure 6-18 to Figure 6-20, the MCA 

plots display data matrixes, where categories of categorical variables are represented in a two-

dimensional space. The proximity between categories indicates their similarity across the 

analysed variables. Categories in close proximity suggest a strong association, whereas those 

further apart indicate dissociated.  
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Taking Figure 6-18-a as an example, the cluster of points representing Cost_4, Function_4, 

and 2D graph_4 suggests that designers who employ 2D drawings for more than half of the 

time in design are likely to place significantly emphasis on functionality, space requirements, 

cost-effectiveness, and budget constraints. Conversely, designers who exhibit less concern for 

these aspects (Cost_3, Function_3, Cost_2, Function_2) are less likely to frequently use 2D 

drawings (as shown by 2D graph_3, 2D graph_2).  Overall, the interpretations of Figure 6-18 

to Figure 6-20 align with the qualitative relationships discussed in section 6.2.3.4, hence 

detailed interpretations are not reiterated here. 

 

Figure 6-18 Multi-correspondence analysis on 2D drawings used in design files (a), 

constraints (b), and reference (c). 

 

Figure 6-19 Multi-correspondence analysis on 3D models used in design files (a), constraints 

(b), and reference (c). 
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Figure 6-20 Multi-correspondence analysis on BIM models used in design files (a), 

constraints (b), and reference (c). 

6.2.4 Analysis of the findings 

6.2.4.1 Analysis of descriptive results and ANOVA 

In this research, architects and civil engineers comprised approximately 70% of the respondents. 

Around 17% of the participants held national qualifications. These demographic distributions 

align with the typical composition of designers in many design firms. Despite the inevitable 

sampling bias, the demographic distribution suggests a representative sampling. The 

composition of respondents also impacts the statistics regarding design considerations, as 

illustrated in Figure 6-4. Specifically, the aesthetics and visual appeal, functionality and space 

requirements, environment and cultural context, and cost-effectiveness and budget reflect the 

main considerations of architects. The emphasis on structural stability and safety and cost are 

commonly emphasised within the design of structure engineers. Consequently, these factors 

are more prominent than the others. 

Generally, participants exhibit a positive attitude towards employing design optimisation in 

practice, laying a foundation for applying the proposed carbon reduction method. Additionally, 

designers are willing to invest additional time in design for enhanced sustainability, accepting 

a design period extension of 12-72 hours. However, designers’ tolerance for cost increases is 

limited, suggesting that suitable solutions should not compromise economic performance for 

carbon reduction. Tolerance of project cost increases and design period extensions grows with 

experience in prefabricated and sustainable project design.  
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Despite years of promotion, design via BIM model remains relatively unpopular across 

designers (Herr & Fischer, 2019; Ma et al., 2022). Figure 6-6-a shows that 58.78% of the 

designers use BIM models less than 25% of the time, while only 18.32% use it for over 50% 

of their time. The lag in BIM model becomes more obvious when considering 

multidimensional models (involving time, budget, etc., as new dimensions). A significant 

86.26% of participants rarely use such information format in their practice. 2D drawings 

continue to be the most prevalent data format in the design process. Notably, 58.78% of 

respondents report using this data format for over half of their working hours. This trend aligns 

with findings of Sweany et al. (2016) and Alruwaythi et al. (2019), suggesting a slower-than-

expected technological evolution, particularly in comparison to the early adoption of 2D CAD 

(Y. Liu et al., 2017).  

The usage rate of 2D, 3D, and BIM formats in design outputs aligns with those in the design 

process, as shown in Figure 6-6-e and Figure 6-6-a. The consistent use of these formats 

throughout the design process reflects that design information is usually conveyed in its 

original format, suggesting that designers seldom integrate information into BIM models. Since 

designers often base their work on outcomes from previous stages (Tribelsky & Sacks, 2010), 

the usage rates of the above three data formats in design constraints (usually the start point of 

design, Figure 6-6-b) are similar to those in design outputs (Figure 6-6-e). Furthermore, Figure 

6-5 points out that codes and design brief are also the main sources of design constraints. These 

files typically contain text, tables, photos, and 2D graphs, making text and tables as commonly 

used as 2D data in design constraints. 

Figure 6-6-c and Figure 6-6-d reveal that 3D data is the most preferred data format for data 

extraction, followed by 2D graphs and tabular values. Previous studies (Dadi, Goodrum, Taylor, 

& Carswell, 2014; Dadi, Goodrum, Taylor, & Maloney, 2014; Dadi, Taylor, et al., 2014; Shi, 

Du, Asce, et al., 2020) corroborate these findings, attributing the preference to 3D’s superiority 

over 2D in information retrieval. However, despite the perceived usefulness of BIM model in 

previous studies (Chinese Building Industry BIM Application Analysis Report Editorial 

Committee, 2022), it is less favoured than traditional formats like tables, 2D, and 3D data in 

both design constraints and references. The reluctance to handle BIM models may stem from 

their complexity than from performance of different data formats. Processing BIM model 

typically demands higher-performance hardware and more time (Cai & Zhou, 2023). 

Additionally, extracting necessary data from these highly integrated information models 
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requires more effort (Jiao Chen et al., 2021). Since data extracted from BIM models is often 

presented in traditional formats (2D, 3D, or tables), designers tend to opt for more efficient 

alternatives, i.e., conventional data formats. 

Although ANOVA indicates that design experience and an emphasis on sustainability 

influence the choice of EIF, it does not sufficiently identify the best data format for sustainable 

design optimisation. For instance, 2D, 3D, and BIM formats all appear to be viable options for 

sustainable project design. Therefore, regression analysis, which quantifies the contribution of 

multiple variables, is necessary. 

6.2.4.2 Analysis of relevance and logistic regression 

The relevance analysis (Figure 6-17 and Table 6-2) indicates that factors of experience in 

project design, design considerations, design contents, design optimisation methods, and files 

encountered during the design significantly influence the choice of EIFs. This finding partially 

aligns with Dadi, Goodrum, Taylor, & Carswell (2014), who noted that the experience of using 

2D CAD data affects the efficiency of processing 2D data. However, this research does not 

observe the influence of working period as claimed by the authors. Additionally, variables 

related to design considerations and contents are more influential than other demographic 

characteristics (e.g., design responsibility, involved design phases, and characteristics of 

employers) in constructing logistic regression models. This predominance in relevance analysis 

stems from the fact that designers typically engage in multiple design tasks and design phases. 

Hence, design considerations and contents are more apt descriptors of their design activities. 

Regarding the EIFs (Table 6-4 and Table 6-5), 2D and 3D data are commonly used in 

traditional architecture design tasks. Specifically, 2D data is particular prevalent in the 

developed design phase, when functionality and space requirement are key considerations. The 

positive influence of aesthetics and functionality implies that 3D format is likely adopted in 

both the conceptual (determine the geometrical features of projects) and developed design stage 

(coordinate architecture and engineering information spatially) (RIBA, 2020). In these stages, 

3D model enables designers to quickly visualise their concepts (Charef et al., 2018), allowing 

customers and professionals to accurately assess project performance and development (Antwi-

Afari et al., 2018). Compared to architects, designers specialising in structural, engineering, 

and construction management demonstrate a stronger preference for acquiring basic design 

information from earlier stages in 3D models rather than 2D drawings. Their work heavily 
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relies on the provided fundamental designs, encompassing multi-dimensional spatial 

information, making the ease of accessing complex data in 3D models highly appealing (Dadi, 

Goodrum, Taylor, & Maloney, 2014). For the same reason, designers prioritise functionality, 

space requirement, and project delivery complexity tend to prefer receiving design references 

in the 3D models.  

As shown in Table 6-5, the employment of BIM model correlates with experience in designing 

prefabricated projects and a focus on project delivery complexity. However, characteristics of 

conventional architecture design (e.g., emphasis on functionality), structure design (e.g., 

emphasis on structure stability), and engineering design (e.g., emphasis on building systems 

integration) show little influence on BIM model selection. This pattern suggests no evidence 

of BIM model being more prevalent in any particular conventional design task than the others. 

Considering the frequency of participants reporting BIM model usage in design practice 

(Figure 3), it appears BIM model is seldom adopted across these three design tasks. Y. Liu et 

al. (2017) explained this pattern by noting that the benefits of BIM are hard to realise in 

conventional design tasks, where conventional design tools suffice, and the complexity of BIM 

modelling is a disadvantage. In contrast, designing for prefabricated constructions demands 

detailed design of prefabricated elements to meet manufacture and assembly requirements (S. 

Gao et al., 2019). The creation and transfer of these details often exceed the capabilities of 

conventional formats like 2D drawings and 3D models, necessitating the use of BIM model 

(Yuan et al., 2018). Consequently, the increase concerns on prefabrication and project delivery 

lead to an increased adoption of BIM model.  

The factors influencing the preference for receiving design constraints in BIM model are 

similar to those for 3D model; designers working with complex information from earlier stages 

tend to favour BIM model for data retrieval. BIM model’s capability to store both geometric 

and non-geometric information enables later-stage designers to access accurate and consistent 

design information (Tan et al., 2021). Concerning negatively correlated factors, designers who 

rely on personal experience demonstrate less preference for BIM model as design references, 

indicating a reluctance among experienced designers to this modern tool. This finding aligns 

with Ahmed’s (2018)  observation that habitual resistance is a key barrier to BIM 

implementation. Evidence also suggests that designers involved in selecting building products 

and structural design are less inclined to use BIM model for design references. The 
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unavailability of product BIM models (Yuan et al., 2018) may lead these designers to prefer 

conventional formats (e.g., 2D graphs), reinforcing their resistance to adopting BIM model. 

The observed relationships between design activities and EIF indicate that conventional data 

formats (i.e., 2D and 3D) are sufficient for design information processing in conventional 

design tasks. Conversely, BIM model is more likely to be adopted in design tasks that require 

the integration of multi-disciplinary information. Therefore, a promising application for BIM 

model lies in the technical design stage of prefabricated projects, where the building structure 

is detailed into the design of prefabricated elements (RIBA, 2020).  

The technical design stage may also serve as a start point of introducing BIM model in the 

design process. Compared to the concept and developed design stages, designers have access 

to finalised design information in the technical design, enhancing the accuracy and consistency 

of BIM modelling. Additionally, project delivery conditions and multidisciplinary coordination 

(e.g., collision test), which exceed the capabilities of conventional data formats, are more likely 

to be addressed in this stage, emphasising the needs of BIM model. Therefore, in a proposed 

BIM application, design tasks in the concept and developed design stage are processed using 

current data format. Subsequently, these design contents are transformed and integrated into 

BIM model during the technical stage and maintained in this format until delivery. 

Consistency between the EIFs used in design and the preferred data formats for design 

constraints is observed in Table 6-4 and Table 6-5. Specifically, frequent use of 2D and 3D 

formats is associated with a preference for receiving design constraints in these respective 

formats. Considering that BIM models are visualised in three dimensions, the positive 

correlation with using 3D model and the negative correlation with using 2D drawings for 

preferring BIM in design constraints strengthen the above finding. In summary, acceptance of 

a specific data format increases with growing usage experience. 

6.2.4.3 Analysis of multiple-correspondence analysis 

MCA (Figure 6-18 to Figure 6-20) visualise the extent to which the design activities explain 

the selection or preference of data formats. A greater aggregation of points indicates a stronger 

explanatory power of variables. Generally, the points in Figure 6-18-a and Figure 6-19-a show 

more aggregation than those in Figure 6-20-a. This suggests that the use of 2D and 3D data is 

more driven by design task requirements compared to the use of BIM model. The primary 
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motivations for adopting BIM model likely stem from external sides such as policy, codes, and 

economic incentives rather than practical design improvement. 

As depicted in Figure 6-18 to Figure 6-20, variables are more clustered in extreme categories 

like grade 4, while more dispersed in the others (e.g., grade 2 and 3). This pattern is also evident 

in the parameter estimations of regression models (Table 6-4). Selecting non-reference 

categories (e.g., grade 2 or 3) of the independent variables significantly influences the predicted 

category of dependent variables. However, variations in choices among these non-reference 

categories (such as the distinction between choosing Grade 2 and Grade 3) appear to have a 

less pronounced effect. Although the predictive performance of these regression models is 

limited, they effectively demonstrate the qualitative influence of independent variables, 

supporting the above analysis.  

6.3 Data processing for optimisation model 

6.3.1 Pipeline of the optimisation model 

Given the EIFs employed in practice (as stated in sections 6.2.3 and 6.2.4), the pipeline of the 

proposed design optimisation method is depicted in Figure 6-21. Initially, the original design 

is input in either 2D drawings or 3D models. Rhinoceros 3D and grasshopper are then used to 

process these design files and extract the original design parameters. Subsequently, the design 

parameters are saved in Microsoft excel files, with the suffix of .xlsx. After that, the 

optimisation programme is executed in Python. The feasible solution identified by GA is 

depicted by a set of design parameters, which are then processed by Rhinoceros 3D and 

grasshopper to generate a digital 3D model for results visualisation. Utilising Rhino-inside-

Revit, a plugin-tools for Autodesk Revit, these 3D models can be converted into BIM models 

within the Revit environment. Both 3D and BIM models serve to provide design assistance to 

designers at the developed design stage.  

Importantly, the optimisation process does not occur within a single design software 

environment, such as Rhinoceros 3D and grasshopper, because optimisation plugins (e.g.,  

octopus) lack the capability to explore feasible results defined by parameters mentioned in 

sections 4 and 5. In essence, the embedded optimisation tools in design software lack the 

computational power to handle numerous parameters. Therefore, the micro-level design 

optimisation is segmented into three steps, as mentioned above: 1) extracting design data using 
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design software, 2) exploring the feasible solution by coding, and 3) visualising the results by 

design software. 

 

Figure 6-21 Pipeline of the proposed design optimisation method. 
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6.3.2 Data extraction 

Based on the findings from section 6.2.3, 2D drawing and 3D model are the preferred EIFs in 

the developed design stage. The optimisation, therefore, begins with the original design in these 

two formats. These files are processed in the following steps: 

1) First, the data is imported into Rhino for data extraction, as illustrated in Figure 6-22.  In 

rhino, 2D drawings are converted into a 3D version via aligning the drawings according to 

the elevation. Notably, building elements, like columns and walls, are segmented into 

distinct layers for differing.  

2) Subsequently,  grasshopper scripts (Figure 6-23) are employed to extract original design 

parameters like 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , as 

detailed in section 4.2.1. In this step, design elements (e.g., axis, columns, and walls) in 2D 

drawing or 3D model are categorised into breps (Boundary Representation). These 

elements are then identified and re-constructed as lines, as illustrated in Figure 6-24. Finally, 

the coordination and parameters of design elements are exported into several tables 

with .xlsx extension. 
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Figure 6-22 Original design data of the studied case. 

 

Figure 6-23 Data extraction program in grasshopper. 
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Figure 6-24 Simplified model after parameter extraction. 

6.3.3 Feasible solution visualisation 

6.3.3.1 Visualisation of the feasible design alternative 

Parameters from the feasible design alternative are fed into a visualisation programme coded 

in grasshopper, as illustrated in Figure 6-25. Firstly, building elements, like columns, beams, 

secondary beams, and floor slabs, are rebuilt as sets of breps in Rhino. These breps depict the 

dimensions and positioning of building elements. Subsequently, rebar designs of building 

elements are labelled with tags on each building element. These tags are displayed in varied 

orientation and directions to represent the structure design across element sections. They can 

be individually for clearer visualisation of design details. Figure 6-26 shows the visualised 

model with full tags in Rhino. 
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Figure 6-25 Design parameter visualisation programme in grasshopper. 
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Figure 6-26 Visualisation of the feasible solution. 
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6.3.3.2 Visualisation of the feasible transportation plan 

The transportation plan is visualised using a programme coded in grasshopper, as illustrated in 

Figure 6-27. Firstly, the parameters of transportation plan are visualised via a set of edges. 

These edges depict the external boundaries of precast elements and the available space on 

tracks. Then, design parameters of precast elements are input to visualise the details of each 

element. Tags mark the ID and corresponding weight of each element. Figure 6-28 to Figure 

6-30 display the visualised transportation plan for the studied case. 

 

Figure 6-27 Transportation parameter visualisation programme in grasshopper. 
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Figure 6-28 Visualisation of column transportation. 

 

Figure 6-29 Visualisation of beam transportation. 
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Figure 6-30 Visualisation of floor slab transportation. 

6.4 Summary 

This section develops tools for design data extraction and optimised results visualisation. It 

identifies the EIF used across concept, developed, and technical design stages through a 

questionnaire survey among Chinese designers and a statistical analysis on their responses. 

Findings from ANOVA, relevance analysis, logistic regression, and multiple correspondence 

analysis reveal that 2D and 3D files are preferred for creating and comparing design 

alternatives during the concept and developed design stages. On the contrast, BIM is welcomed 

for coordinating multi-disciplinary data in the later stages of project development. Based on 

these results, grasshopper plug-in tools are developed to extract design parameters from 2D 

and 3D design files and visualise the optimised results in 3D models.  
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7 Implementation and validation of the optimisation model 

7.1 Introduction 

To implement the proposed design optimisation model, this study employs modules 1-4 

developed in sections 4-6 in a real-world case, as introduced in 4.3.3.1. After that, a two-step 

validation, including internal and external validation, is used to verify the model’s carbon 

reduction effectiveness and practicality, respectively. 

7.2 Model implementation 

7.2.1 Scenario settings 

The studied case is a four-storey reinforced-concrete office building located in Nanjing, China, 

as illustrated in Figure 7-1. The project has an area of 2971.16 m2 and a height of 20.4m. It is 

a representative case for precast concrete projects in China, involving precast solid columns, 

precast composite beams, precast composite floor slabs, and autoclaved aerated concrete wall 

slabs. The structure is designed with a seismic precautionary intensity of degree 7, belongs to 

designed earthquake group 1, and has a site classification of  I1. The stairs, lifts and envelope 

are excluded from analysis and optimisation, because these parts are considered the same in all 

design alternatives (as elaborated in section 3, where the geometric features of all design 

alternatives remain the same). 

A baseline scenario is established to quantify the optimisation effects of the proposed approach. 

Specifically, the architecture and structure design of the baseline scenario is the same as those 

mentioned in section 4.3.3.4. Regarding the transportation of prefabricated elements, the 

assumed conditions align with those described in section 5.3.3.3. Given the average loading 

rate of prefabricated elements in Jiangsu Province, China, is 0.40-0.65, the baseline 

transportation CE is calculated using equations (5-51) and (5-52) with an emission rate of 0.047 

kg CO2e/(ton∙km). 

The design and delivery of the studied case follow the following Chinese code: GB55001-2021, 

GB55002-2021, GB55008-2021, GB50011-2010(2016), GB50010-2010(2015), GB50009-

2012, GB/T51231-2016, JGJ1-2014, 13J104, 15G366-1, and 22G101-1. The emission factors 

are cited from China Products Carbon Footprint Factors Database (CCG, 2022) and 
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Calculation standard of building carbon emissions GB/T51366-2019 (2014). These constraints 

are consistent with those in sections 4 and 5. 

 

Figure 7-1 The plan of the studied case.  

7.2.2 Optimisation effect 

The optimisation last for 56.5 hours on a personal desktop with an i7-12700k CPU and 48GB 

RAM (3200MHz). A feasible solution achieves a CE of 8.08 × 105 kg CO2e. Figure 7-2 and 

Table 7-1 shows the carbon reduction achieved through design optimisation. The feasible 
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solution reduces CE from building materials, formwork, and transportation by 11.09%, 0.13%, 

and 30.82%, respectively, representing a 10.06% decrease in embodied CE. Compared to 

element transportation, the manufacturing process contribute to a significantly larger part of 

embodied emissions, consistent with assumptions in section 3.3.2. Optimising emissions from 

manufacturing and transportation in two separate steps have a minor influence on overall 

carbon reduction, suggesting the effectiveness of proposed optimisation method. 

 

Figure 7-2 Carbon reduction from optimisation. 

Table 7-1 CE of baseline scenario and feasible solution (kg CO2e). 

 
Building 
material Formwork Transportation Total 

Baseline scenario 851905.01  47723.67  3952.16  903580.84  
Feasible solution 757434.95  47660.29  2733.92  807829.16  
Emission difference -11.09% -0.13% -30.82% -10.60% 

Notably, the ratios of manufacturing and transportation CE differ from previous studies (Teng 

& Pan, 2020), with manufacturing contributing significantly more in the studied case. The 

discrepancy stems from the system boundary, which excludes emissions from onsite 

construction and transporting onsite construction materials from factory to the construction site. 
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Additionally, the transportation distance is set as 50km. Longer transportation distances would 

increase the contribution of transportation emissions (Dixit et al., 2013). This variance is 

detailed discussed in section 8.1.1. 

Despite so, the studied case results indicate the effectiveness of applying the proposed method 

in sustainable design optimisation. For both the baseline scenario and the feasible solution, 

similar quantities of onsite construction and transportation are excluded, involving the 

assembly of approximately 1680 tons of precast elements and transportation of about 520 tons 

of cast-in-situ reinforced concrete. With uniform construction and transportation processes, CE 

from these excluded parts has minimal difference. Therefore, the potential for carbon reduction 

in these areas is limited, leading to minor impacts on overall carbon reduction. 

Figure 6-26 and Figure 6-28 to Figure 6-30 illustrates the visualised feasible design alternative 

and transportation plans. They are the final output of the optimisation model. Detailed 

optimisation results of element design and transportation plan are given in Appendix A-C and 

Appendix J, respectively. 

7.3 Research validation 

7.3.1 Internal validation 

Carbon reduction effectiveness is verified via internal validation. As described in section 4.3 

and 5.3, several baseline scenarios are set to represent common practices in prefabricated 

element manufacturing and transportation. The effectiveness of the optimisation models is 

quantitatively estimated via comparing CE between the proposed optimisation model and 

baseline scenarios, as illustrated in Table 7-2.  

Results from case studies in sections 4 and 5 show that CEs from the optimisation model are 

lower than those from the baseline scenario, indicating the models’ capability to reduce 

emissions in the manufacturing and transportation stages. Exceptions are witnessed in Case A 

– Wall and Case C – Column in section 5. The higher emissions from the optimisation model 

stem from the baseline scenario estimating transportation CE using the macro-level emission 

factors, which may deviate from the real-world conditions, as stated in section 5.4. When the 

baseline scenario is changed to the 3D-RSO algorithm using vehicle 1 (which is closer to 

practice), the optimised ratios become -4.82% and -3.49%, respectively. 
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Section 7 evaluates the integrated model using a similar approach. Results demonstrate that the 

sequential use of optimisation models for manufacturing and transportation reduces the overall 

embodied CE of prefabricated projects by 10.60%. Therefore, the design optimisation method 

proposed in section 3 is considered theoretically effective. 

Table 7-2 CE of the baseline scenario and feasible solution in case studies (kg CO2e). 

 Baseline scenario Feasible solution Optimised ratio 
Section 4 Manufacturing CE 
Case A 899628.68 805095.24 -10.51% 
Section 5 Transportation CE 
Case A - Floor 100.38 89.63 -10.71% 
Case A - Wall 40.85 42.67 4.46% 
Case B - Floor 175.50 173.45 -1.17% 
Case B - Wall 76.03 53.72 -29.34% 
Case C - Floor 458.09 338.29 -26.15% 
Case C - Wall 554.62 393.77 -29.00% 
Case C - Column 79.97 84.94 6.21% 
Case C - Beam 123.61 94.98 -23.16% 
Case D - Floor 514.83 384.61 -25.29% 
Case D - Column 153.74 104.93 -31.75% 
Case D - Beam 1008.50 697.82 -30.81% 
Case E - Floor 210.53 181.51 -13.78% 
Case E - Column 246.25 189.73 -22.95% 
Section 7 Manufacturing and transportation CE 
Case A 903580.84  807829.16 -10.60% 

7.3.2 External validation 

The model practicality is verified via external validation i.e., questionnaire survey mentioned 

in section 6.2.1.  In the questionnaire, questions 15-18 estimates the necessity of employing 

design optimisation. Questions 19-20 assess designers' acceptance of the optimisation 

performance. Questions 22, 23, and 27 test the adjustability of variables (design parameters) 

introduced in sections 4 and 5 within design practices.  

Responses to questions 15 and 16 in the questionnaire show that over 85% and 73% of 

respondents consider sustainability and CE during design, respectively. Responses to questions 

17 and 18 reveal that around 90% of respondents have used and are willing to employ design 

optimisation. These findings underscore a practical demand for sustainable design optimisation 

in the construction industry, highlighting the importance of this study.  

Responses to questions 22, 23, and 27 indicate that the variables employs in optimisation 

models for prefabricated element manufacturing (section 4.2) and transportation (section 5.2) 



 161 

are flexible in design practices. Additionally, responses to question 28 shows that, most 

designers rely on referenced data rather than personal experience. This finding suggest that 

designers are likely to consider the values from the feasible solution (provided by the 

optimisation model) when determining those flexible variables. Therefore, optimising designs 

by adjusting such variables is practical in real-world design process. 

Responses to question 19 suggest that 87% of respondents are willing to increase project costs 

by up to 30% for improved sustainability. The feasible solution from the proposed optimisation 

method reduces the usage of building materials, formwork, and transportation vehicles, leading 

to a reduced cost in element manufacturing, onsite construction, and transportation. Therefore, 

it aligns with the requirements of designers. However, responses to question 20 indicate that 

most designers prefer to spend less than 12 hours on design optimisation. The full optimisation 

period of the proposed method exceeds this limit by twice, suggesting a need for improved 

efficiency. However, as it requires no manual oversight, this duration is equivalent to two 

working days, making it somewhat acceptable. This issue could be solved via employing 

higher-performed hardware and improving the algorithm. Detailed solutions for this issue are 

discussed in the section 8.  

Analysis in section 6.2.3 and 6.2.4 reveals that designers of prefabricated projects a prefer 

working with 2D graphs and 3D models. The data extraction and visualisation process 

mentioned in sections 6.3.2 and 6.3.3 demonstrates that the proposed optimisation method can 

interpret original design parameters from 2D and 3D files and visualise the feasible solution in 

3D models. Additionally, with “Rhino-inside-Revit”, the feasible solution can be integrated 

into Autodesk Revit, realising the application in BIM software. This finding suggests that is 

capable of processing commonly used design files and offering guidance in designers' preferred 

formats. Therefore, the proposed method is considered practical for real-world applications. 

7.4 Summary 

This section verifies the practicality and effectiveness of the proposed optimisation model. 

Applying the model to a four-floor Chinese office building shows that the model can reduce 

embodied emissions from building materials, formwork, and transportation by 11.09%, 0.13%, 

and 30.82%, respectively, representing a 10.06% decrease in embodied CE. Responses from a 

questionnaire survey among Chinese designers indicate that the variables employed in the 
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optimisation model are adjustable in design practice, and designers are willing to adopt this 

model for reducing embodied emissions. 
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8 Discussion 

8.1 Comparison with previous findings 

8.1.1 Carbon reductions 

The optimisation model achieves a 11.09% reduction in building materials and corresponding 

CE, suggesting the model’s effectiveness in reducing embodied CE of prefabricated projects. 

This reduction is less significant than replacing reinforced concrete by sustainable building 

materials, like timber (Hart et al., 2021) or supplementary cementing materials (Gan et al., 

2017), which leads to 35% and 20% less embodied emissions, respectively. However, fully 

replacing reinforced concrete is not practical in Chinese construction industry as stated in 

section 1.2.1. Therefore, a carbon reduction at 11.09% in building materials is more reasonable 

and practical in current prefabricated project design optimisation. 

Beyond carbon reduction by replacing cast-in-situ construction by prefabrication, which claims 

5-15% less emissions (Hao et al., 2020; Mao et al., 2013), the proposed optimisation model 

points out an additional reduction potential through the optimisation of prefabricated element 

design. Given that all the design variables employed are adjustable in design practice (section 

7.3.2) and the optimised design alternative shares the similar architecture design with the 

original design (section 4.2.1), this addition carbon reduction effect is considered promising in 

most prefabricated projects in China. 

Regarding the emissions from formwork, the optimisation model reduces 0.13% emissions. 

This value is significantly lower than formwork reduction from replacing cast-in-situ 

construction by prefabrication (Cheng et al., 2022; Dong et al., 2015; Wong & Tang, 2012). 

This variance stem from the absolute smaller quantity in prefabricated construction than cast-

in-situ construction, as stated in section 4.4.3. Despite so, considering the high cost of mental 

formwork (Hyun et al., 2018), the minor reduction in formwork quantity leads to considerable 

savings in construction cost, defending its values in prefabrication design optimisation. 

The transportation emissions are decreased by 30.08% through design optimisation. However, 

it only contributes to 1.27% of the total carbon reductions. This stems from the minor 

contribution of transportation emissions to the overall embodied CE, which is 0.34%-0.44%. 

This contribution is significantly smaller than findings of Du et al. (2019) and Hao et al. (2020), 

which are around 1-5%. It is because only the transportation of prefabricated element is 
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considered (section 3.3.1). By including an estimated transportation emissions of building 

materials (40km distance for concrete, 500km for the other materials, and an emission ratio at 

0.047 kg CO2e/(ton∙km) (Calculation standard of building carbon emissions GB/T 51366-2019, 

2014)), the transportation emissions of the baseline scenario and feasible solution are increased 

by 1.70 and 1.60 × 105 kg CO2e, increasing the contribution of transportation emissions to 1.8% 

and 1.9% respectively. These results are similar to previous studies (Du et al., 2019; Hao et al., 

2020). 

However, the results are still far smaller than the finding of Dong et al. (2015), who claimed a 

18% contribution of transportation emissions. The reason for their high transportation emission 

mainly from the long transportation distance in Hong Kong, where prefabricated elements and 

building materials are all imported from the China mainland. Jafary Nasab et al. (2020)’s 

finding suggests that importing building materials and transporting them in a long distance will 

significantly increase transportation emissions. 

8.1.2 Results communication 

Data from the questionnaire survey (section 6.2.3) reveal a unique pattern of BIM model 

utilisation for building design in China. Despite being promoted for years (J. Li et al., 2020; 

Yu Yang et al., 2024), the BIM model is the least used and least welcomed engineering 

information format among designers, consistent with data reported by Deng et al. (Deng et al., 

2020). However, this data contrasts with regions like Singapore and the UK, where BIM 

utilisation rates exceed 80% (Teo et al., 2016) and 60% (UKBIMA, 2021), respectively, despite 

similar promotion efforts.  

One potential reason for this discrepancy is the lack of detailed and clear requirements for BIM 

usage in China. For example, the UK government mandated BIM use for all public projects 

worth £5M and over starting in 2016 (Olanrewaju et al., 2022). To achieve this, the UK 

established a BIM application framework, specifying BIM information and formatting 

requirements, including the level of model detail, model information, model definition, and 

model information exchanges, through ISO 19650 (Specification for information management 

for the capital/delivery phase of construction projects using building information modelling: 

PAS 1192-2:2013, 2013) and previously the PAS 1192 standards (ISO 19650: Organization 

and digitization of information about buildings and civil engineering works, including building 

information modelling (BIM) — Information management using building information 
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modelling, 2018). Similarly, Singapore mandated that all new architectural plans be submitted 

in BIM format in 2013 (Liao et al., 2021). The Singapore government outlined the deliverables, 

process and personnel/professionals involved in BIM usage and clarified the roles and 

responsibilities of designers via Singapore BIM Guide (Singapore BIM Guide - Version 2.0, 

2013). The government also developed the platform CORENET X for BIM model submission 

and inspection (BCA, 2023). In contrast, such requirements are less stringent in China, where 

the goal was merely to use BIM in 90% of projects funded by national capital or aiming for 

green building certification by 2020 (MOHURD, 2015). The depth and scale for BIM 

application in these project remains unclear, leading to “token” use of BIM models (Deng et 

al., 2020).  

This phenomenon underscores the lack of BIM standards and corresponding workflows (Tan 

et al., 2019), which may influence practice and preference for engineering information format 

used by designers. On the one hand, Chinese construction industry still relies on manual 2D 

drawing reviews by government agencies, with BIM models serving more as a secondary or 

extra format (Wei & Hu, 2014). The national design framework development goal for 2023 

remained focused on achieving the digital checking of conventional drawings (Notice from the 

Ministry of Housing and Urban-Rural Development on Promoting the Standardization, 

Normalization, and Facilitation of Engineering Construction Project Approvals, 2023). The use 

of BIM models for design review and building delivery is encouraged but not mandated. 

Consequently, using BIM models becomes a voluntary for most designers, facing resistance 

due to habitual practices (Ahmed, 2018) and its disadvantages in conventional design tasks (Y. 

Liu et al., 2017). 

On the other hand, existing BIM standards focuses primarily on the model at delivery rather 

than throughout the entire life cycle. For instance, the Nanjing government mandated design 

checking via BIM models and has established standards for BIM model delivery (Nanjing 

Municipal Bureau of Planning and Natural Resources, 2021). However, a comprehensive 

framework for model development across design stages is lacking, allowing designers to use 

conventional design tools and rebuild BIM models for compliance after design. Without a clear 

definition of details (e.g., LOD) during design, BIM model often serve as a 3D visualisation 

tool, inevitably losing out to more flexible data format. 

However, the current lack of detailed standards allows for a careful consideration of the 

application approach for BIM. Given the lessons learned from Singapore and Hong Kong, 
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where using BIM sometimes become compliance-driven (Liao et al., 2021; Yu Yang et al., 

2024), enhancing BIM’s desirability, practicality, and ease of use is a significant goal. A 

flexible use of possible EIF for higher design and optimisation efficiency is anticipated. 

8.2 The integration of macro-level and micro-level analysis 

Comparing CE during element manufacturing and transportation reveals significant difference 

between macro-level and micro-level analysis. Generally, macro-level analysis, which factors 

overall material consumption and average emission ratio, effectively estimates design 

sustainability and provides considerable carbon reduction. This approach, requiring a less 

complex model and shorter analysis period, is more efficient than micro-level analysis. 

Nevertheless, macro-level results are less accurate and sustainable compared to micro-level 

analysis, which introduces detailed variables including building element features, connection 

method, vehicle characteristic, and transportation routines. Therefore, integrating these two 

approaches may yield better performance in sustainability analysis and optimisation. 

Specifically, the principle of macro-level standardisation aims to minimise the number and type 

of precast elements. Applying this method in design can effectively reduce embodied CE in 

prefabricated project, as illustrated in Figure 4-9. However, it may also lead to the adoption of 

a larger element size, causing lower material efficiency and more consumption of building 

materials. Since formwork accounts for a minor percentage of embodied CE, savings from 

reduced formwork may not offset increased CE from materials. Thus, a better application of 

standardisation in precast projects may involve strategies beyond using entirely identical 

elements. Designers should categorise building elements according to their structural capacity 

and design specific cross-section accordingly. This approach allows unifying similar elements 

into a uniform size to reduce variety and formwork-related CE. Additionally, it helps minimise 

the use of over-sized cross-section, thereby reducing CE from building materials. 

Similarly, employing identical emission factors in transportation analysis is effective for 

analysing CE of a large area but are not accurate enough for a single project. Micro-level 

analysis on element transportation shows that there are significant differences in the average 

loading rate and CE per unit elements across different element types (Figure 5-11 and Figure 

5-13). Given that the carbon emission per unit of elements decreases with the growth in loading 

rate (Figure 5-12), a possible solution towards more accurate CE results using the emission 

factor method is to provide different emission factors for different element types. Such factors 
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would be more convenient to implement in a general CE estimation because calculations based 

on emission factors saves time for bin packing problem modelling and solving. 

8.3 Micro-level carbon reduction strategies 

Conducting micro-level analysis on embodied CE points out novel carbon reduction strategies 

in design and construction practices. The micro-level analysis on the formwork design shows 

that standardising geometric size does not directly influence formwork quantity or variety. 

Therefore, solely consider applying standardisation, even with the aforementioned approach, 

may not necessarily leads to lower formwork consumption. A micro-level optimisation, 

considering both building materials and formwork design, is essential for lower embodied CE 

in precast projects. Additionally, the differing results between off-line and online formwork 

design modes suggest that improving the adaptability of formwork may provide a better CE 

reduction than standardisation. In other words, conventional estimation of standardisation, 

focusing solely on element size, may not be sufficient accurate. Formwork consumption and 

adaptability may serve as better criteria for standardisation estimation. 

The diversity in the reuse cycles of formwork (Figure 4-11 and Figure 4-12) challenges 

previous findings that using metal formwork necessarily reduces embodied CE (Dong et al., 

2015; Wong & Tang, 2012). Metal formwork generates higher manufacturing CE but offers 

greater reuse cycles, potentially lowering lifecycle CE. However, substituting timber formwork 

with steel formwork only reduces CE after 50 times reuse (given the density of timber 

formwork at 15kg/m2, the CE coefficient at 0.81 kg CO2e/kg, and the maximum reuse recycle 

at 5 times). Considering that most formwork pieces in this study are reused fewer than 50 times, 

replacing all the timber formwork with steel formwork increases overall CE, unless most steel 

formwork pieces are reused over 50 times in subsequent projects. 

This finding underscores two strategies for reducing formwork CE in precast construction. The 

first strategy involves establish a pool of existing formwork pieces. In this regards, architects 

and civil engineers could consider the dimensions of existing formwork when designing 

elements in new projects, thereby maximising formwork reuse. Alternatively, the formwork 

pieces with few reuse cycles (e.g., less than 10 times) could be made from timber. Both 

strategies require detailed formwork estimations during the design phase, underscoring the 

importance of conducting micro-level design analysis. 
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Additionally, micro-level analysis points out the scalability benefits in sustainability 

optimisation of prefabricated project. As illustrated in Figure 4-12, the majority of formwork 

pieces are exactly reused 4 times. This is due to the assumption that cast-in-situ concrete is 

constructed floor by floor, which caps the maximum reuse cycle of cast-in-situ formwork at 4 

times. However, adopting different column size for the ground floor and other floors in the 

feasible solution results in fewer reuse cycles and more formwork pieces. This finding suggests 

that the advantages of standardisation may be more pronounced in projects with more floors 

and larger plan areas, where the cast-in-situ parts are constructed in more times.  

Regarding transportation CE, Figure 5-8 and Figure 5-13 illustrate that the differences in the 

vehicle number and the loading rate between the GA-based algorithm and the 3D-RSO 

algorithm increase with the growth in the number of prefabricated elements because this study 

employs an off-line packing mode. In this mode, a greater number of prefabricated elements 

provide algorithms with a larger solution space to explore the suitable element that fits the 

residual space, thus reducing the space waste and reducing the total number of vehicles. This 

effect therefore magnifies the performance difference between algorithms. Meanwhile, the 

accumulation of performance differences also grows with the element quantity and could lead 

to significant variance in the end—for example, the GA-based algorithm requires 33%-50% 

fewer vehicles than the 3D-RSO algorithm in the transportation of prefabricated floors in 

Project D (119 pieces) but the same number of vehicles in the transportation of prefabricated 

walls in Project A (10 pieces). Considering that a higher loading rate leads to a lower 

transportation CE per unit of prefabricated elements (Figure 5-12), the trend mentioned in the 

previous paragraph provides a potential method to reduce the transportation CE of 

prefabricated elements by considering a larger number of elements in one transportation batch.  

8.4 Potential improvement of optimisation efficiency 

As mentioned in section 7.3, the runtime of optimisation exceeds conventional (24-34 hours 

(Jusselme et al., 2020)) and expected optimisation period. Besides integrating macro-level and 

micro-level analysis methods, employing a simplified model also serves an effective method 

for rapid optimisation. Regarding the optimisation for manufacturing CE, the slight difference 

in the CE across generations suggests that solutions from the prophet generation might yield 

comparable CE reduction. They may serve as a close-to-feasible solution for rapid design 

optimisation.  
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Concerning the transportation CE optimisation, Figure 5-16 illustrates that the CE reduction 

caused by replacing the 3D-RSO algorithm with the GA-based algorithm is most obvious in 

the transportation of prefabricated floors and less significant in the other three categories. This 

variance suggests that the advantages of the GA-based algorithm (increasing the loading rate, 

thus reducing the CE) are less significant in some element types, and thus the disadvantage of 

a long computing period becomes more significant. Therefore, it is more reasonable to employ 

the 3D-RSO algorithm rather than the GA-based algorithm in these tasks for rapid computing 

without sacrificing significant performance. 

However, the effectiveness of the simplified methods may vary under different architectural 

designs. Therefore, the optimisation effect of the prophet generation is not guaranteed. 

Additionally, the constraints of coding efficiency and computing power limits the optimisation 

effects. Only a limited number of design alternatives (6000) are estimated in the optimisation 

(in section 4) within a feasible timeframe, forcing the adoption of simplification postulations 

as mentioned in 4.3. The potential for CE reduction using more complex parameter 

combinations is yet to be explored. Moreover, the current feasible solution is not necessarily 

the global optimum due to the inherent characteristic of GA. There may remain potential for 

further reductions under the current settings. Consequently, using GA in future studies for 

lower embodied CE is still necessary.  

8.5 Summary 

This section discusses the research findings and their implications. The emission contributions 

of building materials, casting formwork, and transportation vehicles are consistent with 

previous studies yet differ in detail because of considering micro-level construction conditions. 

Introducing micro-level variables enhances the application of conventional design principles 

and offers novel carbon reduction strategies, like increasing the adaptability of casting 

formwork and maximising the use of existing formwork pieces, promoting sustainable 

practices in prefabricated constructions.  
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9 Conclusion 

Prefabrication is widely considered an effective method to reduce embodied CE in the 

construction industry. Scholars have put considerable effort on optimising prefabrication 

design at early design stages for lower emissions. However, existing studies rely on macro-

level analysis and lack supervisions on the implementation of carbon reduction strategies. 

Consequently, the effects of their strategies are not guaranteed in practice. Therefore, this study 

presents a micro-level design optimisation method of prefabricated projects for practical carbon 

reduction strategies in Chinese construction industry, where precast reinforced concrete is the 

main forms of prefabrication.  

9.1 Response to research questions and objectives 

To achieve the goal, three research questions are raised: 

1) How can embodied CE from prefabricated constructions be calculated more accurately 

using current estimation methods and accessible data? 

2) What is the practical approach of predicting and optimising embodied CE of prefabricated 

projects in the design stage? 

3) To what extent can design optimisation be applied and what is the most appropriate way 

of implementing optimisation as a guidance to designers in prefabricated design?  

To address the aim, the following objectives are undertaken: 

1) Identify the stages, impact variables, calculation method, and available database for 

calculating embodied CE of prefabricated constructions.  

2) Analyse embodied CE of prefabricated construction using micro-level design variables. 

3) Generate design alternatives and compare their CE to identify the most sustainable design.  

4) Develop a practical method to communicate the optimisation outputs to designers 

effectively.  
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9.1.1 Estimating embodied CE using available data 

9.1.1.1 Identify the system boundaries of prefabrication embodied CE optimisation 

Research objective 1 “Identify the stages, impact variables, calculation method, and available 

database for calculating embodied CE of prefabricated constructions.” is addressed via a 

literature review focusing on project embodied CE.  

The review results show that manufacturing and transportation stages contributes to more than 

90% of embodied CE, in which building materials, formwork, and fuel for transporting 

prefabricated element emerge as the primary carbon sources. These elements offer the greatest 

carbon reduction potential. Therefore, this study defines the system boundary to include 

embodied CE from producing building materials and formwork as well as transporting 

prefabricated elements.  

Emissions from building materials and formwork are typically analysed using emission factor 

method, where material quantity and CE coefficient are the main variables. The China Products 

Carbon Footprint Factors Database (CCG, 2022) and Calculation standard of building carbon 

emissions (2014) GB/T51366-2019 provide emission factors for building materials and 

formwork materials used in prefabricated construction.  

Regarding transportation CE, the China Products Carbon Footprint Factors Database (CCG, 

2022; LÜ et al., 2021) and  Calculation standard of building carbon emissions (2014) 

GB/T51366-2019 introduce the emission factor method, considering material quantity, 

transport distance, and CE coefficient. These two sources also provide the emission coefficients 

for transportation emission estimation. Additionally, MOVES3 introduces the transportation 

emission calculation method that factors vehicles features, driving patterns, road conditions, 

and freight weight. The necessary data for employing this method can be found in the 

Preliminary Report on the Freight Industry (School of Transporation and Logistics of 

Southwest Jiaotong University, 2020), Market Analysis and Fuel Efficiency Technology 

Potential of Heavy-Duty Vehicles in China (Delgado & Li, 2017), China Green Freight 

Assessment (China Automotive Technology and Research Center, 2018), and Exhaust 

Emission Rates for Heavy-Duty Onroad Vehicles in MOVES3 (EPA, 2020a). 
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9.1.1.2 Improve existing embodied CE estimation methods 

Research objective 2 “Analyse embodied CE of prefabricated construction using micro-level 

design variables” is addressed via improving existing embodied CE estimation methods.  

Current CE estimation methods and databases, as mentioned in section 9.1.1.1, predominantly 

rely on statistical analysis. While suitable for macro-level (such as city and region) emission 

estimation, these methods and data lack the accuracy needed for project-specific analysis. A 

promising strategy to address such issue involves integrating those statistical emission factors 

with process-based life-cycle analysis of material quantities. This strategy analyses the design 

and construction process at a micro-level, introducing detailed design/construction variables to 

estimate accurate material quantities. The refined material quantities are then used along with 

statistical emission factors to estimate embodied CE. 

Specifically, the estimation of building material quantities for manufacturing CE calculation is 

conducted via quantitative analysis of the prefabricated element design. The material quantity 

of each element is estimated based on its features, considering specific element cross-sections 

and connection junctions. This research considers the quantity of casting formwork via 

construction simulation based on element dimensions. Each piece of formwork is 

comprehensively considered using an off-line production mode, i.e., assuming the dimensions 

of all elements are known in advance and maximising the reuse of formwork pieces.  

After obtaining the refined quantities of building materials and formwork pieces, the 

manufacture CE is calculated via multiplying these quantities by corresponding emission 

factors from The China Products Carbon Footprint Factors Database (CCG, 2022) and 

Calculation standard of building carbon emissions (2014) GB/T51366-2019. 

For transportation analysis, a 3D BP algorithm is employed to simulate the loading status of 

prefabricated elements on each vehicle. This simulation provides the freight weight for each 

vehicle. Using the analysis method from MOVES3, the transportation CE is accurately 

estimated.  

9.1.2 Predicting and optimising embodied CE at design stage 

The research question 3 “What is the practical approach of predicting and optimising embodied 

CE in the design stage?” and the corresponding research objective 3 “Generate design 
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alternatives and compare their CE to identify the most sustainable design.” are addressed using 

the parametric design approach and GA. 

Given the features of project design, an original architectural design representing geometric 

dimensions serves as the optimisation starting point. The geometric features of this original 

design are converted into a set of numeric parameters. The uncertain design variables necessary 

for structure and prefabricated element design are defined as parameters within specific ranges. 

Design alternatives, based on the original design, are generated via varying the uncertain design 

parameters.  

The structure design of each alternative is performed based on the guidance and requirements 

of the Chinese codes GB55001-2021, GB55002-2021, GB55008-2021, GB50011-2010(2016), 

GB50010-2010(2015), GB50009-2012, GB/T51231-2016, JGJ1-2014, 13J104, 15G366-1, and 

22G101-1. After determining the detailed design of each design alternative, the corresponding 

CE is estimated using the refined emission analysis method mentioned in section 9.1.1.2. 

Finally, a GA is employed to explore the feasible solution with the lowest CE.  

9.1.3 Communicating the optimisation results 

To address question 4 “What is the most appropriate form of providing design guidance to 

designers? and research objective 4 “Develop a practical method to communicate the 

optimisation outputs to designers effectively.” a questionnaire survey is conducted among 

Chinese designers.  

The survey results indicate a high likelihood of original designs being presented in 2D drawings 

and 3D models. Designers prefer to receive design assistance in 3D models. Consequently, a 

viable application of the proposed design optimisation method involves extracting original 

design parameters from 2D drawings and 3D models, and presenting feasible solutions in 3D 

models.  

Based on this finding, a design parameter extraction tool and an optimisation visualisation tool 

are developed in Rhino 3D and Grasshopper. Specifically, the data extraction tool extract 

original design parameters from 3D models and stored these parameters in files with suffix 

of .xlsx. These parameters are then input into the design optimisation model mentioned in 

section 9.1.2 to obtain the optimised design solution, which is defined by a set of parameters. 
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The parameters of optimised design solution are then input into the visualisation tool to 

generate the 3D model of project design and transportation plans.  

9.2 Research findings 

Based on the responses in section 9.1, this study presents a micro-level carbon optimisation 

model for reducing CE from building materials, formwork, and fuel consumption during 

element transportation. Applying this method to a case project shows that the proposed design 

optimisation method achieved reductions in CE from building materials, formwork, and 

prefabricated element transportation by 11.09%, 0.13%, and 30.82%, respectively, 

representing a 10.06% decrease in the overall embodied CE. The findings indicate that the 

proposed design optimisation model is effective in reducing the embodied CE of prefabricated 

projects. 

Additionally, codes are developed in Rhino grasshopper for data extraction and visualisation 

of feasible solutions. Application of these codes in the studied case demonstrates that the 

proposed design optimisation model can extract necessary parameters from original design, 

whether in 2D drawing or 3D model. The feasible solution identified by the model can be 

expressed in 3D model, encompassing extensive information on structural design and the 

transportation plan. These results indicate significant potential for the proposed optimisation 

model’s application in current design practices. 

A questionnaire survey is conducted to verify the method’s practicality and exploring an 

application approach in current design practices. Analysis on the responses reveals a 

considerable demand for sustainable design optimisation in Chinese construction industry. The 

effects and efficiency of the proposed optimisation method meet most requirements of 

designers. It is practical for designers to employ the proposed method for determining critical 

design variables for a lower embodied CE. Therefore, the proposed design optimisation method 

is deemed practical for application in Chinese construction industry. 

9.3 Research implications 

This study reviews existing strategies and approaches for sustainable design optimisation. 

Through introducing real-world conditions and constraints, the practicality and potential 

defects of these strategies are estimated. Being provided with a comprehensive view, scholars 
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can use the estimation results as guidance when selecting carbon analysis and estimation 

methods.  

Additionally, this study conducts micro-level design optimisation of prefabricated element 

design and transportation. Comparison between macro-level and micro-level analysis reveals 

that simply applying macro-level sustainable strategies might not guarantee reduced CE. The 

uncertainty of micro-level decisions may offset the expected carbon reduction from broad 

principles. Therefore, the significance of introducing micro-level analysis in the design and 

construction process is highlighted. This approach could offer scholars a novel and thorough 

understanding of carbon reduction strategies and helps to refine conventional design and 

transportation methods. The new carbon reduction horizons are highly plausible to be 

discovered by applying these strategies practically and comprehensively. 

Regarding element design, this research provides a practical perspective on the principle of 

standardisation. Designers can apply this principle as a general guideline for sustainable precast 

project design. Additionally, introducing micro-level variables links detailed design and 

formwork reuse, unveiling novel carbon reduction strategies through formwork design, 

manufacturing, and assembly. These strategies can complement existing carbon reduction 

methods, enabling designers and researchers to lessen the environment impact of precast 

projects. 

Meanwhile, the proposed optimisation method equips architects and civil engineers with 

specific design details. This data could guide the design towards lower CE, preventing potential 

CE increases from inappropriate decisions in design development. It, therefore, facilitates the 

implementation of early-stage design decisions and addresses gaps left by previous early-stage 

tools. Additionally, the model analyses the design of formwork pieces, offering manufacturer 

efficient formwork blueprints, thereby enhancing the reusability of formwork pieces and 

reducing construction cost.  

As for element transportation, this study provides a transportation CE optimisation method for 

prefabricated construction by integrating the bin packing problem and modal CE analysis 

model. The introduced transportation CE analysis method considers real-world constraints in 

the transportation CE calculation of prefabricated elements. It adopts element size, element 

quantity, and vehicle type as variables in transportation CE estimation, by which CE analysis 

is quantitatively linked to architecture design and construction organisation. Scholars, 
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architects, and civil engineers can therefore employ the method to reduce project-specific 

transportation CE values. 

Additionally, the BP algorithm provides contractors with a detailed packing solution via the 

variable set of each element. Contractors can use these variables to guide transportation 

planning, thus achieving the smallest vehicle number. Since the transportation cost is positively 

related to the vehicle number, the BP algorithm could also cause a reduction in transportation 

costs and construction fees. 

9.4 Research contributions 

9.4.1 Theoretical contributions 

This research challenges the effects of macro-level analysis in prefabrication design. 

Conventional methods, like standardisation in design optimisation and emission factor method 

in transportation CE analysis, are not accurate enough in estimating prefabricated projects. 

Therefore, scholars are encouraged to incorporate more practical and detailed data into design 

analysis. Shifting from macro-level estimations (based on traditional quota methods) to micro-

level simulations of design and construction could reveal new decarbonisation opportunities in 

design practices. 

The analysis on EIF utilisation in design reveals the qualitative impact of design activities. 

Beyond technical advantages, the requirement and preference of designers are highlighted to 

be considered in determining design EIF. Scholars can leverage these findings to identify the 

most suitable EIF for various design tasks, paving the way for future studies on sustainable 

design tools developments and promotions. 

9.4.2 Practical contributions 

This research contributes to the decarbonisation of construction projects by exploiting 

innovative carbon reduction strategies. Given that these strategies targets at optimising 

decisions made in the development stage, their reduction potential is likely to be replicable in 

other projects. Concurrently, these strategies offer design solutions that reduce building 

material consumption and transportation quantities, thereby reducing capital investment and 

aligning with the commercial imperatives in prefabrication scenarios.  
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The proposed optimisation model equips architects and civil engineers with continuous 

decision-making support throughout the design process. This support facilitates the 

implementation of early-stage design decisions and may provide additional CE reduction as 

design evolves. As a supplementary optimisation process, this method could be integrated 

seamlessly into the existing workflow, fostering the application of sustainable construction in 

practice. It serves a promised solution for designers and manufacturers to reduce embodied CE 

of prefabricated projects comprehensively. 

Although this study focuses on precast construction in China, the benefits are expected to be 

broadly applicable. Precast project design and delivery in China is similar to those in regions 

like Europe, Hong Kong, and Singapore, where comparable structural design codes, methods, 

and processes are used. Therefore, the hypothesis and preconditions in this study are achievable, 

indicating the potential applicability of the proposed optimization model. In this context, the 

study could contribute to the advancement of sustainable construction worldwide. 

9.5 Limitations and future studies 

Despite the above contributions, this study yields some limitations. Firstly, the design 

optimisation is conducted solely from the perspective of CE. A comprehensive target 

integrating improving construction quality and shortening construction period remains to be 

considered in future studies.  

Secondly, despite utilising micro-level analysis on the design and construction process of 

prefabricated project, the optimisation model involves approximations. Such cases include 

simplification assumptions mentioned in sections 4.3.3.3 and 5.3.3.3. A more complex variable 

set and close-to-reality model settings should be considered for real-world applications.  

Thirdly, the optimisation is applied in one representative case, verifying the efficiency and 

practicality of the proposed method. Applying the optimisation model on more case would 

better validate the claim of this study. 

Lastly, the exploration of feasible solutions is constrained by algorithm efficiency and 

computing power.  Given the main focus of this study is reducing embodied CE and applying 

the method in design practice, the optimisation efficiency remains to be further improved. 

Future works are encouraged to consider more performance indicators, introduce more accurate 
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analysis models, improve the algorithm efficiency, and integrate the optimisation model with 

building information modelling.  
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