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Novel CT Image-Based Intracerebral 
Bleeding Risk Score for Patients With Acute 
Ischemic Stroke Undergoing Thrombolysis
Shuangfang Fang, MD*; Hanhan Lei, MD*; Gareth Ambler, PhD; David J. Werring , PhD; Huapin Huang, MD; 
Huiying Lin , MD; Xiaomin Wu, MD; Qinli Zhang , MD; Xiuyan Han, MD; Genshan Gao , MD; 
Ronghua Chen, MD; Jie Chen, MD; Hangfeng Li, MD; Jin Wei , MD; Guangliang Chen, MD; Jianhua Chen, MD; 
Nan Liu , MD; Hou-wei Du , MD

BACKGROUND: Symptomatic intracerebral hemorrhage (sICH) after intravenous recombinant tissue plasminogen activator in 
patients with acute ischemic stroke (AIS) remains a feared yet unpredictable complication. We aimed to develop and validate a 
new predictive model incorporating clinical variables and noncontrast head computed tomography imaging features to predict 
sICH in patients with AIS receiving intravenous recombinant tissue plasminogen activator.

METHODS AND RESULTS: The predictive model was derived from 808 patients with AIS in the derivation cohort in Southeast 
China, based on multivariable logistic regression analysis. External validation was conducted in a validation cohort from 
Central China. Discrimination, calibration, and clinical usefulness of the predictive model were assessed. We observed 32 
sICH events among 808 patients with AIS in the derivation cohort, and 21 sICH events out of 612 participants in the validation 
cohort. The variables in the predictive model included cerebral small vessel disease burden and early infarct signs on head 
computed tomography scan, atrial fibrillation, age, systolic blood pressure, and initial National Institutes of Health Stroke Scale 
score. The fitted model showed promising discrimination (optimism-corrected C statistic of 0.80) and acceptable calibration 
(Hosmer and Lemeshow goodness of fit P=0.816) in the derivation cohort. External validation showed similar discrimination (C 
statistic 0.82 [95% CI, 0.72–0.91]) and calibration (Hosmer and Lemeshow goodness of fit P=0.866).

CONCLUSIONS: Our internally and externally validated prediction model for sICH in patients with AIS who received intravenous 
thrombolysis may facilitate individualized prediction for intracerebral bleeding risk after intravenous thrombolysis for acute 
ischemic stroke.

Key Words: acute ischemic stroke ■ intravenous thrombolysis ■ nomograph ■ predictive model ■ symptomatic intracranial 
hemorrhage

Symptomatic intracerebral hemorrhage (sICH) after 
intravenous thrombolysis using recombinant tissue 
plasminogen activator (r-tPA) in patients with acute 

ischemic stroke (AIS) remains a major feared compli-
cation.1–3 Previous efforts have established several pre-
dictive models for sICH after intravenous thrombolysis, 

some of which only include clinical variables, such as 
the SPAN-100 (Stroke diagnosis using age and National 
Institutes of Health Stroke Scale [NIHSS]), and the 
Multicenter stroke survey score. The HAT (hemorrhage 
after thrombosis) score and some other scores incor-
porated both simple computed tomography (CT) image 

Correspondence to: Hou-wei Du, MD, PhD, Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Gulou District, Fuzhou 
350001, China. Email: houweidu@fjmu.edu.cn and Nan Liu, MD, Department of Rehabilitation, Fujian Medical University Union Hospital, 29 Xinquan Rd, 
Gulou District, Fuzhou 350001, China. Email: xieheliunan1984@fjmu.edu.cn

*S. Fang and H. Lei are co-first authors.

This manuscript was sent to Tiffany M. Powell-Wiley, MD, MPH, Associate Editor, for review by expert referees, editorial decision, and final disposition.

Supplemental Material is available at https://​www.​ahajo​urnals.​org/​doi/​suppl/​​10.​1161/​JAHA.​124.​037256

For Sources of Funding and Disclosures, see page 8.

© 2025 The Author(s). Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative 
Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use 
is non-commercial and no modifications or adaptations are made. 

JAHA is available at: www.ahajournals.org/journal/jaha

D
ow

nloaded from
 http://ahajournals.org by on M

arch 11, 2025

https://orcid.org/0000-0003-2074-1861
https://orcid.org/0009-0002-8122-2184
https://orcid.org/0009-0003-6659-8383
https://orcid.org/0009-0009-0728-2454
https://orcid.org/0000-0003-4394-3327
https://orcid.org/0000-0003-2901-3721
mailto:
https://orcid.org/0000-0002-5978-9734
mailto:
mailto:
mailto:houweidu@fjmu.edu.cn
mailto:xieheliunan1984@fjmu.edu.cn
https://www.ahajournals.org/doi/suppl/10.1161/JAHA.124.037256
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.ahajournals.org/journal/jaha
http://crossmark.crossref.org/dialog/?doi=10.1161%2FJAHA.124.037256&domain=pdf&date_stamp=2025-02-08


J Am Heart Assoc. 2025;14:e037256. DOI: 10.1161/JAHA.124.037256� 2

Fang et al� The CT Imaging-Based Brain Bleeding Risk Score

features (ie, early infarct signs) and clinical variables.4,5 
However, the process of categorizing discrete/contin-
uous variables into 2 or 3 risk groups, as used by the 
HAT and the SEDAN (sugar, early infarct sign, dense 
artery, age, and NIHSS) scores, is statistically inefficient 
and may decrease the predictive accuracy.6

Cerebral small vessel disease (CSVD) refers to a 
group of age-related pathological disorders that affect 
the brain microvasculature and cause most sponta-
neous intracerebral hemorrhage.7 Previous studies 
showed that biomarkers of CSVD on magnetic reso-
nance imaging were related to the risk of sICH after 
intravenous thrombolysis.8,9 However, assessing im-
aging markers of CSVD with magnetic resonance 

imaging is not routinely accessible and increases time 
to treatment in emergency scenarios. A recent score 
to assess the total CSVD burden on noncontrast head 
CT scans based on the presence of 3 imaging mark-
ers (white matter lucencies, lacunes, and brain atro-
phy) showed good inter-rater agreement.10 Moreover, 
the presence of CT-defined leukoaraiosis was associ-
ated with an increased risk of sICH after thrombolysis 
for AIS.11 To our knowledge, the role of a more com-
prehensive assessment of CT-CSVD burden in sICH 
risk prediction has not been investigated. We aimed to 
develop and validate a novel bleeding nomogram in-
corporating imaging markers of CSVD and early infarct 
signs on noncontrast head CT scan, together with sim-
ple clinical variables, to predict sICH after intravenous 
thrombolysis for AIS.

METHODS
Data Sharing Statement
Persons interested in obtaining access to the data 
should contact the corresponding author.

Study Design, Setting, and Participants
A retrospective multicenter observational study was 
used to develop a prediction model for sICH after in-
travenous r-tPA in patients with AIS, using data from 
3 teaching hospitals of Fujian Medical University in 
Southeast China between January 2016 and December 
2022. The model was externally validated using a sec-
ond retrospective observational data from 2 teaching 
hospitals in Central China. Patients were eligible if they 
received intravenous r-tPA within 4.5 hours after stroke 
onset. We excluded patients who underwent endovas-
cular treatment following bridging intravenous throm-
bolysis because it was beyond the focus of the present 
study. We also excluded patients without imaging data 
of sufficient quality to assess initial baseline CT imaging 
features, including CSVD and early infarct signs. Both 
the derivation cohort and the validation cohort used 
the same eligibility criteria. This study protocol was 
reviewed and approved by Fujian Medical University 
Union Hospital Ethics Committee (NO. 2019KY076). 
Informed consent was waived due to the nature of our 
retrospective study with routine anonymous data.

Model Predictors
We selected 24 clinically relevant predictors of sICH 
through a systematic literature search using the search 
term (‘ischemic stroke’, ‘cerebral infarct’, ‘hemorrhagic 
transformation’, ‘cerebral hemorrhage’, ‘intravenous 
thrombolysis’, ‘alteplase’, and ‘recombinant tissue 
plasminogen activator’)4–6,10 and expert clinical opin-
ion, including demographics (age, sex, systolic and 

CLINICAL PERSPECTIVE

What Is New?
•	 The newly established CANES (CSVD [Cerebral 

small vessel disease], AF [Atrial fibrillation], ini-
tial National Institutes of Health Stroke Scale 
[NIHSS] score, Early infarct signs, Systolic 
blood pressure) model is the first to add com-
puted tomography–visible cerebral small-vessel 
disease imaging markers in addition to early in-
farct signs to predict symptomatic intracranial 
hemorrhage after thrombolysis in patients with 
acute ischemic stroke.

What Are the Clinical Implications?
•	 The CANES score may provide indications for 

early identification of patients who are candi-
dates for postprocedural intensive management 
to reduce the risk of symptomatic intracerebral 
hemorrhage.

Nonstandard Abbreviations and Acronyms

AIS	 acute ischemic stroke
CSVD	 cerebral small vessel disease
CT	 computed tomography
HAT	 hemorrhage after thrombosis
NIHSS	 National Institutes of Health Stroke 

Scale
r-tPA	 recombinant tissue plasminogen 

activator
SEDAN	 sugar, early infarct sign, dense 

artery, age, and NIHSS
sICH	 symptomatic intracerebral 

hemorrhage
SPAN-100	 stroke diagnosis using age and 

NIHSS
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diastolic blood pressure), clinical characteristics (smok-
ing status, drinking, initial NIHSS, TOAST (Trial of ORG 
10172 in Acute Stroke Treatment) classification, labo-
ratory indicators (blood glucose before thrombolysis, 
platelet count, total cholesterol, low-density lipopro-
tein, triglycerides), CT-image features (CT-CSVD score, 
dense artery sign, early infarct signs, Alberta Stroke 
Program Early Ct Score [ASPECT] score), comorbidi-
ties (previous stroke, hypertension, diabetes, hyper-
lipidemia, atrial fibrillation, ischemic heart disease), and 
prescribed drugs (antithrombotics use before stroke).

CT-Image Assessment
All patients underwent a baseline head CT scan be-
fore intravenous thrombolysis, and a follow-up head 
CT scan was routinely performed at 24 hours or earlier 
if sICH after thrombolysis was suspected. Two trained 
neuro-radiologists blinded to clinical variables indepen-
dently reviewed the noncontrast head CT images. The 
imaging markers of CSVD on noncontrast head CT 
were assessed as previously described. In brief, ante-
rior and posterior white matter lucencies were graded 
using the van Swieten scale: absent (grade 0), restricted 
to the region adjoining the ventricles (grade 1), covering 
the entire region from the lateral ventricle to the cortex 
(grade 2).12 Cortical and central atrophy were graded 
as none (grade 0), mild to moderate (grade 1), or severe 
(grade 2) against a standard template. A lacune was 
defined as a round or ovoid subcortical well-defined 
hypoattenuating lesion with a diameter of 3 to 15 mm in 
the territory of the perforating arteriole.12 We calculated 
the total CT-CSVD score ranging from 0 to 3, which 
allocates 1 point for each of the following: severe white 
matter lucencies (grade 2), ≥2 lacunes, and severe cen-
tral or cortical atrophy (grade 2).12 Early infarct signs and 
dense artery sign (the appearance of a direct thrombus 
on nonenhanced CT) were reviewed as described.13–16 
Early infarct signs include visible hypodensities, insu-
lar ribbon sign, obscuration of the lentiform nucleus, 
superficial/absent lateral fissure, or cortical sulcus.15 
Dense artery sign refers to the appearance of direct 
thrombus imaging on a nonenhanced head CT.16

Outcome
Our primary outcome was sICH per the ECASS-II 
(European Cooperative Acute Stroke Study-II) stand-
ard, defined as parenchymal hemorrhage on head CT 
with neurologic worsening (NIHSS ≥4 points) within 
36 hours after thrombolytic treatment.1

Sample Size Calculation
We used the pmsampsize Package, R software (version 
4.3.1) for sample size estimation. Our prespecified sample 
size calculation for model derivation assumed the preva-
lence of sICH is 0.06, an estimate of C statistic 0.8, and 

a maximum number of 24 predictor parameters in the 
model. Based on these inputs, a sample size of ≈2846 
participants is required.17 Our sample size is relatively low 
and therefore the predictive model will be at risk of overfit-
ting. However, we have assessed the stability and gener-
alization of the predictive model in the external validation.

Missing Data
Fully conditional specification18 was used to multiply 
impute missing values in our derivation cohort using 
the MICE package (version 3.6.0) for R (version 4.3.1). 
The imputation models included all model covariates 
and binary event within each data set. We generated 
10 imputed data sets based on the rule of thumb.19 
Missing data were assumed to be missing at random.20 
Predictor variables requiring imputation were base-
line blood glucose (64 [7.9%]), blood platelet count (5 
[0.6%]), serum lipid profile including total cholesterol, 
low-density lipoprotein, and triglycerides (20 [2.5%]), 
initial NIHSS (3 [0.4%]), TOAST classification (3 [0.4%]), 
and antiplatelet use before index stroke (14 [1.7%]). 
There were no missing data in the validation cohort.

Statistical Analysis
We compared the frequency of clinical characteristics 
and noncontrast head CT features between patients 
with and without sICH using the χ2 test or Fisher’s exact 
test for categorical variables and the Mann–Whitney U 
test for continuous variables.

Model Developed With the Imputation of 
Missing Data
For model development in the derivation cohort, pre-
dictors were selected by a least absolute shrinkage 
and selection operator algorithm in each of the 10 
imputed data sets using the glmnet package (ver-
sion 4.1-4). Variables for the predictive model were 
selected by majority vote (ie, if they were selected 
5 or more times in the 10 imputed data sets).21 The 
predictive model was constructed using multivariable 
logistic regression analysis and then re-estimated 
within each of the 10 imputed data sets, and the co-
efficients estimates were combined using Rubin’s 
rule.22 We established a nomogram to obtain the pre-
dictions for the risk of sICH.

Performance of the Predictive Models
Discrimination was assessed by calculating the C sta-
tistic, where a C statistic below 0.7 is considered poor, 
0.7 to 0.8 is considered acceptable, and 0.8 or 0.9 or 
above is considered excellent or outstanding.23,24 To 
check for significant differences between the observed 
and predicted risks of sICH, calibration of the predic-
tive model was assessed using the Hosmer-Lemeshow 
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test and calibration plots. Calibration plots were gener-
ated separately in each imputed data set (1 illustrative 
example is shown for the predictive model).25,26 Model 
performance measures were estimated in each im-
puted data set and combined using the Rubin’s rules.27

Internal Validation
Bootstrap resampling for internal validation and esti-
mation of the expected optimism were performed on 
the derivation cohort based on Harrell.28–30 Briefly, 
internal validation was performed with 1000 boot-
strapped samples based on each of imputed data sets 
separately.29,30 The optimism-corrected C statistic of 
the internally validated within each imputed data set 
and averaged over the 10 imputed data sets were re-
ported. As an important indicator of the validity of the 
established predictive model, the amount of optimism 
in the model gives an insight into how the model would 
perform when applied to new data sets.31

External Validation and Comparison With 
Other Models
We assessed the performance of the predicting score 
in the external validation cohort with discrimination and 
calibration. We additionally compared the discrimina-
tion of the novel predictive model to the conventional 
SPAN-100 score, the HAT score, and the SEDAN score 
in validation cohorts.32

Clinical Utility
The decision curve analysis was used to assess the clin-
ical utility of the predictive model.32 The decision curve 
analysis is a plot of net benefit against threshold prob-
ability.33 We compared the clinical utility of the novel pre-
dictive model to the conventional SPAN-100 score, the 
HAT score, and the SEDAN score in validation cohorts.

Sensitivity and Subgroup Analyses
We performed a sensitivity analysis limited to patients 
with anterior circulation occlusion of 629 out 808 pa-
tients in the derivation cohort. We performed a sep-
arate analysis in the complete case data set of 711 
patients who had available values for the 24 predic-
tors in the derivation cohort. Subgroup analyses were 
performed to assess the performance of the model in 
patients identified stratified by sex.

We conducted the analyses followed the frame-
work for derivation and validation of prediction models 
discretely previously,34 and the transparent reporting 
of a multivariable prediction model for individual prog-
nosis or diagnosis (TRIPOD) statement.34 All analyses 
were conducted using the R version 4.3.1 software 
(http://​www.​R-​proje​ct.​org/​). Two-tailed values of P 
<0.05 were considered statistically significant.

RESULTS
Study Population Characteristics
A total of 808 patients with AIS who received intra-
venous thrombolysis between January 2016 and 
December 2022 for outcomes and head CT scan fea-
tures were available for the derivation cohort. Median 
age was 68 years (interquartile range 59–75), and 
men 533 (66.0%). A total of 32 participants experi-
enced sICH, with a rate of 4.0% (95% CI, 2.8%–5.6%). 
In total, 612 patients were included in the validation 
cohort (median age 64 years [interquartile range 55–
72], and men 413 [67.5%]), with 21 sICH (3.4% [95% 
CI, 2.2%–5.3%]) events observed. Baseline demo-
graphics, characteristics, and head CT scan features 
of the derivation and validation cohorts are shown in 
Table 1, compared by univariate analysis to patients 
without sICH.

Model Development
Table S1 summarizes the number of times each vari-
able was retained across the imputed data sets. Four 
of the initial 24 potential predictors were selected in all 
10 imputed data sets. We then constructed the mul-
tivariable logistic predictive models based on these 6 
predictor variables (CSVD score, Atrial fibrillation, Age, 
initial NIHSS score, Early infarct signs, and Systolic 
blood pressure). A visualized nomogram predictive 
model (CANES; an acronym of the predictive factors) 
was then established (Figure  1). The CANES nomo-
gram assigns a graphic preliminary score to each of 
the predictors with a point range from 0 to 100, which 
was then summed to generate the total score, finally 
converted into an individual probability of sICH ranging 
from 0 to 100%. The probability of sICH is obtained 
by drawing a vertical line between the total score line 
and the probability line. As shown in Figure  1, for a 
75-year-old patient with AIS with atrial fibrillation, hav-
ing an initial NIHSS score of 15, systolic blood pres-
sure 180 mm Hg, early infarct signs, and a CSVD score 
of 2 on noncontrast head CT, the total CANES score 
was 188, indicating a probability of sICH of 39% after 
intravenous r-tPA. Table  S2 shows the points of the 
CANES scale with their different values.

Discrimination, Calibration, and Internal 
Validation
The internal bootstrap validation of the predic-
tive model showed promising discrimination (an 
optimism-corrected C statistic of 0.80 [95% CI, 0.79–
0.80]; Table S3). The calibration plot revealed good 
predictive accuracy between the actual probability 
and predicted probability (Figure  2A). The Hosmer-
Lemeshow test did not suggest lack of calibration 
(χ2=4.436, P=0.816).
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External Validation and Comparison With 
Conventional Prediction Models
Upon external validation, the CANES prediction model 
showed similar discrimination (C statistic: 0.82 [95% 
CI, 0.72–0.91]; Figure 3). The calibration plot indicated 
good predictive accuracy (Figure  2B). The Hosmer-
Lemeshow test did not suggest a lack of calibration 
(χ2=3.899, P=0.866). In addition, we compared the 
4 predictive models (the SPAN-100 score, the HAT 
score, the SEDAN score, and the CANES model) in the 
validation cohort and found that the CANES model had 
the highest discrimination (Figure 3).

Clinical Utility Analysis
Decision curve analysis was used to facilitate the 
comparison among 4 different prediction models 
(the CANES, the SPAN-100, the HAT, and the SEDAN 
scores) in the validation cohort, based on the assump-
tions that no one is at risk for sICH (all negative) or the 
assumption that all are at risk for sICH (all positive). The 

net benefits of the CANES, the SPAN-100, the HAT, 
and the SEDAN scores for identifying sICH conditional 
on different decision thresholds are shown in Table 2. 
Figure 4 shows that the CANES model had a greater 
net benefit than the SPAN-100 score, the HAT score, 
and SEDAN score. For example, using the CANES 
model at a cut-off of 4% risk of sICH resulted in a pre-
dicted net benefit of 15 for every 1000 participants, 
which was significantly higher than the SEDAN score 
(6 per 1000), the SPAN-100 (4 per 1000), and the HAT 
score (8 per 1000).

Sensitivity and Subgroup Analysis
Sensitivity analysis limited to patients with anterior circu-
lation occlusion confirmed the predictive performance 
of the CANES model (an optimism-corrected C statis-
tic of 0.78 [95% CI, 0.77–0.79]; Table  S4). Complete 
case data set analysis yielded consistent findings with 
the primary analysis (an optimism-corrected C statistic 
of 0.81 [95% CI, 0.75–0.88]; Table S4). The C statistics 

Table 1.  Baseline Characteristics

Variables

Derivation (n=808) Validation (n=612)

Non-sICH 
(n=776) sICH (n=32) P value

Non-sICH 
(n=591) sICH (n=21) P value

Age, y, median (IQR) 67 (59–75) 74.5 (68–80) <0.001 64 (55–71) 74 (63–80) 0.001

Men, n (%) 513 (66.1) 20 (62.5) 0.817 401 (67.9) 12 (57.1) 0.428

Previous stroke, n (%) 117 (15.1) 7 (21.9) 0.314 139 (23.5) 2 (9.5) 0.187

Hypertension, n (%) 512 (66.0) 26 (81.3) 0.109 375 (63.5) 18 (85.7) 0.063

Diabetes, n (%) 160 (20.6) 11 (34.4) 0.100 100 (16.9) 3 (14.3) 0.984

Hyperlipidemia, n (%) 300 (38.7) 7 (21.9) 0.083 85 (14.4) 2 (9.5) 0.754

Atrial fibrillation, n (%) 198 (25.5) 20 (62.5) <0.001 62 (10.5) 8 (38.1) 0.001

Initial NIHSS, median (IQR) 5 (3–10) 11 (6–16) <0.001 4 (2–9) 14 (5–18) <0.001

Systolic blood pressure, mm Hg, median (IQR) 150 (135–163) 155 (140–181) 0.041 150 (135–164) 172 (136–185) 0.007

Blood glucose before thrombolysis, mmol/L, 
median (IQR)

6.78 (5.94–8.31) 8.13 (6.55–10.92) 0.002 6.7 (5.81–8.35) 7.31 (6.82–9.56) 0.081

CT-CSVD score, n (%) <0.001 0.605

0 556 (71.6) 14 (43.8) 264 (44.7) 9 (42.9)

1 154 (19.8) 11 (6.7) 192 (32.5) 8 (38.1)

2 61 (7.9) 5 (15.6) 121 (20.5) 3 (14.3)

3 5 (0.6) 2 (6.3) 14 (2.4) 1 (4.8)

Dense artery sign, n (%) 168 (21.7) 13 (40.6) 0.021 54 (9.1) 6 (28.6) 0.012

Visible hypodensities, n (%) <0.001 0.018

NA 484 (62.2) 7 (21.9) 436 (73.8) 11 (52.4)

<1/3 MCA 223 (28.7) 10 (31.3) 126 (21.3) 6 (28.6)

≥1/3 MCA 69 (8.9) 15 (46.9) 29 (4.9) 4 (19.1)

Insular ribbon sign, n (%) 193 (24.9) 21 (65.6) <0.001 70 (11.8) 6 (28.6) 0.035

Obscuration of the lentiform nucleus, n (%) 154 (19.9) 15 (46.9) <0.001 63 (10.7) 6 (28.6) 0.023

Superficial/absent lateral fissure or cortical 
sulcus, n (%)

90 (11.6) 17 (53.1) <0.001 63 (10.7) 8 (38.1) 0.001

Early infarct signs, n (%) 408 (52.6) 28 (87.5) <0.001 164 (27.8) 11 (52.4) 0.027

CT indicates computed tomography; CSVD, cerebral small vessel disease; IQR, interquartile range; MCA, middle cerebral artery; NA, not applicable; NIHSS, 
National Institutes of Health Stroke Scale; and sICH, symptomatic intracerebral hemorrhage.
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of the CANES model were similar across subgroups of 
patients identified according to different sex (Table S5).

DISCUSSION
We developed and validated a novel noncontrast CT 
image–based predictive model for sICH after intrave-
nous r-tPA in patients with AIS. The newly established 
CANES model incorporates 6 readily accessible vari-
ables at bedside, yielding better discriminative ability 
than the SPAN-100, the HAT, and the SEDAN scores, 
and may have good clinical usefulness throughout the 
range of sICH risk. Moreover, the CANES score was 
visualized using a nomogram for ease of practical use 
to provide an individualized probability estimation of the 
event based on the individual’s disease characteristics 
without averaging or combining within a category.35

To be clinically practical and easily applied at bed-
side, a risk-predicting tool using information easily 
obtained before the administration of intravenous 
thrombolysis to balance the risk of sICH is favored. 
Some prediction models are now available to estimate 
an individual’s probability of sICH after intravenous r-
tPA.36–38 The simplest model, the SPAN-100 index, 
which incorporates only age and NIHSS, failed to pre-
dict sICH satisfactorily in our derivation and validation 
cohorts as well as in several previous studies.37,39,40 
The HAT score incorporates early infarct signs on 
noncontrast head CT scan in addition to clinical pa-
rameters.36 However, data concerning the predictive 

power of the HAT score for sICH are inconsistent.41–43 
Our data showed that compared with the SPAN-100, 
the HAT, and the SEDAN scores, the new established 
CANES score had the highest discriminative perfor-
mance. Variables in the CANES model can be easily 
obtained using clinical examination and simple, rou-
tinely acquired nonenhanced CT brain imaging. Thus, 
identification of individuals at higher risk of sICH with 
the CANES score may be feasible and may facilitate 
postthrombolysis management. For instance, for pa-
tients who are at a high risk of sICH, postthromboly-
sis imaging control and more intensive blood pressure 
monitoring should be anticipated. The ENCHANTED 
(Enhanced Control of Hypertension and Thrombolysis) 
stroke study showed that compared with the guideline 
blood pressure management group, the frequency of 
sICH was lower but not significantly different in the in-
tensive blood pressure group.44

In line with some previous studies,45 our data 
showed the predictive value of early infarct signs for 
sICH after intravenous thrombolysis. The new estab-
lished CANES model is the first to add CT-visible CSVD 
imaging markers in addition to early infarct signs. The 
severity of these biomarkers may reflect the frailty 
of the small vessels within the brain, which could in-
fluence susceptibility to intracerebral hemorrhage. 
Moreover, these biomarkers are familiar in stroke clin-
ical practice and readily achievable with adequate 
education in centers delivering intravenous thrombol-
ysis. Although magnetic resonance imaging–visible 

Figure 1.  Prediction nomogram for sICH.
CANES indicates CSVD (Cerebral small vessel disease), AF (Atrial fibrillation), initial NIHSS [National 
Institutes of Health Stroke Scale] score, Early infarct sign, Systolic blood pressure; and sICH, symptomatic 
intracerebral hemorrhage.

Points
0 10 20 30 40 50 60 70 80 90 100

CTCSVD
0 2

1 3

NIHSS
0 5 15 25 35

80 100 120 140 160 180 200 220 240 260

25 40 55 70 85

Total Points
0 20 40 60 80 100 120 140 160 180 200 220 240

Prob of sICH
0.01 0.1 0.3 0.5

95

0.39

188
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imaging markers of CSVD (ie, microbleeds) might have 
prognostic value for predicting sICH after intravenous 
thrombolysis,46 these variables are neither readily as-
sessable nor available within the narrow time window 
of intravenous thrombolysis. The established CANES 
model might offer an advantage over the use of mag-
netic resonance imaging, providing an ease-of-use tool 
in the clinical setting.

Strengths and Limitations
Our study has several strengths. First, predictors were 
selected by the least absolute shrinkage and selec-
tion operator algorithm, which combines shrinkage 
and variable selection and is promising when predic-
tion and parsimony are goals of predictive modeling.29 
Moreover, our derivation and validation of the CANES 
model in a diverse cohort of patients from China 

suggests acceptable applicability and consistent per-
formance. Our findings should be interpreted within 
the context of its limitations. First, this study includes all 
the drawbacks of retrospective observational design; 
further prospective validation of the CANES score is 
needed. Although the size of the development sample 
is relatively small, the external validation means that the 
small sample size is less of a negative. Second, our 

Figure 2.  Calibration plot for CANES.
A, Derivation, (B) Validation. These plots show the proportion 
of patients with sICH as both predicted by the model and as 
observed in the derivation cohort (A) and validation cohort (B). 
CANES indicates CSVD (Cerebral small vessel disease), AF 
(Atrial fibrillation), initial NIHSS [National Institutes of Health 
Stroke Scale] score, Early infarct signs, Systolic blood pressure; 
and sICH, symptomatic intracerebral hemorrhage.
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Figure 3.  Discrimination of the prediction models.
CANES indicates CSVD (Cerebral small vessel disease), AF 
(Atrial fibrillation), initial NIHSS [National Institutes of Health 
Stroke Scale] score, Early infarct signs, Systolic blood pressure; 
HAT, hemorrhage after thrombolysis; SEDAN, Sugar, early infarct 
signs, dense artery, age, and NIHSS; and SPAN-100, Stroke 
prognostication using age and NIHSS.
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Table 2.  Net Benefit

Risk 
threshold ALL CANES SEDAN HAT SPAN-100

0.00 0.034 0.034 0.034 0.034 0.034

0.01 0.025 0.026 0.025 0.025 0.025

0.02 0.015 0.020 0.017 0.015 0.015

0.03 0.004 0.016 0.010 0.011 0.004

0.04 −0.006 0.015 0.006 0.008 0.004

0.05 −0.017 0.012 0.011 0.007 0.003

0.06 −0.027 0.013 0.010 0.005 0.003

0.07 −0.038 0.011 0.009 0.008 0.003

0.08 −0.050 0.010 0.005 0.008 0.002

0.09 −0.061 0.010 0.004 0.007 0.002

0.10 −0.073 0.009 0.004 0.007 0.001

CANES indicates CSVD (Cerebral small vessel disease), AF (Atrial 
fibrillation), initial NIHSS score, Early infarct signs, Systolic blood pressure; 
SPAN-100, Stroke prognostication using age and NIHSS; HAT, Hemorrhage 
after thrombolysis; and SEDAN, Sugar, early infarct signs, dense artery, age, 
and NIHSS.
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primary outcome was only based on the ECASS II defi-
nition. However, previous studies have shown that the 
ECASS II definition had the highest inter-rater agree-
ment and the largest contribution to the worst out-
comes.47,48 Third, unmeasured confounding variables, 
including CT perfusion parameters, are not available 
to assess their possible association with sICH. Finally, 
our established CANES model was developed and 
validated in Chinese patients with stroke; whether our 
findings may be generalizable to other ethnic popula-
tions needs to be validated.

CONCLUSIONS
The present study showed good performance of the 
established CANES model for sICH after intravenous 
r-tPA. The CANES score may provide indications for 
early identification of patients who are candidates for 
postprocedural intensive management to reduce the 
risk of sICH.
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