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Abstract: Electroretinograms (ERGs) show differences between typically developing pop-
ulations and those with a diagnosis of autism spectrum disorder (ASD) or attention
deficit/hyperactivity disorder (ADHD). In a series of ERGs collected in ASD (n = 77),
ADHD (n = 43), ASD + ADHD (n = 21), and control (n = 137) groups, this analysis explores
the use of machine learning and feature selection techniques to improve the classification
between these clinically defined groups. Standard time domain and signal analysis features
were evaluated in different machine learning models. For ASD classification, a balanced
accuracy (BA) of 0.87 was achieved for male participants. For ADHD, a BA of 0.84 was
achieved for female participants. When a three-group model (ASD, ADHD, and control)
the BA was lower, at 0.70, and fell further to 0.53 when all groups were included (ASD,
ADHD, ASD + ADHD, and control). The findings support a role for the ERG in establishing
a broad two-group classification of ASD or ADHD, but the model’s performance depends
upon sex and is limited when multiple classes are included in machine learning modeling.

Keywords: biomarker; retina; autism; attention deficit hyperactivity disorder; sex;
medication; feature selection
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1. Introduction

Exploring biomarkers in neurodevelopmental disorders has been the focus for many
groups interested in identifying characteristic biological features that identify clinical
populations [1]. To contribute to this field, this paper explores the signal analysis of the
electroretinogram (ERG) waveform combined with machine learning (ML) tools to develop
a classification model for individuals with autism spectrum disorder (ASD), attention
deficit/hyperactivity disorder (ADHD) and those with co-occurring clinical diagnoses of
ASD + ADHD. The retina is viewed as a ‘window to the brain’ [2], with differences observed
in the shape of the ERG in neuropsychiatric disorders including schizophrenia/bipolar
disorder [3], Alzheimer’s Disease [4], depression [5], and Parkinson’s Disease [6]. For a
description of the physiology of the ERG, see Appendix A (following the discussion section)
and recent reviews [7-9].

The origins of harnessing retinal signals as potential biomarkers in ASD date back to
1988 when Edward Ritvo first explored the dark-adapted ERG responses in n = 27 children
and adults with ASD and found a reduced b-wave amplitude in approximately half the
participants, which suggested a glutamate signaling pathway deficit in this group [10].
Ritvo also performed a small pilot study in a family but did not identify a strong familial
link with the ERG responses [11]. It was much later that these initial findings were extended
by Constable et al. (2016) [12] in a small adult population of high-functioning adults with
ASD, which supported these initial findings and further identified reductions in the light-
adapted ERG b-wave amplitudes and the shape of the oscillatory potentials (OPs).

The first multicenter study to be performed in (1 = 90) ASD and (n = 87) control
children revealed reduced a- and b-wave amplitudes at the higher flash strength; however,
the study did not explore the OPs in detail [13] but found the PhNR was also normal,
suggesting normal retinal ganglion cell function [14]. One observation made during this
study was that some children who presented had a co-occurring diagnosis of ASD + ADHD,
and it was noted that this sub-group had elevated b-wave levels compared to the children
with a sole ASD diagnosis. This led to an exploratory study in (n = 15) ADHD participants
that revealed a large b-wave amplitude in this group, which differentiated ADHD from
ASD [15]. The signal analysis of the available waveforms showed higher energy levels
in the ERG signal in the ADHD participants in this study [16]. These findings supported
the conclusions of Lee et al. (2022) [15] that the pattern of differences in the ERG signal
was most likely related to differences in the balance of GABA and glutamate signaling
in ASD and ADHD. However, Friedel and colleagues failed to replicate the findings of a
reduced b-wave in (n = 32) ASD adults using the same ERG recording protocol [17]. Huang
et al. (2024) [18] also reported no significant difference in the b-wave amplitude in ASD
adults, did report but a larger a-wave which was reduced following exposure to a GABA(B)
agonist, suggesting the ERG may provide a possible pathway to monitor drug efficacy in
ASD [18].

With respect to ADHD, there is evidence of greater background retinal ‘neural noise’
in (n = 20) adults. This correlates with inattention scores [19], suggesting a functional
change in the retina of ADHD individuals. The most recent ERG findings in (n = 27) ADHD
adults did not replicate the elevated b-waves previously reported but instead highlighted
a reduced light-adapted a- and b-wave amplitude and delayed the b-wave time to peak
amongst the female ADHD, participants which suggested some sex difference within
the ADHD population [20]. Taken together, the different studies have reported contrary
results at times, which may be due to several factors such as the diagnostic procedures at
different locations, sex, or the age of the populations. Until more recently, most studies
have relied upon the time domain features of the ERG such as the amplitude and time
to peak of the principal components or the shape and peak of the photopic hill and its
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mathematical characterization [21]. Methylphenidate, used to control ADHD symptoms
and elevate central dopamine levels, also induces changes in the ERG amplitude in some
participants [22].

ERG is conventionally analyzed using the main time domain parameters that relate
to the amplitude of the two main a- and b-wave peaks and the time points at which the
peaks occur [23]. However, relying on these markers limits the number of features that ML
models can use to improve classification between groups. Therefore, signal analysis in the
time—frequency domain is utilized to decompose the signal into multiple frequency-based
sub-bands [16,24-26], which expands the number of features available for ML models. The
time—frequency analysis of the ERG waveform was developed by Gauvin and colleagues,
who decomposed the ERG signal using a discrete wavelet transform (DWT) with a Haar
mother wavelet [27-30]. An alternative signal analytical approach using variable-frequency
complex demodulation (VFCDM) [31] was applied to the ERG waveforms and compared
to DWT with the introduction of ML for group classification, with the model achieving a
sensitivity of 0.85 and specificity of 0.78 [24,26].

ML using visual electrophysiological signals has been applied to pattern ERG to
support therapeutic intervention decision making [5]. Applications using ML have also
been used to identify the risk of hydroxy chloroquine retinopathy, associated with the
analysis of multifocal ERG [32]. Murine models of glaucoma have also employed ML
models of the full-field ERG to support the early diagnosis of glaucoma [33]. Several
ML models have also been used with ERG and genotypes to identify individuals that
are most likely to benefit from gene therapies in ABCA4 retinopathies [34] and visual
function [35]. Neurodevelopmental disorders, such as ASD and ADHD, share an overlap
in traits, such as in responding to novel environments [36], with some common genetic and
neuroanatomical differences reported [37]. There is a frequent co-diagnosis of ASD and
ADHD within individuals, which highlights the need to identify potential markers that
may be specific to either ASD or ADHD or the ASD + ADHD phenotype [38].

Several studies have explored ML models to improve biomarker discovery in neu-
rodevelopmental disorders, a comprehensive review of which is beyond the scope of this
study. A review of imaging studies reports accuracies between 48.3 and 97% for ASD
classification, as determined by heterogeneity in the study population [39,40]. Attempts
have been made to address this issue using the Autism Brain Imaging Data Exchange
dataset acquired from several sites with an area under the curve of 79% obtained based on
brain network analysis [41]. Eye movement studies based on gaze patterns in ASD with
ensemble ML algorithms report an F1 score of 95.5% and provide a fast and user-friendly
method for ASD classification [42]. Using Shapley feature selection, eye tracking has been
successfully used in children under three years of age with the Random Forest classifier to
obtain an area under the curve of 0.85 [43]. Electroencephalogram recordings also yielded
classification accuracies of 98% when neural networks were employed to classify ASD [44].
The limitations of these studies include the way that the models support the classification
of two groups, such as ASD vs. control, and do not consider other neurodevelopmental
disorders or individuals that meet an ASD and ADHD diagnosis and so the classification
accuracies are limited to one class.

Contributing to this field, this descriptive analysis aims to illustrate the potential of
ML applications with ERGs to improve classification in a range of neurodevelopmental
disorders. We assessed the influence of sex assigned at birth due to the reported differences
in female ADHD individuals [20]. This study includes diagnostic groups, including ASD,
ADHD, and individuals that meet both ASD and ADHD diagnostic criteria, to elucidate
if ML models with feature refinements in feature selection can classify across the three
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categories from a typically developing population. As such, it provides insights into the
strengths and weaknesses of ML models for this task.

2. Materials and Methods
2.1. Electrophysiology

Visual electrophysiology was performed in accordance with the International Society
of Clinical Electrophysiology of Vision guidelines [23]. In all cases, a white flash custom
Troland test protocol was used to compensate for pupil diameter, with the right eye always
recorded first. The RETeval (LKC Technologies Inc, Gaithersburg, MD, USA) handheld
ERG unit was used in all cases with adult skin electrodes. The reported raw waveforms,
the digital infra-red images of the eye being tested, and time domain parameters were
exported using RFF Extractor software (LKC Technologies Inc., Gaithersburg, MD, USA).
Traces were rejected from the reported waveform average if they fell above or below the
25th percentile of the average due to blinks or the loss of fixation artifacts. The sampling
frequency was 2 kHz, with bandpass filters of 0.1-300 Hz. Flash strength was reported in
Troland seconds (Td.s).

In study 1, the test protocol consisted of 9 randomized flash strengths recorded on a
white 40 cd.m~2 background with 60 averages to generate the reported ERG waveform.
In study 2, a shortened test protocol was used with two flash strengths (113 Td.s and
446 Td.s) on a 40 cd.m~2 white background with 30 averages to generate the reported
average ERG waveform. The aim of this protocol was to reduce the test time by reducing
the number of averages and to use the two strengths that were most likely to differentiate
ADHD from controls based on our early reported findings [13-15]. In this case, the 113 Td.s
result was always recorded, first followed by the 446 Td.s result, in the right and then left
eye. See Table S1 Supplementary Material for further details about flash strengths and
recording protocols.

2.2. Electroretinogram Analysis

Three analyses of the ERG waveform ‘signal’, in both the time and time—frequency
domains, were conducted with the aim of identifying the best set of features to differentiate
the control, ASD, ADHD, and the ASD + ADHD groups. Further details of the signal
analysis methods are provided in Appendix B (following the discussion section) and were
previously described in detail using discrete wavelet transform (DWT) [16,27-30] and
variable-frequency complex demodulation (VFCDM) [24,25,31,45].

2.3. Machine Learning

A systematic evaluation of seven ML techniques was conducted. This included
Random Forest (RF), Adaptive Boosting (AdaB), Gradient Boosting (GradB), Extreme
Gradient Boosting (XGB), Support Vector Machine (SVM), K-nearest neighbor (KNN), and
multi-layer perceptron (MLP). This was conducted to consider the great variety of nonlinear
and complex patterns that each technique can learn and the variation in performance that
this may imply. The training of each model was divided into three stages (dataset selection,
hyperparameter optimization, and model training), with each stage outlined in Figure 1.
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Figure 1. Model training procedure flowchart incorporating three stages. One: the data selection
of the electroretinogram signal with time—frequency analysis (discrete wavelet transform (DWT)
and variable-frequency complex demodulation (VFCDM)) and standard time domain features. Two:
hyperparameter optimization, including machine learning model optimization, data balancing with
synthetic minority oversampling (SMOTE), and optimal feature selection before. Three: model
training with a 10-fold subject-wise cross validation. Models: RF (Random Forest); AdaB (Adaptive
Boosting); GradB (Gradient Boosting); XGB (Extreme Gradient Boosting); SVM (Support Vector
Machine); KNN (K-nearest neighbor); MLP (multi-layer perceptron).

Stage 1: Dataset selection involved the implementation of feature fusion to decide
on which combination of the available features to use from the three analysis methods.
One combination was the fusion of the time domain (TD) features with either DWT or
VFCDM features. A second involved was the concatenation of all the features (TD + DWT
+ VFCDM). A third one was a combination of selected features, which included all of
them except the a-wave time, the OP160 coefficients, and the statistical features of the
7th and 8th VFCDM components [26]. The second step involved the selection of the site
from which the samples were obtained (site 1 = Flinders; site 2 = UCL; site 3 = both). The
third step consisted of concatenating the features based on the eyes (right or left) and the
flash strength used. These selections were made using a single eye and flash strength, by
combining the features acquired from the two eyes using the same flash strength, and
by combining two flash strengths using either the same eye or different eyes. It should
be noted that the concatenated instances were from the same subject (participant) and
no repetition of the same signal was employed in the combinations. For example, if one
participant had replicate measurements of the ERG in an eye, then only one sample was
used from that eye.

Stage 2: Hyperparameter optimization is the process of identifying the optimal hyperpa-
rameter values for the ML models. This is typically accomplished by training and testing
the model on multiple subsets, varying the values, and selecting the ones that yield the
best performance. For this work, the hyperparameter optimization of the ML model from
the complete selected dataset was conducted using a 3-fold subject-wise cross-validation
approach with synthetic minority oversampling (SMOTE) [46] and RF-based feature se-
lection, with the threshold value exceeding 0.25 x the mean of all the feature importance
(FI) values. In this context, a feature is defined as a measurement obtained from the ERG
signal through TD or time—frequency domain analysis. The SMOTE balancing technique
was implemented to mitigate potential bias introduced by the dataset’s imbalance. The FI
represents a relevance estimation for each of the features used for the model’s prediction,
where a high score means that the feature has a bigger impact on the prediction, while small
scores are given to the features that do not affect the prediction greatly. Feature selection
was utilized to eliminate non-informative features while preserving the most important
features based on the FI scores. Features from one recording of each subject were included
in either the training or the test dataset but never both.
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Stage 3: Model training and validation used a 10-fold subject-wise cross validation
in conjunction with the hyperparameters and features selected from stage 2. In clinical
prediction models, cross validation should be performed on a subject basis for a meaningful
evaluation, as in our study, where multiple samples existed per subject. This helps to
improve the generalization and result interpretation of the model [47]. In addition, this
prevents data leakage, when a subject’s data are used for both training and testing. Further-
more, due to the limited number of instances for certain groups (such as ASD + ADHD) and
to ensure sufficient variation within the training set, k = 10 was selected for the k-fold cross
validation. At each fold, the training set was subjected to SMOTE balancing to maintain
the same number of instances per group during the training. However, the test set kept the
unbalanced distribution. As a result of the imbalance problem, the F1 score and balanced
accuracy (BA) were selected as the most appropriate evaluation metrics with which to
evaluate the ML model’s performance since they provide mean values for the sensitivity
and specificity and recall and precision, respectively. Performance metrics are defined by
Equations (1)—(6), where TP is a true positive (the correct prediction of a positive outcome),
TN is a true negative (the correct prediction of a negative outcome), FP is a false positive
(the wrong prediction of a negative outcome as positive), and FN is a false negative (the
wrong prediction of a positive outcome as negative).

Precision = TP/(TP + FP) (1)
Recall = TP /(TP + FN) (2)
F1 Score = (2 x Precision x Recall)/(Precision + Recall) 3)
Balanced Accuracy (BA) = (Sensitivity + Specificity) /2 4)
where
Sensitivity = TP/ (TP + FN) (5)
Specificity = TN/(TN + TP) (6)

The ML model training procedure was performed with each technique and each
possible combination of stage 1. The implementation of feature fusion can be beneficial
in enhancing the learning capabilities of the ML models, but non-important features can
also lead to an increase in computational costs and the use of irrelevant information, which
may affect the model’s performance. Therefore, limiting the number of features allows
the ML models to focus on the most informative data by reducing model complexity and
computational time [48,49]. To achieve this, RF-based feature selection is one of the most
frequently employed techniques and demonstrates high performance compared to other
approaches with a FI threshold of >0.05 [48,50]. Another feature selection approach is the
calculation of Shapley values [51,52], which, as FI, measure each features” impact on the
output of the ML model [53]. However, the main difference between FI and Shapley values
is that FI is computed during the training of the tree-based model (such as RF), whereas
Shapley scores are based on Cooperative Game Theory and computed on fully trained
models. Shapley values can assume both positive and negative values, and the sum of
the values for a given instance (in this case, a single recording) may not necessarily total
100%. This is because the sum of all Shapley values for a given sample and a baseline value
(expected output) represents an approximation of the degree of membership of that sample
with regard to any of the prediction groups. Furthermore, to perform feature selection, the
mean of all the Shapley values from each group across all instances is calculated and then a
threshold is applied to decide which features are removed or retained.
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2.4. Model Refinement

Considering this, after all the results were reported, the best performing model for
each Flash Strength/Eye Concatenation was again passed through stage 3. This time,
however, the selection of features was conducted in a comprehensive manner, employing
two distinct approaches.

The first approach involved base feature selection on a FI threshold > 0.01, where
the FI was obtained by the model when it was tree-based (e.g., RF, AdaB, etc.) and if the
model was kernel-based (MPL, SVM and KNN). The >0.01 threshold was selected due
to the observation that using the standard 0.05 threshold resulted in the retention of only
approximately 4 to 5 features, which significantly reduced the model’s ability to generalize.

The second approach involved Shapley values with a value threshold > 0.005. A
summary of the parameters and combinations utilized in the database is presented in
Table S2 in the Supplementary Materials. It is noteworthy that, when employing multiple
eyes or flash strengths, only the 113 and 446 Td.s flash strengths were utilized because
the models fed with these two flash strengths consistently ranked within the top five.
Accordingly, the decision was taken to only perform the concatenation with the ERG signal
acquired with the two flash strengths that yielded the most promising results.

2.5. Statistics

Non-parametric tests (Wald, Chi-squared, or Kruskal-Wallis) were used as appropriate,
with a p-value of <0.05 taken as significant. For pairwise comparisons, the p-value reported
was subjected to post hoc analysis using the Dunn’s test with Holm—-Bonferroni adjustment.

3. Results
3.1. Participants

The ERG dataset was collected at two sites—the Institute of Child Health at University
College London (UCL) and the Flinders University in Adelaide, South Australia—across
a period of five years from children and young adults with and without a neurodevelop-
mental condition. Participants from the Institute of Child Health were drawn from existing
databases and those in Adelaide were recruited from the community. Participants were
placed into ASD (n = 77), ADHD (n = 43), ASD + ADHD (n = 21), and control (n = 137)
groups. The sex profile (male—female) of each group in terms of what was assigned at birth
was as follows: ASD (56:17); ADHD (25:18); ASD + ADHD (16:5); control (57:80). There
was a significant difference in sex between ASD and control (p < 0.001), ASD + ADHD, and
control (p = 0.003) groups, but not between the ADHD and control groups (p = 0.058). We
performed two-tailed Wald analysis. The profiles of each group in terms of the age in years
(mean =+ SD; range) were as follows: ASD (12.8 £ 4.3; 5.9-27.3); ADHD (13.0 + 3.4; 6.2-21.8);
ASD + ADHD (12.9 + 4.4; 6.9-24.3); control (12.2 £ 4.5; 5.0-26.7). There were no significant
group differences in the age of controls and either the ASD (p = 0.28), ADHD (p = 0.10)
or ASD + ADHD (p = 0.46) groups or across all groups (p = 0.15), as determined using
the Kruskal-Wallis test. See Appendix C, following the discussion section, for additional
participant and site information.

The studies were approved by the South East Scotland Research Ethics Committee
in the UK and by the Flinders University Human Research Ethics Committee and the
Southern Adelaide Clinical Human Research Ethics Committee in Australia. Written
informed consent was obtained from the parents/caregivers of children under the age of 16
or from the participants over the age of 16 who took part in the studies. Research complied
with the tenets of the declaration of Helsinki.
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3.2. Medication Effects

In both studies, participants were asked to refrain from taking any medications at least
24 h before testing, with the following medications used by the groups: melatonin (ASD
n =6, ADHD n =3, ASD + ADHD n = 2, control n = 1); slow-release methylphenidate (ASD
n =2, ADHD n =12, ASD + ADHD n = 4); D2-antagonist (ASD n = 3); risperidone-D2 and
serotonin SHT2A antagonists (ASD n =2, ADHD n =2, ASD + ADHD n = 1); Selective
Serotonin Reuptake Inhibitors (ASD n =5, ADHD n =2, ASD + ADHD n =1, control n = 1);
Selective Norepinephrine Reuptake Inhibitors (ADHD 7 = 1); d-amphetamine (ADHD
n =6, ASD + ADHD #n = 3); guanfacine (ADHD 7 = 1); and antihypertensives (ASD n = 2,
ADHD n =5, ASD + ADHD n = 2).

3.3. Between Groups Classification

Metrics for the ML models are reported in Tables 1-6, with the best classification
performance highlighted in bold for each of the comparisons.

Table 1. The best model performance for each type of flash strength/eye concatenation assessment
for ASD classification compared to the control group.

. . Eye Flash #S 1

Technique Model Site S}t’:engatsh [Contarg}FAeSsD] BA F1 Score # Features
TD + VECDM + DWT AdaB 2 R-446 [83/73] 0.712 0.712 102
TD + VECDM XGB 2 R-446/1.-446 [80/62] 0.759 0.761 136
Selected Features KNN 2 L-113/1L-446 [77/60] 0.727 0.726 36

TD + VECDM

(FI > 0.01) * XGB 2 R-446/1-446 [77/60] 0.747 0.748 35

TD + VFCODM XGB 2 R-446/L-446 [77/60] 0.745 0.747 9%

(Shapley val > 0.005) *

BA = Balanced Accuracy; FI = feature importance; R = right eye; L = left eye; strength = flash strength (Td.s);
val = value; # = number. * the top 1 model architecture of each concatenation was trained using exhaustive feature
selection using feature importance and Shapley values. Only the best performing models are shown.

Table 2. Best performances in each type of flash strength/eye concatenation for ADHD classification
compared to the control.

Technique Model Site Eye-Strength [Cofltsr iglr/l[g};?_n)] BA F1 Score # Features
TD + DWT XGB 1 L-113 [122/74] 0.750 0.750 38

TD + VFCDM + DWT SVM 1 R-446/1-446 [116/69] 0.724 0.726 204
TD + VFCDM + DWT RF 1 L-113/R-446 [112/67] 0.758 0.760 204
(TFI?; XE%IZM +DWT RF 1 L-113/R-446 [112/67] 0.727 0.729 23

TD + VECDM + DWT

(Shapley val > 0.005) * RF 1 L-113/R-446 [112/67] 0.773 0.773 34

BA = balanced accuracy; FI = feature importance; R = right eye; L = left eye; strength = flash strength (Td.s);
val = value; # = number. * the top 1 model architecture of each concatenation was trained using exhaustive
feature selection via feature importance and Shapley values, with only the best performance shown for the model
architecture. We used a combination of time domain (TD), discrete wavelet transform (DWT), and variable-
frequency complex demodulation (VFCDM) features.

Table 3. Best performances in each type of flash strength/eye concatenation for 3-group classification
between the ASD, ADHD, and control groups.

Technique Model Site Eye Strength [Contrf)lslxglglliksDHD] BA F1 Score # Features
TD + VECDM + DWT GradB 1 L-446 [128/50/55] 0.581 0.578 102
TD + VECDM + DWT KNN 2 R-446/1.-446 [80/47/24] 0.672 0.622 204
Selected Features SVM 1 L-113/1-446 [115/47/51] 0.648 0.620 36
(TF?; B’E%D*M +DWT KNN 2 R-446/1-446 [80/47/24] 0.610 0.579 18
TD + VFCDM + DWT KNN 2 R-446/1.-446 [80/47/24] 0.704 0.660 a1

(Shapley val > 0.005) *

BA = balanced accuracy; FI = feature importance; R = right eye; L = left eye; strength = flash strength (Td.s);
val = value; # = number. * the top 1 model architecture of each concatenation was trained using exhaustive feature
selection using feature importance and Shapley values. Only the best performance is shown in those cases. For
the three-group classification the combined features VFCDM, DWT, and time domain (TD) analyses provided the
best classification using both eyes and the second site” data.
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Table 4. Best performances in each type of flash strength/eye concatenation for 4-group classification
between control, ASD, ADHD, and ASD + ADHD.

. . # Samples F1
Technique Model Site Eye Strength [Control/ASD/ADHD/ASD + ADHD] BA Score ' Features
TD + VECDM + DWT RF 1 L-446 [128/50/55/21] 0468 0474 102
TD + VECDM KNN 2 R-446/1-446 [80/47/24/15] 0477 0461 136
TD + VECDM + DWT RF 1 L-113/L-446 [115/47/51/20] 0491 0477 204
(TF?; })’E%QM +DWT RF 1 L-446 [128/50/55/21] 0529 0526 34
TD + VFCDM + DWT RF 1 L-446 [128/50/55/21] 0521 0517 31

(Shapley val > 0.005) *

BA = balanced accuracy; FI = feature importance; R = right eye; L = left eye; strength = flash strength (Td.s);
val = value; # = number. * the top 1 model architecture of each concatenation was trained using exhaustive feature
selection using feature importance (FI) or Shapley values. Only the best performance is shown from each model
of the data.

Table 5. A comparison of the best models including and excluding time domain features and
medicated subjects.

F1

Technique Model Site Eye Strength # Samples Feats BA Score Mean AUC # Groups TD Med
TD + VECDM XGB 2 R-446/L-446 180/62] 136 0759 0761 078 ( AgD) Y Y
VECDM + DWT 2

(Saptoy oul = 0.005) SVM 2 L-113/R-446 [77/60] 123 0763 0763 0.83 (A3D) N Y
TD + DWT AdaB 2 R-113/1-446 [75/46] 1 0730 0729 0.65 ( AéD) Y N
VFCDM + DWT 5

(Shamiey ol = 0.005) sVM 2 R-446/1-446 [78/47] 54 0738 0744 0.73 A3D) N N
TD + VFCDM + DWT 2

(Shanley sl = 0,00 RF 1 L-113/R-446 [112/67] 34 0773 0773 081 (ADHD) Y Y
VFCDM 2

(Shapley oal > 0.005) SVM 2 R-113/R-446 [79/44] 62 0809 0801 0.86 (ALSID) N Y
TD + VFCDM 2

(Shaniey oal = 0.005) AdaB 1 L-113/R-446 [112/31] 8 0842 0831 0.86 (ALRD) Y N
VECDM(Shapley val > 0.005) AdaB 2 R-446/1-446 [78/19] 9 0817 0799 0.84 ( ADZHD) N N
(Ts% a;l},’;;?';ﬂ N O%é’;'T KNN 2 L-446/R-446 [80/47/24] 41 0704  0.660 0.79 3 Y Y
VECDM + DWT (Shapley val > 0.005) SVM 1 R-113/L-446 [110/45/52] 47 0649 0641 081 3 N Y
o GradB 1 L-113/R-446 [112/41/23] 18 0662 0635 0.80 3 Y N
(\;};ED%{') DwT XGB 1 R-446/1-446 [116/42/23] 30 0604  0.609 0.78 3 N N
(TF?; XE%DM +DWT RF 1 L-446 [128/50/55/21] 34 0529 0526 0.73 4 Y Y
VECDM + DWT RF 1 L-446 [128/50/55/21] 45 0510 0499 0.72 4 N Y

(Shapley val > 0.005)

BA = balanced accuracy; FI = feature importance; Med = medication; N = no; R = right eye; L = left eye;
Strength = flash strength; TD = time domain, (Td.s); val = value; Y = yes; # = number. Group 2: control vs. ASD or
control vs. ADHD. Group 3: control vs. ASD vs. ADHD. Group 4: control vs. ASD vs. ADHD vs. ASD + ADHD.
The TD features included the a-wave and b-wave time and amplitude. The medications classification included
those using medications and those not using medications.

Table 6. Results by sex. All the models were trained without using TD features.

Technique Model Site Eye Strength # Samples # Feats BA F1 Score Mean AUC # Groups Sex
VFCDM + DWT

(Shapley val = 0.005) SVM 2 R-113/L-446 [77/60] 123 0.763 0.763 0.82 ASD vs. Con Both
oo T AdaB 2 R-446/1.-446 [39/50] 2 0.870 0.873 0.93 ASD vs. Con Male
VECDM

(haplcl > 0005 SVM 2 R-113/L-446 [40/11] 10 0.814 0.804 0.77 ASD vs. Con Female
VECDM i

(Shapley al > 0.005) SVM 2 R-113/L-446 [79/44] 62 0.809 0.801 0.86 ADHD vs. Con Both
(\Q;C>Do o DWT XGB 1 R-113/L-113 [37/47] 32 0.793 0.794 0.86 ADHD vs. Con Male
VECDM RF 2 R-446/L-446 [41/18] 128 0.840 0.840 0.89 ADHD vs. Con Female

BA = balanced accuracy; FI = feature importance; R = right eye; L = left eye; strength = flash strength (Td.s);
val = value; # = number. # Samples: ASD = autism spectrum disorder; Con = control; ADHD = attention
deficit/hyperactivity disorder.

Sections 3.3.1-3.3.4 report the results obtained for the 2-group classification (control
vs. ASD and control vs. ADHD), 3-group classification (control vs. ASD vs. ADHD), and
the 4-group classification (control vs. ASD vs. ADHD vs. ASD + ADHD) both with and
without medication and both including and excluding the influence of the TD features.
For the 2-group classification, the participants that were in the ASD + ADHD group were
included as part of the ASD or ADHD group.
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3.3.1. Two-Group Classification: ASD vs. Control

Table 1 presents the best model and the corresponding results for each flash
strength/eye concatenation in the context of control vs. ASD classification. The XGB
classifier, utilizing the concatenation of the TD + VFCDM features from the right and left
eyes with the 446 Td.s flash strength, demonstrated the best performance for site 2 (UCL),
with an F1 score of 0.761 and a BA of 0.759. Following feature selection, the XGB model
exhibited a slight decline in performance, with a reduction in the F1 score to 0.748 and the
BA to 0.747 when 35 rather than 136 features were used.

The impact of the features on the model outputs is summarized by the Shapley plot
(Figure 2A for ASD and Figure 2B for ADHD). The Shapley plot shows the ten most
impactful features regarding the output estimation. Each point shown in front of each
feature represents a single instance from the dataset. The maximum value of each feature
is shown as a red point, and the minimum value is shown as a blue point (also shown in
the color bar on the right). In the Shapley summary, each point on the x-axis represents
the Shapley score or contribution to the output for each sample for a particular class (in
this case, the group indicated at the top of each figure). For example, in feature Tb_1.446
in Figure 2A, higher values of the b-wave time to peak denoted (Tb), shown by some
red and purple dots, can contribute positively to the membership score (in this case,
the ASD group) with Shapley values between ~0.03 and 2.0, while smaller values of Tb
contribute negatively, with Shapley values between ~0.05 and 2.1. The opposite is true for
the feature vfcdm_kt_8_L446, where higher values of this feature contribute negatively to
the membership score of the ASD group (and thus positively to the control group), while
small values contribute positively (and thus negatively to the control group).

A ASD B ADHD
High High
To_La46  <Eige | -gpae vicdm ki 3_L113  esmmmmmon ol
vfcdm_std 5 R446 H e dwt_sum_OP160_R446 e L
vfcdm_kt_8 L446 & o dwt_bandhigh 10 L113 s .
vfcdm_max_5 R446 e d v vfcdm_kt 4 L113 Qogmee ‘ v
vfcdm_max_7_R446 >4 [ vfcdm_max_4_L113 . S
vfcdm_min_3 R446* a4~ % vfcdm_iqr_7_L113 - %
vfcdm_kt_6_L446 * £ vfcdm_iqr 2 R446 o canten &
vfcdm_iqr_3_R446 -ﬁi dwt_b40_0_R446 senominoce
vfcdm_iqr_2_R446* '”- dwt_OP160_3_R446 -*-——#
vfcdm_max_2_R446 4 vfcdm_std 8 L113* ‘-—#
T T T Low T T Low
-2 0 2 —0.05 0.00
SHAP value (impact on model output) SHAP value (impact on model output)

Figure 2. Shapley summary of the ten most important features for the XGB classifier for ASD (A)
and the RF classifier for ADHD (B). For ASD, the time of the b-wave peak at 446 Td.s (left eye)
(Tb_L446) was the most important feature in the model in terms of differentiating the ASD group
from the control group. For the ADHD group, the kurtosis of the 3rd band at 113 Td.s (left eye)
(vfedm_kt_3_L113) had the highest Shapley feature importance for classification. A red asterisk (*)

refers to statistically non-significant differences (p > 0.05), as assessed based on the Kruskal-Wallis
test, between the groups for these features.

The Shapley values of the XGB indicated that Tb was the most important feature for the
model, with a delay in Tb for the ASD group shown in the Shapley summary in Figure 2A.
In addition, the VFCDM features at lower frequencies from the right eye and at higher
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frequencies from the left eye were of particular significance for ASD classification. When
the VFCDM components were of a smaller magnitude, the likelihood that the individual
was classified as belonging to the ASD group increased.

3.3.2. Two-Group Classification: ADHD vs. Control

For ADHD classification compared to the control group at site 1 (Flinders), the RF
classifier outperformed all the other models when using the TD + VFCDM + DWT feature
concatenation of the ERG signal from the left and right eyes at 113 Td.s and 446 Td.s flash
strengths. When the Shapley value feature selection was applied, reducing the features
to 34 from 204, the F1 score and BA improved, with values of 0.773. See Table 2 for a
summary of the performance of ADHD vs. control classification models and Figure 2B for
the Shapley plot of the ADHD group classification. In this case, the VFCDM components at
low frequencies (especially sub-band 3 and 4) demonstrated the highest importance for the
RF classifier at the 133 Td.s flash strength. Other features that were also important included
the high-frequency components (dwt_sum_OP160 at 446 Td.s and the dwt_bandhigh_10 at
113 Td.s).

3.3.3. Three Group Classification: ASD vs. ADHD vs. Control

Table 3 reports the best results obtained for the three-group classification between ASD,
ADHD, and controls. In this case, the KNN classifier achieved the highest performance
when using the data from site 2 (UCL) and the combined TD + VFCDM + DWT features
extracted from the ERG waveforms from both eyes at the strongest 446 Td.s flash strength.
An F1 score of 0.660 and a BA of 0.704 were achieved with 41 out of 204 possible features
when a feature selection criterion of >0.005 was applied to the Shapley values.

The Shapley summary of the ten most important features for the KNN model is shown
in Figure 3 for the three-group comparison between control (3A), ASD (3B) and the ADHD
(3C) groups. For the classification of these groups, the most important features were the
kurtosis of the VFCDM 6th sub-band (ASD), the DWT OP160 value for control, and the
DWT OP80 value for ADHD.

3.3.4. Four Group Classification: ASD vs. ADHD vs. ASD + ADHD vs. Control

Table 4 shows the ML model’s performance when the ASD + ADHD group included
participants meeting the DSM-5 diagnosis for both ASD and ADHD. Here, the RF classifier
demonstrated the highest performance when data were acquired from the concatenation
of all the 204 features of the ERG signals from the left eye using both the 113 and 446 Td.s
flash strengths, with an F1 score of 0.477 and a BA of 0.491. However, when the number of
features was reduced to 34 using FI selection, the F1 score increased to 0.526 and the BA
increased to 0.529 using the left eye data at the single 446 Td.s flash strength.

Figure 4 shows the Shapley values for each of the four groups obtained with the RF
classifier using the ERG signals from the left eye with the 446 Td.s flash strength. The
ASD group maintained the same tendency, having low VFCDM and DWT feature values
at higher frequencies (Figure 4A). In contrast to the 3-group classification, the features at
higher frequencies became more important when classifying ADHD. This may be because
of the co-occurrence of ASD + ADHD phenotypes in this group, with feature similarities
shared between the ASD and ADHD groups. For example, shared features between the
ASD + ADHD group and the ASD group included low values of the DWT OP80 summation
(dwt_sum_OP80, p = 0.91); with the ADHD group, these included low values of the kurtosis
of the 7th VFCDM component (vfcdm_kt_7, p = 0.21); with the control group, these included
low values of the kurtosis of the 4th VFCDM component (vfcdm_kt_4, p = 0.37).
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Figure 3. A Shapley summary of the top 10 features for KNN classifier for the 3-group classification:
(A) control, (B) ASD, and (C) ADHD. Feature importance for the group classification is indicated
by the red scale. The most important features were as follows: for control, it was the DWT OP160
component; for ASD, it was the kurtosis of the 6th VFCDM sub-band; and for ADHD, it was the DWT
OP80 component. The red asterisk (*) indicates a statistically non-significant difference (p > 0.05)
between the groups for these features based on the Kruskal-Wallis test.
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Figure 4. A Shapley summary of the top 10 features of the RF classifier for the 4-group classification:
control (A), ASD (B), ADHD (C), and ASD + ADHD (D). When classifying between the four groups,
the most important features were as follows: for the control, it was the high-frequency DWT range;
for ASD, it was the interquartile range of the 8th VFCDM sub-band; for ADHD, it was the sum
of the OP80 DWT components; for ASD + ADHD, it was also the high-frequency DWT range.
Red markers in the Shapley plots have greater importance for classifying the group. The colored
boxes highlight the common important features for each of the group’s classifications highlighted
vicdm_kt_4 (green), vfcdm_kt_7 (red) and dwt_sum_OP80 (yellow). The red asterisk (*) refers to
statistically non-significant (p > 0.05) differences between the groups for these features based on the
Kruskal-Wallis test.

3.4. Effects of Medication

The influence of stimulant medications that elevate dopamine may affect the classi-
fication due to effects on the amplitude of the ERG [22,54]. Also see also Figure S1 in the
Supplementary Material, which demonstrates the effect of methylphenidate on the ampli-
tude of the ERG in an ADHD participant. For this reason, a comparison of the ML models’
performance was conducted, excluding the subjects who were taking medications from the
dataset so that only participants that were medication-naive were included. We excluded
n =6 ASD, n =27 ADHD, and n = 13 ASD + ADHD participants from site 1 (Flinders) and
n =11 ASD, n =16 ADHD, and n = 6 ASD + ADHD participants from site 2 (UCL).

3.5. Time Domain Feature Effects

The TD feature (Tb time to the peak of the b-wave) was of particular significance in
the two-group and three-group classifications for ASD. However, when the medicated
subjects were excluded, a single behavior was observed in the best model. The AdaB
model exhibited overfitting to Tb and ignored the remaining features (see Figure S2,
Supplementary Material). Although the F1 score was high when Tb was used, the mean
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AUC (0.65) was low. This became a problem for generalization, as the single value of Tb
did not provide sufficient discriminatory information to distinguish ASD subjects from
controls. Therefore, a secondary analysis was performed that excluded the TD features and
only incorporated features from the signal analysis derived from VFCDM and DWT.

For the two-group classification (ASD vs. control) using the SVM model, the best
performance was achieved at site 2 (UCL) with both flash strengths and eyes when the TD
features were excluded but the medicated participants were included, with a BA and F1
score of 0.763 and a mean AUC of 0.83. For the two-group (ADHD vs. control) classification
using the AdaB model, the best performance was achieved at site 1 (Flinders) when the
TD features were included but the medicated participants were excluded, with an F1
score of 0.831, a BA of 0.842, and a mean AUC of 0.86. For the three-group classification
(ASD vs. ADHD vs. control) using the KNN model, the best performance was achieved
when including the TD and medicated participants from site 2 with both eyes and the
446 Td.s flash strength with an F1 score of 0.66, a BA of 0.704, and a mean AUC of 0.79.
When the ASD + ADHD group was added, then the best performance was achieved using
the RF classifier with the inclusion of all participants and the TD features from site 1 with
the 446 Td.s flash strength, giving an F1 score of 0.526, a BA of 0.529, and a mean AUC
of 0.73.

Table 5 summarizes the best ML model performance when the TD or medications
were included in or excluded from the group classifications.

3.6. Effect of Sex

To explore the potential effects of sex assigned at birth on the ML performance metrics
(with the exclusion of the TD features) for the ASD, ADHD, and control groups, the dataset
was divided into male and female for each group. In the case of ASD classification, the
best performance was obtained when only male participants were included with the AdaB
model trained with participants from site 2 (UCL) with eye data from the 446 Td.s flash
strength group. An F1 score of 0.873 with a mean AUC of 0.93 were obtained. In contrast,
female-only classification was poorer, with an F1 score of 0.804 and a mean AUC of 0.77. In
the case of ADHD classification, the RF model from site 2 with the 446 Td.s flash strength
with both eyes performed best when classifying ADHD female-only participants with an
F1 score of 0.840 and a mean AUC of 0.89. However, the performance metrics were not
significantly different to the classification with male-only assessments or when both sexes
included. See Table 6 for a summary of the results.

There were differences in the importance of the flash strength for each sex and group,
with the 446 Td.s being the most important for ASD classification and the 113 Td.s being
the most important for ADHD classification for male participants. In contrast, for female
participants, the pattern was reversed (See Figure 5). For female participants, all the top
10 features were statistically significant (p < 0.05) based on the Kruskal-Wallis test, but
this was not true for the male participants, as highlighted in the Shapley summary plot
(Figure 5). There were some differences based on sex for the group classification. Regarding
male sex, for the ASD group (Figure 5A) and the ADHD group (Figure 5B), the higher-
frequency components (VFCDM sub-bands 7 and 8) were most important. In contrast, for
female ASD (Figure 5C) and ADHD (Figure 5D) groups, the lower-frequency components
(VFCDM sub-bands 2 and 3) were the most important for classification.
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Figure 5. A Shapley summary of the best models for male or female 2-group classification (ASD
vs. control or ADHD vs. control). (A,B) show the male participants for ASD or ADHD vs. control,
respectively, and (C,D) show the female participants for ASD or ADHD vs. control, respectively.
For males, the high-frequency features from the VFCDM were more important for ASD and ADHD
classification (sub-bands 7 and 8). In contrast, for female participants, the lower-frequency features
were more important for ASD or ADHD classification (sub-bands 2 and 3). A red asterisk (*) refers
to statistically non-significant differences (p > 0.05) based on the Kruskal-Wallis test between the
groups for these features.

3.7. Individual Case Analysis

The ML models support a group-level classification, with caveats related to sex,
medication use, and the inclusion of the TD features that modify the model’s performance.
It is possible to explore the feature importance that leads to the individual classification
on a case-by-case basis. This approach may be useful for stratifying phenotypes based
on sub-classes, as has been performed with fMRI datasets [55,56]. To demonstrate this
potential next step, we present waterfall plots that display the individual explanation of
the features for an individual case (ASD vs. control) and (ADHD vs. control) with the
explained expected model output (E[f(X)]) according to the information from the entire
feature dataset. Here, each feature drives the classification in either a negative or a positive
direction towards the ASD or ADHD classification. When the final explained output f(x) is
greater than E[f(X)], then the individual is classified as belonging to either ASD or ADHD
in this example.
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Individual-level ASD classification is shown in Figure 6, where it is compared with the
results of an individual from the control group. The most important features in this case
identifying the ASD individual was the kurtosis of the 7th VFCDM sub-band (240-280 Hz)
with the 446 Td.s flash strength (vfcdm_kt_7_R446) (p < 0.05). Here, according to the
summary plot, the lower the feature value, the greater the positive contribution to the
output. However, in some cases, participants had similar features, even if they were not
from the same group. In the example of the ASD individual, this feature had a value of 2.638,
giving a contribution of +0.11, while for the control participant, the value was 4.562, giving
a positive impact, but with a smaller contribution of +0.03. Finally, the explained outputs
for the control and ASD participants were f(x) = 0.281 and f(x) = 0.857 with E[f(X)] = 0.472.
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Figure 6. (A) Shapley values of the SVM classifier that achieved the best 2-group (ASD vs. control)
classification performance. Waterfall plots for an individual control (C) and an individual ASD (B)
participant with the relative contributions to a positive classification for control (blue) and ASD (red).
At the left side of each feature name, the actual value of the feature from that subject is presented. A
red asterisk (*) refers to statistically non-significant differences (p > 0.05) based on the Kruskal-Wallis
test between the groups for these features.

In the case of ADHD classification, the AdaB classifier was more sensitive to boundary
values, namely, fixed contribution values that were assigned to the features, as shown in the
waterfall plot in Figure 7. For example, the interquartile value of the 2nd VFCDM sub-band
with the 446 Td.s flash strength applied to the right eye (vfcdm_iqr_2_R446) (p < 0.05) was
the feature with the most significant impact on the output, especially when it was present
at large values. However, the ADHD and control participants obtained similar values for
this feature, so that in both cases, even for ADHD, the contribution moved towards the
control group phenotype, decreasing the total positive contribution of the 105 features.
This illustrates that many of the features did not have a major impact on the output, as
only eight of the total features were used by the AdaB classifier after feature selection.
Finally, the explained outputs for the control and ADHD participants were f(x) = 0.448 and
f(x) =0.593, with E[f(X)] = 0.555.
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Figure 7. (A) Shapley values of the SVM classifier that achieved the best 2-group (ADHD
vs. control) classification performance. Waterfall plots for an individual control (C) and an
individual ADHD (B) participant with the relative contributions to a positive classification for control
(blue) and ADHD (red). At the left side of each feature name, the actual value of the feature from
that subject is presented. A red asterisk (*) refers to statistically non-significant differences (p > 0.05)
based on the Kruskal-Wallis test between the groups for these features.

4. Discussion

The findings support the potential use of ML to identify individuals that meet di-
agnostic criteria for ASD, ADHD, or ASD + ADHD from a typically developing control
population. The ERG, as a direct measure of central nervous system activity that can be
recorded in childhood non-invasively, can help to identify individuals that have a different
neurodevelopmental trajectory. However, different ML strategies were required to classify
each group depending on their sex, medication use, flash strength, and the inclusion or
exclusion of TD features in the classification task. To summarize, the models for ASD or
control classification performed best when the TD features were excluded and only male
participants were included, resulting in an F1 score of 0.873, a BA of 0.87 and a mean AUC
of 0.93 (Table 7). Conversely, for female participants, the F1 score and BA were lower (0.804
and 0.814), with a mean AUC of 0.77. In the case of ASD, excluding medicated participants
did not improve the performance metrics of the ML models with an F1 score of 0.744 and a
mean AUC of 0.73 when TD features and participants using medications were excluded.
Thus, the main factor affecting ASD classification was sex, with better results for male
participants and after the influence of the TD features was removed.

In contrast, for the ADHD or control classification, the best performance was achieved
when participants taking medications were excluded but the TD features were included,
with an F1 score of 0.831, a BA of 0.842, and a mean AUC of 0.86 (See Table 6). With respect
to sex, the best classification occurred with female ADHD participants without the TD
features, with an F1 score, a BA of 0.840, and a mean AUC of 0.89 (See Table 7). With
respect to the three-group classification between ASD, ADHD, and control, an equivalent
performance was achieved with or without the medicated participants and with or without
the TD features with an F1 score of 0.660, a BA of 0.704, and a mean AUC of 0.79. For the
final case, which included those with a co-occurring diagnosis of ASD + ADHD, the best



Bioengineering 2025, 12, 15

18 of 30

performance achieved was an F1 score of 0.526, a BA of 0.529, and a mean AUC of 0.73.
This analysis included the TD features and medicated participants. The significant drop in
performance in the 4-group classification compared to the 3-group classification, with an F1
score of 0.526, was most likely due to the small number of ASD + ADHD participants and
the phenotypic overlap with the participants with a sole ASD or ADHD diagnosis. This
highlights the complexities of differentiating between heterogeneous neurodevelopmental
conditions [57,58]. Thus, the ML approach can support classification between ASD or
ADHD and a typically developing control population but is less robust when including all
three groups or participants with an ASD and ADHD diagnosis.

Table 7. The summary table of the best performances in each test.

Technique Model Site Eye Strength # Samples F e’:t s BA F1 Score IXIEaCn Sex TD  Med
2-Group ASD vs. Control Classification
VFCDM + DWT
(Shapley val > 0.005) SVM 2 L-113/R-446 [77/60] 123 0.763 0.763 0.83 Both N
oWt AdaB 2 R-446/L-446 [39/50] 26 0870 0873 093 Male N
- 2-Group ADHD vs. Control Classification
TD + VFCDM
(Shzz:pley val > 0.005) AdaB 1 L-113/R-446 [112/31] 8 0.842 0.831 0.86 Both Y N
VFCDM RF 2 R-446/1-446 [41/18] 128 0.840 0.840 0.89 Female N Y
3-Group ASD vs. ADHD vs. Control Classification
TD + VFCDM + DWT
(Shapley val > 0.005) KNN 2 L-446/R-446 [80/47/24] 41 0.704 0.660 0.79 Both Y Y
4-Group ASD vs. ADHD vs. ASD + ADHD vs. Control Classification
(TF?; XE%DM +DWT RF 1 L-446 [128/50/55/21] 34 0529 0.526 073 Both Y Y

BA =balanced accuracy; TD = time domain; Med = medication.

Following a systematic evaluation of ML models for group classification, involving
the fusion of different ERG waveform features and exploring the combinations with sex,
site, eye, and flash strength, and the inclusion and exclusion of medicated subjects and the
TD features, we obtained results. The results of all the tests demonstrated that, regarding
this task, no specific model exhibited a consistently higher performance across all k-group
evaluations. However, the incorporation of feature fusion and feature selection proved
to be a crucial element in the performance of most of the models. In terms of improving
the ML modeling, the implementation of feature fusion plus feature selection improved
the F1 score in some cases, such as for ADHD vs. control. The F1 score increased from
0.786 to 0.831 when the number of features included in the ML model was reduced from
136 to 8. In addition, the use of Shapley values as a feature selection approach outperformed
the tree-based FI approach for the two- and three-group classifications (see Table 5, where
the BA is greater when Shapley values are used instead of FI). A possible reason for this
was that the FI approach, even with a lower threshold than commonly used, still excluded
more features than necessary, discarding features that may have been informative for some
participants during the classification.

However, the Shapley values enabled the visualization of the most important features
used for classification, which varied for each group. For the two-group classification, the
time to peak of the b-wave was most important feature for ASD classification, while for
ADHD classification, the kurtosis of the third VFCDM sub-band (80-120 Hz) was the most
important feature. However, improved classification was obtained for the ASD group
when the TD features were excluded and, in addition, the model’s performance was best
when only applied to male participants. This may be due to the higher proportion of
male ASD individuals and the higher likelihood of being diagnosed with ASD if male [59].
Here, the best feature to classify ASD males was the kurtosis of the 280-320 Hz sub-band
from the VFCDM analysis in the 446 Td.s flash strength. The high flash strength feature
supports the involvement of the ON pathway as a marker for ASD, as previously observed,
with reduced rod-driven ON pathway responses also low in ASD populations [10,12].
For ADHD classification, excluding participants that were using medications and using
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features from TD and VFCDM yielded the best results with features from a combination of
the 113 and 446 Td.s strengths and each eye. However, in the case of ADHD classification,
the result was slightly better for females than for either males or both sexes combined. This
may indicate that the ERG is more sensitive for female ADHD participants and supports
previous work that found that female ADHD individuals had more reduced a- and b-wave
amplitudes than male individuals [20]. Table 7 summarizes the best performances for each
of the models evaluated.

4.1. Medications

The exploration of the inclusion/exclusion of the medicated subject revealed that
the use of medications can influence the strength of the classification models for ADHD.
Given the use of methylphenidate to manage symptoms in ADHD [60] patients and its
potential confounding effects on retinal signaling [22,61], future studies will need to ensure
an adequate period of drug washout. The results showed that excluding medicated subjects
improved the overall classification performance in ADHD. One potential future direction
would be to investigate if the ERG signal can be used to determine the efficacy of any
medications in ADHD that target dopamine, such as methylphenidate, in a comparable
manner to the Qbtest [62]. Figure 54 in the Supplementary Material shows the differences in
the TD parameters between sites with the non-medicated participants, where there is large
inter-site variability in the b-wave amplitude and time to peak (Tb). Further controlled
studies will be needed to elucidate the contribution of medications to the variability in the
ERG TD parameters.

4.2. Inter-Site Variability

The combined datasets from site 1 and site 2 did not result in improved classification
for either the ASD or ADHD group. This was most likely due to the differences in the
diagnostic procedures used for recruitment at each site. Site 1 (Flinders) relied upon
documented community-based assessments that were based on an observational and
parental interview, with support in some cases by questionnaires, to form the diagnosis. In
contrast, participants at site 2 (UCL) were seen in a tertiary setting and had a more formal
diagnostic process with the use of ADOS and the 3Di to support the final diagnosis [63,64].
This discrepancy between sites was most notable in the amplitude of the b-wave within
the ADHD group. The UCL cohort had high b-waves and this was potentially the result
of a more stringent diagnostic process given that the Flinders ADHD group tended to
have low b-wave amplitudes (see Figure S3A,B in Supplementary Material). It should
be noted that the low b-wave amplitudes were also reported in ADHD cases, where the
formal diagnosis was based on community services [20]. This added heterogeneity in
the ADHD populations from each site led to a negative impact on the recognition of the
neurodevelopmental groups, especially the ADHD and ASD + ADHD groups, where
most of the subjects were misclassified as either ASD or control, as shown in Figure S5 of
the Supplementary Material. An additional test was conducted by removing the ADHD
group from Flinders, which was the group most affected by these discrepancies, and
combining the remaining subjects from the two sites. However, no significant changes in
the performance were evidenced, with F1 scores of approximately 0.73, 0.565, and 0.45, for
the 2-group (ADHD), 3-group, and 4-group classifications, respectively.

4.3. Sex

The division and testing of the data based on sex highlighted the insight that sex
affects the ERG waveform and consequently the extracted features. According to the results
and the Shapley values ranking, the most important and statistically significant information
from female subjects was concentrated in bands of certain frequencies. For example, for
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ASD females, the model was mostly focused on high-frequency bands, whereas for ADHD
females, the features that had more impact to the output were in the low-frequency bands.
The role of sex in neurodevelopmental conditions is an area of interest, with genetic and
environmental factors likely to play a role [65-67].

5. Conclusions

This study is a first step towards the development of identifying an ERG-based
biomarker for diagnosing neurodevelopmental disorders. However, several limitations
still remain, including the inter-site variability in our study. This highlights the need for
standardized diagnostic assessments across different clinical and research settings with
larger, multi-site studies needed to fully assess the generalizability of these findings. Addi-
tionally, longitudinal studies are needed to understand how any ERG characteristics may
change over the course of development or with long-term medication use. The integration
of ERG data with other potential biomarkers, such as attention and impulsivity markers
as assessed with the Qbtest [68], pupil responses [69], blink rate [70], or eye-tracking [71],
could also enhance diagnostic accuracy and provide a more comprehensive understand-
ing of neurodevelopmental differences across the neurodevelopmental spectrum of ASD
and ADHD.

Recording an ERG in children younger than five years of age is possible but represents
challenge, especially in children that may be non-verbal, a factor which may limit the appli-
cation of the current protocol. However, the development of innovative smartphone-based
devices [72-74] may enable the ERG to be recorded more readily in younger population
when combined with signal analysis and ML modeling, potentially allowing us to screen
for individuals with a different neurodevelopmental profile.

The signal analysis of the ERG offers a way to explore multiple features contained
within the TD signal to support classification models in neurological [5,16,24-26,45,75,76]
and retinal disorders [77-80]. Other approaches to the remodeling of the ERG waveform
may also prove beneficial. An example of this involves applying the principles of Func-
tional Data Analysis (FDA) [81,82] to reveal differences in the waveform shape based on
a registered time series [83]. The FDA approach could provide a more nuanced analysis
of the ERG waveform shapes, potentially capturing subtle differences that are not clear
in traditional methods of time series analysis for disease classification [84]. In addition,
the augmentation of the natural dataset with Al-generated synthetic waveforms may also
improve dataset balancing and size to enhance classification models [85]. Deep learn-
ing models using neural networks may also offer advances in this field, offering larger
datasets [86]. These advanced analytical approaches, combined with larger and more
diverse participant cohorts, have the potential to significantly advance our understanding
of retinal function in neurodevelopmental disorders and move us closer to clinically useful
diagnostic biomarkers [1].
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Appendix A
The Electroretinogram

The retina has three cell types that are connected in a vertical signaling pathway from
the photoreceptors to the bipolar cells and then to the ganglion cells. Lateral neurons
modify this path at two points: horizontal cells provide feedback to regulate the signal
between photoreceptors and bipolar cells and amacrine cells link bipolar and ganglion
cells [87]. The retinal signal in response to brief flashes of light is captured as the ERG
waveform. This is composed of an initial a-wave, i.e., a negative deflection originating from
the hyperpolarization of the photoreceptors. The b-wave is a positive peak following the
a-wave and is formed principally by the depolarization of bipolar cells [88] and glial cell
potassium currents [89]. The cone and rod bipolar cells contribute to either the ON or OFF
pathways within the retina [90]. The ON bipolar cells use slower metabotropic glutamate
receptors and respond to an increase in retinal illumination, whilst the OFF bipolar cells
utilize faster ionotropic glutamate receptors and respond when there is a decrease in retinal
illumination [91-93]. The a-wave of the light-adapted ERG is shaped principally by the
hyperpolarization of the cones but also has post-receptoral contributions from bipolar
cells [94-96]. Inhibitory pathways are formed by the horizontal and amacrine cells that
utilize GABA, glycine, and dopamine as the inhibitory neurotransmitters [97]. Oscillatory
potentials (OPs) are high-frequency waves that appear on the ascending portion of the
b-wave and contribute to its amplitude and are initiated by the amacrine cells [98,99]. The
photopic negative response is a negative trough following the b-wave peak and is formed
in part by ganglion cells [100,101]. See Figure A1l for a representative ERG waveform.
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b-wave

Oscillatory Potentials

Photopic Negative Response

Figure A1. Light-adapted electroretinogram illustrating the main features of the waveform. A vertical
line indicates the onset of flash stimulus. The a-wave negative deflection is mainly formed by the
hyperpolarization of the cone photoreceptors. The b-wave is a result of depolarizing bipolar cells and
is modulated by amacrine and glial cells. The photopic negative response is mainly driven by retinal

ganglion cells.

Appendix B
Representative Time Domain Traces

The time domain features utilized in this study are illustrated Figure A2a, with the
time to the peak of the a- and b-wave measured from stimulus onset. The a-wave amplitude
is measured from the baseline and the b-wave amplitude is measured from the a-wave
minima to the b-wave maxima. Figure A2b shows the representative ERG waveforms of

the four groups.
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Figure A2. (a) Light-adapted electroretinogram (ERG) signal with a-wave, b-wave, and oscilla-
tory potentials indicated. The waveform is shaped by the contributions of the cone photorecep-
tors and horizontal, bipolar, amacrine, and retinal ganglion cells as they respond to the flash of
light. (b) Representative light-adapted ERG waveforms recorded from control, ASD, ADHD, and
ASD + ADHD participants. In this series, the b-wave amplitude is largest in the ADHD participant
and smallest in the ASD participant.

Analysis 1: Time Domain

The light-adapted ERG waveform is characterized by the a-wave and b-wave features.
These are conventionally used to support retinal disease diagnosis based on their amplitude
and timings [102,103] and have previously been used to determine group differences
between ASD, ADHD, and control groups [13,15,20]. The a- and b-wave amplitude (Va
and Vb) and time to peak (Ta and Tb) were used in the time domain analysis.

Analysis 2: Discrete Wavelet Transform (DWT)
The DWT is a convolution between the signal x(t) and the mother wavelet i(t). See

Equation (A1l). . N t
Cla, )= JW/W Nor lp(;’B>dt (A1)
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where C(a,f) are the resulting DWT coefficients and « and g are the scaling and translational
factors. The resulting time—frequency spectrogram is illustrated in Figure A3, Appendix C.
The a-wave and b-wave are situated at low frequencies (0-40 Hz), with the 20 Hz coefficients
corresponding to the ON pathway and the 40 Hz coefficients to the OFF pathway of the a-
and b-waves. The early (OP80) and late (OP160) oscillatory potentials are reflected at higher
frequencies (80-160 Hz) [27-30]. In this study, the Symlet 2 wavelet with level 7 DWT
decomposition was employed to obtain the coefficients. Furthermore, the summation
of the OPs (sum_OP80 and sum_OP160) was employed, as well as the extraction of the
high-frequency components at the 320 Hz band (bandhigh), which contained information
near 300 Hz, and their summation (sum_high_freq).

Analysis 3: Variable-Frequency Complex Demodulation (VFCDM)

DWT analysis is susceptible to resolution limitations at high frequencies (>80 Hz)
due to the downsampling factor at each decomposition level. To address this, VFCDM is
particularly efficacious in the higher-frequency regions, as it does not perform any down-
sampling and retains an accurate amplitude distribution with high-frequency resolution.
For this analysis, the decomposition was conducted using N = 24 non-overlapping equal-
width-frequency components. The complete mathematical calculations of the VFCDM
were previously reported [31,45] for the initial eight components (designated vfcdm_1 to
vfcdm_8) used, which encompassed the 0-320 Hz range of the signal. For each of the eight
components, a further eight statistical features were calculated: mean, maximum (max),
minimum (min), standard deviation (std), kurtosis (kt), inter-quartile range (iqr), root mean
square (rms), and median (med). See Appendix C, Figure A4.

Appendix C
Appendix C.1. Participant and Site Information

The study participants were enrolled from two sites between January 2018 and January
2023 and met diagnostic criteria for ASD or ADHD based on the DSM-IV-TR [104] or
DSM-5 [105]. Site 1 was The Institute of Child Health at University College London. The
ASD participants were assessed by a combination of the Autism Diagnostic Observation
Schedule (ADOS) [63] or the ADOS-2 [106] and the Developmental, Dimensional and
Diagnostic interview (3di) [64]. The clinical diagnosis of ADHD was based on ICD-10
Research Diagnostic Criteria, incorporating measures of hyperactivity, impulsivity, and
inattention provided by parents/carers and schoolteachers. Site 2 was Flinders University,
where ASD and ADHD participants were recruited through social media by the Trialfacts
recruitment agency and word of mouth to take part in the study. The ASD diagnosis was
based on a community assessment by a pediatrician or child and adolescent psychologist
through observation and in some cases was supported by the childhood autism rating
scale (CARS) score [107]. The ADHD diagnoses were confirmed by community-based
clinicians” observation and interviews and supported in some cases by the Conners rating
scale questionnaires with clinical reports when provided, confirming a diagnosis of ADHD.
Where full clinical reports were provided, the participant’s strength of diagnosis was
considered as ‘medium’ and rated as 2 within the classification models. There were three
participants that were diagnosed with ADHD inattentive subtype (ADD) within the ADHD
and ASD + ADHD groups. Participants in this group were excluded if their FSIQ was < 65
(2 cases). The control group were from the general population at each site with no reported
developmental delay.

Within the groups, the following relevant co-occurring conditions were present. The
ASD group contained 3 participants with asthma and 3 with hay fever; 1 participant was
anorexic; 1 had epilepsy; 1 participant was on acyclovir (oral anti-viral); 2 participants
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were taking antihypertensive medications. One ASD participant had a 3q26.32-q26.33
duplication. In the ADHD group, seven patients were dyslexic, one patient had diabetes,
three patients were asthmatic, and one patient had hay fever. Within the ASD + ADHD
group, one patient was dyslexic, one had diabetes, and two were taking antihypertensive
medications. Within the control group, two patients were dyslexic, one met the DSM
classification for gaming addiction, one was diabetic, and one had asthma.

Appendix C.2. Iris Color, Electrode Height, and Recording Parameters

The amplitude of the recorded ERG waveform is affected by the position of the skin
electrode with respect to the lower lid as well as iris color, with lower electrode placement
and darker irises reducing the amplitude [108,109]. Electrode heights were measured with
a scaled rule from the infra-red image exported from the RETeval following testing. For
these data, a value of +1 was assigned to the vertical height if the electrode was 1 mm below
the lid, a value of 0 was assigned if the electrode was 2 mm below the lid, a value of —1
was assigned if the electrode was 3 mm below the lid, and a value of —2 was assigned if
the electrode was 4 mm below the lid. Any recordings where the electrode placement was
deemed >4 mm below the lid were excluded. There were no significant differences between
right (p = 0.65) or left (p = 0.51) electrode height between the control and ASD + ADHD
group or the ASD (p = 0.19, p = 0.97) group, but there was a significant difference between
the control and ADHD group for right (p = 0.014) and left (p < 0.001), with the mean height
of the ADHD group being closer to the lower lid than that of the control participants
(2 tailed Wald).

In addition to electrode position, the darkness of the iris was quantified by the inbuilt
program in the RETeval that calculates the gray scale ratio of a 3 mm segment of the iris
at 3 and 9 o’clock to the dark pupil as an estimate of iris pigmentation. This value was
used as a covariate in the analyses as a darker iris is associated with a reduction in the ERG
amplitude secondary to light absorption [108]. There were no significant group differences
for the right or left iris colors, respectively, between the control and the ASD (p = 0.82,
p = 0.71) group and the control or ADHD (p = 0.07, p = 0.11) group, but the left iris color was
significantly lighter in the ASD + ADHD group compared to the controls (p = 0.11, p = 0.008)
as assessed by a non-parametric Kruskal-Wallis test. Appendix C Table A1 summarizes the
results of the group differences compared to control.

Table Al. Group comparisons of age, sex, right and left iris color (arbitrary units), and electrode
height with respect to the recommended point 2 mm below the lower lid. Statistically significant *
differences between control and ASD (sex p < 0.001) Chi-squared; ADHD (right p = 0.014 and left
p < 0.001 electrode height); ASD + ADHD (left iris color p = 0.008).

Parameter ASD (n=73) ADHD (n = 43) ASD + ADHD (n = 21) Control (n = 137)
Age (years) 12.8 £4.3 13.0 £ 34 129 £ 4.4 122 +45
Sex (M:F) 58:17 * 25:18 16:5 57:80
Right iris color 1.20 £ 0.10 1.18 £0.11 1.16 £ 0.07 121 +£0.12
Left iris color 1.23 £0.11 1.19 £0.10 117 +£0.11* 1.23 £0.11
Right electrode height —0.52 +0.80 0.07 +£0.75* —0.19 £ 0.75 —0.34 = 0.79
Left electrode height —0.51 +0.89 0.00 £ 0.93 * —0.24 +0.70 —0.40 +0.83

Appendix C.3. Representative Discrete Wavelet Transform

Figure A3 of Appendix C.3 illustrates the raw ERG waveform, with a scalogram of the
discrete wavelet transform (DWT) analysis below. The DWT analysis provides coefficients
that represent energy within each frequency band at discrete time windows that correspond
to the a- and b-waves as well as the oscillatory potential of the ERG.
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Figure A3. Time—frequency spectrogram of the ERG signal. The coefficients a20 and a40 correspond
to the a-wave components, while b20 and b40 correspond to the b-wave. The OP80 and OP160 relate
to the early and late oscillatory potentials. The ON retinal pathway is characterized by the 20 Hz
frequency and the OFF retinal pathway is characterized by the 40 Hz frequency band.

Appendix C.4. Representative Variable-Frequency Complex Demodulation

VFCDM takes the ERG waveform signal that is reconstructed by performing a summa-
tion of the twenty-four sub-components because the physiological signal is concentrated
within the 0-300 Hz range, as illustrated in the top-right plot of Appendix C.4 Figure A4.
The first eight components (designated vfcdm_1 to vfcdm_8) were used in the analysis.
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Figure A4. VFCDM decomposition of the ERG signal: The top plot displays the ERG signal alongside
its power spectral density. The bottom plot illustrates the first 8 VFCDM components along with
their corresponding spectral information.
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