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Abstract

Plain language summary

Background Free-text data is abundant in electronic health records, but challenges in
accurate and scalable information extraction mean less specific clinical codes are often
used instead.

Methods We evaluated the efficacy of feature extraction using modern natural language
processing methods (NLP) and large language models (LLMs) on 938,150 hospital antibiotic
prescriptions from Oxfordshire, UK. Specifically, we investigated inferring the type(s) of
infection from a free-text “indication” field, where clinicians state the reason for prescribing
antibiotics. Clinical researchers labelled a subset of the 4000 most frequent unique
indications (representing 692,310 prescriptions) into 11 categories describing the infection
source or clinical syndrome. Various models were then trained to determine the binary
presence/absence of these infection types and also any uncertainty expressed by clinicians.
Results We show on separate internal (n = 2000 prescriptions) and external test datasets
(n=2000 prescriptions), a fine-tuned domain-specific Bio+Clinical BERT model performs
best across the 11 categories (average F1 score 0.97 and 0.98 respectively) and
outperforms traditional regular expression (F1 =0.71 and 0.74) and n-grams/XGBoost

(F1 =0.86 and 0.84) models. A zero-shot OpenAl GPT4 model matches the performance of
traditional NLP models without the need for labelled training data (F1 = 0.71 and 0.86) and a
fine-tuned GPT3.5 model achieves similar performance to the fine-tuned BERT-based
model (F1 = 0.95 and 0.97). Infection sources obtained from free-text indications reveal
specific infection sources 31% more often than ICD-10 codes.

Conclusions Modern transformer-based models have the potential to be used widely
throughout medicine to extract information from structured free-text records, to facilitate
better research and patient care.

Electronic health records often contain
detailed information on clinical decisions and
patient histories that are written as free text
and otherwise not recorded in a structured
format in a specific section of the record.
Extracting specific information from this
unstructured text is challenging, leading to
researchers often using less detailed clinical
information. This study evaluated whether
computational methods, including large
language models, could be used to extract
detailed information from unstructured
sections of medical records. As an example
task, we attempted to identify which type of
infection was being treated from free-text
justifying antibiotic prescriptions. We could
categorise infection types more often and
more accurately than previous methods. This
method of extracting detailed information
from medical records could potentially
improve research and patient care.

Electronic health records (EHRs) offer unprecedented quantities of struc-
tured and unstructured data for driving research and improving care
delivery. Manually extracting relevant information from unstructured free-
text EHRs is costly and laborious. Recent developments in natural language
processing (NLP) and the advent of large language models (LLMs) offer
promising and potentially transformational alternatives that can accurately

acquire relevant information from unstructured text for patient diagnosis'~,
as well as perform several routine tasks from medical records™”.

As in other medical domains, studies of antibiotic resistance, use, and
stewardship have traditionally relied on manual review of clinical notes and
prescriptions™ or mapping of International Classification of Diseases
(ICD) diagnostic codes to identify acute infection diagnoses and chronic
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comorbidities™'’. However, in studies of sepsis, ICD codes identified fewer

cases than clinical data'"", particularly in less common infections like
meningitis”, and had variable validity'*. Additionally, since codes are fre-
quently recorded only after patient discharge or completion of an episode of
care, assigned infection sources may not align with individual antibiotic
prescriptions. Conversely, manual chart review has higher sensitivity and
can detect indications evolving over time, but time and cost constraints
mean that case numbers are often limited.

Recent research studies have shown applying LLMs to entire medical
records can effectively make predictions relevant to diagnosis, treatment
and care delivery, and generate new medical content™. However, there is
also a clear need for research and service applications to be able to extract
specific individual features from free-text in EHRs reliably and efficiently
whilst also meeting information governance requirements. These features
can be extracted by scanning the whole EHR, or by targeting specific free-
text forms. As an example of the latter targeted approach, we studied
antibiotic prescriptions and tried to infer the type of infection or infections
being treated from a free-text box completed by clinicians describing the
reason (indication) for antibiotics being given.” We investigated several
methods, comparing infections identified by clinician review of the free-text
to those identified by state-of-the-art NLP models, ie., Bidirectional
Encoder Representations from Transformers (BERT)'® and LLMs from the
Generative Pre-trained Transformer (GPT) family'’, as well as classical NLP
methods and regular expression-based text searches. Additionally, we also
compared findings to the infections that would have been identified by
traditional approaches using ICD-10 codes only.

By applying these methods, we find that modern transformer-based
NLP models, such as fine-tuned Bio+4Clinical BERT and GPT models,
significantly outperform traditional approaches in accurately inferring
infection types from free-text indications. These advanced models extract
specific infection information more frequently than standard methods that
rely solely on ICD-10 codes, highlighting their potential for information
extraction from unstructured medical records.

Methods

Study design and population

We used EHRs from two distinct locations, Oxford (three hospital sites) and
Banbury (one hospital), with data from Oxford serving as our training and
internal test set, and Banbury as our external test set. These four hospitals
collectively provide 1100 beds, serving 750,000 residents in Oxfordshire,
~1% of the UK population. Deidentified versions of this EHR data were
obtained from Infections in Oxfordshire Research Database (IORD), which
has approvals from the National Research Ethics Service South Central -
Oxford C Research Ethics Committee (19/SC/0403), the Health Research
Authority and the Confidentiality Advisory Group (19/CAG/0144) as a
deidentified database that can be used for infection research without a
requirement for individual patient consent. Approvals for this specific study
and use of the data were granted by the IORD oversight committee, based on
a written proposal. All patients aged >16 years who had antibiotic pre-
scriptions and were admitted between 01-October-2014 and 30-June-2021
were included.

‘Ground truth’ labelling

Within the EHR, clinicians documented the indication for antibiotic pre-
scriptions within a character-limited free-text field. We trained models to
classify this text to identify the infection source or sources being treated, and
any uncertainty expressed by clinicians. Two clinical researchers reviewed
each antibiotic indication text string used for training and testing to establish
a reference or ‘ground truth’ result for the clinical syndrome being treated
(4000 unique strings for training, and 2000 randomly sampled strings the
testing and external validation; see “Training, test and external evaluation”
section). Inter-rater agreement was assessed using Cohen’s Kappa, following
which any discrepancies were resolved by a third researcher, a clinical
infection specialist. Antibiotic indications were labelled using 11 categories
representing infection source: Urinary; Respiratory; Abdominal;

Neurological; Skin and Soft Tissue; Ear, Nose and Throat (ENT); Ortho-
paedic; Other specific (i.e. another body site); Non-specific (i.e. no body site
provided, e.g. “sepsis”, “infection”), Prophylaxis, Not informative (i.e. text
unrelated to the source of infection, e.g. “as instructed by Dr X”). Each
category was recorded as a binary variable, such that more than one
potential source could be recorded, e.g. the input string “urinary/chest”
would be labelled as both urinary and respiratory. An additional variable
was used to document the presence of uncertainty expressed by the pre-
scriber, e.g. “urinary/chest” or “? UTT”".

Traditional classification methods

Regex rules. The most intuitive and deterministic method for classifying
free-text is searching for specific keywords from alist of predefined words
for a given category. We employed fuzzy regular expression (regex)
matching patterns with term-specific word boundaries and variable
fuzziness to allow for misspellings and variations using the regex python
package (see Supplementary Methods and Supplementary Fig. SI).

n-grams & XGBoost. A second approach used a separate tokeniser,
embedding and classifier structure; specifically, scikit-learn’s n-grams &
count vectorisation and the gradient boosting model architecture
XGBoost'*". Each free-text indication term was broken up into over-
lapping subwords of length n and then count-vectorised, with the count
representing the frequency of each subword’s occurrence. The vectors
of dimension vocabulary size were then fed as input features to the
classification model. We determined the optimal n-gram size (1) and
hyperparameters for XGBoost during model training by maximising
the receiver operator curve area under the curve (ROC AUC)
(details below).

BERT Classifier

Current state-of-the-art NLP tasks employ models built on transformer
architectures, with the Bidirectional Encoder Representations from Trans-
formers (BERT) model family well suited for many tasks requiring semantic
understanding. We finetuned” pre-trained BERT models on a single GPU
instance and used BERT for both encoding and classification. We evaluated
the original generic “uncased base BERT” model, pre-trained on the
BooksCorpus and English Wikipedia and a domain-specific “Bio+Clinical
BERT”, pre-trained on biomedical and clinical text*"*”.

Zero-shot and fine-tuned LLM classifier

Compared to BERT, the GPT family enables zero- or few-shot learning, i.e.
there is potentially minimal need for labelled data for task-specific training.
We developed prompts for zero-shot learning with GPT4, comprised of
instructions and the target categories, asking the model to complete the
categories, but without using any training data (see Supplementary Note S1
for specific prompts)”.

We also finetuned a GPT3.5 model using the complete training
dataset. Finetuning was achieved by presenting the desired output
alongside the training input data. We used the same system prompt as for
the GPT4 model, while providing the training examples, which were fed
in batches of ten. Additional model hyperparameters, such as learning
rate, and epochs, were chosen through grid search. All GPT models were
run on OpenAT’s platform. All data uploaded to OpenAT’s services was
thoroughly reviewed prior to ensuring that no personal identifiable data
was included.

Training, test and external evaluation

We divided the Oxford data with a 90/10 train/test split, resulting in a raw
training set and internal test set. From the training data, we labelled and used
the 4000 most frequently occurring unique indication text strings. To make
labelling tractable we discarded the remaining unlabelled data from the
training set. From the internal test data, we randomly selected and
exhaustively labelled indications present in 2000 prescriptions. For the
external test set from Banbury, we also labelled 2000 randomly selected
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entries. All models were trained on the training dataset with grid-search-
based hyperparameter tuning based on cross validation and tested on both
the internal and external test sets.

The multi-label performance of each method was evaluated using
scikit-lean’s implementation of weighted F1 scores, precision-recall (PR
AUC) and ROC AUC. Weighted averages take into account the varied
distributions of the infection categories, such that more common categories
contribute more to the overall average, producing estimates that reflect the
original data source and represent real-world performance.

Comparator classification by ICD-10 codes

We also inferred the infection being treated using only ICD-10 codes and no
free-text to provide a comparison with this traditional approach. We
mapped primary and secondary ICD-10 diagnosis codes from the same
admission as the antibiotic prescription to the 11 infection sources using
CCSR classifications™ as an intermediate step (see Supplementary Methods
and Supplementary Note S2). We then compared infection sources
extracted from free-text indications to infection sources derived from ICD-
10 codes.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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Fig. 1 | Infection & source distributions within labelled training data from three
Oxford hospitals. Bar charts (a) and b show the distribution of the sources and the
uncertainty relative to the infection source. The up-set plots (c) and d show the
occurrence of multiple sources within the same prescription. a and ¢ show

Results

We obtained antibiotic prescribing indication data from 826,533 prescrip-
tions from 171,460 adult inpatients, 216 years, between 01-October-2014
and 30-June-2021 from three hospitals in Oxford, UK. The most commonly
prescribed antibiotics were co-amoxiclav (n =269,945, 33%), gentamicin
(n=70,002, 8%), and metronidazole (n=65,094, 8%) (Supplementary
Table S2), and the most common specialities were General Surgery
(n=146,719, 18%), Acute General Medicine (n=98,687, 12%), and
Trauma and Orthopaedics (1= 90,719, 11%) (Supplementary Table S3).
Patients were a median 56 years old (IQR 36-73), and 94,721 (55%) were
female (Supplementary Table S4).

We also used an independent external test dataset to assess classifier
performance further, from the Horton Hospital, Banbury (~30 miles from
Oxford). This dataset comprised 111,617 prescriptions from 25,924 patients
between 01-December-2014 and 30-June-2021, with 13,650 unique free-
text indications. Antibiotics prescribed (Supplementary Table S2) and
specialities (Supplementary Table S3) were broadly similar to the Oxford
training and internal test dataset. Patients were a median 67 years old (IQR
47-80), and 13,853 (53%) were female (Supplementary Table S4).

Prescription indications
From the 826,533 Oxford prescriptions, 86,611 unique free-text indications
were recorded. The top 10 accounted for 41% of all prescriptions; these
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distributions across the entire labelled indications training set (“global”), b and

d across a distinct set of 4000 most common indications (“distinct”). *Indications
falling into ENT such as “neck abscess” were often also labelled with Skin & Soft
Tissue.
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included “Perioperative Prophylaxis” (20%), “UTT” (4%), “LRTT” (3%),
“Sepsis” (3%), and “CAP” (3%). The most commonly occurring 4000
unique indications, used for model training, accounted for 84% (692,310) of
prescriptions (Supplementary Fig. S2 and Table S5).

As expected, different wording was used to reflect similar concepts, e.g.
“CAP [community acquired pneumonia]”, “LRTI [lower respiratory tract
infection]”, “chest infection”, and “pneumonia”. Additionally, misspellings
were common, e.g. “infction” [infection], “c. dififcile” [C. difficile]. Multiple
examples expressed uncertainty, or multiple potential sources of infection,
e.g. “sepsis?source”, “UTI/Chest”, etc. Reflecting the complexity of pre-
scribing, there were multiple potentially informative, but rarely occurring
indications, e.g., “transplant pyelonephritis”, “Ludwig’s angina”, and “deep
neck infection”, which were only seen 51 (<1%), 27 (<1%), and 13 (<1%)

times respectively.

‘Ground truth’ labels

Following labelling by clinical experts, the 4000 most commonly occurring
free-text indications were classified into 11 categories, with a separate
variable capturing the presence of uncertainty. There was generally close
agreement between the two initial clinical researchers classifying the text
strings (average Cohen’s Kappa = 0.80, range across categories 0.55-0.96,
Supplementary Table S6). The most commonly assigned sources were
“Prophylaxis” (267,788/692,310 prescriptions, 39%), “Respiratory”
(125,744, 18%) and “Abdominal” (61,670, 9%). 50% (n = 344,773) pre-
scriptions had “No Specific Source”. The most uncertainty was expressed in
“Neurological” and ENT cases at 38% and 33%, respectively (Fig. la).

Although “Respiratory” was the most common category overall after
“Prophylaxis”, there were more distinct text strings associated with
“Abdominal” infections, with “Skin and Soft Tissue” infection also having a
disproportionately larger number of unique text strings (Fig. 1b). Most
‘multi-source’ prescriptions were a combination of “Prophylaxis” and a
source (>90%). Excluding prophylaxis, the most common combinations of
sources were “No Specific source” and “Not Informative”, “Urinary” and
“Respiratory”, and “Skin & Soft Tissue” and ENT, in 1.6%, 0.58%, 0.41%
prescriptions, respectively (Fig. 1c, d). The former two reflected diagnostic
uncertainty and the latter reflected infections of the face, head and neck
frequently involving skin/soft tissue.

Classifier performance

We trained classifiers using the labelled training data from three Oxford
hospitals (Fig. 2). Compared to clinician-assigned labels, within the internal
Oxford test dataset (n =2000), the weight-averaged F1 score across classes
was highest using Bio+Clinical BERT (Average F1 = 0.97 [worst perform-
ing category F1 = 0.84, best performing F1 = 0.98]) followed by fine-tuned
GPT3.5 (F1=0.95 [0.77-0.99]), base BERT (F1 =0.93 [0.23-0.98]) and
tokenisation+XGBoost (F1=0.86 [0.64-0.96]). Nearly all approaches
exceeded traditional regular expression-based matching (F1=0.71
[0.00-0.93]). The zero-shot GPT4 model, which did not require labelled
data, performed similarly to this baseline (F1 = 0.71 [0.30-0.98]) (Table 1,
additionally shows classification run times and 95% confidence intervals).
Similar performance characteristics were achieved on the external validation
dataset from Banbury (n = 2000; weight-averaged F1 scores: Bio+Clinical
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Fig. 2 | Data processing flow chart for training and internal and external test

datasets. Prescribing data was fetched from EHR databases and filtered for complete
data, where incomplete data refers to entries without usable indications (e.g. blank,
single character punctuation [excluding a question mark] or “NA”). The 4000 most

frequent indications within the training split were labelled, all remaining training
data was discarded. 2000 entries were randomly sampled from both the internal and
external test datasets and exhaustively labelled, resulting in a total of three datasets
(training set, internal test set, external test set).
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Table 2 | Model performance metrics for the external (Banbury) test set

Model F1 Score ROC AUC PR AUC Per-Category Accuracy Accuracy
Aggregation Average Low High Average Low High Average Low High Average Low High Overall
[95% ClI] [95% ClI] [95% CI] [95% ClI] [95% CI]
Regex 0.74 0.00 0.96 - - - - - - 0.82 0.41 0.99 0.24
[0.73, [0.82, [0.22, 0.26]
0.75] 0.83]
XGBoost 0.84 0.63 1.00 0.94 0.86 1.00 0.87 0.57 1.00 0.94 0.88 1.00 0.68
[0.83, [0.93, [0.85, [0.93, [0.66, 0.70]
0.85] 0.94] 0.88] 0.94]
Base BERT 0.97 0.63 0.99 0.99 0.95 1.00 0.98 0.75 1.00 0.99 0.99 1.00 0.95
[0.96, [0.99, [0.98, [0.99, [0.94, 0.96]
0.98] 1.00] 0.99] 1.00]
Bio 0.98 0.87 1.00 0.99 0.97 1.00 0.98 0.87 1.00 0.99 0.99 1.00 0.97
+Clinical BERT  [0.98, [0.99, [0.98, [0.99, [0.96, 0.97]
0.99] 1.00] 0.99] 1.00]
Fine-Tuned 0.97 0.70 1.00 - - - - - - 0.99 0.98 1.00 0.95
OpenAl GPT3.5 [0.96, [0.99, [0.94, 0.96]
0.97] 0.99]
Zero-Shot 0.86 0.25 1.00 - - - - - - 0.95 0.81 1.00 0.73
OpenAl GPT4 [0.85, [0.94, [0.71, 0.75]
0.87] 0.95]

Each scoreis listed with the weighted average across the classes (sources), with the lowest and highest performing class. Overall Accuracy refers to the score calculated for a sample treated as a whole. The
best scores for each metric are highlighted in bold. The fine-tuned Bio+Clinical BERT outperforms all other methods on both internal and external test sets. The 95% confidence intervals (Cl) shown were
calculated using 1000 bootstrap iterations.
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Fig. 3 | Performance metrics for Bio+Clinical BERT on both internal and
external test sets. Bar charts (a) and b show the per-category prediction perfor-
mance. Confusion matrices (c) and d are single indication test prescriptions and
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show model prediction errors across the sources for given ground truths (clinician-
assigned sources). a and ¢ show evaluations performed on the internal test set from
three Oxford hospitals, b and d on the external test set from the Banbury hospital.

performance, but it was still similar to the baseline regex method and more
consistent across classes. Using LLMs with labelled training data, i.e. a fine-
tuned GPT3.5 variant, achieved results comparable to the Bio+Clinical
BERT approach when correctly specified and tuned but could be more
challenging to deploy as responses can vary in formatting, making it difficult

to parse correctly into a rigid format required for most downstream tasks or
EHR systems. In environments with limited computing resources where the
deployment of deep-learning models is not feasible, regex and XGBoost-
based models provide possible alternatives with a reduced runtime of 6.4
and 1.2 s/10k indications vs. 82.2 s/10k for Bio+Clinial BERT.
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Fig. 4 | Comparing infection sources between
clinician-assigned free-text indications (left) and
diagnostic codes (right) in the training and
internal and external test sets. Clinician-assigned
categories were extracted from prescribing data and
manually labelled, diagnostic codes sources calcu-
lated from procedure and discharge codes.
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Currently, research or clinical use of free-text may be limited by con-
cerns that personal data may be included. Here, by homogenising and
categorising sensitive free-text data and using a locally run BERT model, we
present a privacy-aware solution that enables researchers to utilise the depth
of free-text data without direct access or the possibility of identifying specific
patients.

Our study has several limitations, including that we only used a subset
of the available training data, through the non-exhaustive labelling of a
subset of antibiotic indication text strings. However, labelling the 4000 most
common unique terms, accounting for 84% of the data, achieved very high
performance, with sensitivity analyses suggesting that labelling more
examples would not have improved performance substantially. This is likely
possible because the underlying Bio+Clinical BERT model is already pre-
trained on medical terms and capable of inferring similar words, with the
nature of the data suggesting that there is a relatively finite number of unique
terms (excluding misspellings). Of note, many of the remaining 17% of text
strings were different combinations of already labelled words, suggesting
fewer “new” or unseen keywords than might be expected. Not fully labelling
the training data also makes it more difficult to compare category dis-
tributions with the test datasets. We also only used a subset of the test data to
evaluate performance; however, the 2000 randomly selected samples are
likely representative. Although the labelling process was somewhat sub-
jective, independent labelling by two clinical researchers was largely con-
sistent (average Cohen’s Kappa 0.80), with a third clinical researcher
adjudicating any discrepancies able to minimise this.

Future enhancements could include smaller, more efficient NLP
models that might better balance computational demands and perfor-
mance. Techniques such as model pruning, quantisation, and knowledge
distillation could reduce model size and computational requirements
while preserving performance” . While GPT4 deployments can comply
with data governance requirements, its use presents challenges in some
settings, as it is usually accessed via third-party cloud compute providers
rather than healthcare institutions. Where data need to remain on site,
open-source, locally-deployed language models, such as LLAMA,
ALPACA or Mistral 7B, may be alternatives that could be further
investigated™ ™.

Our approach has several possible applications; for example, it could be
used to monitor and evaluate prescribing practice across different condi-
tions, it provides classification of possible infection sources for epidemio-
logical research’, and is also a mechanism for extracting standardised
features from medical records for use in predictive algorithms being
developed to improve patient care. Although we demonstrate excellent
performance for antibiotic indications, it could also be applied to other short
strings of free-text, for example descriptions of surgical procedures, patient
functional states, or presenting complaints in emergency department and
hospital admission data.

In summary, we show that state-of-the-art NLP can be used to effi-
ciently and accurately categorise semi-structured free-text in medical
records. This has the potential to be applied widely to analyse medical
records more accurately and at scale, potentially opening opportunities for
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new epidemiological and intervention studies across medicine, as well as
possibilities for improving care delivery.

Data availability

The data analysed are available from the Infections in Oxfordshire Research
Database (https://oxfordbrc.nihr.ac.uk/research-themes/modernising-
medical-microbiology-and-big-infection-diagnostics/infections-in-
oxfordshire-research-database-iord/), subject to an application and research
proposal meeting on the ethical and governance requirements of the
Database. Labelled training and test datasets and the pre-trained BERT
model are also available via an application to the Database. The source data
for Fig. 1 is in Supplementary Data 1. The source data for Fig. 2 is in
Supplementary Data 2. The source data for Fig. 3 is in Supplementary
Data 3. The source data for Fig. 4 is in Supplementary Data 4.

Code availability

All tools developed for this study (Regex builder, Bio+Clinical BERT
pipeline, GPT3.5 finetuning and GPT4 zero-shot request tools) and the
evaluation frameworks are available through GitHub and Zenodo™: https://
github.com/kevihiiin/EHR-Indication-Processing/ https://doi.org/10.5281/
zenodo.13987740.
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