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Abstract

When there are multiple outcome series of interest, Synthetic Control analyses typically proceed
by estimating separate weights for each outcome. In this paper, we instead propose estimating a
common set of weights across outcomes, by balancing either a vector of all outcomes or an index
or average of them. Under a low-rank factor model, we show that these approaches lead to lower
bias bounds than separate weights, and that averaging leads to further gains when the number
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1 Introduction

The synthetic control method (SCM) estimates a treated unit’s counterfactual untreated

outcome via a weighted average of observed outcomes for untreated units, with weights

chosen to match the treated unit’s pre-treatment outcomes as closely as possible (Abadie

et al., 2010). In many applications, researchers are interested in multiple outcome series at

once, such as both reading and math scores in educational applications (e.g., Trejo et al.,

2024) or both low-wage employment and earnings when studying minimum wage changes

(e.g., Jardim et al., 2022). Other recent empirical examples with multiple series include

Billmeier and Nannicini (2013); Kleven et al. (2013); Bohn et al. (2014); Pinotti (2015);

Acemoglu et al. (2016); Dustmann et al. (2017); Cunningham and Shah (2018); Kasy and

Lehner (2022). There is limited practical guidance for using SCM in this common setting,

however, and researchers generally default to estimating separate weights for each outcome.

Like other single-outcome SCM analyses, this separate SCM approach can run into two

main challenges for a given number of pre-treatment periods. In shorter panels, SCM weights

can sometimes achieve perfect or near-perfect pre-treatment fit — but can overfit to idiosyn-

cratic errors, rather than find weights that balance latent factors (Abadie et al., 2010). At

the other extreme, longer panels can mitigate overfitting but are more likely to result in

poor pre-treatment fit, which can also introduce bias (Ferman and Pinto, 2021; Ben-Michael

et al., 2021). In addition to these statistical concerns, separate weights for each outcome

series can be difficult to interpret, since SCM weights — including which “donor units” have

non-zero weight — typically differ across separate SCM fits.

In this paper, we show that estimating a single set of weights common to multiple outcome

series can help address these challenges in cases where the outcomes share a common factor

structure, while also offering greater interpretability compared to using separate weights.

We consider two approaches. First, following Tian et al. (2023) as well as several recent

empirical studies, we find a single set of concatenated weights: SCM weights that minimize

the imbalance in the concatenated pre-treatment series for all outcomes. Second, we find a
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single set of average weights: SCM weights that minimize the imbalance in a linear combi-

nation of pre-treatment outcomes; as the leading case, we focus on imbalance in the average

of the pre-treatment outcome series.

Under the assumption that the K different outcome series share a similar factor structure,

we derive finite-sample bounds on the bias for these two approaches, as well as bounds when

finding separate SCM weights for each outcome series. Unlike previous literature, our bounds

apply even if the pre-treatment fit is not perfect. We show that both the concatenated and

averaging approaches reduce potential bias due to overfitting to noise by a factor of 1√
K

relative to the analysis that considers each outcome separately. We also show that the

averaging approach further reduces potential bias due to poor pre-treatment fit by a factor

of 1√
K

relative to both the separate and concatenated approaches. In particular, averaging

reduces noise, which both improves pre-treatment fit and reduces bias due to overfitting.

We next outline considerations for practice, including diagnostics for assessing the im-

portant assumption of a common factor structure and for sensitivity to hyperparameters.

We conduct a re-analysis of Trejo et al. (2024), who study the impact of the Flint water

crisis on student outcomes in Flint, Michigan. In the Online Appendix, we conduct a Monte

Carlo analysis to assess how the common factor structure affects the performance of the

concatenation and averaging approaches, and to illustrate that our proposed diagnostics

effectively detect the absence of common factors. Taken together, we argue that — when

multiple outcomes share a common factor structure — SCM based on averaged outcomes

is a reasonable, intrepretable procedure that effectively leverages multiple outcomes for bias

reduction.

Related literature. Despite the many empirical examples of SCM with multiple out-

comes, there is relatively limited methodological guidance for this setting. Robbins et al.

(2017) consider this problem in the context of SCM with high-dimensional, granular data

and consider different aggregation approaches. Amjad et al. (2019) introduce the Multi-
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Dimensional Robust Synthetic Control (mRSC) method, which fits a linear regression using

a de-noised matrix of all outcomes concatenated together.

The closest paper to ours is independent work from Tian et al. (2023), who consider

weights based on concatenated outcomes in the same setting as ours where different outcome

series share a similar factor structure (see also Tian, 2021). The authors derive a bias

bound that holds conditional on achieving perfect pre-treatment fit for all outcome series

simultaneously. In contrast, we derive bias bounds that allow for imperfect pre-treatment fit,

a more general scenario in applied research. Additionally, our novel analysis demonstrates

how averaging can reduce finite sample error relative to concatenated weights.

Finally, we build on an expansive literature on the Synthetic Control Method for single

outcomes; see Abadie (2021) for a recent review. In particular, several recent papers propose

modifications to SCM to mitigate bias both due to imperfect pre-treatment fit (e.g., Ferman

and Pinto, 2021; Ben-Michael et al., 2021) and bias due to overfitting to noise (e.g., Kellogg et

al., 2021). We complement these papers by highlighting how researchers can also incorporate

multiple outcomes to mitigate both sources of bias.

2 Preliminaries

We consider an aggregate panel data setting of N units and T time periods. For each unit

i = 1, . . . , N and at each time period t = 1, . . . , T , we observe K outcomes Yitk where

k = 1, . . . , K. We denote the exposure to a binary treatment by Wi ∈ {0, 1}. We restrict

our attention to the case where a single unit receives treatment, and follow the convention

that this is the first one, W1 = 1. The remaining N0 ≡ N − 1 units are possible controls,

often referred to as “donor units.” To simplify notation, we limit to one post-treatment

observation, T = T0 + 1, though our results are easily extended to larger T .

We follow the potential outcomes framework (Neyman, 1990 [1923]) and denote the

potential outcome under treatment w with Yitk(w). Implicit in our notation is the assumption
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that there is no interference between units and no anticipation. Under this setup, we can

write the observed outcomes as Yitk = (1 − Wi)Yitk(0) + Wi1{t ≤ T0}Yitk(0) + Wi1{t >

T0}Yitk(1). The treatment effects of interest are the effects on the K outcomes for the

treated unit in the post-treatment period, τk = Y1Tk(1)− Y1Tk(0). We collect the treatment

effects into a vector τ = (τ1, . . . , τK) ∈ RK . Since we directly observe Y1Tk(1) = Y1Tk for

the treated unit, we focus on imputing the missing counterfactual outcome under control,

Y1Tk(0).

Throughout, we will focus on de-meaned or intercept-shifted weighting estimators, which

were introduced in the single outcome setting (Doudchenko and Imbens, 2017; Ferman and

Pinto, 2021) and were adapted to multiple outcomes by Tian et al. (2023), who argue that

outcome-specific demeaning is useful for comparing across outcomes. We denote Ȳi·k ≡
1
T0

∑T0
t=1 Yitk as the pre-treatment average for the kth outcome for unit i, and Ẏitk = Yitk− Ȳi·k

as the corresponding de-meaned outcome. We therefore consider estimators of the form:

Ŷ1Tk(0) ≡ Ȳ1·k +
∑
Wi=0

γiẎiTk, (1)

where γ ∈ RN−1 is a set of weights. Our paper centers on how to choose the weights γ.

3 Leveraging Multiple Outcomes for SCM: Identifica-

tion

In this section we outline assumptions on the data generating process that enable sharing

information across multiple outcomes. We describe necessary and sufficient conditions for

there to exist a single set of weights that achieves zero bias across all outcomes simultaneously,

and give intuition and examples in terms of linear factor models.

Throughout, we make the following structural assumption on the potential outcomes

under control, similar to Athey et al. (2021). As in the classic SCM literature (Abadie
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et al., 2010), the uncertainty arises from the idiosyncratic errors, which are assumed to

be strictly exogenous; we condition on deterministic but unknown model components. We

assume that correlation across outcomes is captured by model components described later,

with idiosyncratic errors independent across outcomes.

Assumption 1. The potential outcome under control is generated as

Yitk(0) = αik + βtk + Litk + εitk

where the deterministic model component includes unit and time fixed effects αik and βtk,

with
∑T

t=1 βtk = 0 for all k. After incorporating the additive two-way fixed effects, the model

component retains a term Litk with
∑N

i=1 Litk = 0 for all t, k and
∑T

t=1 Litk = 0 for all i, k.

The idiosyncratic errors εitk are mean zero, independent of the treatment status Wi, and

independent across units and outcomes.

This setup allows the model component to include αik, a unit fixed effect specific to

outcome k. We explicitly account for the presence of these fixed effects by de-meaning

across pre-treatment periods within each unit’s outcome series.

3.1 Existence of common weights shared across outcomes

To begin, we first characterize the bias of a de-meaned weighting estimator under Assump-

tion 1. For a set of weights γ that is independent of the idiosyncratic errors in period T ,

Ŷ1Tk(0) has bias:

EεT
[
Y1Tk(0)− Ŷ1Tk(0)

]
= βTk

(
1−

∑
Wi=0

γi

)
+ L1Tk −

∑
Wi=0

γiLiTk, (2)

where Y1Tk(0) is the kth control potential outcome for the treated unit at time T . Here the

expectation is taken over the idiosyncratic errors in period T .

From this we see that weights γ will lead to an unbiased estimator for time t and outcome
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k if (i) the weights sum to one and (ii) the weighted average of the latent Litk for the donor

units equals L1tk for the treated unit. Weights that satisfy these conditions for all time

period/outcome pairs would yield an unbiased estimator for every Y1tk(0) simultaneously.

We refer to such weights as oracle weights γ∗, since they remove the bias due to the presence

of the unobserved model components Litk.

Definition 1 (Oracle Weights). The oracle weights γ∗ solve the following system of (TK)+1

equations (
L 1N

)′ −1

γ∗

 = 0TK , (3)

where the first row of L ∈ RN×(TK) contains Litk for the treated unit and the remaining rows

correspond to control units.

We show in Section 4 that if such oracle weights exist, we can pool information across

outcomes by finding a single set of synthetic control weights that are common to all K

outcomes. Such weights will exist if and only if the underlying matrix of model components

L is low rank. We formalize this in the following assumption and proposition.

Assumption 2a (Low-rank L). The N × (TK) matrix of model components has reduced

rank, and its rank is equal to the (N − 1)× (TK) matrix of model components of the control

units L−1:

rank(L−1) = rank(L) < N − 1.

Proposition 1 (Low-rank is sufficient and necessary). The unconstrained oracle weights γ∗

exist iff Assumption 2a holds.

Finally, even if oracle weights that balance model components across all K outcomes

exist, estimating weights can be challenging without further restrictions. For example, there

may be infinitely many solutions to Equation (3). We therefore introduce the following

regularity condition that oracle weights with a bounded norm exist.
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Assumption 2b. In addition to Assumption 2a, assume there is a known C such that some

oracle weights exist in a set C where ‖x‖1 ≤ C for all x ∈ C. Denote γ∗ as a solution to

Equation (3) in C.

Below, we will estimate synthetic control weights that are constrained to be in C; Assump-

tion 2b ensures that this set contains at least some oracle weights, allowing us to compare

the synthetic control and oracle weights. This assumption further ensures that these oracle

weights are not too extreme, as measured by the sum of their absolute values. While we keep

the constraint set C general in our formal development, in practice—and in our empirical

analysis below—this constraint set is often the simplex C = ∆N0−1, where C = 1. This adds

the stronger assumption that there exist oracle weights that are non-negative, and so the

model component for the treated unit L1· ∈ RTK is contained in the convex hull of the model

components for the donor units, conv{L2·, . . . , LN ·}.

3.2 Interpretation for linear factor models

Proposition 1 shows that determining whether oracle weights exist is equivalent to deter-

mining whether the model component matrix L is low rank. We now discuss when this

assumption is plausible and how it relates to the more familiar low rank assumptions used

in the panel data literature.

To further interpret these restrictions, it is useful to express the model components L in

terms of a linear factor model. Under Assumption 2a, for r = rank(L) the deterministic

model component can be written as a linear factor model,

Litk = φi · µtk, (4)

where µtk ∈ Rr are latent time- and outcome-specific factors and each unit has a vector of

time- and outcome-invariant factor loadings φi ∈ Rr.1 Linear factor models like this have

1This factor structure can be based on a singular value decomposition L = UDV ′. Define Υ = V D .
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been used extensively in the literature to capture a common set of unobserved predictors

across different outcomes, e.g., Farias and Li (2019); Amjad et al. (2019); Tian et al. (2023).

Proposition 1 guarantees that oracle weights exist and that there exists a linear combi-

nation of control units’ factor loadings that can recover the treated unit’s factor loading:

φ1 =
∑
Wi=0

γ∗i φi.

To interpret this factor structure, note that a special case that satisfies Assumption 2a

is where the model component Litk can be decomposed into a common component that is

shared across outcomes and an idiosyncratic, outcome-specific component:

Litk =

r0∑
f=1

φicfµtkf +

rk∑
f ′=r0+1

φikf ′µtkf ′ , (5)

where all loading vectors φcf and φkf ′ are orthogonal to each other. Let r0 denote the

dimension of the factor loadings that are shared across the outcomes. Then we can calculate

rank(L) = r0 +
∑K

k=1(rk − r0), where there are r0 common factor loadings and (rk − r0)

idiosyncratic factor loadings for outcome k. The factor loadings can be seen as latent feature

vectors associated with each unit, which may vary with the outcomes of interest. The low-

rank Assumption 2a then states that r0 +
∑K

k=1(rk − r0) < N − 1. This can happen when

either the number of outcomes K is relatively small or r0 is large compared to rk so that

there is a high degree of shared information across outcomes.

Importantly, the assumption that the model components are low rank is inherently a

substantive one and should be driven by economic theory when possible; we offer some

examples next. In Section 4.5, we suggest some diagnostics for practice, recognizing that the

power of these tests is necessarily limited.2

Then we can write L = UΥ′ where for r = rank(L), Υ ∈ R(TK)×r are the latent time-outcome factors and
U ∈ RN×r are the loadings.

2Formal tests for low rank typically require large-sample approximations and stricter assumptions on the
errors, which are not imposed here. Moreover, such formal tests can sometimes be misleading. For instance,
recent findings show the factor structure of excess bond returns — and therefore whether these are low rank
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Example 1 (Repeated measurements of the same outcome). An extreme case is where

Yit1, . . . YitK are K repeated measurements of the same outcome. In this case µtk = µt for

k = 1, . . . , K, there are no idiosyncratic terms, and the rank of L is r0. This situation was

discussed in Sun et al. (2024) in the context of high-frequency measurements of the same

outcome.

Example 2 (Multiple test scores). Even with different outcomes, in many empirical settings,

such as standardized test scores, there are only a few factors that explain most of the variation

across outcomes, so
∑K

k=1(rk − r0) is small and the low-rank assumption is plausible. For

example, across seven test scores collected by Duflo et al. (2011), “average verbal” and

“average math” explain 72% of the total variation.

4 Leveraging Multiple Outcomes for SCM: Estimation

4.1 Measures of imbalance

In principle, we would like to find oracle weights that can recover L1Tk from a weighted

average of L2Tk, . . . , LNTk for all k. Since the underlying model components are unobserved,

however, we must instead use observed outcomes Y to construct feasible balance measures.

In the classic (de-meaned) synthetic control method applied separately to each series, weights

are chosen to optimize the pre-treatment fit for a single de-meaned outcome k:

γ̂sepk ≡ argmin
γ∈C

qsepk (γ)2, qsepk (γ) ≡

√√√√ 1

T0

T0∑
t=1

(
Ẏ1tk −

∑
Wi=0

γiẎitk

)2

.

We refer to these as separate weights, because there is a distinct set of weights to separately

estimate the effect for each outcome.

Motivated by the common factor structure, we now consider two alternative balance mea-

sures that use information from multiple outcome series. First, we consider the concatenated

— is hard to estimate (see, for example, Crump and Gospodinov, 2022).
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objective, which simply concatenates the different outcome series together. This is the pre-

treatment fit achieved across all outcomes and pre-treatment time periods simultaneously.

We refer to the set of weights that minimize this objective as the concatenated weights :

γ̂cat ≡ argmin
γ∈C

qcat(γ)2, qcat(γ) ≡

√√√√ 1

T0

1

K

K∑
k=1

T0∑
t=1

(
Ẏ1tk −

∑
Wi=0

γiẎitk

)2

.

This objective coincides with the “multiple-outcome SC estimator” proposed by Tian et

al. (2023), who also derive a novel bound on the estimation error with perfect pre-treatment

fit, i.e., qcat(γ̂cat) = 0. Our focus, however, is on bounding the estimation error when pre-

treatment fit is imperfect, and on whether we can reduce this error with an alternative

estimator. This alternative is the averaged objective, the pre-treatment fit for the average

of the outcomes. We refer to the set of weights that minimize this objective as the average

weights:

γ̂avg ≡ argmin
γ∈C

qavg(γ)2, qavg(γ) ≡

√√√√ 1

T0

T0∑
t=1

(
1

K

K∑
k=1

Ẏ1tk −
∑
Wi=0

γiẎitk

)2

.

Note that, for any realization of the data, the pre-treatment fit will be better for the

averaged objective than for the concatenated objective, qavg(γ̂avg) ≤ qcat(γ̂cat). This finite-

sample improvement in the fit also translates to a smaller upper bound on the bias, as we

discuss next.

4.2 Estimation error

For any estimated weights γ̂, the estimation error is

τk − τ̂k(γ̂) = Ẏ1Tk(0)−
∑
Wi=0

γ̂iẎitk = L1Tk −
∑
Wi=0

γ̂iLiTk︸ ︷︷ ︸
bias = imbalance + overfitting

+ ε̇1Tk −
∑
Wi=0

γ̂iε̇iTk︸ ︷︷ ︸
noise

.
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The second term in the decomposition is due to post-treatment idiosyncratic errors and is

common across the different approaches for choosing weights. In Online Appendix B.3 we

show that this term has mean zero and can be controlled if the weights are not extreme.

Our main focus will be the first term, the bias due to inadequately balancing model

components, which we denote Bias(γ̂). We can decompose this into two terms using the

linear factor model in (4):

Bias(γ̂) ≡ L1Tk −
∑
Wi=0

γ̂iLiTk =

T0∑
t=1

K∑
j=1

ωtj

(
Ẏ1tj −

∑
Wi=0

γ̂iẎitj

)
(R0) (6)

−
T0∑
t=1

K∑
j=1

ωtj

(
ε̇1tj −

∑
Wi=0

γ̂iε̇itj

)
(R1) (7)

where the time and outcome specific terms ωtj are transformations of the factor values that

depend on the specific estimator.

The first term, R0, is bias due to imperfect pre-treatment fit in the pre-treatment out-

comes, Ẏitj. The second term, R1, is bias due to overfitting to noise, also known as the

approximation error. This arises because the optimization problems minimize imbalance

in observed pre-treatment outcomes — noisy realizations of latent factors — rather than

minimizing imbalance in the latent factors themselves.

4.3 Main result: Bias bounds

We now turn to our main results. Our analysis differs from the existing literature in two key

ways. First, the results for synthetic controls with a single outcome from Abadie et al. (2010)

and multiple outcomes from Tian et al. (2023) assume perfect pre-treatment fit (R0 = 0)

and provide an upper bound on R1. Instead we derive explicit finite sample upper bounds

for R0, accommodating more general settings with imperfect pre-treatment fit. Second, we

quantify the impact of demeaning with a finite number of pre-treatment time periods T0;

this contributes to additional bias (often known as “Nickell bias” due to Nickell, 1981) but
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vanishes as T0 grows large.

4.3.1 Additional assumptions

To derive finite sample bias bounds, we first place structure on the idiosyncratic errors,

assuming they are independent across time and do not have heavy tails.

Assumption 3. The idiosyncratic errors εitk are mean-zero sub-Gaussian random variables

with scale parameter σ, i.e., they satisfy the tail bound P (|εitk| ≥ t) ≤ 2 exp
(
− t2

2σ2

)
.

This assumption encompasses the setting where the idiosyncratic errors have a larger variance

for certain outcomes; in this case the common scale parameter σ is the maximum of the

outcome-specific scale parameters.

Second, we assume an adequate signal to noise ratio for each outcome separately, for all

outcomes jointly, and for the average across outcomes.

Assumption 4. Denote µtk ∈ Rr as the time-outcome factors from Equation (4) and assume

that they are bounded above by M . Furthermore, denoting σmin(A) as the smallest singular

value of a matrix A, assume that (i) σmin

(
1
T0

∑
t µtkµ

′
tk

)
≥ ξsep > 0 for all outcomes k =

1, . . . , K; (ii) σmin

(
1

T0K

∑
tk µtkµ

′
tk

)
≥ ξcat > 0; and (iii) σmin

(
1
T0

∑
t (µ̄t) (µ̄t)

′
)
≥ ξavg > 0

where µ̄t = 1
K

∑K
k=1 µtk.

Previous literature introduces similar assumptions to avoid issues of weak identification

(Abadie et al., 2010). This additional assumption precludes settings where averaging re-

moves substantial variation in the latent model components over time. Consider, for exam-

ple, a setting where the model components for different outcomes vary over time in exactly

opposite directions. Here averaging would cancel out any signal from their latent model

components, and, as a result, our theoretical guarantees for the average weights would no

longer hold. However, we can generally rule out these edge cases by economic reasoning or

visual inspection of the co-movement across outcomes.
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4.3.2 Bias bounds

We now formally state the high-probability bounds on the bias for the three weighting

approaches.3 These bounds hold with high probability over the noise in all time periods and

all outcomes, εitk, and are derived under the assumption that εitk are independent across

outcomes.4 We can compare these high-probability bounds for fixed N as the number of

time periods T and/or the number of outcomes K grow.

Theorem 1. Suppose Assumptions 1, 2b, 3 and 4 hold. Recall that by construction,

the estimated weights satisfy ‖γ̂‖1 ≤ C and Assumption 2b implies ‖γ∗‖1 ≤ C. Let σ̃ =

(1 + 1/
√
T0)σ and C̃ = 4(1 + ‖γ∗‖2). With high probability, the absolute bias for estimating

the treatment effect satisfies the bound

|Bias(γ̂sepk )| ≤ rkM
2

ξsepk

[
C̃σ +

1√
T0

(
2Cσ̃

√
log 2N0

)]
,

∣∣Bias(γ̂cat)
∣∣ ≤ rM2

ξcat

[
C̃σ̃ +

1√
T0K

(
2Cσ̃

√
log 2N0

)]
,

|Bias(γ̂avg)| ≤ rM2

ξavg

[
1√
K

C̃σ +
1√
T0K

(
2Cσ̃

√
log 2N0

)]
.

The proof for Theorem 1 relies on the sharp bound |Bias(γ̂)| = |R0 − R1| ≤ |R0|+ |R1|,

which leads us to derive bounds on terms in Equations (6) and (7) respectively. Different

from the previous literature that assumes R0 = 0, we bound |R0| by the discrepancy in the

objectives between estimated and oracle weights. Table 1 gives a high-level overview of these

results and shows the leading terms in the bounds, removing terms that do not change with

3While we would ideally characterize the entire distribution of the bias term, upper bounds provide a
clear indication of where the bias is most likely to concentrate. They are also widely used in the extant SCM
literature (e.g., Abadie et al., 2010; Ben-Michael et al., 2021).

4With independent errors, additional outcomes provide new but noisy measurement for the latent common
factors. With correlated noise, we conjecture that some stationarity condition is necessary for the order of
the bounds to hold. In the extreme case of perfectly correlated errors, all approaches should lead to the
same result.

14



Bias due to imperfect fit Bias due to overfitting

γ̂sep O(1) O
(

1√
T0

)
γ̂cat O(1) O

(
1√
T0K

)
γ̂avg O

(
1√
K

)
O
(

1√
T0K

)
Table 1: Leading terms in high probability bounds on the bias due to imperfect fit and
overfitting in Theorem 1, with N fixed.

K and T0.

For both the separate weights γ̂sepk and the concatenated weights γ̂cat, imperfect pre-

treatment fit—on outcome k alone for the separate weights, and on all outcomes for the

concatenated weights—contributes to bias, regardless of the number of pre-treatment periods

or outcomes. This result is consistent with Ferman and Pinto (2021) who show that as T0 →

∞, the separate objective function qsepk (γ) does not converge to the objective minimized by

the oracle weights, and therefore remains biased. In contrast, the bias due to pre-treatment

fit for the average weights will decrease with the number of outcomes K. This is because

averaging across outcomes reduces the level of noise in the objective. With many outcomes,

the average will be a good proxy for the underlying model components that themselves can

be exactly balanced by the oracle weights. Averaging therefore allows us to get close to an

oracle solution, with low bias due to pre-treatment fit. This result is also consistent with

Ferman and Pinto (2021) since the variance of the noise decreases to zero as both K and T0

grow.

The second component of the bias is the contribution of overfitting to noise. Mirroring

prior results (e.g., Abadie et al., 2010), we find that the threat of overfitting to noise with

separate synthetic control weights will decrease as the number of pre-treatment periods T0

increases — but remains unchanged as K increases. In contrast, the bias from overfitting to

noise for both the concatenated and the averaged weights will decrease as the product T0K

increases, albeit for different reasons. For the concatenated weights, Tian (2021, Chapter 2)

and Tian et al. (2023) also show that the bias is inversely proportional to T0K and argue
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that the extra outcomes essentially function as additional time periods. Each time period-

outcome pair gives another noisy projection of the underlying latent factors, and finding a

single good synthetic control for all of these together limits the threat of overfitting to any

particular one. For averaged weights, averaging across outcomes directly reduces the noise of

the objective, as we discuss above. The T0 averaged outcomes will therefore have a standard

deviation that is smaller by ≈ 1√
K

than the original outcome series, leading to less noise and

less potential for overfitting.5

4.4 Inference

Our main results concern estimation. There is no consensus on the best inference procedures

for SCM with a single treated unit; below we describe a few procedures and highlight their

key assumptions. A popular method is the finite population permutation approach of Abadie

et al. (2010) that permutes the treatment assignment and relies on permutation distributions

for inference. Since the permutation is across control units, this approach can be applied

directly when there are multiple outcomes and any of the aforementioned weights can be used.

This will yield a valid test in some settings, such as if the treatment assignment is random

across units. An alternative approach without random treatment assignment is the conformal

inference framework proposed by Chernozhukov et al. (2021). In Online Appendix A, we

adapt this to the multiple outcome setting and illustrate it using our empirical application.

We note that this mode of inference requires stronger assumptions to ensure consistent

counterfactual estimation and that validity of the resulting hypothesis tests relies on an

asymptotic framework with many control units. We discuss these departures from our main

setting in detail in Online Appendix A.

5While we focus on how the bias bound scales with T0 and K, it also depends on the number of control
units N0 through ‖γ∗‖2. In well-behaved settings, this norm can be bounded by O(1/

√
N0) (Arkhangelsky et

al., 2021). Ferman (2021) further shows that SCM bias vanishes when both N0, T0 →∞. In such asymptotic
settings, we expect limited gains from averaging over concatenation and leave a detailed analysis for future
work.
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4.5 Recommendations for Empirical Practice

We conclude this section by discussing the practical implications of our results and provid-

ing guidance for empirical researchers conducting synthetic control analyses with multiple

outcomes. We demonstrate these points in our application.

Assess the low-rank assumption. The key assumption underlying our results is that

there are shared common factors across outcomes among the different outcomes (Assump-

tion 2a). If the outcomes share few common factors and have many idiosyncratic ones, neither

the averaged nor the concatenated weights may improve on separate weights. We therefore

recommend evaluating this empirically by examining whether a few singular vectors capture

the majority of the total variation across outcomes. In addition, under a shared factor struc-

ture, weights fit on different combinations of outcomes should yield a reasonable level of fit

for any particular outcome series, even if that outcome is excluded from the combination.

Therefore, as a rough diagnostic, we suggest holding out each outcome and inspecting the

level of fit of the combined weights estimated using the remaining outcome series. Finally, as

we discuss in Section 3.2 above, we suggest that applied researchers combine this empirical

evidence with substantive knowledge about the outcomes.

Standardize each outcome series. In practice, outcomes often differ in scale. While the

bias bounds in Theorem 1 make no restrictions across outcomes — the bounds depend only

on the maximum variance — there are practical benefits to standardizing outcomes. First,

this tightens the bounds by replacing the maximum scale with the standardized variance.

Averaging standardized outcomes prevents outcomes with larger scales from dominating.

Standardization also aids in interpretation, for instance allowing us to change the sign of

each outcome to follow the convention that “positive” has the same semantic meaning for

all outcomes (e.g., higher test scores are more desirable). Therefore, we recommend stan-
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dardizing each outcome series using its pre-treatment standard deviation.6

Conduct sensitivity analysis based on combined weights. In some cases, averaging

can remove substantial variation, thereby violating Assumption 4. To guard against this,

we recommend conducting a sensitivity analysis based on finding combined weights : SCM

weights that control a linear combination of the two objectives, with weight ν on the con-

catenated objective and weight (1 − ν) on the averaged objective. In particular, for any

ν ∈ [0, 1], consider γ̂com ∈ arg minγ∈C ν
∗qavg(γ) + (1− ν∗)qcat(γ). This creates an imbalance

“frontier,” similar to the approach in Ben-Michael et al. (2022), where ν = 0 corresponds to

the concatenated objective and ν = 1 to the average objective. As formalized in Lemma 8

of Online Appendix C, if the SCM weights yield good pre-treatment fit on both the disag-

gregated and aggregated outcomes, these weights will also achieve the minimum of the two

bounds, and the conformal inference approach described in Online Appendix A will also be

valid. In general, finding the optimal ν∗ involves model-derived parameters and is infeasible.

As a heuristic, we consider ν =
√
qavg(γ̂cat)/

√
qcat(γ̂cat), which is a ratio that is guaranteed

to be in [0, 1].

5 Application: Flint Water Crisis Study

On April 25, 2014, Flint’s residents began receiving drinking water from the Flint River,

where the water was both corrosive and improperly treated, causing lead to leach from pipes

and exposing about 100,000 residents to contaminated water for over 18 months. Concerns

persist a decade later, especially regarding the impact on children, who are highly vulnerable

to lead exposure.

To assess this impact, Trejo et al. (2024) conduct several different analyses both across

school districts and within Flint. We revisit their cross-district SCM analysis, based on

6Standardizing by the estimated standard deviation rather than the true, unknown standard deviation
may induce a small degree of additional dependence across outcomes at different times. We leave a more
thorough analysis to future work.
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a district-level panel data set for Flint and 54 possible comparison districts in Michigan,

viewing the April 2014 change in drinking water as the “treatment.” The authors focus

on four key educational outcomes: math achievement, reading achievement, special needs

status, and daily attendance; all are aggregated to the annual level from 2007 to 2019. We

focus on estimation in the main text and defer additional details and inference to Online

Appendix E.

Trejo et al. (2024) argue that these four outcomes are indicative of (aggregate) student

psycho-social outcomes at the district level, and, consistent with our results in Theorem

1, fit a common set of (de-meaned) SCM weights based on concatenating these outcome

series. Here we first inspect the weights for the synthetic controls fit separately on each

outcome in Figure 1. This illustrates a challenge in interpreting separate weights, as the

“synthetic Flint” for each outcome series is a composite of different donor districts with

limited overlap in the selected donor units across fits. For example, the synthetic control for

math achievement places over 30% of the weight on the Van Buren Public Schools district,

a district that receives little to no weight when fitting a synthetic control for the other three

outcomes or their average.

Next, we assess whether the observed data are consistent with the low-rank factor model

discussed in Section 3.1. To do so, we examine the N × T0K matrix of (de-meaned and

standardized) pre-treatment outcomes, where N = 54, T0 = 8, and K = 4. The top 10

singular vectors capture over 80% of the total variation, which is consistent with a low-rank

model component and the existence of corresponding oracle weights. As a second check,

we evaluate the “held out” pre-treatment fit on each outcome series when we remove that

outcome from the combined concatenated and averaging objectives. Online Appendix Fig-

ure E.1 shows the mean square prediction error relative to uniform weighting. We find that

the combined approach yields reasonable held-out fit for math, reading, and special needs

outcomes. However, we find worse held-out fit for student attendance; further inspection

finds that this is greatly improved after excluding special needs as an outcome. Taken to-
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Concatenated Objective

Averaged Objective

Special Needs

Student Attendance
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Donor District

SCM Weight
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Figure 1: Separate SCM weight placed on each donor unit using (i) Student Attendance,
(ii) Special Needs, (iii) Reading Achievement, and (iv) Math Achievement separately as
outcomes, along with the weights solving the concatenated and averaged objectives. The
top 5 districts accounting for over 75% of the weights solving the combined objective are: (i)
Dowagiac Union; (ii) Oak Park School; (iii) Lincoln Consolidated; (iv) Hamtramck; and (v)
Houghton Lake. These are similar to the weights found by Trejo et al. (2024) (see Online
Appendix Table E.1 for the full list of weights).

gether, this suggests that while a common factor structure could be reasonable for math and

reading achievement, there may be idiosyncrasies between the outcome series for student

attendance and special needs.7

In addition to the concatenated SCM weights in the original application, we now also con-

sider separate and average SCM weights and the combined approach that solves a weighted

average of the concatenated and averaged objectives, with a heuristic weight of ν = 0.47 as

shown in Online Appendix Figure E.3. Figure 2 shows the SCM gap plots — i.e. the differ-

ences between the observed outcomes for Flint and the counterfactual outcomes imputed by

the synthetic control — for these four sets of weights. The separate SCM weights achieve

7 In Online Appendix Figure E.2, we consider analyzing the impact on special needs separately from the
other three outcomes, consistent with the robustness checks in Trejo et al. (2024) and this diagnostic check.
The results are broadly similar.
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Figure 2: Point estimates for the effect of the Flint water crisis using separate weights,
concatenated weights, and average weights, as well as the combined weights (setting ν =
0.47). The separate SCM weights yield essentially perfect pre-treatment fit for all four
outcomes.

close to perfect fit in the pretreatment period, suggesting potential bias due to overfitting to

noise, as we discuss in Section 4.5. By contrast, the concatenated and average SCM weights

and the combined approach do not lead to near-perfect pre-treatment fit, though the fit is

still reasonably good.

The results largely replicate those in Trejo et al. (2024). Both the averaged and con-

catenated weights as well as the combined approach estimate a deterioration of math test

scores following the Flint water crisis, with little change in reading test scores and student

attendance. All three sets of weights also find an increase in the proportion of students with

special needs, though the magnitude is smaller for the averaged weights.

6 Conclusion

SCM is a popular approach for estimating policy impacts at the aggregate level, such as the

school district- or state-level. This approach, however, can be susceptible to bias due to poor
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pre-treatment fit or to overfitting to idiosyncratic errors. By incorporating multiple outcome

series into the SCM framework and under the assumption that the multiple outcomes share

a similar factor structure, this paper proposes approaches that address these challenges and

that yield more interpretable weights.

There are several directions for future work. The most immediate is alternatives for

SCM with multiple outcomes when the common factor structure might not in fact hold.

We could consider approaches that average or borrow strength across multiple model types,

including from hierarchical Bayesian models (see, for example, Ben-Michael et al., 2023),

from tensor completion following Agarwal et al. (2023) or from an instrumental variable

approach following Shi et al. (2021) and Fry (2024). In addition, even when the common

factor structure does hold, there may be more efficient ways to create an index of outcomes

beyond a simple average, including dimension reduction approaches such as PCA or reduced

rank regression. Finally, leveraging multiple outcomes alone might not be enough to mitigate

SCM bias. Following Ben-Michael et al. (2021) and Arkhangelsky et al. (2021), we could

consider augmenting common SCM weights with either a common outcome model or separate

models for each outcome series.
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Online Appendix

A Inference

A.1 Overview

There is a large and growing literature on inference for the synthetic control method and

variants. Here we adapt the conformal inference approach of Chernozhukov et al. (2021) to

the setting of multiple outcomes. To do so, we focus on a sharp null hypothesis about the

effects on the K different outcomes simultaneously, H0 : τ = τ0, with τ ∈ RK . For example,

if τ0 = 0K we are interested in testing whether the treatment effect is zero for all outcomes.

The conformal inference approach proceeds as follows:

1. Enforce the null hypothesis by creating adjusted post-treatment outcomes for the

treated unit Ỹ1Tk = Y1Tk − τ0k.

2. Augment the original data set to include the post-treatment time period T , with the

adjusted outcomes Ỹ1Tk; use the concatenated, averaged, or combined objective func-

tion to obtain weights γ̂(τ0)

3. Compute the adjusted residual ûtk = Y1tk −
∑

Wi=0 γ̂i(τ0)Yitk and ûTk = Ỹ1Tk −∑
Wi=0 γ̂i(τ0)YiTk and form the test statistic:

Sq(ût) =

(
1√
K

K∑
k=1

|ûtk|q
)1/q

(8)

where the choice of the norm q maps to power against different alternatives. For

instance, if the treatment has a large effect for only few outcomes, choosing q = ∞

yields high power. On the other hand, if the treatment effect has similar magnitude

across all outcomes, then setting q = 1 or q = 2 yields good power. In practice, we set

q = 1.
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4. Compute a p-value by assessing whether the test statistic associated with the post-

treatment period “conforms” with the distribution of the test statistic associated with

pre-treatment periods:

p̂(τ0) =
1

T

T0∑
t=1

1 {Sq(ûT ) ≤ Sq(ût)}+
1

T
. (9)

Chernozhukov et al. (2021) show that in an asymptotic setting with T (and N) growing,

this conformal inference procedure will be valid for estimation methods that are consistent.

In particular, they show that the test (9) has approximately correct size; the difference

between actual size and nominal size vanishes as T0, N →∞. In the next section, we discuss

technical sufficient conditions for consistency, closely following Chernozhukov et al. (2021)

and departing from the finite-sample analysis that is our main focus here.

To construct the confidence set for the treatment effect of different outcomes, we collect

the values of τ0 for which test (9) does not reject. We can then project the confidence set

onto each outcome to form a conservative confidence interval.

Finally, an alternative approach is to focus on testing the average effect across the K

outcomes, 1
K

∑K
k=1 τk, with outcomes appropriately scaled so that positive and negative

effects have the similar semantic meanings across outcomes. This setting returns to the

scalar setting considered by Chernozhukov et al. (2021), where the estimates are based on

the average weights γ̂avg, and so for inference on the average we can follow their procedure

exactly.

A.2 Technical details regarding inference

In this section we provide additional technical details for the approximate validity of the con-

formal inference procedure proposed by Chernozhukov et al. (2021) with averaged weights.

To do so, we will consider an asymptotic setting with both N and T growing, and make a

variation of the structural Assumption 1 and Assumption 2b that constrained oracle weights
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exist.

Assumption 5. The de-meaned potential outcome under control for the treated unit’s kth

outcome at time t is

Ẏitk(0) =
∑
Wi=0

γ∗i Ẏitk + utk,

for some set of oracle weights γ∗ ∈ C, where for a given k the noise terms u1k, . . . , uTk are

stationary, strongly mixing, with a bounded sum of mixing coefficients bounded, and satisfy

E[utkYitk] = 0 for all Wi = 0.

As in the previous assumptions, Assumption 5 also assumes the existence of oracle weights

γ∗ shared across all outcomes, though they are defined slightly differently. Directly applying

Theorem 1 in Chernozhukov et al. (2021), the conformal inference procedure in Section A

using a set of weights γ̂, will be asymptotically valid if
∑

Wi=0 γ̂iẎitk is a consistent estimator

for
∑

Wi=0 γ
∗
i Ẏitk, when we include the post-treatment period T when estimating the weights.

Next, we list sufficient assumptions for this type of consistency using the average weights

γ̂avg, consistency with the concatenated weights γ̂cat can be established in an analogous

matter. In these assumptions, we define ūt = 1
K

∑K
k=1 utk and ˙̄Yit· =

1
K

∑K
k=1 Ẏitk.

Assumption 6.

(i) There exist constants c1, c2 > 0 such that E[
(

˙̄Yit·ūt

)2

≥ c1 and E[
∣∣Ȳit·ūt∣∣3] ≤ c2 for any

i such that Wi = 0 and t = 1, . . . , T .

(ii) For each i such that Wi = 0, the sequence { ˙̄Yit·ūt} is β-mixing and the β-mixing

coefficient satisfies β(t) ≤ a1 exp (−a2t
τ ), where a1, a2, τ > 0.

(iii) There exists a constant c3 > 0 such that maxi:Wi=0

∑T
t=1

˙̄Y 2
it·ū

2
t ≤ c3T with probability

1− o(1).

(iv) logN = o
(
T

4τ
3τ+4

)
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(v) There exists a sequence `T > 0 such that `TM [log(min{T,N−1})]
1+τ
2τ√

T
→ 0,

(∑
Wi=0

ẎiTkδi

)2

≤ `T
1

T

T∑
t=1

(∑
Wi=0

˙̄Yit·δi

)2

,

and

1

T

T∑
t=1

(
Ẏitkδi

)2

≤ `T
1

T

T∑
t=1

(
˙̄Yit·δi

)2

for all γ∗ + δ ∈ C, all k = 1, . . . , K with probability 1− o(1).

Assumption 6 follows the technical assumptions in the proof of Lemma 1 in Chernozhukov

et al. (2021) with two modifications. First, we place assumptions on the noise values averaged

across outcomes, ū1, . . . ūT rather than the outcome-specific noise values because we are

working with the averaged estimator. Second, Assumption 6(v) modifies Assumption (6)

in the proof of Lemma 1 in Chernozhukov et al. (2021) to link consistent prediction of the

average of the de-meaned outcomes to consistent prediction for any individual outcome.

This assumption is related to Assumption 2b. If there is a common factor structure across

outcomes, then we have the link

∑
Wi=0

Ẏitkδi = µtk ·
∑
Wi=0

φiδi +
∑
Wi=0

ε̇itkδi

= µTk ·

(∑
t

(µ̄t) (µ̄t)
′

)−1

µ̄t
∑
Wi=0

˙̄Y it·δi + µTk ·

(∑
t

(µ̄t) (µ̄t)
′

)−1

µ̄t
∑
Wi=0

˙̄εit·δi +
∑
Wi=0

ε̇itkδi.

So, if common oracle weights exist, Assumption 6(v) amounts to an assumption on the noise

terms.

Under these assumptions, we have a direct analog to Lemma 1 in Chernozhukov et al.

(2021) that is a direct consequence. We state it here for completeness.

Lemma 1. Let γ̂avg solve minγ∈C q
avg(γ)2, including the post treatment outcome T . Under

Assumptions 5 and 6, γ̂avg satisfies the consistency properties required for Theorem 1 in
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Chernozhukov et al. (2021), namely,

1

T

T∑
t=1

(
Ẏitk (γ̂i − γ∗i )

)2

= op(1)

and

ẎiTk (γ̂i − γ∗i ) = op(1).

Proof of Lemma 1. First, we can directly apply the claim from the proof of Lemma 1 and

Lemma H.8 in Chernozhukov et al. (2021) to state that there exists a constant M > 0 such

that

1

T

T∑
t=1

(
˙̄Yit·(γ̂

avg
i − γ∗i )

)2

≤ M [log(min{T,N − 1})] 1+τ2τ

√
T

with probability 1 − o(1). Now from Assumption 6(v), `TM [log(min{T,N−1})]
1+τ
2τ√

T
= o(1), which

completes the proof.

B Auxillary lemmas and proofs

B.1 Error bounds for the oracle imbalance

The bias due to imbalance in observed demeaned outcomes depends crucially on the measure

of imbalance we choose to minimize. We upper bound the imbalance using the estimated

weights with the imbalance when using oracle weights, which we refer to as oracle imbalance.

For example, we argue the oracle imbalance for the objective function of the SCM satisfies

a form of concentration inequality:

qsep(γ∗) =

√√√√ 1

T0

T0∑
t=1

(
ε̇1tj −

∑
Wi=0

γ∗i ε̇itj

)2

At first glance, the imbalance is the L2 norm of the vector of demeaned errors. The challenge

is that the demeaned errors ε̇itj are correlated over time due to demeaning.
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We prove a general upper bound on the oracle imbalance in Lemma 2 that allow us

to decompose the imbalance into the L2 norm of errors and the L2 norm of the average

of errors. Lemma 3 presents the intermediate concentration inequality for the L2 norm of

errors. Finally, building on Lemma 2 and 3, Lemma 4 inspects the numerical properties for

the pre-treatment fits achievable by the oracle weights. Unless otherwise noted, all results

hold under Assumptions 1, 2b, 3.

Lemma 2 (L2 norm of demeaned errors). Under the oracle weights, we have the following

upper bounds for the oracle imbalance

qcat(γ∗) ≤

√√√√2 · 1

T0

1

K

K∑
k=1

T0∑
t=1

(
ε1tk −

∑
Wi=0

γ∗i εitk

)2

+

√√√√ 2

K

K∑
k=1

(
ε̄1·k −

∑
Wi=0

γ∗i ε̄i·k

)2

qavg(γ∗) ≤

√√√√ 2

T0

T0∑
t=1

(
1

K

K∑
k=1

ε1tk −
∑
Wi=0

γ∗i εitk

)2

+

√√√√2

(
1

K

K∑
k=1

ε̄1·k −
∑
Wi=0

γ∗i ε̄i·k

)2

qsep(γ∗) ≤

√√√√ 2

T0

T0∑
t=1

(
ε1tj −

∑
Wi=0

γ∗i εitj

)2

+

√√√√2

(
ε̄1·j −

∑
Wi=0

γ∗i ε̄i·j

)2

.

Proof of Lemma 2. Note the following algebraic inequality

(
ε̇1tj −

∑
Wi=0

γ∗i ε̇itj

)2

=

(
ε1tj −

∑
Wi=0

γ∗i εitj −

(
ε̄1·j −

∑
Wi=0

γ∗i ε̄i·j

))2

≤ 2

(
ε1tj −

∑
Wi=0

γ∗i εitj

)2

+ 2

(
ε̄1·j −

∑
Wi=0

γ∗i ε̄i·j

)2

.

For brevity, we only prove the upper bound for qsep(γ∗) as the other two upper bounds can

be shown similarly.

qsep(γ∗) ≤

√√√√ 2

T0

T0∑
t=1

(
ε1tj −

∑
Wi=0

γ∗i εitj

)2

+ 2

(
ε̄1·j −

∑
Wi=0

γ∗i ε̄i·j

)2

≤

√√√√ 2

T0

T0∑
t=1

(
ε1tj −

∑
Wi=0

γ∗i εitj

)2

+

√√√√2

(
ε̄1·j −

∑
Wi=0

γ∗i ε̄i·j

)2

.
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Lemma 3 (L2 norm of errors). Suppose Assumptions 1, 2b and 3 hold. For any δ > 0, we

have the following bounds for the imbalance achieved by the oracle weights γ∗

√√√√ 1

T0

1

K

K∑
k=1

T0∑
t=1

(
ε1tk −

∑
Wi=0

γ∗i εitk

)2

≤ 4σ

√
1 + ‖γ∗‖2

2 + δ (10)√√√√ 1

T0

T0∑
t=1

(
1

K

K∑
k=1

ε1tk −
∑
Wi=0

γ∗i εitk

)2

≤
4σ
√

1 + ‖γ∗‖2
2√

K
+ δ (11)

with probability at least 1− 2 exp
(
− T0Kδ2

2σ2(1+‖γ∗‖22)

)
.

Similarly, with probability at least 1−2 exp
(
− T0δ2

2σ2(1+‖γ∗‖22)

)
, we have the following bounds

for the separate imbalance achieved by the oracle weights γ∗

√√√√ 1

T0

T0∑
t=1

(
ε1tj −

∑
Wi=0

γ∗i εitj

)2

≤ 4σ

√
1 + ‖γ∗‖2

2 + δ (12)

Proof of Lemma 3. For the bound in (10), note that ε1tk −
∑

Wi=0 γ
∗
i ε1ik is independent

across t and k, and sub-Gaussian with scale parameter σ
√

1 + ‖γ∗‖2
2. Via a discretization

argument from Wainwright (2019)[Ch.5], we can bound the LHS of (10), a scaled L2 norm

of a (T0K)× 1 sub-Gaussian vector. With probability at least 1− 2 exp
(
− δ2

2σ2(1+‖γ∗‖22)

)
, we

have√√√√ 1

T0

1

K

K∑
k=1

T0∑
t=1

(
ε1tk −

∑
Wi=0

γ∗i εitk

)2

≤ 1√
T0K

(
2σ

√
1 + ‖γ∗‖2

2

√
log 2 + T0K log 5 + δ

)
≤ 4σ

√
1 + ‖γ∗‖2

2 +
1√
T0K

δ

where we use the inequality log 2 +N log 5 ≤ 4N for positive N .

For the bound in (11), note that each ε̄1t −
∑

Wi=0 γ
∗
i ε̄1i is independent across t, and

sub-Gaussian with scale parameter σ/
√
K
√

1 + ‖γ∗‖2
2. we can similarly bound the LHS
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of (11), a scaled L2 norm of a (T0) × 1 sub-Gaussian vector. With probability at least

1− 2 exp
(
− Kδ2

2σ2(1+‖γ∗‖22)

)
,

√√√√ 1

T0

T0∑
t=1

(
1

K

K∑
k=1

ε1tk −
∑
Wi=0

γ∗i εitk

)2

≤ 1√
T0

2
σ
√

1 + ‖γ∗‖2
2√

K

√
log 2 + T0 log 5 + δ


≤

4σ
√

1 + ‖γ∗‖2
2√

K
+

1√
T0

δ

Setting δ = δ
√
T0K for the tail bound of (10), and δ = δ

√
T0 for the tail bound of (11),

we have the claimed result.

Finally for (12), we have a scaled L2 norm of a (T0) × 1 sub-Gaussian vector, each

with a scale parameter σ
√

1 + ‖γ∗‖2
2. Following a similar argument as above, we have with

probability at least 1− 2 exp
(
− δ2

2σ2(1+‖γ∗‖22)

)
, we have

√√√√ 1

T0

T0∑
t=1

(
ε1tj −

∑
Wi=0

γ∗i εitj

)2

≤ 1√
T0

(
2σ

√
1 + ‖γ∗‖2

2

√
log 2 + T0 log 5 + δ

)
≤ 4σ

√
1 + ‖γ∗‖2

2 +
1√
T0

δ

Setting δ = δ
√
T0 for the tail bound of (12), we have the claimed result.

Lemma 4 (Oracle imbalance). Suppose Assumptions 1, 2b and 3 hold. For any δ > 0, we

have the following bounds for the imbalance achieved by the oracle weights γ∗:

(i) if analyzing the separate imbalance

qsepk (γ∗) ≤ 4σ

√
1 + ‖γ∗‖2

2 + 2δ (13)

with probability at least 1− 4 exp
(
− T0δ2

2σ2(1+‖γ∗‖22)

)
.
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(ii) if analyzing the concatenated imbalance

qcat(γ∗) ≤ 4σ

√
1 + ‖γ∗‖2

2 + 2δ +
4σ
√

1 + ‖γ∗‖2
2√

T0

(14)

with probability at least 1− 4 exp
(
− T0Kδ2

2σ2(1+‖γ∗‖22)

)
.

(iii) if analyzing the average imbalance

qavg(γ∗) ≤
4σ
√

1 + ‖γ∗‖2
2√

K
+ 2δ (15)

with probability at least 1− 4 exp
(
− T0Kδ2

2σ2(1+‖γ∗‖22)

)
.

Proof of Lemma 4. First we apply Lemma 2 to derive a general upper bound.

For qsepk (γ∗), note that each ε̄1·k−
∑

Wi=0 γ
∗
i ε̄i·k is independent across k, and sub-Gaussian

with scale parameter σ√
T0

√
1 + ‖γ∗‖2

2. Setting δ = δ/

(
σ√
T0

√
1 + ‖γ∗‖2

2

)
in Lemma 6,

we have that
∣∣ε̄1·k −

∑
Wi=0 γ

∗
i ε̄i·k

∣∣ is upper bounded by δ with probability at least 1 −

2 exp
(
− δ2T0

2σ2(1+‖γ∗‖22)

)
. Applying the union bound, together with the bound in (12) of Lemma 3,

we have the claimed bound in (13).

For qcat(γcat), note that each ε̄1·k−
∑

Wi=0 γ
∗
i ε̄i·k is independent across k, and sub-Gaussian

with scale parameter σ√
T0

√
1 + ‖γ∗‖2

2. Using similar argument for the bound in (12) of

Lemma 3, we can bound the following scaled L2 norm of a K × 1 sub-Gaussian vector with

probability at least 1− 2 exp
(
− T0Kδ2

2σ2(1+‖γ∗‖22)

)
,

√√√√ 1

K

K∑
k=1

(
ε̄1·k −

∑
Wi=0

γ∗i ε̄i·k

)2

≤
4σ
√

1 + ‖γ∗‖2
2√

T0

+ δ

Applying the union bound, together with the bound in (10), we have the claimed bound

in (14).

For qavg(γ∗), note that 1
K

∑K
k=1 ε̄1·k −

∑
Wi=0 γ

∗
i ε̄i·k is sub-Gaussian with scale param-
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eter σ√
KT0

√
1 + ‖γ∗‖2

2. Setting δ = δ/

(
σ√
KT0

√
1 + ‖γ∗‖2

2

)
in Lemma 6, we have that∣∣∣ 1

K

∑K
k=1 ε̄1·k −

∑
Wi=0 γ

∗
i ε̄i·k

∣∣∣ is upper bounded by δ with probability at least 1−2 exp
(
− δ2KT0

2σ2(1+‖γ∗‖22)

)
.

Applying the union bound, together with the bound in (11) of Lemma 3, we have the claimed

bound in (15).

B.2 Error bounds for the approximation errors

Lemma 5 (Lemma A.4. of Ben-Michael et al. (2021)). If ξi are mean-zero sub-Gaussian

random variables with scale parameter ω̄, then for weights γ̂ and any δ > 0, with probability

at least 1− 4 exp
(
− δ2

2

)
, we have

∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂iξi

∣∣∣∣∣ ≤ δω̄ + 2 ‖γ̂‖1 ω̄

(√
log 2N0 +

δ

2

)
= ω̄

(
2 ‖γ̂‖1

√
log 2N0 + δ(1 + ‖γ̂‖1)

)
.

B.3 Error bounds for the post-treatment noise

Lemma 6. For weights independent of εiT j, under Assumption 1 and 3, for any δ > 0 with

probability at least 1− 2 exp
(
− δ2

2

)
, we have

∣∣∣∣∣ε1Tj −
∑
Wi=0

γ̂iεiT j

∣∣∣∣∣ ≤ δσ(1 + ‖γ̂‖2).

Proof of Lemma 6. Since the weights are independent of εiT j, by sub-Gaussianity and in-

dependence of εiT j, we see that ε1Tj −
∑

Wi=0 γ̂iεiT j is sub-Gaussian with scale parameter

σ
√

1 + ‖γ̂‖2
2 ≤ σ(1 + ‖γ̂‖2). Applying the Hoeffding’s inequality, we obtained the claimed

bound.
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Lemma 7. For weights γ̂ and any δ > 0, with probability at least 1− 6 exp
(
− δ2

2

)
, we have

∣∣∣∣∣ε̇1Tj −
∑
Wi=0

γ̂iε̇iT j

∣∣∣∣∣ ≤ δσ(1 + ‖γ̂‖2) + δ
σ√
T0

+ 2 ‖γ̂‖1

σ√
T0

(√
log 2N0 +

δ

2

)
≤ (1 + C)δσ

(
1 +

1√
T0

)
+

σ√
T0

(
2C
√

log 2N0

)

Proof of Lemma 7. For the post-treatment noise, we have

∣∣∣∣∣ε̇1Tj −
∑
Wi=0

γ̂iε̇iT j

∣∣∣∣∣ =

∣∣∣∣∣ε1Tj −
∑
Wi=0

γ̂iεiT j +
∑
Wi=0

γ̂iε̄i·j − ε̄1·j

∣∣∣∣∣
≤

∣∣∣∣∣ε1Tj −
∑
Wi=0

γ̂iεiT j

∣∣∣∣∣+

∣∣∣∣∣∑
Wi=0

γ̂iε̄i·j − ε̄1·j

∣∣∣∣∣
Lemma 6 applies to the first term. However, for the second term, we note that ε̄i·j and γ̂i

are correlated, and Lemma 5 applies with a scale parameter of σ/
√
T0. Applying a union

bound to the two terms, and note that ‖γ̂‖2 ≤ ‖γ̂‖1 = C by construction, we obtained the

claimed bound.

C Proofs of main results

Proof for Proposition 1. For the system of linear equations (3) to have a solution, a necessary

condition is that the matrix

(
L 1N

)
must have a reduced rank less than N . Furthermore,

since all time effects are removed from L, the columns of L are linearly independent from the

one vector 1N . Therefore, a necessary condition is for the rank of L to be less than N − 1.

Since there exists a solution γ∗ to the system of linear equations L′−1γ = L1, the Rouché-

Capelli theorem requires rank(L−1) = rank(L). For the sufficiency, observe that appending

the one vector to both L−1 and L increases their ranks by exactly one. Therefore, we still

maintain rank

(
L−1 1N−1

)
= rank

(
L 1N

)
≤ N − 1. The Rouché-Capelli theorem

then guarantees the existence of solutions to the system of linear equations (3).
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Proof of Theorem 1. The proof follows from Theorem 2, 3 and 4, separately proved

below.

Theorem 2 (Bound for separate weights). Suppose Assumptions 1, 2b, 3 and 4 hold. Then

for any δ > 0, we have the following bound

|Bias(γ̂jsep)| ≤
rjM

2

ξsep

(
(4σ(1 + ‖γ∗‖2) + 2δ) +

σ · (1 + 1/
√
T0)√

T0

(
2C
√

log 2N0 + (1 + C)δ
))

with probability at least 1− 8 exp
(
− δ2

2

)
− 4 exp

(
− T0δ2

2σ2(1+C2)

)
.

Proof of Theorem 2. As discussed in the main text, denote the projected factor value by

ωtj = µTj ·
(∑T0

t=1 µtjµ
′
tj

)−1

µtj, we can decompose the bias into the following two terms:

L̇1Tj(0)−
∑
Wi=0

γ̂sepi L̇iT j =

T0∑
t=1

ωtj(Ẏ1tj −
∑
Wi=0

γ̂sepi Ẏitj)−
T0∑
t=1

ωtj(ε̇1tj −
∑
Wi=0

γ̂sepi ε̇itj)

Next we derive the upper bound for the absolute value of each term.By Assumption 4, for

all t we have (ωtj)
2 ≤

(
rjM

2

ξsepT0

)2

. Next we derive the upper bound for the absolute value of

each term.

To bound the bias due to imbalance, we apply the Cauchy-Schwarz inequality:

(Rsep
0 ) =

T0∑
t=1

ωtj(Ẏ1tj −
∑
Wi=0

γ̂sepi Ẏitj) ≤

√√√√ T0∑
t=1

ω2
tj

√√√√ T0∑
t=1

(Ẏ1tj −
∑
Wi=0

γ̂sepi Ẏitj)2

=
√
T0

√√√√ T0∑
t=1

ω2
tj

√√√√ 1

T0

T0∑
t=1

(Ẏ1tj −
∑
Wi=0

γ̂sepi Ẏitj)2

≤
√
T0

√
T0 ·

(
rjM2

ξsepT0

)2

qsep(γ̂sep) = (ξ)−1rjM
2qsep(γ̂sep) ≤ (ξsep)−1rjM

2qsep(γ∗).

Lemma 4 derives a high-probability upper bound for qsep(γ∗), which gives an upper bound
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for |Rsep
0 |.

For |Rsep
1 |, set ξi =

∑T0
t=1 ωtjεitj and ξ̄i = ε̄i·j

∑T0
t=1 ωtj. We therefore have the upper

bound

|Rsep
1 | =

∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂iξi − ξ̄1 +
∑
Wi=0

γ̂iξ̄i

∣∣∣∣∣ ≤
∣∣∣∣∣ξ1 −

∑
Wi=0

γ̂iξi

∣∣∣∣∣+

∣∣∣∣∣ξ̄1 −
∑
Wi=0

γ̂iξ̄i

∣∣∣∣∣
Furthermore, the weighted sum ξi is sub-Gaussian with a scale parameter σ√

T0

rjM
2

ξsep
, and ξ̄i

is sub-Gaussian with a scale parameter σ
T0

rjM
2

ξsep
. We apply Lemma 5 to both terms with the

union bound.

Combining the probabilities with the union bound gives the result with probability at

least 1− 8 exp
(
− δ2

2

)
− 4 exp

(
− T0δ2

2σ2(1+‖γ∗‖22)

)
, the bias is upper bounded by

rjM
2

ξsep

(
4σ

√
1 + ‖γ∗‖2

2 + 2δ +
σ · (1 + 1/

√
T0)√

T0

(
2 ‖γ̂sep‖1

√
log 2N0 + δ(1 + ‖γ̂sep‖1)

))
.

We then note that ‖γ̂sep‖1 = C by construction and
√

1 + ‖γ∗‖2
2 ≤ 1 + ‖γ∗‖2.

Theorem 3 (Bound for concatenated weights). Suppose Assumptions 1, 2b, and 3 and 4.

Then for any δ > 0, we have the following bound

∣∣Bias(γ̂cat)∣∣ ≤ rM2

ξcat

(
(4σ(1 + 1/

√
T0)(1 + ‖γ∗‖2) + 2δ) +

σ · (1 + 1/
√
T0)√

T0K

(
2C
√

log 2N0 + (1 + C)δ
))

with probability at least 1− 8 exp
(
− δ2

2

)
− 4 exp

(
− T0Kδ2

2σ2(1+C2)

)
.

Proof of Theorem 3. As discussed in the main text, denote the projected factor value to be

ωtk = µTj ·
(∑K

k=1

∑T0
t=1 µtkµ

′
tk

)−1

µtk, we can decompose the bias into the following two

terms Rcat
0 and Rcat

1 :

L1Tj(0)−
∑
Wi=0

γ̂cati LiT j =
K∑
k=1

T0∑
t=1

ωtk(Y1tk −
∑
Wi=0

γ̂cati Yitk)−
K∑
k=1

T0∑
t=1

ωtk(ε1tk −
∑
Wi=0

γ̂cati εitk).
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The rest of the proof therefore mimics the proof of Theorem 2, or can be found in the prior

version of this paper (Sun et al., 2023).

Theorem 4 (Bound for average weights). Suppose Assumptions 1, 2b, 3 and 4 hold. Then

for any δ > 0, we have the following bound

|Bias(γ̂avg)| ≤ rM2

ξavg

(
(

4σ√
K

(1 + ‖γ∗‖2) + 2δ) +
σ · (1 + 1/

√
T0)√

T0K

(
2C
√

log 2N0 + (1 + C)δ
))

with probability at least 1− 8 exp
(
− δ2

2

)
− 4 exp

(
− T0Kδ2

2σ2(1+C2)

)
.

Proof of Theorem 4. Denote the average outcome Ȳit = 1
K

∑K
k=1 Yitk and similarly µ̄t =

1
K

∑K
k=1 µtk. Denote the projected average factor value to be ωtj = µTj ·

(∑T0
t=1 (µ̄t) (µ̄t)

′
)−1

µ̄t

we can decompose the bias into the following two terms Ravg
0 and Ravg

1 :

L1Tj(0)−
∑
Wi=0

γ̂avgi LiT j =

T0∑
t=1

ωtj(Ȳ1t −
∑
Wi=0

γ̂avgi Ȳit)−
T0∑
t=1

ωtj(ε̄1t −
∑
Wi=0

γ̂avgi ε̄it).

The rest of the proof therefore mimics the proof of Theorem 2, or can be found in the

prior version of this paper (Sun et al., 2023).

Lemma 8 (combined weights). Suppose there exists ν∗ ∈ [0, 1] such that for γ̂com ∈ arg minγ∈C ν
∗qavg(γ)+

(1 − ν∗)qcat(γ), we have qavg(γcom) ≤ qavg(γ∗) and qcat(γcom) ≤ qcat(γ∗) almost surely.

For any δ > 0, let σ̃ =
(
2C
√

log 2N0 + (1 + C)δ
)

(1 + 1/
√
T0)σ, with probability at least

1− 8 exp
(
− δ2

2

)
− 4 exp

(
− T0Kδ2

2σ2(1+C2)

)
, the absolute bias satisfies the bound,

|Bias(γ̂com)| ≤ min

{
rM2

ξcat

(
4(1 + C)σ + 2δ +

σ̃√
T0K

)
,
rM2

ξcat

(
4(1 + C)σ√

K
+ 2δ +

σ̃√
T0K

)}
.

Furthermore, under Assumptions 5 and 6, the conformal inference procedure outlined in
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Section A is valid for γcom.

Proof. Since qavg(γcom) ≤ qavg(γ∗) and qcat(γcom) ≤ qcat(γ∗) almost surely, either of the two

bias bounds stated in Theorem 3 and 4 is a valid upper bound for the estimate based on the

combined weights γ̂com. We may therefore take the minimum of the two bounds to bound

|Bias(γ̂com)|.

Furthermore, by the assumption of qavg(γcom) ≤ qavg(γ∗), we have

1

T

T∑
t=1

(
˙̄Y1t· −

∑
Wi=0

˙̄Yit·γ̂
com
i

)2

≤ 1

T

T∑
t=1

(
˙̄Y1t· −

∑
Wi=0

˙̄Yit·γ
∗
i

)2

.

The proof of Lemma 1, which is based on the same inequality for γavg, proceeds in a similar

fashion, thereby establishing the validity of the conformal inference procedure outlined in

Section A for γcom as well.

D Simulations

We conduct a Monte Carlo study to further inspect the behavior of SCM estimators based

on separate, concatenated, and average weights.

First, to focus on key ideas, we consider a simple model of the kth outcome under control,

Yitk(0) = φiµt + εitk, (16)

where φi is a scalar and εitk ∼ N (0, 1). Here multiple outcomes are repeated independent

measurements of the same underlying model component that consists of a single latent factor.

We consider four settings for the number of pre-treatment time periods T0 and outcomes K:

(i) T0 = 10, K = 4; (ii) T0 = 10, K = 10; (iii) T0 = 40, K = 4; (iv) T0 = 40, K = 10.

The factor loadings φi are evenly spaced over the interval [1, 5] for i = 1, . . . , 50. Similar

to Ferman (2021), we set the treated unit to be the unit with the second largest factor

loading. This choice injects selection of the treated unit based on the factor loadings, so
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Figure D.1: Box plots of bias and imbalance using separate SCM, concatenated SCM, and
average SCM over 1000 simulations.

that a simple difference in means would be biased. It also guarantees the existence of oracle

weights that solve φ1 −
∑

Wi=0 γ
∗
i φi = 0. We set the factor values µt to be evenly spaced

over the interval [0.5, 1] for t = 1, . . . , T0 + 1, reflecting an upward time trend.

Figure D.1(a) compares the distribution of the bias for estimating the treatment effect

on the first outcome under different weighting estimators. Consistent with Theorem 1,

Figure D.1(a) illustrates that, relative to separate weights, the concatenated and average

weights reduce bias in settings with multiple outcomes. We also see that, as expected, the

average weights have smaller average bias than the concatenated weights.

To further inspect this, Figure D.1(b) contrasts the imbalance for each type of weight

with the corresponding objective functions. First, the concatenated weights have slightly

greater imbalance than the separate weights, highlighting the difficulty in achieving good

pre-treatment fit on all outcomes simultaneously relative to good pre-treatment fit for a

single outcome alone. However, the average bias for the concatenated weights is still smaller

than for the separate weights, showing that the reduction in overfitting by concatenating

outweighs the slight reduction in pre-treatment fit. Second, the average weights have much

better pre-treatment fit than either alternative, with the fit improving as K increases. As

Figure D.1(a) shows, this leads to further bias reduction, consistent with Theorem 1 and the
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intuition from Table 1.

Second, we examine how the presence of idiosyncratic factors influences the performance

of various estimators. For ρ ∈ [0, 1] where ρ adjusts the importance of the common model

component relative to the idiosyncratic model components, we generate control outcomes

from

Yitk(0) = ρφiµt + (1− ρ)φikµtk + εitk.

Here, φi and µt represent the common model component, as previously defined in (16).

We set φi1 = φi and µt1 = µt, ensuring that the first outcome is generated exactly as

previously and that the performance of the separate SCM is held fixed. To introduce the

idiosyncratic model components, for each k = 2, . . . , K, we independently generate φik from

a standard normal and µtk from an autoregressive process with an autoregressive coefficient

of 0.5. We then rescale φik and µtk to match the range of φi1 and µt1, respectively. We set

φ1k =
∑

Wi=0 γ
∗
i φik using the same oracle weights γ∗i as before to maintain the existence of

the oracle weights. Importantly, these outcome-specific factors and loadings are generated

independently of each other to reflect the idiosyncratic components of the overall factor

structure.
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(a) Common + idiosyncratic factors; ρ = 0.5
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Figure D.2: Box plots of bias using separate SCM, concatenated SCM, and average SCM
over 1000 simulations.
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To assess the impact of idiosyncratic factors on performance, we vary ρ ∈ [0, 1]. When ρ =

1, we revert to the common model in (16). For ρ ∈ (0, 1), the model combines common and

idiosyncratic components as described in (5), where the components are correlated across k =

1, . . . , K through the common component φiµt. In this case, averaging outcomes still reduces

bias in the synthetic control as illustrated in Figure D.2(a). Though the bias reduction

requires a larger number of outcomes for the common component to dominate. However,

when ρ = 0, the outcomes are generated by idiosyncratic model components, creating an

adversarial DGP for concatenated and average SCM as illustrated in Figure D.2(b). A

significant presence of idiosyncratic factors can be partly assessed in practice by spectral

analysis of the observed outcome. For separate SCM, the top singular vector on average

captures 86% of the total variation in the N × T0 pre-treatment data matrix Yit1. However,

for concatenated SCM, the top singular vector captures only 45% of the total variation in the

N×(T0K) pre-treatment data matrix Yitk. This suggests the presence of idiosyncratic factors

as different outcomes are captured by different components. Average SCM exacerbates

the bias because averaging idiosyncratic factors across outcomes reduces overall variation,

thereby violating Assumption 4.

A loss of signal-to-noise can also be assessed in practice based on the condition number of

the averaged outcome, which is the ratio of the largest to the smallest singular value. Since

averaging reduces the variation of the noise, average SCM should increase the condition

number compared to separate SCM if there is a strong signal. With only common factors

(ρ = 1), the condition number of average SCM is on average 227% larger than that of separate

SCM, indicating strong signal. With only idiosyncratic factors (ρ = 0), this increase reduces

to only 25%, suggesting that average SCM offers little advantage over separate SCM in such

cases.
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E Additional Details for Flint Water Crisis Study

Data processing. Math and reading achievement are measured via the annual state-

administered educational assessments for grades 3-8, and are standardized at the grade-

subject-year level. Special needs status is measured as the percent of students with a qualified

special educational need. Attendance is in percent of days attended. The math, reading,

and special needs series begin in 2007; daily attendance begins in 2009. Note that Trejo

et al. (2024) also use 2006 data for special needs; we start our data series in 2007 to have

multiple outcomes available for averaging, dropping attendance from the average for 2007

and 2008. Finally, when averaging, we further standardize each outcome series using the

series pre-treatment standard deviation.

District Name Combined SCM Weight
1 Dowagiac Union School District 0.19
2 Oak Park School District 0.18
3 Lincoln Consolidated School District 0.15
4 Hamtramck School District 0.14
5 Houghton Lake Community Schools 0.12
6 Whittemore-Prescott Area Schools 0.08
7 River Rouge School District 0.04
8 Van Buren Public Schools 0.04
9 Beecher Community School District 0.04

10 Bloomingdale Public School District 0.01

Table E.1: Synthetic control weights on Michigan districts combining Student Attendance,
Special Needs, Reading Achievement, and Math Achievement outcomes using the combined
objective with the heuristic choice of ν. All districts not included recieved a weight of less
than 0.001.

Inference. We use the conformal inference procedure outlined in Appendix A to assess

uncertainty in our reanalysis of Trejo et al. (2024), with the caveat that the number of

pre-treatment periods is only slightly larger than the number of post-treatment periods in

this application. We first test the null hypothesis of no effect on any outcomes in each

time period, using the combined approach and i.i.d. permutations; this yields p-values for

of 0.55, 0.11, 0.1, 0.24, 0.22 for 2015 to 2019. We then test the joint null hypothesis of no
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Figure E.1: Mean Square Prediction Error (MSPE) of synthetic control, relative to the
MSPE using uniform weights, for each outcome, fitting a synthetic control (i) separately
on each outcome, (ii) combining all outcomes, (iii) combining all outcomes except for the
focal outcome, and (iv) combining all outcomes except for the focal outcome and special
needs. All combined objectives use an equal weight of ν = 0.5 between the averaged and
concatenated objectives.

effect on any outcomes in any time period via a conformal inference procedure using all post-

treatment time periods; here we find strong evidence against the null of no effect whatsoever,

with p = 0.035. We also explore the sensitivity of the estimates by varying the combination

between the concatenate and the average objective. Figure E.4 illustrates that the results

remain statistically significant at the 10% level across a diverse range of combined weights ν

— including for the concatenated and average weights — highlighting the robustness of the

estimated negative impact.
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Figure E.2: Point estimates for the effect of the Flint water crisis using SCM, concatenate
SCM, and average SCM, without including special needs. Each outcome is standardized
using the series pre-treatment standard deviation.

Concatenated Weights

Average Weights

Heuristic Choice

0.005

0.010

0.015

0.08 0.10 0.12 0.14
Concatenated Objective

A
ve

ra
ge

 O
bj

ec
tiv

e

Figure E.3: Frontier plot.

0.0

0.2

0.4

0.6

0.00 0.25 0.50 0.75 1.00
ν

p 
va

lu
e

Post−Intervention Year
2015

2016

2017

2018

2019

All

Figure E.4: p value of null of no effect on any outcome vs hyper-parameter ν.
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