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Identification of undetected SARS-CoV-2
infections by clustering of Nucleocapsid
antibody trajectories

Leslie R. Zwerwer 1,2,3 , Tim E. A. Peto1,4,5,6,24, Koen B. Pouwels 5,7,8,24,
Ann Sarah Walker1,5,6,24 & the COVID-19 Infection Survey team*

During the COVID-19 pandemic, numerous SARS-CoV-2 infections remained
undetected. We combined results from routine monthly nose and throat
swabs, and self-reported positive swab tests, from a UK household survey,
linked to national swab testing programme data from England and Wales,
together with Nucleocapsid (N-)antibody trajectories clustered using a long-
itudinal variation of K-means (N = 185,646) to estimate the number of infec-
tions undetected by either approach. Using N-antibody (hypothetical)
infections and swab-positivity, we estimated that 7.4% (95%CI: 7.0–7.8%) of all
true infections (detected and undetected) were undetected by both approa-
ches, 25.8% (25.5–26.1%) by swab-positivity-only and 28.6% (28.4–28.9%) by
trajectory-based N-antibody-classifications-only. Congruence with swab-
positivity was respectively much poorer and slightly better with N-antibody
classifications based on fixed thresholds or fourfold increases. Using multi-
variable logistic regression N-antibody seroconversion was more likely as age
increased between 30–60 years, in non-white participants, those less
(recently/frequently) vaccinated, for lower cycle threshold values in the range
above 30, and in symptomatic andDelta (vs. BA.1) infections. Comparing swab-
positivity data sources showed that routinemonthly swabswere insufficient to
detect infections and incorporating national testing programme/self-reported
data substantially increased detection. Overall, whilst N-antibody ser-
osurveillance can identify infections undetected by swab-positivity, optimal
use requires fourfold-increase-based or trajectory-based analysis.

To July 21, 2024, almost 776million severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infections have been reportedworldwide1.
Nevertheless, many infections remained undetected and therefore the
actual number is thought to be substantially higher2,3. Serological
testing can potentially provide information on undetected infections,
thereby improving estimates of the number of previous infections4–6.

Several studies have explored serological testing for SARS-CoV-2
infections by analysing either spike (S-) or nucleocapsid (N-)
antibodies6–9. Levels of both are in most people, at least temporarily,

raised after SARS-CoV-2 infection. Because themostwidely used SARS-
CoV-2 vaccines target the spike protein, leading to increased
S-antibody levels following vaccination, S-antibodies cannot easily be
used to estimate how many people have been previously infected in
populations with high vaccination rates, such as high-income
countries10,11. N-antibodies do not directly respond to the most com-
monly used mRNA and adenovirus SARS-CoV-2 vaccinations10,11.
Nevertheless, the sensitivity of N-antibodies to detect infections
depends strongly on the population, the time since infection and the
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thresholds used; previous studies have reported sensitivities ranging
from 40-100%4,12–16.

Various demographical characteristics have also been shown to
affect N-antibody seroconversion following infection. For instance,
several studies reported higher antibody titres, and hence higher ser-
oconversion rates, in males17,18 and older individuals18–20. Other factors
influencing seroconversion include presence of symptoms/disease
severity16,17,19,20, hospitalisation17,18, ethnicity20 and body mass index18,19.
Moreover, while N-antibodies do not directly respond to most com-
monly used SARS-CoV-2 vaccinations, some studies have suggested
N-antibody seroconversion might be reduced in vaccinated
individuals9,13,16. For instance, in a randomised controlled trial exam-
ining mRNA-1273 vaccine effectiveness, only 40% (95% confidence
interval (CI): 27-54%; n = 21) of 52 vaccination recipients showed
N-antibody seroconversion after polymerase chain reaction (PCR)
confirmed symptomatic infection with SARS-CoV-2 versus 93% (95%CI:
92-95%; n = 605) of 648 placebo recipients13.

Studies aimed at generating learning from the pandemic rely on
accurate estimates of infection, often inferred from PCR- and lateral

flow test (LFT)-based surveillance. To assess the effectiveness of these
systems, it is essential to quantify the number of infections they miss
that could be identified from serology, and limitations of such ser-
osurveillance (e.g., lower response rates among specific subgroups
and with asymptomatic infections (which nevertheless can transmit
onwards), impact of positivity thresholds). To our knowledge, there
are no studies to date estimating the effectiveness of combining
N-antibody seropositivity and PCR/LFT. Here, we therefore examine
the ability of N-antibodies to identify prior (undetected by swab-
positivity) SARS-CoV-2 infections in a general community-based
cohort including vaccinated individuals, using clustering of long-
itudinal N-antibody trajectories. We define SARS-CoV-2 infections as
symptomatic or asymptomatic, but with sufficient replicating virus to
be detectable on PCR or lead to seroconversion through an immuno-
logical response, i.e., sufficient replicating virus that onwards trans-
mission could be possible. Additionally, we explore reasons for lack of
seroconversion after PCR-confirmed SARS-CoV-2 infection, and the
impact of defining infections based on different data sources.

Results
Population
Between February 28, 2021 and January 30, 2022, the period when
N-antibodies were assayed within the COVID-19 Infection Survey (see
“Methods”), 270,686 participants provided blood samples for ser-
ological testing (Supplementary Fig. 1), median 6 per participant. The
median age at first N-antibody measurement was 55 years; 54.2% par-
ticipants were female, 94.0% reported white ethnicity, 26.2% a long-
term health condition and 5.0% reported working in healthcare
(Table 1). Respectively, 7.3%, 28.4%, 58.5% and 0.1% of participants had
received 1, 2, 3 and 4 vaccinations by the end of the period in which
they had N-antibodies measured (denoted their study period), with
5.7% participants remaining unvaccinated throughout (e.g., due to age,
ending study participation or personal choice). We defined swab-
positive infections using positive and negative PCR results from rou-
tine monthly nose and throat swabs taken for the COVID-19 Infection
Survey, positive swab PCR or LFT results from the national testing
programmes in England andWales or self-reported positive swab tests
(see “Methods”). We aggregated swab-positive infections into four
different classes: No positive swab before or during the participant’s
study period (81.2%), swab-positive infection before the participant’s
study period only (8.5%), swab-positive infection during the partici-
pant’s study period only (9.9%) and swab-positive infection before and
during the participant’s study period (0.5%).

Clustering of N-antibody trajectories
To classify different types of N-antibody trajectories, we used a long-
itudinal variation of K-means in participants with ≥4 N-antibody mea-
surements, ensuring that the N-antibody trajectories had sufficient
information to detect SARS-CoV-2 infections. This excluded 85,040
participants (Supplementary Fig. 2), who were slightly younger (Sup-
plementary Table 1), as well as being more likely to report fewer vac-
cinations, as expected since those leaving the survey before January
2022 would have both fewer vaccinations and fewer measurements.
Since all N-antibody measurements were censored at the lower and
upper limits of quantification (respectively, 10 ng/mL and 200ng/mL),
clustering was not performed for 85,449 participants with no evidence
of a previous infection (all N-antibody levels ≤10 ng/mL) and 326 par-
ticipants with evidence of a previous infection (all N-antibody mea-
surements ≥200ng/mL) who were simply assigned to these two
respective additional clusters. We therefore applied the longitudinal
variation on K-means to identify 13 clusters in the remaining 99,871
participants (Supplementary Fig. 2) using absolute values (denoted
identity clustering, ‘id’) and using log2 values (denoted ‘log2’).

After careful examination of these 13 clusters from the two
N-antibody transformations (Supplementary Fig. 3), we grouped them

Table 1 | Characteristics of participants with any N-antibody
measurement (N = 270,686)

N = 270,686

Number of N-antibody measurements (median [IQR]) 6 [3, 8]

Age at last birthday (years) (median [IQR], percentiles
[1, 99])

55 [41,
67], [15,85]

Sex (%) Female 146,823 (54.2)

Male 123,863 (45.8)

Ethnicity (%) Non-White 16,291 (6.0)

White 254,395 (94.0)

Long-term health condi-
tion (%)

No 199,636 (73.8)

Yes 71,050 (26.2)

Healthcare worker (%) No 257,115 (95.0)

Yes 13,571 (5.0)

Vaccination* Not vaccinated 15,392 (5.7)

1 vaccination 19,795 (7.3)

2 vaccinations 76,830 (28.4)

3 vaccinations 158,338 (58.5)

4 vaccinations 216 (0.1)

Missing 115 (0.0)

Swab-positive
infections† (%)

No infection 219,663 (81.2)

Infection before the study
period‡

22,920 (8.5)

Infection during the study
period***

26,836 (9.9)

Infection before and during
the study period‡***

1267 (0.5)

Spike-antibody
seropositivity**

No spike seropositivity 262,513 (97.0)

Spike seropositive before
the study period

7446 (2.8)

Spike seropositive during
the study period

727 (0.3)

*Vaccination status at the end of each participant’s study period.
† As identified from swab test results (see “Methods”).
** Before any reported vaccinations.
‡ 314 participants had two or more swab-positive infections before their study period
*** 363 participants had two or more swab-positive infections during their study period
IQR Inter quartile range.
Note: study period defined as the time from each participant’s first N-antibodymeasurement to
their last N-antibody measurement. Participants could be in the survey before this started, see
“Methods”.
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into four types: flat, decreasing, increasing, and those that first
decreased and then increased. Biologically, the different categories
broadly correspond to having no evidence of an infection before or
during the study period, evidence of a previous infection before the
study period only, evidence of a current infection during the study
period only and evidence of a previous and current infection, respec-
tively (Supplementary Figs. 4 and 5). A final trajectory-based classifi-
cation was obtained based on consensus: where the two
transformations differed (N= 9644, 9.7%), often relating to smaller
absolute increases which were magnified on the relative (log) scale,
participants were classified using visualisation of the trajectories
(Supplementary Figs. 6 and 7). Interestingly, the N-antibody trajec-
tories for 54 participants in cluster 13 using identity clustering and
cluster 10 using log2 transformed clustering implied two different
infections during the participant’s study period (Supplementary
Fig. 7). 20 (37.0%) of these participants had two or more swab-positive

infections during their study period (compared to 350 (0.2%) among
all participants with ≥4 N-antibody measurements).

Figure 1 shows the N-antibody trajectories for the final different
trajectory-based classifications and swab-positive infection groups.
More specifically, it shows that flat N-antibody trajectory-based clas-
sifications with no positive swabbefore or during the study period had
relatively little variation. Flat N-antibody trajectory-based classifica-
tions with a swab-positive infection before the participant’s study
period only had a marginal decrease in N-antibody levels overall.
Moreover,N-antibody trajectories classified asflatwith a swab-positive
infection during or before and during the participant’s study period
had a marginal increase in N-antibody levels overall. In contrast,
N-antibody trajectories classified as decreasing with no positive swab
before or during the study period or a swab-positive infection before
their study period showed a marked decrease in N-antibody levels.
Decreasing N-antibody trajectory-based classifications with a swab-
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Fig. 1 | N-antibody trajectories for the different N-antibody and swab-positive
infection groups (restricted to those with ≥4 N-antibody measurements, see
Supplementary Fig. 2). For comparability, trajectories are centred on the mid-
point between the maximum difference between any two consecutive measure-
ments per participant. This approximates the hypothetical infection date for those
with an N-antibody trajectory compatible with infection, but can create a small but

arbitrary distortion in those without swab-positive infections and classified as flat
or decreasing. Each framecontains a randomsample of 200N-antibody trajectories
(see Fig. 2 for numbers and cell percentages). Black line depicts a generalised
additive modelling smooth for all N-antibody measurements assayed between the
10th and 90th percentile of the centred days in each cluster.
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positive infection during or before and during the participant’s study
period had decreasing then increasing N-antibody levels. Finally,
regardless of swab-positivity group, all trajectories classified as
increasing or decreasing and increasing had considerable increases in
N-antibody levels.

Figure 2 shows the number of participants in the different final
trajectory-based N-antibody classifications and swab-positive
infection groups. Overall agreement between the N-antibody tra-
jectory-based classification and swab-positive infections was 86.2%
(95%CI: 86.0–86.3%) in all participants with ≥4 N-antibody mea-
surements. For 73.3% (73.1–73.5%) of all participants no infection
was detected by swab-positivity and N-antibody trajectory-based
analysis (N-antibody trajectory-based classifications: all ≤10 or flat).
4.1% (4.0–4.2%) of participants were swab-positive before or before
and during their study period and had decreasing, de- and
increasing N-antibody trajectories or all N-antibody measurements
equal or above 200, consistent with prior infection. For 18,128
(9.8%; 9.6–9.9%) participants, a swab-positive infection occurring
during their study period was also detected by N-antibody trajec-
tory-based analysis. For these participants, we estimated
N-antibody (hypothetical) infection dates as 14 days before the
midpoint between the two measurements with the maximum
increase in N-antibody levels. Overall, most (61.5%) N-antibody
(hypothetical) infection dates were within 15 days of the closest
swab-positive date (Supplementary Tables 2 and 3, Supplementary
Fig. 8), being ≥60 days in only 505 (2.8%) participants. However,
28.6% (28.1–29.2%) of the 25,404 swab-positive infections during
the study period did not show any evidence of an infection from

their N-antibody trajectories. Moreover, 25.8% (25.3–26.4%) of the
24,440 participants with increasing/de- and increasing N-antibody
trajectories had no evidence of a swab-positive infection.

Estimated number of true infections
Using both N-antibody trajectory-based classifications and swab-
positive infections (including multiple swab-positive infections per
participant), we identified 31,716 infections during the study period in
31,364/185,646 (16.9%) participants with ≥4 N-antibodymeasurements
(Table 2). 24,440 (77.1%) of these detected infections were identified
using N-antibody trajectory-based analysis, 25,404 (80.1%) were
detected with swab-positivity and 18,128 (57.2%) were detected with
both swab-positivity and N-antibody trajectory-based analysis.
Assuming that both types reflected true infections and there were no
false-positives, using a method dependent capture-recapture model
we estimated the true total number of infections during the study
period among all participants with ≥4 N-antibody measurements (i.e.,
those detected and undetected with either N-antibody trajectory-
based classifications or swab-positivity) as 34,249. Of these infections
7.4% remained undetected with either method, 25.8% by swab-
positivity and 28.6% by N-antibody trajectory-based classification.
Hence, assuming missed infections were singletons and that they only
occurred for participants without an infection detected by either
N-antibody trajectory-based analysis or swab-positives, 18.3% of par-
ticipants with ≥4 N-antibody measurements would have been infected
during the study period.

When stratifying by vaccination status, using amethoddependent
capture-recapture model, we estimated that 4.8–10.9% of the true
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infections were undetected with either N-antibody trajectory-based
classifications or swab-positivity, with respectively 6.6% (95% CI
5.1–8.2%) and 10.9% (9.9–11.9%) of all infections remaining unidentified
in unvaccinated participants and participants with 3 or 4 vaccinations
(Supplementary Table 4). Moreover, respectively 59.7% (50.6–68.4%),
5.8% (5.4–6.2%) and 7.4% (6.8–8.1%) of all true infections were unde-
tected by either method during the Alpha, Delta and BA.1 epoch
(Supplementary Table 4).

As a sensitivity analysis, we reclassified the 505 participants with
≥60 days between the N-antibody (hypothetical) infection date and
closest swab-positive infection and estimated the percentage of
undetected infections with either N-antibody-based classifications or
swab-positivity. Where the swab-positive infection date was ≥60 days
before the N-antibody (hypothetical) infection date, we classified the
infection as detected by swab-positivity only, and as N-antibody only
when the swab-positive infection date was ≥60 days after the
N-antibody (hypothetical) infection date. Under these assumptions, of
all detected infections, 24,139 (76.1%) were detected using N-antibody
trajectory-based analysis, 25,200 (79.5%) using swab-positivity and
17,623 (55.6%) by both methods (Table 2). Under the assumption that
neither method identifies any false positives, using a method depen-
dent capture-recapture model we estimated a total of 34,517 true
infections during the study period, 8.1% of which would have been
undetected by both swab-positivity and trajectory-based N-antibody
positivity.

Subsequently, we performed a sensitivity analysis using the
manufacturer’s proposed N-antibody seropositivity threshold of
30 ng/mL21 to define N-antibody (hypothetical) infections rather than
trajectory-based analysis. Using both N-antibody threshold-based
classifications and swab-positive infections there were 39,511 detected
infections (Table 2), of which 32,702 (82.8%) were identified using this
fixed 30ng/mL threshold. However, a much smaller percentage
(25,404, 64.3%) were swab-positive; 18,595 (47.1%) infections were
detected by both methods. Hence, under the assumption of no false
positives as above, using a method dependent capture-recapture
model, we estimated a total of 44,676 true infections during the study
period, ofwhich 11.6%wouldhave beenmissedby both swab-positivity
and infections defined by the fixedN-antibody threshold (compared to
7.4% of 34,249 true infections using swab-positivity and N-antibody
trajectory-based classification).

When defining N-antibody (hypothetical) infections based on an
arbitrary fourfold rise in consecutive antibody levels22 (treating values
above or below the limits of detection as equal to these limits, see
“Methods”), there were 30,047 (hypothetical) N-antibody or swab-
positive infections (Table 2). 20,999 (69.9%) were identified using the
fourfold criterion and 25,404 (84.5%) using swab-positivity; 16,356
(54.4%) were detected by both. Hence, under the assumption of no
false positives as above, using a method dependent capture-recapture
model, we estimated that 7.9%of a total of 32,615 true infectionswould
have remained undetected by both swab-positivity and the fourfold
N-antibody seropositivity criterion.

Finally, in a sensitivity analysis, we treated values rising to
≥200 ng/mL as automaticallymeeting the fourfold criteria, since in the
main analysis treating these as = 200ng/mL antibody levels above
50 ng/mL could never rise to levels classified as infected. In this sen-
sitivity analysis we identified 31,577 (hypothetical) infections (Table 2)
of which 23,161 (73.3%) were identified by N-antibody and 25,404
(80.5%) by swab-positivity; 16,988 (53.8%) were identified by both.
Hence, assuming no false positives (as above), we estimated a total of
34,634 true infections of which 8.8% would remained undetected by
both methods.

Associations with lack of N-antibody response
Subsequently we compared participant characteristics between swab-
positive infections with (i) increasing or (ii) de- and increasing
N-antibody trajectories (i.e., responders) and flat or decreasing
N-antibody trajectories (i.e., non-responders) (Supplementary Fig. 9,
Supplementary Table 5). In a multivariable model, we found sig-
nificantly lower odds of non-response (i.e., higher odds of ser-
oconversion) as age increased between 30 and 60 years and in non-
white participants (Supplementary Table 6). We also found that vac-
cination influenced N-antibody non-response, with significantly lower
odds of non-response in unvaccinated participants, and those that
were less recently vaccinated or had fewer vaccinations. Furthermore,
higher cycle threshold (Ct) values in the range above 30 were asso-
ciated with significantly greater odds of non-response. Additionally,
participants with symptoms were significantly less likely to be non-
responders. Finally, compared to infections during the Delta epoch,
infections during the BA.1 epoch were significantly more likely to be
N-antibody non-responders.

Table 2 | Estimated number of true infections using different definitions of N-antibody seropositivity

N-antibody seropositivity defined by

Trajectory Trajectory (sensitivity reclassifying ≥60 days
between infection dates)

Fixed threshold Fourfold-rise
( >200ng/mL=200)

Fourfold-rise ( >200ng/
mL =infection)

Total observed infections
(N-antibody or swab-
positivity)

31,716 31,716 39,511 30,047 31,577

N (%) (95% CI) identified by
N-antibody

24,440 77.1%
(76.6–77.5%)

24,139 76.1%
(75.6–76.6%)

32,702 82.8%
(82.4–83.1%)

20,999 69.9%
(69.4–70.4%)

23,161 73.3%
(72.9–73.8%)

N (%) (95% CI) identified by
swab-positivity

25,404 80.1%
(79.7–80.5%)

25,200 79.5%
(79.0–79.9%)

25,404 64.3%
(63.8–64.8%)

25,404 84.5%
(84.1–85.0%)

25,404 80.5%
(80.0–80.9%)

N (%) (95% CI) identified
by both

18,128 57.2%
(56.6–57.7%)

17,623 55.6%
(55.0–56.1%)

18,595 47.1%
(46.6–47.6%)

16,356 54.4%
(53.9–55.0%)

16,988 53.8%
(53.2–54.3%)

Estimated true infections*
(95% CI)

34,249
(34,115–34,383)

34,517
(34,374–34,663)

44,676
(44,460–44,874)

32,615
(32,477-32,753)

34,634
(34,482 – 34,784)

% undetected by both
methods (95% CI)

7.4%
(7.0–7.8%)

8.1%
(7.7–8.5%)

11.6%
(11.1–12.0%)

7.9%
(7.5–8.3%)

8.8%
(8.4–9.2%)

% undetected by
N-antibody (95% CI)

28.6%
(28.4–28.9%)

30.1%
(29.8–30.4%)

26.8%
(26.4–27.1%)

35.6%
(35.3–35.9%)

33.1%
(32.8 – 33.4%)

% undetected by swab-
positivity (95% CI)

25.8%
(25.5–26.1%)

27.0%
(26.7–27.3%)

43.1%
(42.9–43.4%)

22.1%
(21.8–22.4%)

26.7%
(26.3 – 27.0%)

*using method dependent capture-recapture models.
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Using different data sources to define infections and trajectory-
based vs. fixed threshold-based vs. fourfold-based positivity
Next, we compared positivity based on N-antibody trajectories, the
fixed 30 ng/mL threshold, and both the fourfold increases in
N-antibody levels using different data sources to define swab-positive
infections. Across the different data sources, the percentage of parti-
cipants with N-antibody (hypothetical) infections that were identified
using swab-positivity ranged between 29.6–78.8% for the trajectory-
based classification, between 22.4-60.5% for the fixed 30ng/mL
threshold, between 30.9–82.7% for the main fourfold-based classifi-
cation and between 29.2–78.0% for the fourfold-based sensitivity
analysis classification (Fig. 3a). Using only results from the routinely
scheduled swabs (i.e., from the COVID-19 Infection Survey alone),
identification of infection was poor with between 69.1-77.6% of
N-antibody responders remaining unidentified. The percentage iden-
tified through swab-positivity showed the highest increase moving
from defining swab-positive infections using the survey only to the
survey plus the national testing programme from England and Wales
(covering 89% of participants).

Notably, there was a considerable difference in the percentage of
swab-positive infections identified among N-antibody (hypothetical)
infections comparing the trajectory-based classification and the
threshold-based classification, with the threshold-based classification
identifying consistently more participants as having N-antibody
(hypothetical) infections during their study period and a lower pro-
portion of these infections being swab-positive (Table 2, also Supple-
mentary Table 7). The differences between both fourfold-based
classifications and the trajectory-based classifications were much
smaller; themain fourfold-based classification identified slightly fewer
N-antibody (hypothetical) infections overall (Table 2) but a slightly

higher proportion of these were swab-positive across all data sour-
ces (Fig. 3a).

The percentage of all N-antibody negative participants with no
positive swab decreased from 99.0% to 94.7% with increasing richness
of data source for the trajectory-based N-antibody classification, from
99.0% to 94.8 % for the threshold-based classification, from 98.6% to
93.7% for the fourfold-based N-antibody classification and from 98.7%
to 94.1% for the fourfold-based sensitivity analysis (Fig. 3b). Interest-
ingly, including participants thinking they had had COVID-19 as a
positivity criterion (without any swab-positivity) made only marginal
differences in the percentage of participants without (swab)-positive
infections among N-antibody negatives.

Supplementary Fig. 10 visualises the trajectories of N-antibody
negative and N-antibody positive participants using the main
trajectory-based and alternative threshold-based classifications, stra-
tified by swab-positivity (all during the participant’s study period). It
shows that most participants with N-antibody negative trajectory-
based and N-antibody positive threshold-based classification had no
positive swab (87.4%) and the N-antibody trajectories mostly had a
marginal increase, to just above the 30ng/ml threshold. Trajectories
from participants with N-antibody positive trajectory-based and
negative threshold-based classifications had large increases in
N-antibody levels but 59.5% still had no positive swabs during their
study period.

In contrast, comparing main trajectory-based and alternative
fourfold-rise-based classifications, smaller numbers of participants
had positive fourfold-based and negative trajectory-based N-antibody
classification (main N = 281, Supplementary Fig. 11; sensitivity analysis
N = 1810, Supplementary Fig. 12). However, most of these (hypothe-
tical) infections were swab-negative (68.0% and 84.3%, respectively),
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Fig. 3 | Comparison of the N-antibody trajectory-based classification, fixed
30ng/mL classification, fourfold-based classification and fourfold-based sen-
sitivity analysis across different data sources used to define swab-positive
infections. a Percentage of participants with N-antibody (hypothetical) infections
that were identified using swab-positivity (b) Percentage of participants without
N-antibody (hypothetical) infections with no positive swab. In Fig. 3b the four lines

(nearly) overlap. Survey: only using positive and negative swab PCR test results
from the COVID-19 Infection Survey to define swab-positive infections; NTP: using
positive PCR and LFT swab test results from national testing programmes in Eng-
land andWales; Self: using self-reported positive swab test results; Think: using self-
report on thinking one had had COVID-19.
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with generally decreasing N-antibody trends before the (hypothetical)
infection, consistently with either a single falsely lowmeasurement or
prior infection. In contrast, the larger number of negative fourfold-
based and positive trajectory-based N-antibody classification showed
an evident increase in N-antibody levels in both main and sensitivity
analysis (Supplementary Figs. 11 and 12). These N-antibody increases
were either slightly blunted or started from higher initial levels and so
did not reach a fourfold increase. Only 50.0% and 46.1% of these par-
ticipants respectively were swab-positive during their study period.

Discussion
During the recent COVID-19 pandemic, hundreds of millions of indi-
viduals tested positive for a SARS-CoV-2 infection. However, due to a
considerable number of asymptomatic individuals, the true number of
infections remains unknown2. In this study we used data from a large
broadly representative UK household survey and examined the effi-
cacy of detecting prior (undetected) SARS-CoV-2 infections in the
general population by clustering of N-antibody trajectories. We found
that under the assumption that swab-positives and N-antibody posi-
tives both reflect true infections, 7.4% of all true SARS-CoV-2 infections
(i.e., thosedetected and undetected by swab-positivity andN-antibody
trajectory-based classifications) would have remained unidentified
from both swab results and N-antibody trajectories (compared to
25.8% by swab-only and 28.6% by trajectory-based N-antibody classi-
fications only).

As far aswe are aware, no other study has examined the efficacy of
the combination of swab-positivity and N-antibody serological testing
to identify SARS-CoV-2 infections and used this combination to esti-
mate the number of infections remaining undetected by either
method, particularly not on this scale. However, several studies have
examined the ascertainment rate for swab-positivity alone in the UK.
For instance, Colman et al. (2023) estimated that, after SARS-Cov-2
testing became widely available in the UK, 60-70% of all infections
remained undetected by national healthcare and community testing
programmes by calibrating reported cases to the swab-positivity rate
from the COVID-19 infection survey, while accounting for the incuba-
tion period distribution, and the time-dependent test sensitivity of
PCR and lateral flow tests23. Nightingale et al. (2022) estimated the
under-ascertainment rate at 75.0% using swab-positivity from the
COVID-19 infection survey as a ground truth to estimate the perfor-
mance of the national testing programmes24. Here, we took a different
approach and estimated the ‘true’ number of infections by applying a
log-linear capture-recapture model to infections detected by positive
swab tests – from the COVID-19 infection survey or national testing
programmes, or self-reported positive swab test – or infections
detected through the clustering analysis performed on N-antibody
results. Focusing purely on the swabs included in this comparison,
25.8% of all infections weremissed. Further,we found that estimates of
undetected infections varied substantially across virus variants, with
considerably more undetected infections during the Alpha epoch.
During the Alpha epoch only one third of all detected infections was
ascertained by swab-positivity (vs. 76.8% and 88.4% during the Delta
and BA.1 epoch, see Supplementary Table 4). These differences may
have been caused by the limited availability of testing during the Alpha
epoch (i.e., in the UK LFT were made widely available in April 2021, at
the end of the Alpha epoch25). Earlier research also showed that esti-
mates of undetected infections vary by age group, variant, and region
and that these variations may be related to differences in symptoms/
disease severity, public sentiment and availability of testing23.

Notably, even using these increasingly rich data sources on swab-
positivity, still 25.8% of all true infections remained undetected by
swab-positivity during the study period. This may be for a variety of
reasons. Firstly, the timing of the swab is of critical importance and can
result in false-negative results26,27. Monthly swabs in the survey were a
trade-off between expected duration of PCR positivity (mean 21 days

from infection in human challenge studies28) and costs, aiming to
identify >80% of infections. Secondly, viral load can be unequally dis-
tributed throughout thebody3, with higher viral RNA concentrations in
stool and sputum29, and related to severity of symptoms30; low viral
load could cause false-negative swab results27. Other reasons for false-
negative swabs include viral genetic variation and challenges with self-
sampling27.

Consistent with a much smaller study among hospitalised indivi-
duals, we found that a little over a quarter of all swab-positive infec-
tions did not seroconvert in terms of N-antibodies4. However, several
other studies also report lower percentages of non-responders among
swab-positives12,14,16,18,19,31,32. Nevertheless, these studies did not use
N-antibody trajectories to define seroconversion, which made sub-
stantial differences in identification, and predominately focused on
specific subgroups, such as healthcare workers and/or had small
sample size. Consistent with most other studies, we found no asso-
ciation between seroconversion rates and gender9,16,19,20. We found
N-antibody seroconversion rates increased as age increased between
30 and 60 years, consistent with higher antibody titres (and thus
higher seroconversion rates) in older individuals in some studies18–20,
althoughone study foundhigher seroconversion rates amongyounger
age groups compared to individuals ≥65 years (adjusted for
vaccination)16. Again consistent with the literature, we found ser-
oconversion was more likely among individuals who reported non-
white ethnicity20, were less (recently or frequently) vaccinated9,13,16,
infectionswith lowerCt values in the range above 3020 (aproxy for viral
load33) and symptomatic infections19,20. However, in contrast to one
previous study, we also found that participants with an infection dur-
ing the BA.1 epoch were significantly less likely to seroconvert com-
pared to participants with an infection during the Delta epoch16. This
could potentially relate to the low number of asymptomatic infections
in this previous study16, since the proportion of asymptomatic infec-
tions is significantly higher forOmicron compared toDelta infections34

and we, and others, have shown that individuals with asymptomatic
infections are less likely to seroconvert19,20.

Where participants were identified as having been infected using
both approaches, estimated N-antibody (hypothetical) infection dates
were mostly within 15 days of the closest swab-positive date. None-
theless, the percentage of N-antibody (hypothetical) infections iden-
tified using swab-positivity was highly dependent on the data source.
We incrementally tested adding the different data sources into swab-
positivity definitions, reflecting their likely level of ascertainment.
Using the survey swab-positivity alone, only approximately a quarter of
all N-antibody trajectory-based infections were identified. The use of
data from national testing programmes vastly increased infection
identification rates, although on their own, they provide a poor level of
ascertainment (as above23,24) and incorporation of unbiased swab
positivity testing data from the COVID-19 infection survey has been
demonstrated to be essential to reconstruct the epidemic35. Using
‘thinking one had COVID-19’ as a positivity criterion only modestly
increased the number of N-antibody infections identified, whilst hav-
ing a marginal impact on the percentage of false-negatives, which is
remarkable considering that an earlier study showed that in the UK
only 51.5% of all individuals recognises common COVID-19
symptoms36. Compared to threshold-based N-antibody positivity
classifications (based on the manufacturer’s threshold), trajectory-
based classification was consistently more aligned with swab-
positivity. The threshold-based classification identified considerably
more (hypothetical) infections whose trajectories were relatively flat
but elevated andnever testedpositive by swab. These relativelyflatbut
elevated antibody trajectories could potentially reflect cross-
reactivity10,37. Differences between trajectory-based and fourfold-rise-
based N-antibody classifications were much smaller (Fig. 3, Table 2).
While only 50.0% of the trajectory-based (hypothetical) N-antibody
infections and fourfold-rise-based seronegatives were swab-positive,
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the N-antibody measurements showed a clear increase in N-antibody
levels (Supplementary Fig. 11), with N-antibodies starting from higher
levels or responses being slightly blunted. Hence, while the fourfold-
basedN-antibody classificationswere slightlybetter alignedwith swab-
positivity, trajectory-based classifications could offer advantageswhen
blunted N-antibody responses might be expected (e.g., in vaccinated
populations) or when N-antibody levels are higher (e.g., in previously
infected populations), and are less susceptible to single erroneous
measurements. Furthermore, whilst based on a previous study22, the
fourfold rise was an arbitrary threshold.

The main study strength is our use of a longitudinal variation of
K-means to identify infections from N-antibody trajectories. The
challenge of using an arbitrary fixed threshold or a x-fold increase is
that the boost in antibodies following infection is not consistent
between individuals; for different reasons, some individuals will have a
larger or smaller increase, from a higher or lower initial starting value.
Both types of heterogeneity cause problems for simple definitions
basedonfixed or relative thresholds, problemswhich aremagnifiedby
censoring by limits of detection (here 10 and 200ng/mL).N-antibodies
were generally assayed monthly and comparing how antibody levels
changed over time allowed us to still classify participants with “blun-
ted” responses as having been infected and also taking into account
declines over time which could affect sensitivity of fixed or relative
thresholds. However, our study has several limitations. Firstly,
N-antibody measurements were obtained using one assay only, which
was ultimately not commercialised. Secondly, we only applied one
clusteringmethod and due to computational limitations were not able
to optimise the number of clusters. However, in contrast tomost other
studies that aim to cluster a high-dimensional space, we clustered
time-series,which allowed for visualisation and thorough inspection of
clusters without projectionmethods that depend on hyperparameters
and interpretation such as Uniform Manifold Approximation and
Projection38. Moreover, swab-positivity allowed careful triangulation
of each cluster, overall leading to a biologically plausible classification
for most participants (Figs. 1, 2). While overall the clustering led to
sensible infection groups, several antibody trajectories classified asflat
by the trajectory-based N-antibody classification exhibited slight var-
iations in antibody levels, plausibly due to the centreing of the anti-
body trajectories creating small but arbitrary distortions. Other
explanations include variability in the assay, which is more pro-
nounced in unspiked serum/plasma21, prior infections before the par-
ticipant’s study period and mild infection episodes or infection
episodes in participants with compromised immune systems. Never-
theless, for those participants without swab-positives it remains
uncertain if these variationswerecausedby suchexternal influences or
actual infections. Next, by necessity all measurements below or above
the lower and upper limits of quantification were censored, potentially
leading to incorrect N-antibody trajectory-based classifications. For
instance, fully censored participants could have had a considerable
increase or decrease in N-antibody measurements, which was no
longer visible due to the censoring. Furthermore, the number of par-
ticipants with a SARS-CoV-2 infection before their study period ismost
likely an underestimation of the true number of infections, given lack
of widespread testing in the first wave in March–May 2020, and
recruitment ofmost survey participants from July–October 2020. Also,
detection of previous infections using N-antibodies depends on the
durability of seropositivity, with S-antibody response (before vacci-
nation) in general more persistent than N-antibody response31. Esti-
mating the percentage of infections that remained undetected by
swab-positivity and N-antibodies depended on PCR tests not being
subject to false-positives andN-antibody trajectories not being subject
to cross-reactivity. Previous analyses using the COVID-19 Infection
Survey have shown that specificity of the PCR testing protocol was
really high, alleviating concerns about potential false-positives result-
ing from PCR testing39. Specificity has also been suggested to be very

high for the N-antibody tests40. Moreover, we used a method depen-
dent capture-recapture model, in which the probabilities of detecting
true infections varied by method, but not per individual and infection
episode, which over simplifies reality as seen in the subgroup analysis
(Supplementary Table 4). Data from national testing programmes in
Northern Ireland and Scotland were not available (11% of survey
population); to mitigate this we also included self-reported positive
swab results which had very high agreement with national testing data
in England and Wales ( >95%). Finally, we had no information on
symptom severity, which could also be related to N-antibody
seropositivity19.

The longitudinal variation of K-means applied here could also be
evaluated for other antibodies/infections to assess whether surveil-
lance of immunity and infection incidence could be improved, but its
application to smaller studies has several limitations. Firstly, each
participant should have sufficient measurements to detect infections
(e.g., here ≥4 measurements). Moreover, K-means can be sensitive to
outliers, which can have large influence in smaller datasets41, leading to
less robust clustering or possibly overfitting. For smaller datasets,
other clustering algorithms less sensitive to outliers, such as K-
medoids, can be more appropriate41.

The current study showed that estimates of SARS-COV-2 infection
based on PCR- and LFT surveillance or serosurveillance greatly
underestimate the true burden of infection. Even combining these
methods did not provide a complete overview of infection. These
underestimations could bias the estimation of other parameters, such
as the infection fatality ratio42. The results of subsequent studies
simulating the pandemic or cost-effectiveness analyses may then
become influenced by these biased parameters, which can lead to
implementation of interventions that appear to be optimal in model-
ling but that lead to overall population harm when implemented in
practice. Moreover, our study underlines that many SARS-CoV-2
infections remained undetected. While contributing to virus spread,
these undetected infections might substantially complicate pandemic
control. Our findings suggest that to optimise pandemic surveillance a
combination of serosurveillance with swab-positivity should be used.

In conclusion, we used N-antibody trajectories from a large
broadly representative UK household survey to examine the total
number of undetected SARS-CoV-2 infections. Whilst N-antibodies
serosurveillance can be used to improve estimates of the number of
previous infections, for optimal use in large datasets, fourfold-based
analysis or ideally trajectory-based analysis is required over threshold-
based analysis.

Methods
Data collection
Data came from the UK’s Office for National Statistics (ONS) COVID-19
Infection Survey (ISRCTN21086382, protocol on https://www.ndm.ox.
ac.uk/covid-19/covid-19-infection-survey/protocol-and-information-
sheets), a large longitudinal survey inviting all individuals aged 2 years
or older living within randomly selected private households across the
UK to participate. Following verbal consent, studyworkers visited each
household, and recruited all consenting residents aged 2 years or older
whoprovidedwritten informedconsent (fromparents/carers for those
under 16 years; those aged 10–15 years also provided written assent).
Participants could also provide optional consent for subsequent
weekly visits in the first month and then monthly, up to the earliest of
March 2023, when they became no longer resident at the selected
address or no longer wished to participate (98% consented to post-
enrolment visits). Ethical approval was obtained from the South Cen-
tral Berkshire B Research Ethics Committee (20/SC/0195).

Data was collected on participants socio-demographic char-
acteristics; at each assessment, data was collected on behaviours and
vaccination status, and participants provided a nose and throat swab
for PCR testing (self-taken; parents/carers took swabs for those under
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12 years) (details in Supplementary File 1). Initially, those aged ≥16
years from a random 10–20% households were asked for optional
consent to givemonthly venous blood samples for serological testing;
this was expanded to a larger randomly selected subgroup of house-
holds from April 2021 using capillary blood sampling to examine
vaccine responses (prioritising thosewith longer survey participation).
Moreover, any participant ≥16 years testing PCR-positive through
December 2021 was invited to provide blood samples on their sub-
sequent monthly follow up visits.

Serological testing and definition of infections
Levels of SARS-CoV-2 S-antibody (throughout) and N-antibody
(between February 28, 2021 and January 30, 2022 to monitor initial
responses to the vaccination programme) were tested on venous or
capillary blood samples using an enzyme-linked immunosorbent assay
(ELISA) detecting anti-trimeric spike and nucleocapsid IgG developed
by the University of Oxford. Before 26 February 2021, the S-antibody
assay used fluorescence detection, with a positivity threshold of 8
million units validated on banks of known SARS-CoV-2-positive and
-negative samples43. After this, the S-antibody used a commercialised
CE-marked version of the assay, the Thermo Fisher OmniPATH 384
Combi SARS-CoV-2 IgG ELISA (ThermoFisher Scientific), with the same
antigen and colorimetricdetection, reportingnormalised results in ng/
mL of mAb45 monoclonal antibody equivalents (details in ref. 7) and
using 42ng/mL as the threshold for an IgG-positive or -negative result
(corresponding to the 8 million units with fluorescence detection).
SARS-CoV-2 N-antibody levels were tested using a research-use only
assay (details in ref. 21). At the manufacturer’s threshold of 30 ng/mL,
the sensitivity of this assay was 94.3% and specificity 92.8%.
Lower and upper limits of quantification were 10 and 200ng/mL
respectively.

The study period was defined as the period in which participants
had N-antibody measurements available. All survey data after the
participant’s study period was excluded from this analysis. We defined
‘infection episodes’ using results from swab test results as in ref. 44. In
brief we used all positive andnegative PCR test results from the survey,
linked information about positive only PCR and LFT from the national
testing programmes in England and Wales (not available for Scotland
and Northern Ireland), self-reported positive swab tests from all par-
ticipants (as national testing data was not available in Scotland/
Northern Ireland; very high (>95%) agreement for participants in
England and Wales). To reflect the fact that some individuals can test
positive on PCR for extended periods of time when testing is inde-
pendent of symptoms/case contacts as in the survey (in contrast to
national testing programmes), whereas others have reinfections
(confirmed by sequencing) after only short periods of time, we
incorporated information from genetic sequencing, S-gene presence/
absence, and Ct values, together with negative PCR test results from
the survey only44. These data were processed using Stata MP 1645.

Classifying N-antibody trajectories
We clustered similar N-antibody trajectories in participants with ≥4
measurements together using a longitudinal variation of K-means with
a dynamic time-warping distance to account for varying periods of
availability of N-antibody measurements, and gaps in each partici-
pant’s trajectory due to missed visits or failed assays (details in Sup-
plementary file 1)46–48. This clustering method takes into account the
shape and the height of the antibody trajectory. Hence, by considering
both these characteristics the clustering can distinguish different
clusters with similar shapes but different heights. Characteristics of
those with <4 vs ≥4 N-antibody measurements were compared using

standardised differences calculated as p1�p2
pðp1 1�p1ð Þ+p2 1�p2ð ÞÞ

2

49. Participants with

all N-antibody measurements either ≤10 or ≥200 were not formally
clustered but assigned to two additional clusters. Due to the large

sample size, optimisation of the number of clusters was not compu-
tationally feasible. Therefore, we chose to fit the largest number of
clusters which was still computationally feasible to converge within
2 days (n = 13, taking 40h on 10 cores).

To reflect the fact that both absolute and relative changes in
N-antibody levels might indicate infection, we clustered N-antibody
trajectories firstly using absolute values (denoted identity clustering,
‘id’) and secondly, using log2 values (denoted ‘log2’). Five different
initialisations were used for each, with a maximum of 50 iterations,
returning the clustering solution with the lowest sum of squared
dynamic time-warping distances between each trajectory and the
corresponding cluster centroid (i.e., minimal inertia)48. The clustering
analysis was performed in Python version 3.10.1250 (jupyter-notebook
version 7.1.2) using the packages pandas (version 1.4.2), numpy (ver-
sion 1.23.5), tslearn (version 0.5.2)48 and dill (version 0.3.4). All sub-
sequent data processing steps and visualisations were performed in R
version 4.3 using tidyverse (version 2.0.0), dplyr (version 1.1.4) and
ggplot2 (version 3.5.0)51,52.

The N-antibody trajectories in each cluster were visualised toge-
ther with a generalised additive model smooth (function ‘geom_s-
mooth(method =‘gam’)’ from ggplot251). The smoothing function was
applied to all days (centred on the midpoint of the maximum increase
in N-antibody levels) falling between the 10th and 90th percentile. We
arbitrarily classified the N-antibody trajectories based on expected
trajectories following infection (Supplementary Fig. 3) and then took
the consensus of the id and log2N-antibody classifications, withmanual
reconciliation where these disagreed (see Supplementary Fig. 2,
6 and 7 and Results), and compared the combined final classification
with swab-positive infections as defined above (Figs. 1 and 2).

Estimating infection dates
For participants with an N-antibody trajectory compatible with infec-
tion, we estimated the (hypothetical) infection date (the first date a
participant would have tested positive on a nose and throat swab)
assuming that the infection occurred 14 days before the midpoint
between the two measurements with the maximum increase in
N-antibody levels, given it takes on average ten days for N-antibodies
to rise after developing symptoms8, the incubationperiod is ~6.5 days53

and on average it takes 2.5 days from infection to swab-positivity54. We
then compared this (hypothetical) infection date estimated from
N-antibody measurements with actual swab-positive infection dates
(as defined above) for all participants with infections identified using
both methods. Where participants had multiple swab-positive infec-
tions, we compared the closest swab-positive infection date to the
N-antibody (hypothetical) infection date.

Estimating the total number of infections
To estimate the number of true infections in those participants with ≥4
N-antibody measurements, we used a capture-recapture model55. This
technique fits a loglinear model to the number of infections identified
by swabs, N-antibody trajectory-based classifications and their inter-
section to estimate the number of infections missed by either meth-
ods. To reflect the fact that the number of true infections was equal for
both methods, we used a closed population model. We accounted for
heterogeneity in the infection detection probabilities of swabs and
N-antibody trajectories by fitting a method dependent capture-
recapture model, which allows the probabilities of detection to vary
for swabs andN-antibody trajectories. Toprevent overfitting,wechose
not to model heterogeneity between infection episodes, meaning that
all infection episodes had the same probability of being detected
within each method. For participants with multiple swab-positive
infections, we considered the closest swab-positive infection to the
N-antibody (hypothetical) infection date detected by both methods
and all other swab-positive infections detected by swab-positivity only.
Moreover, we assumed that both swab-positives and N-antibody
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(hypothetical) infections reflected true infections (i.e., no false-
positives).

We performed a subgroup analysis in which we calculated the
number of true infections for different vaccination statuses and epochs.
Both were determined at time of the infection, which was at the swab-
positive date when available and otherwise at the N-antibody (hypo-
thetical) infection date. Dependent on the time of infection the SARS-
CoV-2 epoch was defined as Alpha when it was between December 7,
2020–May 16, 2021, Delta between May 17, 2021–December 12, 2021,
and BA.1 betweenDecember 13, 2021–February 20, 2022, which was the
first Monday where S-positivity for the corresponding variant was
above 50% in the full survey population.

Next, we performed four sensitivity analyses. Firstly, we reclassi-
fied all participants with ≥60 days between the estimated infection
dates from the two methods. Where the swab-positive date was
≥60 days before the N-antibody (hypothetical) infection date, we
classified the infection as swab-positivity only, and as N-antibody only
when the swab-positive infection date was ≥60 days after the
N-antibody (hypothetical) infection date. Secondly, we classified
N-antibody trajectories using themanufacturer’s proposedN-antibody
seropositivity threshold of 30 ng/mL21. We considered a participant
infected if the manufacturer’s threshold of 30 ng/mL was crossed
(upwards) during their study period. In all other scenarios, we con-
sidered a participant not infected during their study period, which
couldeithermean theyhad an infectionprior to their studyperiod (i.e.,
first measurement ≥30 with no subsequent rise from < 30 to ≥30 ng/
mL) or their N-antibodies measurements showed no evidence of an
infection at all (all measurements < 30 ng/mL). Consistent with the
trajectory-based analysis, and given the small number of participants
with multiple swab-positives (350, 0.2%), we did not try to identify
multiple N-antibody (hypothetical) infections during the study period.
Thirdly, at the suggestion of a reviewer, in a sensitivity analysis we
considered participants infected during the study period if their
N-antibody levels rose fourfold over consecutive measurements22,
treating values below or after the limits of detection (10 and 200 ng/
mL respectively) as equal to these limits. Lastly, we performed a sen-
sitivity analysis on these fourfold-based classifications, treating anti-
body levels rising from below to ≥200ng/mL as infected (since
otherwise no value starting above 50 ng/mL could ever be considered
an infection, regardless of the rise). Consistent with the trajectory-
based analysis, we did not try to identify multiple N-antibody (hypo-
thetical) infections in both fourfold-based analyses. All capture-
recapture models were fitted in R version 4.3 using the package
Rcapture (version 1.4.4)55.

Associations with participant characteristics
We investigated lack of N-antibody seroconversion amongst partici-
pants with swab-positive infections and ≥4 N-antibody measurements
(in whom seroconversion could be assessed as above) using logistic
regression including all demographics and information related to the
infection as covariates, that is age, sex, ethnicity, healthcare worker,
long-term health condition, vaccination status at time of the swab-
positive infection, Ct values (a proxy for viral load33), symptoms and
the SARS-CoV-2 epoch (complete case analysis; details in Supple-
mentary Fig. 9; results for other covariates similar excluding Ct values
(most missing data) from the model). Participants with a N-antibody
(hypothetical) infection and ≥60 days between the two infection dates
were excluded from this analysis, as were a small number of partici-
pants with an earlier infection identified only by S-antibody ser-
opositivity, as this could possibly be a marker of (previous)
unregistered vaccination. We additionally excluded a very small
number of infections before May 17, 2021 (emergence of Delta)
(N = 104/17,419 (0.6%)).

For participants with increasing/de- and increasing N-antibody
trajectories who had multiple swab-positive infections, we considered

the closest swab-positive infection to the N-antibody (hypothetical)
infection date a responder and all other swab-positive infections non-
responders. Vaccination was considered at the swab-positive infection
date. Since there was limited variability in the time since vaccination
for participants with 1, 3 and 4 vaccinations at the swab-positive
infection (i.e., <250 participants were vaccinated >3 months ago), we
aggregated time since vaccination and number of vaccinations into 7
different vaccination categories: not vaccinated, 1 vaccination, 2 vac-
cinations ≤3 months ago, 2 vaccinations 3–6 months ago, 2 vaccina-
tions >6 months ago and 3 or 4 vaccinations, ignoring vaccinations
≤14 days before the swab-positive infection date. Dependent on the
swab-positive infection date the SARS-CoV-2 epoch was again defined
as Alpha when it was between December 7, 2020–May 16, 2021, Delta
betweenMay 17, 2021–December 12, 2021 andBA.1 betweenDecember
13, 2021–February 20, 2022.We initially fittedmodelswith smooths for
continuous covariates (age, Ct values) in R version 4.3 using nnet
(version 7.3.19) and splines (version 4.3.2); for interpretability, final
models used piecewise linear effects with knots chosen based on
visualisations of these smooths. The final models were fitted using the
glm() function in R. P-values for each regression coefficient were
obtained using a two-sided Wald-test.

Other definitions of infections
Finally, we compared N-antibody (hypothetical) infections with infec-
tions defined using different data sources, specifically (i) only positive
(and negative) swab PCR test results from the survey, (ii) positive and
negative PCR results from the survey and positive swab PCR or LFT
results from national testing programmes in England or Wales, (iii)
positive and negative PCR results from the survey, positive swab PCR
or LFT results from national testing programmes in England or Wales,
and self-reported swab-positives and (iv) positive and negative PCR
results from the survey, positive swab PCRor LFT results fromnational
testing programmes in England or Wales, self-reported swab-positives
and self-reports that participants thought they had had COVID-19. For
each, we estimated the percentage of swab-positive infections among
those with N-antibody (hypothetical) infections (considering only the
closest swab-positive infection to the N-antibody (hypothetical)
infection date) and the percentage of participants without swab-
positive infections among those without N-antibody (hypothetical)
infections (N-antibody trajectory-based classifications: all ≤10, flat,
decreasing or all ≥200). These percentages are equivalent to estimat-
ing the sensitivity and specificity of swab-positivity using N-antibody
(hypothetical) infections as a reference. Sensitivity analysis used clas-
sifications based on the manufacturer’s threshold, and both fourfold-
based N-antibody classifications.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
De-identified study data are available for access by accredited
researchers in the ONS Secure Research Service (SRS) for accredited
research purposes under part 5, chapter 5 of the Digital Economy Act
2017. Individuals can apply to be an accredited researcher using the
short form on https://researchaccreditationservice.ons.gov.uk/ons/
ONS_registration.ofml. Accreditation requires completion of a short
free course on accessing the SRS. To request access to data in the SRS,
researchers must submit a research project application for accredita-
tion in the Research Accreditation Service (RAS). Research project
applications are considered by the project team and the Research
Accreditation Panel (RAP) established by the UK Statistics Authority at
regular meetings. Project application example guidance and an
exemplar of a research project application are available. A complete
record of accredited researchers and their projects is published on the
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UK Statistics Authority website to ensure transparency of access to
research data. For further information about accreditation, contact
Research.Support@ons.gov.uk or visit the SRS website.

Code availability
A copy of the analysis code is available at: https://github.com/UMCG-
Global-Health/COVID-19_N-antibodies (https://doi.org/10.5281/zenodo.
13934702).
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