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Abstract 
The meaning of individual events or cues in the environment is often 

dependent on their position relative to other cues surrounding them. The 

ability to learn about relationships between such ambiguous cues – often 

called structural learning – enables us to recognise common underlying 

structures of events and is thought to form the basis of episodic memory.  

 

One area implicated in structural learning is the hippocampus. Specifically, 

neurons in the CA1 area of the hippocampus have been shown to represent 

variables such as cue configurations and their order in space and time. To 

investigate the neural basis of structural learning, we designed an odour-

based task that requires mice to learn not only about sets of odour cues, but 

about their relative order in time.  

 

Importantly, the task design allows for manipulation of the temporal structure 

and identity of cues separately, enabling dissociation of their neural 

mechanisms. Using this task, we found that mice can flexibly use previously 

learnt relational structures and adapt to both changes in the temporal pattern 

as well as in cue identity.  

 
In line with a role for hippocampal circuitry, optogenetic inactivation of ventral 

CA1 (vCA1) markedly impaired task performance. Using in vivo calcium 

imaging, we found that vCA1 neurons encode a wide variety of task-relevant 

information, including maintaining odour identity across the delay and 

exhibiting context-specific responses to odours. Furthermore, population-

level analysis revealed that neurons in vCA1 encode cues and cue 

combinations more robustly than outcomes.  
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Impact statement 
Flexible behaviour is essential for our ability to adapt to novel situations as well 

as to inhibit inappropriate maladaptive behaviours.  This behavioural flexibility 

relies on the brain’s capacity to derive meaning from ambiguous cues by taking 

into account the temporal and spatial context surrounding them. Notably, this 

ability, often called structural, contextual or relational learning has been 

shown to be impaired in some of the most debilitating neural disorders – 

including anxiety disorders, major depression, bipolar disorder, and 

schizophrenia. Therefore, understanding the neural substrates and cellular 

mechanisms of functional structural learning provides a first step towards 

identifying some of the changes underlying neuropsychiatric disease.  

 

In this thesis, I investigated hippocampal contributions to structural learning, 

focusing on how the hippocampus, specifically the ventral CA1 area, 

processes and encodes relationships between cues in order to make optimal 

decisions. To do this, I used an innovative odour-based task in mice as well as 

optogenetic tools and genetically encoded calcium indicators.  

 

To the academic community, this research provides insight into hippocampal 

function and contributes to the understanding of episodic memory and 

behavioural flexibility, potentially informing future neuroscience research. 

Furthermore, the development of a non-spatial, odour-based structural 

learning task might be adopted and refined in future studies looking at 

structural learning in other brain regions, or in genetic mouse models of 

different disorders.    

 

Outside of academia, this thesis and work derived from it might have 

implications for our conceptual understanding of neurodegenerative 
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conditions such as Alzheimer’s disease, which are characterised by 

impairments in episodic memory, or into neuropsychiatric disorders such as 

schizophrenia that are associated to impairments in structural learning and 

behavioural flexibility.  

 

More broadly, insights from this thesis might inform science policy and might 

be of use for funding bodies when deciding about the potential of future 

research programmes related to memory and mental health.  

 

However, the impact of this research is likely to unfold incrementally, 

contributing to the field of neuroscience over many years. It provides a partial 

answer to fundamental questions about how the hippocampus contributes to 

the understanding of cues within context that can be built upon by further 

studies, potentially finally leading to changes in the diagnosis and treatment 

of neuropsychiatric and neurodegenerative diseases, and thereby indirectly 

supporting improvements in cognitive health and quality of life.   
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1 Introduction 
In this chapter, I will give a definition of the type of learning that is the topic of this 

thesis: structural learning. I’ll describe its importance as a building block of 

essential cognitive function and give an overview of the literature placing the 

hippocampus as a possible circuit supporting the computation underlying 

structural learning. Finally, I will outline the experimental conditions required to 

investigate the role of hippocampal circuits in structural learning.  

 

1.1 Structural learning as a fundamental building 

block of cognition 

Learning is an essential function of the brain, fundamental to the adaptability 

and independent survival of people and animals. Defined as a change in 

behaviour as a result of gaining information about the world (Kandel, 2021), 

learning is the association process connecting this information about the 

external world to an action. How exactly this process is implemented on the 

neuronal level has been a focus of neuroscientific research from the molecular 

level up to whole-network connectivity studies for decades and yet it is still not 

fully understood today.  

 

Much of the research into learning has used classical conditioning as a 

paradigm, a type of learning in which a neutral stimulus is presented immediately 

before or simultaneously with an outcome, and the success of learning can be 

measured as the development of actions indicating prediction of such outcomes 

(e.g. Pavlovian salivation, auditory fear conditioning) (Blanchard & Blanchard, 

1972; Davis, 1992; Maren, 1996; Pavlov, 1927; Pearce & Hall, 1980; Rescorla & 

Wagner, 1972). However, in our everyday lives as well as in the natural habitats 

of most animals, cues aren’t always uniquely associated to one outcome  – often 

the meaning of individual events or cues is dependent on other neutral cues 
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surrounding them. For example, understanding the meaning of an event may 

depend on its spatial or temporal relationships to other neutral cues. 

 

This type of learning has been given multiple names, among those structural, 

relational, hierarchical or contextual learning. For the purposes of this thesis, I 

will discuss this type of learning under the term structural learning and define it 

as any learning that requires a directional association of two or more neutral 

cues in space or time (e.g. A before B, C to the right of D; Aggleton et al., 2007) 

required to correctly predict an outcome. Unlike classical conditioning, 

structural learning captures the directional relationships between neutral cues 

as opposed to cues and valued events, such as outcomes or actions. 

 

Given this definition, contextual learning might be seen as a special case of 

structural learning in which many cues, often from different modalities, have to 

be integrated in order to correctly predict appropriate actions and likely 

outcomes (Aggleton et. al, 2007). While it is not currently clear whether 

structural learning and contextual learning are indeed supported by the same 

neural substrates, they both require the ability to associate multiple neutral 

stimuli and combine them in a directed way. Similarly, episodic memory can be 

conceptualised as relying on the foundational process structural learning: here, 

instead of ordered cues in space, specific events are ordered into temporal 

structures (Eichenbaum, 2013).  

 

In addition to its putative function in supporting episodic memory and contextual 

spatial behaviour, structural learning has been suggested to have more general 

advantages such as enabling detection of commonalities between distinct 

experiences. By integrating cues into a relational structure, the meaning of new 

cues with a similar structure can be inferred, thereby enabling generalisation and 

facilitating not only flexible behaviour in novel contexts but possibly also the 

uniquely human ability to imagine impossible scenarios (Hassabis et al., 2007). 

Taken together, structural learning is put forward as a building block for the 
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essential task of organising knowledge into structures, an essential part required 

for flexible behaviour.  

 

However, despite its essential role in many everyday behaviours, there is only 

limited insight into how this form of learning is achieved within the brain. 

Crucially, structural learning cannot be explained by the same type of learning 

rules that have been put forward as the basis of classical associative learning, 

e.g. reinforcement learning in the basal ganglia (Schultz et al., 1997; Sutton & 

Barto, 1998). Thus, investigating the neural substrates underlying structural 

learning is essential to understand its distinct mechanisms. 

 

1.2  Brain regions associated to structural learning 

Multiple brain regions have been proposed to perform processes tied to 

structural learning as well as derived cognitive functions that are thought to rely 

on such learning, e.g. categorisation, inference and generalisation.  Inference 

relies on expanding learnt relational structures to include new items or 

situations, while categorisation involves grouping similar items or experiences 

together according to a rule which is often defined by structural relations. Finally, 

generalisation allows for the application of learned structure to entirely new, yet 

similar situations. Thus, brain regions associated with either of these abilities 

likely contain or process representations of structure. While I cannot describe 

the full breadth of the research into all regions within the constraints of this 

thesis, I will give a brief overview of the three regions most often associated to 

structural learning.  

 

One region connected to structural learning in a large body of studies in humans, 

primates and rodents is the prefrontal cortex (PFC). The PFC can be anatomically 

subdivided into three main areas: the dorsolateral prefrontal cortex (dlPFC), the 

medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC). Structurally, 
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the two latter areas are highly interconnected, and it is these areas that are 

associated to functions related to structural learning.   

 

1.2.1 mPFC, working memory and rule-based learning 

Prominent accounts of mPFC function state that single neurons in mPFC 

maintain representations of task-relevant stimuli over multiple seconds, thereby 

allowing their integration with subsequent stimuli in working memory tasks 

(Funahashi et al., 1993; Levy & Goldman-Rakic, 2000; Miller et al., 1996; Vogel et 

al., 2022; F. A. W. Wilson et al., 1993). This sustained activity has two key 

properties. Firstly, it is specific to the stimulus being remembered, i.e. different 

neuronal ensembles encode different stimuli (Funahashi et al., 1993; Miller et 

al., 1996). Secondly, this sustained stimulus response is task-dependent, i.e. 

distractor stimuli are not maintained in the same way (Rainer et al., 1998}. Thus, 

sustained cue responses in mPFC are not purely a buffer for sensory perception 

but are specific to the current task and goals. This is further supported by the 

finding that some neurons in mPFC respond selectively to the temporal context 

of a task (e.g. fire specifically in the inter-trial interval)( Jung et al.,1998), 

suggesting an abstract representation of task structure that is either present in 

mPFC, or can be accessed by it. This idea is further supported by the finding that 

the population activity in mPFC changes when task rules change (Durstewitz et 

al., 2010; Rich & Shapiro, 2009) and that an intact mPFC is required for rule-

based categorisation (Monchi et al., 2001; Wallis et al., 2001).  

 

Taken together, mPFC activity thus relates both to fundamental components to 

structural learning as well as higher cognitive processes that require a structural 

understanding of the environment.  

 

1.2.2 OFC and representations of task state 

The same is also true for its neighbour, OFC, but while mPFC seems to have 

stronger representations of cues and contexts, OFC is suggested to be especially 
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involved in representing and updating the value of choices and outcomes 

(Balleine et al., 2011).  

 

This is especially important in partially observable scenarios with high 

uncertainty, such as bandit tasks, in which contingencies reverse suddenly. In 

line with this, lesion studies show that OFC lesions impact behavioural flexibility, 

reducing the ability to switch between behavioural strategies even though 

learning of the initial stimulus-outcome pairing is unaffected (Butter, 1969; Dias 

et al., 1997; McAlonan & Brown, 2003; Schoenbaum et al., 2003; Sul et al., 2010). 

Similarly, tasks in which the sensory features of different outcomes inform 

behaviour are dependent on functional OFC circuits (McDannald et al., 2005). 

This has led to the hypothesis that OFC might contain representations of task 

states (Wikenheiser & Schoenbaum, 2016; R. C. Wilson et al., 2014). Specifically, 

it is suggested that OFC integrates sensory experience with choice and reward 

history to form representations of states in which a specific rule (e.g. “right lever 

is rewarded”) are true.  

 

In summary, OFC activity is associated with tracking distinct states within a task 

and updating the associated values of specific actions, especially in situations 

where these  task states are unobservable (i.e. uncued by the sensory 

environment (Wikenheiser & Schoenbaum, 2016)). OFC therefore is thought to 

represent task states at multiple levels of abstraction (within trial as well as 

between trials and even blocks), showing that OFC constructs or/and processes 

structural information. 

 

1.2.3 Hippocampus and the cognitive map 

Another brain region involved in structural learning is the hippocampus (HC). 

Ever since the discovery of place cells (O’Keefe & Nadel, 1979), HC has been 

firmly associated with the idea of a cognitive map. The underlying idea, first 

proposed by Tolman (Tolman, 1948), refers not to exclusively to a map of the 
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spatial environment, but rather to an mental representation that binds external 

sensory features with internal factors to form an abstract relational structure 

that facilitates flexible behaviour. 

 

Indeed, in addition to an important role in spatial memory and navigation, 

hippocampal circuits have also been shown to be required for autobiographical 

memory (Burgess, 2002; Vargha-Khadem et al., 1997), contextual learning 

(Blanchard et al., 1977; Fanselow, 1990), scene construction (Graham et al., 

2010), and temporal sequences (MacDonald et al., 2013; Omer et al., 2022). 

While these functions might seem unrelated at first glance, it has been 

suggested that HC performs a common computation underlying all of the above 

processes: encoding relationships between external and internal cues implicitly, 

even in absence of a task; then integrating cues and events that are likely to co-

occur into states (or contexts) and finally predicting likely future states based on 

the current experience (Behrens et al., 2018; Dudchenko & Wood, 2014; 

Eichenbaum & Cohen, 2014; Niv, 2019). If we return to our definition of structural 

learning as the learning of directional relations between multiple stimuli, this 

theory of hippocampal function posits HC as an essential part of the putative 

structural learning network.  

 

1.2.4 Summary 

Taken together, these data support a role in structural learning for mPFc and OFC 

as well as HC. In line with a synergistic integration of each of their contributions, 

electrophysiological and histological studies have identified pathways that allow 

for interaction between all regions. HC projects directly to mPFC from CA1 and 

the subiculum (Cenquizca & Swanson, 2007; Jay & Witter, 1991; Sánchez-Bellot 

et al., 2022), and mPFC connects to HC via a disynaptic route through  entorhinal 

cortex (EC) or through nucleus reuniens (NR) (Burwell & Amaral, 1998; Vertes et 

al., 2007). Similarly, OFC and HC are connected via EC and NR (McKenna & 

Vertes, 2004; Witter et al., 2000). Finally, mPFC and OFC are tightly 
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interconnected  (Haber et al., 2022), thus making inter-regional coordination of 

different processes required for structural learning possible. 

 

How exactly the contributions to structural learning might be subdivided across 

PFC, OFC and HC is not yet fully understood. Differences in task design and data 

acquisition make it difficult to directly compare the role of each of these areas to 

structural learning. From the literature, it seems that that OFC and PFC represent 

structural information with a higher level of abstraction and task-specificity 

(Miller & Cohen, 2001; Sul et al., 2010; Wikenheiser & Schoenbaum, 2016), while 

HC encodes both task-relevant as well as task-irrelevant stimuli and has been 

shown to be especially sensitive to the statistics of the environment even without 

the requirement of a task (Eichenbaum, 2017; Niv, 2019). These subtle 

differences might hint at a role for hippocampus as a first step in the chain of 

processes leading from the construction of structural cues all the way to 

abstract categorisation.  

 

In this thesis, my goal was to investigate the potential role of the hippocampus 

in structural leaning. Therefore, in the following sections, I will describe theories 

of hippocampal function put forward in the literature, and how they, taken 

together with considerations of the circuitry and connectivity of hippocampus, 

can support the unifying hypothesis of hippocampus as a possible first step in 

the hierarchy of structural learning and related processes.  

 

However, this is not meant to imply that the hippocampus is the only area in the 

brain implicated in or necessary for this kind of learning. An interesting future 

direction would be to contrast and compare the contributions of OFC and PFC 

to the findings described in this thesis. 
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1.3  Theories of hippocampal function 

1.3.1 Episodic and episodic-like memory 

The hippocampus has been implicated in the encoding and retrieval of episodic 

memory since the mid-20th century, largely due to evidence from human case 

studies in neurology and neuropsychiatry. Episodic memory can be defined as a 

type of long-term memory that encodes unique events in sequential order 

together with their temporal, spatial and emotional context (Eichenbaum, 2017; 

Panoz-Brown et al., 2016). Famously, patient H.M. suffered severe memory 

impairments after a bilateral medial temporal lobe resection, apparently without 

any perceptual disorder and general intellectual loss (Scoville & Milner, 1957). 

This was the first in a series of studies that suggested a role for the hippocampal 

formation in the encoding and retention of memories – but only in some, not all 

cases. Specifically, short-term memory as well as procedural and semantic 

memory were shown to be unaffected by damage to the hippocampus (Burgess, 

2002; Vargha-Khadem et al., 1997). 

 

Further evidence for the hippocampal involvement in episodic memory comes 

from the progression of neurodegenerative diseases such as Alzheimer’s 

disease and Lewi body dementia: these diseases which lead to episodic memory 

loss tend to damage the hippocampus as well as the entorhinal cortex well 

before other brain areas (Rao et al., 2022). 

 

But also in healthy human subjects, hippocampal activity is linked to memory: 

fMRI studies report that the hippocampus is activated when subjects are asked 

to remember the order of objects from a virtual reality driving game, or when 

reconstructing the correct order of scenes previously seen in a clip (Ekstrom & 

Bookheimer, 2007; Lehn et al., 2009). Interestingly, the hippocampus was shown 

to be preferentially active when the subjects were asked to order events in time, 

as opposed to making simple recency judgements (Eichenbaum, 2013). 
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The technical limitations of researching episodic memory in humans leave many 

questions on the cellular and circuit level unanswered, but while animal models 

offer a richer toolkit to study neural circuits and computations, it is unclear 

whether the concept of episodic memory can be applied to rodents. Thus, 

researchers have had to explore creative ways to investigate episodic-like 

memory in rodent models. 

 

One such paradigm that has been widely used to interrogate memory for 

individual experiences in rodents is Pavlovian fear conditioning. In this paradigm, 

neutral stimuli such as tones, lights, or entire environments are arranged to 

predict aversive outcomes such as electric shocks, and then the display of 

learned fear behaviours is quantified in order to measure mnemonic retention.  

 

Foundational work found that damage to the amygdala as well as the 

hippocampus could damage the expression of learned fear (Blanchard et al., 

1977; Blanchard & Blanchard, 1972; Phillips & LeDoux, 1992), corroborating the 

role of hippocampus in memory. However, while fear conditioning to a discrete 

cue was found to be mediated by the amygdala (Maren, 2005), the role of the 

hippocampus in this paradigm turned out to be more complicated: 

hippocampus seems to be essential to the behaviour only in cases where an 

entire environment (context) predicts the shock (as opposed to a singular cue) 

and only if the animal had sufficient time exploring this context prior to the shock 

(Fanselow, 1990). But even conditioning to a discrete cue can be hippocampus-

dependent – if a short temporal delay, often called a “trace interval”, is 

introduced between the cue and the aversive outcome, hippocampal lesions 

impair retention and expression of the fear memory (Quinn et al., 2002; Sellami 

et al., 2017). Interestingly, some studies show that hippocampal involvement 

increases as delays become longer in duration (Sellami et al., 2017).  

 

These results suggest that the role of hippocampus in memory might lie in 

binding together multiple stimuli across space (in a context) or time (across a 
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trace interval), thereby performing the computation underlying structural 

learning. 

 

1.3.2 Scene imagination and mental time travel 

In a line of research related to episodic memory, it was found in the early 2000s 

that damage to the hippocampus in humans does not solely impact their ability 

to recall past experiences, but that patients were also impaired at describing 

scenes in the present (Graham et al., 2010) and even constructing fictitious and 

future scenes in their imagination (Hassabis, Kumaran, Vann, et al., 2007). 

 

The construction of scenes is of course intricately linked with autobiographical 

memory: for most people, recalling the past involves imagining the spatial and 

temporal context of the memory (“mental time travel”). It is therefore not 

surprising that in patients with hippocampal damage, impairments in 

autobiographical memory predict difficulties with scene construction ability, 

while in patients without memory deficits, scene construction is generally intact 

(Squire et al., 2010). It is exactly this variability in impairments however that 

makes it difficult to conclusively describe the function of hippocampus based on 

case studies – some patients suffer no lapse in autobiographical memory, even 

though their hippocampus has been substantially damaged.  

 

Functional magnetic resonance imaging (fMRI) studies in healthy subject have 

tried to clear up some of these inconsistencies and have shown that the 

hippocampus is indeed engaged when imagine future scenes (Addis et al., 2007) 

as well as imagined scenarios (Hassabis, Kumaran, & Maguire, 2007). It has been 

proposed that the common computation underlying all of these functions is the 

construction of rich spatial contexts (Maguire & Mullally, 2013).  

 

However, these results could also be satisfactorily explained by the theory that 

hippocampus is required for the binding of arbitrary relations among individual 
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elements within a context, irrespective of whether these elements are framed as 

an autobiographical episode, therefore once again tying back to the computation 

underlying our definition of structural learning.  

 

1.3.3 Spatial navigation 

Indeed, in research largely parallel to the studies linking the hippocampus to 

episodic memory, another strand of hippocampal literature began with the 

recording of principal neurons in hippocampus that fire when a rat is in a 

particular location in its environment – the discovery of “place cells” (O’Keefe & 

Dostrovsky, 1971).  

 

Since then, spatial navigation has been the predominant paradigm to study 

memory in rodents and has yielded an astonishing amount of insight into the 

neural properties that allow the hippocampus to map out environments and 

guide navigation. Cell types such as grid cells in medial entorhinal cortex (cells 

that fire at regular intervals as an animal traverses an environment), border cells 

in subiculum (cells that respond to an environmental boundary in a specific 

position relative to the animal) as well as splitter cells in CA1 (cells whose firing 

rates are modulated depending on the animals past and future trajectory) have 

been described and, together, comprise a rich model of the world represented in 

hippocampal circuits (Ainge, Tamosiunaite, et al., 2007; Byrne et al., 2007; 

Deshmukh & Knierim, 2013; Hafting et al., 2005; Lever et al., 2009; McNaughton 

et al., 2006; O’Keefe & Dostrovsky, 1971; O’Keefe & Nadel, 1979; Taube et al., 

1990; Tennant et al., 2022).  

 

These findings exemplify how the neurons in hippocampus and surrounding 

areas are uniquely suited to encode the different components of a multisensory 

environment as well as the events that take place within it (Albasser et al., 2013; 

Hartley et al., 2014; Jezek et al., 2011). More than simply representing spatial 

variables, lesion and inactivation studies have also suggested that functional 
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hippocampal circuits are necessary for the learning and retention of spatial 

maze tasks (Jarrard, 1978; Morris et al., 1982; M. B. Moser et al., 1995), and the 

firing of spatially selective neurons has found to be predictive of spatial memory 

performance (Dupret et al., 2010). It was thus suggested that the unifying factor 

between autobiographical memory, imagination and navigation might be the 

underlying spatial component (Maguire & Mullally, 2013). 

 

1.3.4 Temporal representations in hippocampus 

This view, however, was complicated by the discovery of a further type of neuron 

in the hippocampus CA1 area in the early 2000s: “time cells”.  

 

These cells were first reported in animals running on a treadmill, their activity 

tiling the time spent running on a wheel in a specific sequence, just like place 

cells firing one after the other on a linear path (Pastalkova et al., 2008). Further 

research showed that this type of cellular activity could even be found in the 

absence of running in stationary rats (MacDonald et al., 2013), suggesting that 

hippocampus encodes time alongside space, and not solely as a secondary 

effect of movement (e.g. for velocity tracking or path integration). 

 

Furthermore, several studies have shown that the activity of principal neurons in 

hippocampus during a delay period in a behavioural task can reflect past events. 

In two studies using different versions of an odour matching task, the neural 

activity not only tiled the delay period, but involved a different population of 

neurons depending on which odour had preceded the delay (MacDonald et al., 

2013; Taxidis et al., 2020). 

 

Taken together, this data shows that hippocampal circuits can encode cues and 

events within their temporal context as well as within their spatial context, thus 

encoding information about the item itself as well as its relative position along 

those dimensions.   
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1.3.5 A common computation unifying different theories of 

hippocampus 

  

In summary, evidence from studies in humans and rodents suggests that 

hippocampus is fundamentally involved in the encoding, but not storage, of long-

term autobiographical memory, is required for spatial navigation as well as the 

tracking of elapsed time, and is linked to the perception and construction of 

scenes.  

 

Numerous theories have attempted to describe how the hippocampus may 

support such a diverse range of functions. While each theory draws on evidence 

from a different set of studies and contributes nuanced and specific 

interpretations, many can be summarised as the idea that hippocampus is 

required for the binding of arbitrary elements within an experience or across 

items within a context, regardless of whether these relationships are embedded 

within an autobiographical memory or a spatial framework (Aggleton & Pearce, 

2001; Eichenbaum & Cohen, 2014; Ranganath, 2010; Rudy & Sutherland, 1995; 

Whittington et al., 2020).  

 

Specifically, it has been suggested that even time and space may be just two 

examples of dimensions along with the hippocampus can structure knowledge, 

i.e. build neural representations that contain both the individual items, events or 

cues as well as the relation between them, thereby performing the fundamental 

operation of structural learning.  

 

In support of this theory, an fMRI study found “grid-cell-like” activity in entorhinal 

cortex, a major input to hippocampus, when subjects were presented with 

images of birds with varying leg and neck lengths, thus suggesting that the 

hippocampal formation may represent the birds in a 2D space spanned by these 
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two variables (Constantinescu et al., 2016). In mice, it has been found that 

hippocampal neurons can represent a “place” in sound space if sound 

frequency is an important part of the task, analogous to place cells representing 

a location in the environment (Aronov et al., 2017). Similarly, it has been shown 

that depending on task requirements, single cells in hippocampus can respond 

selectively to specific spatial contexts, landmarks and even goals, indicating that 

representations in hippocampus are driven by behavioural requirements and can 

construct relations between items of different modalities as well as internally 

generated variables (Ekstrom et al., 2007; Wood et al., 1999; Gauthier.2018).  

 

In summary, structural learning is a unifying theory of hippocampus that is 

consistent with experimental data from a wide range of studies using different 

techniques, paradigms and model organisms. In the next section, I will outline 

how the anatomy and circuitry of the hippocampus supports its putative function 

of performing this common computation over a set of diverse inputs. 

  

1.4 Anatomy and connectivity of the hippocampus 

1.4.1 Pattern separation, completion and comparison in the 

trisynaptic loop 

The hippocampus consists of a largely unidirectional transverse loop (termed 

the “trisynaptic loop”) in which cortical information enters the hippocampal 

formation through the entorhinal cortex (EC) and is then passed via excitatory 

connections through the dentate gyrus (DG), the CA3 and CA1 region, and then 

to subiculum from where information is distributed back to cortex (Amaral & 

Witter, 1989; Andersen et al., 1971; Cenquizca & Swanson, 2007; Valero & Prida, 

2018).  
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Figure 1.1: Structure of Hippocampus. Top, schematic of the position of hippocampus (blue) 
within the rodent brain with a transparent inlay indicating the different regions of hippocampus 
(CA1, CA3, DG, Sub). Bottom, Schematic of the hippocampal trisynaptic loop. Figure adapted 
from the 2020 PhD thesis by Candela Sánchez Bellot (UCL) 

 

The specific neural anatomy of the trisynaptic loop, especially of the CA3 and 

DG, has already in the 1970s led to the hypothesis that this circuit might be 

responsible for the weighing of novelty and similarity in the storage and retrieval 

of memory (Marr, 1971). Specifically, the DG contains principal neurons 

(“granule cells”) that outnumber the input cells from EC by an order of magnitude 

(Yassa & Stark, 2011). These granule cells show next to no recurrent connectivity 

within DG, and therefore are proposed to be well suited to separate patterns of 

similar inputs, converting them into a unique pattern of granule cell activity.  

 

In the next step of the model, this proposed differentiated signal gets sent to 

CA3, where it causes powerful depolarisation due to large synapses 

(McNaughton & Morris, 1987) and is thought to drive the distinct encoding of new 

memories. However, CA3 also receives input directly from EC and further has 

strong recurrent connectivity, which might be used to auto-associate previously 
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stored representation from partial cues. Since its proposal, this theory of pattern 

separation and completion in DG and CA3 has found support from experimental 

data (Lee & Kesner, 2004; Leutgeb et al., 2007; Neunuebel & Knierim, 2014). 

 

While the theory was first suggested with the function of encoding and retrieval 

of autobiographic memory in mind, learning about ensembles of overlapping 

cues while maintaining both separability and similarity lends itself equally well 

to the representation of spatial environments and abstract relational structures.  

 

The putative purpose of recalling past experience similar to a present situation is 

of course the ability to predict likely future events and outcomes. In the 

trisynaptic pathway, CA1 is the recipient of the “pattern completed” CA3 activity 

as well as direct projections from the EC as well as other regions, and CA1 was 

thus put forward as a candidate to compare these recalled experiences to the 

present sensory input (Kumaran & Maguire, 2006). Indeed, data from fMRI 

studies and intracranial EEG studies in humans has shown increased CA1 

activity in relation to prediction violation (Axmacher et al., 2010; Kumaran & 

Maguire, 2006). Interestingly, this mismatch seems to be stronger in tasks where 

implicit sequences were violated rather than tasks in which subjects were asked 

to make explicit match or mismatch judgements (Chen et al., 2015). 

 

Taken together, the circuit pattern along the trisynaptic pathway with its 

additional direct projections provides a cellular basis for a common 

hippocampal computation, and hints at the possible parts of this computation: 

pattern separation, pattern completion to generate predictions and finally 

compare these predictions to the present sensory data. These processes place 

the hippocampus as a possible site for structural learning: in order to recognise 

the shared structure across experiences, pattern separation and completion are 

necessary.  
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But this alone is not sufficient to make structural learning possible. In order to 

integrate events and cues that are in different spatial locations and/or occur in 

different moments in time, any brain region underpinning structural learning 

must have a mechanism to connect distant events or stimuli. The redundancy 

within hippocampal networks as well as connectivity between sub-regions of 

hippocampus as well as to prefrontal areas makes it a good candidate to fulfil 

this role of maintaining information (discussed in more detail in Chapter 6.4.1). 

 

1.4.2 Functional differentiation along the dorso-ventral axis 

While the circuit motif described in the previous section repeats itself along the 

longitudinal axis of the hippocampus, afferent and efferent connectivity change 

along the dorso-ventral axis of the hippocampus (Swanson & Cowan, 1977), 

thereby allowing the same computation to be executed on variable information.  

 

Specifically, the dorsal HC receives inputs from the visual, auditory and 

somatosensory cortices via EC, while the parts of EC projecting to ventral HC 

receive more inputs from the amygdala, olfactory cortices as well as the 

hypothalamus. This pattern of inputs is largely maintained on the efferent side: 

axons projecting from CA1 and the subiculum maintain their dorso-ventral 

position in the lateral-to-medial axis of the EC (T. V. Groen & Wyss, 1990; T. van 

Groen et al., 1986; Köhler, 1985), and direct projections from dCA1 and vCA1 

show a different ensemble of targets, e.g. dCA1 but not vCA2 project to anterior 

thalamus and retrosplenial cortex, vCA1 but not dCA1 project to VTA and 

amygdala, (Fanselow & Dong, 2010).   

 

Given these differences anatomical projection patterns as well as distinct 

signatures of gene expression, dorsal and ventral hippocampus have been 

proposed to be functionally distinct (Fanselow & Dong, 2010; M. Moser & Moser, 

1998). However, what exactly the respective role of dorsal and ventral 

hippocampus might be is not yet fully understood. This is partly due to the 
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general difficulty of comparing results acquired through different behavioural 

paradigms, but also due to a bias in anatomical targets between the fields: the 

navigation field has historically focused on dorsal regions (Bittner et al., 2017; M. 

B. Moser et al., 1995; O’Keefe & Nadel, 1979) whereas fear conditioning studies 

have more frequently targeted ventral hippocampus (Kjelstrup et al., 2002; 

Maren & Holt, 2004; Twining et al., 2020). Anecdotally, studies using tasks 

paradigms that require structural learning have shown a role for ventral 

hippocampus (Pennartz et al., 2011; Riaz et al., 2017).  

 

In summary, the ventral and dorsal hippocampus have been suggested to be 

functionally distinct units given their different afferent and efferent connectivity. 

However, the same circuit motif is present throughout the entire hippocampus. 

A parsimonious hypothesis combining these two views is that the hippocampus 

might carry out a common computation across the entire dorso-ventral axis, but 

that the functional use of this computation varies based on the inputs it is 

performed on, and the projections it is sent to. 

 

1.4.3 Odour information in the hippocampus 

The olfactory system provides information about odours in the environment to 

the hippocampus, with the olfactory bulb (OB) serving as the first relay for 

incoming olfactory signals. The OB processes sensory input from olfactory 

receptor neurons and transmits this information via the mitral and tufted cells to 

the piriform cortex (PC), anterior olfactory nucleus, and other downstream 

targets (Shepherd, 2003).  

 

From the piriform cortex, projections travel to the lateral entorhinal cortex (LEC), 

which provides a major input to the hippocampus, specifically targeting the 

dentate gyrus (DG) and CA3 regions through the perforant pathway (Diodato et 

al., 2016). This part of entorhinal cortex projects more robustly to ventral than to 

the dorsal hippocampus (Kerr et al.,  2007). Furthermore, there is evidence for 
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sparse direct connections from the OB (via mitral and tufted cells) to the ventral 

portion of CA1 and DG (Luskin & Price, 1983). Additionally, the piriform cortex, as 

a secondary processing centre for olfactory information, has been shown to 

provide direct input to the ventral hippocampus (Kesner et al., 2011). These 

direct projections may play a critical role in associating specific odours with 

contexts and outcomes, since, as discussed in Section 1.4.2, ventral 

hippocampus also projects more strongly to regions associated with value such 

as the amygdala and the NAc. 

 

In summary, while the indirect pathway via the entorhinal cortex is the primary 

route for olfactory information to reach the hippocampus, direct projections 

from the olfactory bulb and piriform cortex provide a complementary route for 

processing olfactory-contextual associations. Both of these routes target the 

ventral hippocampus more robustly than dorsal regions which makes the ventral 

hippocampus a promising target to investigate odour related behaviours. 

 

1.5  Investigating structural learning in a rodent model 

As outlined above, data from functional as well as anatomical studies supports 

the hypothesis of the hippocampus as an essential hub in the network for 

structural learning. However, to understand how neural activity in hippocampus 

can support such a function, it is necessary to leverage the tools available in the 

rodent model to gain insight into the way hippocampus represents the 

components required for structural learning both within individual neurons as 

well as on a population level.  
 

Both fear conditioning and spatial navigation paradigms have been successfully 

used to ask questions that contain structural learning aspects, as for example 

how hippocampus supports the construction of a spatial map comprising 

features and goals in navigation, or the how the multisensory context triggering a 

temporal sequence that leads to aversive outcomes in fear conditioning is 
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encoded in hippocampal circuits. While these paradigms have pushed our 

understanding of hippocampal contribution to ethological behaviour forward, 

they have drawbacks with regards to narrowing down the precise neural 

computation taking place within hippocampal circuits.  

 

Specifically, spatial navigation tasks make it difficult to disambiguate spatial 

information from movement signals or representations of specific cues or goals, 

and, since in these tasks animals often visit locations more than once, it is not 

always possible to distinguish neural representations of past (memory) from 

present (Eichenbaum & Cohen, 2014).  

 

Similarly, fear conditioning as a paradigm only allows matching single-cell neural 

activity to external or internal variables to a very limited extent (Maren et al., 

2013). 

 

Therefore, a number of attempts have been made to create tasks that allow to 

ask questions about structural learning in hippocampus more directly. 

 

1.5.1 Configural learning theory  

From the above, it is clear that in order to understand the neural computation 

performed in hippocampus, task designs with more control over the specific 

stimuli are required.  

 

One attempt at developing such paradigms was made with the configural 

learning theory proposed by Sutherland and Rudy in the late 1980s (Sutherland 

& Rudy, 1989). In their framework, tasks that can be solved by a simple 

association of one cue (e.g., a blue light, or a specific tone) to an outcome should 

not require hippocampal activity, whereas tasks that are solved by association 

between a configural cue (a cue with two or more elements, e.g., both a light and 

a tone, or several visual cues) to an outcome should be impaired by hippocampal 
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damage. To test their theory, they proposed several tasks that they predicted 

would be hippocampus-dependent: Negative Patterning tasks in which both 

cues (A and B) are rewarded when occurring on their own, but a combination of 

both cues (AB) is not rewarded (formalised as A+, B+, AB-), or Biconditional 

Discrimination tasks, in which four cues (A, B, X, and Y) are presented in pairs 

and correlated with reward and a neutral or negative outcome in such a way that 

the configurations but not the individual cues reliably signal trial outcomes (AX+,  

AY-, BX-, BY+). 

 

While the data initially seemed to support their theory (Sutherland & Rudy, 1989), 

with time, conflicting evidence emerged: multiple studies failed to replicate the 

negative patterning results of the 1989 study, or could only partly reproduce them 

(Bussey et al., 2000; Davidson et al., 1993; McDonald et al., 1997). Several of 

these studies showed not only that the lesioned rats learned the task normally, 

but the results of transfer trials (behavioural controls) even suggested that the 

animals were indeed still using a configural strategy to solve the tasks (Rudy & 

Sutherland, 1995). Even in more difficult task paradigms testing the same 

hypothesis, results of hippocampal lesions remained variable, depending on the 

spatial distance between the individual elements to be included in the configural 

cue (Albasser et al., 2013) or the inclusion of an entire context as one “cue” (Riaz 

et al., 2017). Taken together, this suggests that hippocampal activity is only 

required for these tasks under specific, but as yet unknown conditions. 

 

1.5.2  Transitive Inference tasks  

Another attempt to make the investigation of the common hippocampal 

computation tractable uses the previously mentioned advantages of 

remembering relations between items: the possibility of inference.  

 

Specifically, if the hippocampus encodes not only the items that occur together, 

but also their relation or order in space, time, or possibly value, this might enable 
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inference about items that are only indirectly related. For example, if a rodent 

learns that in a choice between A and B, A should be selected over B (A > B) and 

further learns that in a choice between B and C, B is the correct option (B > C), 

the subject can infer that A > C, even if they have never previously encountered 

that choice (Dusek & Eichenbaum, 1997).  

 

Experiments using this paradigm showed however that this approach has 

pitfalls: in the scenario described above, A is statistically rewarded 100% of the 

trials, choosing B equals 50% chance of reward while C is never rewarded. 

Therefore, rodents can circumvent the need for inference by relying purely on 

associative learning (Dusek & Eichenbaum, 1997). To avoid this, the chain of 

overlapping premise pairs thus needs to be at least 5 items long (A > B > C > D > 

E). While A and E still have different total reward probabilities, B and D are now a 

test pair that requires transitive inference. While inactivation data indeed shows 

that BD associations are sensitive to hippocampus lesions while AE trials can 

still be performed (Dusek & Eichenbaum, 1997; Elzakker et al., 2003; Johnston et 

al., 2021), only a limited number of trials can be performed on the “test pairs” 

before they become a learnt association in their own right rather than relying on 

inference.  

 

Therefore, inference in rodents quickly reaches a level of complexity that goes 

beyond the scope of feasibility.  

 

Between this example and the aforementioned configural learning, two 

considerations emerge for future structural learning paradigms. Firstly, these 

tasks need to be carefully designed to avoid any possible solution of the task  

through alternative strategies such as tracking of total reward probability. 

Secondly, since multiple brain regions can be recruited to solve structural 

learning, even after careful task design the requirement of hippocampus for the 

task can be sensitive to details such as the specific temporal structure of the 

task.  
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1.6  Overview 

In summary, in this introduction I have defined structural learning and given an 

overview of neural substrates that may contribute to it. I’ve further summarised 

how hippocampus is placed at a crucial position within this network both from a 

functional as well as from an anatomical perspective. Finally, I've described past 

attempts to characterise the specific role of hippocampus in structural learning 

and detailed some of their limitations.   

 

To understand if the hippocampus is indeed crucial to organising information 

and enabling inference and generalisation, a carefully controlled structural 

learning task in a rodent model is needed. With that, it will be possible to 

interrogate not only what precise external and internal variables are represented 

by the hippocampus at any point in the task, but to perturb these representations 

and determine their behavioural relevance. 

 

Therefore, my first aim was to design and test a task that can be used to directly 

test structural learning in mice. In Chapter 3, I introduce an odour sequence task 

for mice that requires subjects to learn about both the identity of an odour and 

its temporal position within a sequence and show data from control experiments 

and logistic regression that indicate that this new task indeed fulfils the criteria 

to test structural learning.  

 

As described above, it has been proposed that structural learning is the 

underlying mechanism of abstraction and generalisation and conveys greater 

behavioural flexibility than other types of learning. The second aim of my thesis 

thus was to test whether these skills could be observed in animals performing 

our task. Since our task allows for manipulation of the temporal structure and 

identity of cues separately, in Chapter 4, I use this ability to probe generalisation 

to novel cues in the same temporal structure, as well as adaptation to changes 
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in the temporal patterns associated with a learnt relational structure. Consistent 

with the proposed advantages of structural learning, I find that after initial 

learning, mice could rapidly adapt to manipulations of cue identity and temporal 

structure, suggesting flexible use of previously learnt relational structures.   

 

The ventral CA1 area of the hippocampus is strongly implicated in structural 

learning. Thus, the third aim of my thesis was to test the necessity of vCA1 

activity for performance of this non-spatial structural task. To this end, I present 

data from optogenetic inactivations of vCA1 neurons during task performance in 

expert mice in Chapter 4, showing that optogenetic inactivation impaired task 

performance only in task paradigms where the delay between the odour cues 

exceeds 10s, suggesting that vCA1 activity in this task is necessary specifically 

to maintain and bind information about individual stimuli across long delays.  

 

Driven by this, the fourth aim of my thesis was to investigate how neurons in 

vCA1 integrate distinct sensory and internal variables to form a coherent 

representation of relational structure that can be used to support behaviour. In 

Chapter 5, I recorded vCA1 activity during the task using calcium imaging 

through implanted gradient-refractive index (GRIN) lenses. Consistent with the 

optogenetic data, I found robust encoding of task variables in vCA1 neurons, 

both at the single cell level as well as when quantifying encoding across the 

entire population.  

 

Finally, in Chapter 6 I summarise my findings and discuss how they fit into the 

current theories of hippocampal function and structural learning in mice.  
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2 Material and Methods 

2.1 Animals 

Adult C57BL/6 male and female mice (9 - 11 weeks old) provided by Charles River 

were used for all experiments. Three groups of animals were used for 

experiments described in this thesis: 

1. Mice used for behavioural proof of concept (implanted with only a 

lightweight metal head holder (headbar)) 

2. Mice used for optogenetic manipulations (implanted with headbar and 

optical fibre, injected with an AAV) 

3. Mice used for calcium imaging (implanted with headbar and miniscope 

base with GRIN lens (ø1mm, 3.8mm long) and injected with an AAV) 

All animals underwent stereotaxic surgery and returned to their home cage for at 

least 1 week to allow full recovery. Animals were housed in cages of 1 to 4 and 

kept in a controlled environment under a 12h light/dark cycle with ad libitum 

access to food and water (unless stated otherwise). All experiments followed 

Home Office and University College London guidelines and were in accordance 

with the Project License (PP2254048) and the Establishment License of 

University College London (X7069FDD2). 

Listed below are all animals whose data is presented in this thesis, split by which 

figures this data is used in. Additionally, an asterisk marks the four animals 

whose data was collected by other lab members. The animal marked as 

“excluded” never reached the performance criterion (“70% correct trials”)  in any 

task with a delay longer than 5s. 
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Table 2.1 Animals included in Chapter 3:  All animals whose data has contributed to the 
figures shown in Chapter 3. Animals marked with an asterisk indicate that these experiments 
were carried out by someone other than me. 

 

Table 2.2 Animals included in Chapter 4: All animals whose experimental data is presented in 
Chapter 4.  
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Table 2.3 Data used in Chapter 5: List of animals whose experimental data is presented in 
Chapter 5. 

 

2.2 Stereotaxic surgery 

Stereotaxic surgeries were carried out on 7 - 12 week old mice anaesthetised 

with isofluorane (Isofluorane 100%; Piramal Critical Care) according to 

previously described protocols. For induction mice were placed in a red Perspex 

chamber (AN010ASR; VetTech) with 1L/min flow of 4% vaporised isofluorane (in 

medical oxygen, 99.5% minimum purity).   Following induction, fur on scalp was 

shaved (ChroMini Pro; MOSER) and the mice were placed into a stereotactic 

frame (Model 902 Small Animal Stereotaxic Instrument; KOPF) onto a feedback-

controlled thermal control unit (50-7001; Harvard Apparatus) which was 

maintained between 35 and 37°C throughout the surgery. During induction and 

throughout the surgery, the induction chamber and the stereotaxic frame were 

connected to an activated carbon scavenging filter (Cardiff Aldasorber; Shirley 

Aldred & Co) and an active scavenging unit (Model AN005; VetTech). The animal’s 

eyes were protected from desiccation using artificial tear ointment (Viscotears 

Liquid Gel). 

 

The scalp was sterilised with HiBiSCRUB®. An incision was made to expose the 

skull from bregma to lambda. After application of a few drops of the local 

anaesthetic Marcain (0.025% in sterile saline), the connective tissue was 

removed by applying hydrogen peroxide with sterile cotton buds. After ensuring 

horizontal alignment using bregma and lambda skull landmarks, small holes 

were drilled in the skull at the coordinates of interest (see Table 2.1) using a 

stainless steel bur (19008-07; Meisinger) attached to a miniature drill (Ideal 
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Micro-Drill™; CellPoint Scientific). For the duration of the surgery, anaesthesia 

was maintained at the same flow rate as listed above, with the isofluorane 

concentration was brought down to 1-2%. Stereotaxic coordinates are listed in 

Table 2.4. 

 

Region RC ML DV 
Dorsal hippocampus −3.2 ±1.7 −1.3 

Ventral hippocampus −3.7 ±3.2 −4.5 

Table 2.4: Stereotaxic injection coordinates  
Injection coordinates taken from Mouse Brain Atlas (Paxinos & Franklin, 2019). All coordinates 
given in mm calculated relative to bregma. RC: rostrocaudal, ML: mediolateral, DV: 
dorsoventral 

 

Injections were carried out with a Nanoject II (Drummond Scientific) using 

longshaft borosilicate glass pipettes with a tip diameter of ∼ 10 - 50µm, back-

filled with mineral oil and front-filled with ∼ 1µL of the substance to be injected. 

A total volume of 250 - 500nL of each virus was injected in increments of 14nL or 

28nL in 15s intervals. Following infusion of the virus, the pipette was left in place 

for an additional 5 minutes before being slowly retracted. Viruses used in the 

experiments described throughout the thesis are listed in Table 2.5. 

 

Virus Source 
AAV1-CaMKII-Cre Addgene, 105558 

pAAV- FLEX-ArchT-tdTomato Addgene, 28305 

pGP-AAV-syn-FLEX-jGCaMP7f-WPRE Addgene, 104492 

Table 2.5: Viral constructs  
Constructs used for the experiments described in this thesis 

 

For animals undergoing optogenetic manipulations, a total of volume of 300nL 

of a mixture of pAAV-FLEX-ArchT-tdTomato, and AAV2/1-CamKII-Cre in a ratio of 

1:1 was injected into the target region. Then, a fiber optic cannula (ø200µm core 

diameter, 0.39 NA, uncleaved, cut to approximately 4.5 mm; CFML12U-20, 

Thorlabs) was implanted bilaterally directly following virus injection in the same 

surgery. 
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For calcium imaging, a mixture of AAV2/1-CamKII-Cre, AAV-syn-FLEXjGCaMP7f 

and sterile saline was injected (ratio 1:1:2). Then, a GRIN (Gradient Index) lens 

(ø1mm, length 3.8mm; G1P10, Thorlabs) was implanted directly over the 

injection site. To do this, the craniotomy for injection was made larger: 

approximately 1mm in diameter, centring around the injection coordinates. After 

carefully removing bone fragments, the dura was punctured with a needle tip and 

dura shreds as well as any bone fragments were removed with forceps. During 

this time, the brain surface was kept moist by applying sterile saline. With a 

blunted 30-G needle connected to a vacuum pump (Compton Compressors), 

the cortical tissue above hippocampus was aspirated while simultaneously the 

craniotomy was kept irrigated with sterile saline from a 10ml syringe with a 30-G 

needle tip. Aspiration was performed slowly, layer by layer, until the white colour 

and typical striation of corpus callosum changed to the darker colour of CA1. 

Once the desired depth was reached, sterile silicone sponges soaked in saline 

were placed on the tissue for 5-10 minutes to allow any bleeding to subside while 

keeping the tissue from drying out. 

 

Then, a miniscope base with the GRIN lens fixed in place (see Chapter 2.4.5.1) 

was attached to a stereotaxic arm, and lowered slowly until it was gently seated 

on the surface of the exposed hippocampus. Over several minutes, the lens was 

lowered to the final DV position. 

 

To aid cement attachment, the skull was roughened, and two metal screws were 

inserted into the skull. Both fibre implants for optogenetic manipulation as well 

as the miniscope base for calcium imaging were secured to the skull by applying 

two layers of adhesive dental cement (Superbond, C&B). On all animals, an 

additional custom-made lightweight metal head holder (headbar, designed by 

the Svoboda lab (Guo et al., 2014) and manufactured by the UCL mechanical 

workshop) was attached to the skull surface. For animals only undergoing 

behavioural training, a ø1.25 mm stainless ferrule was attached to the middle of 
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the headbar during the adhesion process to facilitate handling of the animal 

later. 

 

During the surgical process, mice were subcutaneously injected with carprofen 

(0.05mg/mL in saline) to reduce inflammation risk and provide pain relief. After 

the procedure, they were allowed to recover from anaesthesia in a heated 

chamber for a minimum of 30 minutes, or until they were fully ambulatory, before 

they were returned to their home cage. Animals received carprofen in their 

drinking water (0.05 mg/mL) for 48 hrs post-surgery. 

For optogenetic manipulations as well as calcium imaging, viral expression was 

allowed to occur for at least 3 weeks before the experiment. The locations of 

injection sites were verified for each experiment histologically. 

2.3 Anatomy 

2.3.1 Histology 

Mice were anaesthetised with 100mg/kg ketamine (KetaVet) and 10mg/kg 

xylazine (Zoetis) in 0.5mL sterile saline (BAYER). Following confirmation of deep 

anaesthesia, animals were transcardially perfused with ice-cold 4% 

paraformaldehyde, the brains were dissected and fixed in 4% paraformaldehyde 

overnight at 4ºC. Brain samples were transferred to phosphate buffered saline 

(PBS, pH 7.2) after overnight fixation. 

 

Viral expression in the animals injected with AAVs was confirmed by imaging the 

brain using serial section 2-Photon microscopy (BrainSaw) in which whole brains 

are embedded in agar. In this technique, the face of the sample is automatically 

sliced and each coronal section is imaged, repeating these steps until the whole 

sample has been imaged. The microscope is controlled by ScanImage Basic 

(Vidrio Technologies, USA) using BakingTray (available on the BakingTray github), 

a custom-written software wrapper for setting up the imaging parameters.  

https://github.com/SainsburyWellcomeCentre/BakingTray
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Images were assembled using StitchIt (available on the StitchIt github).  Both the 

microscope as well as the software wrappers were designed and assembled by 

Rob Campbell (Head of Advanced Microscopy Facility at the Sainsbury 

Wellcome Centre). Use of the BrainSaw system and the attached interfaces was 

done with assistance of trained staff from the Microscopy Facility and/or senior 

members of the lab of Athena Akrami.  

 

2.4 Behavioural Studies 

2.4.1 Experimental Setup 

All animals were trained on an olfactory paired-associates task. For this task, 

animals were placed on a cylindrical treadmill consisting of a 3D printed wheel 

(ø15cm, width: 7cm) suspended through a metal axis, allowing for 1D rotation 

(Figure 2.1) This setup including parts numbers and 3D printing files has been 

described in detail before (Marbach & Zador, 2017). Mice were headfixed on the 

treadmill by attaching the implanted headbar to a custom-made metal holder 

with adjustable height and angle.  

 

 The odour delivery system was based on a modular design adapted from the 

Schaefer lab (Ackels et al., 2021). A constant stream of clean air (∼0.7L/min) was 

carried to the behavioural rig via tubing through a custom-made odour manifold 

and was then supplied to the mouse through the right side of a custom-made 3D 

printed tube holder. From the left side of the same holder, air was constantly 

removed from the setup via tubing connected to a vacuum pump (Compton 

Compressors), thus creating a constant stream of flowing air in front of the 

animal’s head. 

 

The odour stimuli themselves were supplied from an odour manifold which 

consisted of a 12.2 x 3.2 x 1.5cm stainless steel block with four milled 

indentations (ø2cm). Within each of these indentations was a threaded through 

hole for the installation of an input flow controller (AS1211F-M5-04, SMC) and an 

https://github.com/SainsburyWellcomeCentre/StitchIt
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output connector (IKTX0322170A & IKTX0322190A, The Lee Company). For each 

inset, the cap of a 15ml glass vial (#27003, Sigma Aldrich) with the centre 

removed was pushed into the indentation and sealed with epoxy resin (Araldite 

Rapid, Huntsman Advanced Materials), allowing for 15ml glass vials to be 

screwed in and out of the insets for rapid replacement. 
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Figure 2.1: Schematic of Experimental Setup. Cylindrical treadmill on top of which a 
custom-made tube holder supplies clean or odourised air from the right which is 
then sucked out to a vacuum pump from the left. From the front, water rewards can 
be delivered.  
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Figure 2.2: Schematic of odour manifold. The system for odour delivery consists of a carrier 
airflow in which odourised air from three different odour vials can be injected. 

 

To generate airflow through the olfactometer, a pressurised air source was split 

into two separate lines: the input line and the carrier airflow (Figure 2.2). The 

carrier airflow was connected to the input of the odour manifold. The input line 

was split further into three lines connected to each odour position of the odour 

manifold. Odourised air was created by opening the VHS valves (INKX0514750A, 

The Lee Company) connected to one of the odour positions, thus supplying air 

to either of three glass vials containing three of the odorants listed in Table 2.3, 

undiluted unless stated otherwise. 

 

During odour stimulation, opening a VHS valve would inject odourised air (air 

that travelled through either of the odour vials) into the airflow. After 1s, the valve 

would close, returning the air flow to only clean air, thus quickly clearing out any 

residual odours. Both the clean air as well as odourised air was supplied at a flow 

rate of ∼0.7L/min, measured with a flowmeter (2510 Flowmeter, Brooks 

Instrument). 

 

All odours were chosen from a list of odorants that have been shown to be neither 

appetitive nor aversive to mice (Root et al., 2014), and the combinations were 

selected in a way that ensured sensory separability (Pashkovski et al., 2020).  
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Odour Source Product Code 
Acetophenone Sigma-Aldrich A10701-1L 

4-Allyanisol Sigma-Aldrich A29208-100G 

Amyl Acetate Sigma-Aldrich W504009 

Eucalyptol Sigma-Aldrich C80601 

2-Phenolacetate Sigma-Aldrich 77861-1L 

Table 2.6: Odour components used as behavioural stimuli in paired-associates task. 
 

Odorant concentration in the open air was measured through a mini 

photoionization detector (PID; 200B mini PID; Aurora Scientific) located in the 

position of the mouse snout. The PID device ionises the volatile components in 

the air with high-energy UV light. The now charged particles register as a current 

in an electric field, giving a readout of their concentration in the air. Different 

odour components have different ionisation potentials, therefore the amplitude 

of the current measured by the PID cannot be compared between different 

odours. It can however be used to compare concentrations of the same odour 

across time, as well as measure how long it takes for the concentration of odour 

to return to negligible levels after odour delivery. 

 

To compensate for this limitation, we additionally used an airflow sensor (AWM-

5000 series; Honeywell) to make sure that the amount of odourised air injected 

into the airflow was the same for each odour. This sensor works on the principle 

that the airflow across the sensor causes heat transfer, which is then output as 

an analogue voltage signal.  An example measurement taken with the PID  as well 

as example traces measured by the airflow sensor are shown in Figure 2.3.  
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Figure 2.3: Example odour traces from Photoionisation device and airflow sensor.   
a. Average mini-photoionisation detector signal in response to 1s injection of air odourised with 
2-Phenylethanol into the carrier airflow. b. Average change in air flow in response to the 
injection of all three odour cues into the air stream. Note that the sharp downwards spike is an 
electrical artifact caused by the electrical noise of the valve opening. 

 

In the middle of the custom-made tube holder, a metal lick spout was positioned 

at a suitable distance from the headbar holder. Licking was detected using a 

printed circuit board operating as a lickometer (Capacitive Breakout Board, 

SparkFun). One end of the circuit was attached to the metal lick spout and the 

other to ground. The board was supplied with 5V. Whenever the mouse would lick 

the tube, an electrical circuit would close, creating a voltage drop that was 

recorded as a continuous analogue signal (RSE: Referenced Single-Ended, i.e. 

voltage is measured against ground provided by the device). Water droplets 

(∼10µl) were released by a 3-way solenoid valve (LFRA1220370D, The Lee 

Company) and delivered to the mouse through the lick spout from a reservoir 

installed at 15cm height to ensure gravity flow (i.e. no pump was required). 

 

The behavioural rig was controlled with custom-written software (Arduino), 

through a microcontroller (Arduino Uno, Arduino) and a data acquisition board 

(NI USB-6001, National Instruments). Odour valves were opened by sending a 5V 

TTL pulse from the Arduino to a custom-built spike-and-hold driver. Each driver 

could provide a 0.5ms 24V pulse to cause the valve to open and then maintained 

its opened position with a 3.3V holding voltage of 1s duration. Similarly, for the 

opening of the water valve, another custom-made driver converted the 5V 

Arduino TTL pulse into a 12V square pulse of a variable length (duration 
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calibrated to equal ∼10µL water reward). The licking as well as the odour pulses 

were recorded through the NI board. Both stimuli and licks were visualised in 

LabView (Version 20.0f1, National Instruments). 

 

2.4.2  Behavioural training and recording protocol 

After recovering from the surgical procedures for a minimum of 7 days, mice 

were water-restricted to approximately 85% of their ad libitum body weight. After 

at least a week of water-restriction and habituation to manual handling by 

experimenter, training for the olfactory paired-associates task began. 

Throughout the training period, mice were provided with 1-1.5mL of water daily, 

either throughout or after each session. 

 

Mice were initially habituated to head fixation on a static surface for two 

consecutive days, followed by two days of habituation to head fixation on the 

treadmill, starting at 1-2 minutes of head fixation and gradually increasing the 

time to 10 minutes. On the fifth day, the lick spout was placed in its normal 

position and mice were given water drops through the spout at randomly chosen 

time intervals of 1s, 5s or 7s (Figure 2.4 left). 

 

In the first stage of training (shaping stage, Figure 2.4 middle), mice were 

presented only with the rewarded pairs of odours (AB, BC, CA), separated by a 5s 

delay. A water reward was delivered 1.5s after the second odour cue in a 

Pavlovian fashion, i.e. water was delivered irrespective of the mouse’s licking 

behaviour. Between trials, there was a 10s pause (inter-trial interval, ITI). Mice 

were kept on this training protocol until they started licking in anticipation of the 

reward in the response window between odour cue and water delivery (1.5s) in 

at least 70% of trials. 

 

Mice were then trained on the full task: All six types of trials (3 rewarded odour 

pairs, 3 unrewarded odour pairs) were presented pseudorandomly, ensuring that 
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all trial types were presented in each block of 6 trials (Figure 2.4, right). Mice 

were not punished when they licked on trials with non-rewarded odour pairs, but 

no reward was presented. Within ∼8-10 days, mice learned to refrain from licking 

in non-rewarded trials. During training, mice gradually refrained from licking 

during the delay period between odours as well, and well-trained mice would 

typically initiate licking right after the second odour. 

 

 
Figure 2.4: Training Protocol. After habituation to the process of head fixation and the 
treadmill, mice were given water rewards after pseudo-random time intervals of 1s, 5s, or 7s. 
When they reliably consumed the water reward, they were exposed to a shaping stage in which 
only rewarded odour pairs were presented, followed by a reward 1.5s after the second odour. 
Once the mice would predictively lick before the reward delivery in at least 70% of trials, they 
were moved on to the full task with counterbalanced presentation of rewarded and unrewarded 
odour pairs.  

 

Responses were assessed based on licking during the response window only. As 

previously described, licks were detected with a capacitive breakout board. 

The board records a binary analogue signal. Any signal above the threshold 

voltage (4V) is therefore counted as a lick, and any signal below is recorded as 

an absence of licking. If any licking occurred during the response window  (1.5s 

after presentation of the second odour of a rewarded pair), the trial was counted 

as a hit. If licking occurred in the response window after presentation of an 

unrewarded odour pair, the trial was counted as a false alarm instead. In the case 

where no licking was detected in the response window, the trials were labelled 

as miss or correct rejection, respectively. 
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After mastering the first version of the task with a 5s delay between odour stimuli, 

the mice were then taken through variations of the task. One variation consisted 

of changes in the delay time separating the two odour cues. For this 

manipulation, after the mice had acquired the full task, we extended the delay to 

10s. After they successfully performed at this longer delay, we then trained them 

on a version with a 20s and finally a 30s delay. For all versions of the task, the 

Inter-Trial Interval (ITI) was kept at twice the length of the delay time, such that in 

trials with a 10s delay between odours, the ITI would be 20s for example. 

 

A second behavioural manipulation consisted of changes in odour identity. In 

this paradigm, we exposed mice that had acquired the full task with a delay of 

10s to a new set of odours, replacing odour C with an unfamiliar odour C2. 

 

Furthermore, multiple control experiments were conducted (see Chapter 2.4.3). 

Performance on each day was quantified as the percentage of correct trials (sum 

of hits and correct rejections divided by total trials) over the entire session. A 

session would typically run for approximately 80 trials, corresponding to a 

duration of 20min in the protocol with 5s delay between odours. In protocols with 

longer delays, the sessions would be longer, ensuring a similar number of trials 

in each session.  

 

2.4.3  Behavioural control experiments 

For control sessions with auditory cues only, the airflow was turned off 

completely and the tube delivering odours to the mouse was disconnected. 

Therefore, the only cues available to the mouse were the clicks of the valves 

opening. For control sessions with sensory and auditory cues, the carrier airflow 

was active, but the odour vials were removed and replaced with empty glass 

vials. This way, the mice experienced the changes in air pressure associated with 

opening and closing the odour valves as well as the resulting clicks, but no odour 
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cues were present. The system was flushed of any residual odour for at least 

30min before each behavioural session. 

 

To control for potential mixing of successive odour cues, a 1:10000 dilution of 

odour C was filled into the 4th port of the odour manifold. On some trials 

(“dilution trials”), instead of a sequence of “odour C – delay – odour A or B”, the 

diluted odour was instead added into the airflow throughout the entire time of 

the trial up to the presentation of the second odour (“diluted odour C – odour 

A/B”). Thus, in these trials the mouse was presented with a mixture of a low 

concentration of odour C, directly followed by a larger concentration of either 

odour A or B (indicating a rewarded and non-rewarded trial, respectively, 

according to the same rules as in the standard task). If the animals had indeed 

learned to pay attention to a configural cue made up of a mixture of residual first 

odour combined with the second odour cue, they should be able to perform well 

on those dilution trials. 

 

2.4.4  Optogenetic manipulations 

In behaviour sessions with optogenetic inhibition, the subject was head-fixed on 

the treadmill as usual. Then, a bifurcated optic fiber (core = 200 µm, NA = 0.22, 

Doric) was attached to the ferrules at the end of the implanted fibre optic 

cannulae using interconnects (ADAL3, Thorlabs). The fiber was connected to a 

fiber-optic rotary joint (FRJ 1x1 FC, Doric) that was in turn connected to a 532nm 

green laser (Shanghai Laser & Optics Century Co.). 

 

Using TTL pulses from the Arduino microcontroller, the laser would be controlled 

at a pre-determined time relative to the behavioural cues, turning on in a square 

pulse pattern, followed by a 500ms long linear downward ramp to prevent a post-

illumination rebound burst of action potentials (Chuong et al., 2014). The square 

pulse would start 500ms before the first odour cue, continuing until the end of 

the response window and reward delivery, at which time the light would ramp 
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down over the course of 500ms. The laser power was calibrated to lie at 

approximately 5mW/mm2 at the end of the optical fiber. 

 

2.4.5  Recording of GCaMP signals 

2.4.5.1  Preparation of implants 

To measure neuronal activity in CA1 we recorded calcium activity in GCaMP7f-

expressing neurons with a head-mounted miniature microscope with 

epifluorescent light source (miniscope; Open Ephys/UCLA), as described in a 

study by Zhang et al. (Zhang et al., 2019). To image fluorescence in a deeper 

structure such as ventral hippocampus, the implantation of a Gradient 

Refractive Index (GRIN) lens is required. This type of lens is most often rod-

shaped and uses gradual variation of the refractive index within the lens material 

to focus light from one side of the lens at a specific point on the other side of the 

lens. For this approach to work, it is essential that the imaging plane, i.e. the lens 

of the miniscope (OpenEphys/UCLA), is placed at a pre-defined and 

reproducible distance from the GRIN lens. This is ensured by the miniscope 

baseplate, a threaded cylinder that is fixed on the animal’s skull directly over the 

implanted GRIN lens which allows to reversibly mount the miniscope at a 

specific distance from the GRIN lens with a set screw. Furthermore, whenever 

the miniscope is not mounted, the baseplate can be capped with an acrylic lid 

which protects the GRIN lens from dust and scratching. 
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Figure 2.4: Schematic of miniscope, baseplate and GRIN lens. The GRIN lens was fixed into 
the miniscope base and the construct was then implanted onto the mouse’s skull. The 
miniscope could be reversibly mounted and unmounted onto this base, allowing for a 
consistent imaging window. 

 

In all experiments described below, we used a novel type of baseplate (V4-

V2GrinBasePlate, made to order by miniscopeparts) where the GRIN lens 

(ø1mm, length 3.8mm;  G1P10, Thorlabs) is fixed into the miniscope base prior 

to the surgery such that both GRIN lens as well as the baseplate can be 

implanted in the same surgical step. To ensure that the optical path of the screw-

mounted miniscope is aligned with the GRIN lens at the correct distance, a slide 

with fluorescent material is used when glueing the GRIN lens into the baseplate. 

Only when a sharp image of the material on the slide is formed at the right focal 

distance, the lens is fixed in place with superglue (Loctite). The baseplate with 

the GRIN lens now fixed in place was stored in a padded box for optical 

components until it was implanted. 
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2.4.5.2  Recording setup 

As mentioned above, we used a combination of a miniature microscope 

(miniscope, Open Ephys/UCLA) and a GRIN lens to record calcium activity in 

ventral hippocampus. To briefly summarise the technique, the miniscope uses 

blue LED light to excite green-fluorescing fluorophores such as GCaMP7f and 

detects the emitted fluorescence light with a C-MOS sensor. In our setup, the 

miniscope was connected to a data acquisition board (Miniscope DAQ v3.3; 

OpenEphys) that in turn was connected to a computer running the miniscope 

software (Miniscope-DAQ-QT-Software; Aharoni Lab). The DAQ board was also 

connected to an Arduino microcontroller running the behaviour protocol, 

allowing for miniscope recordings to be triggered in synchrony with task events. 

Specifically, the microcontroller sent a TTL pulse to the miniscope DAQ both 

500ms before the first stimulus presentation and upon ending the behaviour 

protocol, thus establishing two reference points to match the timestamps of 

behavioural events to the frames of the miniscope recording. 

 

In behaviour sessions with calcium imaging, the mouse was head-fixed on the 

treadmill as usual. After loosening the set screw on the previously implanted 

miniscope base, the protective cap could be removed, and the GRIN lens surface 

was cleaned with a sterile Q-tip dipped in methanol. Then, the miniscope was 

screwed onto the base. Using the miniscope software, the LED power was 

adjusted for each animal such that fluorescent structures were visible, but not 

saturating. Furthermore, the electronic focus (+/- 200 µm) and imaging gain was 

selected to optimise the sharpness of fluorescent structures in the field of view. 

These settings were conserved for each animal across recording sessions. The 

behavioural protocol was started as usual and automatically triggered the start 

of the miniscope recording via the previously described TTL pulse. 
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2.5 Data Analysis 

2.5.1 Behavioural analysis 

In all experiments, behavioural performance was quantified as the percentage of 

correct trials (p correct), i.e. trials in which the mouse either correctly displayed 

anticipatory licking after the presentation of a rewarded odour pair, or correctly 

withheld licking in response to an unrewarded pair.  

 

As a measure of sensitivity, d prime (d’) was used additionally in some 

experiments. Defined as 

 

𝑑′ = 𝑧(𝐻) − 𝑧(𝐹𝐴)        (2.1) 

 

with H = P (lick | rewarded odour pair), FA = P (lick | unrewarded odour pair) and z 

as the gaussian z-transform.  

 

In contrast to p correct, d’ takes into account whether there are large 

discrepancies between the percent of correct licking and correct withholding 

responses and controls for the overall level of licking behaviour.  

 

2.5.1.1  Error analysis 

Given the structure of our task (go/no-go), there are four possible outcomes for 

any trial: when a rewarded odour pair is presented, the mouse can either lick in 

anticipation (‘Hit’) or fail to do so (‘Miss’). Conversely, when a non-rewarded pair 

occurs, the mouse can withhold licking (‘Correct Rejection’) or lick anyway 

(‘False Alarm’).  
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Figure 2.5: Possible outcomes in go/no-go task. There are two components that determine 
the outcome of any trial: the presented odour pair (signal) and the response (lick/no lick). These 
can be classed into correct trials (hit and correct rejection, green) and errors (miss and false 
alarm, red). 

 

By distinguishing between the two types of errors laid out in this model, we can 

further characterise the effects of any manipulation that reduces the animal’s 

performance of the task, such as changes in task structure (Chapter 3) as well 

as optogenetic manipulations (Chapter 4).  

  

2.5.1.2  Logistic Regression 

To quantify the influence of different task components (single odours, odour 

configurations, past choice, etc.) we used logistic regression (Akam et al., 2021; 

Parker et al., 2016). These models try to classify trials using a logit transformation 

to combine differently weighted predictor variables into a single probability 

(target variable), in our case describing whether the mouse is likely to display 

anticipatory licking. This transformation uses the following formula:  

 

𝑙𝑜𝑔
𝐿(𝑖)

1−𝐿(𝑖)
 =  𝛽𝑋1𝑋1 + 𝛽𝑋2𝑋2 + ⋯ + 𝛽0           (2.2) 

 

with L(i) as the probability of licking on a given trial i, X1, X2, … as the predictor 

variables (e.g. “odour A present” or “previous trial rewarded”), βX1, βX2… as the 

regression coefficients of each predictor and β0 as a constant bias-term.  
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The predictor variables used in our task were either related to the presence of a 

given odour in the trial in any position (A, B, C), to the odour configuration 

disregarding order (A and B, B and C, or C and A), the odour pairs taking order into 

account (AB, AC, BA, BC, CA, CB), trial history (previous reward, previous lick) as 

well as a general bias term.  

 

In addition to a complete model using all the above predictor variables, we also 

split these predictor variables into categories to build models that only had 

access to some of the variables. Our “elemental” model (E) predicts licking 

behaviour only based on the odour identity without any information on the 

position. A “configural” model (C) uses the configuration predictors, whereas the 

“history” model (h) tries to predict licking solely based on previous outcome and 

previous choice. Lastly, the “structural” model (s) uses the six ordered odour 

pairs as predictor variables.  

 

For all models, we used the scikit-learn Python library. We first split the data into 

training data (75% of data) and test data (25% of data). We then used  the 

GridSearchCV function to find the best hyperparameters for the regression. With 

those parameters, we instantiated the Logistic Regression model with these 

hyperparameters and trained it on the labelled training data (i.e. both the matrix 

containing the trial events used as predictors as well as the actual behaviour of 

the mouse). We then tested the performance of the model by comparing the 

model predictions on the unlabelled test data to the actual mouse behaviour.  

 

To compare the performance between classifiers, we used the area under the 

curve (AUC) as a quantifiable measure. This measure comes from the receiver 

operating characteristic curve (ROC curve) which plots the sensitivity (true 

positive rate) against the probability of false alarm (false positive rate). The AUC, 

that is the integral of the curve over the entire ROC space, ranges from 0 to 1. A 

perfect classification would amount to an AUC of 1, and a random binary 
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classifier would yield an AUC of 0.5. This measure is therefore useful to compare 

the accuracy of models that use different sets of predictor variables.  

 

The second metric we used to compare predictive value across models using 

different sets of predictor variables is delta AUC (∆AUC), a measure derived from 

the single-model AUC described above. For ∆AUC, we take a complete model 

using all aforementioned predictor variables and calculate its AUC. We then 

remove the predictor variables of interest (e.g. all those associated with reward 

history) and compare the difference between the AUC of the resulting model and 

the AUC of the complete model. This difference is called ∆AUC and measures 

the change in model performance that results from removing specific features.  

 

Lastly, to understand how specific variables affect the overall prediction, we look 

at the beta coefficients (seen in formula 2.2). The absolute value of a beta 

coefficient is a measure of how much weight the classifier assigns to this 

variable, and the direction of correlation is evident from the coefficient’s sign. 

Positive beta coefficients denote a positive correlation of the variable in question 

with the target behaviour (licking) whereas negative beta coefficients indicate a 

negative correlation. In other words, a positive beta value for the predictor 

variable “AB” denotes that the presence of this pair increases the likelihood of 

mice licking, whereas a negative value would denote that the presence of AB 

decreases it.  

 

2.5.2  Analysis of GCaMP signals 

All miniscope recordings were conducted using the miniscope software 

(Miniscope-DAQ-QT-Software; Aharoni Lab). The data was then processed, and 

the calcium signals extracted using the semi-automated Minian pipeline, (Dong 

et al., 2022) the steps of which are outlined below.  
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2.5.2.1  Data processing 

As a preparatory step for the analysis, raw data (Figure 2.7a) first underwent 

noise removal using a script provided by the Aharoni lab which utilises several 

low-pass filters and 2-D fast Fourier transforms (2D-fft) to filter out high-

frequency electrical noise introduced by hardware components of the V4 

Miniscope (Aharoni Lab).  

 

Then, the denoised videos were passed through a pre-processing stage (Figure 

2.7b) that included downsampling the video by sub-setting and averaging the 

frames. The video was then cropped to only include parts with bright signal inside 

the GRIN lens, and the frame rate was dropped from 15 fps to 7.5fps. In the next 

part of the script, the minimum fluorescence value for each pixel was subtracted 

from every frame to remove background glow and vignetting. Salt-and-pepper 

noise on each frame was then removed by passing the data through a median 

filter. The last step of pre-processing was a background removal step introduced 

in MIN1PIPE (Lu et al., 2018). 

 

The pre-processed video was then passed through a standard template-

matching algorithm, thereby correcting for lateral motion by evaluating cross-

correlation between each frame and a reference frame (Figure 2.7c).  
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Figure 2.6: Minian analysis pipeline. a. Raw images from miniscope recording. b. Image after 
denoising and glow-removal. c. Image averaged over whole session after motion correction. d. 
Initial ROI seeds (white dots) e. ROI seeds after correlation- and signal-to-noise-based 
refinement (red: dropped seeds, white: true seeds) f. Final ROIs overlaid with average calcium 
signal after constrained non-negative matrix factorization (CNMF) algorithm. 
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To generate possible locations for neurons, the Minian script then looked for 

local maxima in the fluorescence across frames, assigning these as “seeds”. This 

set of seeds was over-complete by design, containing many seeds that weren’t 

biologically relevant regions of interest (Figure 2.7d). The seeds were then 

refined based on various metrics, such as a minimum change of fluorescence 

over time as well as the signal to noise ratio and correlation with neighbouring 

pixels (Figure 2.7e).  

 

After pruning and merging the seeds, the putative ROIs were passed through a 

constrained non-negative matrix factorization (CNMF) algorithm. The algorithm 

refines the spatial outline of the cells (spatial update) and then denoises and 

deconvolves the individual traces (temporal trace). Those two steps are then 

performed again, until a satisfactory result is produced upon visual inspection 

(Figure 2.7e).  

 

The calcium traces exported after this step were the basis of all further analysis.  

  

2.5.2.2  Analysing single-cell selectivity 

To evaluate whether individual neurons respond selectively to specific task 

events, we calculated a selectivity index using a formula adapted from (Ahmed 

et al., 2020): 

 

𝑆𝐼 = 𝑓+ − 𝑓−       (2.3)   

 

Here, f+ represents the average activity of the neuron during the examined trial 

time period across all trials containing the task event of interest; f- represents the 

average activity during all trials without the event. For example, to evaluate the 

selectivity of a neuron for odour A as the first odour, we would take the average 

activity on each trial during the presentation of the first odour, and then subtract 

the mean response in trials with odour A as a first odour from the mean response 

in all other trials. 



 

 

 

64 

 

To mitigate the influence of spurious differences in calcium activity due to limited 

trial numbers, we compared this selectivity index (SI) to indices derived from 

1000 shuffled datasets, where the labels of trial types were randomly reassigned. 

To compare selectivity indices across cells and task events, we calculated a 

measure sigma using the below formula:  

 

𝜎 =  
𝑚𝑠−𝑆𝐼𝑡

𝑠𝑡𝑑𝑠
        (2.4) 

 

Where ms is the mean of the shuffled SI distribution, stds is its standard deviation 

and SIt is the true selectivity index. We considered all cells showing 𝜎 > 2.5 as 

selective for a given event.  

 

2.5.2.3  Population encoding of behavioural events 

In order to test whether the population activity encodes task events (such as 

“Odour A First” or “Rewarded trial”), we used Support Vector Machines (SVMs). 

SVMs are a set of supervised learning methods used for classification. In our 

case, we trained classifiers to predict the presence/absence of the task event 

(e.g. “Odour A First”) from the neural data of either a single session or multiple 

sessions.  

 

To that end, we first calculated the population activity at a given time point by 

averaging the activity of each neuron within the period of interest (e.g. during the 

presentation of the first odour). Thus, for each trial, every neuron only had one 

value, and the entire population could be represented as an n-dimensional 

vector with n as the number of recorded neurons.  

 

In order to combine data from several mice into one model, we built pseudo-

populations by matching trials from different sessions according to trial type. In 

order to avoid biases caused by spurious correlations in the neural activity, we 
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built 100 different pseudo-populations and combined the trials differently each 

time. 

 

To then implement the SVM, we split the data (either from a single session or from 

the pseudopopulation) into training data (75%, labelled) and test data (25%, 

unlabelled). As before, we used the GridSearchCV function to find the best set of 

hyperparameters. We then used these parameters and instantiated a SVM with 

a linear Kernel and trained it on the part of the data designated training data. The 

model was then fit to best separate the data according to labels (in our case 

either trial type, or presence/absence of a specific odour) by finding the optimal 

hyperplane in the n-dimensional space to maximally separate the neuronal data 

according to the experimenter-defined categories. 

 

The SVM was then tested by having it predict the labels of the test data, and its 

performance was measured as the accuracy at which the model correctly 

predicted the task event of interest.  

 

2.5.3  Statistical analysis 

All statistics were calculated using the Python packages scipy and pingouin. 

Summary data are reported as mean ±s.e.m. (standard error of the mean). 

Normality of data distributions was determined by visual inspection of the data 

points. Test statistics are detailed in the main text. Threshold for statistical 

significance was defined as 0.05.  

 

No power analysis was run to determine sample size a priori. The sample sizes 

chosen are similar to those used in previous publications. Throughout the figures 

the * symbol represents p < 0.05. 
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3  An olfactory paired-associates task to 

probe structural learning 
 

3.1  Introduction 

Learning about the relationships between cues enables us to identify common 

underlying structures of events and is fundamental to adaptive behaviour 

(Tolman, 1932). This type of learning requires recognising the structured 

relationship between distinct cues in our environment, as the meaning of cues 

can differ dramatically dependent on their order in time, or their position in 

space. Importantly, learning about structured relationships between cues is not 

only foundational to our everyday lives, but generates the complex associations 

and relationships that form the basis of episodic and semantic memory 

(Eichenbaum, 2001). Impairments in the use of such memory are a consistent 

hallmark of the most debilitating neural disorders from Alzheimer’s disease to 

schizophrenia, depression, and generalised anxiety, further emphasising the 

importance of structural learning (Chamberlain & Sahakian, 2006; Öngür et al., 

2006; Rao et al., 2022). 

 

Despite its importance, there is limited insight into how structural learning is 

achieved within the brain on a cellular and circuit level. To address this question, 

different types of paradigms have been put forward to study structural learning 

in rodent models (Aggleton et al., 2007; Albasser et al., 2013; Eichenbaum et al., 

1987; Sutherland & Rudy, 1989). What all of them have in common is that they 

require the subject to learn not about individual cues associated with outcomes, 

but about sequences of cues, often containing overlapping or similar elements. 

 

One extensively studied paradigm that fulfils these criteria is spatial navigation. 

When animals learn to navigate to a specific goal within an environment, they 
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need to process a variety of visual, tactile, and olfactory cues and commit them 

to memory. In order to recall the same trajectory in the future, the individual 

locations must be encoded in the right sequence and become associated to the 

goal that lies at the end. Rodents easily achieve this, and more than that, we 

know that they can adapt to changes in an environment, infer new routes to a 

known goal, therefore firmly establishing navigation as an example of structural 

learning (Tolman, 1948). 

 

However, spatial navigation tasks have some important limitations with regards 

to understanding the neural substrates of structural learning. As they rely on 

animals moving through arenas (virtual or real) it is difficult to disambiguate 

abstract spatial information from movement signals or representations of 

specific cues or goals, which is important when trying to understand how the 

binding of elements within a context is achieved in the brain. Furthermore, in 

these tasks animals often visit locations more than once, making it hard to 

distinguish neural representations of past (memory), present, and even future 

(planning) (Eichenbaum & Cohen, 2014). 

 

In research largely parallel to the study of spatial navigation, special cases of 

associative learning have been proposed as suitable paradigms to test structural 

learning. For example, “configural cues” (built from two or more elements, e.g., 

both a light and a tone) as well as “occasion setters” (cues that precede an 

ambiguous conditioned stimulus) might fulfil the criteria for structural learning 

(Schmajuk & Buhusi, 1997; Sutherland & Rudy, 1989). In these tasks, the animal 

can predict the outcome of a trial if it correctly recalls the cues separated in 

space or modality (for configural cues) or in time (for occasion setters). 

 

Subsequent studies however often found that these tasks can be solved by other, 

much simpler strategies, such as keeping track of the statistics about the 

frequency or the average value of each stimulus (Rudy & O’Reilly, 1999; Rudy & 

Sutherland, 1995). Furthermore, these kinds of tasks often don’t allow for 
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manipulations to test inference or other types of generalisations, emphasising 

the need for controlled investigation of structural learning, and its subsequent 

utilisation to guide behaviour. In particular, a suitable task should use minimal, 

clearly defined cues, balanced across contingencies in a way that it can only be 

solved using structural learning. 

 

The latter part has proven particularly difficult – many tasks that meet the first 

two criteria are so complex that they are too difficult for rodents to learn in a 

timely manner. One way to make paradigms more amenable to rodent research 

is the use of olfactory cues. Mice readily attend to odour cues and can detect 

extremely fast and subtle changes in the structure of odours (Ackels et al., 2021). 

 

Given the sensory salience of odours to rodents, multiple studies have used 

odours to investigate the role of the hippocampus in relational learning. For 

example, a 1993 study by Bunsey & Eichenbaum demonstrated that rats can 

associate specific odour pairs with rewards, and that the ability to distinguish 

them from different pairs with the same components is dependent on 

hippocampal circuits (Bunsey & Eichenbaum, 1993). Other studies have shown 

that the hippocampal formation is needed to distinguish between different 

mixtures of the same two odours, but are not needed to follow an odour gradient 

(Eichenbaum et al., 1986; Eichenbaum et al., 1988; Otto et al.,1991) and that 

using interlocking chains of odour pairs, rats can perform transitive inference 

judgements (Bunsey & Eichenbaum, 1996; Dusek & Eichenbaum, 1997; Dusek & 

Eichenbaum, 1998). These studies were pivotal in placing the hippocampus 

identifying the hippocampus as a critical region for learning relationships 

between neutral stimuli. However, due to methodological limitations, they could 

not provide strong hypotheses of how this learning was implemented within 

hippocampal circuits.   

 

Additionally, since the aim of these studies was not the comparison of the 

specific neural responses elicited by individual odour stimuli or combinations 
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thereof, the tasks were not designed in a way that ensured interpretability of 

single cell signals. For example, they might not ensure that each cue appeared 

equally often (to control for familiarity effects) or that cues were associated with 

the same average likelihood of reward (to control for development of preference). 

In this study, we aimed to design a task that builds on the principles established 

by these earlier studies, specifically by using odour cues and combining them 

across a delay to form reward-predictive contingencies. 

 

In this chapter, I will describe the olfactory paired-associates task that we 

designed to explicitly probe the acquisition and use of structural learning in 

mice. Crucially, this task can be learnt quickly in head-fixed mice, and once 

learnt, allows probing the flexible use of the task structure. 

 

Due to the volatility of odours and the ability of rodents to distinguish even odour 

mixtures with very similar proportions, behavioural tasks with odour cues often 

are at risk of odour contamination which can lead to inadvertent presentation of 

“combinatorial odour cues” (Uchida & Mainen, 2003). Therefore, I will further 

describe the steps we have taken to control for these possibilities. 
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3.2 Results 

To assess structural learning, we designed a novel olfactory paired-associates 

task. In this task, water-restricted mice were head-fixed on a setup where they 

were presented with a sequence of two odours separated in time. On the setup, 

the mouse had access to a waterspout that delivered rewards based on task 

events. From the right, a stream of air was introduced at a constant rate. The air 

was removed from the left side by a tube connected to a vacuum pump, thus 

creating a continuous flow of air across the mouse’s nose (Figure 3.1a). Into this 

continued airflow, different odours were injected through a high-accuracy odour 

delivery manifold, resulting in temporally defined bouts of odourised air that 

were used as cues (Figure 3.1b). 

 

In the task, three possible odours (A, B and C) were presented in pairs, thus 

leading to 6 possible sequences, three of which were rewarded (’go’ trials: AB, 

BC and CA) and three unrewarded (’no-go’ trials: AC, CB and BA, Figure 3.1c). 

The odours were separated from each other by a delay of at least 5s, and the 

contingencies of reward were counterbalanced such that each cue alone 

provided no information about upcoming reward, as each odour was equally 

frequent in ‘go’ and ‘no-go’ trials. 

 

For example, in this task design, the sequence CA was rewarded while BA was 

not rewarded – the meaning of A therefore was ambiguous, unless combined 

with the previous odour. Furthermore, the task was also designed such that mice 

could not use a perceptual configuration such as ‘AB’ to solve the task: B after A 

was rewarded, while A after B was not rewarded. Thus, mice could neither use 

an elemental (one-cue based) nor a configural (cue-combination based) strategy 

and had to retain both the identity of the odour cues as well as their positions 

within the sequence to behave optimally (Figure 3.1d). 

 

On each trial, a randomly selected odour pair was presented to the mouse, and 

licking behaviour was recorded. Water reward was given 1.5s after the second 
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odour (‘response window’), but the water delivery was not dependent on the 

licking behaviour of the mouse. Therefore, every ‘go’ trial was followed by reward 

and learning of the task was measured as the emergence of anticipatory licking 

in the response window on ‘go’-trials, and a lack of anticipatory licking in ‘no-go’ 

trials (Figure 3.1e). 
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Figure 3.1: Schematic of behavioural setup and task structure. a. A head-fixation system 
allows for delivery and removal of odour cues as well as reward delivery in a consistent position 
relative to the animal. b. A high accuracy olfactory system for odour delivery injects odourised 
air into a constant stream of clean air and delivers that to the animal. c. Design of the go/no-go 
task. Each pair of odour cues is separated by a delay and is either rewarded or not rewarded.  
d. The design is counterbalanced so that only retaining both the identity of an odour and its 
temporal position within a sequence can predict reward. e. Trial structure overlaid with example 
licking behaviour from a well-trained mouse: predictive licking in the analysis window between 
the delivery of the second odour and the reward in go-trials indicates anticipation of the correct 
outcome. 

  



 

 

 

73 

Mice learned to perform this task stably within the space of 8 days of training 

(Figure 3.2a; n = 13; repeated measures ANOVA: F(9,45) = 11.53, p = 3.9x10-9). 

While all mice reached >70% accuracy within the 10-day training period, some 

did learn the task markedly quicker than others (Figure 3.2b): some mice 

reached the learning threshold within only a few days while others took over a 

week. 

 

Mice would undergo several stages of training (outlined in Chapter 2) in order to 

encourage predictive licking in the response window before reward delivery. 

When encountering the full task with all 6 contingencies, mice initially behaved 

suboptimally, often exhibiting marked anticipatory licking before ‘no go’ trials, 

but also marked licking after the first odour of each pair (Figure 3.2c, top). Over 

training, mice gradually refrained from licking during the delay period between 

odours, and well-trained mice would typically initiate licking only after the 

second odour (Figure 3.2c, bottom). 

 

We quantified this learning two ways: first, as a marked increase in the 

proportion of correct trials from the first to the last session (Figure 3.2d; Day 1: 

p correct = 0.52 +/- 0.2; Day 10: p correct = 0.78 +/- 0.18; n=13, paired t-test t(12) 

= 10.83, p = 7.0x10-8). Secondly, we used a metric from signal detection theory 

called behavioural d-prime (d’) which quantifies the ability to predict the identity 

of a trial as ‘go’ or ‘no go’ based solely on licking behaviour. Consistent with the 

higher proportion of correct trials, d’ increased markedly between first and last 

sessions (Figure 3.2e; day 1: d’ = 0.03 +/- 0.26; day 10: d’ = 1.17 +/- 0.46; n = 13, 

paired t-test t(12) = 8.34, p = 2.0x10-6). 

 

In summary, we designed an olfactory structural learning task that mice can 

rapidly learn. 
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Figure 3.2: Mice can perform structural learning task. a. Mice reach accurate performance 
over a short timescale, responding correctly to more than 70% of trials in 10 days (n = 13) b. 
Performance over training days for individual mice. c. Example licking behaviour (dark grey dots) 
in a well-trained mouse before and after learning (top and bottom panel, respectively). The 
coloured bars correspond to trial types with a shared first odour (green: A, black: B, orange: C) 
d. Performance before and after learning (day 1 and day 10, respectively; n = 13) e. 
Discriminability index d’ (day 1 and day 10 respectively, n = 13) 
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Figure 3.3: Variance across mice within task and shaping stages. a. Performance of mice 
across shaping stage in which only rewarded pairs are presented (n = 13). Mice marked with an 
asterisk were partially shaped on a protocol with conditional reward delivery. b. Mice took on 
average 13 days to reach the threshold of predictive licking on >70% of trials (n = 17).  In both a 
and b, Mice marked with an asterisk were subject to multiple changes in the training protocol 
due to hardware problems. Performance data is unavailable for some mice and they are thus 
only included in panel b. c. Discriminability index d’ split by identity of the second odour (e.g. a 
= b->a and c->a trials; n = 17). d. Discriminability index d’ split by identity of the second odour 
and coloured according to training cohort (n = 17).  
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However, there is variability between mice both in the speed of task acquisition 

as well as in the level of performance (Fig. 3.3). For instance, the individual 

learning curves during the shaping stage, i.e. the stage in which only rewarded 

trials are presented, show large variance in the amount of predictive licking on 

the first day of shaping. Notably, these mice have previously not experienced 

cued rewards. In the first session, mice clearly employ different strategies: while 

some mice lick predictively 100% of the time and thus likely lick quite 

continuously, other mice only achieve <10% correct trials, therefore likely 

employing a strategy of responsive licking (Fig. 3.3a).  

 

In consequence, some mice need many sessions to reach the performance 

criterion of 70% correct trials, while others graduate to the full task within as little 

as 5 sessions (Fig. 3.3b). Some mice (indicated with an asterisk) were partially 

trained on a protocol in which reward was only delivered conditionally, i.e. only 

when the mice licked predictively. Since this change did not improve their 

learning, they were returned to a Pavlovian reward delivery protocol after a week. 

 

Analysing the performance of mice on trials split by second odour shows that 

there is variability not only in the time course of learning, but also in what is 

learnt. Specifically, splitting the discriminability index d’ by the second odour 

reveals that on average, mice tend to perform better on trials where b is the 

second odour (Fig. 3.3c). Since over the course of the project, multiple changes 

were made to the setup, we next compared whether this bias was isolated to a 

single cohort of mice (Fig. 3.3d). We found that this was not the case: individual 

variability exists within several cohorts. However, in some cohorts (blue & 

turquoise)  all mice demonstrate balanced discriminability, thus suggesting that 

unbiased performance in the task is possible.  

 

Accurate delivery of odour cues can be challenging, often impeding the 

interpretability of behaviour in olfactory tasks. We aimed to mitigate this using 

highly controllable olfactory delivery system (Schaefer lab (Ackels et al., 2021)). 
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However, we still wanted to ensure that mice were indeed using the odour cues 

in the way we intended. 

 

In a first instance, we checked whether circumstantial cues, such as the 

alterations in air pressure resulting from valve openings and closings, or the 

audible cues (clicks) associated with valve openings may be contributing to 

behaviour. We therefore had expert mice undergo sessions of the task where we 

completely removed the air flow, leaving only auditory valve clicks as cues. In 

these sessions, mouse behaviour dropped significantly when compared to 

sessions with normal air flow, indicating that the valve clicks alone are not 

sufficient to allow the mice to anticipate reward (Figure 3.3a; n = 5; repeated 

measures ANOVA: F(2,8) = 33.01, p = 1.3x10-4; post-hoc Tukey [Baseline vs. No 

Airflow] p = 2.8x10-4, post-hoc Tukey [No Airflow vs. Recovery]  

p = 2.8x10-4). 

 

We then removed the odour vials, replacing them with empty containers while 

keeping a constant flow of clean air. This manipulation left both auditory clicks 

as well as changes in air pressure as available cues. As in the previous 

manipulation, this change made the behavioural performance drop to chance 

level (Figure 3.3b; n = 4; repeated measures ANOVA: F(2,6) = 9.77, p = 0.01, post-

hoc Tukey [Baseline vs. No Odour] p = 4x10-3, post-hoc Tukey [No Odour vs. 

Recovery] p = 0.02), showing that mice required odour identity to behave 

optimally. 
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Figure 3.4: Mice use sequence of odours to solve the task. a. Mice cannot perform the task 
with auditory cues (valve clicks) only (n = 5) b. Mice cannot perform the task with only valve 
clicks and changes in air flow as cues. (n = 4)  
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We next wanted to evaluate the possibility of mice merging each odour pair into 

a single percept (‘configural cue’), using small concentrations of residual odour 

that might still be present at the end of the delay period. For example, the 

sequence of odour A followed by odour B might be encoded as “low/residual [A] 

+ high [B]”, while the reverse sequence could be encoded as “low/residual [B] + 

high [A]”. As a first step, we examined the dynamics of each odour pulse using 

photoionization detection (PID) recordings. These recordings showed that our 

delivery method reliably produced a rapid increase in odour levels followed by a 

slower decay (Figure 3.4b, orange curve). This temporal pattern indicated that 

both the odour plume and the associated changes in air flow returned to baseline 

after approximately 1500ms, well before the end of the delay period and the 

delivery of the second odour cue. 

 

To rule out the possibility that odour levels below the detection threshold of our 

measurement equipment influenced mouse behaviour, we conducted a control 

experiment. In this experiment, we interleaved a new trial type with the standard 

trials in the task: in these trials, the first odour cue was replaced with a diluted 

odour cue (1:10000) which was delivered at the same time as the first odour in 

the normal trials but persisted throughout the entire delay period (schematic in 

Figure 3.4a). We selected this dilution level because it consistently yielded PID 

readings above baseline for the entire duration of odour delivery and the delay 

period (Figure 3.4b, grey curve and inset). Thus, in these trials, mice lacked a 

usual first odour cue but instead were presented with a defined, PID-detectable, 

yet low-concentration residual odour throughout the entire delay period at a level 

that was consistently higher than our baseline recordings. If mice were indeed 

using residual odour traces to build a ‘configural cue’ as previously described, 

they should exhibit high accuracy performance in trials with the diluted odour 

cue. Contrary to this hypothesis, their performance significantly declined when 

encountering these trials (Figure 3.4c and d; n = 3; paired t-test: t(2) = 5.58,  

p = 0.03), indicating that mice did not rely on residual odour and require a full-

concentration first odour cue to perform well on the task. 
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Figure 3.5: Mice do not use residual odour traces for a configural representation.  
a. Schematic of trials to control for the mice using residual odour traces for a configural 
representation (e.g. a representation of “95% A + 5% C”). In those trials (right) a defined, 
detectable, but low concentration residual odour was presented during the entire delay period. 
b. Example odour traces of undiluted odour and diluted odour titrated to produce a continuous 
Photoionization device (PID) reading across the entire delay period (dilution 1:10000). The 
continuous reading is higher than baseline at the onset of the second cue (see inset) such that 
if mice were using a configural strategy, they could solve the task. c. Licking behaviour during a 
session with randomly interleaved normal trials (undiluted odour) and trials involving a diluted 
first odour cue (model of residual odour). On the top, the orange bar represents undiluted 
presentation of odour C. The light orange shading below is the diluted odour C presented across 
the delay. The green and black bar represents the possible second odours (green: A, rewarded; 
black: B, unrewarded) d. Mice cannot perform the task using residual odour traces (n = 3) 
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The above controls suggest that the mice were indeed perceiving the odours as 

separate temporally concise cues. However, as mentioned in the introduction, it 

has been shown that mice can keep track of various statistics and average the 

value of cues over many trials. We therefore wanted to ensure that our subjects 

were indeed using both the order and the identity of the cues to solve the task, 

and not e.g. a complex combination of elemental bias towards certain odours 

together with a rolling average of past rewards.  

 

To this end, we used logistic regression models to estimate the probability of an 

event occurring – in this case, the mouse licking – based on a set of independent 

predictor variables (task events, Figure 3.5a). By providing the models with 

access to different sets of task events, we built four models representing distinct 

strategies. 

 

Our structural model (S) incorporates both the identity and temporal order of 

odour cues within each trial, with six parameters corresponding to the six 

possible trial types (AB, AC, BA, BC, CA, CB). The elemental model (E), by 

contrast, only considers the presence or absence of each odour, disregarding 

their order. For instance, an AB trial and a CA trial would both be recorded as "A 

present," while a BC trial would be noted as "A absent." The configural model (C) 

predicts responses based on odour combinations but does not differentiate 

temporal order; AB and BA are treated equivalently as "AB both present." Finally, 

the history model (H) incorporates the choice and outcome of the previous trial 

as predictor variables (Figure 3.5b). 

 

To evaluate how well each logistic regression model predicts mouse behaviour, 

we then calculated  the Area Under the Curve (AUC) using a Receiver Operating 

Characteristic (ROC) curve. Each model generated a probability between 0 and 

1 for whether a mouse will lick on a given trial, based on the predictor variables 

described above.  
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To assess model performance, we then wanted to determine how well these 

probabilities distinguish between trials where licking does and does not occur. 

 

A ROC curve is constructed by varying the decision threshold for classifying a 

trial as a "lick." At each threshold, the true positive rate (TPR, the proportion of 

correctly predicted licking trials) is computed and compared to the false positive 

rate (FPR, the proportion of non-licking trials incorrectly classified as licking). 

Plotting TPR against FPR across all thresholds produces the ROC curve, and the 

AUC is calculated as the area beneath this curve. 

 

AUC values range from 0.5, indicating chance-level performance, to 1.0, 

representing a perfect model. Higher AUC scores indicate better predictive 

performance, as the model more accurately distinguishes between licking and 

non-licking trials. By comparing AUC scores across models, we can infer which 

strategy best captures mouse behaviour.  

 

For instance, if the history model (H) achieved a high AUC, this would suggest 

that mice rely on past trial outcomes when deciding to lick. Conversely, a high 

AUC for the structural model (S) would indicate that mice use both odour identity 

and temporal order to guide their behaviour. If a model yields a lower AUC, it 

suggests that the factors it considers are less relevant in predicting licking 

responses. 

 

This approach allowed us to quantitatively compare different models and gain 

insights into the strategies mice use to learn and make decisions in the task. We 

found that the structural model best predicted the behaviour of the mice (Figure 

3.5c, n = 9; repeated measures ANOVA: F(3,27) = 15.12, p = 6.0x10-6; post-hoc Tukey 

[S vs C] p = 2.3x10-4, post-hoc Tukey [S vs E] p = 2.4x10-5, post-hoc Tukey [S vs H]  

p = 1.1x10-4). 
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Figure 3.6: Regression analysis shows that mice use the order of cues to solve the task.   
a. Logistic regression analysis uses different task events such as cues and previous outcomes 
to predict the probability of the mouse licking. b. Giving the regression analysis access to 
different information, we built four different models: structural (has access to both cues and 
their order in time), elemental (only has access to individual cues, no order), configural (cue 



 

 

 

84 

combination, but not order) and finally a model with access only to previous choice and 
outcomes. c. Area under the curve (AUC) for each of the models (1: perfect accuracy, 0.5: 
chance). The structural model best predicts licking behaviour (n = 9) d. ∆AUC is the change in 
model fit if all models but one are used to predict mouse behaviour. The biggest change in 
accuracy is observed in the regression that uses all information except the order of cues (n = 9) 
e. Beta coefficients for the predictor variable of each model. Positive coefficients are positively 
correlated with licking behaviour, while negative coefficients suggest an inverse relation.  

 

 

To further investigate whether a combination of our models could outperform the 

structural model, we next calculated delta AUC (∆AUC). This measure quantifies 

the contribution of specific predictor variables by comparing model 

performance with and without them. Specifically, in a first step, predictions are 

generated using a full model, incorporating all available predictor variables 

across the different strategies. We then systematically removed individual 

predictors or groups of predictors – such as trial history or odour identity – and 

recalculated the AUC.  

 

The difference between the AUC of the full model and the AUC of the reduced 

model provides the ∆AUC and is a measure of  how much predictive power is lost 

when a given predictor is excluded. By examining the ∆AUC, we could assess 

whether certain aspects of task structure, odour identity, or trial history 

contribute significantly to the model’s ability to predict licking behaviour. A large 

drop in AUC when removing a predictor suggests that the mice rely heavily on 

that information, whereas a small or negligible ∆AUC indicates that the predictor 

may not be critical for decision-making.  

 

Using this technique, we again find that the structural model (predicting based 

off temporally ordered odour pairs) has the biggest contribution to the overall 

accuracy of classification (Figure 3.5d, n = 9; repeated measures ANOVA: F(3,27) = 

14.47, p = 8.0x10-6; post-hoc Tukey [S vs C] p = 3.2x10-5, post-hoc Tukey [S vs E] p 

= 1.0x10-4, post-hoc Tukey [S vs H] p = 5.1x10-4), indicating that the mouse 

behaviour is indeed best predicted by structural information and not a 

combination of elemental, configural or historic information.  
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This was further corroborated when looking at the beta coefficients for each 

predictor variable in the combined model. Beta coefficients describe the relation 

between each variable and the predicted outcome. Positive values denote a 

positive correlation, while negative coefficients suggest an inverse relation. Here 

as well, the variables that are most strongly influencing the model prediction are 

the ones containing structural information (Figure 3.5e, n = 9; repeated 

measures ANOVA: F(3,27) = 19.39, p = 4.7x10-25; planned comparisons p-values: 

see Appendix 1).  

 

Taken together, this regression analysis suggests that mouse behaviour is best 

explained by odour pairs in order, suggesting that mice used a structural route to 

solve our task.  
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3.3 Discussion 

In this chapter, I have presented a novel task paradigm that requires mice to 

remember an odour cue over a delay, and then either lick or withhold licking 

depending on the identity of a second cue (Figure 3.1). Importantly, 

contingencies in this task are balanced in a way that the values of all individual 

odours are ambiguous (i.e. as often rewarded as not), and mice can only solve 

the task by combining the two cues across the delay. 

 

Our behavioural data shows that mice can learn this task over the space of less 

than 10 days, developing a robust anticipatory lick response to the rewarded 

pairs of odours, and withholding their licks for unrewarded pairs (Figure 3.2).  

 

To ensure that the mice are indeed using a structural learning strategy, we 

conducted both experimental controls as well as a regression analysis.  

 

In control experiments with only circumstantial clues (valve clicks or changes in 

air pressure, Figure 3.3) mice did not exhibit accurate anticipatory lick 

responses, indicating that the odour cues are necessary for performance. In a 

second experiment, we investigated the possibility of mice circumventing the 

need for structural learning by using a combination cue made up of residual 

odour from the first odour at the time of the second odour delivery (Figure 3.4). 

Here as well, mice were not able to perform the task, consistent with a 

behavioural requirement for strong, temporally distinct odour cues. 

  

To computationally examine strategies that mice might use during the task, we 

fit different logistic regression models to the behavioural data. We found that in 

all cases, a model using structural information predicted animal behaviour 

better than both individual models using elemental or configural cues or past 

outcomes, or even a model using a combination of all of these variables (Figure 

3.5).  
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Overall, we show that our novel task requires mice to use structural information 

and combine odours across the delay, and that mice successfully learn about 

the reward contingencies associated to specific temporal combinations of 

odours.  

 

3.3.1 Comparison to similar tasks from the literature 

As previously mentioned, the parallel scientific discoveries of hippocampus as 

the centre of autobiographical memory in humans and as an essential 

component of rodent navigation has sparked many theories attempting to unify 

the two functions into one global theory of hippocampus, and their investigation 

has produced many tasks that show parallels to our paradigm.  

 

A cued T-maze for example also requires subjects to retain a cue over a period of 

time (while traversing the stem of the maze) in order to behave correctly at the 

choice point (turn left or right). However, in the usual setup, there is no further 

information needed outside of the initial cue and therefore animals could in 

theory prepare their action even before the choice point, making it difficult to 

interpret neural signals as they could both represent the past cue identity as well 

as the future associated action.  

 

The delayed-match-to-sample (DMS) task, widely used in the study of memory, 

circumvents this issue by only presenting some of the necessary information at 

the start of the trial: in the initial phase, the monkey is shown an object, and has 

to retain its identity over a delay phase. After the delay, the monkey is shown two 

objects, and is asked to select the familiar object. As the position of the objects 

(right or left) is necessary to plan the correct action, in this task it is easier to tell 

apart neural signatures of memory (recall of target object) from the planning of a 

future action. Yet, this task has other limitations as it could conceivably be 

solved by a recency effect instead of a recall of the specific object. To exclude 

this strategy, an alternative approach was to change the target the subjects were 
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meant to select from the sample object to the novel object. In this version, called 

delayed-non-match-to-sample (DNMS) task, a recency-based strategy is not as 

easy to implement, but still does not consistently require the subject to 

disambiguate a stimulus that is equally likely to lead to reward as not, as for 

example the non-sample object might be completely novel or have an average 

associative value that is higher or lower than that of the sampled object (Kangas 

et al., 2011). 

 

The tasks developed by Rudy and Sutherland to investigate their theory of 

configural learning are carefully designed to avoid potential biases caused by 

differences in associative value of specific clues (Rudy & Sutherland, 1995; 

Sutherland & Rudy, 1989). For example, in the “positive patterning” paradigm, 

reward is given when two stimuli are presented together (AB+) but not when they 

occur individually (A-, B-). Thus, the values of both cues are equivalent, as is the 

frequency of their presentation. Other versions of these configural tasks, such as 

negative patterning (A+, B+, AB-) and biconditional discrimination (AX+, AY-,  

BX-, BY+) also contain similar sets of counterbalanced cues. However, this only 

holds true if the configural (combined) stimuli are indeed encoded as a 

combination of the elemental cues, and not as a separate representation of e.g. 

‘A&B’. Interestingly, later studies using the same type of paradigms found the 

necessity of hippocampus to be a function of the spatial distance between the 

individual elements to be included in the configural cue (Albasser et al., 2013), 

or required the use of an entire context as one “cue” (Riaz et al., 2017), 

suggesting that the separation of cues in space or time rather than the 

combinatorial nature of cues is the factor that makes a given task hippocampus-

dependent.  

 

Our task design attempts to circumvent all of the limitations mentioned above: 

mice can only make the decision on how to act at the delivery of the second 

odour, since both cues are necessary to correctly anticipate rewards. All 

individual cues are carefully counterbalanced so that neither familiarity nor 
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recency effects can be used to solve the task. Finally, a delay of at least 5s 

ensures that the individual odour cues are too far separated to be encoded as 

one configural odour mixture, an attribute we specifically controlled for in the 

experiments shown in Figure 3.4. 

 

By designing the task in a way that A before B holds a different meaning to B 

before A, we also introduce directionality into the cue space, thereby meeting 

the criteria of “structural learning” as defined by Aggleton (Aggleton et al., 2007). 

They argue that hippocampus is required to bind several features into a “cue 

array”, but only if there is a specific relationship between the elements (X to the 

left of Y, B before A, etc.).  

 

In recent years, interest in the type of learning required to understand structure 

and relations between different objects has gained much attention, leading to 

the development of a wealth of further tasks, from spatial (Frank et al., 2000; 

Wood et al., 2000) to non-spatial (MacDonald et al., 2013; Pastalkova et al., 

2008). Most of these tasks however exhibit similar drawbacks as described 

above and thus they can offer only limited insight into the neural representations 

that underpin the role of hippocampus in these behaviours. With the design of 

our task, we are well placed to provide new insight into what information is 

represented in hippocampal populations during structural learning, offering a 

new piece in the puzzle of the function of hippocampus as a whole.  

 

3.3.2 Technical considerations of the task design 

We chose to use odour cues in this task since previous studies have shown 

olfactory cues to be very salient to mice (Liu et al., 2014; Taxidis et al., 2020; Yun 

et al., 2023). 

 

However, while providing many advantages for fast learning of complex tasks, 

olfactory cues present with many unique challenges when compared to visual or 
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auditory cues. The spread of odours is difficult to predict and equally difficult to 

measure, both in qualitative as well as quantitative ways, especially when it 

comes to comparing odour levels across different components. Furthermore, 

research has shown that mice are extraordinarily good at noticing even small 

differences in odour composition (Uchida & Mainen, 2003). 

 

To limit the influence of these issues, we have taken multiple measures in both 

the design of our setup as well as the design of the task. First, we built a high-

accuracy odour system adapted from the Schaefer lab (Ackels et al., 2021). 

Crucially, in this system, clean air is constantly introduced into the setup and 

used air is sucked away from the setup via a vacuum pump, thus creating a 

constant flow of air in which odorants are then injected, forming temporally 

distinct odour plumes with a sharp rise and fall (see Figure 2.3). We regularly 

controlled that the amplitude and dynamics of each odour remained the same 

across learning by measuring the concentration of each odour with a 

Photoionization Detector (PID). Since the PID readings are not comparable 

between odorants due to the different ionisation energies required for different 

molecules, we further used an airflow sensor  to ensure that the changes in 

airflow due to the injection of odourised air into the airflow were similar in shape 

and amplitude. Lastly, we conducted multiple control experiments to ensure 

that mice were indeed using the odour cues as intended (Figure 3.4 and 3.5).  

 

Another point of consideration is the use of anticipatory licking as a readout for 

learning. Since the rewards are delivered in a Pavlovian manner, i.e. independent 

of the mouse’s behaviour, anticipatory licking was not necessary for maximising 

rewards. Therefore, it is possible that we are missing some of the learning since 

mice might correctly predict the rewarded outcome, but not display any 

anticipatory licking.  

 

Another important aspect of our task is that licking outside the reward availability 

window is not punished. As a result, mice tend to lick both during the inter-trial 
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interval and in the delay between the two odour cues. Focusing on the latter, the 

bottom panel in Figure 3.2c suggests that anecdotally, the example mouse 

seems to lick more frequently in response to the first cue when it appears in a 

rewarded pairing. At first glance, this behaviour seems puzzling since our task 

design ensures that any given first odour is equally likely to be followed by a 

reward or no reward. 

 

However, because trials are presented pseudo-randomly, effectively simulating 

draws without replacement, the probability of encountering a rewarded trial 

increases following repeated instances of unrewarded trials. At the extremes of 

this distribution, a mouse could infer that after six consecutive unrewarded 

trials, the next trial must be rewarded. Even in shorter sequences of trials with 

the same outcome, this pattern might still influence licking behaviour. 

 

In our logistic regression model, we currently account for trial history only in 

terms of the outcome of the preceding trial. However, it may be worth exploring 

whether mice consider trials further back in their history to assess the likely 

outcome of a trial. 

 

In our current analysis, we use anticipatory licking as a binary metric, where a 

single lick between the second odour and the reward is counted as a hit. 

However, it may be informative to consider alternative measures, such as lick 

rate. A single lick could occur by chance and may not necessarily indicate 

learning, whereas repeated licking that ramps up towards reward delivery could 

reflect a stronger association with the stimuli. Additionally, lick rate might serve 

as a proxy for the animal’s certainty, with higher rates indicating greater 

confidence in the expected outcome. Investigating how this measure varies 

across task difficulty could provide insights into how mice adapt their behaviour 

in more challenging paradigms, potentially revealing more nuanced aspects of 

learning and decision-making. 
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Lastly, mice in our task are placed on a wheel in order to reduce the stress of 

head-fixation. In our current setup, we are not quantifying their running nor 

analysing movement by other means (such as a camera). We can therefore not 

exclude effects of running and other movement on learning and task 

performance.  

 

3.2.3  Considerations on the regression analysis 

While the data from our regression models helped to convince us that mice are 

solving the task using both the odour identity and the temporal structure of their 

presentation, it is by no means a comprehensive strategy to capture the richness 

of mouse behaviour. To capture a fuller picture of how mice navigate the task 

structure, several improvements could be made.  

 

Right now, we make individual models for each mouse, calculate the metrics for 

model performance and then average those metrics over all mice. An alternative 

approach could be to train a single model on the entire dataset while including 

mouse ID as a parameter. This might enable us to capture both shared 

behavioural patterns and individual differences in a more structure way. It would 

furthermore provide a metric to estimate the individual-level deviations from the 

group-level behaviour, pointing us more clearly to mice who are outliers in their 

use of task parameters and enabling us to test specifically whether some mice 

are more affected by e.g. trial history than others.  

 

Another way to capture more variance in mouse behaviour would be to change 

the parameters each of our models use. For example, we could refine the way 

odour identity and order are represented: while the structural model currently 

considers trial types as distinct categories (AB, AC, BA, etc.), it could be 

enhanced by incorporating parameters that separately encode "A as first odour" 

or "B as second odour." This would allow the model to generalise across different 
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trial types and capture potential biases in how mice respond to specific odours 

depending on their position within the sequence.  

 

Another improvement could involve incorporating parameters related to the 

timing and magnitude of licking responses. Currently, the models treat licking as 

a binary outcome, but introducing a lick rate parameter could provide a more 

nuanced measure of learning and certainty.  

 

Lastly, as mentioned above, the history model, which currently only accounts for 

the outcome and choice on the previous trial, could be expanded to include a 

weighted influence of multiple past trials. This would allow us to test whether 

mice integrate trial history over longer sequences rather than responding solely 

to the most recent outcome. This would furthermore allow us to add an 

interaction term between odour identity and trial history, which could reveal 

whether mice adjust their responses differently depending on past experiences 

with specific odours. By refining these parameters, the models could more 

accurately reflect the complexity of mouse decision-making and learning 

processes. 

 

Finally, while logistic regression modes are a useful tool for modelling the 

influence of many factors on binary outcomes like licking behaviour, they are not 

the only method that can be used. Alternative approaches such as linear mixed 

models (LMMs) account for hierarchical structure in the data, such as repeated 

measurements with individual mice. Furthermore, by including random effects, 

these models allow for individual variation in the tendency to lick, such as is 

described in Figure 3.3a, thus providing a more flexible framework for capturing 

individual differences.  

 

Another option would be to use Bayesian hierarchical modelling, which offers a 

probabilistic approach that takes into account prior information about expected 

behavioural patterns. However, these approaches, while more powerful, 
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sacrifice interpretability by adding non-linear interactions and more parameters 

into the mix. Ultimately, the choice of  modelling strategy must strike a balance 

between flexibility, interpretability and the ability to account for nuance and 

variability within the behaviour.  
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4 Flexible adaptation to changing task 

structure reveals a role for 

hippocampus 

4.1 Introduction 

In the previous chapter, I presented a novel task that required mice to learn both 

about the identity of two odour cues as well as their position in time relative to 

each other. We found that mice could rapidly learn this and showed data from 

several control experiments as well as logistic regressions to demonstrate that 

mice were indeed using a structural learning strategy to solve the task.  

 

A hallmark of structural learning is that, instead of learning about items and cues 

individually, relations between cues are retained and organised into schemas, 

contexts, or cognitive maps (Behrens et al., 2018). In this, this type of learning 

differs conceptually from the associative learning. While the latter can be 

modelled by classic reinforcement learning (RL) algorithms (Bari et al., 2019; 

Sutton & Barto, 1998) and is associated with dopamine signals in the ventral 

tegmental area (Howe et al., 2013; Schultz et al., 1997), this is not the case for 

structural learning.  

 

One hypothesised key advantage of structural learning over reinforcement 

learning is that, once learnt, relationships between cues can be expressed in a 

flexible manner and should allow for quick adaptation to new experiences that 

share the same underlying structure or follow the same rules. A classic and still 

poignant example of this type of inference was described by Tolman in 1948: rats 

that experience a maze many times learn not only about the trajectories they 

take, but also about trajectories they might take in the future. This becomes 

apparent when the layout of the maze changes and the rats take shortcuts that 
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weren’t previously available to them, using what they have learnt about the 

spatial layout to connect two places within the maze in a new way (Tolman, 

1948). 

 

When 30 years after, place cells forming a map of the spatial environment were 

discovered in the hippocampus of rats (O’Keefe & Nadel, 1979), this offered a 

neural substrate for the latent learning in the absence of clear rewards and 

placed the hippocampus firmly at the centre of the proposed structural learning 

network.  

 

Many computational studies have since shown that a models based on a 

structural learning framework can not only reproduce the types of responses 

recorded in navigation tasks, such as place cells, border cells and many others 

(Whittington et al., 2022), but also can potentially explain findings from 

contextual fear conditioning experiments (Gershman et al., 2015) as well as 

attentional set-shifting tasks (Niv, 2019). 

 

These models have made much headway in demonstrating that structural 

learning principles offer a unifying framework to describe hippocampal activity 

across various domains, from spatial navigation to memory encoding. However, 

only few studies have attempted to experimentally test these hypotheses due to 

the difficulty in training mice to solve these kinds of structural problems. 

 

We have already shown that the learning in our task satisfies the criteria for 

structural learning since the cues are temporally separated, individually 

ambiguous and only become meaningful if combined in a specific order in time. 

In our next steps, we will test whether mice that are proficient at the task can 

adapt to changes in task structure and cue identity, testing whether the 

hypothesised degree of abstraction necessary for structural learning incurs 

higher degrees of behavioural flexibility.  
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Furthermore, we will investigate whether hippocampal circuits are necessary for 

this task by inactivating parts of CA1 during the task with optogenetic 

manipulations.   
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4.2 Results 

4.2.1 Mice can adapt to changes in task structure 

In a first step, we wanted to test how flexibly mice can express the behaviour 

learnt in the initial version of a task. To test this, we first systematically altered 

the timing of the task, such that the delay period between the two odour cues 

grew from 5s to 10s, 20s and eventually to 30s (Figure 4.1a).  

 

As would be expected for a higher memory load, the accuracy of behaviour 

decayed slightly as the delay became longer (Figure 4.1b and c; n = 10; repeated 

measures ANOVA: F(3, 30) = 4.78, p = 7.7x10-3), but nevertheless, mice remained 

substantially above chance across all delay periods (5s delay: p correct = 0.84 

+/- 0.06; 10s delay: p correct = 0.84 +/- 0.10; 20s delay: p correct = 0.79 +/- 0.12; 

30s delay: p correct = 0.68 +/- 0.11). Notably, mice refrained from licking 

throughout the delay period even at long delays (Figure 4.1d). Thus, once mice 

have learnt the task, they could adapt to changes in cue timing and still correctly 

anticipate reward.   

  



 

 

 

99 

 
Figure 4.1: Mice can adapt to temporal changes of task structure. a. Different delays serve 
as an example for changes in the temporal structure of the task: instead of 5s, the delay 
between the two odour cues is changed to 10s, 20s, or 30s respectively. b. Mice can perform 
the task even at 30s delay (n = 10) c. Data from individual mice trained on paradigms with 5s, 
10s, 20s and 30s delay d. Example licking behaviour for ‘go’ and ‘no go’ trials in the 10s, 20s and 
30s paradigms respectively.  
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Since behavioural accuracy decreased with longer delays, we wanted to ensure 

that mice were still using the full structural information of the task, instead of 

resorting to a different strategy.  

 

We therefore returned to the logistic regression analysis described in Chapter 3. 

As before, we split predictor variables into four individual models (see Figure 

3.5b): a structural model (S) including variables for each odour pair, taking into 

account their order; an elemental model (E) using only presence or absence of 

each individual odour cue; a configural model (C) using presence or absence of 

each odour configuration (making no distinction between AC and CA); and finally 

a model using past choice and past reward as predictors (H).  

 

Comparing between these individual models, we found that at all delay times, 

the structural model consistently best predicted licking behaviour (Figure 4.2a 

and b; mixed-design ANOVA, effect of model type: F(3,27) = 58.90, p =  5.7x10-12; 

effect of delay: n.s; interaction: n.s). 

 

As a second approach to understand the strategies used by mice, we employed 

a Feature Subtraction approach. For this, we used a combined model using all 

predictor variables (from models S, E, C and H) and compared its performance 

to that of a model where one set of variables was removed. This difference in 

performance was quantified by the delta AUC (∆AUC) which therefore represents 

the unique variance attributable to each group of predictors. As an example, the 

∆AUC score for the structural model S describes the change in performance 

between a complete model and a model using only the predictor variables from 

E, C and H (i.e. with the structural predictors removed).  
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Figure 4.2: Regression analysis shows that mice solve task using the order of cues even at 
long delays. a. Area under the curve for single models using different predictor (S: structural, 
E: elemental, C: configural, H: trial/outcome history) for different delays. b. Summary of the 
performance of each model across different delays. Note that the structural model consistently 
best predicts licking behaviour. c. Change in performance of a global regression model when 
predictors from specific models are removed (∆AUC) for each delay. d. Summary of the change 
in model accuracy when either structural, elemental, configural or historical information is 
removed.  
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Consistent with the results from the single models, removal of the structural 

predictors has the biggest impact on the performance of the regression model 

(Figure 4.2c and d; mixed-design ANOVA: effect of model type: F(3,28) = 40.01, p = 

2.9x10-10; effect of delay: F(3, 84) = 3.07, p = 0.03; interaction: n.s.).  

 

Taken together, this suggests that despite the decrease in the behavioural 

accuracy at long delays, mice still used a structural strategy to solve the task 

throughout. 

 

Despite this confirmation, we wanted to explore the decrease in performance 

with longer delays further, examining the types of errors mice made in sessions 

with longer delays. Within a go/no-go task, there are two possible errors: missed 

trials (rewarded trials in which mice failed to lick) and false alarm trials 

(unrewarded trials in which mice licked incorrectly). Therefore, the decrease in 

correct trials at longer delays could either be caused by a higher proportion of 

false alarm responses, a higher proportion of missed trials, or a combination of 

both (Figure 4.3a).  

 

To examine this, we compared the proportion of these four outcomes across the 

different delays (Figure 4.3b, c-f). Consistent with the finding that mice perform 

above chance level even in the 30s paradigm, we observed that the proportion of 

correct trials was consistently higher than that of error trials of either kind. 

Interestingly, with increasing delays the proportion of missed trials consistently 

rose, accompanied by a matching decrease in hit trials (n = 13, Pearson 

Correlation Coefficient for p miss : r(11) = 0.38, p = 0.01). The rate of false alarm 

trials however showed no clear correlation to the delay time, remaining between  

5 – 10% for all delays (n = 13; Pearson Correlation Coefficient for p false Alarm  

r(11)= 8 x 10-4, p = 0.44).  
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Figure 4.3: Mice miss more rewarded trials at longer delays. a. Within our task, four possible 
outcomes are possible for a trial, depending on the trial type (go/no-go) and the response 
(lick/no lick). b. Rate of each possible outcome for task paradigms with different delays 
(summary) c - f Occurrence of each outcome in 5s, 10s, 20s, and 30s task, respectively.  
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All mice first learnt the task with a 5s delay (as shown in Chapter 3) and were 

only moved onto longer delays once they had become proficient. In the same 

way, only mice who stably performed the task with a 10s delay would be 

presented with the 20s paradigm, leading to mice reaching the maximal delay of 

30s after a variable amount of training days.  

 

Since the motivation for this manipulation was to test whether structural learning 

conferred greater behavioural flexibility, we next compared the training times and 

performance on day 1 of training across the different delay paradigms.  

 

Traces in Figure 4.4b show that the individual learning trajectories vary across 

mice: while some mice took as long as 9 days to reach a performance level 

significantly above chance in the 20s task, others were able to perform at above 

80% accuracy from day 1.  

 

On average, the time needed to acquire the task at new delays decreased in 

tendency over the learning period (Figure 4.4a). While it took 15 days for all 

tested mice to reach good performance of the 10s paradigm, it only took 7 days 

to acquire the 30s task. Furthermore, the performance on day 1 of training in the 

10s and 20s paradigm (i.e. the first day mice ever experienced that particular 

paradigm) lay higher than performance on day 1 of the 5s paradigm (Figure 4.4c). 

However, when looking at the individual learning curves (Figure 4.4b), it is 

notable that different mice seem to react differently to a change in time 

structure: some mice (e.g. SN74 or SN87 for the 10s task) maintain a high level 

of correct trials from the first day, while others (SN91) fall to chance level for a 

few sessions before recovering performance.  

 

Taken together, these results suggest that knowledge of prior task paradigms 

may transfer to paradigms with different temporal structures to some mice, 

providing a learning advantage.  
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Figure 4.4: Time to learn new delays gets shorter over learning. a. Average performance for 
the task at different delays. Note that once mice perform above 70% consistently, they are 
moved to the next stage. b. Learning curves for individual mice. Days with manipulations (such 
as “No airflow” control experiments (cf. Fig 3.4) are omitted in these plots. c. Average 
performance on Day 1 of training in the task at different delays 
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To further examine the evidence for knowledge transfer from one task paradigm 

to another, we compared the learning curves of mice that underwent different 

delay paradigms sequentially (first encountering the task with a 5s delay, then 

moving to 10s when proficient; schematic in Figure 4.5a, left) to the learning 

curves of mice whose first experience with the task was the 10s paradigm 

(without any training on or experience of the 5s task, Figure 4.5b, left). Thus, in 

this experiment, we directly compared learning of the 10s task with or without 

previous experience of the 5s task. 

 

While both cohorts reached a high level of task performance by day 9 of training, 

the average performance of mice with previous experience of the 5s task 

exceeded 70% from day 2 onward, while naïve mice only reached this level after 

8 days of training (Figure 4.5c). Even before the mice reached criterion, the 

difference between experienced and naïve mice was evident, which we 

quantified by comparing the average performance across day 1-3 of training 

between these groups (n = 9 and 3 for experienced and naïve group, respectively; 

two-sided t-test t(8.54) = 3.73 p = 0.01x10-2).  

 

In summary, we demonstrate that mice trained on our paired-associates task 

with a 5s delay between cues can adapt to changes in the task’s delay structure, 

doing so more efficiently than mice with no prior experience of the task structure.  
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Figure 4.5: Mice with experience of the 5s task paradigm perform better in 10s task.  
a. Individual learning curves of mice training on a task paradigm with 10s delay, after having 
mastered the basic version of the task with 5s delay. b. Learning curves of mice that have no 
prior experience of the task before encountering the 10s paradigm. c. Comparison of average 
performance across learning between experienced mice (green) and naïve mic (red). d. Average 
performance on the first days of learning (day 1-3) in experienced and naïve mice (n = 9 and 3 
for experienced and naïve group, respectively)  
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4.2.2  Mice can incorporate a new odour into existing task 

structure 

In addition to allowing for flexible adaptation to changes in task architecture, 

structural learning is also proposed to allow generalisation to novel experiences 

that share the same underlying structure. To test for this type of behavioural 

flexibility, we changed the sensory experience of the task while leaving the 

temporal structure constant. 

 

We achieved this by replacing odour C with a novel odour D (Figure 4.6a). 

Specifically, we introduced 4 new odour pairs (AD, DA, BD, DB), with only 2 trial 

types remaining familiar from the basic version of the task (AB and BA). Despite 

this new cue configuration, the underlying structure (two odours separated by 

5s, then outcome) remained the same, allowing us to observe how quickly mice 

could incorporate a new sensory cue into a familiar structure of rules.  

 

We used mice who had learnt the task with the standard set of odours (ABC) and 

were performing at a high level (Figure 4.6b, day -1). When we introduced odour 

D into the task (day 0), the accuracy of anticipatory licking dropped initially as 

expected. However, task performance rapidly returned to very high levels (Figure 

4.6b; n = 6, repeated measures ANOVA: F(5, 25) = 2.66, p = 0.04). In some instances, 

this recovery even took place within a single session, after the mouse had only 

very limited exposure to each pair of odours (Figure 4.6c). In contrast to learning 

a new temporal structure (Figure 4.3) or learning an entirely new task (see 

Chapter 3), this recovery of previous performance was rapid, suggesting that 

prior experience with a given task structure facilitates faster learning of new cue 

combinations that share the same structure. 
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Figure 4.6: Mice can rapidly integrate new odour into task structure. a. After mice have fully 
learnt the task, odour C is replaced by a novel odour D b. Mice rapidly adjust and recover 
performance (n = 6) c. Most subjects experience initial difficulty manifesting in a drop in 
performance on the day the new odour is introduced (day 0) compared to the previous day (day 
-1) but recover performance within 1 – 5 sessions (day 5) (n = 6) d. Performance on the day of 
the switch (day 0) grouped by second odour. Performance on trials with the new odour (D) as 
second odour are most affected. e. After a brief rise in the predictive power of both the 
configural and the elemental model in the days following the switch, the regression shows that 
after 3 days, the mice return once more to using mostly structural information to solve the task. 
f. This manipulation leads only to a minimal rise both in missed rewarded trials as well as 
incorrect lick responses to unrewarded odour pairs.   
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To better understand the effect of replacing one of the odour stimuli, we next 

looked at the performance on the day of the odour switch (day 0), split according 

to the second odour in the pair (Figure 4.6d). As would be expected, on trials 

where the new odour D is the second odour, mice perform poorly since both trial 

types within that group are unfamiliar. In trials where A or B are the second odour, 

mice perform above criterion, but notably do better on trials where B is the 

second odour. Overall, this result supports our notion that the mice are able to 

use their knowledge of the structure of the task to adapt to the exchanging of a 

familiar cue for a novel one. 

 

This was supported by the results of a logistic regression with the same sets of 

predictor variables as previously described: even on the day of the odour switch, 

the structural model remained the most predictive of mouse behaviour (Figure 

4.6e, mixed-design ANOVA, effect of model: F(4,27) = 34.40, p =  5.4x10-5; effect of 

day: n.s; interaction: n.s). On the day when the novel odour was first introduced, 

the increased predictive power of elemental features suggests that there might 

be an initial phase of bias while mice learn where the new cue fits into the task 

structure.  

 
Despite a slight rise in miss and false alarm trials on the switch day, there was no 

statistically significant effect in the types of errors mice made (Figure 4.6f; n = 6, 

repeated measures ANOVA:  F(4, 20) = 1.09, p = 0.38), suggesting that across the 5 

days, these response types did not change in a consistent way across mice.  

 

4.2.3  Ventral Hippocampus is required for solving the task at 

longer delays 

Our results so far suggest that mice indeed solve the task by learning about both 

the task structure as well as individual cues, enabling them to adapt flexibly to 

changes to cues as well as to the timing of their delivery.  
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As mentioned in the introduction to this chapter (section 4.1), learning and use 

of task structure have been proposed to be dependent on the hippocampus, 

supported by both experimental results as well as theoretical studies. Therefore, 

we wanted to test how disrupting neural activity in this area would affect 

behavioural accuracy in our task.  
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Figure 4.7: Optogenetic inactivation of ventral CA1 impairs behaviour at long delays.  
a. Schematic of bilateral optogenetic inhibition of ventral CA1 region of hippocampus (vCA1): 
stereotaxic injection of a flexed inhibitory opsin ArchT combined with a CamKii-cre virus (top) 
and fibre placement (bottom)  b. Example histology image showing fibre placement, scale  
bar = 1mm. Box indicates region of interest  c. Schematic of optogenetic inhibition experiment: 
on trials with laser stimulation, the laser pulse starts at 500ms before the first cue and fades 
out after water delivery  d – g. Bilateral optogenetic inactivation of vCA1 has no significant effect 
on task performance at delays of 5 – 20s, but in a 30s delay paradigm, laser stimulation impairs 
performance significantly (n = 3), indicating a role for vCA1 for structural learning with long 
delays.  
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To test this hypothesis, we bilaterally injected a mixture of AAV2/1-FLEX-ArchT-

tdTomato and AAV2/1-CamKII-Cre into the CA1 area of ventral hippocampus 

(vCA1) and implanted optic fibres above the injection site for directed laser light 

delivery. This enabled us to inhibit principal neurons in vCA1 selectively and 

reversibly via administration of 520nm illumination (Figure 4.7a and b). Due to 

unforeseen circumstances, we were only able to recover the histological data of 

two out of the four animals used in this manipulation. The two brains varied in 

viral expression (data not shown) but both injection site as well as fiber 

placement were comparable (Figure 4.7d).  

 

We tested the effect of this optogenetic inhibition on the behaviour of well-

trained mice in versions of the task with either 5s, 10s, 20s or 30s delay.  We 

designed the stimulus such that light was automatically delivered for the 

duration of an entire trial, from 500ms before the onset of the first cue until after  

the outcome (Figure 4.7c). In addition, light delivery was turned off with a “ramp” 

to minimise rebound spiking (Chuong et al., 2014). In each mouse, we compared 

sessions with light delivery to control sessions with no light delivery.   

 

In experiments with 5s and 10s delays between odour cues, bilateral inhibition 

of vCA1 had no effect on the performance of expert mice (Figure 4.7e and f; 5s: 

n= 3; p correct opto = 0.82 +/- 0.08, p correct control = 0.87 +/- 0.04; 10s: n = 4;  

p correct opto = 0.79 +/- 0.13, p correct control = 0.80 +/- 0.09). At 20s delay, there 

was a marked decrease of behavioural accuracy in one animal, but since the 

other two subjects performed poorly even under control conditions, this data did 

not allow for conclusions about a general effect (Figure 4.7g; 20s: n = 3; p correct 

opto = 0.63 +/- 0.04, p correct control = 0.67 +/- 0.12).  
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Figure 4.8: Optogenetic inactivation of vCA1 leads to increased number of missed trials at 
long delays. a. The average number of licks per trial does not change between trials with and 
without laser stimulation  b. Possible outcomes in our task are either Hit or Miss for a rewarded 
trial, or Correct Rejection and False Alarm for unrewarded trials  c. The frequency of Hit trials 
per delay time for both trials with optogenetic stimulation (green) as well as control trials (grey) 
d. The frequency of Miss trials in tasks with different delays, green: laser on, grey: control trials 
e. Percentage of trial outcomes in trials with laser stimulation. f. Percentage of trial outcomes 
in trials without laser stimulation.  
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However, performance accuracy in a task with 30s delay was significantly 

impaired in sessions with laser stimulation (Figure 4.7h; 30s: n = 3; p correct opto 

= 0.53 +/- 0.05, p correct control = 0.70 +/- 0.04; paired t-test: t(2) = 8.58, p = 0.01) 

and fell to almost chance levels.  

 

To examine what change in behaviour underlay this marked decrease in task 

performance, we next looked more closely at the licking responses in trials with 

and without laser stimulation. Since previous studies have proposed behavioural 

inhibition to be one of the functions of the ventral hippocampus (Gray & 

McNaughton, 2003), we compared the amount of licking per trial between the 

sessions with optogenetic inhibition and control sessions (Figure 4.8a; two-way 

repeated measures ANOVA, laser: n.s; delay: n.s., interaction: n.s.). We found 

that at all delays, mice licked equally frequently under both laser and control 

conditions.  

 

Then, we returned to the response analysis (Figure 4.8b) to determine what types 

of responses formed the basis of the decrease in behavioural accuracy in laser-

stimulated sessions with long delays.  

 

We found that optogenetic inhibition of vCA1 led to a steeper decrease of Hit 

trials with longer delays (Figure 4.8c, repeated measures ANOVA, F(1, 3) = 40.00, 

p = 7x10-3) and a matching increase in Miss trials (Figure 4.8d). For example, 

while mice missed 18% +/- 2.4% of rewarded trials in the 30s task under control 

conditions, this figure rose to 35% +/- 1.2% of rewarded trials when vCA1 was 

inactivated. In contrast, there was no difference in False Alarm responses 

between sessions with optogenetic stimulation (Figure 4.8e, repeated 

measures ANOVA: F(1, 3) = 7.16, p = 0.08) and control sessions (Figure 4.8f).  
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4.3 Discussion 

In this chapter, we wanted to test whether mice could use the knowledge of the 

task even when cues or their timing were changed, suggesting a level of abstract 

learning about the task structure that has been postulated by previous studies.  

 

First, we showed that mice proficient at our task could adapt to changes in the 

underlying temporal structure such as increasing the delay from 5s up to 30s 

(Figure 4.1). Importantly, even though the accuracy of their responses decreased 

slightly with longer delays, our logistic regression models suggest that mice still 

used structural information to solve the task (Figure 4.2). We next looked at the 

types of errors mice made across these different task paradigms, and found that 

with increasing delays, the number of missed trials (rewarded trials where mice 

failed to respond) increased, whereas the number of false alarm trials 

(unrewarded trials where mice incorrectly responded) showed no significant 

correlation with delay length (Figure 4.3). 

 

We further show that mice adapt to changes in the timings of cues in a shorter 

time as compared to the time they require for learning the original task (Figure 

4.4) and that their behavioural accuracy in early learning is higher than in mice 

with no prior experience (Figure 4.5), indicating that some of the knowledge can 

be transferred across tasks.  

 

To further test behavioural flexibility in our task, we then changed some of the 

odour pairs, replacing one odour cue with a new odour that the mice had no prior 

experience of. We found that mice adapted to this new cue rapidly, recovering 

their previous levels of accuracy by the third session, and often before that 

(Figure 4.6). We used regression to investigate which variables best predicted 

mouse behaviour and found that once again, licking was best predicted by a 

structural model using both odour identity and order. Lastly, we examined the 

types of responses and found that in the sessions following the odour switch, 

there is no specific change in errors.   
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Finally, we investigated whether the hippocampus was required for this 

proficient performance in our task. To do this, we bilaterally expressed an 

inhibitory opsin in ventral CA1 (vCA1) and stimulated it by delivering laser light 

through optic fibres while mice were performing the task (Figure 4.7). 

Inactivation of vCA1 only showed a significant effect on behaviour in the 

paradigm with 30s delay between odour cues.  

 

This effect was not due to a change in the amount of licking. Using the same 

response analysis as before, we showed that the drop in behavioural accuracy 

during optogenetic inactivation was due to a large decrease in correct responses 

to rewarded trials but was not related to a higher amount of false alarm trials 

(Figure 4.8).  

 

4.3.1  Adaptation to changes in task structure suggests some 

learning across conditions 

To test how flexibly mice were able to express their learnt understanding of the 

task, we chose to successively change the delay between cues from 5s to 10s, 

20s, and finally 30s. 

 

While at first glance, this might not seem like a change requiring an abstract 

understanding of task structure, it warrants a closer look: to successfully recover 

performance after the delay changes from 5s to 10s, the animal either has to 

learn 6 new associations with this new time course or transfer the previously 

learnt reward contingencies to a longer trial time. The latter strategy is proposed 

to be more efficient and therefore allowing a faster recovery of performance after 

a change in temporal structure. However, considering proposed mechanisms of 

time keeping in the brain, such as e.g. time cells (MacDonald et al., 2013; 

Eichenbaum, 2014), the neural mechanism of this kind of transfer learning would 

require a generalisable representation of the task.  
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In our data, we find hints that mice with previous task experience indeed adapt 

faster to manipulations of the delay time, both by reaching stable accurate 

performance earlier and by displaying a higher baseline of behaviour even upon 

first exposure (Figure 4.4 and 4.5).  

 

An important consideration in interpreting these results is that the key 

comparison is not between our task and a simpler one in which single odours 

predict reward. While such a task might not require structural learning, repeated 

exposure to different cue-reward pairings with varying odours or delays would 

still establish a common task framework, even if it would be a very simple one.  

 

Instead, the appropriate control would be a task in which no common structure 

exists across successive learning experiences. For example, if mice were first 

trained on our original task – where reward is predicted by an odour pair with a 5s 

delay – and then switched to a task where only the second odour predicts 

reward, or where a distractor odour is presented in the delay, we would not 

expect prior experience to facilitate learning. In such cases, the underlying task 

structure would be fundamentally different, preventing transfer of previously 

learnt contingencies.  

 

However, since we did not perform a control experiment with a non-structural 

task with similar cues, we cannot exclude that the improved performance on  

day 1 might be due to alternative explanations. Since the exposure to multiple 

task paradigms necessarily means more total days of training, this improved 

learning might also be explained by increased attention to odour cues, or simply 

higher habituation to head fixation, handling and water restriction.  
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4.3.2  Behavioural performance after new cue introduction 

 

Our second test to assess behavioural flexibility in our task was to change the 

cue contingencies. We did this by exchanging one of the three odour cues (odour 

C) with a new odour (Odour D) that the mice had no prior experience of. In 

consequence, 4 out of 6 trial types contained novel odour pairs with unfamiliar 

associations, half of which were rewarded and the other half unrewarded. 

 

We found that mice rapidly adapted to this change, all recovering their baseline 

levels of behavioural performance by the third session with the new set of odours 

(Figure 4.6). Notably, some mice responded correctly to the new set of odours 

even within the first day of exposure, thereby requiring less than 10 trials of each 

type to reconsolidate their behaviour.  

 

This was a stark difference from the time required for learning the original 

associations (see Chapter 3, Figure 3.2), suggesting that maybe abstraction 

from the basic task allowed for inference to fill the gaps. Theoretical accounts 

have proposed that a representation built following the tenets of structural 

learning should allow the modular assembly of task representations, adding and 

removing cues without having to re-learn the underlying structure (Whittington 

et al., 2020), offering a computational mechanism by which this type of fast 

learning might occur.  

 

However, without neuronal data, we cannot make any definitive statements on 

the role of generalised representations in this behaviour, since several other 

hypotheses might explain the fast adaption to the new odour. For one, it is 

possible that despite our best efforts to pick odours that are dissimilar from each 

other (Pashkovski et al., 2020), odour D was more similar to odour C than to both 

A and B, therefore making it a problem of pattern completion rather than 

generalisation. Another possible strategy might be to infer the meaning of the 

new odour by a process of elimination – if both A and B are still present, the new 



 

 

 

120 

odour must therefore be replacing C. Note however that this type of conditional 

learning still requires an understanding that there are only 3 odours combined 

into pairs within each trial. 

 

A further limitation of this manipulation is the fact that there is only a short 

window of time before the mice adapt to the new odour, and a repeated replacing 

of odour cues would be expected to yield different results since the overall 

exposure to each cue would be imbalanced.  

 

In the future, it would be interesting to record single cell activity during this task, 

gaining insight into how odour D is represented in the neuronal population, and 

whether the neural data supports the hypothesis of a generalised task 

representation able to flexibly include new odour cues.   

 

4.3.3  Role of vCA1 in bridging delay time 

To assess the extent to which hippocampal circuits are necessary for structural 

learning, we optogenetically inactivated neurons in vCA1 in mice performing the 

task (Figure 4.7) and found that this manipulation markedly impaired task 

performance.  This finding ties in with results of sequence learning studies in rats 

(Fortin et al., 2002; Kesner et al., 2002) as well as configural learning tasks 

(Sanderson et al., 2006) and strengthens the hypothesis that the hippocampus 

may indeed be necessary for this type of learning.  

 

However, this impairment was seen in experiments targeting ventral CA1, in 

contrast to the above studies which were targeting more dorsal areas of the 

hippocampus. In the literature, dorsal and ventral hippocampus have been 

proposed to be functionally distinct due to their differences in gene expression 

and anatomical projection patterns (Fanselow & Dong, 2010; M. Moser & Moser, 

1998), but what exactly the respective role of dorsal and ventral hippocampus 

might be is not yet fully understood. This is partly due to the general difficulty of 
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comparing results acquired through different behavioural paradigms, but also 

due to a bias in anatomical targets between the fields: the navigation field has 

historically focused on dorsal regions (Bittner et al., 2017; M. B. Moser et al., 

1995; O’Keefe & Nadel, 1979) whereas fear conditioning studies have more 

frequently targeted ventral regions (Kjelstrup et al., 2002; Maren & Holt, 2004; 

Twining et al., 2020). Without comparative data from more dorsal areas, it is too 

early to say whether the results of our optogenetic inactivation experiments 

support the theory of a specific role for ventral hippocampus in structural 

learning. In the rest of this work, we will focus on the contribution of ventral 

hippocampus to our task, but an exciting future direction is to explore the 

different contributions of dorsal and ventral circuits in more detail. 

 

A second interesting finding from our optogenetic manipulations is that 

inactivation of vCA1 affects behavioural performance only in task paradigms 

where the delay exceeds 10s. This implies that at short delays, hippocampus 

might  not be required, and other circuits seem to support both the encoding of 

the stimuli as well as their relationships to each other. Candidate regions for this 

type of short time-scale binding of cues could be the piriform cortex as well as 

prefrontal regions (Franks et al., 2011; Liu et al., 2014). Hippocampal circuits 

only seem to be essential to the task performance at delays longer than 10s. This 

result resembles the findings that hippocampal lesions have larger effects in fear 

conditioning paradigms including a delay period (trace interval) before the 

aversive experience (Quinn et al., 2002), or spatial studies showing that a 

Delayed-Match-To-Place (DMTP) paradigm requires hippocampus only at longer 

delays between cues (Spellman et al., 2015). 

 

Interestingly, the deficits in behavioural performance in sessions of the 30s task 

with inactivation manifest specifically in a larger proportion of missed trials, 

while the proportion of false alarm responses remains unchanged. This supports 

our hypothesis that the underlying mechanism is due to the specific role of vCA1 
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in processing temporal sequences and structural information, rather than a non-

specific effect.  

 

One possible explanation for this pattern is that vCA1 inactivation may impair the 

ability to maintain or retrieve the memory of the first odour over longer delays. 

Rather than responding incorrectly at chance level, mice may adopt a more 

conservative decision-making strategy, resulting in a higher rate of omitted 

responses. If this is the case, there might be an interesting gradual disruption of 

response confidence with the increase of difficulty (i.e. longer delay times).  

 

Analysing lick rates across these different tasks could  provide further insight, 

e.g. comparing the lick rate in hit trials without laser stimulation to those with 

laser stimulation in the edge-case of the 20s delay task. If the lick rate is lower 

under optogenetic stimulation, that might suggest a reduced confidence, 

especially since the overall licks per trial stay stable. If, on the other hand, lick 

rates remain similar, this would suggest a failure in recall rather than a shift in 

decision thresholds.  

 

Investigating such confidence-related behaviours could help refine our 

understanding of how vCA1 contributes to maintaining and integrating 

temporally separated cues to guide behaviour. 

 

Taken together, these results suggest that the hippocampus is not needed for this 

structural learning task per se, as the mice can perform the 10s paradigm well 

despite optogenetic inhibition. Hippocampal activity only becomes necessary 

when the task-relevant cues are temporally distant from each other, as they are 

in the 30s paradigm. This is not a new idea in the field – in the literature, this has 

been proposed multiple times over the last decades and several potential 

mechanisms for this binding of cues across spatial and/or temporal distance 

have been suggested. However, my data show this very clearly for the first time 

within the same mice and the same experimental paradigm.  
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To further dissect the role of vCA1 in bridging temporal gaps between stimuli, a 

critical next step would be to test whether brief, precisely timed optogenetic 

inhibition within the delay period is sufficient to impair performance. If vCA1 

activity is specifically necessary for maintaining stimulus representations across 

time, then even a transient perturbation – such as a short laser pulse midway 

through the delay – should be disruptive, potentially yielding similar deficits to 

continuous inhibition. This experiment would help differentiate whether the 

observed effects are due to the cumulative duration of inhibition or whether 

vCA1 is specifically required during critical moments of the delay. Additionally, 

selectively inhibiting vCA1 only during the first or second odour presentation 

could clarify whether the hippocampus primarily contributes to encoding, 

maintenance, or retrieval of stimulus representations. These experiments would 

allow for more precise mapping of when vCA1 activity is essential within the trial 

and help refine our mechanistic understanding of its involvement in structural 

learning. 

 

4.3.4 Technical considerations 

The finding that there is no effect of optogenetic inactivation of vCA1 on task 

performance offers evidence that the laser stimulation by itself is not affecting 

the perception of stimuli, general motivation, or reward-seeking behaviours 

(such as anticipatory licking). The latter is pertinent especially since some 

studies have associated the ventral part of hippocampus with behavioural 

inhibition (Gray & McNaughton, 2003). We therefore looked specifically at the 

amount of licking across laser-stimulated and control trials at all delay lengths 

(Figure 4.8a) and found that the average amount of licking per trial was not 

affected by the length of the delay nor by the presence or absence of laser 

stimulation. 
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It would have been valuable to relate the effects of optogenetic inhibition in 

individual animals to the specific fibre placement and extent of viral expression, 

especially since we see some variability in effect especially during the 20s task. 

However, since we were only able to recover two brains, this is not possible with 

the data available. In future experiments, it would be interesting examine this 

relationship more thoroughly, using a larger dataset to assess the influence of 

fibre placement and expression patterns more systematically. 

 

Another consideration concerns the length of laser stimulation: since we are 

inhibiting throughout the entire trial, the length of the delay time is directly 

correlated with the length of laser stimulation. This means that in the 30s delay 

paradigm, the laser stimulation lasts for more than twice the time than in the 10s 

paradigm.  

 

A considerable limitation of prolonged optogenetic inhibition is the potential for 

non-specific effects beyond neural silencing. Extended laser stimulation can 

lead to local tissue heating (Owen et al., 2019), which may alter neural 

excitability and inadvertently affect behaviour. Additionally, prolonged 

suppression of vCA1 might induce compensatory network changes (de Jong et 

al., 2023), including shifts in whole-brain activity or engagement of alternative 

circuits, making it difficult to isolate the specific contribution of vCA1 to task 

performance. Thus, we cannot exclude the possibility of our results being a 

consequence of an unspecific effect related either to the laser pulse itself, or the 

imbalance in the whole brain activity as a result of inactivating vCA1 neurons for 

a long time.   

 

The finding that mice specifically miss rewarded trials when vCA1 is inactivated 

while False Alarm trials remain more stable hint at a more specific effect 

underlying the decrease in behavioural accuracy, but to fully address this 

concern, control experiments would be needed. To mitigate these concerns, 

control conditions such as delivering the same total laser power in a temporally 
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scrambled manner or stimulating an unrelated brain region would be useful in 

ruling out non-specific effects, as well as the more specific optogenetic 

manipulations suggested in the previous paragraph.    

 

To further investigate how exactly vCA1 is required for our task, it would 

furthermore be of great value to use shorter laser pulses to inhibit neuronal 

activity specifically during the delay or during the presentation of the first or 

second odour cue, an idea which I describe in more detail in Chapter 6.4.1.  

 

In addition, in order to disentangle the effects of the difficulty level (as conveyed 

by the absolute delay length) and meta-effects on learning, it would be 

advantageous to counterbalance the order of tasks. Instead of all mice learning 

the tasks in order of difficulty level, counterbalancing the training schedule such 

that some mice would have been exposed to the 30s delay paradigm before the 

10s version might resolve some of the ambiguity of our results. For example, by 

comparing performance at the most difficult level (30s delay) across mice with 

varying levels of prior experience, we could separate the influence of difficulty 

versus the total amount of training time better. Furthermore, it would allow to 

counter the unpreventable “selection bias” by which when mice are removed 

from the experiment early, only a subset of mice reaches the 30s task stage. 

 

Within the scope of this project, I only had the ability to test the involvement of 

vCA1 when mice adapted to changes in temporal structure. A future goal would 

therefore be to investigate whether hippocampal circuits are required for our 

other structural manipulation: the updating of the task structure to include a 

novel odour D. Since the novelty of this odour cue is the defining feature of the 

experiment, it is difficult to implement a within-mouse control for optogenetic 

manipulations, such as the comparison between trials with and without laser in 

the delay-time manipulations. Therefore, these experiments would likely need 

larger cohorts of mice to allow for sufficient statistical power to compare effects 
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between mice that experience a new cue with or without optogenetic 

inactivation of CA1.  
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5 vCA1 population encodes cues and 

context, but not reward 

5.1 Introduction 

In the previous chapter, I presented data from multiple experiments to probe 

generalisation to novel cues in the same temporal structure, and the ability to 

adapt to changes in task structure while observing the same cues. We found 

that, after initial learning, mice could rapidly adapt to manipulations of cue value 

and identity, suggesting flexible use of previously learnt relational structures.  To 

assess the extent to which hippocampal circuits are necessary for such learning 

we optogenetically inactivated neurons in vCA1 in mice performing the task and 

found that this manipulation markedly impaired task performance in task 

paradigms where the delay exceeds 10s.  

 

This result ties in with previous studies suggesting that the function of 

hippocampus is to bind distinct experiences across space and time, thus 

forming the basis of both spatial navigation and episodic memory (Aggleton et 

al., 2007; Eichenbaum & Cohen, 2014; Milivojevic & Doeller, 2013). There is 

however no consensus yet how this computation might be achieved in 

hippocampus on a neuronal level.  

 

Following from observations about spatial remapping in CA1 populations in 

animals navigating distinct environments, one theory posits that hippocampus 

might act as a multiplex of many overlaying contexts, simultaneously 

representing the spatial environment as well as distinct perceptual, cognitive, 

and behavioural events that occur within it. Indeed, it has been shown that 

neurons in hippocampus robustly encode sensory cues (auditory (Kamiński et 

al., 2017), visual (Aronov et al., 2017) or olfactory (Wood et al., 1999)), and that 
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the presence or absence of such cues leads to changes in the representation of 

spatial environments (Anderson & Jeffery, 2003).  

 

This kind of multiplexing of information can be used to disambiguate between 

reoccurring cues on the basis of their surrounding context. For example, in a 

spatial non-match-to-sample task in which rats had to approach cups in variable 

locations and only dig for a food reward when the odour did not match the 

previous cup, neurons recorded from CA1 did collectively encode both position, 

odour identity as well as match or non-match (Wood et al., 1999). Interestingly, 

the representations of these three task dimensions weren’t fully separate: some 

recorded neurons fired to a specific odour in a preferred location, therefore 

multiplexing separate information streams not only across a population, but 

within a single neuron. 

 

The data supporting the idea of the hippocampus as a locus of overlaying 

contextual maps is largely derived from experiments where cues and events are 

separated in space, but it has been suggested that the function of hippocampus 

in binding distinct events might even be more general. Multiple studies found 

that population activity in hippocampus changed gradually across time, thereby 

not only encoding events within their spatial context, but also in a temporal 

context that can span minutes to seconds (Manns et al., 2007; Mau et al., 2018). 

 

Moreover, several studies have found that, analogous to place cells that fire 

when an animal passes a specific position in space, hippocampus also contains 

so-called “time cells” that fire at a specific point in time (Itskov et al., 2011; 

Pastalkova et al., 2008), with the activity of all time cells tiling continuous time in 

the same way that place cells form are thought to form a cognitive map 

(Eichenbaum, 2014). 

 

In summary, the hippocampus has been shown to encode multisensory 

representations of the environment, and displays sequential activity tiling both 
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space and, more importantly for our task, time, and is therefore placed perfectly 

to bind separate events across temporal delays and thus solve structural 

learning problems.  

 

Indeed, the discovery of “splitter cells” supports the idea that neurons in 

hippocampus can perform such integration. These neurons, discovered in 

rodents performing an alternating T-maze task, distinguish between (“split”) 

trajectories through the same segment of space depending on recent past, 

upcoming choice, or inferences about the state of the environment (Wood et al., 

2000; Frank et al., 2000), and can therefore be interpreted as a “context-specific 

place cell”.  

 

And even in tasks without a clear spatial dimension, equivalent “context-specific 

time cells” have been identified (MacDonald et al., 2013; Taxidis et al., 2020). In 

their 2020 study, Taxidis et al. found that a significant proportion of the 

hippocampal neurons recorded in mice performing a delayed non-match to 

sample (DNMTS) task fired not only at a specific time in the trial but did so only 

for one of the two cues. The population of these neurons, termed “odour-time” 

cells by the authors, encoded both the time elapsed since the first cue as well as 

the identity of that cue. 

 

This provides us with a clear hypothesis of how the identity of the first odour 

might be maintained across the delay in our task: if our findings align with the 

above studies, we can expect to find a representation of the cue at the time of 

the cue presentation which is then followed by a cue-specific ensemble of 

neurons that maintains this information until the second cue is delivered.  

 

For the representation of the second cue within hippocampal populations, there 

are however multiple hypotheses: Information about the first and the second 

odour might be maintained in two separate populations of cue-time cells which 

can be combined downstream to predict a given outcome. Alternatively, the first 
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cue could act as a “contextual” cue, activating a different set of neurons not only 

to encode the delay, but also subsequent cues. In that case, we could expect the 

neuronal representations of “A after B” and “A after C” to separate in our 

recordings, analogous to the splitter cells discussed earlier (Ainge, 

Tamosiunaite, et al., 2007; Duvelle et al., 2023; Wood et al., 2000). 

 

So far, I have focused on the possible representation of cue structure in our task 

based on previous findings from the literature. There is however another 

dimension to our task: In  addition to binding two odour cues across a delay, the 

task requires mice to associate these cue configurations to a specific outcome 

(rewarded or unrewarded), thereby making the predicted value of the respective 

odour pair a further task-relevant feature that might be encoded in 

hippocampus.  

 

Studies from the spatial domain have shown that rewarded locations are 

associated with a higher density of place cells, suggesting that highly salient 

events such as rewards are prioritised in hippocampal representation (Hollup et 

al., 2001; Jarzebowski et al., 2022). A representation of the external and internal 

experience of reward at the time of its delivery is however not sufficient to explain 

the anticipatory licking behaviour we have shown in mice – for this, a neural 

response predicting the outcome before the reward is delivered is required.  

 

Whether this prediction of upcoming reward is indeed encoded in neural activity 

in hippocampus is so far not conclusively demonstrated. Analogous to a pattern 

first observed in striatal dopamine neurons (van der Meer et al., 2010), multiple 

studies found single cells in hippocampus ramping up their firing up to salient 

behavioural events, some of which are associated to reward (Jarzebowski et al., 

2022; Wee et al., 2024). Secondly, in line with the idea of hippocampus as a 

generator of context-specific sequences, a recent study reported wide-spread 

remapping in hippocampal CA1 place cells after moving the reward location on 

a linear track (Sosa et al., 2024). 
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Both individual neurons, ramping to the expected reward, as well as ensembles 

of neurons tiling the time leading up to a reward might be a possible underlying 

mechanism for hippocampus to support the kind of prediction required for 

anticipatory licking. Whether either type of reported neural response can be 

related to a general representation of reward as opposed to a value-free learnt 

sequence of likely state transitions is not yet clear, since the tasks used in the 

abovementioned studies do not allow a disambiguation of the state within the 

task sequence and the value associated to the state. 

 

In the following chapter, I will present calcium data recorded from CA1 in mice 

performing our task. To test the hypotheses stated above, we identified neurons 

representing task-relevant variables such as individual cues, cue combinations 

as well as upcoming rewards on the single cell level. In a next step, we then 

investigate the encoding of these variables on a population level via SVM 

decoders.  
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5.2 Results 

To gain insight into which part of the computation underlying the solving of our 

task might be performed by vCA1, we recorded calcium activity using the 

genetically encoded calcium indicator GCaMP7f expressed in principal neurons 

in vCA1 through a GRIN lens ( 1mm, Figure 5.1 a and b) during the performance 

of the 5s task.  

  

Using a UCLA V4 miniscope, we recorded neural activity in expert mice. With the 

partially automated pipeline (Minian pipeline, (Dong et al., 2022)) described in 

Chapter 2, we then refined the areas of interest (ROIs, see Figure 5.1c and d for 

raw and processed images side by side). The pipeline further subtracted 

background noise, corrected for movement and performed iterative 

dimensionality reduction to extract calcium traces from each ROI that act as an 

indicator of neuronal activity. 

 

We aligned the data to the behavioural data using the shared TTL pulse to 

accurately combine the two data streams, and then matched each behavioural 

event to a corresponding time point in the calcium data. 
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Figure 5.1: Calcium imaging in vCA1 through GRIN lens. a. Schematic of stereotaxic injection 
to express GCaMP7f unilaterally in ventral CA1. b. Example coronal image showing GFP signal 
from GCaMP7f and position of the GRIN lens for miniscope imaging. Scale bar = 1mm.  
c. Example field of view through the GRIN lens with V4 miniscope d. Identified regions of interest 
(ROIs, maximal projection of all neurons identified during session)  
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5.2.1 Selectivity of individual neurons in vCA1 

Using the single cell calcium data, we first wanted to test whether neurons in 

CA1 showed differential activity related to task events such as odour cues, cue 

positions, or trial outcomes. To quantify the extent of neural tuning, we 

calculated a selectivity index (SI) as the difference in average neural activity over 

a time window between all trials in which the event is present and the activity in 

trials which is it not.  

 

For example, to test whether a given neuron is selective for Odour A in the first 

position, we would take into the account the activity of that neuron in that 

specific time window (i.e. during the first cue) in all trials. The SI was calculated 

as the average activity during that time window in all trials in which A was the first 

cue,  subtracted from the average activity in all other trials. To be able to compare 

SI values across neurons with different baseline activity, we expressed selectivity 

as a sigma value (), defined as the distance of the true SI value from the mean 

of a distribution of SI values derived from shuffled data from the same cell.  

 

Using these  values, we identified neurons that showed a strong selectivity (< 3) 

to either a specific odour, an odour pair, or an outcome. To quantify these 

different selectivities, we calculated SIs for each neuron at four different time 

windows within each trial: during the first cue, the delay, the second cue, or in 

the response window before reward delivery (Figure 5.2a). 

 

In total, we found that 18% of neurons recorded in all mice and sessions (43 out 

of 239 neurons from 3 mice and 7 sessions) showed selective activity to trial 

events in at least one of the examined time windows using our conservative 

criteria (Figure 5.2b). 
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Figure 5.2: Individual vCA1 neurons selectively respond to structural task events.  
a. We quantified the selectivity of neurons to different task events (cues, odour pairs, 
outcomes) at different time points within the trial (first cue, delay, second cue, response 
window), and found neurons for most but not all combinations of time bin and task event. b. 
Proportion of neurons selective for task events within the total population of recorded cells. c. 
Proportion of neurons within the population of selective cells showing elemental, structural or 
outcome selectivity, or a combination of those. d. Schematic of response types of different 
patterns. Elemental: response depends on only one odour. Structural: response depends on 
odour pair. Outcome: response depends on expected trial outcome. Multiple: respond to 
multiple trial types, but stronger to some than to others. 
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We then grouped these selective neurons according to the type of selectivity: 

“elemental” selectivity patterns were those responding to only one odour cue 

(e.g. “Odour A” selective); “structurally” selective neurons responded to a 

specific odour only in cases where a specific odour had preceded it (e.g. “A->B” 

selective);  outcome selective neurons were those that responded to all trials 

that shared the same outcome (i.e. rewarded or not rewarded); lastly, some 

neurons showed a mixed selectivity for elemental and structural events (e.g. 

respond weakly to “CA” but strongly to “BA”) (Figure 5.2d).    

 

We quantified the occurrence of these types and found that similar proportions 

of neurons showed an elemental and structural selectivity pattern (39.5% and 

35%, respectively). 7% were selective for outcomes, and 18.5% showed mixed 

selectivity to more than one category (Figure 5.2c).  

 

Together, the data shows that about a fifth of the neurons we recorded selectively 

responded to at least one task event. Most of these neurons were selective to 

individual odour cues or cue combinations, with only few responding to the 

expected trial outcome. Interestingly, we found example neurons for almost all 

combinations of cue and time window, apart from one: we found no example of 

neurons that were selective to a specific odour in second position (e.g. selective 

to Odour B, irrespective of whether A or C came before). 

 

To further characterise the responses, we quantified which events were most 

frequent within each of these categories of selectivity, and we furthermore 

examined the time courses of these selective responses.  
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Figure 5.3: Individual vCA1 neurons display selectivity for elemental features of task.  
a. – c. Average calcium signal from example neuron split across trial types (left) and the 
selectivity index (SI, orange line) plotted against the distribution of SI indices from shuffled data 
from the same neuron (grey, right panel). a. Example neuron selective for Odour A irrespective 
of position. b. Example neuron preferably responding to Odour A in position 1, but also 
responsive to Odour B in position 2. c. Example neuron selective for Odour B only in position 1. 
d. Proportion of neurons that have any elemental selectivity: a total of 58% of selective neurons 
respond to specific odours. e. Separated by odour position (left): most respond to the first odour 
cue (49%). Only few neurons respond to a given odour irrespective of position (7%), and even 
fewer respond to second cues only (2%). Split by time window (right): Most neurons respond 
with a slow time course, the peak of their selectivity occurring at the second cue (28%) or 
spanning several time windows (18.5%), with fewer displaying peak selectivity during the first 
cue or the delay.  
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5.2.1.1 Elemental responses 

First, we looked at those neurons that showed selectivity to “elemental” 

components (i.e. individual odours). As shown above, 39.5% of selective 

neurons were exclusively selective for  one specific odour (e.g. Odour A). We 

further found that all of the neurons that showed mixed selectivity (18.5%) had 

some elemental features, bringing the total proportion of neurons responding to 

specific odours to 58% (Figure 5.3d).  

 

Within this population, some cells responded equally to a specific odour 

irrespective of which position it appeared in (Figure 5.3a, example neurons 

selective for Odour A as both first and second cue); others responded more 

strongly to an odour in the first position, but still showed a response to the same 

odour in the second position (Figure 5.3b, example neuron selective for Odour A 

as first cue); finally, we identified neurons that only responded to an odour when 

it appeared a specific position (Figure 5.3c, example neuron selective for odour 

B only as first cue).  

 

We next looked at the distribution of these features across the whole population 

of elemental (i.e. context-independent) neurons and found that most responded 

to their preferred odour most strongly (or at all) when it appeared as the first cue 

(49% of all selective neurons). Only a fraction of that number (7%) responded to 

their preferred odour irrespective of position, and even fewer (2 %) responded to 

an odour only in the second position (Figure 5.3e, left).  

 

Interestingly, despite this bias for first-odour selectivity within the population, 

only a small number of neurons showed strong selectivity at the time of odour 

presentation (7%, Figure 5.3e, right). Similarly, few neurons (4.5%) were 

selectively active during the delay. The bulk of the neurons displaying selectivity 

for specific activity (as illustrated by our examples) either showed the highest 

difference in activity during the time of the second odour delivery (28%) or a 



 

 

 

139 

combination of multiple time windows (18.5%), with their activity most often 

spanning both delay, second cue delivery and the response window.  

 

Taken together, we found that more than half of the selective neurons (58%) 

responded selectively to specific odour cues. While some of these neurons 

responded to their preferred odour irrespective of its position, others fired only 

for their preferred odour in a specific position, most often in the first position. 

Interestingly, the majority of elemental responses were delayed with respect to 

the cue they were selective for, thus maintaining information about an odour 

after its delivery.  

 

5.2.1.2  Structural responses 

We next looked at all cells that were selective for odour pairs, i.e. “structurally” 

selective neurons. In addition to the 35% of selective neurons that were uniquely 

responding to specific odour pairs, another 18.5% of neurons responded to 

odour pairs, but also showed a second response pattern (Figure 5.4d).  

 

This pattern was a type of rate-remapping: all of the neurons that showed 

selective firing in two categories were selective for a specific odour generally, but 

responded most strongly when this odour appeared as the second odour in a 

specific pair. For example, a neuron might be elementally responsive to Odour B 

(regardless of its position in the trial), yet might fire especially strongly to Odour 

B when it appears after Odour A, therefore having both an elemental and a 

structural selectivity.  

 

Similarly to the previously described elemental neurons, structurally selective 

neurons also displayed several distinct temporal dynamics. In some, firing was 

constricted to the time around the second cue delivery (Figure 5.4a) or the 

outcome (Figure 5.4c), while other neurons showed ramping activity from the 

cue delivery to the outcome (Figure 5.4b). 
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Figure 5.4: Individual vCA1 neurons are selective for specific trial types. a. – c. Average 
calcium signal from example neuron split across trial types (left) and the selectivity index (SI, 
orange line) plotted against the distribution of SI indices from shuffled data from the same 
neuron (grey, right panel). a. Example neuron selective for AC (Odour C only when preceded by 
A) b. Example neuron responding to CA (Odour A only when preceded by Odour C) c. Example 
neuron selective for CB (Odour B only when preceded by Odour C) d. Proportion of neurons that 
show structural selectivity: a total of 53.5% of selective neurons respond to odour pairs. e. Left: 
Peak selectivity separated by time window; Most responses have a slow time course, indicated 
by their peak firing spanning both the cue delivery and the outcome period (37%), although 
some neurons show temporally constrained firing at the cue or outcome (5% and 11.5%, 
respectively).  Right: Peak selectivity separated by trial outcome: most neurons that show trial-
type specific firing are selective for rewarded odour pairs (42.8% of all selective neurons).  
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Quantifying these different temporal patterns, we found that the latter type in 

which selective firing occurred throughout cue presentation until reward delivery 

or omission was by far the most common (37% of selective neurons, Figure 5.4e, 

left) while selective firing at the time of the second cue or the outcome was less 

common (11% and 5% of selective neurons, respectively).  Furthermore, when 

the population of structurally selective (i.e. context-dependent) neurons was 

split by whether their preferred trial type was rewarded or unrewarded (Figure 

5.4e, right), we found that a majority of neurons (80% of structurally selective 

neurons, 42.8% of all selective neurons) showed selective firing to rewarded 

pairs, whereas only a minority (20% of structurally selective neurons, 10.7% of 

all selective neurons) responded preferentially to unrewarded odour pairs. 

 

In summary, we found that roughly half of the selective neurons (53.5%) 

displayed contextually modulated firing, i.e. structural responses. This type of 

firing was only found for odours in second position (since the first odour 

represents the context) and was more likely for rewarded odour pairs. 

Structurally selective neurons most often showed sustained firing from the 

delivery of the second cue up to the outcome delivery.   

 

5.2.1.3  Outcome responses  

Lastly, a subset of neurons showed selective activity for trial outcome (e.g. all 

rewarded odour pairs, Figure 5.5a). Interestingly, all outcome-selective neurons 

showed at least some selective firing in the time window between the second 

cue and the outcome and therefore might not solely be reflections of the shared 

sensory experience of rewarded (or unrewarded) trials. These outcome-selective 

neurons were however rare, accounting only for 7% of selective cells (Figure 

5.5b).  
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Figure 5.5: Only few vCA1 neurons display activity based on reward contingency  
a. Average calcium signal from an example neuron selective for all rewarded trial types, split 
across trial types (left) and the selectivity index (SI, orange line) plotted against the distribution 
of SI indices from shuffled data from the same cell (grey, right panel). b. Proportion of selective 
neurons that show outcome selectivity  

 

 

5.2.1.4  Summary 

In summary, we find that neurons in vCA1 respond to various task events, 

showing selective activation both to single odours as well as odour 

combinations, while the expected outcome of the trial is less robustly encoded 

on the single cell level. The majority of neurons display an activity pattern of 

broad temporal ramps, often peaking several seconds after the event they are 

selective to, suggesting that information about past odour cues might be 

encoded in the population across the delay and even at the time of the next cue 
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5.2.2  Population representations 

Given these findings on the single cell level, we next wanted to look at the 

encoding of task-relevant information encoded at the population level. To 

investigate this, we used a series of linear classifiers that utilised the calcium 

activity of the entire population of recorded neurons to predict trial events. 

Specifically, we trained an ensemble of linear support vector machines (SVMs) 

to discriminate between different trial types based on the activity of all recorded 

neurons the time of the second cue, i.e. the time point that the animal has to 

make the decision to lick or to withhold licking (Figure 5.6a). To do this, we 

constructed different pseudo-populations by matching trials of the same type 

from different animals in a randomised way (see Chapter 2). We did this by 

pooling neurons from different mice and sessions while ensuring that trial types 

are matched in a way that avoids introducing spurious correlations. By randomly 

pairing trials across neurons (e.g., matching the first AB trial of one neuron with 

the fifth AB trial of another), we aimed to prevent artificial correlations that could 

arise simply from the structure of the dataset rather than true neural coding. 

 

The key advantage of this strategy is that it allows to build a large, representative 

dataset for decoding while ensuring that any structure detected by the SVM is 

robust and not an artefact of a particular trial alignment. Additionally, because 

each pseudo-population includes all neurons but with different trial 

assignments, it automatically gives a measure of how consistent decoding 

results are across different random samplings. 

 

5.2.2.1 Encoding of trial types 

As a first step, we tested whether a linear classifier trained on this dataset could 

learn to correctly discriminate between trials with different odour pairs. We 

trained the  classifier on 75% of labelled data (i.e. the population vector of the 

trial together with the true odour pair) and then tested on the remaining 25% of 

data (Figure 5.6b), and found that the decoder could assign the correct trial type 
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significantly above chance level (Figure 5.6c, n = 100, classifier accuracy =  0.31 

+/- 0.09; shuffle accuracy = 0.14 +/- 0.08, paired t-test t(99) = 13.91, p = 4.1x10-31).  

 

We then checked how many neurons were necessary in order to achieve this 

level of accuracy by training classifiers on subsets of our data with randomly 

selected neurons. We found that classifiers using the population activity of as 

low as 20 neurons averaged above-chance performance, and that the accuracy 

of the classifiers plateaued as they included more than 100 neurons, indicating 

some redundancy in the network (Figure 5.6d). 

 

 
 
 



 

 

 

145 

 
Figure 5.6: vCA1 population activity encodes trial types. a. Schematic of workflow for 
decoding analysis. The population vector is the average activity of each recorded neuron at a 
specific time window (in this case: around the presentation of the second cue). Linear 
classifiers are then trained to separate the population activity based on specific trial events, 
e.g. the identity of the first cue. b. Schematic of split between training data (labelled) and test 
data (unlabelled). c. Accuracy of decoders (n = 100) d. Above-chance decoder accuracy 
requires a dataset including at least 25 neurons. Accuracy plateaus after 100 neurons.  
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As mentioned above, these classifiers were using the population activity at the 

time of the second cue delivery. We therefore hypothesised that the identity of 

the second cue should be strongly represented in the population at this time, 

both due to the recency as well as due to the importance of this information for 

decision making.  

 
But to successfully predict outcomes in our task, the identity and order of both 

cues needs to be retained. We therefore further wanted to check whether the 

identity of the first cue was encoded in the population activity at this later time 

point.  

 

5.2.2.2  Encoding of first and second cue 

To do this, we used the same dataset as before, combining all recorded neurons 

into one population. This time, instead of labelling the data according to the 

odour pair, we only included information about the first or second odour, 

respectively (Figure 5.7 a and b). For example, in order to test for the encoding 

of the second odour cue, we would train the classifier on 75% of our neural data 

labelled with the second odour present in each trial, and then ask the classifier 

to predict the labels for the remaining 25% of the data.  

 

We found that both classifier types (predicting the first and the second odour of 

seen in the trial, respectively) performed above chance, which we simulated by 

training decoders on shuffled data. As we expected, decoders trained to identify 

the second odour cue from the neural data did so with above chance accuracy 

(Figure 5.7c; right, n = 100, classifier accuracy =  0.52 +/- 0.11, shuffle accuracy 

= 0.33 +/- 0.11, paired t-test t(99) = 12.20, p = 6.5x10-26). Surprisingly however, the 

classifiers trained to predict the first odour from the neural activity at the time of 

the second cue performed as good and even slightly better (Figure 5.7c; left, n = 

100, classifier accuracy =  0.54 +/- 0.09, shuffle accuracy = 0.31 +/- 0.11, paired 

t-test t(99) = 14.05, p = 1.4x10-31), indicating a multi-second maintenance of this 

information within the network. 
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Figure 5.7: Population activity at the time of the second cue encodes both first and second 
odour. a.-b. Schematic of datasets used to train and test decoders for the first odour of the  
pair (a) and the second odour of the pair (b). c. Accuracy of decoders trained to classify by first 
odour (light red, n = 100) or by second odour (dark red, n = 100)   
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5.2.2.3  Influence of contextual encoding 

Given this finding, we next wanted to test to what extent this information might 

be a result of context-specific encoding. For example, the “first odour” decoders 

might simply have learnt that the very specific activity pattern related to an AB 

trial and the pattern associate to an AC trial belong into the same category 

“Odour A first”, without the two patterns sharing much in terms of neural 

similarity.  

 

To test this hypothesis, we trained linear classifiers on data containing only one 

of the two trial types with a given attribute, and then tested the accuracy of the 

predictions in the other. For example, the training set might only contain AB trials, 

while the test set contained only AC trials, and so on for the other possible first 

odours.  

 

As expected, we found that the accuracy of these decoders was lower than that 

of decoders trained on all possible trial types. However, this drop in predictive 

performance was less than expected and both “first odour” and “second odour” 

classifiers trained on partial data still correctly classified trials at above chance 

level (First odour: n = 100, accuracy = 0.43 +/- 0.6 shuffle accuracy = 0.32 +/- 

0.07, significantly greater than chance, paired t-test t(99) = 1.60, p = 9.2x10-24; 

Second odour: n = 100, accuracy = 0.44 +/- 0.6, shuffle accuracy = 0.33 +/- 0.08, 

paired t-test t(99) = 11.13, p = 3.3x10-22).  

 

This suggests that consistent with the types of responses seen at the single cell 

level, some of the information within the vCA1 network at the time of the second 

cue is encoding the elemental identity of both first and second cue.  
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Figure 5.8: Information about odours partially generalises.  a.-b. Schematic of datasets used 
to train and test decoders for the generalisation of the first odour of the pair (a) and the second 
odour of the pair (b), respectively. This is achieved by training the decoder on one trial type with 
the particular characteristic, and then testing on the other (e.g. train decoder on A-B data, then 
test on A-C data to identify generalised encoding of “A first”). c. Accuracy of decoders trained 
to classify generalised first odour (light red, n = 100) or by second odour (dark red, n = 100)   
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5.2.2.4 Outcome information in population activity 

As shown in Chapter 1, expert mice show through their licking behaviour that 

they correctly anticipate the outcomes of trials based on the odour pairs, 

suggesting that information about upcoming rewards is available to them. 

Looking at individual neurons, we found only few cells showing differential 

activity depending on trial outcome (see Figure 5.5). We hypothesised however 

that at the population level, the high number of  neurons  with structural 

selectivity could add up to significant encoding of the outcome of a trial.  

 

To investigate this, we first trained decoders to discriminate rewarded from 

unrewarded trials based on the neural activity at the time of the second cue, 

using all trial types in both training and testing data (Figure 5.9a). 

 

We found that the performance of these decoders was less accurate than the 

decoders trained to classify neural activity based on odour cues (Figure 5.9c; 

left, n = 100, accuracy = 0.56 +/- 0.11, shuffle =  0.48 +/- 0.09, significantly greater 

than shuffle: paired t-test, t(99) = 5.84, p = 2.1x10-8).  

 

Given the low accuracy of outcome decoding, we next wanted to test if any 

general (i.e. not context-dependent) information about upcoming rewards 

existed within the population. To do this, we used the same approach as 

previously shown for odour decoding: we trained the decoders on data 

containing only one type of rewarded trial, and one type of unrewarded trial, and 

then tested on a different set of rewarded & unrewarded trials (Figure 5.9b). To 

avoid the decoder using contextual information, we made sure to balance 

context within each dataset: for example, the training set might contain AB trials 

(rewarded) and AC trials (unrewarded) which share the first odour cue and 

therefore should have the same informational content until the delivery of the 

second cue. The test set would contain all other trial types, balanced such that 

rewarded and unrewarded trials occur with the same likelihood. 
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Figure 5.9: Population activity does not reliably encode anticipated outcome  
a. Schematic of data used to train and test classifiers to discriminate between rewarded and 
unrewarded trials. Data is labelled according to its outcome, and split 75/25 for training and 
testing. b. Schematic of data to test for the generalisation of the outcome across trial types. 
This is achieved by training the decoder on one type with a particular outcome, and then testing 
on the other (e.g. train decoder on C-A data, then test on B-C data to identify generalised 
encoding of “reward”). c. Accuracy of decoders trained to classify trials based on outcome. 
Left: decoder trained on full dataset (all trial types included, n = 100); Right: decoder trained on 
split data to detect generalised representation of reward (n = 120)  
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As we expected, the decoding accuracy of these classifiers was lower than the 

classifiers trained on a balanced dataset, performing only slightly above chance 

(Figure 5.9c, right: n = 120, accuracy = 0.52 +/- 0.07, shuffle = 0.49 +/- 0.03, not 

significantly greater than shuffle). 

 

In summary, this data shows that expected outcomes are not strongly encoded 

in the vCA1 population, and that the low level of information about outcomes is 

due to contextual information rather than a general representation of upcoming 

reward or non-reward.  

 

5.2.2.5 Comparison of cue and reward encoding in population 

To compare the encoding of these different task features (first or second odour 

cue, odour pairs or outcomes) across decoders, we chose to return to the sigma 

value () already used for the selectivity analysis of individual cells. This is 

necessary because “chance” performance corresponds to different values for 

the different decoders, as chance is a function of the number of classes. For 

example, a decoder trained on outcomes would be 50% accurate at chance 

performance since there is only two options (rewarded/non-rewarded), whereas 

a decoder trained on discriminating between trial types should be 16.6% correct 

when assigning classes randomly, since there are six different trial types.  

 

We found that sigma values for all decoders trained to discriminate between 

trials with different task cues (both individual odours as well as odour pairs) were 

higher than those for outcome decoders (Figure 5.10; balanced decoders: 

ANOVA, F(3) = 10.84, p = 3.0 x 10-6; post-hoc Tukey [trial type vs reward] = 3.94, p 

= 5.5x10-4; post-hoc Tukey [cue 1 vs reward] = 5.58, p = 2.6x10-7; post-hoc Tukey 

[cue 2 vs reward] = 3.51, p = 2.7x10-3; generalised decoders: ANOVA, F(2) = 12.85, 

p = 5.0x10-6; post-hoc Tukey [cue 1 vs reward] = 3.91, p = 3.3x10-4; post-hoc Tukey 

[cue 2 vs reward] = 4.25, p = 8.4x10-5). This suggests that the vCA1 population 

favours encoding of cues and contexts over the encoding of predicted outcomes. 
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Figure 5.10: vCA1 population encodes cues more robustly than outcomes Sigma values for 
decoders trained on different task features. Dark grey: decoders trained on balanced data 
containing all possible trial types. Light grey: decoders trained to discriminate based on 
generalised information, i.e. trained on one trial type and tested on another. Sigma expresses the 
distance of the average performance of an ensemble of decoders from chance as a multiple of 
the ensemble’s standard deviation.  
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Furthermore, we found that the largest difference between decoders trained on 

balanced data and split data for the same feature was found in the ensembles of  

“first cue” decoders ((Cue 1, balanced) = 2.24 +/- 0.14; (Cue 1, generalised) =  

1.83 +/- 0.12, paired t-test: T = 2.23, p = 2.6x10-2) which might be a consequence 

of the decoders classifying trials on the basis of neural data from around the 

second cue delivery.  
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5.3 Discussion 

In this chapter, I have presented calcium activity recorded from ventral CA1 

neurons in mice performing a paired associates odour task with a  delay of 5s. 

I’ve shown that neurons in vCA1 display selective activity to task events such as 

cues, cue combinations and outcomes.  

 

I’ve further shown results from linear classifiers trained on the activity of the 

population of recorded neurons which suggest that while cue combinations (trial 

types) as well as individual cues are robustly encoded in the population at the 

choice point (i.e. the time of the second cue delivery), information about the 

expected outcome of the trial (reward/no reward) is not significantly encoded in 

the vCA1population.  

 

5.3.1  Selectivity for cues and cue combinations in vCA1 

Within the population of neurons that show differential firing for trials containing 

specific cues, we find three different patterns of selective activity.  

 

In line with previous studies (Eichenbaum et al., 1987; Manns et al., 2007; Taxidis 

et al., 2020), some neurons robustly responded to a specific odour irrespective 

of its position within the trials (elemental encoding).  Interestingly, many of these 

responses were delayed with regards to the stimulus delivery, thus maintaining 

information about the cue for several seconds after its delivery.  

 

Additionally, we found neurons that preferentially fired to an odour in a specific 

position (e.g. “B first”). Most of these neurons fired preferentially in the delay 

period or around the time of the second cue, recalling the “odour-time” cells 

described in previous studies (MacDonald et al., 2013; Taxidis et al., 2020). 

 

Together, these neurons with elemental (i.e. context-independent) response 

patterns made up 39.5% of all cells modulated by task events.  
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Interestingly, we found very few neurons that fired to an odour in second position 

in a context-independent manner, i.e. irrespective of which odour was presented 

before. Instead, the representation of the second odour was strongly 

contextually modulated: 35% of the neurons displaying selective activation 

related to task events responded in a contextual manner, e.g. “B after A”.  The 

firing of these neurons therefore is dependent on past experience (the first cue), 

recalling the splitter cells found in T-maze studies (Ainge et al., 2007; Frank et al., 

2000; Wood et al., 2000). 

 

Taken together, the cue-related selective activity in CA1 contains all information 

necessary to solve our structural learning task: an elemental representation of 

individual odour cues, maintained across the delay, which can then be 

combined with the sensory inputs related to the second cue into a structural 

(context-dependent) response that could then be associated to an outcome.  

 

In future work, it would be interesting to see whether the responses of neurons 

with task-relevant selectivity can be used as predictors for mouse behaviour, i.e. 

whether the response of the neurons is more pronounced on trials where the 

animal responds correctly. The granularity of this analysis would be further aided 

by recording licking as a continuous rate rather than a binary event, as discussed 

in Chapter 3.3.2.  

 

Analysing lick rate as a continuous measure would allow us to disentangle its 

potential role as both a motor output and a proxy for decision confidence. If 

neural activity correlates with licking purely as a motor behaviour, this would 

likely result in a general alignment between task-relevant firing and licking 

irrespective of trial outcome. However, if lick rate also reflects the animal’s level 

of certainty, we might observe stronger neuronal responses on trials where mice 

lick more vigorously before correct choices. Investigating these relationships in 
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detail could provide further insight into how hippocampal activity contributes to 

both decision-making and behavioural execution. 

 

These future additions aside, our finding that single cells in CA1 encode all 

information necessary for solving our task is further corroborated by the analysis 

of the activity of the entire population of recorded neurons at the time of the 

second cue delivery. Using linear classifiers, we found that the identity of the first 

odour is equally well encoded in the vCA1 population at the time of the second 

odour as the second odour itself, despite the difference in recency of the actual 

sensory cue. This strongly suggests that vCA1 neurons maintain information 

about the first odour across the delay. Our data does not have sufficient 

granularity to conclusively state whether the neurons firing across the delay 

support either a “constant firing” type or “population tiling the delay” type of 

information maintenance. It is furthermore possible that this delay activity is 

supported by other brain regions, such as prefrontal areas (as reported in 

(Spellman et al., 2015)).  

 

Interestingly, we found that splitting our training and testing data to test the level 

of generalisation (i.e. context-independent activity) within the population, we 

found that at the time of the second cue, both the identity of the first as well as 

the second odour can be decoded from the population activity. However, the 

accuracy of this decoding is lower than that of decoder trained on the full data, 

indicating that some information is lost when the decoder does not have access 

to contextual encoding. This effect is especially strong for the decoding of the 

first cue, indicating that at the time of the second cue, a larger part of the 

information about the preceding cue encoded in the vCA1 population is 

contextual. This is consistent with our findings on the single cell level: neurons 

with a structural selectivity (e.g. “A->B”) contain information about Odour A as 

the first cue, but this representation is contextual and thus not available to the 

decoders trained on split data.  
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This finding might indicate that representations of cues in vCA1 become more 

contextually modulated as the time passes, or alternatively could be seen as 

evidence that neural activity in vCA1 is shaped by task demand (since a 

contextual representation of the first odour is necessary to solve the task).  

 

In summary, data from individual neurons as well as the population activity as a 

whole strongly supports the idea that vCA1 encodes task-relevant features, in an 

elemental (i.e. context-independent) which is then supplemented by structural 

(i.e. context-dependent) activity, the latter of which contains latent information 

about the structure of the task. 

 

An interesting follow-up analysis to link findings on the single-cell level to the 

population decoders would be to test decoders using only subsets of neurons, 

specifically those that were previously identified as firing selectively for specific 

task events, or conversely those that did not show any selectivity in the single 

cell analyses. If the decoding accuracy remains high when using only the 

selective neurons, this would suggest that only a subset of cells carry task-

relevant information. If, on the other hand, the decoding accuracy remains high 

even when using only non-selective neurons, that would suggest that the single-

cell selectivity measures are too conservative, or that weakly tuned neurons still 

contribute in a mixed-effects way. Taken together, these two types of decoders 

could yield deeper insight into how task-relevant information is distributed 

across the population. 

 

5.3.2  Utility of task-dependent activity in vCA1 

It is important to point out that in light of the results of our optogenetic 

inactivation experiments, activity in vCA1 is likely not required for performance 

of our task at this 5s delay. We performed these experiments at 5s to ensure 

imaging quality (implant stability is negative affected by weeks-long training) as 

well as to maximise statistical power (mice on average perform fewer trials per 
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session in paradigms with long delays). Thus, while the task-dependent activity 

in vCA1 recorded in the 5s task reflects all features to solve our task, it is probably 

not used in this way, at least at this delay. 

 

This is in line with the hippocampus literature, which has shown encoding of 

task-relevant features in tasks that don’t require hippocampus. One such 

example is the delayed match-to-sample task that was used to identify time 

cells (MacDonald et al., 2013), another the alternating T-maze task that underlies 

much of the research into splitter cells (Ainge, Tamosiunaite, et al., 2007; Frank 

et al., 2000). 

 

We have started imaging mice performing the task at longer delays, but 

unfortunately due to the increased length of trials and lower number of mice, we 

have not yet reached sufficient numbers of sessions and cells to allow for 

statistically meaningful analysis or conclusions.  

 

However, a first look at these recorded neurons from the 30s task suggests that 

the results presented in this chapter might generalise to the way the task is 

represented even at time scales where vCA1 is essential to task performance 

(Figure 5.10).  We found anecdotal evidence of neurons displaying elemental 

(Figure 5.10a) as well as structural firing patterns (Figure 5.10b). We did however 

also find cells that, over the longer time scale of trials, displayed more complex 

firing patterns that included periods of time with different selectivities (Figure 

5.10c). More data is needed to see whether these examples are representative 

of the vCA1 neurons more generally, and whether the same features are encoded 

in the population as a whole. 
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Figure 5.11: First recordings in mice performing the task at longer delays corroborate 
findings from 5s data 
a. Calcium activity recorded from an example neuron displaying elemental selectivity (selective 
firing in the delay period on trials where C was the first odour) b. Example neuron exhibiting 
structural selectivity (selective firing in the response window only on CA trials). c. Example 
neuron showing a more complex firing pattern that has elements of both elemental, structural 
and outcome-related firing. 

 

5.3.3  Representation of reward in vCA1 

As mentioned in the introduction to this chapter, recent studies have 

investigated representation of reward in hippocampal populations, putting 

forward the hypothesis that reward is represented in hippocampus not only as a 

sensory cue, but a salient feature that might not only reorganise cognitive maps  

but even be predicted by sequential activity in hippocampal populations (Sosa 

et al., 2024). 

 

In our data, we identified only few neurons (6% of cells with task-related activity) 

whose activity was selective for a specific outcome. However, we did find a much 

higher proportion of “structural” neurons firing selectively for the rewarded 
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odour pairs than for unrewarded pairs (80% and 20%, respectively), consistent 

with the previously reported  “overrepresentation” of place cells around reward 

locations (Dupret et al., 2010; Hollup et al., 2001; Jarzebowski et al., 2022). Some 

of these structural neurons showed activity that spanned the time from cue to 

reward. They did however not consistently display any “ramp”-like activity as it is 

seen e.g. in striatal neurons (Howe et al., 2013). Given the temporal dynamics of 

calcium indicators such as GCaMP7f, this could be a consequence of calcium 

dynamics. Therefore, a conclusive statement of whether or not neurons in vCA1 

display ramping activity might be easier to achieve with more temporally precise 

recording techniques such as electrophysiology.   

  

Despite the bias towards rewarded pairs in the recorded neurons and the 

maintenance of trial-type-specific activity throughout the response window up 

to the outcome, linear SVM decoders trained on the population activity at the 

time of the second cue (choice point) were unable to reliably predict whether a 

trial was rewarded.  

 

This suggests that while the encoding of the odour pairs is influenced by the 

outcome, there is no general representation of value (upcoming reward) in vCA1.  

 

5.3.4  Methodological considerations 

In the analysis to identify neurons displaying task-related activity, we focused on 

four separate time windows that were relevant to our task: the first cue delivery, 

the delay, the second cue deliver and the time around the outcome.  

 

This method might however lead us to overlook neurons with differential activity 

around the borders of these events, and to overrepresent neurons whose peak 

selectivity aligns with these experimenter-chosen time bins. A more objective 

way of identifying neurons with selectivity towards task events would be to 
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calculate the selectivity across a sliding time window, thus investigating the 

occurrence of selective neurons in a more unbiased way.  

 

Furthermore, since selectivity was assessed across multiple neurons, time 

points, and conditions, multiple comparisons should have been considered in 

order to estimate the likely proportion of false positives. To this end, the shuffled 

control data already used to provide a baseline for each individual test could be 

used: By applying the same selectivity criteria to the shuffled dataset with 

randomised labels, we could get an estimate of how many neurons would be 

expected to appear selective in the absence of meaningful signal. If the 

proportion of selective neurons in the real data significantly exceeds that 

observed in the shuffled data, this suggests that selectivity is not simply a 

consequence of random fluctuations. A statistical test such as permutation 

testing could be used to quantify whether the observed difference in occurrence 

might arise by chance. 

 

To formally correct for multiple comparisons, different statistical approaches 

can be considered. One method is false discovery rate (FDR) correction, such as 

the Benjamini-Hochberg procedure, which controls the proportion of false 

positives while maintaining statistical power. A more conservative alternative is 

Bonferroni correction, which adjusts the significance threshold by the number of 

comparisons, though this can be overly strict in large datasets. Alternatively, 

permutation-based significance testing, where the analysis is repeated on 

shuffled data across many iterations, allows for an empirically determined 

significance threshold. Applying such corrections would ensure that the 

neuronal selectivity we report is not driven by statistical artefacts but instead 

reflects genuine task-related activity. 

 

A further concern is the anecdotal observation that the average calcium activity 

of some cells seems to rise before the event to which the cell is putatively 

selective for. Since often these events are cues and are thus not predictable, this 
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implies that either there is a systematic artefact that misaligns the calcium data 

with respect to the behavioural data, or else suggests that the calcium activity is 

not in fact a response to the cue at all.  

 

As a first pass, we could use a raster plot of all trials instead of the averaged 

calcium activity shown in Figures 5.3-5.5, to assess whether these seemingly 

pre-emptive  responses are a consequence of averaging over trials with very 

varied peaks, or whether it is a consistent phenomenon across many trials. 

 

As  a next step, it would be helpful to investigate the potential sources of a 

systematic time-shift in the data. Looking at our data collection and analysis, 

there are three points at which a small temporal misalignment might be 

introduced. Firstly, we record behavioural events and calcium activity on 

different computers, which means that we have to synchronise their respective 

clock times. To do this, we send a TTL pulse from the Arduino that delivers the 

behavioural cues to the miniscope DAQ board. This signal is sent at the time of 

the first cue and triggers the start of the miniscope recording. However, while the 

initial TTL pulse ensures a common starting point, any drift in clock speed 

between the two computers could cause increasing misalignment over time. To 

assess whether this is a concern, we could embed additional TTL pulses, for 

example et the end of the session which can be used to apply post-hoc temporal 

realignment.  

 

A second potential source of the temporal shift might be the median filtering step 

in the Minian pipeline, which, while effective at reducing salt-and-pepper noise, 

can also introduce temporal smoothing. If the filter window is too large, it may 

blur fluorescence transients and shift activity slightly backward in time, creating 

the appearance of pre-event responses. A simple way to assess this would be to 

compare raw fluorescence traces with the filtered data and determine whether 

the effect persists when using a smaller filter window or omitting the filter 

altogether. 
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Another possible explanation lies in the temporal deconvolution step of the 

CNMF algorithm. Since CNMF estimates putative spike trains from calcium 

fluorescence signals based on an assumed decay model, inaccuracies in this 

model—such as overly strong regularisation—could lead to small shifts in 

detected transients. This could cause activity to appear earlier than it truly 

occurs. Furthermore, because CNMF updates spatial and temporal components 

iteratively, there is a risk of signal leakage between neighbouring neurons, 

potentially distorting the timing of extracted activity. To test for this, comparing 

raw fluorescence traces to CNMF-extracted signals and adjusting temporal 

constraints within the algorithm would help clarify whether the effect arises from 

the analysis pipeline rather than the underlying neural activity. 

 

Another way to test whether the temporal shift is a product of the processing of 

the data with the Minian pipeline would be to use artificial data in the form of a 

step function. If the filtering steps or the CNMF causes a systematic shift, the 

output step function would be shifted with respect to the original one.  

 

Additionally, there are methodological consideration when it comes to the SVM 

decoders used for population analysis.  We only trained the linear decoders on 

the population activity around the second odour. We therefore cannot make any 

claims about the amount of information encoded in the population activity at any 

other time within the trial. Importantly, we postulate that given the presence of 

outcome-selective neurons in our own data and the findings about reward-

neurons in the literature, we likely would be able to robustly decode the outcome 

of the trial if we trained the decoder with the population activity around that time. 

Our findings thus make no claim about reward representation, but rather about 

the representation of predicted outcome (i.e. the expectation of reward in the 

seconds before).  
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Another consideration is the use of pseudo-populations. While this method is a 

well-established approach in population decoding analyses (ref, ref), 

particularly when simultaneous recordings from large populations are not 

feasible, it has some caveats. For example, if neurons exhibit strong within-

session correlations, e.g. slow drifts in activity, disrupting their natural trial-to-

trial relationships might slightly underestimate the true decoding performance 

when compared to a real, simultaneously recorded population. Furthermore, 

this type of analysis does not allow to investigate differences in encoding 

between animals. However, given the low count of cells per animal in our 

recordings, it is not possible to conduct a population-level analysis without 

combining data across sessions and animals, since a minimum number of 100 

cells is required to make these analyses yield meaningful  results.  
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6 Discussion 

6.1 Summary  

In this thesis, I have investigated what role hippocampal CA1 might play in a 

structural learning task.  

 

In Chapter 3, I described a novel paradigm: an olfactory paired-associates task 

in which mice are presented with a sequence of two odours separated by a delay 

and have to learn that certain odour pairs are indicative of reward, while others 

are unrewarded. Importantly, the contingencies of reward are counterbalanced 

such that each cue alone provides no information about upcoming reward - both 

configurally (A after B is rewarded, while A after C is not rewarded), and 

temporally (A after B is rewarded, while B after A is not rewarded), such that mice 

can only solve the task by combining the two cues across the delay.  

 

Mice learned to perform this task stably within the space of 8 days of training, 

and both control experiments as well as the results of logistic regression analysis 

indicate that mice indeed use a structural learning approach to solve the task.  

 

In Chapter 4, I tested how flexibly mice can use these previously learnt 

structures. I showed that mice were able to maintain high accuracy behaviour 

when the delay times between the odours were altered, even across very long 

delays of up to each 30s between each odour cue. Furthermore, I found that mice 

could rapidly recover performance after introduction of a novel odour into the 

task, suggesting that previous experience of a given task structure allows faster 

incorporation of new cue combinations that share the same structure.  

 

Lastly, I investigated whether hippocampus is required for this proficient 

performance on our task. Using bilateral optogenetic inhibition of vCA1, I found 
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that inactivation markedly impaired task performance only in paradigms with a 

30s delay between the cues.  

 

In Chapter 5, I presented calcium activity recorded from vCA1 neurons in well-

trained mice performing our task with a delay of 5s between cues. I found robust 

encoding of task variables, with individual neurons displaying selective activity 

to events such as individual odours, cue combinations as well as outcomes. This 

encoding wasn’t time-locked to the time of the actual event, but instead many 

neurons maintained the identity of the first odour cue across the delay or 

recalled the first odour at the time of the second cue. Furthermore, we found 

neurons that fired consistent with a context-specific representation, e.g. 

neurons that fired to odour A, but only if it was preceded by odour B.  

 

I further presented results from linear classifiers trained on the activity of the 

entire population of recorded neurons which indicate that while cue 

combinations (trial types) as well as individual cues are robustly encoded in the 

population at the choice point (i.e. the time of the second cue delivery), 

information about the expected outcome of the trial (reward/no reward) is not 

significantly encoded in vCA1.  

 

6.2 Representations of cues and structure in vCA1 

When recording calcium activity in neurons in vCA1 from mice performing our 

task, we found that 18% of neurons showed selective firing to task events, a 

proportion is in line with findings from studies using similar tasks (MacDonald et 

al., 2013; Taxidis et al., 2020). Of these selective neurons, 93% were found to be 

selective for parts of the cue structure, either by showing selectivity for individual 

odours, odour pairs or a combination of both, indicating that task-relevant 

information is strongly encoded in the population. 
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Consistent with previous research into the representation of odours in 

hippocampus, we found neurons that responded to a given odour irrespective of 

its position within the trial (Eichenbaum et al., 1987; Manns et al., 2007; Taxidis 

et al., 2020). This purely elemental type of response however accounted only for 

7% of selective neurons.  

 

A larger proportion (49%) of selective cells showed selectivity for specific odours 

in first position (e.g. “odour A as first cue”). The selective firing of these neurons 

was most often time-shifted such that the peak of mean activity centred not 

around the cue delivery but lay in the delay period or even during the delivery of 

the next. This finding is consistent with the odour-modulated time cells 

described both in rats (MacDonald et al., 2013) as well as mice (Taxidis et al., 

2020). The timing of these cells however was specific to task structure, i.e. we 

did not find any time-shifted odour cells tiling the seconds after the second cue. 

This suggests that these neurons represent information both about recent cues, 

but also about the task structure in which “first cue” is a meaningful position in 

time that needs to be tracked in order to optimally predict outcomes.   

 

This position-specific cue selectivity is similar to the  multiplexed 

representations that have been demonstrated in studies using spatial navigation 

tasks, such as landmark vector cells or odour-in-place cells (Deshmukh & 

Knierim, 2013), except that in our task, the neurons represent a specific cue at a 

specific position in time rather than in space. 

 

In our task design, the first and second cue carry different meanings: while the 

first cue can be seen as setting the context (i.e. narrowing the space of possible 

sequences down to two, only one of which is rewarded), the second cue 

represents the actual choice point (i.e. the second odour, evaluated within the 

context of the first, enables the mouse to predict the outcome).  
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In line with this, we found that the representation of the second cue is strongly 

contextual: 35% of selective neurons fired differentially in response to one 

specific odour pair, e.g. “B after A”.  The activity of these neurons therefore 

contains information about past and present: their firing integrates the previous 

cue with the current read out and can therefore be used to inform future action. 

This is consistent with the splitter cells reported in T-maze experiments that fire 

differentially based on past routes or upcoming choices  (Ainge, Tamosiunaite, 

et al., 2007; Wood et al., 2000).  

 

Taken together, within the population of selective neurons in vCA1, we found an 

elemental representation of odour identity, an encoding of odour-in-position 

maintained across the delay and context-specific conditional encoding of the 

second cue. To our knowledge, this is the first time that neurons maintaining a 

cue across a delay and cells integrating this maintained past with a current cue 

have been demonstrated in the same task.  

 

Furthermore, we found that the peak activity of the population of selective 

neurons was biased towards the time of the second cue, making the neural 

representation in vCA1 at the choice point well suited to support solving the task. 

We corroborated this hypothesis with decoders trained on the entire population 

of recorded neurons irrespective of their selectivity and found that, in line with a 

strong encoding of both context and sensory inputs, the decoders trained on 

neural activity around the time of the second cue delivery were able to correctly 

predict the identity of both the second as well as the first cue.  

 

Overall, these findings underscore the importance of hippocampus in the 

processing of temporal sequences and the encoding  of sensory events within 

task-specific contexts.  

 

These findings raise the question of whether selective neurons constitute a 

distinct functional cell type within vCA1 or whether their response patterns 
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simply emerge from different input configurations. Given that CA1 pyramidal 

neurons receive afferent inputs both at their apical dendrites from entorhinal 

cortex and closer to the soma from CA3 (Takahashi & Magee, 2009), it is plausible 

that their selectivity for task features arises from the integration of these inputs 

rather than from inherent differences in cell identity.  

 

The hippocampus is known to flexibly encode information depending on 

behavioural context (McKenzie et al., 2016), and task-selective responses may 

thus reflect dynamic input-driven modulations rather than distinct neuronal 

subpopulations. This aligns with work showing that the same hippocampal 

neurons can exhibit different firing properties across tasks (Komorowski et al., 

2009), reinforcing the idea that these representations are an emergent feature of 

network activity rather than being hardwired into specialised cell types. 

 

More broadly, our findings on the single-cell level contribute to the view of the 

hippocampus as a region that transiently encodes and maintains structured 

information about the past to facilitate learning. Unlike brain areas that encode 

predefined task-relevant features, the hippocampus is thought to act as an 

association machine that retains recent experiences until their relevance 

becomes clear, allowing post-hoc learning (Wallenstein et al., 1998; Ranganath, 

2010; Schapiro et al., 2017).  

 

In our task, vCA1 neurons encode the relationship between sequentially 

presented odour cues, enabling mice to use past information at a later decision 

point. This aligns with evidence that hippocampal representations are shaped by 

experience-dependent plasticity and play a key role in learning associations that 

span time (MacDonald et al., 2013; McKenzie et al., 2014). Crucially, since we 

find no reliable encoding of outcomes, our results highlight that this associative 

function of hippocampus is not performed in isolation but likely emerges from 

interactions with regions such as prefrontal cortex and nucleus accumbens, 

which are implicated in decision-making and reinforcement learning (Durstewitz 
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et al., 2010; Preston & Eichenbaum, 2013; Gerraty et al., 2014; Liu et al., 2014; 

LeGates et al., 2018; Zhou et al., 2019). 

 

 Taken together, these findings reinforce the notion that the hippocampus is not 

dedicated to a single cognitive function but rather serves as a flexible, 

experience-dependent system for structuring information over time. 

 

 

6.3 Encoding of outcomes in vCA1 

In our task, six different trial types can lead to two different outcomes: reward, or 

no reward. Mice have learnt these associations, as is evident by the high 

accuracy of their predictive licking.  

 

Yet, within our neural data, we did not find significant encoding of these shared 

outcomes at the time of this anticipatory behaviour. While we found a small 

number of individual neurons that displayed selective firing for all trial types with 

a shared outcome, their mean firing generally peaked around the delivery of the 

reward, therefore possibly encoding the shared sensory experience of reward 

rather than an expectation of the outcome. Furthermore, decoders trained on the 

population data at the time of the second cue performed only slightly above 

chance when predicting whether a given trial was rewarded or not.  

 

However, within the population of neurons that were selective for specific trial 

types, 80% of neurons responded to rewarded odour pairs. This is in line with 

previous research demonstrating the clustering of place fields near reward 

locations (Dupret et al., 2010; Hollup et al., 2001; Jarzebowski et al., 2022). 

 

Taken together, our data therefore supports the notion that hippocampus 

preferentially encodes cues and contexts that are related to rewarding 

outcomes. Whether this is due to the value of these outcomes, to their saliency, 
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or their association to an action (as opposed to unrewarded trials, which require 

no further action or attention) remains open. We find only weak evidence of 

encoding of generalised value (i.e. context-independent shared outcomes) in 

both the individual neural selectivity as well as in the population as a whole.  

 

This is in contrast to recent studies published on outcome encoding in 

hippocampus more broadly (Gauthier & Tank, 2018), and vCA1 specifically 

(Biane et al., 2023), that have found generalised representations of reward that 

weren’t restricted to reward consumption and, in the latter case, even were in 

anticipation of the predicted outcome. A possible explanation for this 

discrepancy might lie in the difference in task complexity: in the aforementioned 

studies, the cues signalling reward were unambiguous. Thus, in contrast to our 

task, there was no need for contextual differentiation of the neural 

representation, and therefore the outcomes might be encoded in the same 

cognitive map, thus looking like a generalised representation of reward, whereas 

in our task due to the need to disambiguate “B after A” from “B after C” this 

behavioural requirement might have caused neural representations to diverge.  

 

Recent computational work has indeed suggested that in complex environments 

with a high number of possible futures, it might be non-optimal to encode 

possible future trajectories in the same representation as the associated 

outcomes (Stachenfeld et al., 2017; Whittington et al., 2020). In these 

frameworks, representations of states and the transitions between them are 

learnt separately from the values associated with those states, leading thus to a 

cognitive map of state space that does not encode generalised value. It is 

suggested that hippocampus might be the neural substrate for this map of state 

space (Gershman, 2018).  

 

The data I’ve presented in this thesis supports this view of hippocampal function, 

suggesting that in tasks that require more complex associations than direct 

mapping from a cue to an outcome, vCA1 neurons encode information about 
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cues and contexts with a bias towards rewarded cue pairs, but do not encode 

generalised representations of expected outcome.  

 

6.4 Future research directions 

Investigating the neural mechanisms of encoding and representing relational 

structures in a task-specific way is crucial for a deeper understanding of how our 

brains are able to adapt to the constantly changing requirements of the 

environment and support flexible adaptive behaviour. In this thesis, I have 

presented data providing more insight into the role of vCA1 neurons in a 

structural learning task, specifically investigating how neurons in vCA1 encode 

relationships between ambiguous cues.  

 

However, many new questions arise from this data. Below, I outline several 

directions for future research that might answer some of these outstanding 

questions. 

 

6.4.1  Differential HC involvement depending on delay length 

In Chapter 4, I presented data showing that optogenetic inactivation of vCA1 

only affects behavioural performance of our task in paradigms where the delay 

exceeds 10s. While this suggests that ventral hippocampus is required to bridge 

longer delays, it is unclear what the exact role of vCA1 is within this process. To 

investigate this question in more details, I suggest a two-pronged approach.  

 

In a first step, more temporally defined optogenetic manipulations might be able 

to refine our understanding of which part of the process vCA1 is performing: by 

inactivating only during the delivery of the first cue, the delay, or the delivery of 

the second cue, respectively, it would be possible to distinguish between a role 

for vCA1 primarily in cue representation, memory maintenance across the delay, 

or integration of past and present cues.  
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Given our calcium imaging data as well as studies proposing that CA1 fulfils the 

role of a mismatch detector (Axmacher et al., 2010; Kumaran & Maguire, 2006), I 

would hypothesise that the last inactivation window (during the second cue 

delivery) is likely to have the most significant impact on behavioural 

performance.  

 

In a second step, recording calcium data in the 30s delay paradigm would be a 

logical next step to investigate the difference in hippocampal involvement 

between different delay lengths. With this data, it would be possible to compare 

the neural activity in vCA1 in a 30s paradigm to the data I’ve shown in this thesis 

recorded in the 5s task, and determining if there are differences in the encoding 

of task variables, and how those differences may relate to the difference in 

hippocampal requirement at these two delays. In light of the vast literature 

showing that hippocampus encodes rich and context-sensitive representations 

of task variables in many tasks despite not being required for their performance 

(Ainge et al., 2007; Biane et al., 2023; Ferbinteanu et al., 2011), it seems likely 

that the task-specific encoding would not change substantially in the paradigm 

with a longer delay. This hypothesis is supported by anecdotal data I’ve 

presented in Figure 5.11.  

 

Lastly, due to the temporal resolution of the calcium indicators used in our 

recordings and number of recorded neurons per session, our data from the 5s 

paradigm did not allow us to investigate the encoding of temporal sequence in 

fine detail. With recording data from the 30s task, it might be possible to compare 

neural activity to several proposed models for delay activity in hippocampus. 

 

One proposed mechanism for maintaining the identity of a past odour cue over 

a long time interval is through persistent neural activity across the delay period 

(Fig 6.1B). This type of neural activity has been most thoroughly described in 

prefrontal areas for example in working memory studies (Fuster & Alexander, 
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1971; Erlich et al., 2011; Liu et al., 2014; Yang et al., 2014), but examples of this 

type of delay firing have also been shown in hippocampus and the adjoining 

subiculum (Deadwyler & Hampson, 2006; Hampson et al., 2011). In this 

framework, a different set of neurons specific to each odour would become 

active after the first cue presentation and maintain activity until the second cue, 

thus allowing an association between the two odours across the delay period.  

 

Another proposed mechanism is that a population of neurons fire in sequence, 

tiling the delay time between first and second cue (Fig 6.1C). This type of 

chaining of neural activity has specifically been observed in tasks that like ours 

require the mouse to remember an odour cue throughout a delay period to 

compare it to a subsequent cue (Macdonald et al., 2013; Taxidis et al., 2020). 

 such as persistent neural activity of specific neurons, temporal sequences of 

ensembles of neurons, or even “silent” memory maintenance mechanisms 

(Figure 6.1) 

 

 
Figure 6.1: Proposed theories of hippocampal activity across delay period.  
a. Schematic of example trial b. Maintenance of a past odour cue over the delay period through 
persistent neural activity of single neurons. c. Maintenance of a past odour cue by a population 
of neurons firing in sequence (“tiling”). d. “Silent” memory maintenance that is not 
characterised by specific firing patterns in hippocampus 

 

However, studies showing such activity often use short delays (e.g. 2-5s) and 

even at those shorter delays the amount of information encoded by the neural 

population decreases over the delay (Taxidis et al., 2020), suggesting that this 

mechanism may not be well suited to longer delay paradigms. 
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Other mechanisms that have been put forward for memory maintenance over a 

delay period are “silent”, i.e. are not characterized by specific firing patterns in 

hippocampus itself (Fig 6.1C). For example, during trace fear conditioning, there 

is only limited evidence for delay activity in hippocampus. Despite this, 

population dynamics before and after conditioning differed significantly (Ahmed 

et al., 2020). This may be a consequence of memory stored in synaptic weights 

rather than in neuronal firing rates, a mechanism put forward in theoretical work 

to enable memory maintenance despite sparse firing (Mongillo et al., 2008). 

Another possible mechanism underlying “silent” delays may be that the memory 

is maintained outside the hippocampus, or in the activity between specific 

regions such as for example between hippocampus and prefrontal areas 

(Spellman et al., 2015). 

 

6.4.2 Role of HC in generalisation 

When exchanging one odour from the task with a novel odour cue that mice had 

no previous experience of, we found that they adapted to this change rapidly, 

returning to previous levels of behavioural accuracy in a span of days, and 

sometimes within one session.  

 

This is evidence supporting theoretical accounts that propose that structural 

learning might underly abstraction and inference (Whittington et al., 2020). To 

further investigate the way hippocampal activity supports structural learning, 

recording the calcium activity of neurons in vCA1 is a very exciting prospect. 

Specifically, it would be very interesting to compare the neural representation of 

the novel cue to the representations of the familiar cues.  

 

Results from a combined study in humans and mice performing a transitive 

inference task showed that hippocampus is involved in constructing 

representations of novel stimuli and that hippocampus preserves the learned 

temporal statistics in this representation of a new association (Barron et al., 
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2020). However, since the individual cues in that task were unambiguous, in 

contrast to the individual odours in our task that occur in both rewarded and 

unrewarded contingencies, the question of how a novel cue might be fit into 

several new associations is still open.  

 

As mentioned in Chapter 1, especially the domains of generalisation and 

categorisation are not uniquely ascribed to hippocampal circuits, but likely also 

involve frontal cortices. Specifically, hippocampus-PFC interactions are 

proposed to be essential to memory integration and generalising knowledge 

between tasks or stimuli (Gerraty et al., 2014; Rygula et al., 2010; Zeithamova et 

al., 2012). Thus, it is likely that the integration of a novel cue relies not solely on 

hippocampus, but on its interaction with frontal cortices.  

 

6.4.3  Projection specificity 

This aspect of projection-specific information processing raises another 

interesting research direction: previous work from our lab has shown how 

distinct, parallel output circuits in ventral hippocampus perform unique roles in 

behaviour (Wee et al., 2024). 

 

A further exciting research direction would therefore lie in examining the down-

stream targets of the hippocampal representations I characterised in this thesis. 

From the literature, it is suggested that value assignment might be dopamine 

mediated and therefore take place in the Nucleus Accumbens (NAc) (Howe et 

al., 2013). Furthermore, manipulations of the vHC-NAc projection have been 

shown to drive or suppress reward-seeking behaviours (LeGates et al., 2018; 

Zhou et al., 2019). Following from this, structurally responsive neurons that 

represent information about a specific contingency (i.e. odour pair) might project 

preferentially to NAc.  
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However, both PFC and OFC have also been implicated in credit assignment in 

goal-directed behaviours (Takahashi et al., 2011). Therefore, the PFC might also 

be a possible target that might receive and utilise this structural information. 

Overall, however, most of the studies relating frontal cortices to credit 

assignment use tasks requiring some level of inference or generalisation (Walton 

et al., 2010; Wang et al., 2020; R. C. Wilson et al., 2014).  

 

Given this evidence, investigating the HC-PFC projection might be especially 

interesting in those sessions where animals have to adapt to changes in the 

paradigm, whether they are changes to the cues or the temporal structure, since 

in those sessions and surrounding sessions it might be possible to disambiguate 

signals related to general credit assignment and update signals in response to 

changes.  

 

6.4.4 Development of hippocampal representation during 

learning 

In this thesis, I’ve investigated calcium recordings in vCA1 from expert mice 

performing our task and shown that neurons this region represent task-relevant 

variables in both elemental and structural ways. From the literature, we know 

that hippocampal representations are dynamic, with known phenomena such as 

remapping and representational drift introducing change into hippocampal 

representations (Ziv et al., 2013, Sanders et al., 2020).  

 

Therefore, future research might follow the calcium activity in hippocampus 

throughout learning, to investigate both when neurons in hippocampus start to 

represent certain features and relate this activity to phases of learning, and 

further to assess the amount of change the representations undergo both during 

and after learning. While electrophysiological recordings in spatial paradigms 

have shown the emergence of task-related representations within seconds 

(Bittner et al., 2017), results from tasks with similar structural demands as ours 
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have indicated that in these cases, representations emerge over the course of 

days, correlated to levels of learning (Taxidis et al., 2020). Given the different 

layers of task understanding represented in the different responses we find in the 

recorded neurons in vCA1 (elemental cue representation to structural response), 

these types of response might emerge at different times over the course of 

learning.  

 

In summary, in this thesis, I described a new task to investigate structural 

learning in mice and presented evidence for task-related representations within 

vCA1 that contain all information to correctly predict outcomes. Understanding 

the functional contribution of these representations and their role in 

generalisation and inference as well as investigating the projection targets 

included in this circuit will be important topics of future investigation.  
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Appendix 

Appendix 1 

Results of planned comparisons: post-hoc Tukey tests for beta coefficients 

(Figure 3.5e) 

X Y mean(X) mean(Y) diff T p-tukey 

A AB -0.057 1.295 
-

1.351 
-

6.006 1.70E-06 

A AC -0.057 -0.885 0.828 3.680 2.51E-02 

A BA -0.057 -1.335 1.278 5.683 7.93E-06 

A BC -0.057 0.866 
-

0.923 
-

4.103 5.95E-03 

A CA -0.057 0.868 
-

0.925 
-

4.113 5.75E-03 

A CB -0.057 -0.977 0.920 4.089 6.27E-03 

AB AandB 1.295 -0.041 1.335 5.935 2.40E-06 

AB AandC 1.295 -0.016 1.311 5.825 4.06E-06 

AB B 1.295 -0.151 1.445 6.425 2.17E-07 

AB C 1.295 -0.126 1.421 6.315 3.75E-07 

AB CandB 1.295 -0.110 1.405 6.244 5.34E-07 

AB bias 1.295 -0.167 1.461 6.496 1.52E-07 

AB previous_choice 1.295 0.563 0.731 3.250 n.s. 

AB previous_reward 1.295 -0.332 1.627 7.231 3.37E-09 

AC C -0.885 -0.126 
-

0.758 
-

3.371 n.s. 

AC B -0.885 -0.151 
-

0.734 
-

3.261 n.s. 

AC AandB -0.885 -0.041 
-

0.844 
-

3.751 2.00E-02 

AC AandC -0.885 -0.016 
-

0.868 
-

3.861 1.39E-02 

AC CandB -0.885 -0.110 
-

0.774 
-

3.442 n.s. 

AC previous_reward -0.885 -0.332 
-

0.552 
-

2.455 n.s. 

AC previous_choice -0.885 0.563 
-

1.448 
-

6.436 2.05E-07 

AC bias -0.885 -0.167 
-

0.718 
-

3.190 n.s. 

AandB BA -0.041 -1.335 1.295 5.754 5.68E-06 

AandB BC -0.041 0.866 
-

0.907 
-

4.032 7.67E-03 
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AandB CA -0.041 0.868 
-

0.909 
-

4.041 7.42E-03 

AandB CB -0.041 -0.977 0.936 4.160 4.85E-03 

AandC BA -0.016 -1.335 1.319 5.864 3.38E-06 

AandC BC -0.016 0.866 
-

0.882 
-

3.922 1.12E-02 

AandC CA -0.016 0.868 
-

0.885 
-

3.932 1.09E-02 

AandC CB -0.016 -0.977 0.960 4.269 3.23E-03 

B BA -0.151 -1.335 1.184 5.265 5.36E-05 

B BC -0.151 0.866 
-

1.017 
-

4.522 1.22E-03 

B CA -0.151 0.868 
-

1.019 
-

4.531 1.18E-03 

B CB -0.151 -0.977 0.826 3.670 2.59E-02 

BA C -1.335 -0.126 
-

1.209 
-

5.374 3.28E-05 

BA CandB -1.335 -0.110 
-

1.225 
-

5.446 2.37E-05 

BA bias -1.335 -0.167 
-

1.168 
-

5.194 7.34E-05 

BA previous_choice -1.335 0.563 
-

1.899 
-

8.439 4.58E-12 

BA previous_reward -1.335 -0.332 
-

1.003 
-

4.458 1.57E-03 

BC C 0.866 -0.126 0.993 4.412 1.88E-03 

BC CandB 0.866 -0.110 0.977 4.341 2.47E-03 

BC bias 0.866 -0.167 1.033 4.593 9.22E-04 

BC previous_choice 0.866 0.563 0.303 1.347 n.s. 

BC previous_reward 0.866 -0.332 1.199 5.328 4.04E-05 

C CA -0.126 0.868 
-

0.995 
-

4.421 1.81E-03 

C CB -0.126 -0.977 0.850 3.780 1.82E-02 

CA CandB 0.868 -0.110 0.979 4.350 2.38E-03 

CA bias 0.868 -0.167 1.035 4.602 8.88E-04 

CA previous_choice 0.868 0.563 0.305 1.356 n.s. 

CA previous_reward 0.868 -0.332 1.201 5.337 3.87E-05 

CB CandB -0.977 -0.110 
-

0.866 
-

3.851 1.43E-02 

CB bias -0.977 -0.167 
-

0.810 
-

3.599 3.24E-02 

CB previous_reward -0.977 -0.332 
-

0.644 
-

2.864 n.s. 

CB previous_choice -0.977 0.563 
-

1.540 
-

6.845 2.54E-08 
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