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Abstract

The meaning of individual events or cues in the environment is often
dependent on their position relative to other cues surrounding them. The
ability to learn about relationships between such ambiguous cues — often
called structural learning — enables us to recognise common underlying

structures of events and is thought to form the basis of episodic memory.

One area implicated in structural learning is the hippocampus. Specifically,
neurons in the CA1 area of the hippocampus have been shown to represent
variables such as cue configurations and their order in space and time. To
investigate the neural basis of structural learning, we designed an odour-
based task that requires mice to learn not only about sets of odour cues, but

about their relative order in time.

Importantly, the task design allows for manipulation of the temporal structure
and identity of cues separately, enabling dissociation of their neural
mechanisms. Using this task, we found that mice can flexibly use previously
learnt relational structures and adapt to both changes in the temporal pattern

as well asin cue identity.

In line with a role for hippocampal circuitry, optogenetic inactivation of ventral
CA1 (vCA1) markedly impaired task performance. Using in vivo calcium
imaging, we found that vCA1 neurons encode a wide variety of task-relevant
information, including maintaining odour identity across the delay and
exhibiting context-specific responses to odours. Furthermore, population-
level analysis revealed that neurons in vCA1 encode cues and cue

combinations more robustly than outcomes.



Impact statement

Flexible behaviour is essential for our ability to adapt to novel situations as well
as to inhibit inappropriate maladaptive behaviours. This behavioural flexibility
relies on the brain’s capacity to derive meaning from ambiguous cues by taking
into account the temporal and spatial context surrounding them. Notably, this
ability, often called structural, contextual or relational learning has been
shown to be impaired in some of the most debilitating neural disorders —
including anxiety disorders, major depression, bipolar disorder, and
schizophrenia. Therefore, understanding the neural substrates and cellular
mechanisms of functional structural learning provides a first step towards

identifying some of the changes underlying neuropsychiatric disease.

In this thesis, | investigated hippocampal contributions to structural learning,
focusing on how the hippocampus, specifically the ventral CA1 area,
processes and encodes relationships between cues in order to make optimal
decisions. To do this, | used an innovative odour-based task in mice as well as

optogenetic tools and genetically encoded calcium indicators.

To the academic community, this research provides insight into hippocampal
function and contributes to the understanding of episodic memory and
behavioural flexibility, potentially informing future neuroscience research.
Furthermore, the development of a non-spatial, odour-based structural
learning task might be adopted and refined in future studies looking at
structural learning in other brain regions, or in genetic mouse models of

different disorders.

Outside of academia, this thesis and work derived from it might have

implications for our conceptual understanding of neurodegenerative



conditions such as Alzheimer’s disease, which are characterised by
impairments in episodic memory, or into neuropsychiatric disorders such as
schizophrenia that are associated to impairments in structural learning and

behavioural flexibility.

More broadly, insights from this thesis might inform science policy and might
be of use for funding bodies when deciding about the potential of future

research programmes related to memory and mental health.

However, the impact of this research is likely to unfold incrementally,
contributing to the field of neuroscience over many years. It provides a partial
answer to fundamental questions about how the hippocampus contributes to
the understanding of cues within context that can be built upon by further
studies, potentially finally leading to changes in the diagnosis and treatment
of neuropsychiatric and neurodegenerative diseases, and thereby indirectly

supporting improvements in cognitive health and quality of life.
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1 Introduction

In this chapter, | will give a definition of the type of learning that is the topic of this
thesis: structural learning. I’'ll describe its importance as a building block of
essential cognitive function and give an overview of the literature placing the
hippocampus as a possible circuit supporting the computation underlying
structural learning. Finally, | will outline the experimental conditions required to

investigate the role of hippocampal circuits in structural learning.

1.1 Structural learning as a fundamental building

block of cognition

Learning is an essential function of the brain, fundamental to the adaptability
and independent survival of people and animals. Defined as a change in
behaviour as a result of gaining information about the world (Kandel, 2021),
learning is the association process connecting this information about the
external world to an action. How exactly this process is implemented on the
neuronal level has been a focus of neuroscientific research from the molecular
level up to whole-network connectivity studies for decades and yet it is still not

fully understood today.

Much of the research into learning has used classical conditioning as a
paradigm, atype of learning in which a neutral stimulus is presented immediately
before or simultaneously with an outcome, and the success of learning can be
measured as the development of actions indicating prediction of such outcomes
(e.g. Pavlovian salivation, auditory fear conditioning) (Blanchard & Blanchard,
1972; Davis, 1992; Maren, 1996; Pavlov, 1927; Pearce & Hall, 1980; Rescorla &
Wagner, 1972). However, in our everyday lives as well as in the natural habitats
of most animals, cues aren’t always uniquely associated to one outcome - often

the meaning of individual events or cues is dependent on other neutral cues




surrounding them. For example, understanding the meaning of an event may

depend on its spatial or temporal relationships to other neutral cues.

This type of learning has been given multiple names, among those structural,
relational, hierarchical or contextual learning. For the purposes of this thesis, |
will discuss this type of learning under the term structural learning and define it
as any learning that requires a directional association of two or more neutral
cues in space or time (e.g. A before B, C to the right of D; Aggleton et al., 2007)
required to correctly predict an outcome. Unlike classical conditioning,
structural learning captures the directional relationships between neutral cues

as opposed to cues and valued events, such as outcomes or actions.

Given this definition, contextual learning might be seen as a special case of
structural learning in which many cues, often from different modalities, have to
be integrated in order to correctly predict appropriate actions and likely
outcomes (Aggleton et. al, 2007). While it is not currently clear whether
structural learning and contextual learning are indeed supported by the same
neural substrates, they both require the ability to associate multiple neutral
stimuli and combine them in a directed way. Similarly, episodic memory can be
conceptualised as relying on the foundational process structural learning: here,
instead of ordered cues in space, specific events are ordered into temporal

structures (Eichenbaum, 2013).

In addition to its putative function in supporting episodic memory and contextual
spatial behaviour, structural learning has been suggested to have more general
advantages such as enabling detection of commonalities between distinct
experiences. By integrating cues into a relational structure, the meaning of new
cues with a similar structure can be inferred, thereby enabling generalisation and
facilitating not only flexible behaviour in novel contexts but possibly also the
uniquely human ability to imagine impossible scenarios (Hassabis et al., 2007).

Taken together, structural learning is put forward as a building block for the
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essential task of organising knowledge into structures, an essential part required

for flexible behaviour.

However, despite its essential role in many everyday behaviours, there is only
limited insight into how this form of learning is achieved within the brain.
Crucially, structural learning cannot be explained by the same type of learning
rules that have been put forward as the basis of classical associative learning,
e.g. reinforcement learning in the basal ganglia (Schultz et al., 1997; Sutton &
Barto, 1998). Thus, investigating the neural substrates underlying structural

learning is essential to understand its distinct mechanisms.

1.2 Brain regions associated to structural learning

Multiple brain regions have been proposed to perform processes tied to
structural learning as well as derived cognitive functions that are thought to rely
on such learning, e.g. categorisation, inference and generalisation. Inference
relies on expanding learnt relational structures to include new items or
situations, while categorisation involves grouping similar items or experiences
together accordingto a rule which is often defined by structural relations. Finally,
generalisation allows for the application of learned structure to entirely new, yet
similar situations. Thus, brain regions associated with either of these abilities
likely contain or process representations of structure. While | cannot describe
the full breadth of the research into all regions within the constraints of this
thesis, | will give a brief overview of the three regions most often associated to

structural learning.

One region connected to structural learning in a large body of studies in humans,
primates and rodents is the prefrontal cortex (PFC). The PFC can be anatomically
subdivided into three main areas: the dorsolateral prefrontal cortex (dIPFC), the

medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC). Structurally,
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the two latter areas are highly interconnected, and it is these areas that are

associated to functions related to structural learning.

1.2.1 mPFC, working memory and rule-based learning

Prominent accounts of mPFC function state that single neurons in mPFC
maintain representations of task-relevant stimuli over multiple seconds, thereby
allowing their integration with subsequent stimuli in working memory tasks
(Funahashi et al., 1993; Levy & Goldman-Rakic, 2000; Miller et al., 1996; Vogel et
al., 2022; F. A. W. Wilson et al., 1993). This sustained activity has two key
properties. Firstly, it is specific to the stimulus being remembered, i.e. different
neuronal ensembles encode different stimuli (Funahashi et al., 1993; Miller et
al., 1996). Secondly, this sustained stimulus response is task-dependent, i.e.
distractor stimuli are not maintained in the same way (Rainer et al., 1998}. Thus,
sustained cue responses in mPFC are not purely a buffer for sensory perception
but are specific to the current task and goals. This is further supported by the
finding that some neurons in mMPFC respond selectively to the temporal context
of a task (e.g. fire specifically in the inter-trial interval)( Jung et al.,1998),
suggesting an abstract representation of task structure that is either present in
mPFC, or can be accessed by it. This idea is further supported by the finding that
the population activity in mPFC changes when task rules change (Durstewitz et
al., 2010; Rich & Shapiro, 2009) and that an intact mPFC is required for rule-
based categorisation (Monchi et al., 2001; Wallis et al., 2001).

Taken together, mPFC activity thus relates both to fundamental components to
structural learning as well as higher cognitive processes that require a structural

understanding of the environment.

1.2.2 OFC and representations of task state

The same is also true for its neighbour, OFC, but while mPFC seems to have

stronger representations of cues and contexts, OFC is suggested to be especially
17



involved in representing and updating the value of choices and outcomes

(Balleine et al., 2011).

This is especially important in partially observable scenarios with high
uncertainty, such as bandit tasks, in which contingencies reverse suddenly. In
line with this, lesion studies show that OFC lesions impact behavioural flexibility,
reducing the ability to switch between behavioural strategies even though
learning of the initial stimulus-outcome pairing is unaffected (Butter, 1969; Dias
etal., 1997; McAlonan & Brown, 2003; Schoenbaum et al., 2003; Sul et al., 2010).
Similarly, tasks in which the sensory features of different outcomes inform
behaviour are dependent on functional OFC circuits (McDannald et al., 2005).
This has led to the hypothesis that OFC might contain representations of task
states (Wikenheiser & Schoenbaum, 2016; R. C. Wilson et al., 2014). Specifically,
it is suggested that OFC integrates sensory experience with choice and reward
history to form representations of states in which a specific rule (e.g. “right lever

is rewarded”) are true.

In summary, OFC activity is associated with tracking distinct states within a task
and updating the associated values of specific actions, especially in situations
where these task states are unobservable (i.e. uncued by the sensory
environment (Wikenheiser & Schoenbaum, 2016)). OFC therefore is thought to
represent task states at multiple levels of abstraction (within trial as well as
between trials and even blocks), showing that OFC constructs or/and processes

structural information.

1.2.3 Hippocampus and the cognitive map

Another brain region involved in structural learning is the hippocampus (HC).
Ever since the discovery of place cells (O’Keefe & Nadel, 1979), HC has been
firmly associated with the idea of a cognitive map. The underlying idea, first

proposed by Tolman (Tolman, 1948), refers not to exclusively to a map of the
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spatial environment, but rather to an mental representation that binds external
sensory features with internal factors to form an abstract relational structure

that facilitates flexible behaviour.

Indeed, in addition to an important role in spatial memory and navigation,
hippocampal circuits have also been shown to be required for autobiographical
memory (Burgess, 2002; Vargha-Khadem et al., 1997), contextual learning
(Blanchard et al., 1977; Fanselow, 1990), scene construction (Graham et al.,
2010), and temporal sequences (MacDonald et al., 2013; Omer et al., 2022).
While these functions might seem unrelated at first glance, it has been
suggested that HC performs a common computation underlying all of the above
processes: encoding relationships between external and internal cues implicitly,
even in absence of a task; then integrating cues and events that are likely to co-
occur into states (or contexts) and finally predicting likely future states based on
the current experience (Behrens et al.,, 2018; Dudchenko & Wood, 2014;
Eichenbaum & Cohen, 2014; Niv, 2019). If we return to our definition of structural
learning as the learning of directional relations between multiple stimuli, this
theory of hippocampal function posits HC as an essential part of the putative

structural learning network.

1.2.4 Summary

Taken together, these data support a role in structural learning for mPFc and OFC
as well as HC. In line with a synergistic integration of each of their contributions,
electrophysiological and histological studies have identified pathways that allow
for interaction between all regions. HC projects directly to mPFC from CA1 and
the subiculum (Cenquizca & Swanson, 2007; Jay & Witter, 1991; Sanchez-Bellot
etal., 2022), and mPFC connects to HC via a disynaptic route through entorhinal
cortex (EC) or through nucleus reuniens (NR) (Burwell & Amaral, 1998; Vertes et
al., 2007). Similarly, OFC and HC are connected via EC and NR (McKenna &
Vertes, 2004; W.itter et al., 2000). Finallyy, mPFC and OFC are tightly
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interconnected (Haber et al., 2022), thus making inter-regional coordination of

different processes required for structural learning possible.

How exactly the contributions to structural learning might be subdivided across
PFC, OFC and HC is not yet fully understood. Differences in task design and data
acquisition make it difficult to directly compare the role of each of these areas to
structural learning. From the literature, it seems that that OFC and PFC represent
structural information with a higher level of abstraction and task-specificity
(Miller & Cohen, 2001; Sul et al., 2010; Wikenheiser & Schoenbaum, 2016), while
HC encodes both task-relevant as well as task-irrelevant stimuli and has been
shown to be especially sensitive to the statistics of the environment even without
the requirement of a task (Eichenbaum, 2017; Niv, 2019). These subtle
differences might hint at a role for hippocampus as a first step in the chain of
processes leading from the construction of structural cues all the way to

abstract categorisation.

In this thesis, my goal was to investigate the potential role of the hippocampus
in structural leaning. Therefore, in the following sections, | will describe theories
of hippocampal function put forward in the literature, and how they, taken
together with considerations of the circuitry and connectivity of hippocampus,
can support the unifying hypothesis of hippocampus as a possible first step in

the hierarchy of structural learning and related processes.

However, this is not meant to imply that the hippocampus is the only area in the
brain implicated in or necessary for this kind of learning. An interesting future
direction would be to contrast and compare the contributions of OFC and PFC

to the findings described in this thesis.
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1.3 Theories of hippocampal function

1.3.1 Episodic and episodic-like memory

The hippocampus has been implicated in the encoding and retrieval of episodic
memory since the mid-20" century, largely due to evidence from human case
studies in neurology and neuropsychiatry. Episodic memory can be defined as a
type of long-term memory that encodes unique events in sequential order
together with their temporal, spatial and emotional context (Eichenbaum, 2017;
Panoz-Brown et al., 2016). Famously, patient H.M. suffered severe memory
impairments after a bilateral medial temporal lobe resection, apparently without
any perceptual disorder and general intellectual loss (Scoville & Milner, 1957).
This was the first in a series of studies that suggested a role for the hippocampal
formation in the encoding and retention of memories — but only in some, not all
cases. Specifically, short-term memory as well as procedural and semantic
memory were shown to be unaffected by damage to the hippocampus (Burgess,

2002; Vargha-Khadem et al., 1997).

Further evidence for the hippocampal involvement in episodic memory comes
from the progression of neurodegenerative diseases such as Alzheimer’s
disease and Lewi body dementia: these diseases which lead to episodic memory
loss tend to damage the hippocampus as well as the entorhinal cortex well

before other brain areas (Rao et al., 2022).

But also in healthy human subjects, hippocampal activity is linked to memory:
fMRI studies report that the hippocampus is activated when subjects are asked
to remember the order of objects from a virtual reality driving game, or when
reconstructing the correct order of scenes previously seen in a clip (Ekstrom &
Bookheimer, 2007; Lehn et al., 2009). Interestingly, the hippocampus was shown
to be preferentially active when the subjects were asked to order events in time,

as opposed to making simple recency judgements (Eichenbaum, 2013).
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The technical limitations of researching episodic memory in humans leave many
questions on the cellular and circuit level unanswered, but while animal models
offer a richer toolkit to study neural circuits and computations, it is unclear
whether the concept of episodic memory can be applied to rodents. Thus,
researchers have had to explore creative ways to investigate episodic-like

memory in rodent models.

One such paradigm that has been widely used to interrogate memory for
individual experiences inrodents is Pavlovian fear conditioning. In this paradigm,
neutral stimuli such as tones, lights, or entire environments are arranged to
predict aversive outcomes such as electric shocks, and then the display of

learned fear behaviours is quantified in order to measure mnemonic retention.

Foundational work found that damage to the amygdala as well as the
hippocampus could damage the expression of learned fear (Blanchard et al.,
1977; Blanchard & Blanchard, 1972; Phillips & LeDoux, 1992), corroborating the
role of hippocampus in memory. However, while fear conditioning to a discrete
cue was found to be mediated by the amygdala (Maren, 2005), the role of the
hippocampus in this paradigm turned out to be more complicated:
hippocampus seems to be essential to the behaviour only in cases where an
entire environment (context) predicts the shock (as opposed to a singular cue)
and only if the animal had sufficient time exploring this context prior to the shock
(Fanselow, 1990). But even conditioning to a discrete cue can be hippocampus-
dependent - if a short temporal delay, often called a “trace interval”, is
introduced between the cue and the aversive outcome, hippocampal lesions
impair retention and expression of the fear memory (Quinn et al., 2002; Sellami
et al., 2017). Interestingly, some studies show that hippocampal involvement

increases as delays become longer in duration (Sellami et al., 2017).

These results suggest that the role of hippocampus in memory might lie in

binding together multiple stimuli across space (in a context) or time (across a
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trace interval), thereby performing the computation underlying structural

learning.

1.3.2 Scene imagination and mental time travel

In a line of research related to episodic memory, it was found in the early 2000s
that damage to the hippocampus in humans does not solely impact their ability
to recall past experiences, but that patients were also impaired at describing
scenes in the present (Graham et al., 2010) and even constructing fictitious and

future scenes in their imagination (Hassabis, Kumaran, Vann, et al., 2007).

The construction of scenes is of course intricately linked with autobiographical
memory: for most people, recalling the past involves imagining the spatial and
temporal context of the memory (“mental time travel”). It is therefore not
surprising that in patients with hippocampal damage, impairments in
autobiographical memory predict difficulties with scene construction ability,
while in patients without memory deficits, scene construction is generally intact
(Squire et al., 2010). It is exactly this variability in impairments however that
makes it difficult to conclusively describe the function of hippocampus based on
case studies — some patients suffer no lapse in autobiographical memory, even

though their hippocampus has been substantially damaged.

Functional magnetic resonance imaging (fMRI) studies in healthy subject have
tried to clear up some of these inconsistencies and have shown that the
hippocampus is indeed engaged when imagine future scenes (Addis et al., 2007)
aswellasimagined scenarios (Hassabis, Kumaran, & Maguire, 2007). It has been
proposed that the common computation underlying all of these functions is the

construction of rich spatial contexts (Maguire & Mullally, 2013).

However, these results could also be satisfactorily explained by the theory that

hippocampus is required for the binding of arbitrary relations among individual
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elements within a context, irrespective of whether these elements are framed as
an autobiographical episode, therefore once again tying back to the computation

underlying our definition of structural learning.

1.3.3 Spatial navigation

Indeed, in research largely parallel to the studies linking the hippocampus to
episodic memory, another strand of hippocampal literature began with the
recording of principal neurons in hippocampus that fire when a rat is in a
particular location in its environment — the discovery of “place cells” (O’Keefe &

Dostrovsky, 1971).

Since then, spatial navigation has been the predominant paradigm to study
memory in rodents and has yielded an astonishing amount of insight into the
neural properties that allow the hippocampus to map out environments and
guide navigation. Cell types such as grid cells in medial entorhinal cortex (cells
that fire at regular intervals as an animal traverses an environment), border cells
in subiculum (cells that respond to an environmental boundary in a specific
position relative to the animal) as well as splitter cells in CA1 (cells whose firing
rates are modulated depending on the animals past and future trajectory) have
been described and, together, comprise a rich model of the world represented in
hippocampal circuits (Ainge, Tamosiunaite, et al., 2007; Byrne et al., 2007;
Deshmukh & Knierim, 2013; Hafting et al., 2005; Lever et al., 2009; McNaughton
et al., 2006; O’Keefe & Dostrovsky, 1971; O’Keefe & Nadel, 1979; Taube et al.,
1990; Tennant et al., 2022).

These findings exemplify how the neurons in hippocampus and surrounding
areas are uniquely suited to encode the different components of a multisensory
environment as well as the events that take place within it (Albasser et al., 2013;
Hartley et al., 2014; Jezek et al., 2011). More than simply representing spatial

variables, lesion and inactivation studies have also suggested that functional
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hippocampal circuits are necessary for the learning and retention of spatial
maze tasks (Jarrard, 1978; Morris et al., 1982; M. B. Moser et al., 1995), and the
firing of spatially selective neurons has found to be predictive of spatial memory
performance (Dupret et al., 2010). It was thus suggested that the unifying factor
between autobiographical memory, imagination and navigation might be the

underlying spatial component (Maguire & Mullally, 2013).

1.3.4 Temporal representations in hippocampus

This view, however, was complicated by the discovery of a further type of neuron

in the hippocampus CA1 area in the early 2000s: “time cells™.

These cells were first reported in animals running on a treadmill, their activity
tiling the time spent running on a wheel in a specific sequence, just like place
cells firing one after the other on a linear path (Pastalkova et al., 2008). Further
research showed that this type of cellular activity could even be found in the
absence of running in stationary rats (MacDonald et al., 2013), suggesting that
hippocampus encodes time alongside space, and not solely as a secondary

effect of movement (e.g. for velocity tracking or path integration).

Furthermore, several studies have shown that the activity of principal neuronsin
hippocampus during a delay period in a behavioural task can reflect past events.
In two studies using different versions of an odour matching task, the neural
activity not only tiled the delay period, but involved a different population of
neurons depending on which odour had preceded the delay (MacDonald et al.,

2013; Taxidis et al., 2020).

Taken together, this data shows that hippocampal circuits can encode cues and
events within their temporal context as well as within their spatial context, thus
encoding information about the item itself as well as its relative position along

those dimensions.
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1.3.5 A common computation unifying different theories of

hippocampus

In summary, evidence from studies in humans and rodents suggests that
hippocampus is fundamentally involved in the encoding, but not storage, of long-
term autobiographical memory, is required for spatial navigation as well as the
tracking of elapsed time, and is linked to the perception and construction of

scenes.

Numerous theories have attempted to describe how the hippocampus may
support such a diverse range of functions. While each theory draws on evidence
from a different set of studies and contributes nuanced and specific
interpretations, many can be summarised as the idea that hippocampus is
required for the binding of arbitrary elements within an experience or across
items within a context, regardless of whether these relationships are embedded
within an autobiographical memory or a spatial framework (Aggleton & Pearce,
2001; Eichenbaum & Cohen, 2014; Ranganath, 2010; Rudy & Sutherland, 1995;
Whittington et al., 2020).

Specifically, it has been suggested that even time and space may be just two
examples of dimensions along with the hippocampus can structure knowledge,
i.e. build neural representations that contain both the individual items, events or
cues as well as the relation between them, thereby performing the fundamental

operation of structural learning.

In support of this theory, an fMRI study found “grid-cell-like” activity in entorhinal
cortex, a major input to hippocampus, when subjects were presented with
images of birds with varying leg and neck lengths, thus suggesting that the

hippocampal formation may represent the birds in a 2D space spanned by these
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two variables (Constantinescu et al., 2016). In mice, it has been found that
hippocampal neurons can represent a “place” in sound space if sound
frequency is an important part of the task, analogous to place cells representing
a location in the environment (Aronov et al., 2017). Similarly, it has been shown
that depending on task requirements, single cells in hippocampus can respond
selectively to specific spatial contexts, landmarks and even goals, indicating that
representations in hippocampus are driven by behavioural requirements and can
construct relations between items of different modalities as well as internally

generated variables (Ekstrom et al., 2007; Wood et al., 1999; Gauthier.2018).

In summary, structural learning is a unifying theory of hippocampus that is
consistent with experimental data from a wide range of studies using different
techniques, paradigms and model organisms. In the next section, | will outline
how the anatomy and circuitry of the hippocampus supports its putative function

of performing this common computation over a set of diverse inputs.

1.4 Anatomy and connectivity of the hippocampus

1.4.1 Pattern separation, completion and comparison in the
trisynaptic loop

The hippocampus consists of a largely unidirectional transverse loop (termed
the “trisynaptic loop”) in which cortical information enters the hippocampal
formation through the entorhinal cortex (EC) and is then passed via excitatory
connections through the dentate gyrus (DG), the CA3 and CA1 region, and then
to subiculum from where information is distributed back to cortex (Amaral &
Witter, 1989; Andersen et al., 1971; Cenquizca & Swanson, 2007; Valero & Prida,
2018).
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Perforant
pathway
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Figure 1.1: Structure of Hippocampus. Top, schematic of the position of hippocampus (blue)
within the rodent brain with a transparent inlay indicating the different regions of hippocampus

(CA1, CA3, DG, Sub). Bottom, Schematic of the hippocampal trisynaptic loop. Figure adapted
from the 2020 PhD thesis by Candela Sanchez Bellot (UCL)

The specific neural anatomy of the trisynaptic loop, especially of the CA3 and
DG, has already in the 1970s led to the hypothesis that this circuit might be
responsible for the weighing of novelty and similarity in the storage and retrieval
of memory (Marr, 1971). Specifically, the DG contains principal neurons
(“granule cells”) that outnumber the input cells from EC by an order of magnitude
(Yassa & Stark, 2011). These granule cells show next to no recurrent connectivity
within DG, and therefore are proposed to be well suited to separate patterns of

similar inputs, converting them into a unique pattern of granule cell activity.

In the next step of the model, this proposed differentiated signal gets sent to
CA3, where it causes powerful depolarisation due to large synapses
(McNaughton & Morris, 1987) and is thought to drive the distinct encoding of new
memories. However, CA3 also receives input directly from EC and further has

strong recurrent connectivity, which might be used to auto-associate previously
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stored representation from partial cues. Since its proposal, this theory of pattern
separation and completion in DG and CA3 has found support from experimental

data (Lee & Kesner, 2004; Leutgeb et al., 2007; Neunuebel & Knierim, 2014).

While the theory was first suggested with the function of encoding and retrieval
of autobiographic memory in mind, learning about ensembles of overlapping
cues while maintaining both separability and similarity lends itself equally well

to the representation of spatial environments and abstract relational structures.

The putative purpose of recalling past experience similar to a present situation is
of course the ability to predict likely future events and outcomes. In the
trisynaptic pathway, CA1 is the recipient of the “pattern completed” CA3 activity
as well as direct projections from the EC as well as other regions, and CA1 was
thus put forward as a candidate to compare these recalled experiences to the
present sensory input (Kumaran & Maguire, 2006). Indeed, data from fMRI
studies and intracranial EEG studies in humans has shown increased CA1
activity in relation to prediction violation (Axmacher et al.,, 2010; Kumaran &
Maguire, 2006). Interestingly, this mismatch seems to be stronger in tasks where
implicit sequences were violated rather than tasks in which subjects were asked

to make explicit match or mismatch judgements (Chen et al., 2015).

Taken together, the circuit pattern along the trisynaptic pathway with its
additional direct projections provides a cellular basis for a common
hippocampal computation, and hints at the possible parts of this computation:
pattern separation, pattern completion to generate predictions and finally
compare these predictions to the present sensory data. These processes place
the hippocampus as a possible site for structural learning: in order to recognise
the shared structure across experiences, pattern separation and completion are

necessary.
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But this alone is not sufficient to make structural learning possible. In order to
integrate events and cues that are in different spatial locations and/or occur in
different moments in time, any brain region underpinning structural learning
must have a mechanism to connect distant events or stimuli. The redundancy
within hippocampal networks as well as connectivity between sub-regions of
hippocampus as well as to prefrontal areas makes it a good candidate to fulfil

this role of maintaining information (discussed in more detailin Chapter 6.4.1).

1.4.2 Functional differentiation along the dorso-ventral axis

While the circuit motif described in the previous section repeats itself along the
longitudinal axis of the hippocampus, afferent and efferent connectivity change
along the dorso-ventral axis of the hippocampus (Swanson & Cowan, 1977),

thereby allowing the same computation to be executed on variable information.

Specifically, the dorsal HC receives inputs from the visual, auditory and
somatosensory cortices via EC, while the parts of EC projecting to ventral HC
receive more inputs from the amygdala, olfactory cortices as well as the
hypothalamus. This pattern of inputs is largely maintained on the efferent side:
axons projecting from CA1 and the subiculum maintain their dorso-ventral
position in the lateral-to-medial axis of the EC (T. V. Groen & Wyss, 1990; T. van
Groen et al., 1986; Kohler, 1985), and direct projections from dCA1 and vCA1
show a different ensemble of targets, e.g. dCA1 but not vCA2 project to anterior
thalamus and retrosplenial cortex, vCA1 but not dCA1 project to VTA and

amygdala, (Fanselow & Dong, 2010).

Given these differences anatomical projection patterns as well as distinct
signatures of gene expression, dorsal and ventral hippocampus have been
proposed to be functionally distinct (Fanselow & Dong, 2010; M. Moser & Moser,
1998). However, what exactly the respective role of dorsal and ventral

hippocampus might be is not yet fully understood. This is partly due to the
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general difficulty of comparing results acquired through different behavioural
paradigms, but also due to a bias in anatomical targets between the fields: the
navigation field has historically focused on dorsal regions (Bittner et al., 2017; M.
B. Moser et al., 1995; O’Keefe & Nadel, 1979) whereas fear conditioning studies
have more frequently targeted ventral hippocampus (Kjelstrup et al., 2002;
Maren & Holt, 2004; Twining et al., 2020). Anecdotally, studies using tasks
paradigms that require structural learning have shown a role for ventral

hippocampus (Pennartz et al., 2011; Riaz et al., 2017).

In summary, the ventral and dorsal hippocampus have been suggested to be
functionally distinct units given their different afferent and efferent connectivity.
However, the same circuit motif is present throughout the entire hippocampus.
A parsimonious hypothesis combining these two views is that the hippocampus
might carry out a common computation across the entire dorso-ventral axis, but
that the functional use of this computation varies based on the inputs it is

performed on, and the projections it is sent to.

1.4.3 Odourinformation in the hippocampus

The olfactory system provides information about odours in the environment to
the hippocampus, with the olfactory bulb (OB) serving as the first relay for
incoming olfactory signals. The OB processes sensory input from olfactory
receptor neurons and transmits this information via the mitral and tufted cells to
the piriform cortex (PC), anterior olfactory nucleus, and other downstream

targets (Shepherd, 2003).

From the piriform cortex, projections travel to the lateral entorhinal cortex (LEC),
which provides a major input to the hippocampus, specifically targeting the
dentate gyrus (DG) and CAS3 regions through the perforant pathway (Diodato et
al., 2016). This part of entorhinal cortex projects more robustly to ventral than to

the dorsal hippocampus (Kerr et al., 2007). Furthermore, there is evidence for
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sparse direct connections from the OB (via mitral and tufted cells) to the ventral
portion of CA1 and DG (Luskin & Price, 1983). Additionally, the piriform cortex, as
a secondary processing centre for olfactory information, has been shown to
provide direct input to the ventral hippocampus (Kesner et al., 2011). These
direct projections may play a critical role in associating specific odours with
contexts and outcomes, since, as discussed in Section 1.4.2, ventral
hippocampus also projects more strongly to regions associated with value such

as the amygdala and the NAc.

In summary, while the indirect pathway via the entorhinal cortex is the primary
route for olfactory information to reach the hippocampus, direct projections
from the olfactory bulb and piriform cortex provide a complementary route for
processing olfactory-contextual associations. Both of these routes target the
ventral hippocampus more robustly than dorsal regions which makes the ventral

hippocampus a promising target to investigate odour related behaviours.

1.5 Investigating structural learning in arodent model

As outlined above, data from functional as well as anatomical studies supports
the hypothesis of the hippocampus as an essential hub in the network for
structural learning. However, to understand how neural activity in hippocampus
can support such a function, it is necessary to leverage the tools available in the
rodent model to gain insight into the way hippocampus represents the
components required for structural learning both within individual neurons as

well as on a population level.

Both fear conditioning and spatial navigation paradigms have been successfully
used to ask questions that contain structural learning aspects, as for example
how hippocampus supports the construction of a spatial map comprising
features and goals in navigation, or the how the multisensory context triggering a

temporal sequence that leads to aversive outcomes in fear conditioning is
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encoded in hippocampal circuits. While these paradigms have pushed our
understanding of hippocampal contribution to ethological behaviour forward,
they have drawbacks with regards to narrowing down the precise neural

computation taking place within hippocampal circuits.

Specifically, spatial navigation tasks make it difficult to disambiguate spatial
information from movement signals or representations of specific cues or goals,
and, since in these tasks animals often visit locations more than once, it is not
always possible to distinguish neural representations of past (memory) from

present (Eichenbaum & Cohen, 2014).

Similarly, fear conditioning as a paradigm only allows matching single-cell neural
activity to external or internal variables to a very limited extent (Maren et al,,

2013).

Therefore, a number of attempts have been made to create tasks that allow to

ask questions about structural learning in hippocampus more directly.

1.5.1 Configural learning theory

From the above, it is clear that in order to understand the neural computation
performed in hippocampus, task designs with more control over the specific

stimuli are required.

One attempt at developing such paradigms was made with the configural
learning theory proposed by Sutherland and Rudy in the late 1980s (Sutherland
& Rudy, 1989). In their framework, tasks that can be solved by a simple
association of one cue (e.g., ablue light, or a specific tone) to an outcome should
not require hippocampal activity, whereas tasks that are solved by association
between a configural cue (a cue with two or more elements, e.g., both a light and

atone, or severalvisual cues) to an outcome should be impaired by hippocampal
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damage. To test their theory, they proposed several tasks that they predicted
would be hippocampus-dependent: Negative Patterning tasks in which both
cues (A and B) are rewarded when occurring on their own, but a combination of
both cues (AB) is not rewarded (formalised as A+, B+, AB-), or Biconditional
Discrimination tasks, in which four cues (A, B, X, and Y) are presented in pairs
and correlated with reward and a neutral or negative outcome in such a way that
the configurations but not the individual cues reliably signal trial outcomes (AX+,

AY-, BX-, BY+).

While the data initially seemed to support their theory (Sutherland & Rudy, 1989),
with time, conflicting evidence emerged: multiple studies failed to replicate the
negative patterning results of the 1989 study, or could only partly reproduce them
(Bussey et al., 2000; Davidson et al., 1993; McDonald et al., 1997). Several of
these studies showed not only that the lesioned rats learned the task normally,
but the results of transfer trials (behavioural controls) even suggested that the
animals were indeed still using a configural strategy to solve the tasks (Rudy &
Sutherland, 1995). Even in more difficult task paradigms testing the same
hypothesis, results of hippocampal lesions remained variable, depending on the
spatial distance between the individual elements to be included in the configural
cue (Albasser et al., 2013) or the inclusion of an entire context as one “cue” (Riaz
et al., 2017). Taken together, this suggests that hippocampal activity is only

required for these tasks under specific, but as yet unknown conditions.

1.5.2 Transitive Inference tasks

Another attempt to make the investigation of the common hippocampal
computation tractable uses the previously mentioned advantages of

remembering relations between items: the possibility of inference.

Specifically, if the hippocampus encodes not only the items that occur together,

but also their relation or order in space, time, or possibly value, this might enable
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inference about items that are only indirectly related. For example, if a rodent
learns that in a choice between A and B, A should be selected over B (A > B) and
further learns that in a choice between B and C, B is the correct option (B > C),
the subject can infer that A > C, even if they have never previously encountered

that choice (Dusek & Eichenbaum, 1997).

Experiments using this paradigm showed however that this approach has
pitfalls: in the scenario described above, A is statistically rewarded 100% of the
trials, choosing B equals 50% chance of reward while C is never rewarded.
Therefore, rodents can circumvent the need for inference by relying purely on
associative learning (Dusek & Eichenbaum, 1997). To avoid this, the chain of
overlapping premise pairs thus needs to be at least 5 items long(A>B>C>D >
E). While A and E still have different total reward probabilities, B and D are now a
test pair that requires transitive inference. While inactivation data indeed shows
that BD associations are sensitive to hippocampus lesions while AE trials can
still be performed (Dusek & Eichenbaum, 1997; Elzakker et al., 2003; Johnston et
al., 2021), only a limited number of trials can be performed on the “test pairs”
before they become a learnt association in their own right rather than relying on

inference.

Therefore, inference in rodents quickly reaches a level of complexity that goes

beyond the scope of feasibility.

Between this example and the aforementioned configural learning, two
considerations emerge for future structural learning paradigms. Firstly, these
tasks need to be carefully designed to avoid any possible solution of the task
through alternative strategies such as tracking of total reward probability.
Secondly, since multiple brain regions can be recruited to solve structural
learning, even after careful task design the requirement of hippocampus for the
task can be sensitive to details such as the specific temporal structure of the

task.
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1.6 Overview

In summary, in this introduction | have defined structural learning and given an
overview of neural substrates that may contribute to it. I've further summarised
how hippocampus is placed at a crucial position within this network both from a
functional as well as from an anatomical perspective. Finally, I've described past
attempts to characterise the specific role of hippocampus in structural learning

and detailed some of their limitations.

To understand if the hippocampus is indeed crucial to organising information
and enabling inference and generalisation, a carefully controlled structural
learning task in a rodent model is needed. With that, it will be possible to
interrogate not only what precise external and internal variables are represented
by the hippocampus at any point in the task, but to perturb these representations

and determine their behavioural relevance.

Therefore, my first aim was to design and test a task that can be used to directly
test structurallearning in mice. In Chapter 3, | introduce an odour sequence task
for mice that requires subjects to learn about both the identity of an odour and
its temporal position within a sequence and show data from control experiments
and logistic regression that indicate that this new task indeed fulfils the criteria

to test structural learning.

As described above, it has been proposed that structural learning is the
underlying mechanism of abstraction and generalisation and conveys greater
behavioural flexibility than other types of learning. The second aim of my thesis
thus was to test whether these skills could be observed in animals performing
our task. Since our task allows for manipulation of the temporal structure and
identity of cues separately, in Chapter 4, | use this ability to probe generalisation

to novel cues in the same temporal structure, as well as adaptation to changes
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in the temporal patterns associated with a learnt relational structure. Consistent
with the proposed advantages of structural learning, | find that after initial
learning, mice could rapidly adapt to manipulations of cue identity and temporal

structure, suggesting flexible use of previously learnt relational structures.

The ventral CA1 area of the hippocampus is strongly implicated in structural
learning. Thus, the third aim of my thesis was to test the necessity of vCA1
activity for performance of this non-spatial structural task. To this end, | present
data from optogenetic inactivations of vCA1 neurons during task performance in
expert mice in Chapter 4, showing that optogenetic inactivation impaired task
performance only in task paradigms where the delay between the odour cues
exceeds 10s, suggesting that vCA1 activity in this task is necessary specifically

to maintain and bind information about individual stimuli across long delays.

Driven by this, the fourth aim of my thesis was to investigate how neurons in
vCA1 integrate distinct sensory and internal variables to form a coherent
representation of relational structure that can be used to support behaviour. In
Chapter 5, | recorded vCA1 activity during the task using calcium imaging
through implanted gradient-refractive index (GRIN) lenses. Consistent with the
optogenetic data, | found robust encoding of task variables in vCA1 neurons,
both at the single cell level as well as when quantifying encoding across the

entire population.

Finally, in Chapter 6 | summarise my findings and discuss how they fit into the

current theories of hippocampal function and structural learning in mice.
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2 Material and Methods

2.1 Animals

Adult C57BL/6 male and female mice (9 - 11 weeks old) provided by Charles River
were used for all experiments. Three groups of animals were used for

experiments described in this thesis:

1. Mice used for behavioural proof of concept (implanted with only a

lightweight metal head holder (headbar))

2. Mice used for optogenetic manipulations (implanted with headbar and

opticalfibre, injected with an AAV)

3. Mice used for calcium imaging (implanted with headbar and miniscope

base with GRIN lens (g1mm, 3.8mm long) and injected with an AAV)

All animals underwent stereotaxic surgery and returned to their home cage for at
least 1 week to allow full recovery. Animals were housed in cages of 1 to 4 and
kept in a controlled environment under a 12h light/dark cycle with ad libitum
access to food and water (unless stated otherwise). All experiments followed
Home Office and University College London guidelines and were in accordance
with the Project License (PP2254048) and the Establishment License of
University College London (X7069FDD2).

Listed below are all animals whose data is presented in this thesis, split by which
figures this data is used in. Additionally, an asterisk marks the four animals
whose data was collected by other lab members. The animal marked as
“excluded” never reached the performance criterion (“70% correct trials”) inany

task with a delay longer than 5s.
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Table 2.1 Animals included in Chapter 3: All animals whose data has contributed to the
figures shown in Chapter 3. Animals marked with an asterisk indicate that these experiments
were carried out by someone other than me.
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Chapter 4.
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Table 2.3 Data used in Chapter 5: List of animals whose experimental data is presented in
Chapter 5.

F Fig52-5.10
1 SNB7
2 SMI6
3 sN9g

2.2 Stereotaxic surgery

Stereotaxic surgeries were carried out on 7 - 12 week old mice anaesthetised
with isofluorane (Isofluorane 100%; Piramal Critical Care) according to
previously described protocols. For induction mice were placed in a red Perspex
chamber (ANO10ASR; VetTech) with 1L/min flow of 4% vaporised isofluorane (in
medical oxygen, 99.5% minimum purity). Followinginduction, fur on scalp was
shaved (ChroMini Pro; MOSER) and the mice were placed into a stereotactic
frame (Model 902 Small Animal Stereotaxic Instrument; KOPF) onto a feedback-
controlled thermal control unit (50-7001; Harvard Apparatus) which was
maintained between 35 and 37°C throughout the surgery. During induction and
throughout the surgery, the induction chamber and the stereotaxic frame were
connected to an activated carbon scavenging filter (Cardiff Aldasorber; Shirley
Aldred & Co) and an active scavenging unit (Model ANOO5; VetTech). The animal’s
eyes were protected from desiccation using artificial tear ointment (Viscotears

Liquid Gel).

The scalp was sterilised with HiBiISCRUB®. An incision was made to expose the
skull from bregma to lambda. After application of a few drops of the local
anaesthetic Marcain (0.025% in sterile saline), the connective tissue was
removed by applying hydrogen peroxide with sterile cotton buds. After ensuring
horizontal alignment using bregma and lambda skull landmarks, small holes
were drilled in the skull at the coordinates of interest (see Table 2.1) using a
stainless steel bur (19008-07; Meisinger) attached to a miniature drill (Ideal
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Micro-Drill"; CellPoint Scientific). For the duration of the surgery, anaesthesia
was maintained at the same flow rate as listed above, with the isofluorane

concentration was brought down to 1-2%. Stereotaxic coordinates are listed in

Table 2.4.
Region RC ML DV
Dorsal hippocampus -3.2 1.7 -13
Ventral hippocampus -3.7 3.2 -4.5

Table 2.4: Stereotaxic injection coordinates

Injection coordinates taken from Mouse Brain Atlas (Paxinos & Franklin, 2019). All coordinates
given in mm calculated relative to bregma. RC: rostrocaudal, ML: mediolateral, DV:
dorsoventral

Injections were carried out with a Nanoject Il (Drummond Scientific) using
longshaft borosilicate glass pipettes with a tip diameter of ~ 10 - 50um, back-
filled with mineral oil and front-filled with ~ 1uL of the substance to be injected.
Atotal volume of 250 - 500nL of each virus was injected in increments of 14nL or
28nL in 15sintervals. Following infusion of the virus, the pipette was left in place
for an additional 5 minutes before being slowly retracted. Viruses used in the

experiments described throughout the thesis are listed in Table 2.5.

Virus Source
AAV1-CaMKII-Cre Addgene, 105558
pAAV- FLEX-ArchT-tdTomato Addgene, 28305

pGP-AAV-syn-FLEX-jGCaMP7f-WPRE | Addgene, 104492

Table 2.5: Viral constructs
Constructs used for the experiments described in this thesis

For animals undergoing optogenetic manipulations, a total of volume of 300nL
of a mixture of pAAV-FLEX-ArchT-tdTomato, and AAV2/1-CamKII-Cre in a ratio of
1:1 was injected into the target region. Then, a fiber optic cannula (200pm core
diameter, 0.39 NA, uncleaved, cut to approximately 4.5 mm; CFML12U-20,
Thorlabs) was implanted bilaterally directly following virus injection in the same
surgery.
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For calcium imaging, a mixture of AAV2/1-CamKII-Cre, AAV-syn-FLEXjGCaMP7f
and sterile saline was injected (ratio 1:1:2). Then, a GRIN (Gradient Index) lens
(21mm, length 3.8mm; G1P10, Thorlabs) was implanted directly over the
injection site. To do this, the craniotomy for injection was made larger:
approximately 1Tmm in diameter, centring around the injection coordinates. After
carefully removing bone fragments, the dura was punctured with a needle tip and
dura shreds as well as any bone fragments were removed with forceps. During
this time, the brain surface was kept moist by applying sterile saline. With a
blunted 30-G needle connected to a vacuum pump (Compton Compressors),
the cortical tissue above hippocampus was aspirated while simultaneously the
craniotomy was kept irrigated with sterile saline from a 10ml syringe with a 30-G
needle tip. Aspiration was performed slowly, layer by layer, until the white colour
and typical striation of corpus callosum changed to the darker colour of CA1.
Once the desired depth was reached, sterile silicone sponges soaked in saline
were placed on the tissue for 5-10 minutes to allow any bleeding to subside while

keeping the tissue from drying out.

Then, a miniscope base with the GRIN lens fixed in place (see Chapter 2.4.5.1)
was attached to a stereotaxic arm, and lowered slowly until it was gently seated
on the surface of the exposed hippocampus. Over several minutes, the lens was

lowered to the final DV position.

To aid cement attachment, the skull was roughened, and two metal screws were
inserted into the skull. Both fibre implants for optogenetic manipulation as well
as the miniscope base for calcium imaging were secured to the skull by applying
two layers of adhesive dental cement (Superbond, C&B). On all animals, an
additional custom-made lightweight metal head holder (headbar, designed by
the Svoboda lab (Guo et al., 2014) and manufactured by the UCL mechanical
workshop) was attached to the skull surface. For animals only undergoing

behavioural training, a 1.25 mm stainless ferrule was attached to the middle of
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the headbar during the adhesion process to facilitate handling of the animal

later.

During the surgical process, mice were subcutaneously injected with carprofen
(0.05mg/mL in saline) to reduce inflammation risk and provide pain relief. After
the procedure, they were allowed to recover from anaesthesia in a heated
chamber for a minimum of 30 minutes, or until they were fully ambulatory, before
they were returned to their home cage. Animals received carprofen in their
drinking water (0.05 mg/mL) for 48 hrs post-surgery.

For optogenetic manipulations as well as calcium imaging, viral expression was
allowed to occur for at least 3 weeks before the experiment. The locations of

injection sites were verified for each experiment histologically.

2.3 Anatomy

2.3.1  Histology

Mice were anaesthetised with 100mg/kg ketamine (KetaVet) and 10mg/kg
xylazine (Zoetis) in 0.5mL sterile saline (BAYER). Following confirmation of deep
anaesthesia, animals were transcardially perfused with ice-cold 4%
paraformaldehyde, the brains were dissected and fixed in 4% paraformaldehyde
overnight at 4°C. Brain samples were transferred to phosphate buffered saline

(PBS, pH 7.2) after overnight fixation.

Viral expression in the animals injected with AAVs was confirmed by imaging the
brain using serial section 2-Photon microscopy (BrainSaw) in which whole brains
are embedded in agar. In this technique, the face of the sample is automatically
sliced and each coronal section is imaged, repeating these steps until the whole
sample has been imaged. The microscope is controlled by Scanlmage Basic
(Vidrio Technologies, USA) using BakingTray (available on the BakingTray github),

a custom-written software wrapper for setting up the imaging parameters.
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Images were assembled using Stitchlt (available on the Stitchlt github). Both the
microscope as well as the software wrappers were designed and assembled by
Rob Campbell (Head of Advanced Microscopy Facility at the Sainsbury
Wellcome Centre). Use of the BrainSaw system and the attached interfaces was
done with assistance of trained staff from the Microscopy Facility and/or senior

members of the lab of Athena Akrami.

2.4 Behavioural Studies

2.4.1 Experimental Setup

All animals were trained on an olfactory paired-associates task. For this task,
animals were placed on a cylindrical treadmill consisting of a 3D printed wheel
(#15cm, width: 7cm) suspended through a metal axis, allowing for 1D rotation
(Figure 2.1) This setup including parts numbers and 3D printing files has been
described in detail before (Marbach & Zador, 2017). Mice were headfixed on the
treadmill by attaching the implanted headbar to a custom-made metal holder

with adjustable height and angle.

The odour delivery system was based on a modular design adapted from the
Schaeferlab (Ackels et al., 2021). A constant stream of clean air (~0.7L/min) was
carried to the behavioural rig via tubing through a custom-made odour manifold
and was then supplied to the mouse through the right side of a custom-made 3D
printed tube holder. From the left side of the same holder, air was constantly
removed from the setup via tubing connected to a vacuum pump (Compton
Compressors), thus creating a constant stream of flowing air in front of the

animal’s head.

The odour stimuli themselves were supplied from an odour manifold which
consisted of a 12.2 x 3.2 x 1.5cm stainless steel block with four milled
indentations (g2cm). Within each of these indentations was a threaded through
hole for the installation of an input flow controller (AS1211F-M5-04, SMC) and an
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output connector (IKTX0322170A & IKTX0322190A, The Lee Company). For each
inset, the cap of a 15ml glass vial (#27003, Sigma Aldrich) with the centre
removed was pushed into the indentation and sealed with epoxy resin (Araldite
Rapid, Huntsman Advanced Materials), allowing for 15ml glass vials to be

screwed in and out of the insets for rapid replacement.
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Figure 2.1: Schematic of Experimental Setup. Cylindrical treadmill on top of which a
custom-made tube holder supplies clean or odourised air from the right which is
then sucked out to a vacuum pump from the left. From the front, water rewards can

be delivered.
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Valve

Figure 2.2: Schematic of odour manifold. The system for odour delivery consists of a carrier
airflow in which odourised air from three different odour vials can be injected.

To generate airflow through the olfactometer, a pressurised air source was split
into two separate lines: the input line and the carrier airflow (Figure 2.2). The
carrier airflow was connected to the input of the odour manifold. The input line
was split further into three lines connected to each odour position of the odour
manifold. Odourised air was created by opening the VHS valves (INKX0514750A,
The Lee Company) connected to one of the odour positions, thus supplying air
to either of three glass vials containing three of the odorants listed in Table 2.3,

undiluted unless stated otherwise.

During odour stimulation, opening a VHS valve would inject odourised air (air
that travelled through either of the odour vials) into the airflow. After 1s, the valve
would close, returning the air flow to only clean air, thus quickly clearing out any
residual odours. Both the clean air as well as odourised air was supplied at a flow
rate of ~0.7L/min, measured with a flowmeter (2510 Flowmeter, Brooks

Instrument).

All odours were chosen from a list of odorants that have been shown to be neither

appetitive nor aversive to mice (Root et al., 2014), and the combinations were

selected in a way that ensured sensory separability (Pashkovski et al., 2020).
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Odour Source Product Code
Acetophenone Sigma-Aldrich A10701-1L
4-Allyanisol Sigma-Aldrich A29208-100G
Amyl Acetate Sigma-Aldrich W504009
Eucalyptol Sigma-Aldrich C80601
2-Phenolacetate Sigma-Aldrich 77861-1L

Table 2.6: Odour components used as behavioural stimuli in paired-associates task.

Odorant concentration in the open air was measured through a mini
photoionization detector (PID; 200B mini PID; Aurora Scientific) located in the
position of the mouse snhout. The PID device ionises the volatile components in
the air with high-energy UV light. The now charged particles register as a current
in an electric field, giving a readout of their concentration in the air. Different
odour components have different ionisation potentials, therefore the amplitude
of the current measured by the PID cannot be compared between different
odours. It can however be used to compare concentrations of the same odour
across time, as well as measure how long it takes for the concentration of odour

to return to negligible levels after odour delivery.

To compensate for this limitation, we additionally used an airflow sensor (AWM-
5000 series; Honeywell) to make sure that the amount of odourised air injected
into the airflow was the same for each odour. This sensor works on the principle
that the airflow across the sensor causes heat transfer, which is then output as
an analogue voltage signal. An example measurement taken with the PID as well

as example traces measured by the airflow sensor are shown in Figure 2.3.
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Figure 2.3: Example odour traces from Photoionisation device and airflow sensor.
a. Average mini-photoionisation detector signalin response to 1s injection of air odourised with
2-Phenylethanol into the carrier airflow. b. Average change in air flow in response to the
injection of all three odour cues into the air stream. Note that the sharp downwards spike is an
electrical artifact caused by the electrical noise of the valve opening.

In the middle of the custom-made tube holder, a metal lick spout was positioned
at a suitable distance from the headbar holder. Licking was detected using a
printed circuit board operating as a lickometer (Capacitive Breakout Board,
SparkFun). One end of the circuit was attached to the metal lick spout and the
other to ground. The board was supplied with 5V. Whenever the mouse would lick
the tube, an electrical circuit would close, creating a voltage drop that was
recorded as a continuous analogue signal (RSE: Referenced Single-Ended, i.e.
voltage is measured against ground provided by the device). Water droplets
(~10pl) were released by a 3-way solenoid valve (LFRA1220370D, The Lee
Company) and delivered to the mouse through the lick spout from a reservoir

installed at 15cm height to ensure gravity flow (i.e. no pump was required).

The behavioural rig was controlled with custom-written software (Arduino),
through a microcontroller (Arduino Uno, Arduino) and a data acquisition board
(NIUSB-6001, National Instruments). Odour valves were opened by sending a 5V
TTL pulse from the Arduino to a custom-built spike-and-hold driver. Each driver
could provide a 0.5ms 24V pulse to cause the valve to open and then maintained
its opened position with a 3.3V holding voltage of 1s duration. Similarly, for the
opening of the water valve, another custom-made driver converted the 5V

Arduino TTL pulse into a 12V square pulse of a variable length (duration
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calibrated to equal ~10uL water reward). The licking as well as the odour pulses
were recorded through the NI board. Both stimuli and licks were visualised in

LabView (Version 20.0f1, National Instruments).

2.4.2  Behavioural training and recording protocol

After recovering from the surgical procedures for a minimum of 7 days, mice
were water-restricted to approximately 85% of their ad libitum body weight. After
at least a week of water-restriction and habituation to manual handling by
experimenter, training for the olfactory paired-associates task began.
Throughout the training period, mice were provided with 1-1.5mL of water daily,

either throughout or after each session.

Mice were initially habituated to head fixation on a static surface for two
consecutive days, followed by two days of habituation to head fixation on the
treadmill, starting at 1-2 minutes of head fixation and gradually increasing the
time to 10 minutes. On the fifth day, the lick spout was placed in its normal
position and mice were given water drops through the spout at randomly chosen

time intervals of 1s, 5s or 7s (Figure 2.4 left).

In the first stage of training (shaping stage, Figure 2.4 middle), mice were
presented only with the rewarded pairs of odours (AB, BC, CA), separated by a 5s
delay. A water reward was delivered 1.5s after the second odour cue in a
Pavlovian fashion, i.e. water was delivered irrespective of the mouse’s licking
behaviour. Between trials, there was a 10s pause (inter-trial interval, ITI). Mice
were kept on this training protocol until they started licking in anticipation of the
reward in the response window between odour cue and water delivery (1.5s) in

at least 70% of trials.

Mice were then trained on the full task: All six types of trials (3 rewarded odour

pairs, 3 unrewarded odour pairs) were presented pseudorandomly, ensuring that
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all trial types were presented in each block of 6 trials (Figure 2.4, right). Mice
were not punished when they licked on trials with non-rewarded odour pairs, but
no reward was presented. Within ~8-10 days, mice learned to refrain from licking
in non-rewarded trials. During training, mice gradually refrained from licking
during the delay period between odours as well, and well-trained mice would

typically initiate licking right after the second odour.
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Figure 2.4: Training Protocol. After habituation to the process of head fixation and the
treadmill, mice were given water rewards after pseudo-random time intervals of 1s, 5s, or 7s.
When they reliably consumed the water reward, they were exposed to a shaping stage in which
only rewarded odour pairs were presented, followed by a reward 1.5s after the second odour.
Once the mice would predictively lick before the reward delivery in at least 70% of trials, they
were moved on to the full task with counterbalanced presentation of rewarded and unrewarded
odour pairs.

Responses were assessed based on licking during the response window only. As
previously described, licks were detected with a capacitive breakout board.

The board records a binary analogue signal. Any signal above the threshold
voltage (4V) is therefore counted as a lick, and any signal below is recorded as
an absence of licking. If any licking occurred during the response window (1.5s
after presentation of the second odour of a rewarded pair), the trial was counted
as a hit. If licking occurred in the response window after presentation of an
unrewarded odour pair, the trialwas counted as a false alarm instead. In the case
where no licking was detected in the response window, the trials were labelled

as miss or correct rejection, respectively.
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After mastering the first version of the task with a 5s delay between odour stimuli,
the mice were then taken through variations of the task. One variation consisted
of changes in the delay time separating the two odour cues. For this
manipulation, after the mice had acquired the full task, we extended the delay to
10s. After they successfully performed at this longer delay, we then trained them
on a version with a 20s and finally a 30s delay. For all versions of the task, the
Inter-Trial Interval (ITl) was kept at twice the length of the delay time, such that in

trials with a 10s delay between odours, the ITI would be 20s for example.

A second behavioural manipulation consisted of changes in odour identity. In
this paradigm, we exposed mice that had acquired the full task with a delay of

10s to a new set of odours, replacing odour C with an unfamiliar odour C2.

Furthermore, multiple control experiments were conducted (see Chapter 2.4.3).
Performance on each day was quantified as the percentage of correct trials (sum
of hits and correct rejections divided by total trials) over the entire session. A
session would typically run for approximately 80 trials, corresponding to a
duration of 20minin the protocol with 5s delay between odours. In protocols with
longer delays, the sessions would be longer, ensuring a similar number of trials

in each session.

2.4.3 Behavioural control experiments

For control sessions with auditory cues only, the airflow was turned off
completely and the tube delivering odours to the mouse was disconnected.
Therefore, the only cues available to the mouse were the clicks of the valves
opening. For control sessions with sensory and auditory cues, the carrier airflow
was active, but the odour vials were removed and replaced with empty glass
vials. This way, the mice experienced the changes in air pressure associated with

opening and closing the odour valves as well as the resulting clicks, but no odour
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cues were present. The system was flushed of any residual odour for at least

30min before each behavioural session.

To control for potential mixing of successive odour cues, a 1:10000 dilution of
odour C was filled into the 4th port of the odour manifold. On some trials
(“dilution trials™), instead of a sequence of “odour C — delay — odour A or B”, the
diluted odour was instead added into the airflow throughout the entire time of
the trial up to the presentation of the second odour (“diluted odour C — odour
A/B”). Thus, in these trials the mouse was presented with a mixture of a low
concentration of odour C, directly followed by a larger concentration of either
odour A or B (indicating a rewarded and non-rewarded trial, respectively,
according to the same rules as in the standard task). If the animals had indeed
learned to pay attention to a configural cue made up of a mixture of residual first
odour combined with the second odour cue, they should be able to perform well

on those dilution trials.

2.4.4  Optogenetic manipulations

In behaviour sessions with optogenetic inhibition, the subject was head-fixed on
the treadmill as usual. Then, a bifurcated optic fiber (core = 200 pm, NA =0.22,
Doric) was attached to the ferrules at the end of the implanted fibre optic
cannulae using interconnects (ADAL3, Thorlabs). The fiber was connected to a
fiber-optic rotary joint (FRJ 1x1 FC, Doric) that was in turn connected to a 532nm

green laser (Shanghai Laser & Optics Century Co.).

Using TTL pulses from the Arduino microcontroller, the laser would be controlled
at a pre-determined time relative to the behavioural cues, turning on in a square
pulse pattern, followed by a 500ms long linear downward ramp to prevent a post-
illumination rebound burst of action potentials (Chuong et al., 2014). The square
pulse would start 500ms before the first odour cue, continuing until the end of

the response window and reward delivery, at which time the light would ramp
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down over the course of 500ms. The laser power was calibrated to lie at

approximately 5mW/mm? at the end of the optical fiber.

2.4.5 Recording of GCaMP signals

2.4.5.1 Preparation of implants

To measure neuronal activity in CA1 we recorded calcium activity in GCaMP7f-
expressing neurons with a head-mounted miniature microscope with
epifluorescent light source (miniscope; Open Ephys/UCLA), as described in a
study by Zhang et al. (Zhang et al., 2019). To image fluorescence in a deeper
structure such as ventral hippocampus, the implantation of a Gradient
Refractive Index (GRIN) lens is required. This type of lens is most often rod-
shaped and uses gradual variation of the refractive index within the lens material
to focus light from one side of the lens at a specific point on the other side of the
lens. For this approach to work, it is essential that the imaging plane, i.e. the lens
of the miniscope (OpenEphys/UCLA), is placed at a pre-defined and
reproducible distance from the GRIN lens. This is ensured by the miniscope
baseplate, a threaded cylinder that is fixed on the animal’s skull directly over the
implanted GRIN lens which allows to reversibly mount the miniscope at a
specific distance from the GRIN lens with a set screw. Furthermore, whenever
the miniscope is not mounted, the baseplate can be capped with an acrylic lid

which protects the GRIN lens from dust and scratching.
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Figure 2.4: Schematic of miniscope, baseplate and GRIN lens. The GRIN lens was fixed into
the miniscope base and the construct was then implanted onto the mouse’s skull. The
miniscope could be reversibly mounted and unmounted onto this base, allowing for a
consistent imaging window.

In all experiments described below, we used a novel type of baseplate (V4-
V2GrinBasePlate, made to order by miniscopeparts) where the GRIN lens
(21mm, length 3.8mm; G1P10, Thorlabs) is fixed into the miniscope base prior
to the surgery such that both GRIN lens as well as the baseplate can be
implanted in the same surgical step. To ensure that the optical path of the screw-
mounted miniscope is aligned with the GRIN lens at the correct distance, a slide
with fluorescent material is used when glueing the GRIN lens into the baseplate.
Only when a sharp image of the material on the slide is formed at the right focal
distance, the lens is fixed in place with superglue (Loctite). The baseplate with
the GRIN lens now fixed in place was stored in a padded box for optical

components until it was implanted.
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2.4.5.2 Recording setup

As mentioned above, we used a combination of a miniature microscope
(miniscope, Open Ephys/UCLA) and a GRIN lens to record calcium activity in
ventral hippocampus. To briefly summarise the technique, the miniscope uses
blue LED light to excite green-fluorescing fluorophores such as GCaMP7f and
detects the emitted fluorescence light with a C-MOS sensor. In our setup, the
miniscope was connected to a data acquisition board (Miniscope DAQ v3.3;
OpenEphys) that in turn was connected to a computer running the miniscope
software (Miniscope-DAQ-QT-Software; Aharoni Lab). The DAQ board was also
connected to an Arduino microcontroller running the behaviour protocol,
allowing for miniscope recordings to be triggered in synchrony with task events.
Specifically, the microcontroller sent a TTL pulse to the miniscope DAQ both
500ms before the first stimulus presentation and upon ending the behaviour
protocol, thus establishing two reference points to match the timestamps of

behavioural events to the frames of the miniscope recording.

In behaviour sessions with calcium imaging, the mouse was head-fixed on the
treadmill as usual. After loosening the set screw on the previously implanted
miniscope base, the protective cap could be removed, and the GRIN lens surface
was cleaned with a sterile Q-tip dipped in methanol. Then, the miniscope was
screwed onto the base. Using the miniscope software, the LED power was
adjusted for each animal such that fluorescent structures were visible, but not
saturating. Furthermore, the electronic focus (+/- 200 pm) and imaging gain was
selected to optimise the sharpness of fluorescent structures in the field of view.
These settings were conserved for each animal across recording sessions. The
behavioural protocol was started as usual and automatically triggered the start

of the miniscope recording via the previously described TTL pulse.
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2.5 Data Analysis

2.5.1 Behavioural analysis

In all experiments, behavioural performance was quantified as the percentage of
correct trials (p correct), i.e. trials in which the mouse either correctly displayed
anticipatory licking after the presentation of a rewarded odour pair, or correctly

withheld licking in response to an unrewarded pair.

As a measure of sensitivity, d prime (d’) was used additionally in some

experiments. Defined as
d'=2z(H) —z(FA) (2.1)

with H =P (lick | rewarded odour pair), FA= P (lick | unrewarded odour pair) and z

as the gaussian z-transform.

In contrast to p correct, d’ takes into account whether there are large
discrepancies between the percent of correct licking and correct withholding

responses and controls for the overall level of licking behaviour.

2.5.1.1 Error analysis

Given the structure of our task (go/no-go), there are four possible outcomes for
any trial: when a rewarded odour pair is presented, the mouse can either lick in
anticipation (‘Hit’) or fail to do so (‘Miss’). Conversely, when a non-rewarded pair
occurs, the mouse can withhold licking (‘Correct Rejection’) or lick anyway

(‘False Alarm’).
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Figure 2.5: Possible outcomes in go/no-go task. There are two components that determine
the outcome of any trial: the presented odour pair (signal) and the response (lick/no lick). These
can be classed into correct trials (hit and correct rejection, green) and errors (miss and false
alarm, red).

By distinguishing between the two types of errors laid out in this model, we can
further characterise the effects of any manipulation that reduces the animal’s
performance of the task, such as changes in task structure (Chapter 3) as well

as optogenetic manipulations (Chapter 4).

2.5.1.2 Logistic Regression

To quantify the influence of different task components (single odours, odour
configurations, past choice, etc.) we used logistic regression (Akam et al., 2021;
Parker et al., 2016). These models try to classify trials using a logit transformation
to combine differently weighted predictor variables into a single probability
(target variable), in our case describing whether the mouse is likely to display

anticipatory licking. This transformation uses the following formula:

log o105 = BraX1+ BroX2 + -+ By (2.2)

with L(i) as the probability of licking on a given triali, X7, X2, ... as the predictor
variables (e.g. “odour A present” or “previous trial rewarded”), Bxi, Bx... as the

regression coefficients of each predictor and B, as a constant bias-term.
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The predictor variables used in our task were either related to the presence of a
given odour in the trial in any position (A, B, C), to the odour configuration
disregarding order (A and B, B and C, or C and A), the odour pairs taking order into
account (AB, AC, BA, BC, CA, CB), trial history (previous reward, previous lick) as

well as a general bias term.

In addition to a complete model using all the above predictor variables, we also
split these predictor variables into categories to build models that only had
access to some of the variables. Our “elemental” model (E) predicts licking
behaviour only based on the odour identity without any information on the
position. A “configural” model (C) uses the configuration predictors, whereas the
“history” model (h) tries to predict licking solely based on previous outcome and
previous choice. Lastly, the “structural” model (s) uses the six ordered odour

pairs as predictor variables.

For all models, we used the scikit-learn Python library. We first split the data into
training data (75% of data) and test data (25% of data). We then used the
GridSearchCV function to find the best hyperparameters for the regression. With
those parameters, we instantiated the Logistic Regression model with these
hyperparameters and trained it on the labelled training data (i.e. both the matrix
containing the trial events used as predictors as well as the actual behaviour of
the mouse). We then tested the performance of the model by comparing the

model predictions on the unlabelled test data to the actual mouse behaviour.

To compare the performance between classifiers, we used the area under the
curve (AUC) as a quantifiable measure. This measure comes from the receiver
operating characteristic curve (ROC curve) which plots the sensitivity (true
positive rate) against the probability of false alarm (false positive rate). The AUC,
that is the integral of the curve over the entire ROC space, ranges from 0to 1. A

perfect classification would amount to an AUC of 1, and a random binary
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classifier would yield an AUC of 0.5. This measure is therefore useful to compare

the accuracy of models that use different sets of predictor variables.

The second metric we used to compare predictive value across models using
different sets of predictor variables is delta AUC (AAUC), a measure derived from
the single-model AUC described above. For AAUC, we take a complete model
using all aforementioned predictor variables and calculate its AUC. We then
remove the predictor variables of interest (e.g. all those associated with reward
history) and compare the difference between the AUC of the resulting model and
the AUC of the complete model. This difference is called AAUC and measures

the change in model performance that results from removing specific features.

Lastly, to understand how specific variables affect the overall prediction, we look
at the beta coefficients (seen in formula 2.2). The absolute value of a beta
coefficient is a measure of how much weight the classifier assigns to this
variable, and the direction of correlation is evident from the coefficient’s sign.
Positive beta coefficients denote a positive correlation of the variable in question
with the target behaviour (licking) whereas negative beta coefficients indicate a
negative correlation. In other words, a positive beta value for the predictor
variable “AB” denotes that the presence of this pair increases the likelihood of
mice licking, whereas a negative value would denote that the presence of AB

decreasesiit.

2.5.2  Analysis of GCaMP signals

All miniscope recordings were conducted using the miniscope software
(Miniscope-DAQ-QT-Software; Aharoni Lab). The data was then processed, and
the calcium signals extracted using the semi-automated Minian pipeline, (Dong

et al., 2022) the steps of which are outlined below.
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2.5.2.1 Data processing

As a preparatory step for the analysis, raw data (Figure 2.7a) first underwent
noise removal using a script provided by the Aharoni lab which utilises several
low-pass filters and 2-D fast Fourier transforms (2D-fft) to filter out high-
frequency electrical noise introduced by hardware components of the V4

Miniscope (Aharoni Lab).

Then, the denoised videos were passed through a pre-processing stage (Figure
2.7b) that included downsampling the video by sub-setting and averaging the
frames. The video was then cropped to only include parts with bright signalinside
the GRIN lens, and the frame rate was dropped from 15 fps to 7.5fps. In the next
part of the script, the minimum fluorescence value for each pixel was subtracted
from every frame to remove background glow and vignetting. Salt-and-pepper
noise on each frame was then removed by passing the data through a median
filter. The last step of pre-processing was a background removal step introduced

in MIN1PIPE (Lu et al., 2018).
The pre-processed video was then passed through a standard template-

matching algorithm, thereby correcting for lateral motion by evaluating cross-

correlation between each frame and a reference frame (Figure 2.7¢).
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Figure 2.6: Minian analysis pipeline. a. Raw images from miniscope recording. b. Image after
denoising and glow-removal. c. Image averaged over whole session after motion correction. d.
Initial ROI seeds (white dots) e. ROl seeds after correlation- and signal-to-noise-based
refinement (red: dropped seeds, white: true seeds) f. Final ROIs overlaid with average calcium
signal after constrained non-negative matrix factorization (CNMF) algorithm.
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To generate possible locations for neurons, the Minian script then looked for
local maximainthe fluorescence across frames, assigning these as “seeds”. This
set of seeds was over-complete by design, containing many seeds that weren’t
biologically relevant regions of interest (Figure 2.7d). The seeds were then
refined based on various metrics, such as a minimum change of fluorescence
over time as well as the signal to noise ratio and correlation with neighbouring

pixels (Figure 2.7e).

After pruning and merging the seeds, the putative ROls were passed through a
constrained non-negative matrix factorization (CNMF) algorithm. The algorithm
refines the spatial outline of the cells (spatial update) and then denoises and
deconvolves the individual traces (temporal trace). Those two steps are then
performed again, until a satisfactory result is produced upon visual inspection

(Figure 2.7e).

The calcium traces exported after this step were the basis of all further analysis.

2.5.2.2 Analysing single-cell selectivity

To evaluate whether individual neurons respond selectively to specific task
events, we calculated a selectivity index using a formula adapted from (Ahmed

et al., 2020):

SI=f,— f (2.3)

Here, f. represents the average activity of the neuron during the examined trial
time period across all trials containing the task event of interest; f. represents the
average activity during all trials without the event. For example, to evaluate the
selectivity of a neuron for odour A as the first odour, we would take the average
activity on each trial during the presentation of the first odour, and then subtract
the mean response in trials with odour A as a first odour from the mean response
in all other trials.
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To mitigate the influence of spurious differences in calcium activity due to limited
trial numbers, we compared this selectivity index (Sl) to indices derived from
1000 shuffled datasets, where the labels of trial types were randomly reassigned.
To compare selectivity indices across cells and task events, we calculated a

measure sigma using the below formula:
ms—SIt

o= “vd. (2.4)

Where msis the mean of the shuffled Sl distribution, stds is its standard deviation
and Sl is the true selectivity index. We considered all cells showing o > 2.5 as

selective for a given event.

2.5.2.3 Population encoding of behavioural events

In order to test whether the population activity encodes task events (such as
“Odour A First” or “Rewarded trial”), we used Support Vector Machines (SVMs).
SVMs are a set of supervised learning methods used for classification. In our
case, we trained classifiers to predict the presence/absence of the task event
(e.g. “Odour A First”) from the neural data of either a single session or multiple

sessions.

To that end, we first calculated the population activity at a given time point by
averaging the activity of each neuron within the period of interest (e.g. during the
presentation of the first odour). Thus, for each trial, every neuron only had one
value, and the entire population could be represented as an n-dimensional

vector with n as the number of recorded neurons.

In order to combine data from several mice into one model, we built pseudo-
populations by matching trials from different sessions according to trial type. In

order to avoid biases caused by spurious correlations in the neural activity, we
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built 100 different pseudo-populations and combined the trials differently each

time.

Tothenimplement the SVM, we split the data (either from a single session or from
the pseudopopulation) into training data (75%, labelled) and test data (25%,
unlabelled). As before, we used the GridSearchCV function to find the best set of
hyperparameters. We then used these parameters and instantiated a SVM with
a linear Kernel and trained it on the part of the data designated training data. The
model was then fit to best separate the data according to labels (in our case
either trial type, or presence/absence of a specific odour) by finding the optimal
hyperplane in the n-dimensional space to maximally separate the neuronal data

according to the experimenter-defined categories.

The SVM was then tested by having it predict the labels of the test data, and its
performance was measured as the accuracy at which the model correctly

predicted the task event of interest.

2.5.3  Statistical analysis

All statistics were calculated using the Python packages scipy and pingouin.
Summary data are reported as mean *s.e.m. (standard error of the mean).
Normality of data distributions was determined by visual inspection of the data
points. Test statistics are detailed in the main text. Threshold for statistical

significance was defined as 0.05.
No power analysis was run to determine sample size a priori. The sample sizes

chosen are similar to those used in previous publications. Throughout the figures

the * symbol represents p < 0.05.
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3 Anolfactory paired-associates task to

probe structural learning

3.1 Introduction

Learning about the relationships between cues enables us to identify common
underlying structures of events and is fundamental to adaptive behaviour
(Tolman, 1932). This type of learning requires recognising the structured
relationship between distinct cues in our environment, as the meaning of cues
can differ dramatically dependent on their order in time, or their position in
space. Importantly, learning about structured relationships between cues is not
only foundational to our everyday lives, but generates the complex associations
and relationships that form the basis of episodic and semantic memory
(Eichenbaum, 2001). Impairments in the use of such memory are a consistent
hallmark of the most debilitating neural disorders from Alzheimer’s disease to
schizophrenia, depression, and generalised anxiety, further emphasising the
importance of structural learning (Chamberlain & Sahakian, 2006; Ongl’jr et al.,

2006; Rao et al., 2022).

Despite its importance, there is limited insight into how structural learning is
achieved within the brain on a cellular and circuit level. To address this question,
different types of paradigms have been put forward to study structural learning
in rodent models (Aggleton et al., 2007; Albasser et al., 2013; Eichenbaum et al.,
1987; Sutherland & Rudy, 1989). What all of them have in common is that they
require the subject to learn not about individual cues associated with outcomes,

but about sequences of cues, often containing overlapping or similar elements.

One extensively studied paradigm that fulfils these criteria is spatial navigation.

When animals learn to navigate to a specific goal within an environment, they
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need to process a variety of visual, tactile, and olfactory cues and commit them
to memory. In order to recall the same trajectory in the future, the individual
locations must be encoded in the right sequence and become associated to the
goal that lies at the end. Rodents easily achieve this, and more than that, we
know that they can adapt to changes in an environment, infer new routes to a
known goal, therefore firmly establishing navigation as an example of structural

learning (Tolman, 1948).

However, spatial navigation tasks have some important limitations with regards
to understanding the neural substrates of structural learning. As they rely on
animals moving through arenas (virtual or real) it is difficult to disambiguate
abstract spatial information from movement signals or representations of
specific cues or goals, which is important when trying to understand how the
binding of elements within a context is achieved in the brain. Furthermore, in
these tasks animals often visit locations more than once, making it hard to
distinguish neural representations of past (memory), present, and even future

(planning) (Eichenbaum & Cohen, 2014).

In research largely parallel to the study of spatial navigation, special cases of
associative learning have been proposed as suitable paradigms to test structural
learning. For example, “configural cues” (built from two or more elements, e.g.,
both a light and a tone) as well as “occasion setters” (cues that precede an
ambiguous conditioned stimulus) might fulfil the criteria for structural learning
(Schmajuk & Buhusi, 1997; Sutherland & Rudy, 1989). In these tasks, the animal
can predict the outcome of a trial if it correctly recalls the cues separated in

space or modality (for configural cues) or in time (for occasion setters).

Subsequent studies however often found that these tasks can be solved by other,
much simpler strategies, such as keeping track of the statistics about the
frequency or the average value of each stimulus (Rudy & O’Reilly, 1999; Rudy &

Sutherland, 1995). Furthermore, these kinds of tasks often don’t allow for
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manipulations to test inference or other types of generalisations, emphasising
the need for controlled investigation of structural learning, and its subsequent
utilisation to guide behaviour. In particular, a suitable task should use minimal,
clearly defined cues, balanced across contingencies in a way that it can only be

solved using structural learning.

The latter part has proven particularly difficult — many tasks that meet the first
two criteria are so complex that they are too difficult for rodents to learn in a
timely manner. One way to make paradigms more amenable to rodent research
is the use of olfactory cues. Mice readily attend to odour cues and can detect

extremely fast and subtle changes in the structure of odours (Ackels etal., 2021).

Given the sensory salience of odours to rodents, multiple studies have used
odours to investigate the role of the hippocampus in relational learning. For
example, a 1993 study by Bunsey & Eichenbaum demonstrated that rats can
associate specific odour pairs with rewards, and that the ability to distinguish
them from different pairs with the same components is dependent on
hippocampal circuits (Bunsey & Eichenbaum, 1993). Other studies have shown
that the hippocampal formation is needed to distinguish between different
mixtures of the same two odours, but are not needed to follow an odour gradient
(Eichenbaum et al., 1986; Eichenbaum et al., 1988; Otto et al.,1991) and that
using interlocking chains of odour pairs, rats can perform transitive inference
judgements (Bunsey & Eichenbaum, 1996; Dusek & Eichenbaum, 1997; Dusek &
Eichenbaum, 1998). These studies were pivotal in placing the hippocampus
identifying the hippocampus as a critical region for learning relationships
between neutral stimuli. However, due to methodological limitations, they could
not provide strong hypotheses of how this learning was implemented within

hippocampal circuits.

Additionally, since the aim of these studies was not the comparison of the

specific neural responses elicited by individual odour stimuli or combinations
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thereof, the tasks were not designed in a way that ensured interpretability of
single cell signals. For example, they might not ensure that each cue appeared
equally often (to control for familiarity effects) or that cues were associated with
the same average likelihood of reward (to control for development of preference).
In this study, we aimed to design a task that builds on the principles established
by these earlier studies, specifically by using odour cues and combining them

across a delay to form reward-predictive contingencies.

In this chapter, | will describe the olfactory paired-associates task that we
designed to explicitly probe the acquisition and use of structural learning in
mice. Crucially, this task can be learnt quickly in head-fixed mice, and once

learnt, allows probing the flexible use of the task structure.

Due to the volatility of odours and the ability of rodents to distinguish even odour
mixtures with very similar proportions, behavioural tasks with odour cues often
are at risk of odour contamination which can lead to inadvertent presentation of
“combinatorial odour cues” (Uchida & Mainen, 2003). Therefore, | will further

describe the steps we have taken to control for these possibilities.
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3.2 Results

To assess structural learning, we designed a novel olfactory paired-associates
task. In this task, water-restricted mice were head-fixed on a setup where they
were presented with a sequence of two odours separated in time. On the setup,
the mouse had access to a waterspout that delivered rewards based on task
events. From the right, a stream of air was introduced at a constant rate. The air
was removed from the left side by a tube connected to a vacuum pump, thus
creating a continuous flow of air across the mouse’s nose (Figure 3.1a). Into this
continued airflow, different odours were injected through a high-accuracy odour
delivery manifold, resulting in temporally defined bouts of odourised air that

were used as cues (Figure 3.1b).

In the task, three possible odours (A, B and C) were presented in pairs, thus
leading to 6 possible sequences, three of which were rewarded (’go’ trials: AB,
BC and CA) and three unrewarded (’no-go’ trials: AC, CB and BA, Figure 3.1¢c).
The odours were separated from each other by a delay of at least 5s, and the
contingencies of reward were counterbalanced such that each cue alone
provided no information about upcoming reward, as each odour was equally

frequent in ‘go’ and ‘no-go’ trials.

For example, in this task design, the sequence CA was rewarded while BA was
not rewarded — the meaning of A therefore was ambiguous, unless combined
with the previous odour. Furthermore, the task was also designhed such that mice
could not use a perceptual configuration such as ‘AB’ to solve the task: B after A
was rewarded, while A after B was not rewarded. Thus, mice could neither use
an elemental (one-cue based) nor a configural (cue-combination based) strategy
and had to retain both the identity of the odour cues as well as their positions

within the sequence to behave optimally (Figure 3.1d).

On each trial, a randomly selected odour pair was presented to the mouse, and

licking behaviour was recorded. Water reward was given 1.5s after the second
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odour (‘response window’), but the water delivery was not dependent on the
licking behaviour of the mouse. Therefore, every ‘go’ trial was followed by reward
and learning of the task was measured as the emergence of anticipatory licking
in the response window on ‘go’-trials, and a lack of anticipatory licking in ‘no-go’

trials (Figure 3.1e).
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Figure 3.1: Schematic of behavioural setup and task structure. a. A head-fixation system
allows for delivery and removal of odour cues as well as reward delivery in a consistent position
relative to the animal. b. A high accuracy olfactory system for odour delivery injects odourised
air into a constant stream of clean air and delivers that to the animal. ¢. Design of the go/no-go
task. Each pair of odour cues is separated by a delay and is either rewarded or not rewarded.
d. The design is counterbalanced so that only retaining both the identity of an odour and its
temporal position within a sequence can predict reward. e. Trial structure overlaid with example
licking behaviour from a well-trained mouse: predictive licking in the analysis window between
the delivery of the second odour and the reward in go-trials indicates anticipation of the correct
outcome.
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Mice learned to perform this task stably within the space of 8 days of training
(Figure 3.2a; n = 13; repeated measures ANOVA: Fg.s5 = 11.53, p = 3.9x1079).
While all mice reached >70% accuracy within the 10-day training period, some
did learn the task markedly quicker than others (Figure 3.2b): some mice
reached the learning threshold within only a few days while others took over a

week.

Mice would undergo several stages of training (outlined in Chapter 2) in order to
encourage predictive licking in the response window before reward delivery.
When encountering the full task with all 6 contingencies, mice initially behaved
suboptimally, often exhibiting marked anticipatory licking before ‘no go’ trials,
but also marked licking after the first odour of each pair (Figure 3.2c, top). Over
training, mice gradually refrained from licking during the delay period between
odours, and well-trained mice would typically initiate licking only after the

second odour (Figure 3.2c, bottom).

We quantified this learning two ways: first, as a marked increase in the
proportion of correct trials from the first to the last session (Figure 3.2d; Day 1:
p correct = 0.52 +/- 0.2; Day 10: p correct = 0.78 +/- 0.18; n=13, paired t-test tuz
=10.83, p = 7.0x10°®). Secondly, we used a metric from signal detection theory
called behavioural d-prime (d’) which quantifies the ability to predict the identity
of a trial as ‘go’ or ‘no go’ based solely on licking behaviour. Consistent with the
higher proportion of correct trials, d’ increased markedly between first and last
sessions (Figure 3.2e; day 1: d’=0.03 +/-0.26; day 10: d’=1.17 +/- 0.46; n =13,
paired t-test t(12 = 8.34, p = 2.0x10°).

In summary, we designed an olfactory structural learning task that mice can

rapidly learn.
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Figure 3.2: Mice can perform structural learning task. a. Mice reach accurate performance
over a short timescale, responding correctly to more than 70% of trials in 10 days (n =13) b.
Performance over training days for individual mice. c. Example licking behaviour (dark grey dots)
in a well-trained mouse before and after learning (top and bottom panel, respectively). The
coloured bars correspond to trial types with a shared first odour (green: A, black: B, orange: C)
d. Performance before and after learning (day 1 and day 10, respectively; n = 13) e.
Discriminability index d’ (day 1 and day 10 respectively, n = 13)
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Figure 3.3: Variance across mice within task and shaping stages. a. Performance of mice
across shaping stage in which only rewarded pairs are presented (n = 13). Mice marked with an
asterisk were partially shaped on a protocol with conditional reward delivery. b. Mice took on
average 13 days to reach the threshold of predictive licking on >70% of trials (n=17). In both a
and b, Mice marked with an asterisk were subject to multiple changes in the training protocol
due to hardware problems. Performance data is unavailable for some mice and they are thus
only included in panel b. ¢. Discriminability index d’ split by identity of the second odour (e.g. a
= b->a and c->a trials; n = 17). d. Discriminability index d’ split by identity of the second odour
and coloured according to training cohort (n = 17).
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However, there is variability between mice both in the speed of task acquisition
as well as in the level of performance (Fig. 3.3). For instance, the individual
learning curves during the shaping stage, i.e. the stage in which only rewarded
trials are presented, show large variance in the amount of predictive licking on
the first day of shaping. Notably, these mice have previously not experienced
cued rewards. In the first session, mice clearly employ different strategies: while
some mice lick predictively 100% of the time and thus likely lick quite
continuously, other mice only achieve <10% correct trials, therefore likely

employing a strategy of responsive licking (Fig. 3.3a).

In consequence, some mice need many sessions to reach the performance
criterion of 70% correct trials, while others graduate to the full task within as little
as 5 sessions (Fig. 3.3b). Some mice (indicated with an asterisk) were partially
trained on a protocol in which reward was only delivered conditionally, i.e. only
when the mice licked predictively. Since this change did not improve their

learning, they were returned to a Pavlovian reward delivery protocol after a week.

Analysing the performance of mice on trials split by second odour shows that
there is variability not only in the time course of learning, but also in what is
learnt. Specifically, splitting the discriminability index d’ by the second odour
reveals that on average, mice tend to perform better on trials where b is the
second odour (Fig. 3.3c). Since over the course of the project, multiple changes
were made to the setup, we next compared whether this bias was isolated to a
single cohort of mice (Fig. 3.3d). We found that this was not the case: individual
variability exists within several cohorts. However, in some cohorts (blue &
turquoise) all mice demonstrate balanced discriminability, thus suggesting that

unbiased performance in the task is possible.

Accurate delivery of odour cues can be challenging, often impeding the
interpretability of behaviour in olfactory tasks. We aimed to mitigate this using

highly controllable olfactory delivery system (Schaefer lab (Ackels et al., 2021)).
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However, we still wanted to ensure that mice were indeed using the odour cues

in the way we intended.

In a first instance, we checked whether circumstantial cues, such as the
alterations in air pressure resulting from valve openings and closings, or the
audible cues (clicks) associated with valve openings may be contributing to
behaviour. We therefore had expert mice undergo sessions of the task where we
completely removed the air flow, leaving only auditory valve clicks as cues. In
these sessions, mouse behaviour dropped significantly when compared to
sessions with normal air flow, indicating that the valve clicks alone are not
sufficient to allow the mice to anticipate reward (Figure 3.3a; n = 5; repeated
measures ANOVA: Fpg = 33.01, p = 1.3x10%; post-hoc Tukey [Baseline vs. No
Airflow] p = 2.8x10%, post-hoc Tukey [No Airflow vs. Recovery]
p =2.8x10%).

We then removed the odour vials, replacing them with empty containers while
keeping a constant flow of clean air. This manipulation left both auditory clicks
as well as changes in air pressure as available cues. As in the previous
manipulation, this change made the behavioural performance drop to chance
level (Figure 3.3b; n = 4; repeated measures ANOVA: Fiz6=9.77, p = 0.01, post-
hoc Tukey [Baseline vs. No Odour] p = 4x1073, post-hoc Tukey [No Odour vs.
Recovery] p = 0.02), showing that mice required odour identity to behave

optimally.
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with auditory cues (valve clicks) only (n = 5) b. Mice cannot perform the task with only valve
clicks and changes in air flow as cues. (n = 4)
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We next wanted to evaluate the possibility of mice merging each odour pair into
a single percept (‘configural cue’), using small concentrations of residual odour
that might still be present at the end of the delay period. For example, the
sequence of odour A followed by odour B might be encoded as “low/residual [A]
+ high [B]”, while the reverse sequence could be encoded as “low/residual [B] +
high [A]”. As a first step, we examined the dynamics of each odour pulse using
photoionization detection (PID) recordings. These recordings showed that our
delivery method reliably produced a rapid increase in odour levels followed by a
slower decay (Figure 3.4b, orange curve). This temporal pattern indicated that
both the odour plume and the associated changes in air flow returned to baseline
after approximately 1500ms, well before the end of the delay period and the

delivery of the second odour cue.

To rule out the possibility that odour levels below the detection threshold of our
measurement equipment influenced mouse behaviour, we conducted a control
experiment. In this experiment, we interleaved a new trial type with the standard
trials in the task: in these trials, the first odour cue was replaced with a diluted
odour cue (1:10000) which was delivered at the same time as the first odour in
the normal trials but persisted throughout the entire delay period (schematic in
Figure 3.4a). We selected this dilution level because it consistently yielded PID
readings above baseline for the entire duration of odour delivery and the delay
period (Figure 3.4b, grey curve and inset). Thus, in these trials, mice lacked a
usual first odour cue but instead were presented with a defined, PID-detectable,
yet low-concentration residual odour throughout the entire delay period at a level
that was consistently higher than our baseline recordings. If mice were indeed
using residual odour traces to build a ‘configural cue’ as previously described,
they should exhibit high accuracy performance in trials with the diluted odour
cue. Contrary to this hypothesis, their performance significantly declined when
encountering these trials (Figure 3.4c and d; n = 3; paired t-test: t; = 5.58,
p = 0.03), indicating that mice did not rely on residual odour and require a full-

concentration first odour cue to perform well on the task.
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Figure 3.5: Mice do not use residual odour traces for a configural representation.
a. Schematic of trials to control for the mice using residual odour traces for a configural
representation (e.g. a representation of “95% A + 5% C”). In those trials (right) a defined,
detectable, but low concentration residual odour was presented during the entire delay period.
b. Example odour traces of undiluted odour and diluted odour titrated to produce a continuous
Photoionization device (PID) reading across the entire delay period (dilution 1:10000). The
continuous reading is higher than baseline at the onset of the second cue (see inset) such that
if mice were using a configural strategy, they could solve the task. c. Licking behaviour during a
session with randomly interleaved normal trials (undiluted odour) and trials involving a diluted
first odour cue (model of residual odour). On the top, the orange bar represents undiluted
presentation of odour C. The light orange shading below is the diluted odour C presented across
the delay. The green and black bar represents the possible second odours (green: A, rewarded;
black: B, unrewarded) d. Mice cannot perform the task using residual odour traces (n = 3)
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The above controls suggest that the mice were indeed perceiving the odours as
separate temporally concise cues. However, as mentioned in the introduction, it
has been shown that mice can keep track of various statistics and average the
value of cues over many trials. We therefore wanted to ensure that our subjects
were indeed using both the order and the identity of the cues to solve the task,
and not e.g. a complex combination of elemental bias towards certain odours

together with a rolling average of past rewards.

To this end, we used logistic regression models to estimate the probability of an
event occurring — in this case, the mouse licking — based on a set of independent
predictor variables (task events, Figure 3.5a). By providing the models with
access to different sets of task events, we built four models representing distinct

strategies.

Our structural model (S) incorporates both the identity and temporal order of
odour cues within each trial, with six parameters corresponding to the six
possible trial types (AB, AC, BA, BC, CA, CB). The elemental model (E), by
contrast, only considers the presence or absence of each odour, disregarding
their order. For instance, an AB trial and a CA trial would both be recorded as "A
present," while a BC trial would be noted as "A absent." The configural model (C)
predicts responses based on odour combinations but does not differentiate
temporal order; AB and BA are treated equivalently as "AB both present." Finally,
the history model (H) incorporates the choice and outcome of the previous trial

as predictor variables (Figure 3.5b).

To evaluate how well each logistic regression model predicts mouse behaviour,
we then calculated the Area Under the Curve (AUC) using a Receiver Operating
Characteristic (ROC) curve. Each model generated a probability between 0 and
1 for whether a mouse will lick on a given trial, based on the predictor variables

described above.
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To assess model performance, we then wanted to determine how well these

probabilities distinguish between trials where licking does and does not occur.

A ROC curve is constructed by varying the decision threshold for classifying a
trial as a "lick." At each threshold, the true positive rate (TPR, the proportion of
correctly predicted licking trials) is computed and compared to the false positive
rate (FPR, the proportion of non-licking trials incorrectly classified as licking).
Plotting TPR against FPR across all thresholds produces the ROC curve, and the

AUC is calculated as the area beneath this curve.

AUC values range from 0.5, indicating chance-level performance, to 1.0,
representing a perfect model. Higher AUC scores indicate better predictive
performance, as the model more accurately distinguishes between licking and
non-licking trials. By comparing AUC scores across models, we can infer which

strategy best captures mouse behaviour.

For instance, if the history model (H) achieved a high AUC, this would suggest
that mice rely on past trial outcomes when deciding to lick. Conversely, a high
AUC for the structural model (S) would indicate that mice use both odour identity
and temporal order to guide their behaviour. If a model yields a lower AUC, it
suggests that the factors it considers are less relevant in predicting licking

responses.

This approach allowed us to quantitatively compare different models and gain
insights into the strategies mice use to learn and make decisions in the task. We
found that the structural model best predicted the behaviour of the mice (Figure
3.5¢, n=9; repeated measures ANOVA: F327=15.12, p =6.0x10%; post-hoc Tukey
[Svs C] p =2.3x10%, post-hoc Tukey [Svs E] p = 2.4x10°5, post-hoc Tukey [S vs H]
p=1.1x10%).
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Figure 3.6: Regression analysis shows that mice use the order of cues to solve the task.
a. Logistic regression analysis uses different task events such as cues and previous outcomes
to predict the probability of the mouse licking. b. Giving the regression analysis access to
different information, we built four different models: structural (has access to both cues and
their order in time), elemental (only has access to individual cues, no order), configural (cue
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combination, but not order) and finally a model with access only to previous choice and
outcomes. c. Area under the curve (AUC) for each of the models (1: perfect accuracy, 0.5:
chance). The structural model best predicts licking behaviour (n =9) d. AAUC is the change in
model fit if all models but one are used to predict mouse behaviour. The biggest change in
accuracy is observed in the regression that uses all information except the order of cues (n =9)
e. Beta coefficients for the predictor variable of each model. Positive coefficients are positively
correlated with licking behaviour, while negative coefficients suggest an inverse relation.

To further investigate whether a combination of our models could outperform the
structural model, we next calculated delta AUC (AAUC). This measure quantifies
the contribution of specific predictor variables by comparing model
performance with and without them. Specifically, in a first step, predictions are
generated using a full model, incorporating all available predictor variables
across the different strategies. We then systematically removed individual
predictors or groups of predictors — such as trial history or odour identity — and

recalculated the AUC.

The difference between the AUC of the full model and the AUC of the reduced
model provides the AAUC and is a measure of how much predictive power is lost
when a given predictor is excluded. By examining the AAUC, we could assess
whether certain aspects of task structure, odour identity, or trial history
contribute significantly to the model’s ability to predict licking behaviour. A large
drop in AUC when removing a predictor suggests that the mice rely heavily on
that information, whereas a small or negligible AAUC indicates that the predictor

may not be critical for decision-making.

Using this technique, we again find that the structural model (predicting based
off temporally ordered odour pairs) has the biggest contribution to the overall
accuracy of classification (Figure 3.5d, n = 9; repeated measures ANOVA: F57)=
14.47, p = 8.0x10%; post-hoc Tukey [Svs C] p = 3.2x10°®, post-hoc Tukey [Svs E] p
= 1.0x10%, post-hoc Tukey [S vs H] p = 5.1x10%), indicating that the mouse
behaviour is indeed best predicted by structural information and not a

combination of elemental, configural or historic information.
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This was further corroborated when looking at the beta coefficients for each
predictor variable inthe combined model. Beta coefficients describe the relation
between each variable and the predicted outcome. Positive values denote a
positive correlation, while negative coefficients suggest an inverse relation. Here
as well, the variables that are most strongly influencing the model prediction are
the ones containing structural information (Figure 3.5e, n = 9; repeated
measures ANOVA: Fi327 = 19.39, p = 4.7x10°%5; planned comparisons p-values:

see Appendix 1).

Taken together, this regression analysis suggests that mouse behaviour is best

explained by odour pairs in order, suggesting that mice used a structural route to

solve our task.
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3.3 Discussion

In this chapter, | have presented a novel task paradigm that requires mice to
remember an odour cue over a delay, and then either lick or withhold licking
depending on the identity of a second cue (Figure 3.1). Importantly,
contingencies in this task are balanced in a way that the values of all individual
odours are ambiguous (i.e. as often rewarded as not), and mice can only solve

the task by combining the two cues across the delay.

Our behavioural data shows that mice can learn this task over the space of less
than 10 days, developing a robust anticipatory lick response to the rewarded

pairs of odours, and withholding their licks for unrewarded pairs (Figure 3.2).

To ensure that the mice are indeed using a structural learning strategy, we

conducted both experimental controls as well as a regression analysis.

In control experiments with only circumstantial clues (valve clicks or changes in
air pressure, Figure 3.3) mice did not exhibit accurate anticipatory lick
responses, indicating that the odour cues are necessary for performance. In a
second experiment, we investigated the possibility of mice circumventing the
need for structural learning by using a combination cue made up of residual
odour from the first odour at the time of the second odour delivery (Figure 3.4).
Here as well, mice were not able to perform the task, consistent with a

behavioural requirement for strong, temporally distinct odour cues.

To computationally examine strategies that mice might use during the task, we
fit different logistic regression models to the behavioural data. We found that in
all cases, a model using structural information predicted animal behaviour
better than both individual models using elemental or configural cues or past
outcomes, or even a model using a combination of all of these variables (Figure

3.5).
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Overall, we show that our novel task requires mice to use structural information
and combine odours across the delay, and that mice successfully learn about
the reward contingencies associated to specific temporal combinations of

odours.

3.3.1  Comparison to similar tasks from the literature

As previously mentioned, the parallel scientific discoveries of hippocampus as
the centre of autobiographical memory in humans and as an essential
component of rodent navigation has sparked many theories attempting to unify
the two functions into one global theory of hippocampus, and their investigation

has produced many tasks that show parallels to our paradigm.

A cued T-maze for example also requires subjects to retain a cue over a period of
time (while traversing the stem of the maze) in order to behave correctly at the
choice point (turn left or right). However, in the usual setup, there is no further
information needed outside of the initial cue and therefore animals could in
theory prepare their action even before the choice point, making it difficult to
interpret neural signals as they could both represent the past cue identity as well

as the future associated action.

The delayed-match-to-sample (DMS) task, widely used in the study of memory,
circumvents this issue by only presenting some of the necessary information at
the start of the trial: in the initial phase, the monkey is shown an object, and has
to retain its identity over a delay phase. After the delay, the monkey is shown two
objects, and is asked to select the familiar object. As the position of the objects
(right or left) is necessary to plan the correct action, in this task it is easier to tell
apart neural signatures of memory (recall of target object) from the planning of a
future action. Yet, this task has other limitations as it could conceivably be
solved by a recency effect instead of a recall of the specific object. To exclude

this strategy, an alternative approach was to change the target the subjects were
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meant to select from the sample object to the novel object. In this version, called
delayed-non-match-to-sample (DNMS) task, a recency-based strategy is not as
easy to implement, but still does not consistently require the subject to
disambiguate a stimulus that is equally likely to lead to reward as not, as for
example the non-sample object might be completely novel or have an average
associative value that is higher or lower than that of the sampled object (Kangas

etal., 2011).

The tasks developed by Rudy and Sutherland to investigate their theory of
configural learning are carefully designed to avoid potential biases caused by
differences in associative value of specific clues (Rudy & Sutherland, 1995;
Sutherland & Rudy, 1989). For example, in the “positive patterning” paradigm,
reward is given when two stimuli are presented together (AB+) but not when they
occur individually (A-, B-). Thus, the values of both cues are equivalent, as is the
frequency of their presentation. Other versions of these configural tasks, such as
negative patterning (A+, B+, AB-) and biconditional discrimination (AX+, AY-,
BX-, BY+) also contain similar sets of counterbalanced cues. However, this only
holds true if the configural (combined) stimuli are indeed encoded as a
combination of the elemental cues, and not as a separate representation of e.g.
‘A&B’. Interestingly, later studies using the same type of paradigms found the
necessity of hippocampus to be a function of the spatial distance between the
individual elements to be included in the configural cue (Albasser et al., 2013),
or required the use of an entire context as one “cue” (Riaz et al., 2017),
suggesting that the separation of cues in space or time rather than the
combinatorial nature of cues is the factor that makes a given task hippocampus-

dependent.

Our task design attempts to circumvent all of the limitations mentioned above:
mice can only make the decision on how to act at the delivery of the second
odour, since both cues are necessary to correctly anticipate rewards. All

individual cues are carefully counterbalanced so that neither familiarity nor
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recency effects can be used to solve the task. Finally, a delay of at least 5s
ensures that the individual odour cues are too far separated to be encoded as
one configural odour mixture, an attribute we specifically controlled for in the

experiments shown in Figure 3.4.

By designing the task in a way that A before B holds a different meaning to B
before A, we also introduce directionality into the cue space, thereby meeting
the criteria of “structural learning” as defined by Aggleton (Aggleton et al., 2007).
They argue that hippocampus is required to bind several features into a “cue
array”, but only if there is a specific relationship between the elements (X to the

left of Y, B before A, etc.).

In recent years, interest in the type of learning required to understand structure
and relations between different objects has gained much attention, leading to
the development of a wealth of further tasks, from spatial (Frank et al., 2000;
Wood et al., 2000) to non-spatial (MacDonald et al., 2013; Pastalkova et al.,
2008). Most of these tasks however exhibit similar drawbacks as described
above and thus they can offer only limited insight into the neural representations
that underpin the role of hippocampus in these behaviours. With the design of
our task, we are well placed to provide new insight into what information is
represented in hippocampal populations during structural learning, offering a

new piece in the puzzle of the function of hippocampus as a whole.

3.3.2 Technical considerations of the task design

We chose to use odour cues in this task since previous studies have shown
olfactory cues to be very salient to mice (Liu et al., 2014; Taxidis et al., 2020; Yun

et al., 2023).

However, while providing many advantages for fast learning of complex tasks,

olfactory cues present with many unique challenges when compared to visual or
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auditory cues. The spread of odours is difficult to predict and equally difficult to
measure, both in qualitative as well as quantitative ways, especially when it
comes to comparing odour levels across different components. Furthermore,
research has shown that mice are extraordinarily good at noticing even small

differences in odour composition (Uchida & Mainen, 2003).

To limit the influence of these issues, we have taken multiple measures in both
the design of our setup as well as the design of the task. First, we built a high-
accuracy odour system adapted from the Schaefer lab (Ackels et al., 2021).
Crucially, in this system, clean air is constantly introduced into the setup and
used air is sucked away from the setup via a vacuum pump, thus creating a
constant flow of air in which odorants are then injected, forming temporally
distinct odour plumes with a sharp rise and fall (see Figure 2.3). We regularly
controlled that the amplitude and dynamics of each odour remained the same
across learning by measuring the concentration of each odour with a
Photoionization Detector (PID). Since the PID readings are not comparable
between odorants due to the different ionisation energies required for different
molecules, we further used an airflow sensor to ensure that the changes in
airflow due to the injection of odourised air into the airflow were similar in shape
and amplitude. Lastly, we conducted multiple control experiments to ensure

that mice were indeed using the odour cues as intended (Figure 3.4 and 3.5).

Another point of consideration is the use of anticipatory licking as a readout for
learning. Since the rewards are delivered in a Pavlovian manner, i.e. independent
of the mouse’s behaviour, anticipatory licking was not necessary for maximising
rewards. Therefore, it is possible that we are missing some of the learning since
mice might correctly predict the rewarded outcome, but not display any

anticipatory licking.

Anotherimportant aspect of our taskis that licking outside the reward availability

window is not punished. As a result, mice tend to lick both during the inter-trial
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interval and in the delay between the two odour cues. Focusing on the latter, the
bottom panel in Figure 3.2c suggests that anecdotally, the example mouse
seems to lick more frequently in response to the first cue when it appears in a
rewarded pairing. At first glance, this behaviour seems puzzling since our task
design ensures that any given first odour is equally likely to be followed by a

reward or no reward.

However, because trials are presented pseudo-randomly, effectively simulating
draws without replacement, the probability of encountering a rewarded trial
increases following repeated instances of unrewarded trials. At the extremes of
this distribution, a mouse could infer that after six consecutive unrewarded
trials, the next trial must be rewarded. Even in shorter sequences of trials with

the same outcome, this pattern might still influence licking behaviour.

In our logistic regression model, we currently account for trial history only in
terms of the outcome of the preceding trial. However, it may be worth exploring
whether mice consider trials further back in their history to assess the likely

outcome of a trial.

In our current analysis, we use anticipatory licking as a binary metric, where a
single lick between the second odour and the reward is counted as a hit.
However, it may be informative to consider alternative measures, such as lick
rate. A single lick could occur by chance and may not necessarily indicate
learning, whereas repeated licking that ramps up towards reward delivery could
reflect a stronger association with the stimuli. Additionally, lick rate might serve
as a proxy for the animal’s certainty, with higher rates indicating greater
confidence in the expected outcome. Investigating how this measure varies
across task difficulty could provide insights into how mice adapt their behaviour
in more challenging paradigms, potentially revealing more nuanced aspects of

learning and decision-making.
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Lastly, mice in our task are placed on a wheel in order to reduce the stress of
head-fixation. In our current setup, we are not quantifying their running nor
analysing movement by other means (such as a camera). We can therefore not
exclude effects of running and other movement on learning and task

performance.

3.2.3 Considerations on the regression analysis

While the data from our regression models helped to convince us that mice are
solving the task using both the odour identity and the temporal structure of their
presentation, it is by no means a comprehensive strategy to capture the richness
of mouse behaviour. To capture a fuller picture of how mice navigate the task

structure, several improvements could be made.

Right now, we make individual models for each mouse, calculate the metrics for
model performance and then average those metrics over all mice. An alternative
approach could be to train a single model on the entire dataset while including
mouse ID as a parameter. This might enable us to capture both shared
behavioural patterns and individual differences in a more structure way. It would
furthermore provide a metric to estimate the individual-level deviations from the
group-level behaviour, pointing us more clearly to mice who are outliers in their
use of task parameters and enabling us to test specifically whether some mice

are more affected by e.g. trial history than others.

Another way to capture more variance in mouse behaviour would be to change
the parameters each of our models use. For example, we could refine the way
odour identity and order are represented: while the structural model currently
considers trial types as distinct categories (AB, AC, BA, etc.), it could be
enhanced by incorporating parameters that separately encode "A as first odour"

or "B as second odour." This would allow the model to generalise across different
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trial types and capture potential biases in how mice respond to specific odours

depending on their position within the sequence.

Another improvement could involve incorporating parameters related to the
timing and magnitude of licking responses. Currently, the models treat licking as
a binary outcome, but introducing a lick rate parameter could provide a more

nuanced measure of learning and certainty.

Lastly, as mentioned above, the history model, which currently only accounts for
the outcome and choice on the previous trial, could be expanded to include a
weighted influence of multiple past trials. This would allow us to test whether
mice integrate trial history over longer sequences rather than responding solely
to the most recent outcome. This would furthermore allow us to add an
interaction term between odour identity and trial history, which could reveal
whether mice adjust their responses differently depending on past experiences
with specific odours. By refining these parameters, the models could more
accurately reflect the complexity of mouse decision-making and learning

processes.

Finally, while logistic regression modes are a useful tool for modelling the
influence of many factors on binary outcomes like licking behaviour, they are not
the only method that can be used. Alternative approaches such as linear mixed
models (LMMs) account for hierarchical structure in the data, such as repeated
measurements with individual mice. Furthermore, by including random effects,
these models allow for individual variation in the tendency to lick, such as is
described in Figure 3.3a, thus providing a more flexible framework for capturing

individual differences.

Another option would be to use Bayesian hierarchical modelling, which offers a
probabilistic approach that takes into account prior information about expected

behavioural patterns. However, these approaches, while more powerful,
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sacrifice interpretability by adding non-linear interactions and more parameters
into the mix. Ultimately, the choice of modelling strategy must strike a balance
between flexibility, interpretability and the ability to account for nuance and

variability within the behaviour.
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4 Flexible adaptation to changing task
structure reveals a role for
hippocampus

4.1 Introduction

In the previous chapter, | presented a novel task that required mice to learn both
about the identity of two odour cues as well as their position in time relative to
each other. We found that mice could rapidly learn this and showed data from
several control experiments as well as logistic regressions to demonstrate that

mice were indeed using a structural learning strategy to solve the task.

A hallmark of structural learning is that, instead of learning about items and cues
individually, relations between cues are retained and organised into schemas,
contexts, or cognitive maps (Behrens et al., 2018). In this, this type of learning
differs conceptually from the associative learning. While the latter can be
modelled by classic reinforcement learning (RL) algorithms (Bari et al., 2019;
Sutton & Barto, 1998) and is associated with dopamine signals in the ventral
tegmental area (Howe et al., 2013; Schultz et al., 1997), this is not the case for

structural learning.

One hypothesised key advantage of structural learning over reinforcement
learning is that, once learnt, relationships between cues can be expressed in a
flexible manner and should allow for quick adaptation to new experiences that
share the same underlying structure or follow the same rules. A classic and still
poignant example of this type of inference was described by Tolman in 1948: rats
that experience a maze many times learn not only about the trajectories they
take, but also about trajectories they might take in the future. This becomes

apparent when the layout of the maze changes and the rats take shortcuts that
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weren’t previously available to them, using what they have learnt about the
spatial layout to connect two places within the maze in a new way (Tolman,

1948).

When 30 years after, place cells forming a map of the spatial environment were
discovered in the hippocampus of rats (O’Keefe & Nadel, 1979), this offered a
neural substrate for the latent learning in the absence of clear rewards and
placed the hippocampus firmly at the centre of the proposed structural learning

network.

Many computational studies have since shown that a models based on a
structural learning framework can not only reproduce the types of responses
recorded in navigation tasks, such as place cells, border cells and many others
(Whittington et al., 2022), but also can potentially explain findings from
contextual fear conditioning experiments (Gershman et al.,, 2015) as well as

attentional set-shifting tasks (Niv, 2019).

These models have made much headway in demonstrating that structural
learning principles offer a unifying framework to describe hippocampal activity
across various domains, from spatial navigation to memory encoding. However,
only few studies have attempted to experimentally test these hypotheses due to

the difficulty in training mice to solve these kinds of structural problems.

We have already shown that the learning in our task satisfies the criteria for
structural learning since the cues are temporally separated, individually
ambiguous and only become meaningful if combined in a specific order in time.
In our next steps, we will test whether mice that are proficient at the task can
adapt to changes in task structure and cue identity, testing whether the
hypothesised degree of abstraction necessary for structural learning incurs

higher degrees of behavioural flexibility.
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Furthermore, we will investigate whether hippocampal circuits are necessary for
this task by inactivating parts of CA1 during the task with optogenetic

manipulations.
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4.2 Results

4.2.1 Mice can adapt to changes in task structure

In a first step, we wanted to test how flexibly mice can express the behaviour
learnt in the initial version of a task. To test this, we first systematically altered
the timing of the task, such that the delay period between the two odour cues

grew from 5s to 10s, 20s and eventually to 30s (Figure 4.1a).

As would be expected for a higher memory load, the accuracy of behaviour
decayed slightly as the delay became longer (Figure 4.1b and ¢; n = 10; repeated
measures ANOVA: Fg 30 = 4.78, p = 7.7x103), but nevertheless, mice remained
substantially above chance across all delay periods (5s delay: p correct = 0.84
+/-0.06; 10s delay: p correct =0.84 +/- 0.10; 20s delay: p correct =0.79 +/- 0.12;
30s delay: p correct = 0.68 +/- 0.11). Notably, mice refrained from licking
throughout the delay period even at long delays (Figure 4.1d). Thus, once mice
have learnt the task, they could adapt to changes in cue timing and still correctly

anticipate reward.
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Figure 4.1: Mice can adapt to temporal changes of task structure. a. Different delays serve
as an example for changes in the temporal structure of the task: instead of 5s, the delay
between the two odour cues is changed to 10s, 20s, or 30s respectively. b. Mice can perform
the task even at 30s delay (n = 10) c. Data from individual mice trained on paradigms with 5s,
10s, 20s and 30s delay d. Example licking behaviour for ‘go’ and ‘no go’ trials in the 10s, 20s and
30s paradigms respectively.
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Since behavioural accuracy decreased with longer delays, we wanted to ensure
that mice were still using the full structural information of the task, instead of

resorting to a different strategy.

We therefore returned to the logistic regression analysis described in Chapter 3.
As before, we split predictor variables into four individual models (see Figure
3.5b): a structural model (S) including variables for each odour pair, taking into
account their order; an elemental model (E) using only presence or absence of
each individual odour cue; a configural model (C) using presence or absence of
each odour configuration (making no distinction between AC and CA); and finally

a model using past choice and past reward as predictors (H).

Comparing between these individual models, we found that at all delay times,
the structural model consistently best predicted licking behaviour (Figure 4.2a
and b; mixed-design ANOVA, effect of model type: Fi 27 = 58.90, p = 5.7x107%;

effect of delay: n.s; interaction: n.s).

As a second approach to understand the strategies used by mice, we employed
a Feature Subtraction approach. For this, we used a combined model using all
predictor variables (from models S, E, C and H) and compared its performance
to that of a model where one set of variables was removed. This difference in
performance was quantified by the delta AUC (AAUC) which therefore represents
the unique variance attributable to each group of predictors. As an example, the
AAUC score for the structural model S describes the change in performance
between a complete model and a model using only the predictor variables from

E, C and H (i.e. with the structural predictors removed).
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Figure 4.2: Regression analysis shows that mice solve task using the order of cues even at
long delays. a. Area under the curve for single models using different predictor (S: structural,
E: elemental, C: configural, H: trial/loutcome history) for different delays. b. Summary of the
performance of each model across different delays. Note that the structural model consistently
best predicts licking behaviour. ¢. Change in performance of a global regression model when
predictors from specific models are removed (AAUC) for each delay. d. Summary of the change
in model accuracy when either structural, elemental, configural or historical information is
removed.
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Consistent with the results from the single models, removal of the structural
predictors has the biggest impact on the performance of the regression model
(Figure 4.2¢c and d; mixed-design ANOVA: effect of modeltype: F 25 =40.01,p =

2.9x107%; effect of delay: F; 84 = 3.07, p = 0.03; interaction: n.s.).

Taken together, this suggests that despite the decrease in the behavioural
accuracy at long delays, mice still used a structural strategy to solve the task

throughout.

Despite this confirmation, we wanted to explore the decrease in performance
with longer delays further, examining the types of errors mice made in sessions
with longer delays. Within a go/no-go task, there are two possible errors: missed
trials (rewarded trials in which mice failed to lick) and false alarm trials
(unrewarded trials in which mice licked incorrectly). Therefore, the decrease in
correct trials at longer delays could either be caused by a higher proportion of
false alarm responses, a higher proportion of missed trials, or a combination of

both (Figure 4.3a).

To examine this, we compared the proportion of these four outcomes across the
different delays (Figure 4.3b, c-f). Consistent with the finding that mice perform
above chance level even in the 30s paradigm, we observed that the proportion of
correct trials was consistently higher than that of error trials of either kind.
Interestingly, with increasing delays the proportion of missed trials consistently
rose, accompanied by a matching decrease in hit trials (n = 13, Pearson
Correlation Coefficient for p miss : rqqy = 0.38, p = 0.01). The rate of false alarm
trials however showed no clear correlation to the delay time, remaining between
5 -10% for all delays (n = 13; Pearson Correlation Coefficient for p false Alarm

ran= 8 x 10'4, p= 044)
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(summary) c - f Occurrence of each outcome in 5s, 10s, 20s, and 30s task, respectively.
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All mice first learnt the task with a 5s delay (as shown in Chapter 3) and were
only moved onto longer delays once they had become proficient. In the same
way, only mice who stably performed the task with a 10s delay would be
presented with the 20s paradigm, leading to mice reaching the maximal delay of

30s after a variable amount of training days.

Since the motivation for this manipulation was to test whether structural learning
conferred greater behavioural flexibility, we next compared the training times and

performance on day 1 of training across the different delay paradigms.

Traces in Figure 4.4b show that the individual learning trajectories vary across
mice: while some mice took as long as 9 days to reach a performance level
significantly above chance in the 20s task, others were able to perform at above

80% accuracy from day 1.

On average, the time needed to acquire the task at new delays decreased in
tendency over the learning period (Figure 4.4a). While it took 15 days for all
tested mice to reach good performance of the 10s paradigm, it only took 7 days
to acquire the 30s task. Furthermore, the performance on day 1 of training in the
10s and 20s paradigm (i.e. the first day mice ever experienced that particular
paradigm) lay higher than performance on day 1 of the 5s paradigm (Figure 4.4c).
However, when looking at the individual learning curves (Figure 4.4b), it is
notable that different mice seem to react differently to a change in time
structure: some mice (e.g. SN74 or SN87 for the 10s task) maintain a high level
of correct trials from the first day, while others (SN91) fall to chance level for a

few sessions before recovering performance.

Taken together, these results suggest that knowledge of prior task paradigms
may transfer to paradigms with different temporal structures to some mice,

providing a learning advantage.
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Figure 4.4: Time to learn new delays gets shorter over learning. a. Average performance for
the task at different delays. Note that once mice perform above 70% consistently, they are
moved to the next stage. b. Learning curves for individual mice. Days with manipulations (such
as “No airflow” control experiments (cf. Fig 3.4) are omitted in these plots. c. Average
performance on Day 1 of training in the task at different delays
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To further examine the evidence for knowledge transfer from one task paradigm
to another, we compared the learning curves of mice that underwent different
delay paradigms sequentially (first encountering the task with a 5s delay, then
moving to 10s when proficient; schematic in Figure 4.5a, left) to the learning
curves of mice whose first experience with the task was the 10s paradigm
(without any training on or experience of the 5s task, Figure 4.5b, left). Thus, in
this experiment, we directly compared learning of the 10s task with or without

previous experience of the 5s task.

While both cohorts reached a high level of task performance by day 9 of training,
the average performance of mice with previous experience of the 5s task
exceeded 70% from day 2 onward, while naive mice only reached this level after
8 days of training (Figure 4.5c). Even before the mice reached criterion, the
difference between experienced and naive mice was evident, which we
quantified by comparing the average performance across day 1-3 of training
between these groups (n =9 and 3 for experienced and naive group, respectively;

two-sided t-test tgsq = 3.73 p=0.01x102).
In summary, we demonstrate that mice trained on our paired-associates task

with a 5s delay between cues can adapt to changes in the task’s delay structure,

doing so more efficiently than mice with no prior experience of the task structure.
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Figure 4.5: Mice with experience of the 5s task paradigm perform better in 10s task.
a. Individual learning curves of mice training on a task paradigm with 10s delay, after having
mastered the basic version of the task with 5s delay. b. Learning curves of mice that have no
prior experience of the task before encountering the 10s paradigm. c¢. Comparison of average
performance across learning between experienced mice (green) and naive mic (red). d. Average

performance on the first days of learning (day 1-3) in experienced and naive mice (h=9 and 3
for experienced and naive group, respectively)
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4.2.2  Mice can incorporate a new odour into existing task
structure

In addition to allowing for flexible adaptation to changes in task architecture,
structural learning is also proposed to allow generalisation to novel experiences
that share the same underlying structure. To test for this type of behavioural
flexibility, we changed the sensory experience of the task while leaving the

temporal structure constant.

We achieved this by replacing odour C with a novel odour D (Figure 4.6a).
Specifically, we introduced 4 new odour pairs (AD, DA, BD, DB), with only 2 trial
types remaining familiar from the basic version of the task (AB and BA). Despite
this new cue configuration, the underlying structure (two odours separated by
5s, then outcome) remained the same, allowing us to observe how quickly mice

could incorporate a new sensory cue into a familiar structure of rules.

We used mice who had learnt the task with the standard set of odours (ABC) and
were performing at a high level (Figure 4.6b, day -1). When we introduced odour
D into the task (day 0), the accuracy of anticipatory licking dropped initially as
expected. However, task performance rapidly returned to very high levels (Figure
4.6b; n =6, repeated measures ANOVA: Fs 25=2.66, p=0.04). In some instances,
this recovery even took place within a single session, after the mouse had only
very limited exposure to each pair of odours (Figure 4.6¢). In contrast to learning
a new temporal structure (Figure 4.3) or learning an entirely new task (see
Chapter 3), this recovery of previous performance was rapid, suggesting that
prior experience with a given task structure facilitates faster learning of new cue

combinations that share the same structure.
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Figure 4.6: Mice can rapidly integrate new odour into task structure. a. After mice have fully
learnt the task, odour C is replaced by a novel odour D b. Mice rapidly adjust and recover
performance (n = 6) c. Most subjects experience initial difficulty manifesting in a drop in
performance on the day the new odour is introduced (day 0) compared to the previous day (day
-1) but recover performance within 1 — 5 sessions (day 5) (n = 6) d. Performance on the day of
the switch (day 0) grouped by second odour. Performance on trials with the new odour (D) as
second odour are most affected. e. After a brief rise in the predictive power of both the
configural and the elemental model in the days following the switch, the regression shows that
after 3 days, the mice return once more to using mostly structuralinformation to solve the task.
f. This manipulation leads only to a minimal rise both in missed rewarded trials as well as
incorrect lick responses to unrewarded odour pairs.
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To better understand the effect of replacing one of the odour stimuli, we next
looked at the performance on the day of the odour switch (day 0), split according
to the second odour in the pair (Figure 4.6d). As would be expected, on trials
where the new odour D is the second odour, mice perform poorly since both trial
types within that group are unfamiliar. In trials where A or B are the second odouir,
mice perform above criterion, but notably do better on trials where B is the
second odour. Overall, this result supports our notion that the mice are able to
use their knowledge of the structure of the task to adapt to the exchanging of a

familiar cue for a novel one.

This was supported by the results of a logistic regression with the same sets of
predictor variables as previously described: even on the day of the odour switch,
the structural model remained the most predictive of mouse behaviour (Figure
4.6e, mixed-design ANOVA, effect of model: F 27 = 34.40, p = 5.4x10°°; effect of
day: n.s; interaction: n.s). On the day when the novel odour was first introduced,
the increased predictive power of elemental features suggests that there might
be an initial phase of bias while mice learn where the new cue fits into the task

structure.

Despite a slight rise in miss and false alarm trials on the switch day, there was no
statistically significant effect in the types of errors mice made (Figure 4.6f; n =6,
repeated measures ANOVA: Fu, 20 =1.09, p =0.38), suggesting that across the 5

days, these response types did not change in a consistent way across mice.

4.2.3  Ventral Hippocampus is required for solving the task at
longer delays

Our results so far suggest that mice indeed solve the task by learning about both
the task structure as well as individual cues, enabling them to adapt flexibly to

changes to cues as well as to the timing of their delivery.
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As mentioned in the introduction to this chapter (section 4.1), learning and use
of task structure have been proposed to be dependent on the hippocampus,
supported by both experimental results as well as theoretical studies. Therefore,
we wanted to test how disrupting neural activity in this area would affect

behavioural accuracy in our task.
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Figure 4.7: Optogenetic inactivation of ventral CA1 impairs behaviour at long delays.
a. Schematic of bilateral optogenetic inhibition of ventral CA1 region of hippocampus (vCA1):
stereotaxic injection of a flexed inhibitory opsin ArchT combined with a CamKii-cre virus (top)

and fibre placement (bottom)

b. Example histology image showing fibre placement, scale

bar=1mm. Box indicates region of interest c. Schematic of optogenetic inhibition experiment:
on trials with laser stimulation, the laser pulse starts at 500ms before the first cue and fades
out after water delivery d -g. Bilateral optogenetic inactivation of vCA1 has no significant effect
on task performance at delays of 5 - 20s, but in a 30s delay paradigm, laser stimulation impairs
performance significantly (n = 3), indicating a role for vCA1 for structural learning with long

delays.
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To test this hypothesis, we bilaterally injected a mixture of AAV2/7-FLEX-ArchT-
tdTomato and AAV2/1-CamKII-Cre into the CA1 area of ventral hippocampus
(vCA1) and implanted optic fibres above the injection site for directed laser light
delivery. This enabled us to inhibit principal neurons in vCA1 selectively and
reversibly via administration of 520nm illumination (Figure 4.7a and b). Due to
unforeseen circumstances, we were only able to recover the histological data of
two out of the four animals used in this manipulation. The two brains varied in
viral expression (data not shown) but both injection site as well as fiber

placement were comparable (Figure 4.7d).

We tested the effect of this optogenetic inhibition on the behaviour of well-
trained mice in versions of the task with either 5s, 10s, 20s or 30s delay. We
designed the stimulus such that light was automatically delivered for the
duration of an entire trial, from 500ms before the onset of the first cue until after
the outcome (Figure 4.7¢). In addition, light delivery was turned off with a “ramp”
to minimise rebound spiking (Chuong et al., 2014). In each mouse, we compared

sessions with light delivery to control sessions with no light delivery.

In experiments with 5s and 10s delays between odour cues, bilateral inhibition
of vCA1 had no effect on the performance of expert mice (Figure 4.7e and f; 5s:
n= 3; p correct ot = 0.82 +/- 0.08, p correct controt = 0.87 +/- 0.04; 10s: n = 4;
p correct opto = 0.79 +/- 0.13, p correct controt = 0.80 +/- 0.09). At 20s delay, there
was a marked decrease of behavioural accuracy in one animal, but since the
other two subjects performed poorly even under control conditions, this data did
not allow for conclusions about a general effect (Figure 4.7g; 20s: n = 3; p correct

opto = 0.63 +/' 0.04, p CorreCt control = 0.67 +/' 0.1 2).
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Figure 4.8: Optogenetic inactivation of vCA1 leads to increased number of missed trials at
long delays. a. The average number of licks per trial does not change between trials with and
without laser stimulation b. Possible outcomes in our task are either Hit or Miss for a rewarded
trial, or Correct Rejection and False Alarm for unrewarded trials c. The frequency of Hit trials
per delay time for both trials with optogenetic stimulation (green) as well as control trials (grey)
d. The frequency of Miss trials in tasks with different delays, green: laser on, grey: control trials
e. Percentage of trial outcomes in trials with laser stimulation. f. Percentage of trial outcomes
in trials without laser stimulation.
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However, performance accuracy in a task with 30s delay was significantly
impaired in sessions with laser stimulation (Figure 4.7h; 30s: n = 3; p correct opto
= 0.53 +/- 0.05, p correct controt = 0.70 +/- 0.04; paired t-test: t = 8.58, p = 0.01)

and fell to almost chance levels.

To examine what change in behaviour underlay this marked decrease in task
performance, we next looked more closely at the licking responses in trials with
and without laser stimulation. Since previous studies have proposed behavioural
inhibition to be one of the functions of the ventral hippocampus (Gray &
McNaughton, 2003), we compared the amount of licking per trial between the
sessions with optogenetic inhibition and control sessions (Figure 4.8a; two-way
repeated measures ANOVA, laser: n.s; delay: n.s., interaction: n.s.). We found
that at all delays, mice licked equally frequently under both laser and control

conditions.

Then, we returned to the response analysis (Figure 4.8b) to determine what types
of responses formed the basis of the decrease in behavioural accuracy in laser-

stimulated sessions with long delays.

We found that optogenetic inhibition of vCA1 led to a steeper decrease of Hit
trials with longer delays (Figure 4.8c, repeated measures ANOVA, F 3 = 40.00,
p = 7x10%) and a matching increase in Miss trials (Figure 4.8d). For example,
while mice missed 18% +/- 2.4% of rewarded trials in the 30s task under control
conditions, this figure rose to 35% +/- 1.2% of rewarded trials when vCA1 was
inactivated. In contrast, there was no difference in False Alarm responses
between sessions with optogenetic stimulation (Figure 4.8e, repeated

measures ANOVA: Fu,3=7.16, p =0.08) and control sessions (Figure 4.8f).
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4.3 Discussion

In this chapter, we wanted to test whether mice could use the knowledge of the
task even when cues or their timing were changed, suggesting a level of abstract

learning about the task structure that has been postulated by previous studies.

First, we showed that mice proficient at our task could adapt to changes in the
underlying temporal structure such as increasing the delay from 5s up to 30s
(Figure 4.1). Importantly, even though the accuracy of their responses decreased
slightly with longer delays, our logistic regression models suggest that mice still
used structural information to solve the task (Figure 4.2). We next looked at the
types of errors mice made across these different task paradigms, and found that
with increasing delays, the number of missed trials (rewarded trials where mice
failed to respond) increased, whereas the number of false alarm trials
(unrewarded trials where mice incorrectly responded) showed no significant

correlation with delay length (Figure 4.3).

We further show that mice adapt to changes in the timings of cues in a shorter
time as compared to the time they require for learning the original task (Figure
4.4) and that their behavioural accuracy in early learning is higher than in mice
with no prior experience (Figure 4.5), indicating that some of the knowledge can

be transferred across tasks.

To further test behavioural flexibility in our task, we then changed some of the
odour pairs, replacing one odour cue with a new odour that the mice had no prior
experience of. We found that mice adapted to this new cue rapidly, recovering
their previous levels of accuracy by the third session, and often before that
(Figure 4.6). We used regression to investigate which variables best predicted
mouse behaviour and found that once again, licking was best predicted by a
structural model using both odour identity and order. Lastly, we examined the
types of responses and found that in the sessions following the odour switch,

there is no specific change in errors.
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Finally, we investigated whether the hippocampus was required for this
proficient performance in our task. To do this, we bilaterally expressed an
inhibitory opsin in ventral CA1 (vCA1) and stimulated it by delivering laser light
through optic fibres while mice were performing the task (Figure 4.7).
Inactivation of vCA1 only showed a significant effect on behaviour in the

paradigm with 30s delay between odour cues.

This effect was not due to a change in the amount of licking. Using the same
response analysis as before, we showed that the drop in behavioural accuracy
during optogenetic inactivation was due to a large decrease in correct responses
to rewarded trials but was not related to a higher amount of false alarm trials

(Figure 4.8).

4.3.1 Adaptation to changes in task structure suggests some
learning across conditions

To test how flexibly mice were able to express their learnt understanding of the
task, we chose to successively change the delay between cues from 5s to 10s,

20s, and finally 30s.

While at first glance, this might not seem like a change requiring an abstract
understanding of task structure, it warrants a closer look: to successfully recover
performance after the delay changes from 5s to 10s, the animal either has to
learn 6 new associations with this new time course or transfer the previously
learnt reward contingencies to a longer trial time. The latter strategy is proposed
to be more efficient and therefore allowing a faster recovery of performance after
a change in temporal structure. However, considering proposed mechanisms of
time keeping in the brain, such as e.g. time cells (MacDonald et al., 2013;
Eichenbaum, 2014), the neural mechanism of this kind of transfer learning would

require a generalisable representation of the task.
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In our data, we find hints that mice with previous task experience indeed adapt
faster to manipulations of the delay time, both by reaching stable accurate
performance earlier and by displaying a higher baseline of behaviour even upon

first exposure (Figure 4.4 and 4.5).

An important consideration in interpreting these results is that the key
comparison is not between our task and a simpler one in which single odours
predict reward. While such a task might not require structural learning, repeated
exposure to different cue-reward pairings with varying odours or delays would

still establish a common task framework, even if it would be a very simple one.

Instead, the appropriate control would be a task in which no common structure
exists across successive learning experiences. For example, if mice were first
trained on our original task —where reward is predicted by an odour pair with a 5s
delay — and then switched to a task where only the second odour predicts
reward, or where a distractor odour is presented in the delay, we would not
expect prior experience to facilitate learning. In such cases, the underlying task
structure would be fundamentally different, preventing transfer of previously

learnt contingencies.

However, since we did not perform a control experiment with a non-structural
task with similar cues, we cannot exclude that the improved performance on

day 1 might be due to alternative explanations. Since the exposure to multiple
task paradigms necessarily means more total days of training, this improved
learning might also be explained by increased attention to odour cues, or simply

higher habituation to head fixation, handling and water restriction.
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4.3.2  Behavioural performance after new cue introduction

Our second test to assess behavioural flexibility in our task was to change the
cue contingencies. We did this by exchanging one of the three odour cues (odour
C) with a new odour (Odour D) that the mice had no prior experience of. In
consequence, 4 out of 6 trial types contained novel odour pairs with unfamiliar

associations, half of which were rewarded and the other half unrewarded.

We found that mice rapidly adapted to this change, all recovering their baseline
levels of behavioural performance by the third session with the new set of odours
(Figure 4.6). Notably, some mice responded correctly to the new set of odours
even within the first day of exposure, thereby requiring less than 10 trials of each

type to reconsolidate their behaviour.

This was a stark difference from the time required for learning the original
associations (see Chapter 3, Figure 3.2), suggesting that maybe abstraction
from the basic task allowed for inference to fill the gaps. Theoretical accounts
have proposed that a representation built following the tenets of structural
learning should allow the modular assembly of task representations, adding and
removing cues without having to re-learn the underlying structure (Whittington
et al., 2020), offering a computational mechanism by which this type of fast

learning might occur.

However, without neuronal data, we cannot make any definitive statements on
the role of generalised representations in this behaviour, since several other
hypotheses might explain the fast adaption to the new odour. For one, it is
possible that despite our best efforts to pick odours that are dissimilar from each
other (Pashkovski et al., 2020), odour D was more similar to odour C than to both
A and B, therefore making it a problem of pattern completion rather than
generalisation. Another possible strategy might be to infer the meaning of the

new odour by a process of elimination — if both A and B are still present, the new
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odour must therefore be replacing C. Note however that this type of conditional
learning still requires an understanding that there are only 3 odours combined

into pairs within each trial.

A further limitation of this manipulation is the fact that there is only a short
window of time before the mice adapt to the new odour, and a repeated replacing
of odour cues would be expected to yield different results since the overall

exposure to each cue would be imbalanced.

In the future, it would be interesting to record single cell activity during this task,
gaining insight into how odour D is represented in the neuronal population, and
whether the neural data supports the hypothesis of a generalised task

representation able to flexibly include new odour cues.

4.3.3 Role of vCA1 in bridging delay time

To assess the extent to which hippocampal circuits are necessary for structural
learning, we optogenetically inactivated neurons in vCA1 in mice performing the
task (Figure 4.7) and found that this manipulation markedly impaired task
performance. This finding ties in with results of sequence learning studies in rats
(Fortin et al., 2002; Kesner et al., 2002) as well as configural learning tasks
(Sanderson et al., 2006) and strengthens the hypothesis that the hippocampus

may indeed be necessary for this type of learning.

However, this impairment was seen in experiments targeting ventral CA1, in
contrast to the above studies which were targeting more dorsal areas of the
hippocampus. In the literature, dorsal and ventral hippocampus have been
proposed to be functionally distinct due to their differences in gene expression
and anatomical projection patterns (Fanselow & Dong, 2010; M. Moser & Moser,
1998), but what exactly the respective role of dorsal and ventral hippocampus

might be is not yet fully understood. This is partly due to the general difficulty of

120



comparing results acquired through different behavioural paradigms, but also
due to a bias in anatomical targets between the fields: the navigation field has
historically focused on dorsal regions (Bittner et al., 2017; M. B. Moser et al,,
1995; O’Keefe & Nadel, 1979) whereas fear conditioning studies have more
frequently targeted ventral regions (Kjelstrup et al., 2002; Maren & Holt, 2004;
Twining et al., 2020). Without comparative data from more dorsal areas, it is too
early to say whether the results of our optogenetic inactivation experiments
support the theory of a specific role for ventral hippocampus in structural
learning. In the rest of this work, we will focus on the contribution of ventral
hippocampus to our task, but an exciting future direction is to explore the

different contributions of dorsal and ventral circuits in more detail.

A second interesting finding from our optogenetic manipulations is that
inactivation of vCA1 affects behavioural performance only in task paradigms
where the delay exceeds 10s. This implies that at short delays, hippocampus
might not be required, and other circuits seem to support both the encoding of
the stimuli as well as their relationships to each other. Candidate regions for this
type of short time-scale binding of cues could be the piriform cortex as well as
prefrontal regions (Franks et al., 2011; Liu et al., 2014). Hippocampal circuits
only seem to be essential to the task performance at delays longer than 10s. This
result resembles the findings that hippocampal lesions have larger effects in fear
conditioning paradigms including a delay period (trace interval) before the
aversive experience (Quinn et al., 2002), or spatial studies showing that a
Delayed-Match-To-Place (DMTP) paradigm requires hippocampus only at longer

delays between cues (Spellman et al., 2015).

Interestingly, the deficits in behavioural performance in sessions of the 30s task
with inactivation manifest specifically in a larger proportion of missed trials,
while the proportion of false alarm responses remains unchanged. This supports

our hypothesis that the underlying mechanism is due to the specific role of vCA1
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in processing temporal sequences and structuralinformation, rather than a non-

specific effect.

One possible explanation for this pattern is that vCA1 inactivation may impair the
ability to maintain or retrieve the memory of the first odour over longer delays.
Rather than responding incorrectly at chance level, mice may adopt a more
conservative decision-making strategy, resulting in a higher rate of omitted
responses. If this is the case, there might be an interesting gradual disruption of

response confidence with the increase of difficulty (i.e. longer delay times).

Analysing lick rates across these different tasks could provide further insight,
e.g. comparing the lick rate in hit trials without laser stimulation to those with
laser stimulation in the edge-case of the 20s delay task. If the lick rate is lower
under optogenetic stimulation, that might suggest a reduced confidence,
especially since the overall licks per trial stay stable. If, on the other hand, lick
rates remain similar, this would suggest a failure in recall rather than a shift in

decision thresholds.

Investigating such confidence-related behaviours could help refine our
understanding of how VvCA1 contributes to maintaining and integrating

temporally separated cues to guide behaviour.

Taken together, these results suggest that the hippocampus is not needed for this
structural learning task per se, as the mice can perform the 10s paradigm well
despite optogenetic inhibition. Hippocampal activity only becomes necessary
when the task-relevant cues are temporally distant from each other, as they are
in the 30s paradigm. This is not a new idea in the field — in the literature, this has
been proposed multiple times over the last decades and several potential
mechanisms for this binding of cues across spatial and/or temporal distance
have been suggested. However, my data show this very clearly for the first time

within the same mice and the same experimental paradigm.
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To further dissect the role of vCA1 in bridging temporal gaps between stimuli, a
critical next step would be to test whether brief, precisely timed optogenetic
inhibition within the delay period is sufficient to impair performance. If vCA1
activity is specifically necessary for maintaining stimulus representations across
time, then even a transient perturbation — such as a short laser pulse midway
through the delay — should be disruptive, potentially yielding similar deficits to
continuous inhibition. This experiment would help differentiate whether the
observed effects are due to the cumulative duration of inhibition or whether
vCA1 is specifically required during critical moments of the delay. Additionally,
selectively inhibiting vCA1 only during the first or second odour presentation
could clarify whether the hippocampus primarily contributes to encoding,
maintenance, or retrieval of stimulus representations. These experiments would
allow for more precise mapping of when vCA1 activity is essential within the trial
and help refine our mechanistic understanding of its involvement in structural

learning.

4.3.4 Technical considerations

The finding that there is no effect of optogenetic inactivation of vCA1 on task
performance offers evidence that the laser stimulation by itself is not affecting
the perception of stimuli, general motivation, or reward-seeking behaviours
(such as anticipatory licking). The latter is pertinent especially since some
studies have associated the ventral part of hippocampus with behavioural
inhibition (Gray & McNaughton, 2003). We therefore looked specifically at the
amount of licking across laser-stimulated and control trials at all delay lengths
(Figure 4.8a) and found that the average amount of licking per trial was not
affected by the length of the delay nor by the presence or absence of laser

stimulation.
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It would have been valuable to relate the effects of optogenetic inhibition in
individual animals to the specific fibre placement and extent of viral expression,
especially since we see some variability in effect especially during the 20s task.
However, since we were only able to recover two brains, this is not possible with
the data available. In future experiments, it would be interesting examine this
relationship more thoroughly, using a larger dataset to assess the influence of

fibre placement and expression patterns more systematically.

Another consideration concerns the length of laser stimulation: since we are
inhibiting throughout the entire trial, the length of the delay time is directly
correlated with the length of laser stimulation. This means that in the 30s delay
paradigm, the laser stimulation lasts for more than twice the time than in the 10s

paradigm.

A considerable limitation of prolonged optogenetic inhibition is the potential for
non-specific effects beyond neural silencing. Extended laser stimulation can
lead to local tissue heating (Owen et al.,, 2019), which may alter neural
excitability and inadvertently affect behaviour. Additionally, prolonged
suppression of vCA1 might induce compensatory network changes (de Jong et
al., 2023), including shifts in whole-brain activity or engagement of alternative
circuits, making it difficult to isolate the specific contribution of vCA1 to task
performance. Thus, we cannot exclude the possibility of our results being a
consequence of an unspecific effect related either to the laser pulse itself, orthe
imbalance in the whole brain activity as a result of inactivating vCA1 neurons for

a long time.

The finding that mice specifically miss rewarded trials when vCA1 is inactivated
while False Alarm trials remain more stable hint at a more specific effect
underlying the decrease in behavioural accuracy, but to fully address this
concern, control experiments would be needed. To mitigate these concerns,

control conditions such as delivering the same total laser power in a temporally

124



scrambled manner or stimulating an unrelated brain region would be useful in
ruling out non-specific effects, as well as the more specific optogenetic

manipulations suggested in the previous paragraph.

To further investigate how exactly vCA1 is required for our task, it would
furthermore be of great value to use shorter laser pulses to inhibit neuronal
activity specifically during the delay or during the presentation of the first or

second odour cue, an idea which | describe in more detail in Chapter 6.4.1.

In addition, in order to disentangle the effects of the difficulty level (as conveyed
by the absolute delay length) and meta-effects on learning, it would be
advantageous to counterbalance the order of tasks. Instead of all mice learning
the tasks in order of difficulty level, counterbalancing the training schedule such
that some mice would have been exposed to the 30s delay paradigm before the
10s version might resolve some of the ambiguity of our results. For example, by
comparing performance at the most difficult level (30s delay) across mice with
varying levels of prior experience, we could separate the influence of difficulty
versus the total amount of training time better. Furthermore, it would allow to
counter the unpreventable “selection bias” by which when mice are removed

from the experiment early, only a subset of mice reaches the 30s task stage.

Within the scope of this project, | only had the ability to test the involvement of
vCA1 when mice adapted to changes in temporal structure. A future goal would
therefore be to investigate whether hippocampal circuits are required for our
other structural manipulation: the updating of the task structure to include a
novel odour D. Since the novelty of this odour cue is the defining feature of the
experiment, it is difficult to implement a within-mouse control for optogenetic
manipulations, such as the comparison between trials with and without laser in
the delay-time manipulations. Therefore, these experiments would likely need

larger cohorts of mice to allow for sufficient statistical power to compare effects
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between mice that experience a new cue with or without optogenetic

inactivation of CA1.
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5vCA1 population encodes cues and

context, but not reward

5.1 Introduction

In the previous chapter, | presented data from multiple experiments to probe
generalisation to novel cues in the same temporal structure, and the ability to
adapt to changes in task structure while observing the same cues. We found
that, after initial learning, mice could rapidly adapt to manipulations of cue value
and identity, suggesting flexible use of previously learnt relational structures. To
assess the extent to which hippocampal circuits are necessary for such learning
we optogenetically inactivated neurons in vCA1 in mice performing the task and
found that this manipulation markedly impaired task performance in task

paradigms where the delay exceeds 10s.

This result ties in with previous studies suggesting that the function of
hippocampus is to bind distinct experiences across space and time, thus
forming the basis of both spatial navigation and episodic memory (Aggleton et
al., 2007; Eichenbaum & Cohen, 2014; Milivojevic & Doeller, 2013). There is
however no consensus yet how this computation might be achieved in

hippocampus on a neuronal level.

Following from observations about spatial remapping in CA1 populations in
animals navigating distinct environments, one theory posits that hippocampus
might act as a multiplex of many overlaying contexts, simultaneously
representing the spatial environment as well as distinct perceptual, cognitive,
and behavioural events that occur within it. Indeed, it has been shown that
neurons in hippocampus robustly encode sensory cues (auditory (Kaminski et

al., 2017), visual (Aronov et al., 2017) or olfactory (Wood et al., 1999)), and that
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the presence or absence of such cues leads to changes in the representation of

spatial environments (Anderson & Jeffery, 2003).

This kind of multiplexing of information can be used to disambiguate between
reoccurring cues on the basis of their surrounding context. For example, in a
spatial non-match-to-sample task in which rats had to approach cupsinvariable
locations and only dig for a food reward when the odour did not match the
previous cup, neurons recorded from CA1 did collectively encode both position,

odour identity as well as match or non-match (Wood et al., 1999). Interestingly,

the representations of these three task dimensions weren’t fully separate: some
recorded neurons fired to a specific odour in a preferred location, therefore
multiplexing separate information streams not only across a population, but

within a single neuron.

The data supporting the idea of the hippocampus as a locus of overlaying
contextual maps is largely derived from experiments where cues and events are
separated in space, but it has been suggested that the function of hippocampus
in binding distinct events might even be more general. Multiple studies found
that population activity in hippocampus changed gradually across time, thereby
not only encoding events within their spatial context, but also in a temporal

context that can span minutes to seconds (Manns et al., 2007; Mau et al., 2018).

Moreover, several studies have found that, analogous to place cells that fire
when an animal passes a specific position in space, hippocampus also contains
so-called “time cells” that fire at a specific point in time (ltskov et al., 2011;
Pastalkova et al., 2008), with the activity of all time cells tiling continuous time in
the same way that place cells form are thought to form a cognitive map

(Eichenbaum, 2014).

In summary, the hippocampus has been shown to encode multisensory

representations of the environment, and displays sequential activity tiling both

128



space and, more importantly for our task, time, and is therefore placed perfectly
to bind separate events across temporal delays and thus solve structural

learning problems.

Indeed, the discovery of “splitter cells” supports the idea that neurons in
hippocampus can perform such integration. These neurons, discovered in
rodents performing an alternating T-maze task, distinguish between (“split”)
trajectories through the same segment of space depending on recent past,
upcoming choice, or inferences about the state of the environment (Wood et al.,
2000; Frank et al., 2000), and can therefore be interpreted as a “context-specific

place cell”.

And even in tasks without a clear spatial dimension, equivalent “context-specific
time cells” have been identified (MacDonald et al., 2013; Taxidis et al., 2020). In
their 2020 study, Taxidis et al. found that a significant proportion of the
hippocampal neurons recorded in mice performing a delayed non-match to
sample (DNMTS) task fired not only at a specific time in the trial but did so only
for one of the two cues. The population of these neurons, termed “odour-time”
cells by the authors, encoded both the time elapsed since the first cue aswell as

the identity of that cue.

This provides us with a clear hypothesis of how the identity of the first odour
might be maintained across the delay in our task: if our findings align with the
above studies, we can expect to find a representation of the cue at the time of
the cue presentation which is then followed by a cue-specific ensemble of

neurons that maintains this information until the second cue is delivered.

For the representation of the second cue within hippocampal populations, there
are however multiple hypotheses: Information about the first and the second
odour might be maintained in two separate populations of cue-time cells which

can be combined downstream to predict a given outcome. Alternatively, the first
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cue could act as a “contextual” cue, activating a different set of neurons not only
to encode the delay, but also subsequent cues. In that case, we could expect the
neuronal representations of “A after B” and “A after C” to separate in our
recordings, analogous to the splitter cells discussed earlier (Ainge,

Tamosiunaite, et al., 2007; Duvelle et al., 2023; Wood et al., 2000).

So far, | have focused on the possible representation of cue structure in our task
based on previous findings from the literature. There is however another
dimension to our task: In addition to binding two odour cues across a delay, the
task requires mice to associate these cue configurations to a specific outcome
(rewarded or unrewarded), thereby making the predicted value of the respective
odour pair a further task-relevant feature that might be encoded in

hippocampus.

Studies from the spatial domain have shown that rewarded locations are
associated with a higher density of place cells, suggesting that highly salient
events such as rewards are prioritised in hippocampal representation (Hollup et
al., 2001; Jarzebowski et al., 2022). A representation of the external and internal
experience of reward at the time of its delivery is however not sufficient to explain
the anticipatory licking behaviour we have shown in mice - for this, a neural

response predicting the outcome before the reward is delivered is required.

Whether this prediction of upcoming reward is indeed encoded in neural activity
in hippocampus is so far not conclusively demonstrated. Analogous to a pattern
first observed in striatal dopamine neurons (van der Meer et al., 2010), multiple
studies found single cells in hippocampus ramping up their firing up to salient
behavioural events, some of which are associated to reward (Jarzebowski et al.,
2022; Wee et al., 2024). Secondly, in line with the idea of hippocampus as a
generator of context-specific sequences, a recent study reported wide-spread
remapping in hippocampal CA1 place cells after moving the reward location on

a linear track (Sosa et al., 2024).
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Both individual neurons, ramping to the expected reward, as well as ensembles
of neurons tiling the time leading up to a reward might be a possible underlying
mechanism for hippocampus to support the kind of prediction required for
anticipatory licking. Whether either type of reported neural response can be
related to a general representation of reward as opposed to a value-free learnt
sequence of likely state transitions is not yet clear, since the tasks used in the
abovementioned studies do not allow a disambiguation of the state within the

task sequence and the value associated to the state.

In the following chapter, | will present calcium data recorded from CA1 in mice
performing our task. To test the hypotheses stated above, we identified neurons
representing task-relevant variables such as individual cues, cue combinations
as well as upcoming rewards on the single cell level. In a next step, we then
investigate the encoding of these variables on a population level via SVM

decoders.
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5.2 Results

To gain insight into which part of the computation underlying the solving of our
task might be performed by vCA1, we recorded calcium activity using the
genetically encoded calcium indicator GCaMP7f expressed in principal neurons
in vCA1 through a GRIN lens (& 1mm, Figure 5.1 aand b) during the performance

of the 5s task.

Using a UCLA V4 miniscope, we recorded neural activity in expert mice. With the
partially automated pipeline (Minian pipeline, (Dong et al., 2022)) described in
Chapter 2, we then refined the areas of interest (ROIs, see Figure 5.1c and d for
raw and processed images side by side). The pipeline further subtracted
background noise, corrected for movement and performed iterative
dimensionality reduction to extract calcium traces from each ROl that act as an

indicator of neuronal activity.
We aligned the data to the behavioural data using the shared TTL pulse to

accurately combine the two data streams, and then matched each behavioural

event to a corresponding time point in the calcium data.
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Figure 5.1: Calcium imaging in vCA1 through GRIN lens. a. Schematic of stereotaxic injection
to express GCaMP7f unilaterally in ventral CA1. b. Example coronal image showing GFP signal
from GCaMP7f and position of the GRIN lens for miniscope imaging. Scale bar = Tmm.

c. Example field of view through the GRIN lens with V4 miniscope d. Identified regions of interest
(ROIs, maximal projection of all neurons identified during session)
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5.2.1  Selectivity of individual neurons in vCA1

Using the single cell calcium data, we first wanted to test whether neurons in
CA1 showed differential activity related to task events such as odour cues, cue
positions, or trial outcomes. To quantify the extent of neural tuning, we
calculated a selectivity index (Sl) as the difference in average neural activity over
a time window between all trials in which the event is present and the activity in

trials which is it not.

For example, to test whether a given neuron is selective for Odour A in the first
position, we would take into the account the activity of that neuron in that
specific time window (i.e. during the first cue) in all trials. The Sl was calculated
asthe average activity during that time window in all trials in which Awas the first
cue, subtracted from the average activity in all other trials. To be able to compare
Slvalues across neurons with different baseline activity, we expressed selectivity
as a sigma value (o), defined as the distance of the true Sl value from the mean

of a distribution of Sl values derived from shuffled data from the same cell.

Using these ¢ values, we identified neurons that showed a strong selectivity (< 3)
to either a specific odour, an odour pair, or an outcome. To quantify these
different selectivities, we calculated Sls for each neuron at four different time
windows within each trial: during the first cue, the delay, the second cue, or in

the response window before reward delivery (Figure 5.2a).

In total, we found that 18% of neurons recorded in all mice and sessions (43 out
of 239 neurons from 3 mice and 7 sessions) showed selective activity to trial
events in at least one of the examined time windows using our conservative

criteria (Figure 5.2b).
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Figure 5.2: Individual vCA1 neurons selectively respond to structural task events.

a. We quantified the selectivity of neurons to different task events (cues, odour pairs,
outcomes) at different time points within the trial (first cue, delay, second cue, response
window), and found neurons for most but not all combinations of time bin and task event. b.
Proportion of neurons selective for task events within the total population of recorded cells. c.
Proportion of neurons within the population of selective cells showing elemental, structural or
outcome selectivity, or a combination of those. d. Schematic of response types of different
patterns. Elemental: response depends on only one odour. Structural: response depends on
odour pair. Outcome: response depends on expected trial outcome. Multiple: respond to
multiple trial types, but stronger to some than to others.
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We then grouped these selective neurons according to the type of selectivity:
“elemental” selectivity patterns were those responding to only one odour cue
(e.g. “Odour A” selective); “structurally” selective neurons responded to a
specific odour only in cases where a specific odour had preceded it (e.g. “A->B”
selective); outcome selective neurons were those that responded to all trials
that shared the same outcome (i.e. rewarded or not rewarded); lastly, some
neurons showed a mixed selectivity for elemental and structural events (e.g.

respond weakly to “CA” but strongly to “BA”) (Figure 5.2d).

We quantified the occurrence of these types and found that similar proportions
of neurons showed an elemental and structural selectivity pattern (39.5% and
35%, respectively). 7% were selective for outcomes, and 18.5% showed mixed

selectivity to more than one category (Figure 5.2c).

Together, the data shows that about a fifth of the neurons we recorded selectively
responded to at least one task event. Most of these neurons were selective to
individual odour cues or cue combinations, with only few responding to the
expected trial outcome. Interestingly, we found example neurons for almost all
combinations of cue and time window, apart from one: we found no example of
neurons that were selective to a specific odour in second position (e.g. selective

to Odour B, irrespective of whether A or C came before).

To further characterise the responses, we quantified which events were most

frequent within each of these categories of selectivity, and we furthermore

examined the time courses of these selective responses.
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Figure 5.3: Individual vCA1 neurons display selectivity for elemental features of task.
a. — c. Average calcium signal from example neuron split across trial types (left) and the
selectivity index (Sl, orange line) plotted against the distribution of Slindices from shuffled data
from the same neuron (grey, right panel). a. Example neuron selective for Odour A irrespective
of position. b. Example neuron preferably responding to Odour A in position 1, but also
responsive to Odour B in position 2. ¢. Example neuron selective for Odour B only in position 1.
d. Proportion of neurons that have any elemental selectivity: a total of 58% of selective neurons
respond to specific odours. e. Separated by odour position (left): most respond to the first odour
cue (49%). Only few neurons respond to a given odour irrespective of position (7%), and even
fewer respond to second cues only (2%). Split by time window (right): Most neurons respond
with a slow time course, the peak of their selectivity occurring at the second cue (28%) or
spanning several time windows (18.5%), with fewer displaying peak selectivity during the first
cue or the delay.
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5.2.1.1 Elemental responses

First, we looked at those neurons that showed selectivity to “elemental”
components (i.e. individual odours). As shown above, 39.5% of selective
neurons were exclusively selective for one specific odour (e.g. Odour A). We
further found that all of the neurons that showed mixed selectivity (18.5%) had
some elemental features, bringing the total proportion of neurons responding to

specific odours to 58% (Figure 5.3d).

Within this population, some cells responded equally to a specific odour
irrespective of which position it appeared in (Figure 5.3a, example neurons
selective for Odour A as both first and second cue); others responded more
strongly to an odour in the first position, but still showed a response to the same
odour inthe second position (Figure 5.3b, example neuron selective for Odour A
as first cue); finally, we identified neurons that only responded to an odour when
it appeared a specific position (Figure 5.3c, example neuron selective for odour

B only as first cue).

We next looked at the distribution of these features across the whole population
of elemental (i.e. context-independent) neurons and found that most responded
to their preferred odour most strongly (or at all) when it appeared as the first cue
(49% of all selective neurons). Only a fraction of that number (7%) responded to
their preferred odour irrespective of position, and even fewer (2 %) responded to

an odour only in the second position (Figure 5.3e, left).

Interestingly, despite this bias for first-odour selectivity within the population,
only a small number of neurons showed strong selectivity at the time of odour
presentation (7%, Figure 5.3e, right). Similarly, few neurons (4.5%) were
selectively active during the delay. The bulk of the neurons displaying selectivity
for specific activity (as illustrated by our examples) either showed the highest

difference in activity during the time of the second odour delivery (28%) or a
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combination of multiple time windows (18.5%), with their activity most often

spanning both delay, second cue delivery and the response window.

Taken together, we found that more than half of the selective neurons (58%)
responded selectively to specific odour cues. While some of these neurons
responded to their preferred odour irrespective of its position, others fired only
for their preferred odour in a specific position, most often in the first position.
Interestingly, the majority of elemental responses were delayed with respect to
the cue they were selective for, thus maintaining information about an odour

after its delivery.

5.2.1.2 Structural responses

We next looked at all cells that were selective for odour pairs, i.e. “structurally”
selective neurons. In addition to the 35% of selective neurons that were uniquely
responding to specific odour pairs, another 18.5% of neurons responded to

odour pairs, but also showed a second response pattern (Figure 5.4d).

This pattern was a type of rate-remapping: all of the neurons that showed
selective firing in two categories were selective for a specific odour generally, but
responded most strongly when this odour appeared as the second odour in a
specific pair. For example, a neuron might be elementally responsive to Odour B
(regardless of its position in the trial), yet might fire especially strongly to Odour
B when it appears after Odour A, therefore having both an elemental and a

structural selectivity.

Similarly to the previously described elemental neurons, structurally selective
neurons also displayed several distinct temporal dynamics. In some, firing was
constricted to the time around the second cue delivery (Figure 5.4a) or the
outcome (Figure 5.4c), while other neurons showed ramping activity from the

cue delivery to the outcome (Figure 5.4b).
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Figure 5.4: Individual vCA1 neurons are selective for specific trial types. a. — c. Average
calcium signal from example neuron split across trial types (left) and the selectivity index (SI,
orange line) plotted against the distribution of Sl indices from shuffled data from the same
neuron (grey, right panel). a. Example neuron selective for AC (Odour C only when preceded by
A) b. Example neuron responding to CA (Odour A only when preceded by Odour C) ¢. Example
neuron selective for CB (Odour B only when preceded by Odour C) d. Proportion of neurons that
show structural selectivity: a total of 53.5% of selective neurons respond to odour pairs. e. Left:
Peak selectivity separated by time window; Most responses have a slow time course, indicated
by their peak firing spanning both the cue delivery and the outcome period (37%), although
some neurons show temporally constrained firing at the cue or outcome (5% and 11.5%,
respectively). Right: Peak selectivity separated by trial outcome: most neurons that show trial-
type specific firing are selective for rewarded odour pairs (42.8% of all selective neurons).
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Quantifying these different temporal patterns, we found that the latter type in
which selective firing occurred throughout cue presentation until reward delivery
or omission was by far the most common (37% of selective neurons, Figure 5.4e,
left) while selective firing at the time of the second cue or the outcome was less
common (11% and 5% of selective neurons, respectively). Furthermore, when
the population of structurally selective (i.e. context-dependent) neurons was
split by whether their preferred trial type was rewarded or unrewarded (Figure
5.4e, right), we found that a majority of neurons (80% of structurally selective
neurons, 42.8% of all selective neurons) showed selective firing to rewarded
pairs, whereas only a minority (20% of structurally selective neurons, 10.7% of

all selective neurons) responded preferentially to unrewarded odour pairs.

In summary, we found that roughly half of the selective neurons (53.5%)
displayed contextually modulated firing, i.e. structural responses. This type of
firing was only found for odours in second position (since the first odour
represents the context) and was more likely for rewarded odour pairs.
Structurally selective neurons most often showed sustained firing from the

delivery of the second cue up to the outcome delivery.

5.2.1.3 Outcome responses

Lastly, a subset of neurons showed selective activity for trial outcome (e.g. all
rewarded odour pairs, Figure 5.5a). Interestingly, all outcome-selective neurons
showed at least some selective firing in the time window between the second
cue and the outcome and therefore might not solely be reflections of the shared
sensory experience of rewarded (or unrewarded) trials. These outcome-selective
neurons were however rare, accounting only for 7% of selective cells (Figure

5.5b).
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Figure 5.5: Only few vCA1 neurons display activity based on reward contingency
a. Average calcium signal from an example neuron selective for all rewarded trial types, split
across trial types (left) and the selectivity index (Sl, orange line) plotted against the distribution
of Slindices from shuffled data from the same cell (grey, right panel). b. Proportion of selective
neurons that show outcome selectivity

5.2.1.4 Summary

In summary, we find that neurons in vCA1 respond to various task events,
showing selective activation both to single odours as well as odour
combinations, while the expected outcome of the trial is less robustly encoded
on the single cell level. The majority of neurons display an activity pattern of
broad temporal ramps, often peaking several seconds after the event they are
selective to, suggesting that information about past odour cues might be

encoded in the population across the delay and even at the time of the next cue
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5.2.2  Population representations

Given these findings on the single cell level, we next wanted to look at the
encoding of task-relevant information encoded at the population level. To
investigate this, we used a series of linear classifiers that utilised the calcium
activity of the entire population of recorded neurons to predict trial events.
Specifically, we trained an ensemble of linear support vector machines (SVMs)
to discriminate between different trial types based on the activity of all recorded
neurons the time of the second cue, i.e. the time point that the animal has to
make the decision to lick or to withhold licking (Figure 5.6a). To do this, we
constructed different pseudo-populations by matching trials of the same type
from different animals in a randomised way (see Chapter 2). We did this by
pooling neurons from different mice and sessions while ensuring that trial types
are matched in a way that avoids introducing spurious correlations. By randomly
pairing trials across neurons (e.g., matching the first AB trial of one neuron with
the fifth AB trial of another), we aimed to prevent artificial correlations that could

arise simply from the structure of the dataset rather than true neural coding.

The key advantage of this strategy is that it allows to build a large, representative
dataset for decoding while ensuring that any structure detected by the SVM is
robust and not an artefact of a particular trial alignment. Additionally, because
each pseudo-population includes all neurons but with different trial
assignments, it automatically gives a measure of how consistent decoding

results are across different random samplings.

5.2.2.1 Encoding of trial types

As a first step, we tested whether a linear classifier trained on this dataset could
learn to correctly discriminate between trials with different odour pairs. We
trained the classifier on 75% of labelled data (i.e. the population vector of the
trial together with the true odour pair) and then tested on the remaining 25% of

data (Figure 5.6b), and found that the decoder could assign the correct trial type
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significantly above chance level (Figure 5.6c, n = 100, classifier accuracy = 0.31

+/- 0.09; shuffle accuracy = 0.14 +/- 0.08, paired t-test tgg = 13.91, p = 4.1x103%").

We then checked how many neurons were necessary in order to achieve this
level of accuracy by training classifiers on subsets of our data with randomly
selected neurons. We found that classifiers using the population activity of as
low as 20 neurons averaged above-chance performance, and that the accuracy
of the classifiers plateaued as they included more than 100 neurons, indicating

some redundancy in the network (Figure 5.6d).
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Figure 5.6: vCA1 population activity encodes trial types. a. Schematic of workflow for
decoding analysis. The population vector is the average activity of each recorded neuron at a
specific time window (in this case: around the presentation of the second cue). Linear
classifiers are then trained to separate the population activity based on specific trial events,
e.g. the identity of the first cue. b. Schematic of split between training data (labelled) and test
data (unlabelled). c¢. Accuracy of decoders (n = 100) d. Above-chance decoder accuracy
requires a dataset including at least 25 neurons. Accuracy plateaus after 100 neurons.
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As mentioned above, these classifiers were using the population activity at the
time of the second cue delivery. We therefore hypothesised that the identity of
the second cue should be strongly represented in the population at this time,
both due to the recency as well as due to the importance of this information for

decision making.

But to successfully predict outcomes in our task, the identity and order of both
cues needs to be retained. We therefore further wanted to check whether the
identity of the first cue was encoded in the population activity at this later time

point.

5.2.2.2 Encoding of first and second cue

To do this, we used the same dataset as before, combining all recorded neurons
into one population. This time, instead of labelling the data according to the
odour pair, we only included information about the first or second odour,
respectively (Figure 5.7 a and b). For example, in order to test for the encoding
of the second odour cue, we would train the classifier on 75% of our neural data
labelled with the second odour present in each trial, and then ask the classifier

to predict the labels for the remaining 25% of the data.

We found that both classifier types (predicting the first and the second odour of
seen in the trial, respectively) performed above chance, which we simulated by
training decoders on shuffled data. As we expected, decoders trained to identify
the second odour cue from the neural data did so with above chance accuracy
(Figure 5.7c; right, n =100, classifier accuracy = 0.52 +/- 0.11, shuffle accuracy
=0.33 +/- 0.11, paired t-test tgg = 12.20, p = 6.5x10-%%). Surprisingly however, the
classifiers trained to predict the first odour from the neural activity at the time of
the second cue performed as good and even slightly better (Figure 5.7c¢; left, n =
100, classifier accuracy = 0.54 +/- 0.09, shuffle accuracy =0.31 +/- 0.11, paired
t-test tg) = 14.05, p = 1.4x10%"), indicating a multi-second maintenance of this

information within the network.
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Figure 5.7: Population activity at the time of the second cue encodes both first and second
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odour (light red, n =100) or by second odour (dark red, n =100)
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5.2.2.3 Influence of contextual encoding

Given this finding, we next wanted to test to what extent this information might
be a result of context-specific encoding. For example, the “first odour” decoders
might simply have learnt that the very specific activity pattern related to an AB
trial and the pattern associate to an AC trial belong into the same category
“Odour A first”, without the two patterns sharing much in terms of neural

similarity.

To test this hypothesis, we trained linear classifiers on data containing only one
of the two trial types with a given attribute, and then tested the accuracy of the
predictions inthe other. For example, the training set might only contain AB trials,
while the test set contained only AC trials, and so on for the other possible first

odours.

As expected, we found that the accuracy of these decoders was lower than that
of decoders trained on all possible trial types. However, this drop in predictive
performance was less than expected and both “first odour” and “second odour”
classifiers trained on partial data still correctly classified trials at above chance
level (First odour: n = 100, accuracy = 0.43 +/- 0.6 shuffle accuracy = 0.32 +/-
0.07, significantly greater than chance, paired t-test tgg = 1.60, p = 9.2x10%%;
Second odour: n =100, accuracy = 0.44 +/- 0.6, shuffle accuracy = 0.33 +/- 0.08,
paired t-test tgg) = 11.13, p = 3.3x10%).

This suggests that consistent with the types of responses seen at the single cell

level, some of the information within the vCA1 network at the time of the second

cue is encoding the elemental identity of both first and second cue.

148



o
co
J

Train Test

o o >
o >R
> Bl o

o

[=)]

1

. > - '..-
(@) - .
0. :
=}
(¥
b
b <
5
Generalised 2nd odour 9 0
o 0.
o

Train Test

o>
EBe
>R o
BE -~

o

[

1

first second
Odour decoded

Figure 5.8: Information about odours partially generalises. a.-b. Schematic of datasets used
to train and test decoders for the generalisation of the first odour of the pair (a) and the second
odour of the pair (b), respectively. This is achieved by training the decoder on one trial type with
the particular characteristic, and then testing on the other (e.g. train decoder on A-B data, then
test on A-C data to identify generalised encoding of “A first”). ¢. Accuracy of decoders trained
to classify generalised first odour (light red, n = 100) or by second odour (dark red, n =100)
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5.2.24 Outcome information in population activity

As shown in Chapter 1, expert mice show through their licking behaviour that
they correctly anticipate the outcomes of trials based on the odour pairs,
suggesting that information about upcoming rewards is available to them.
Looking at individual neurons, we found only few cells showing differential
activity depending on trial outcome (see Figure 5.5). We hypothesised however
that at the population level, the high humber of neurons with structural

selectivity could add up to significant encoding of the outcome of a trial.

To investigate this, we first trained decoders to discriminate rewarded from
unrewarded trials based on the neural activity at the time of the second cue,

using all trial types in both training and testing data (Figure 5.9a).

We found that the performance of these decoders was less accurate than the
decoders trained to classify neural activity based on odour cues (Figure 5.9c;
left, n=100, accuracy =0.56 +/- 0.11, shuffle = 0.48 +/- 0.09, significantly greater
than shuffle: paired t-test, tgg) = 5.84, p = 2.1x10°%).

Given the low accuracy of outcome decoding, we next wanted to test if any
general (i.e. not context-dependent) information about upcoming rewards
existed within the population. To do this, we used the same approach as
previously shown for odour decoding: we trained the decoders on data
containing only one type of rewarded trial, and one type of unrewarded trial, and
then tested on a different set of rewarded & unrewarded trials (Figure 5.9b). To
avoid the decoder using contextual information, we made sure to balance
context within each dataset: for example, the training set might contain AB trials
(rewarded) and AC trials (unrewarded) which share the first odour cue and
therefore should have the same informational content until the delivery of the
second cue. The test set would contain all other trial types, balanced such that

rewarded and unrewarded trials occur with the same likelihood.
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Figure 5.9: Population activity does not reliably encode anticipated outcome
a. Schematic of data used to train and test classifiers to discriminate between rewarded and
unrewarded trials. Data is labelled according to its outcome, and split 75/25 for training and
testing. b. Schematic of data to test for the generalisation of the outcome across trial types.
Thisis achieved by training the decoder on one type with a particular outcome, and then testing
on the other (e.g. train decoder on C-A data, then test on B-C data to identify generalised
encoding of “reward”). c. Accuracy of decoders trained to classify trials based on outcome.
Left: decoder trained on full dataset (all trial types included, n = 100); Right: decoder trained on
split data to detect generalised representation of reward (n = 120)
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As we expected, the decoding accuracy of these classifiers was lower than the
classifiers trained on a balanced dataset, performing only slightly above chance
(Figure 5.9¢, right: n =120, accuracy = 0.52 +/- 0.07, shuffle = 0.49 +/- 0.03, not

significantly greater than shuffle).

In summary, this data shows that expected outcomes are not strongly encoded
in the vCA1 population, and that the low level of information about outcomes is
due to contextual information rather than a general representation of upcoming

reward or non-reward.

5.2.2.5 Comparison of cue and reward encoding in population

To compare the encoding of these different task features (first or second odour
cue, odour pairs or outcomes) across decoders, we chose to return to the sigma
value (o) already used for the selectivity analysis of individual cells. This is
necessary because “chance” performance corresponds to different values for
the different decoders, as chance is a function of the number of classes. For
example, a decoder trained on outcomes would be 50% accurate at chance
performance since there is only two options (rewarded/non-rewarded), whereas
a decoder trained on discriminating between trial types should be 16.6% correct

when assighing classes randomly, since there are six different trial types.

We found that sigma values for all decoders trained to discriminate between
trials with different task cues (both individual odours as well as odour pairs) were
higher than those for outcome decoders (Figure 5.10; balanced decoders:
ANOVA, Fi3=10.84, p = 3.0 x 10°% post-hoc Tukey [trial type vs reward] = 3.94, p
= 5.5x10%; post-hoc Tukey [cue 1 vs reward] = 5.58, p = 2.6x107; post-hoc Tukey
[cue 2 vs reward] = 3.51, p =2.7x1073; generalised decoders: ANOVA, F;; =12.85,
p =5.0x10%; post-hoc Tukey [cue 1 vs reward] = 3.91, p = 3.3x10%; post-hoc Tukey
[cue 2 vs reward] = 4.25, p = 8.4x107). This suggests that the vCA1 population

favours encoding of cues and contexts over the encoding of predicted outcomes.
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Figure 5.10: vCA1 population encodes cues more robustly than outcomes Sigma values for
decoders trained on different task features. Dark grey: decoders trained on balanced data
containing all possible trial types. Light grey: decoders trained to discriminate based on
generalised information, i.e. trained on one trial type and tested on another. Sigma expresses the
distance of the average performance of an ensemble of decoders from chance as a multiple of
the ensemble’s standard deviation.
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Furthermore, we found that the largest difference between decoders trained on
balanced data and split data for the same feature was found in the ensembles of
“first cue” decoders (o(Cue 1, balanced) = 2.24 +/- 0.14; o(Cue 1, generalised) =
1.83+/-0.12, paired t-test: T=2.23, p = 2.6x102) which might be a consequence
of the decoders classifying trials on the basis of neural data from around the

second cue delivery.
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5.3 Discussion

In this chapter, | have presented calcium activity recorded from ventral CA1
neurons in mice performing a paired associates odour task with a delay of 5s.
I’ve shown that neurons in vCA1 display selective activity to task events such as

cues, cue combinations and outcomes.

I’ve further shown results from linear classifiers trained on the activity of the
population of recorded neurons which suggest that while cue combinations (trial
types) as well as individual cues are robustly encoded in the population at the
choice point (i.e. the time of the second cue delivery), information about the
expected outcome of the trial (reward/no reward) is not significantly encoded in

the vCA1population.

5.3.1 Selectivity for cues and cue combinations in vCA1

Within the population of neurons that show differential firing for trials containing

specific cues, we find three different patterns of selective activity.

In line with previous studies (Eichenbaum et al., 1987; Manns et al., 2007; Taxidis
et al., 2020), some neurons robustly responded to a specific odour irrespective
of its position within the trials (elemental encoding). Interestingly, many of these
responses were delayed with regards to the stimulus delivery, thus maintaining

information about the cue for several seconds after its delivery.

Additionally, we found neurons that preferentially fired to an odour in a specific
position (e.g. “B first”). Most of these neurons fired preferentially in the delay
period or around the time of the second cue, recalling the “odour-time” cells

described in previous studies (MacDonald et al., 2013; Taxidis et al., 2020).

Together, these neurons with elemental (i.e. context-independent) response

patterns made up 39.5% of all cells modulated by task events.
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Interestingly, we found very few neurons that fired to an odour in second position
in a context-independent manner, i.e. irrespective of which odour was presented
before. Instead, the representation of the second odour was strongly
contextually modulated: 35% of the neurons displaying selective activation
related to task events responded in a contextual manner, e.g. “B after A”. The
firing of these neurons therefore is dependent on past experience (the first cue),
recalling the splitter cells found in T-maze studies (Ainge et al., 2007; Frank et al.,

2000; Wood et al., 2000).

Taken together, the cue-related selective activity in CA1 contains all information
necessary to solve our structural learning task: an elemental representation of
individual odour cues, maintained across the delay, which can then be
combined with the sensory inputs related to the second cue into a structural

(context-dependent) response that could then be associated to an outcome.

In future work, it would be interesting to see whether the responses of neurons
with task-relevant selectivity can be used as predictors for mouse behaviour, i.e.
whether the response of the neurons is more pronounced on trials where the
animalresponds correctly. The granularity of this analysis would be further aided
by recording licking as a continuous rate rather than a binary event, as discussed

in Chapter 3.3.2.

Analysing lick rate as a continuous measure would allow us to disentangle its
potential role as both a motor output and a proxy for decision confidence. If
neural activity correlates with licking purely as a motor behaviour, this would
likely result in a general alignment between task-relevant firing and licking
irrespective of trial outcome. However, if lick rate also reflects the animal’s level
of certainty, we might observe stronger neuronal responses on trials where mice

lick more vigorously before correct choices. Investigating these relationships in
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detail could provide further insight into how hippocampal activity contributes to

both decision-making and behavioural execution.

These future additions aside, our finding that single cells in CA1 encode all
information necessary for solving our task is further corroborated by the analysis
of the activity of the entire population of recorded neurons at the time of the
second cue delivery. Using linear classifiers, we found that the identity of the first
odour is equally well encoded in the vCA1 population at the time of the second
odour as the second odour itself, despite the difference in recency of the actual
sensory cue. This strongly suggests that vCA1 neurons maintain information
about the first odour across the delay. Our data does not have sufficient
granularity to conclusively state whether the neurons firing across the delay
support either a “constant firing” type or “population tiling the delay” type of
information maintenance. It is furthermore possible that this delay activity is
supported by other brain regions, such as prefrontal areas (as reported in

(Spellman et al., 2015)).

Interestingly, we found that splitting our training and testing data to test the level
of generalisation (i.e. context-independent activity) within the population, we
found that at the time of the second cue, both the identity of the first as well as
the second odour can be decoded from the population activity. However, the
accuracy of this decoding is lower than that of decoder trained on the full data,
indicating that some information is lost when the decoder does not have access
to contextual encoding. This effect is especially strong for the decoding of the
first cue, indicating that at the time of the second cue, a larger part of the
information about the preceding cue encoded in the vCA1 population is
contextual. This is consistent with our findings on the single cell level: neurons
with a structural selectivity (e.g. “A->B”) contain information about Odour A as
the first cue, but this representation is contextual and thus not available to the

decoders trained on split data.
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This finding might indicate that representations of cues in vCA1 become more
contextually modulated as the time passes, or alternatively could be seen as
evidence that neural activity in vCA1 is shaped by task demand (since a

contextual representation of the first odour is necessary to solve the task).

In summary, data from individual neurons as well as the population activity as a
whole strongly supports the idea that vCA1 encodes task-relevant features, in an
elemental (i.e. context-independent) which is then supplemented by structural
(i.e. context-dependent) activity, the latter of which contains latent information

about the structure of the task.

An interesting follow-up analysis to link findings on the single-cell level to the
population decoders would be to test decoders using only subsets of neurons,
specifically those that were previously identified as firing selectively for specific
task events, or conversely those that did not show any selectivity in the single
cell analyses. If the decoding accuracy remains high when using only the
selective neurons, this would suggest that only a subset of cells carry task-
relevant information. If, on the other hand, the decoding accuracy remains high
even when using only non-selective neurons, that would suggest that the single-
cell selectivity measures are too conservative, or that weakly tuned neurons still
contribute in a mixed-effects way. Taken together, these two types of decoders
could yield deeper insight into how task-relevant information is distributed

across the population.

5.3.2  Utility of task-dependent activity in vCA1

It is important to point out that in light of the results of our optogenetic
inactivation experiments, activity in vCA1 is likely not required for performance
of our task at this 5s delay. We performed these experiments at 5s to ensure
imaging quality (implant stability is negative affected by weeks-long training) as

well as to maximise statistical power (mice on average perform fewer trials per
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session in paradigms with long delays). Thus, while the task-dependent activity
invCA1 recorded in the 5s task reflects all features to solve our task, itis probably

not used in this way, at least at this delay.

This is in line with the hippocampus literature, which has shown encoding of
task-relevant features in tasks that don’t require hippocampus. One such
example is the delayed match-to-sample task that was used to identify time
cells (MacDonald et al., 2013), another the alternating T-maze task that underlies
much of the research into splitter cells (Ainge, Tamosiunaite, et al., 2007; Frank

et al., 2000).

We have started imaging mice performing the task at longer delays, but
unfortunately due to the increased length of trials and lower number of mice, we
have not yet reached sufficient numbers of sessions and cells to allow for

statistically meaningful analysis or conclusions.

However, a first look at these recorded neurons from the 30s task suggests that
the results presented in this chapter might generalise to the way the task is
represented even at time scales where vCA1 is essential to task performance
(Figure 5.10). We found anecdotal evidence of neurons displaying elemental
(Figure 5.10a) as well as structuralfiring patterns (Figure 5.10b). We did however
also find cells that, over the longer time scale of trials, displayed more complex
firing patterns that included periods of time with different selectivities (Figure
5.10c). More data is needed to see whether these examples are representative
of the vCA1 neurons more generally, and whether the same features are encoded

in the population as a whole.

159



— — 3->b

—3->C
b->a
b->c

b : =i

C first CA reward

Figure 5.11: First recordings in mice performing the task at longer delays corroborate
findings from 5s data

a. Calcium activity recorded from an example neuron displaying elemental selectivity (selective
firing in the delay period on trials where C was the first odour) b. Example neuron exhibiting
structural selectivity (selective firing in the response window only on CA trials). c. Example
neuron showing a more complex firing pattern that has elements of both elemental, structural
and outcome-related firing.

5.3.3  Representation of reward in vCA1

As mentioned in the introduction to this chapter, recent studies have
investigated representation of reward in hippocampal populations, putting
forward the hypothesis that reward is represented in hippocampus not only as a
sensory cue, but a salient feature that might not only reorganise cognitive maps
but even be predicted by sequential activity in hippocampal populations (Sosa

etal., 2024).

In our data, we identified only few neurons (6% of cells with task-related activity)
whose activity was selective for a specific outcome. However, we did find a much

higher proportion of “structural” neurons firing selectively for the rewarded
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odour pairs than for unrewarded pairs (80% and 20%, respectively), consistent
with the previously reported “overrepresentation” of place cells around reward
locations (Dupretetal., 2010; Hollup et al., 2001; Jarzebowski et al., 2022). Some
of these structural neurons showed activity that spanned the time from cue to
reward. They did however not consistently display any “ramp”-like activity as itis
seen e.g. in striatal neurons (Howe et al., 2013). Given the temporal dynamics of
calcium indicators such as GCaMP7f, this could be a consequence of calcium
dynamics. Therefore, a conclusive statement of whether or not neurons in vCA1
display ramping activity might be easier to achieve with more temporally precise

recording techniques such as electrophysiology.

Despite the bias towards rewarded pairs in the recorded neurons and the
maintenance of trial-type-specific activity throughout the response window up
to the outcome, linear SVM decoders trained on the population activity at the
time of the second cue (choice point) were unable to reliably predict whether a

trial was rewarded.

This suggests that while the encoding of the odour pairs is influenced by the

outcome, there is no general representation of value (upcoming reward) in vCA1.

5.3.4  Methodological considerations

In the analysis to identify neurons displaying task-related activity, we focused on
four separate time windows that were relevant to our task: the first cue delivery,

the delay, the second cue deliver and the time around the outcome.

This method might however lead us to overlook neurons with differential activity
around the borders of these events, and to overrepresent neurons whose peak
selectivity aligns with these experimenter-chosen time bins. A more objective

way of identifying neurons with selectivity towards task events would be to
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calculate the selectivity across a sliding time window, thus investigating the

occurrence of selective neurons in a more unbiased way.

Furthermore, since selectivity was assessed across multiple neurons, time
points, and conditions, multiple comparisons should have been considered in
order to estimate the likely proportion of false positives. To this end, the shuffled
control data already used to provide a baseline for each individual test could be
used: By applying the same selectivity criteria to the shuffled dataset with
randomised labels, we could get an estimate of how many neurons would be
expected to appear selective in the absence of meaningful signal. If the
proportion of selective neurons in the real data significantly exceeds that
observed in the shuffled data, this suggests that selectivity is not simply a
consequence of random fluctuations. A statistical test such as permutation
testing could be used to quantify whether the observed difference in occurrence

might arise by chance.

To formally correct for multiple comparisons, different statistical approaches
can be considered. One method is false discovery rate (FDR) correction, such as
the Benjamini-Hochberg procedure, which controls the proportion of false
positives while maintaining statistical power. A more conservative alternative is
Bonferroni correction, which adjusts the significance threshold by the number of
comparisons, though this can be overly strict in large datasets. Alternatively,
permutation-based significance testing, where the analysis is repeated on
shuffled data across many iterations, allows for an empirically determined
significance threshold. Applying such corrections would ensure that the
neuronal selectivity we report is not driven by statistical artefacts but instead

reflects genuine task-related activity.

A further concern is the anecdotal observation that the average calcium activity
of some cells seems to rise before the event to which the cell is putatively

selective for. Since often these events are cues and are thus not predictable, this
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implies that either there is a systematic artefact that misaligns the calcium data
with respect to the behavioural data, or else suggests that the calcium activity is

not in fact a response to the cue at all.

As a first pass, we could use a raster plot of all trials instead of the averaged
calcium activity shown in Figures 5.3-5.5, to assess whether these seemingly
pre-emptive responses are a consequence of averaging over trials with very

varied peaks, or whether it is a consistent phenomenon across many trials.

As a next step, it would be helpful to investigate the potential sources of a
systematic time-shift in the data. Looking at our data collection and analysis,
there are three points at which a small temporal misalighment might be
introduced. Firstly, we record behavioural events and calcium activity on
different computers, which means that we have to synchronise their respective
clock times. To do this, we send a TTL pulse from the Arduino that delivers the
behavioural cues to the miniscope DAQ board. This signal is sent at the time of
the first cue and triggers the start of the miniscope recording. However, while the
initial TTL pulse ensures a common starting point, any drift in clock speed
between the two computers could cause increasing misalignment over time. To
assess whether this is a concern, we could embed additional TTL pulses, for
example et the end of the session which can be used to apply post-hoc temporal

realignment.

A second potential source of the temporal shift might be the median filtering step
in the Minian pipeline, which, while effective at reducing salt-and-pepper noise,
can also introduce temporal smoothing. If the filter window is too large, it may
blur fluorescence transients and shift activity slightly backward in time, creating
the appearance of pre-event responses. A simple way to assess this would be to
compare raw fluorescence traces with the filtered data and determine whether
the effect persists when using a smaller filter window or omitting the filter

altogether.
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Another possible explanation lies in the temporal deconvolution step of the
CNMF algorithm. Since CNMF estimates putative spike trains from calcium
fluorescence sighals based on an assumed decay model, inaccuracies in this
model—such as overly strong regularisation—could lead to small shifts in
detected transients. This could cause activity to appear earlier than it truly
occurs. Furthermore, because CNMF updates spatial and temporal components
iteratively, there is a risk of signal leakage between neighbouring neurons,
potentially distorting the timing of extracted activity. To test for this, comparing
raw fluorescence traces to CNMF-extracted signals and adjusting temporal
constraints within the algorithm would help clarify whether the effect arises from

the analysis pipeline rather than the underlying neural activity.

Another way to test whether the temporal shift is a product of the processing of
the data with the Minian pipeline would be to use artificial data in the form of a
step function. If the filtering steps or the CNMF causes a systematic shift, the

output step function would be shifted with respect to the original one.

Additionally, there are methodological consideration when it comes to the SVM
decoders used for population analysis. We only trained the linear decoders on
the population activity around the second odour. We therefore cannot make any
claims about the amount of information encoded in the population activity at any
other time within the trial. Importantly, we postulate that given the presence of
outcome-selective neurons in our own data and the findings about reward-
neurons in the literature, we likely would be able to robustly decode the outcome
of the trial if we trained the decoder with the population activity around that time.
Our findings thus make no claim about reward representation, but rather about
the representation of predicted outcome (i.e. the expectation of reward in the

seconds before).
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Another consideration is the use of pseudo-populations. While this method is a
well-established approach in population decoding analyses (ref, ref),
particularly when simultaneous recordings from large populations are not
feasible, it has some caveats. For example, if neurons exhibit strong within-
session correlations, e.g. slow drifts in activity, disrupting their natural trial-to-
trial relationships might slightly underestimate the true decoding performance
when compared to a real, simultaneously recorded population. Furthermore,
this type of analysis does not allow to investigate differences in encoding
between animals. However, given the low count of cells per animal in our
recordings, it is not possible to conduct a population-level analysis without
combining data across sessions and animals, since a minimum number of 100

cells is required to make these analyses yield meaningful results.
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6 Discussion

6.1 Summary

In this thesis, | have investigated what role hippocampal CA1 might play in a

structural learning task.

In Chapter 3, | described a novel paradigm: an olfactory paired-associates task
in which mice are presented with a sequence of two odours separated by a delay
and have to learn that certain odour pairs are indicative of reward, while others
are unrewarded. Importantly, the contingencies of reward are counterbalanced
such that each cue alone provides no information about upcoming reward - both
configurally (A after B is rewarded, while A after C is not rewarded), and
temporally (A after B is rewarded, while B after A is not rewarded), such that mice

can only solve the task by combining the two cues across the delay.

Mice learned to perform this task stably within the space of 8 days of training,
and both control experiments as well as the results of logistic regression analysis

indicate that mice indeed use a structural learning approach to solve the task.

In Chapter 4, | tested how flexibly mice can use these previously learnt
structures. | showed that mice were able to maintain high accuracy behaviour
when the delay times between the odours were altered, even across very long
delays of up to each 30s between each odour cue. Furthermore, | found that mice
could rapidly recover performance after introduction of a novel odour into the
task, suggesting that previous experience of a given task structure allows faster

incorporation of new cue combinations that share the same structure.

Lastly, | investigated whether hippocampus is required for this proficient

performance on our task. Using bilateral optogenetic inhibition of vCA1, | found
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that inactivation markedly impaired task performance only in paradigms with a

30s delay between the cues.

In Chapter 5, | presented calcium activity recorded from vCA1 neurons in well-
trained mice performing our task with a delay of 5s between cues. | found robust
encoding of task variables, with individual neurons displaying selective activity
to events such as individual odours, cue combinations as well as outcomes. This
encoding wasn’t time-locked to the time of the actual event, but instead many
neurons maintained the identity of the first odour cue across the delay or
recalled the first odour at the time of the second cue. Furthermore, we found
neurons that fired consistent with a context-specific representation, e.g.

neurons that fired to odour A, but only if it was preceded by odour B.

| further presented results from linear classifiers trained on the activity of the
entire population of recorded neurons which indicate that while cue
combinations (trial types) as well as individual cues are robustly encoded in the
population at the choice point (i.e. the time of the second cue delivery),
information about the expected outcome of the trial (reward/no reward) is not

significantly encoded in vCA1.

6.2 Representations of cues and structure in vCA1

When recording calcium activity in neurons in vCA1 from mice performing our
task, we found that 18% of neurons showed selective firing to task events, a
proportion is in line with findings from studies using similar tasks (MacDonald et
al., 2013; Taxidis et al., 2020). Of these selective neurons, 93% were found to be
selective for parts of the cue structure, either by showing selectivity for individual
odours, odour pairs or a combination of both, indicating that task-relevant

information is strongly encoded in the population.
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Consistent with previous research into the representation of odours in
hippocampus, we found neurons that responded to a given odour irrespective of
its position within the trial (Eichenbaum et al., 1987; Manns et al., 2007; Taxidis
et al., 2020). This purely elemental type of response however accounted only for

7% of selective neurons.

A larger proportion (49%) of selective cells showed selectivity for specific odours
in first position (e.g. “odour A as first cue”). The selective firing of these neurons
was most often time-shifted such that the peak of mean activity centred not
around the cue delivery but lay in the delay period or even during the delivery of
the next. This finding is consistent with the odour-modulated time cells
described both in rats (MacDonald et al., 2013) as well as mice (Taxidis et al.,
2020). The timing of these cells however was specific to task structure, i.e. we
did not find any time-shifted odour cells tiling the seconds after the second cue.
This suggests that these neurons represent information both about recent cues,
but also about the task structure in which “first cue” is a meaningful position in

time that needs to be tracked in order to optimally predict outcomes.

This position-specific cue selectivity is similar to the multiplexed
representations that have been demonstrated in studies using spatial nhavigation
tasks, such as landmark vector cells or odour-in-place cells (Deshmukh &
Knierim, 2013), except that in our task, the neurons represent a specific cue at a

specific position in time rather than in space.

In our task design, the first and second cue carry different meanings: while the
first cue can be seen as setting the context (i.e. narrowing the space of possible
sequences down to two, only one of which is rewarded), the second cue
represents the actual choice point (i.e. the second odour, evaluated within the

context of the first, enables the mouse to predict the outcome).
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In line with this, we found that the representation of the second cue is strongly
contextual: 35% of selective neurons fired differentially in response to one
specific odour pair, e.g. “B after A”. The activity of these neurons therefore
contains information about past and present: their firing integrates the previous
cue with the current read out and can therefore be used to inform future action.
This is consistent with the splitter cells reported in T-maze experiments that fire
differentially based on past routes or upcoming choices (Ainge, Tamosiunaite,

et al., 2007; Wood et al., 2000).

Taken together, within the population of selective neurons in vCA1, we found an
elemental representation of odour identity, an encoding of odour-in-position
maintained across the delay and context-specific conditional encoding of the
second cue. To our knowledge, this is the first time that neurons maintaining a
cue across a delay and cells integrating this maintained past with a current cue

have been demonstrated in the same task.

Furthermore, we found that the peak activity of the population of selective
neurons was biased towards the time of the second cue, making the neural
representation in vCA1 at the choice point well suited to support solving the task.
We corroborated this hypothesis with decoders trained on the entire population
of recorded neurons irrespective of their selectivity and found that, in line with a
strong encoding of both context and sensory inputs, the decoders trained on
neural activity around the time of the second cue delivery were able to correctly

predict the identity of both the second as well as the first cue.

Overall, these findings underscore the importance of hippocampus in the
processing of temporal sequences and the encoding of sensory events within

task-specific contexts.

These findings raise the question of whether selective neurons constitute a

distinct functional cell type within vCA1 or whether their response patterns
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simply emerge from different input configurations. Given that CA1 pyramidal
neurons receive afferent inputs both at their apical dendrites from entorhinal
cortex and closer to the soma from CA3 (Takahashi & Magee, 2009), it is plausible
that their selectivity for task features arises from the integration of these inputs

rather than from inherent differences in cell identity.

The hippocampus is known to flexibly encode information depending on
behavioural context (McKenzie et al., 2016), and task-selective responses may
thus reflect dynamic input-driven modulations rather than distinct neuronal
subpopulations. This alighs with work showing that the same hippocampal
neurons can exhibit different firing properties across tasks (Komorowski et al.,
2009), reinforcing the idea that these representations are an emergent feature of

network activity rather than being hardwired into specialised cell types.

More broadly, our findings on the single-cell level contribute to the view of the
hippocampus as a region that transiently encodes and maintains structured
information about the past to facilitate learning. Unlike brain areas that encode
predefined task-relevant features, the hippocampus is thought to act as an
association machine that retains recent experiences until their relevance
becomes clear, allowing post-hoc learning (Wallenstein et al., 1998; Ranganath,

2010; Schapiro et al., 2017).

In our task, vCA1 neurons encode the relationship between sequentially
presented odour cues, enabling mice to use pastinformation at a later decision
point. This alighs with evidence that hippocampalrepresentations are shaped by
experience-dependent plasticity and play a key role in learning associations that
span time (MacDonald et al., 2013; McKenzie et al., 2014). Crucially, since we
find no reliable encoding of outcomes, our results highlight that this associative
function of hippocampus is not performed in isolation but likely emerges from
interactions with regions such as prefrontal cortex and nucleus accumbens,

which are implicated in decision-making and reinforcement learning (Durstewitz
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et al., 2010; Preston & Eichenbaum, 2013; Gerraty et al., 2014; Liu et al., 2014;
LeGates et al., 2018; Zhou et al., 2019).

Taken together, these findings reinforce the notion that the hippocampus is not
dedicated to a single cognitive function but rather serves as a flexible,

experience-dependent system for structuring information over time.

6.3 Encoding of outcomes in vCA1

In our task, six different trial types can lead to two different outcomes: reward, or
no reward. Mice have learnt these associations, as is evident by the high

accuracy of their predictive licking.

Yet, within our neural data, we did not find significant encoding of these shared
outcomes at the time of this anticipatory behaviour. While we found a small
number of individual neurons that displayed selective firing for all trial types with
a shared outcome, their mean firing generally peaked around the delivery of the
reward, therefore possibly encoding the shared sensory experience of reward
rather than an expectation of the outcome. Furthermore, decoders trained on the
population data at the time of the second cue performed only slightly above

chance when predicting whether a given trial was rewarded or not.

However, within the population of neurons that were selective for specific trial
types, 80% of neurons responded to rewarded odour pairs. This is in line with
previous research demonstrating the clustering of place fields near reward

locations (Dupret et al., 2010; Hollup et al., 2001; Jarzebowski et al., 2022).

Taken together, our data therefore supports the notion that hippocampus
preferentially encodes cues and contexts that are related to rewarding

outcomes. Whether this is due to the value of these outcomes, to their saliency,
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or their association to an action (as opposed to unrewarded trials, which require
no further action or attention) remains open. We find only weak evidence of
encoding of generalised value (i.e. context-independent shared outcomes) in

both the individual neural selectivity as well as in the population as a whole.

This is in contrast to recent studies published on outcome encoding in
hippocampus more broadly (Gauthier & Tank, 2018), and vCA1 specifically
(Biane et al., 2023), that have found generalised representations of reward that
weren’t restricted to reward consumption and, in the latter case, even were in
anticipation of the predicted outcome. A possible explanation for this
discrepancy might lie in the difference in task complexity: in the aforementioned
studies, the cues signalling reward were unambiguous. Thus, in contrast to our
task, there was no need for contextual differentiation of the neural
representation, and therefore the outcomes might be encoded in the same
cognitive map, thus looking like a generalised representation of reward, whereas
in our task due to the need to disambiguate “B after A” from “B after C” this

behavioural requirement might have caused neural representations to diverge.

Recent computationalwork has indeed suggested thatin complex environments
with a high number of possible futures, it might be non-optimal to encode
possible future trajectories in the same representation as the associated
outcomes (Stachenfeld et al.,, 2017; Whittington et al.,, 2020). In these
frameworks, representations of states and the transitions between them are
learnt separately from the values associated with those states, leading thusto a
cognitive map of state space that does not encode generalised value. It is
suggested that hippocampus might be the neural substrate for this map of state

space (Gershman, 2018).

The data I've presented in this thesis supports this view of hippocampal function,
suggesting that in tasks that require more complex associations than direct

mapping from a cue to an outcome, vCA1 neurons encode information about

172



cues and contexts with a bias towards rewarded cue pairs, but do not encode

generalised representations of expected outcome.

6.4 Future research directions

Investigating the neural mechanisms of encoding and representing relational
structures in a task-specific way is crucial for a deeper understanding of how our
brains are able to adapt to the constantly changing requirements of the
environment and support flexible adaptive behaviour. In this thesis, | have
presented data providing more insight into the role of vCA1 neurons in a
structural learning task, specifically investigating how neurons in vCA1 encode

relationships between ambiguous cues.

However, many new questions arise from this data. Below, | outline several
directions for future research that might answer some of these outstanding

questions.

6.4.1 Differential HC involvement depending on delay length

In Chapter 4, | presented data showing that optogenetic inactivation of vCA1
only affects behavioural performance of our task in paradigms where the delay
exceeds 10s. While this suggests that ventral hippocampus is required to bridge
longer delays, it is unclear what the exact role of vCA1 is within this process. To

investigate this question in more details, | suggest a two-pronged approach.

In a first step, more temporally defined optogenetic manipulations might be able
to refine our understanding of which part of the process vCA1 is performing: by
inactivating only during the delivery of the first cue, the delay, or the delivery of
the second cue, respectively, it would be possible to distinguish between a role
for vCA1 primarily in cue representation, memory maintenance across the delay,

or integration of past and present cues.
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Given our calcium imaging data as well as studies proposing that CA1 fulfils the
role of a mismatch detector (Axmacher et al., 2010; Kumaran & Maguire, 2006), |
would hypothesise that the last inactivation window (during the second cue
delivery) is likely to have the most significant impact on behavioural

performance.

In a second step, recording calcium data in the 30s delay paradigm would be a
logical next step to investigate the difference in hippocampal involvement
between different delay lengths. With this data, it would be possible to compare
the neural activity in vCA1 in a 30s paradigm to the data I’ve shown in this thesis
recorded in the 5s task, and determining if there are differences in the encoding
of task variables, and how those differences may relate to the difference in
hippocampal requirement at these two delays. In light of the vast literature
showing that hippocampus encodes rich and context-sensitive representations
of task variables in many tasks despite not being required for their performance
(Ainge et al., 2007; Biane et al., 2023; Ferbinteanu et al., 2011), it seems likely
that the task-specific encoding would not change substantially in the paradigm
with a longer delay. This hypothesis is supported by anecdotal data I've

presented in Figure 5.11.

Lastly, due to the temporal resolution of the calcium indicators used in our
recordings and number of recorded neurons per session, our data from the 5s
paradigm did not allow us to investigate the encoding of temporal sequence in
fine detail. With recording data from the 30s task, it might be possible to compare

neural activity to several proposed models for delay activity in hippocampus.

One proposed mechanism for maintaining the identity of a past odour cue over
a long time interval is through persistent neural activity across the delay period
(Fig 6.1B). This type of neural activity has been most thoroughly described in

prefrontal areas for example in working memory studies (Fuster & Alexander,
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1971; Erlich et al., 2011; Liu et al., 2014; Yang et al., 2014), but examples of this
type of delay firing have also been shown in hippocampus and the adjoining
subiculum (Deadwyler & Hampson, 2006; Hampson et al.,, 2011). In this
framework, a different set of neurons specific to each odour would become
active after the first cue presentation and maintain activity until the second cue,

thus allowing an association between the two odours across the delay period.

Another proposed mechanism is that a population of neurons fire in sequence,
tiling the delay time between first and second cue (Fig 6.1C). This type of
chaining of neural activity has specifically been observed in tasks that like ours
require the mouse to remember an odour cue throughout a delay period to
compare it to a subsequent cue (Macdonald et al., 2013; Taxidis et al., 2020).

such as persistent neural activity of specific neurons, temporal sequences of
ensembles of neurons, or even “silent” memory maintenance mechanisms

(Figure 6.1)

& /\ m [\
N
example trial persistent activity chaining of activity delay silent

Figure 6.1: Proposed theories of hippocampal activity across delay period.

a. Schematic of example trial b. Maintenance of a past odour cue over the delay period through
persistent neural activity of single neurons. ¢. Maintenance of a past odour cue by a population
of neurons firing in sequence (“tiling”). d. “Silent” memory maintenance that is not
characterised by specific firing patterns in hippocampus

However, studies showing such activity often use short delays (e.g. 2-5s) and
even at those shorter delays the amount of information encoded by the neural
population decreases over the delay (Taxidis et al., 2020), suggesting that this

mechanism may not be well suited to longer delay paradigms.
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Other mechanisms that have been put forward for memory maintenance over a
delay period are “silent”, i.e. are not characterized by specific firing patterns in
hippocampus itself (Fig 6.1C). For example, during trace fear conditioning, there
is only limited evidence for delay activity in hippocampus. Despite this,
population dynamics before and after conditioning differed significantly (Ahmed
et al., 2020). This may be a consequence of memory stored in synaptic weights
rather than in neuronal firing rates, a mechanism put forward in theoretical work
to enable memory maintenance despite sparse firing (Mongillo et al., 2008).
Another possible mechanism underlying “silent” delays may be that the memory
is maintained outside the hippocampus, or in the activity between specific
regions such as for example between hippocampus and prefrontal areas

(Spellman et al., 2015).

6.4.2 Role of HC in generalisation

When exchanging one odour from the task with a novel odour cue that mice had
no previous experience of, we found that they adapted to this change rapidly,
returning to previous levels of behavioural accuracy in a span of days, and

sometimes within one session.

This is evidence supporting theoretical accounts that propose that structural
learning might underly abstraction and inference (Whittington et al., 2020). To
further investigate the way hippocampal activity supports structural learning,
recording the calcium activity of neurons in vCA1 is a very exciting prospect.
Specifically, it would be very interesting to compare the neural representation of

the novel cue to the representations of the familiar cues.

Results from a combined study in humans and mice performing a transitive
inference task showed that hippocampus is involved in constructing
representations of novel stimuli and that hippocampus preserves the learned

temporal statistics in this representation of a new association (Barron et al.,
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2020). However, since the individual cues in that task were unambiguous, in
contrast to the individual odours in our task that occur in both rewarded and
unrewarded contingencies, the question of how a novel cue might be fit into

several new associations is still open.

As mentioned in Chapter 1, especially the domains of generalisation and
categorisation are not uniquely ascribed to hippocampal circuits, but likely also
involve frontal cortices. Specifically, hippocampus-PFC interactions are
proposed to be essential to memory integration and generalising knowledge
between tasks or stimuli (Gerraty et al., 2014; Rygula et al., 2010; Zeithamova et
al., 2012). Thus, it is likely that the integration of a novel cue relies not solely on

hippocampus, but on its interaction with frontal cortices.

6.4.3  Projection specificity

This aspect of projection-specific information processing raises another
interesting research direction: previous work from our lab has shown how
distinct, parallel output circuits in ventral hippocampus perform unique roles in

behaviour (Wee et al., 2024).

A further exciting research direction would therefore lie in examining the down-
stream targets of the hippocampal representations | characterised in this thesis.
From the literature, it is suggested that value assignment might be dopamine
mediated and therefore take place in the Nucleus Accumbens (NAc) (Howe et
al., 2013). Furthermore, manipulations of the vHC-NAc projection have been
shown to drive or suppress reward-seeking behaviours (LeGates et al., 2018;
Zhou et al., 2019). Following from this, structurally responsive neurons that
represent information about a specific contingency (i.e. odour pair) might project

preferentially to NAc.
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However, both PFC and OFC have also been implicated in credit assignment in
goal-directed behaviours (Takahashi et al., 2011). Therefore, the PFC might also
be a possible target that might receive and utilise this structural information.
Overall, however, most of the studies relating frontal cortices to credit
assignment use tasks requiring some level of inference or generalisation (Walton

et al., 2010; Wang et al., 2020; R. C. Wilson et al., 2014).

Given this evidence, investigating the HC-PFC projection might be especially
interesting in those sessions where animals have to adapt to changes in the
paradigm, whether they are changes to the cues or the temporal structure, since
in those sessions and surrounding sessions it might be possible to disambiguate
signals related to general credit assignment and update signals in response to

changes.

6.4.4 Development of hippocampal representation during
learning

In this thesis, I've investigated calcium recordings in vCA1 from expert mice
performing our task and shown that neurons this region represent task-relevant
variables in both elemental and structural ways. From the literature, we know
that hippocampalrepresentations are dynamic, with known phenomena such as
remapping and representational drift introducing change into hippocampal

representations (Ziv et al., 2013, Sanders et al., 2020).

Therefore, future research might follow the calcium activity in hippocampus
throughout learning, to investigate both when neurons in hippocampus start to
represent certain features and relate this activity to phases of learning, and
further to assess the amount of change the representations undergo both during
and after learning. While electrophysiological recordings in spatial paradigms
have shown the emergence of task-related representations within seconds

(Bittner et al., 2017), results from tasks with similar structural demands as ours
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have indicated that in these cases, representations emerge over the course of
days, correlated to levels of learning (Taxidis et al., 2020). Given the different
layers of task understanding represented in the different responses we find in the
recorded neuronsin vCA1 (elemental cue representation to structural response),
these types of response might emerge at different times over the course of

learning.

In summary, in this thesis, | described a new task to investigate structural
learning in mice and presented evidence for task-related representations within
vCA1 that contain all information to correctly predict outcomes. Understanding
the functional contribution of these representations and their role in
generalisation and inference as well as investigating the projection targets

included in this circuit will be important topics of future investigation.

179



Bibliography

Ackels, T., Erskine, A., Dasgupta, D., Marin, A. C., Warner, T. P. A., Tootoonian, S.,
Fukunaga, ., Harris, J. J., & Schaefer, A. T. (2021). Fast odour dynamics are encoded
in the olfactory system and guide behaviour. Nature, 593(7860), 558-563.
https://doi.org/10.1038/s41586-021-03514-2

Addis, D. R., Wong, A. T., & Schacter, D. L. (2007). Remembering the past and imagining
the future: Common and distinct neural substrates during event construction and
elaboration. Neuropsychologia, 45(7), 1363-1377.
https://doi.org/10.1016/j.neuropsychologia.2006.10.016

Aggleton, J. P.,, & Pearce, J. M. (2001). Neural systems underlying episodic memory:
insights from animal research. Philosophical Transactions of the Royal Society of
London. Series B: Biological Sciences, 356(1413), 1467-1482.
https://doi.org/10.1098/rstb.2001.0946

Aggleton, J. P, Sanderson, D. J., & Pearce, J. M. (2007). Structural learning and the
hippocampus. Hippocampus, 17(9), 723-734. https://doi.org/10.1002/hip0.20323

Ahmed, M. S., Priestley, J. B., Castro, A., Stefanini, F, Canales, A. S. S., Balough, E. M.,
Lavoie, E., Mazzucato, L., Fusi, S., & Losonczy, A. (2020). Hippocampal Network
Reorganization Underlies the Formation of a Temporal Association Memory.
Neuron, 107(2), 283-291.e6. https://doi.org/10.1016/j.neuron.2020.04.013

Ainge, J. A., vander Meer, M. A. A. van der, Langston, R. F., & Wood, E. R. (2007). Exploring
the role of context-dependent hippocampal activity in spatial alternation behavior.
Hippocampus, 17(10), 988-1002. https://doi.org/10.1002/hipo.20301

Ainge, J. A., Tamosiunaite, M., Woergoetter, F., & Dudchenko, P. A. (2007). Hippocampal
CA1 Place Cells Encode Intended Destination on a Maze with Multiple Choice
Points. Journal of Neuroscience, 27(36), 9769-9779.
https://doi.org/10.1523/jneurosci.2011-07.2007

Akam, T., Rodrigues-Vaz, l., Marcelo, I., Zhang, X., Pereira, M., Oliveira, R. F., Dayan, P., &
Costa, R. M. (2021). The Anterior Cingulate Cortex Predicts Future States to Mediate
Model-Based Action Selection. Neuron, 109(1), 149-163.€e7.
https://doi.org/10.1016/j.neuron.2020.10.013

Albasser, M. M., Dumont, J. R., Amin, E., Holmes, J. D., Horne, M. R., Pearce, J. M., &
Aggleton, J. P. (2013). Association rules for rat spatial learning: The importance of
the hippocampus for binding item identity with item location. Hippocampus, 23(12),
1162-1178. https://doi.org/10.1002/hipo.22154

AlSubaie, R., Wee, R. W., Ritoux, A., Mishchanchuk, K., Passlack, J., Regester, D., &
MacAskill, A. F. (2021). Control of parallel hippocampal output pathways by
amygdalar long-range inhibition. elLife, 10, e74758.
https://doi.org/10.7554/elife.74758

180



Amaral, D. G., & Witter, M. P. (1989). The three-dimensional organization of the
hippocampal formation: A review of anatomical data. Neuroscience, 31(3), 571-
591. https://doi.org/10.1016/0306-4522(89)90424-7

Andersen, P., Bliss, T. V. P.,, & Skrede, K. K. (1971). Lamellar organization of hippocampal
excitatory pathways. Experimental Brain Research, 13(2), 222-238.
https://doi.org/10.1007/bf00234087

Anderson, M. I., & Jeffery, K. J. (2003). Heterogeneous Modulation of Place Cell Firing by
Changes in Context. The Journal of Neuroscience, 23(26), 8827-8835.
https://doi.org/10.1523/jneurosci.23-26-08827.2003

Aronoy, D., Nevers, R., & Tank, D. W. (2017). Mapping of a non-spatial dimension by the
hippocampal-entorhinal circuit. Nature, 543(7647), 719-722.
https://doi.org/10.1038/nature21692

Axmacher, N., Cohen, M. X,, Fell, J., Haupt, S., Dimpelmann, M., Elger, C. E., Schlaepfer,
T. E., Lenartz, D., Sturm, V., & Ranganath, C. (2010). Intracranial EEG Correlates of
Expectancy and Memory Formation in the Human Hippocampus and Nucleus
Accumbens. Neuron, 65(4), 541-549.
https://doi.org/10.1016/j.neuron.2010.02.006

Balleine, B. W., Leung, B. K., & Ostlund, S. B. (2011). The orbitofrontal cortex, predicted
value, and choice. Annals of the New York Academy of Sciences, 1239(1), 43-50.
https://doi.org/10.1111/j.1749-6632.2011.06270.x

Bari, B. A., Grossman, C. D., Lubin, E. E., Rajagopalan, A. E., Cressy, J. I., & Cohen, J. Y.
(2019). Stable Representations of Decision Variables for Flexible Behavior. Neuron,
103(5), 922-933.e7. https://doi.org/10.1016/j.neuron.2019.06.001

Barron, H. C., Reeve, H. M., Koolschijn, R. S., Perestenko, P. V., Shpektor, A., Nili, H.,
Rothaermel, R., Campo-Urriza, N., O’Reilly, J. X., Bannerman, D. M., Behrens, T. E.
J., & Dupret, D. (2020). Neuronal Computation Underlying Inferential Reasoning in
Humans and Mice. Cell, 183(1), 228-243.e21.
https://doi.org/10.1016/j.cell.2020.08.035

Behrens, T. E. J., Muller, T. H., Whittington, J. C. R., Mark, S., Baram, A. B., Stachenfeld,
K. L., & Kurth-Nelson, Z. (2018). What Is a Cognitive Map? Organizing Knowledge for
Flexible Behavior. Neuron, 100(2), 490-509.
https://doi.org/10.1016/j.neuron.2018.10.002

Biane, J. S., Ladow, M. A., Stefanini, F., Boddu, S. P.,, Fan, A., Hassan, S., Dundar, N.,
Apodaca-Montano, D. L., Zhou, L. Z., Fayner, V., Woods, N. I., & Kheirbek, M. A.
(2023). Neural dynamics underlying associative learning in the dorsal and ventral
hippocampus. Nature Neuroscience, 26(5), 798-809.
https://doi.org/10.1038/s41593-023-01296-6

Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S., & Magee, J. C. (2017).
Behavioral time scale synaptic plasticity underlies CA1 place fields. Science,
357(6355), 1033-1036. https://doi.org/10.1126/science.aan3846

181



Blanchard, D. C., & Blanchard, R. J. (1972). Innate and conditioned reactions to threatin
rats with amygdaloid lesions. Journal of Comparative and Physiological Psychology,
81(2), 281-290. https://doi.org/10.1037/h0033521

Blanchard, D. C., Blanchard, R. J., Lee, E. M. C., & Fukunaga, K. K. (1977). Movement
arrest and the hippocampus. Physiological Psychology, 5(3), 331-335.
https://doi.org/10.3758/bf03335340

Bunsey, M. and Eichenbaum, H. (1993) ‘Critical role of the Parahippocampal region for
paired-associate learning in rats.’, Behavioral Neuroscience, 107(5), pp. 740-747.
do0i:10.1037//0735-7044.107.5.740.

Bunsey, M. and Eichenbaum, H. (1996) ‘Conservation of hippocampal memory function
in rats and humans’, Nature, 379(6562), pp. 255-257. d0i:10.1038/379255a0.

Burgess, N. (2002). The hippocampus, space, and viewpoints in episodic memory. The
Quarterly Journal of Experimental Psychology Section A, 55(4), 1057-1080.
https://doi.org/10.1080/02724980244000224

Burwell, R. D., & Amaral, D. G. (1998). Cortical afferents of the perirhinal, postrhinal, and
entorhinal cortices of the rat. Journal of Comparative Neurology, 398(2), 179-205.
https://doi.org/10.1002/(sici)1096-9861(19980824)398:2<179::aid-cne3>3.0.c0;2-

y

Bussey, T. J., Dias, R., Redhead, E. S., Pearce, J. M., Muir, J. L., & Aggleton, J. P. (2000).
Intact negative patterning in rats with fornix or combined perirhinal and postrhinal
cortex lesions. Experimental Brain Research, 134(4), 506-519.
https://doi.org/10.1007/s002210000481

Butter, C. M. (1969). Perseveration in extinction and in discrimination reversal tasks
following selective frontal ablations in Macaca mulatta. Physiology & Behavior, 4(2),
163-171. https://doi.org/10.1016/0031-9384(69)90075-4

Byrne, P., Becker, S., & Burgess, N. (2007). Remembering the Past and Imagining the
Future: A Neural Model of Spatial Memory and Imagery. Psychological Review,
114(2), 340-375. https://doi.org/10.1037/0033-295x.114.2.340

Cenquizca, L. A., & Swanson, L. W. (2007). Spatial organization of direct hippocampal
field CA1 axonal projections to the rest of the cerebral cortex. Brain Research
Reviews, 56(1), 1-26. https://doi.org/10.1016/j.brainresrev.2007.05.002

Chamberlain, S. R., & Sahakian, B. J. (2006). The neuropsychology of mood disorders.
Current Psychiatry Reports, 8(6), 458-463. https://doi.org/10.1007/s11920-006-
0051-x

Chen, J. L., Margolis, D. J., Stankov, A., Sumanovski, L. T., Schneider, B. L., & Helmchen,
F. (2015). Pathway-specific reorganization of projection neurons in somatosensory
cortex during learning. Nature  Neuroscience, 18(8), 1101-1108.
https://doi.org/10.1038/nn.4046

Chuong, A. S., Miri, M. L., Busskamp, V., Matthews, G. A. C., Acker, L. C., Sgrensen, A. T.,
Young, A., Klapoetke, N. C., Henninger, M. A., Kodandaramaiah, S. B., Ogawa, M.,
182



Ramanlal, S. B., Bandler, R. C., Allen, B. D., Forest, C. R., Chow, B. Y., Han, X,, Lin, Y.,
Tye, K. M., ... Boyden, E. S. (2014). Noninvasive optical inhibition with a red-shifted
microbial rhodopsin. Nature Neuroscience, 17(8), 1123-1129.
https://doi.org/10.1038/nn.3752

Constantinescu, A. O., O’Reilly, J. X., & Behrens, T. E. J. (2016). Organizing conceptual
knowledge in humans with a gridlike code. Science, 352(6292), 1464-1468.
https://doi.org/10.1126/science.aaf0941

Davidson, T. L., McKernan, M. G., & Jarrard, L. E. (1993). Hippocampal Lesions Do Not
Impair Negative Patterning: A Challenge to Configural Association Theory.
Behavioral Neuroscience, 107(2), 227-234. https://doi.org/10.1037/0735-
7044.107.2.227

Davis, M. (1992). The Role of the Amygdala in Fear and Anxiety. Annual Review of
Neuroscience, 15(1), 353-375.
https://doi.org/10.1146/annurev.ne.15.030192.002033

Deshmukh, S. S., & Knierim, J. J. (2013). Influence of local objects on hippocampal
representations: Landmark vectors and memory. Hippocampus, 23(4), 253-267.
https://doi.org/10.1002/hipo.22101

Dias, R., Robbins, T. W., & Roberts, A. C. (1997). Dissociable Forms of Inhibitory Control
within Prefrontal Cortex with an Analog of the Wisconsin Card Sort Test: Restriction
to Novel Situations and Independence from “On-Line” Processing. The Journal of
Neuroscience, 17(23), 9285-9297. https://doi.org/10.1523/jneurosci.17-23-
09285.1997

Diodato, A., Ruinart de Brimont, M., Yim, Y. S., Derian, N., Perrin, S., Pouch, J., ... &
Fleischmann, A. (2016). Molecular signatures of neural connectivity in the olfactory
cortex. Nature communications, 7(1), 12238.

Dong, Z., Mau, W., Feng, Y., Pennington, Z. T., Chen, L., Zaki, Y., Rajan, K., Shuman, T.,
Aharoni, D., & Cai, D. J. (2022). Minian, an open-source miniscope analysis pipeline.
eLife, 11, e70661. https://doi.org/10.7554/¢elife.70661

Dudchenko, P. A., & Wood, E. R. (2014). Space,Time and Memory in the Hippocampal
Formation. 253-272. https://doi.org/10.1007/978-3-7091-1292-2_10

Dupret, D., O’Neill, J., Pleydell-Bouverie, B., & Csicsvari, J. (2010). The reorganization
and reactivation of hippocampal maps predict spatial memory performance.
Nature Neuroscience, 13(8), 995-1002. https://doi.org/10.1038/nn.2599

Durstewitz, D., Vittoz, N. M., Floresco, S. B., & Seamans, J. K. (2010). Abrupt Transitions
between Prefrontal Neural Ensemble States Accompany Behavioral Transitions
during Rule Learning. Neuron, 66(3), 438-448.
https://doi.org/10.1016/j.neuron.2010.03.029

Dusek, J. A., & Eichenbaum, H. (1997). The hippocampus and memory for orderly
stimulus relations. Proceedings of the National Academy of Sciences, 94(13), 7109-
7114. https://doi.org/10.1073/pnas.94.13.7109

183



Dusek, J. A., & Eichenbaum, H. (1998). The hippocampus and transverse patterning
guided by olfactory cues. Behavioral neuroscience, 112(4), 762.

Duvelle, E., Grieves, R. M., & van der Meer, M. A. van der. (2023). Temporal context and
latent state inference in the hippocampal splitter signal. elLife, 12, e82357.
https://doi.org/10.7554/elife.82357

Eichenbaum, H. (2001). The hippocampus and declarative memory: cognitive
mechanisms and neural codes. Behavioural Brain Research, 127(1-2), 199-207.
https://doi.org/10.1016/s0166-4328(01)00365-5

Eichenbaum, H. (2013). Memory on time. Trends in Cognitive Sciences, 17(2), 81-88.
https://doi.org/10.1016/j.tics.2012.12.007

Eichenbaum, H. (2014). Time cells in the hippocampus: a new dimension for mapping
memories. Nature Reviews Neuroscience, 15(11), 732-744.
https://doi.org/10.1038/nrn3827

Eichenbaum, H. (2017). On the Integration of Space, Time, and Memory. Neuron, 95(5),
1007-1018. https://doi.org/10.1016/j.neuron.2017.06.036

Eichenbaum, H., & Cohen, N. J. (2014). Can We Reconcile the Declarative Memory and
Spatial Navigation Views on Hippocampal Function? Neuron, 83(4), 764-770.
https://doi.org/10.1016/j.neuron.2014.07.032

Eichenbaum, H., Fagan, A. and Cohen, N. (1986) ‘Normal olfactory discrimination
learning set and facilitation of reversal learning after medial-temporal damage in
rats: Implications for an account of preserved learning abilities in amnesia’, The
Journal of Neuroscience, 6(7), pp. 1876-1884. doi:10.1523/jneurosci.06-07-
01876.1986.

Eichenbaum, H., Kuperstein, M., Fagan, A., & Nagode, J. (1987). Cue-sampling and goal-
approach correlates of hippocampal unit activity in rats performing an odor-
discrimination task. The Journal of Neuroscience, 7(3), 716-732.
https://doi.org/10.1523/jneurosci.07-03-00716.1987

Eichenbaum, H., Mathews, P. and Cohen, N.J. (1989) ‘Further studies of hippocampal
representation during odor discrimination learning., Behavioral Neuroscience,
103(6), pp. 1207-1216. doi:10.1037/0735-7044.103.6.1207.

Ekstrom, A. D., & Bookheimer, S. Y. (2007). Spatial and temporal episodic memory
retrieval recruit dissociable functional networks in the human brain. Learning &
Memory, 14(10), 645-654. https://doi.org/10.1101/lm.575107

Elzakker, M. V., O’Reilly, R. C., & Rudy, J. W. (2003). Transitivity, flexibility, conjunctive
representations, and the hippocampus. |I. An empirical analysis. Hippocampus,
13(3), 334-340. https://doi.org/10.1002/hipo.10083

Fagan, A., Mathews, P., & Cohen, N. J. (1988). Hippocampal system dysfunction and
odor discrimination learning in rats: Impairment of facilitation depending on
representational demands. Behavioral Neuroscience, 102(3), 331-339.

184



Fanselow, M. S. (1990). Factors governing one-trial contextual conditioning. Animal
Learning & Behavior, 18(3), 264-270. https://doi.org/10.3758/bf03205285

Fanselow, M. S., & Dong, H.-W. (2010). Are the Dorsal and Ventral Hippocampus
Functionally Distinct Structures? Neuron, 65(1), 7-19.
https://doi.org/10.1016/j.neuron.2009.11.031

Ferbinteanu, J., Shirvalkar, P., & Shapiro, M. L. (2011). Memory Modulates Journey-
Dependent Coding in the Rat Hippocampus. The Journal of Neuroscience, 31(25),
9135-9146. https://doi.org/10.1523/jneurosci.1241-11.2011

Fortin, N. J., Agster, K. L., & Eichenbaum, H. B. (2002). Critical role of the hippocampus
in memory for sequences of events. Nature Neuroscience, 5(5), 458-462.
https://doi.org/10.1038/nn834

Frank, L. M., Brown, E. N., & Wilson, M. (2000). Trajectory Encoding in the Hippocampus
and Entorhinal Cortex. Neuron, 27(1), 169-178. https://doi.org/10.1016/s0896-
6273(00)00018-0

Franks, K. M., Russo, M. J., Sosulski, D. L., Mulligan, A. A., Siegelbaum, S. A., & Axel, R.
(2011). Recurrent Circuitry Dynamically Shapes the Activation of Piriform Cortex.
Neuron, 72(1), 49-56. https://doi.org/10.1016/j.neuron.2011.08.020

Funahashi, S., Bruce, C., & Goldman-Rakic, P. (1993). Dorsolateral prefrontal lesions
and oculomotor delayed-response performance: evidence for mnemonic
“scotomas.” The Journal of Neuroscience, 13(4), 1479-1497.
https://doi.org/10.1523/jneurosci.13-04-01479.1993

Gauthier, J. L., & Tank, D. W. (2018). A Dedicated Population for Reward Coding in the
Hippocampus. Neuron, 99(1), 179-193.€e7.
https://doi.org/10.1016/j.neuron.2018.06.008

Gerraty, R. T., Davidow, J. Y., Wimmer, G. E., Kahn, I., & Shohamy, D. (2014). Transfer of
Learning Relates to Intrinsic Connectivity between Hippocampus, Ventromedial
Prefrontal Cortex, and Large-Scale Networks. The Journal of Neuroscience, 34(34),
11297-11303. https://doi.org/10.1523/jneurosci.0185-14.2014

Gershman, S. J. (2018). The Successor Representation: Its Computational Logic and
Neural Substrates. The Journal of Neuroscience, 38(33), 7193-7200.
https://doi.org/10.1523/jneurosci.0151-18.2018

Gershman, S. J.,, Norman, K. A., & Niy, Y. (2015). Discovering latent causes in
reinforcement learning. Current Opinion in Behavioral Sciences, 5, 43-50.
https://doi.org/10.1016/j.cobeha.2015.07.007

Graham, K. S., Barense, M. D., & Lee, A. C. H. (2010). Going beyond LTM in the MTL: A
synthesis of neuropsychological and neuroimaging findings on the role of the medial
temporal lobe in memory and perception. Neuropsychologia, 48(4), 831-853.
https://doi.org/10.1016/j.neuropsychologia.2010.01.001

Gray, J. A., & McNaughton, N. (2003). The Neuropsychology of Anxiety. Oxford University
Press.

185



van Groen, T.,, & Wyss, J. M. (1990a). The connections of presubiculum and
parasubiculum in the rat. Brain research, 518(1-2), 227-243.

van Groen, T., & Wyss, J. M. (1990b). Extrinsic projections from area CA1 of the rat
hippocampus: Olfactory, cortical, subcortical, and bilateral hippocampal formation
projections.  Journal of Comparative  Neurology, 302(3), 515-528.
https://doi.org/10.1002/cne.903020308

van Groen, T., Haren, F. J. van, Witter, M. P, & Groenewegen, H. J. (1986). The
organization of the reciprocal connections between the subiculum and the
entorhinal cortex in the cat: I. A neuroanatomical tracing study. Journal of
Comparative Neurology, 250(4), 485-497. https://doi.org/10.1002/cne.902500407

Guo, Z. V., Hires, S. A., Li, N., O’Connor, D. H., Komiyama, T., Ophir, E., Huber, D.,
Bonardi, C., Morandell, K., Gutnisky, D., Peron, S., Xu, N., Cox, J., & Svoboda, K.
(2014). Procedures for Behavioral Experiments in Head-Fixed Mice. PLoS ONE, 9(2),
€88678. https://doi.org/10.1371/journal.pone.0088678

Haber, S. N., Liu, H., Seidlitz, J., & Bullmore, E. (2022). Prefrontal connectomics: from
anatomy to human imaging. Neuropsychopharmacology, 47(1), 20-40.
https://doi.org/10.1038/s41386-021-01156-6

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser, E. |. (2005). Microstructure of a
spatial map in the entorhinal cortex. Nature, 436(7052), 801-806.
https://doi.org/10.1038/nature03721

Hartley, T., Lever, C., Burgess, N., & O’Keefe, J. (2014). Space in the brain: how the
hippocampal formation supports spatial cognition. Philosophical Transactions of
the Royal Society B: Biological Sciences, 369(1635), 20120510.
https://doi.org/10.1098/rstb.2012.0510

Hassabis, D., Kumaran, D., & Maguire, E. A. (2007). Using Imagination to Understand the
Neural Basis of Episodic Memory. The Journal of Neuroscience, 27(52), 14365—
14374. https://doi.org/10.1523/jneurosci.4549-07.2007

Hassabis, D., Kumaran, D., Vann, S. D., & Maguire, E. A. (2007). Patients with
hippocampal amnesia cannot imagine new experiences. Proceedings of the
National Academy of Sciences, 104(5), 1726-1731.
https://doi.org/10.1073/pnas.0610561104

Hollup, S. A., Molden, S., Donnett, J. G., Moser, M.-B., & Moser, E. I. (2001).
Accumulation of Hippocampal Place Fields at the Goal Location in an Annular
Watermaze Task. The Journal of Neuroscience, 21(5), 1635-1644.
https://doi.org/10.1523/jneurosci.21-05-01635.2001

Howe, M. W.,, Tierney, P. L., Sandberg, S. G., Phillips, P. E. M., & Graybiel, A. M. (2013).
Prolonged dopamine signalling in striatum signals proximity and value of distant
rewards. Nature, 500(7464), 575-579. https://doi.org/10.1038/nature12475

Itskov, V., Curto, C., Pastalkova, E., & Buzsaki, G. (2011). Cell Assembly Sequences
Arising from Spike Threshold Adaptation Keep Track of Time in the Hippocampus.

186



The Journal of Neuroscience, 31(8), 2828-2834.
https://doi.org/10.1523/jneurosci.3773-10.2011

Jarrard, L. E. (1978). Selective hippocampal lesions: Differential effects on performance
by rats of a spatial task with preoperative versus postoperative training. Journal of
Comparative and Physiological Psychology, 92(6), 1119-1127.
https://doi.org/10.1037/h0077516

Jarzebowski, P., Hay, Y. A., Grewe, B. F., & Paulsen, O. (2022). Different encoding of
reward location in dorsal and intermediate hippocampus. Current Biology, 32(4),
834-841.e5. https://doi.org/10.1016/j.cub.2021.12.024

Jay, T. M., & Witter, M. P. (1991). Distribution of hippocampal CA1 and subicular efferents
in the prefrontal cortex of the rat studied by means of anterograde transport of
Phaseolus vulgaris-leucoagglutinin. Journal of Comparative Neurology, 313(4),
574-586. https://doi.org/10.1002/cne.903130404

Jezek, K., Henriksen, E. J., Treves, A., Moser, E. I., & Moser, M.-B. (2011). Theta-paced
flickering between place-cell maps in the hippocampus. Nature, 478(7368), 246-
249. https://doi.org/10.1038/nature10439

delJong, L.W., Nejad, M. M., Yoon, E., Cheng, S., & Diba, K. (2023). Optogenetics reveals
paradoxical network stabilizations in hippocampal CA1 and CA3. Current
Biology, 33(9), 1689-1703.

Johnston, M., Scarf, D., Wilson, A., Millar, J., Bartonicek, A., & Colombo, M. (2021). The
effects of hippocampal and area parahippocampalis lesions on the processing and
retention of serial-order behavior, autoshaping, and spatial behavior in pigeons.
Hippocampus, 31(3), 261-280. https://doi.org/10.1002/hip0.23287

Jung, M. W,, Qin, Y., McNaughton, B. L., & Barnes, C. A. (1998). Firing characteristics of
deep layer neurons in prefrontal cortex in rats performing spatial working memory
tasks. Cerebral Cortex (New York, N.Y.: 1991), 8(5), 437-450.
https://doi.org/10.1093/cercor/8.5.437

Kaminski, J., Sullivan, S., Chung, J. M., Ross, |. B., Mamelak, A. N., & Rutishauser, U.
(2017). Persistently active neurons in human medial frontal and medial temporal
lobe support working memory. Nature Neuroscience, 20(4), 590-601.
https://doi.org/10.1038/nn.4509

Kandel, E. R. (2021). Principles of Neural Science (S. Siegelbaum, S. Mack, & J. D.
Koester, Eds.; 6th edition). McGraw Hill.
https://neurology.mhmedical.com/content.aspx?bookid=30248ionid=254326759

Kangas, B. D., Berry, M. S., & Branch, M. N. (2011). On the development and mechanics
of delayed matching-to-sample performance. Journal of the Experimental Analysis
of Behavior, 95(2), 221-236. https://doi.org/10.1901/jeab.2011.95-221

Kerr, K. M., Agster, K. L., Furtak, S. C., & Burwell, R. D. (2007). Functional neuroanatomy
of the parahippocampal region: the lateral and medial entorhinal
areas. Hippocampus, 17(9), 697-7

187



Kesner, R. P., Gilbert, P. E., & Barua, L. A. (2002). The Role of the Hippocampus in Memory
for the Temporal Order of a Sequence of Odors. Behavioral Neuroscience, 116(2),
286-290. https://doi.org/10.1037/0735-7044.116.2.286

Kesner, R. P., Hunsaker, M. R., & Ziegler, W. (2011). The role of the dorsal and ventral
hippocampus in olfactory working memory. Neurobiology of learning and
memory, 96(2), 361-366.

Kjelstrup, K. G., Tuvnes, F. A., Steffenach, H.-A., Murison, R., Moser, E. I., & Moser, M.-B.
(2002). Reduced fear expression after lesions of the ventral hippocampus.
Proceedings of the National Academy of Sciences, 99(16), 10825-10830.
https://doi.org/10.1073/pnas.152112399

Koéhler, C. (1985). Intrinsic projections of the retrohippocampal region in the rat brain. I.
The subicular complex. Journal of Comparative Neurology, 236(4), 504-522.
https://doi.org/10.1002/cne.902360407

Komorowski, R. W., Manns, J. R., Eichenbaum, H. (2009). Robust conjunctive item-place
coding by hippocampal neurons parallels learning what happens where. Journal of
Neuroscience, 29(31), 9918-9929. https://doi.org/10.1523/JNEUROSCI.1378-
09.2009

Kumaran, D., & Maguire, E. A. (2006). An Unexpected Sequence of Events: Mismatch
Detection in the Human Hippocampus. PLoS Biology, 4(12), e424.
https://doi.org/10.1371/journal.pbio.0040424

Lee, I., & Kesner, R. P. (2004). Encoding versus retrieval of spatial memory: Double
dissociation between the dentate gyrus and the perforant path inputs into CA3 in
the dorsal hippocampus. Hippocampus, 14(1), 66-76.
https://doi.org/10.1002/hipo.10167

LeGates, T. A., Kvarta, M. D., Tooley, J. R., Francis, T. C., Lobo, M. K., Creed, M. C., &
Thompson, S. M. (2018). Reward behaviour is regulated by the strength of
hippocampus—nucleus accumbens synapses. Nature, 564(7735), 258-262.
https://doi.org/10.1038/s41586-018-0740-8

Lehn, H., Steffenach, H.-A., Strien, N. M. van, Veltman, D. J., Witter, M. P., & Haberg, A.
K. (2009). A Specific Role of the Human Hippocampus in Recall of Temporal
Sequences. Journal of Neuroscience, 29(11), 3475-3484.
https://doi.org/10.1523/jneurosci.5370-08.2009

Leutgeb, J. K., Leutgeb, S., Moser, M.-B., & Moser, E. |. (2007). Pattern Separation in the
Dentate Gyrus and CA3 of the Hippocampus. Science, 315(5814), 961-966.
https://doi.org/10.1126/science.1135801

Lever, C., Burton, S., Jeewajee, A., O’Keefe, J., & Burgess, N. (2009). Boundary Vector
Cells in the Subiculum of the Hippocampal Formation. The Journal of
Neuroscience, 29(31), 9771-9777. https://doi.org/10.1523/jneurosci.1319-09.2009

188


https://doi.org/10.1002/cne.902360407

Levy, R., & Goldman-Rakic, P. S. (2000). Segregation of working memory functions within
the dorsolateral prefrontal cortex. Experimental Brain Research, 133(1), 23-32.
https://doi.org/10.1007/s002210000397

Liu, D., Gu, X., Zhu, J., Zhang, X., Han, Z., Yan, W., Cheng, Q., Hao, J., Fan, H., Hou, R.,
Chen, Z., Chen, Y., & Li, C. T. (2014). Medial prefrontal activity during delay period
contributes to learning of a working memory task. Science, 346(6208), 458-463.
https://doi.org/10.1126/science.1256573

Lu, J., Li, C., Singh-Alvarado, J., Zhou, Z. C., Frohlich, F., Mooney, R., & Wang, F. (2018).
MIN1PIPE: A Miniscope 1-Photon-Based Calcium Imaging Signal Extraction
Pipeline. Cell Reports, 23(12), 3673-3684.
https://doi.org/10.1016/j.celrep.2018.05.062

Luskin, M. B., & Price, J. L. (1983). The topographic organization of associational fibers
of the olfactory system in the rat, including centrifugal fibers to the olfactory
bulb. Journal of comparative neurology, 216(3), 264-291.

MacDonald, C. J., Carrow, S., Place, R., & Eichenbaum, H. (2013). Distinct Hippocampal
Time Cell Sequences Represent Odor Memories in Immobilized Rats. The Journal of
Neuroscience, 33(36), 14607-14616. https://doi.org/10.1523/jneurosci.1537-
13.2013

Maguire, E. A., & Mullally, S. L. (2013). The Hippocampus: A Manifesto for Change.
Journal of Experimental Psychology: General, 142(4), 1180-1189.
https://doi.org/10.1037/a0033650

Manns, J. R., Howard, M. W.,, & Eichenbaum, H. (2007). Gradual Changes in
Hippocampal Activity Support Remembering the Order of Events. Neuron, 56(3),
530-540. https://doi.org/10.1016/j.neuron.2007.08.017

Marbach, F., & Zador, A. M. (2017). A self-initiated two-alternative forced choice
paradigm for head-fixed mice. bioRxiv, 073783. https://doi.org/10.1101/073783

Maren, S. (1996). Synaptic transmission and plasticity in the amygdala. Molecular
Neurobiology, 13(1), 1-22. https://doi.org/10.1007/bf02740749

Maren, S. (2005). Synaptic Mechanisms of Associative Memory in the Amygdala.
Neuron, 47(6), 783-786. https://doi.org/10.1016/j.neuron.2005.08.009

Maren, S., & Holt, W. G. (2004). Hippocampus and Pavlovian Fear Conditioning in Rats:
Muscimol Infusions Into the Ventral, but Not Dorsal, Hippocampus Impair the
Acquisition of Conditional Freezing to an Auditory Conditional Stimulus. Behavioral
Neuroscience, 118(1), 97-110. https://doi.org/10.1037/0735-7044.118.1.97

Maren, S., Phan, K. L., & Liberzon, 1. (2013). The contextual brain: implications for fear
conditioning, extinction and psychopathology. Nature Reviews Neuroscience,
14(6), 417-428. https://doi.org/10.1038/nrn3492

Marr, D. (1971). Simple memory: a theory for archicortex. Philosophical Transactions of
the Royal Society of London. B, Biological Sciences, 262(841), 23-81.
https://doi.org/10.1098/rstb.1971.0078

189



Mau, W., Sullivan, D. W., Kinsky, N. R., Hasselmo, M. E., Howard, M. W., & Eichenbaum,
H. (2018). The Same Hippocampal CA1 Population Simultaneously Codes Temporal
Information over Multiple Timescales. Current Biology, 28(10), 1499-1508.e4.
https://doi.org/10.1016/j.cub.2018.03.051

McAlonan, K., & Brown, V. J. (2003). Orbital prefrontal cortex mediates reversal learning
and not attentional set shifting in the rat. Behavioural Brain Research, 146(1-2), 97-
103. https://doi.org/10.1016/j.bbr.2003.09.019

McDannald, M. A., Saddoris, M. P., Gallagher, M., & Holland, P. C. (2005). Lesions of
Orbitofrontal Cortex Impair Rats’ Differential Outcome Expectancy Learning But Not
Conditioned Stimulus-Potentiated Feeding. The Journal of Neuroscience, 25(18),
4626-4632. https://doi.org/10.1523/jneurosci.5301-04.2005

McDonald, R. J., Murphy, R. A., Guarraci, F. A., Gortler, J. R., White, N. M., & Baker, A. G.
(1997). Systematic comparison of the effects of hippocampal and fornix-fimbria
lesions on acquisition of three configural discriminations. Hippocampus, 7(4), 371-
388. https://doi.org/10.1002/(sici)1098-1063(1997)7:4<371::aid-hip03>3.0.c0;2-m

McKenna, J. T., & Vertes, R. P. (2004). Afferent projections to nucleus reuniens of the
thalamus. Journal of Comparative  Neurology, 480(2), 115-142.
https://doi.org/10.1002/cne.20342

McKenzie, S., Frank, A. J., Kinsky, N. R., Porter, B., Riviere, P. D., Eichenbaum, H. (2014).
Hippocampal representation of related and opposing memories develop with
distinct time courses. elLife, 3, e01079. https://doi.org/10.7554/eLife.01079

McKenzie, S., Keene, C. S., Farovik, A., Bladon, J., Place, R., Komorowski, R., &
Eichenbaum, H. (2016). Representation of memories in the cortical-hippocampal
system: Results from the application of population similarity analyses.
Neurobiology of learning and memory, 134, 178-191.

McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., & Moser, M.-B. (2006). Path
integration and the neural basis of the “cognitive map.” Nature Reviews
Neuroscience, 7(8), 663-678. https://doi.org/10.1038/nrn1932

McNaughton, B. L., & Morris, R. G. M. (1987). Hippocampal synaptic enhancement and
information storage within a distributed memory system. Trends in Neurosciences,
70(10), 408-415. https://doi.org/10.1016/0166-2236(87)90011-7

van der Meer, M. A. A., Johnson, A., Schmitzer-Torbert, N. C., & Redish, A. D. (2010).
Triple Dissociation of Information Processing in Dorsal Striatum, Ventral Striatum,
and Hippocampus on a Learned Spatial Decision Task. Neuron, 67(1), 25-32.
https://doi.org/10.1016/j.neuron.2010.06.023

Milivojevic, B., & Doeller, C. F. (2013). Mnemonic Networks in the Hippocampal
Formation: From Spatial Maps to Temporal and Conceptual Codes. Journal of
Experimental Psychology: General, 142(4), 1231-1241.
https://doi.org/10.1037/a0033746

190



Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function.
Annual Review of Neuroscience, 24(1), 167-202.
https://doi.org/10.1146/annurev.neuro.24.1.167

Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural Mechanisms of Visual
Working Memory in Prefrontal Cortex of the Macaque. The Journal of Neuroscience,
16(16), 5154-5167. https://doi.org/10.1523/jneurosci.16-16-05154.1996

Monchi, O., Petrides, M., Petre, V., Worsley, K., & Dagher, A. (2001). Wisconsin Card
Sorting Revisited: Distinct Neural Circuits Participating in Different Stages of the
Task ldentified by Event-Related Functional Magnetic Resonance Imaging. The
Journal of Neuroscience, 21(19), 7733-7741. https://doi.org/10.1523/jneurosci.21-
19-07733.2001

Morris, R. G. M., Garrud, P., Rawlins, J. N. P, & O’Keefe, J. (1982). Place navigation
impaired in rats with hippocampal lesions. Nature, 297(5868), 681-683.
https://doi.org/10.1038/297681a0

Moser, M. B., Moser, E. I., Forrest, E., Andersen, P., & Morris, R. G. (1995). Spatial learning
with a minislab in the dorsal hippocampus. Proceedings of the National Academy of
Sciences, 92(21), 9697-9701. https://doi.org/10.1073/pnas.92.21.9697

Moser, M., & Moser, E. I. (1998). Functional differentiation in the hippocampus.
Hippocampus, 8(6), 608-619. https://doi.org/10.1002/(sici)1098-
1063(1998)8:6<608::aid-hip03>3.0.co;2-7

Neunuebel, J. P., & Knierim, J. J. (2014). CA3 Retrieves Coherent Representations from
Degraded Input: Direct Evidence for CA3 Pattern Completion and Dentate Gyrus
Pattern Separation. Neuron, 81(2), 416-427.
https://doi.org/10.1016/j.neuron.2013.11.017

Niv, Y. (2019). Learning task-state representations. Nature Neuroscience, 22(10), 1544—-
1553. https://doi.org/10.1038/s41593-019-0470-8

O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary
evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171-175.
https://doi.org/10.1016/0006-8993(71)90358-1

O’Keefe, J., & Nadel, L. (1979). Précis of O’Keefe & Nadel’s The hippocampus as a
cognitive  map. Behavioral and Brain  Sciences, 2(4), 487-494.
https://doi.org/10.1017/s0140525x00063949

Omer, D. B, Las, L., & Ulanovsky, N. (2022). Contextual and pure time coding for self and
other in the hippocampus. Nature Neuroscience, 1-10.
https://doi.org/10.1038/s41593-022-01226-y

Ongdr, D., Cullen, T. J., Wolf, D. H., Rohan, M., Barreira, P., Zalesak, M., & Heckers, S.
(2006). The Neural Basis of Relational Memory Deficits in Schizophrenia. Archives
of General Psychiatry, 63(4), 356-365. https://doi.org/10.1001/archpsyc.63.4.356

Otto, T., Schottler, F., Staubli, U., Eichenbaum, H., & Lynch, G. (1991). Hippocampus and
olfactory discrimination learning: effects of entorhinal cortex lesions on olfactory

191



learning and memory in a successive-cue, go-no-go task.Behavioral
neuroscience, 105(1), 111.

Owen, S. F, Liu, M. H., &Kreitzer, A. C. (2019). Thermal constraints on in vivo optogenetic
manipulations. Nature neuroscience, 22(7), 1061-1065.

Panoz-Brown, D., Corbin, H. E., Dalecki, S. J., Gentry, M., Brotheridge, S., Sluka, C. M.,
Wu, J.-E., & Crystal, J. D. (2016). Rats Remember Items in Context Using Episodic
Memory. Current Biology, 26(20), 2821-2826.
https://doi.org/10.1016/j.cub.2016.08.023

Parker, N. F., Cameron, C. M., Taliaferro, J. P,, Lee, J., Choi, J. Y., Davidson, T. J., Daw, N.
D., & Witten, I. B. (2016). Reward and choice encoding in terminals of midbrain
dopamine neurons depends on striatal target. Nature Neuroscience, 19(6), 845-
854. https://doi.org/10.1038/nn.4287

Pashkovski, S. L., lurilli, G., Brann, D., Chicharro, D., Drummey, K., Franks, K. M., Panzeri,
S., &Datta, S. R. (2020). Structure and flexibility in cortical representations of odour
space. Nature, 583(7815), 253-258. https://doi.org/10.1038/s41586-020-2451-1

Pastalkova, E., Itskov, V., Amarasingham, A., & Buzsaki, G. (2008). Internally Generated
Cell Assembly Sequences in the Rat Hippocampus. Science, 3271(5894), 1322-
1327. https://doi.org/10.1126/science.1159775

Pavloy, P. I. (1927). Conditioned reflexes: An investigation of the physiological activity of
the cerebral cortex. Annals of Neurosciences, 17(3), 136-141.
https://doi.org/10.5214/ans.0972-7531.1017309

Paxinos, G., & Franklin, K. B. J. (2019). Paxinos and Franklin’s the Mouse Brain in
Stereotaxic Coordinates. Academic Press.

Pearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: Variations in the
effectiveness of conditioned but not of unconditioned stimuli. Psychological
Review, 87(6), 532-552. https://doi.org/10.1037/0033-295x.87.6.532

Pennartz, C. M. A, Ito, R., Verschure, P. F. M. J., Battaglia, F. P., & Robbins, T. W. (2011).
The hippocampal-striatal axis in learning, prediction and goal-directed behavior.
Trends in Neurosciences, 34(10), 548-559.
https://doi.org/10.1016/j.tins.2011.08.001

Phillips, R. G., & LeDoux, J. E. (1992). Differential contribution of amygdala and
hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience,
106(2), 274-285. https://doi.org/10.1037//0735-7044.106.2.274

Quinn, J. J.,, Oommen, S. S., Morrison, G. E., & Fanselow, M. S. (2002). Post-training
excitotoxic lesions of the dorsal hippocampus attenuate forward trace, backward
trace, and delay fear conditioning in a temporally specific manner. Hippocampus,
12(4), 495-504. https://doi.org/10.1002/hipo.10029

Rainer, G., Asaad, W. F, & Miller, E. K. (1998). Selective representation of relevant
information by neurons in the primate prefrontal cortex. Nature, 393(6685), 577—-
579. https://doi.org/10.1038/31235

192



Ranganath, C. (2010). Binding Items and Contexts. Current Directions in Psychological
Science, 19(3), 131-137. https://doi.org/10.1177/0963721410368805

Rao, Y. L., Ganaraja, B., Murlimanju, B. V., Joy, T., Krishnamurthy, A., & Agrawal, A. (2022).
Hippocampus and its involvementin Alzheimer’s disease: a review. 3 Biotech, 12(2),
55. https://doi.org/10.1007/s13205-022-03123-4

Rescorla, R., & Wagner, A. (1972). A theory of Pavlovian conditioning: Variations in the
effectiveness of reinforcement and nonreinforcement. In Classical conditioning Il:
Current research and theory. Appleton-Century-Crofts.

Riaz, S., Schumacher, A., Sivagurunathan, S., van der Meer, M., & Ito, R. (2017). Ventral,
but not dorsal, hippocampus inactivation impairs reward memory expression and
retrieval in contexts defined by proximal cues. Hippocampus, 27(7), 822-836.
https://doi.org/10.1002/hipo.22734

Rich, E. L., & Shapiro, M. (2009). Rat Prefrontal Cortical Neurons Selectively Code
Strategy Switches. The Journal of Neuroscience, 29(22), 7208-7219.
https://doi.org/10.1523/jneurosci.6068-08.2009

Root, C. M., Denny, C. A., Hen, R., & Axel, R. (2014). The participation of cortical
amygdala in innate, odour-driven behaviour. Nature, 515(7526), 269-273.
https://doi.org/10.1038/nature13897

Rudy, J. W., & O’Reilly, R. C. (1999). Contextual Fear Conditioning, Conjunctive
Representations, Pattern Completion, and the Hippocampus. Behavioral
Neuroscience, 113(5), 867-880. https://doi.org/10.1037/0735-7044.113.5.867

Rudy, J. W., & Sutherland, R. J. (1995). Configural association theory and the
hippocampal formation: An appraisal and reconfiguration. Hippocampus, 5(5),
375-389. https://doi.org/10.1002/hip0.450050502

Rygula, R., Walker, S. C., Clarke, H. F., Robbins, T. W., & Roberts, A. C. (2010). Differential
Contributions of the Primate Ventrolateral Prefrontal and Orbitofrontal Cortex to
Serial Reversal Learning. The Journal of Neuroscience, 30(43), 14552-14559.
https://doi.org/10.1523/jneurosci.2631-10.2010

Sanchez-Bellot, C., AlSubaie, R., Mishchanchuk, K., Wee, R. W. S., & MacAskill, A. F.
(2022). Two opposing hippocampus to prefrontal cortex pathways for the control of
approach and avoidance behaviour. Nature Communications, 13(1), 339.
https://doi.org/10.1038/s41467-022-27977-7

Sanders, H., Wilson, M. A., & Gershman, S. J. (2020). Hippocampal remapping as hidden
state inference. elLife, 9, €51140. https://doi.org/10.7554/elife.51140

Sanderson, D. J., Pearce, J. M., Kyd, R. J., & Aggleton, J. P. (2006). The importance of the
rat hippocampus for learning the structure of visual arrays. European Journal of
Neuroscience, 24(6), 1781-1788. https://doi.org/10.1111/j.1460-
9568.2006.05035.x

193



Schmajuk, N. A., & Buhusi, C. V. (1997). Stimulus Configuration, Occasion Setting, and
the Hippocampus. Behavioral Neuroscience, 111(2), 235-258.
https://doi.org/10.1037/0735-7044.111.2.235

Schoenbaum, G., Setlow, B., Nugent, S. L., Saddoris, M. P., & Gallagher, M. (2003).
Lesions of Orbitofrontal Cortex and Basolateral Amygdala Complex Disrupt
Acquisition of Odor-Guided Discriminations and Reversals. Learning & Memory,
10(2), 129-140. https://doi.org/10.1101/lm.55203

Schultz, W., Dayan, P., & Montague, P. R. (1997). A Neural Substrate of Prediction and
Reward. Science, 275(5306), 1593-1599.
https://doi.org/10.1126/science.275.5306.1593

Scoville, W. B., & Milner, B. (1957). LOSS OF RECENT MEMORY AFTER BILATERAL
HIPPOCAMPAL LESIONS. Journal of Neurology, Neurosurgery & Psychiatry, 20(1),
11. https://doi.org/10.1136/jnnp.20.1.11

Sellami, A., Abed, A. S. A., Brayda-Bruno, L., Etchamendy, N., Valério, S., Oulé, M.,
Pantaléon, L., Lamothe, V., Potier, M., Bernard, K., Jabourian, M., Herry, C., Mons,
N., Piazza, P.-V., Eichenbaum, H., & Marighetto, A. (2017). Temporal binding function
of dorsal CA1 is critical for declarative memory formation. Proceedings of the
National Academy of Sciences, 114(38), 10262-10267.
https://doi.org/10.1073/pnas.1619657114

Shepherd, G. M. (Ed.). (2003). The synaptic organization of the brain. Oxford university
press.

Sosa, M., Plitt, M. H., & Giocomo, L. M. (2024). Hippocampal sequences span
experience relative to rewards. bioRxiv, 2023.12.27.573490.
https://doi.org/10.1101/2023.12.27.573490

Spellman, T., Rigotti, M., Ahmari, S. E., Fusi, S., Gogos, J. A., & Gordon, J. A. (2015).
Hippocampal-prefrontal input supports spatial encoding in working memory.
Nature, 522(7556), 309-314. https://doi.org/10.1038/nature14445

Squire, L. R., Horst, A. S. van der, McDuff, S. G. R., Frascino, J. C., Hopkins, R. O., &
Mauldin, K. N. (2010). Role of the hippocampus in remembering the past and
imagining the future. Proceedings of the National Academy of Sciences, 107(44),
19044-19048. https://doi.org/10.1073/pnas.1014391107

Stachenfeld, K. L., Botvinick, M. M., & Gershman, S. J. (2017). The hippocampus as a
predictive map. Nature Neuroscience, 20(11), 1643-1653.
https://doi.org/10.1038/nn.4650

Sul, J. H., Kim, H., Huh, N., Lee, D., & Jung, M. W. (2010). Distinct Roles of Rodent
Orbitofrontal and Medial Prefrontal Cortex in Decision Making. Neuron, 66(3), 449-
460. https://doi.org/10.1016/j.neuron.2010.03.033

Sutherland, R. J., & Rudy, J. W. (1989). Configural association theory: The role of the
hippocampal formation in learning, memory, and amnesia. Psychobiology, 17(2),
129-144. https://doi.org/10.3758/bf03337828

194



Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press.

Swanson, L. W., & Cowan, W. M. (1977). An autoradiographic study of the organization
of the efferet connections of the hippocampal formation in the rat. Journal of
Comparative Neurology, 172(1), 49-84. https://doi.org/10.1002/cne.901720104

Takahashi, H., & Magee, J. C. (2009). Pathway interactions and synaptic plasticity in the
dendritic tuft regions of CA1 pyramidal neurons. Neuron, 62(1), 102-111.
https://doi.org/10.1016/j.neuron.2009.03.007

Takahashi, Y. K., Roesch, M. R., Wilson, R. C., Toreson, K., O’Donnell, P.,, Niv, Y., &
Schoenbaum, G. (2011). Expectancy-related changes in firing of dopamine neurons
depend on orbitofrontal cortex. Nature Neuroscience, 14(12), 1590-1597.
https://doi.org/10.1038/nn.2957

Taube, J., Muller, R., & Ranck, J. (1990). Head-direction cells recorded from the
postsubiculum in freely moving rats. Il. Effects of environmental manipulations. The
Journal of Neuroscience, 10(2), 436-447. https://doi.org/10.1523/jneurosci.10-02-
00436.1990

Taxidis, J., Pnevmatikakis, E. A., Dorian, C. C., Mylavarapu, A. L., Arora, J. S., Samadian,
K. D., Hoffberg, E. A., & Golshani, P. (2020). Differential Emergence and Stability of
Sensory and Temporal Representations in Context-Specific Hippocampal
Sequences. Neuron, 108(5), 984-998.e9.
https://doi.org/10.1016/j.neuron.2020.08.028

Tennant, S. A., Clark, H., Hawes, |., Tam, W. K., Hua, J., Yang, W., Gerlei, K. Z., Wood, E.
R., & Nolan, M. F. (2022). Spatial representation by ramping activity of neuronsin the
retrohippocampal cortex. Current Biology, 32(20), 4451-4464.e7.
https://doi.org/10.1016/j.cub.2022.08.050

Tolman, E. C. (1932). Purposive behavior in animals and men. University of California
Press.

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189—-
208. https://doi.org/10.1037/h0061626

Twining, R. C., Lepak, K., Kirry, A. J., & Gilmartin, M. R. (2020). Ventral Hippocampal Input
to the Prelimbic Cortex Dissociates the Context from the Cue Association in Trace
Fear Memory. The Journal of Neuroscience, 40(16), 3217-3230.
https://doi.org/10.1523/jneurosci.1453-19.2020

Uchida, N., & Mainen, Z. F. (2003). Speed and accuracy of olfactory discriminationin the
rat. Nature Neuroscience, 6(11), 1224-1229. https://doi.org/10.1038/nn1142

Valero, M., & Prida, L. M. de la. (2018). The hippocampus in depth: a sublayer-specific
perspective of entorhinal-hippocampal function. Current Opinion in Neurobiology,
52,107-114. https://doi.org/10.1016/j.conb.2018.04.013

Vargha-Khadem, F., Gadian, D. G., Watkins, K. E., Connelly, A., Paesschen, W. V., &
Mishkin, M. (1997). Differential Effects of Early Hippocampal Pathology on Episodic

195


https://doi.org/10.1002/cne.901720104

and Semantic Memory. Science, 277(5324), 376-380.
https://doi.org/10.1126/science.277.5324.376

Vertes, R. P., Hoover, W. B., Szigeti-Buck, K., & Leranth, C. (2007). Nucleus reuniens of
the midline thalamus: Link between the medial prefrontal cortex and the
hippocampus. Brain Research Bulletin, 71(6), 601-609.
https://doi.org/10.1016/j.brainresbull.2006.12.002

Vogel, P., Hahn, J., Duvarci, S., & Sigurdsson, T. (2022). Prefrontal pyramidal neurons are
critical for all phases of working memory. Cell Reports, 39(2), 110659.
https://doi.org/10.1016/j.celrep.2022.110659

Wallenstein, G. V., Hasselmo, M. E., & Eichenbaum, H. (1998). The hippocampus as an
associator of discontiguous events. Trends in neurosciences, 21(8), 317-323.

Wallis, J. D., Anderson, K. C., & Miller, E. K. (2001). Single neurons in prefrontal cortex
encode abstract rules. Nature, 411(6840), 953-956.
https://doi.org/10.1038/35082081

Walton, M. E., Behrens, T. E. J., Buckley, M. J., Rudebeck, P. H., & Rushworth, M. F. S.
(2010). Separable Learning Systems in the Macaque Brain and the Role of
Orbitofrontal Cortex in Contingent Learning. Neuron, 65(6), 927-939.
https://doi.org/10.1016/j.neuron.2010.02.027

Wang, F., Schoenbaum, G., & Kahnt, T. (2020). Interactions between human
orbitofrontal cortex and hippocampus support model-based inference. PLoS
Biology, 18(1), e3000578. https://doi.org/10.1371/journal.pbio.3000578

Wee, R. W. S., Mishchanchuk, K., AlSubaie, R., Church, T. W., Gold, M. G., & MacAskill,
A. F. (2024). Internal-state-dependent control of feeding behavior via hippocampal
ghrelin signaling. Neuron, 112(2), 288-305.e7.
https://doi.org/10.1016/j.neuron.2023.10.016

Whittington, J. C. R., McCaffary, D., Bakermans, J. J. W., & Behrens, T. E. J. (2022). How
to build a cognitive map. Nature Neuroscience, 25(10), 1257-1272.
https://doi.org/10.1038/s41593-022-01153-y

Whittington, J. C. R., Muller, T. H., Mark, S., Chen, G., Barry, C., Burgess, N., & Behrens,
T. E. J. (2020). The Tolman-Eichenbaum Machine: Unifying Space and Relational
Memory through Generalization in the Hippocampal Formation. Cell, 183(5), 1249-
1263.e23. https://doi.org/10.1016/j.cell.2020.10.024

Wikenheiser, A. M., & Schoenbaum, G. (2016). Over the river, through the woods:
cognitive maps in the hippocampus and orbitofrontal cortex. Nature Reviews
Neuroscience, 17(8), 513-523. https://doi.org/10.1038/nrn.2016.56

Wilson, F. A. W., Scalaidhe, S. P. O., & Goldman-Rakic, P. S. (1993). Dissociation of
Object and Spatial Processing Domains in Primate Prefrontal Cortex. Science,
260(5116), 1955-1958. https://doi.org/10.1126/science.8316836

196



Wilson, R. C., Takahashi, Y. K., Schoenbaum, G., & Niy, Y. (2014). Orbitofrontal Cortex as
a Cognitive Map of  Task Space. Neuron, 81(2), 267-279.
https://doi.org/10.1016/j.neuron.2013.11.005

Witter, M. P., Naber, P. A., Haeften, T. van, Machielsen, W. C. M., Rombouts, S. A. R. B,
Barkhof, F., Scheltens, P.,, & Silva, F. H. L. da. (2000). Cortico-hippocampal
communication by way of parallel parahippocampal-subicular pathways.
Hippocampus, 10(4), 398-410. https://doi.org/10.1002/1098-
1063(2000)10:4<398::aid-hip06>3.0.co;2-k

Wood, E. R., Dudchenko, P. A., & Eichenbaum, H. (1999). The global record of memory
in hippocampal neuronal  activity. Nature, 397(6720), 613-616.
https://doi.org/10.1038/17605

Wood, E. R., Dudchenko, P. A., Robitsek, R. J., & Eichenbaum, H. (2000). Hippocampal
Neurons Encode Information about Different Types of Memory Episodes Occurring
in the Same Location. Neuron, 27(3), 623-633. https://doi.org/10.1016/s0896-
6273(00)00071-4

Yassa, M. A, & Stark, C. E. L. (2011). Pattern separation in the hippocampus. Trends in
Neurosciences, 34(10), 515-525. https://doi.org/10.1016/j.tins.2011.06.006

Yun, M., Hwang, J. Y., & Jung, M. W. (2023). Septotemporal variations in hippocampal
value and outcome processing. Cell Reports, 42(2), 112094.
https://doi.org/10.1016/j.celrep.2023.112094

Zeithamova, D., Dominick, A. L., & Preston, A. R. (2012). Hippocampal and Ventral
Medial Prefrontal Activation during Retrieval-Mediated Learning Supports Novel
Inference. Neuron, 75(1), 168-179. https://doi.org/10.1016/j.neuron.2012.05.010

Zhang, L., Liang, B., Barbera, G., Hawes, S., Zhang, Y., Stump, K., Baum, I., Yang, Y., Li,
Y., & Lin, D. (2019). Miniscope GRIN Lens System for Calcium Imaging of Neuronal
Activity from Deep Brain Structures in Behaving Animals. Current Protocols in
Neuroscience, 86(1), e56. https://doi.org/10.1002/cpns.56

Zhou, Y., Zhu, H., Liu, Z., Chen, X., Su, X., Ma, C., Tian, Z., Huang, B., Yan, E., Liu, X., &
Ma, L. (2019). A ventral CA1 to nucleus accumbens core engram circuit mediates
conditioned place preference for cocaine. Nature Neuroscience, 22(12), 1986-
1999. https://doi.org/10.1038/s41593-019-0524-y

Ziv, Y., Burns, L. D., Cocker, E. D., Hamel, E. O., Ghosh, K. K., Kitch, L. J., Gamal, A. E., &
Schnitzer, M. J. (2013). Long-term dynamics of CA1 hippocampal place codes.
Nature Neuroscience, 16(3), 264-266. https://doi.org/10.1038/nn.3329

197



Appendix

Appendix 1

Results of planned comparisons: post-hoc Tukey tests for beta

(Figure 3.5e)

X Y mean(X) | mean(Y) | diff T p-tukey
A AB -0.057 1.295 | 1.351 | 6.006 1.70E-06
AC -0.057 -0.885 | 0.828 | 3.680 2.51E-02
BA -0.057 -1.335 | 1.278 | 5.683 7.93E-06
A BC -0.057 0.866 | 0.923 | 4.103 5.95E-03
A CA -0.057 0.868 | 0.925 | 4.113 5.75E-03
A CB -0.057 -0.977 | 0.920 | 4.089 6.27E-03
AB AandB 1.295 -0.041 | 1.335 | 5.935 2.40E-06
AB AandC 1.295 -0.016 | 1.311 | 5.825 4.06E-06
AB B 1.295 -0.151 | 1.445 | 6.425 2.17E-07
AB C 1.295 -0.126 | 1.421 | 6.315 3.75E-07
AB CandB 1.295 -0.110 | 1.405 | 6.244 5.34E-07
AB bias 1.295 -0.167 | 1.461 | 6.496 1.52E-07
AB previous_choice 1.295 0.563 | 0.731 | 3.250 n.s.
AB previous_reward 1.295 -0.332 | 1.627 | 7.231 3.37E-09
AC C -0.885 -0.126 | 0.758 | 3.371 n.s.
AC B -0.885 -0.151 | 0.734 | 3.261 n.s.
AC AandB -0.885 -0.041 | 0.844 | 3.751 2.00E-02
AC AandC -0.885 -0.016 | 0.868 | 3.861 1.39E-02
AC CandB -0.885 -0.110 | 0.774 | 3.442 n.s.
AC previous_reward -0.885 -0.332 | 0.552 | 2.455 n.s.
AC previous_choice -0.885 0.563 | 1.448 | 6.436 2.05E-07
AC bias -0.885 -0.167 | 0.718 | 3.190 n.s.
AandB BA -0.041 -1.335 | 1.295 | 5.754 5.68E-06
AandB BC -0.041 0.866 | 0.907 | 4.032 7.67E-03
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coefficients



AandB CA -0.041 0.868 | 0.909 | 4.041 7.42E-03
AandB CB -0.041 -0.977 | 0.936 | 4.160 4.85E-03
AandC BA -0.016 -1.335 | 1.319 | 5.864 3.38E-06
AandC BC -0.016 0.866 | 0.882 | 3.922 1.12E-02
AandC CA -0.016 0.868 | 0.885 | 3.932 1.09E-02
AandC CB -0.016 -0.977 | 0.960 | 4.269 3.23E-03
B BA -0.151 -1.335 | 1.184 | 5.265 5.36E-05
B BC -0.151 0.866 | 1.017 | 4.522 1.22E-03
B CA -0.151 0.868 | 1.019 | 4.531 1.18E-03
B CB -0.151 -0.977 | 0.826 | 3.670 2.59E-02
BA C -1.335 -0.126 | 1.209 | 5.374 3.28E-05
BA CandB -1.335 -0.110 | 1.225 | 5.446 2.37E-05
BA bias -1.335 -0.167 | 1.168 | 5.194 7.34E-05
BA previous_choice -1.335 0.563 | 1.899 | 8.439 4.58E-12
BA previous_reward -1.335 -0.332 | 1.003 | 4.458 1.57E-03
BC C 0.866 -0.126 | 0.993 | 4.412 1.88E-03
BC CandB 0.866 -0.110 | 0.977 | 4.341 2.47E-03
BC bias 0.866 -0.167 | 1.033 | 4.593 9.22E-04
BC previous_choice 0.866 0.563 | 0.303 | 1.347 n.s.
BC previous_reward 0.866 -0.332 | 1.199 | 5.328 4.04E-05
C CA -0.126 0.868 | 0.995 | 4.421 1.81E-03
C CB -0.126 -0.977 | 0.850 | 3.780 1.82E-02
CA CandB 0.868 -0.110 | 0.979 | 4.350 2.38E-03
CA bias 0.868 -0.167 | 1.035 | 4.602 8.88E-04
CA previous_choice 0.868 0.563 | 0.305 | 1.356 n.s.
CA previous_reward 0.868 -0.332 | 1.201 | 5.337 3.87E-05
CB CandB -0.977 -0.110 | 0.866 | 3.851 1.43E-02
CB bias -0.977 -0.167 | 0.810 | 3.599 3.24E-02
CB previous_reward -0.977 -0.332 | 0.644 | 2.864 n.s.
CB previous_choice -0.977 0.563 | 1.540 | 6.845 2.54E-08
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