

Microbiota and urinary tumor immunity: Mechanisms, therapeutic implications, and future perspectives

Dengxiong Li^{1*}, Ruicheng Wu^{1*}, Qingxin Yu^{2*}, Zhouting Tuo^{3*}, Jie Wang¹, Koo Han Yoo⁴, Wuran Wei¹, Yubo Yang⁵, Luxia Ye⁶, Yiqing Guo⁶, Premkamon Chaipanichkul⁷, Uzoamaka Adaobi Okoli^{7,8}, Toryn M Poolman⁹, Jeremy P Burton^{10,11,12}, William C. Cho¹³, Susan Heavey⁷, Dechao Feng^{1,7}

¹Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; ²Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo 315211, China; ³Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; ⁴Department of Urology, Kyung Hee University, Seoul 100-744, Republic of Korea; ⁵Department of Urology, Three Gorges Hospital, Chongqing University, Chongqing 404000, China; ⁶Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, China; ⁷Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK; ⁸Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Eastern part of Nigeria, Nsukka 410001, Enugu State, Nigeria; ⁹Structural & Molecular Biology Faculty of Life Sciences, UCL, London W1W 7TS, UK; ¹⁰Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London ON N6A 3K7, Canada; ¹¹Department of Microbiology & Immunology, the University of Western Ontario, London ON N6C 2R5, Canada; ¹²Division of Urology, Department of Surgery, the University of Western Ontario, London ON N6A 3K7, Canada; ¹³Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR 999077, China

*These authors contributed equally to this work.

Correspondence to: Dechao Feng. Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK. Email: dechao.feng@ucl.ac.uk; Susan Heavey. Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK. Email: s.heavey@ucl.ac.uk; William C. Cho. Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR 999077, China. Email: williamccho@gmail.com; Jeremy P Burton. Center for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London ON N6A 3K7, Canada. Email: Jeremy.Burton@LawsonResearch.Com.

Submitted Sep 27, 2024. Accepted for publication Nov 22, 2024.

doi: 10.21147/j.issn.1000-9604.2024.06.03

View this article at: <https://doi.org/10.21147/j.issn.1000-9604.2024.06.03>

Introduction

Newborns typically acquire microbiota from both their mothers and the surrounding environment, which can eventually reach around 500 g in adulthood (1). Microbiota serves as a historical record of an individual's life and may also hold a predictive value for their future health (2). Human microbiota is involved in disease occurrence and progression (3,4). Recent microbiota research has unveiled intricate connections between the microbiota and cancer, offering new insights into the pathogenesis of urological malignancies (5,6). Urological tumors, mainly including renal, bladder and prostate cancers, represent a significant global healthcare concern (7-10). Microbiota composition plays a pivotal role in urological carcinogenesis by influencing immune responses (11-13). Notably, the

interplay between microbiota and immunity also contributes to the progression of renal (14), bladder (15) and prostate (16) cancers. Furthermore, microbiota has demonstrated its capacity to synergize with existing clinical treatments for the management of urologic tumors by modulating immune responses (17). Several microbiota species have been identified with anti-tumor function, with some already involved in clinical practice, effectively controlling urological malignancies (16,18). For example, *Bacillus Calmette-Guerin* (BCG) has significantly reduced recurrence rates in middle- and high-risk non-muscle-invasive bladder cancer (NMIBC) and is recommended as the standard therapy for these cases (19,20). BCG exerts its inhibitory effects on bladder cancer (BC) cells by enhancing immune responses, although the precise underlying mechanism remains to be fully elucidated (21).

The advent of new techniques, such as single-cell sequencing (22), biomedical materials (23) and artificial intelligence (24), holds the promise of providing comprehensive insights into the intricate interplay between microbiota and immunity in urological tumors. Moreover, microbiota can be categorized by location, such as intestinal microbiota (25), urine microbiota (26), intratumoral microbiota (27) and oral microbiota (28). These subtypes differ in composition and function. For example, the predominant microbiota varied between bladder cancer tissues and urine samples (26). Additionally, variations in intestinal microbiota composition and function were significantly associated with differing gastrointestinal toxicity risks in prostate cancer (PCa) patients undergoing radiotherapy (29). Consequently, it is essential to consider the composition of various microbiota types in urological cancers. In this study, our primary objective is to understand the interactions between microbiota and immune regulation within urological tumors and their potential impacts on tumor development and treatment through the following aspects: 1) How does the microbiota impact urological carcinogenesis? 2) What role does the microbiota play in regulating cancer progression? 3) How does the microbiota influence the effectiveness of other drugs? 4) What strategies can be employed to enhance the prognosis of patients with urological malignancies through microbiota interventions? and 5) How many clinical trials of microbiota-combined therapy for urologic tumors are in progress?

How does microbiota impact urological carcinogenesis?

Emerging studies have highlighted the significance of the gut, urine, and intratumoral microbiota in urological carcinogenesis, prompting questions about whether microbiota functions as a guardian or an invader in this context. Current research primarily focuses on discerning microbiota differences between individuals with normal urological conditions and those with primary tumors (30). The initiation of urological tumors is substantially influenced by the intricate interplay between the immunological microenvironment and microbiota. For instance, in renal cell cancer (RCC), Yang *et al.* (12) reported that alterations in the gut microbiota led to increased immune cell numbers and upregulation of genes associated with macrophages (such as GABBR1, TLR2, and so on), ultimately contributing to renal carcinogenesis.

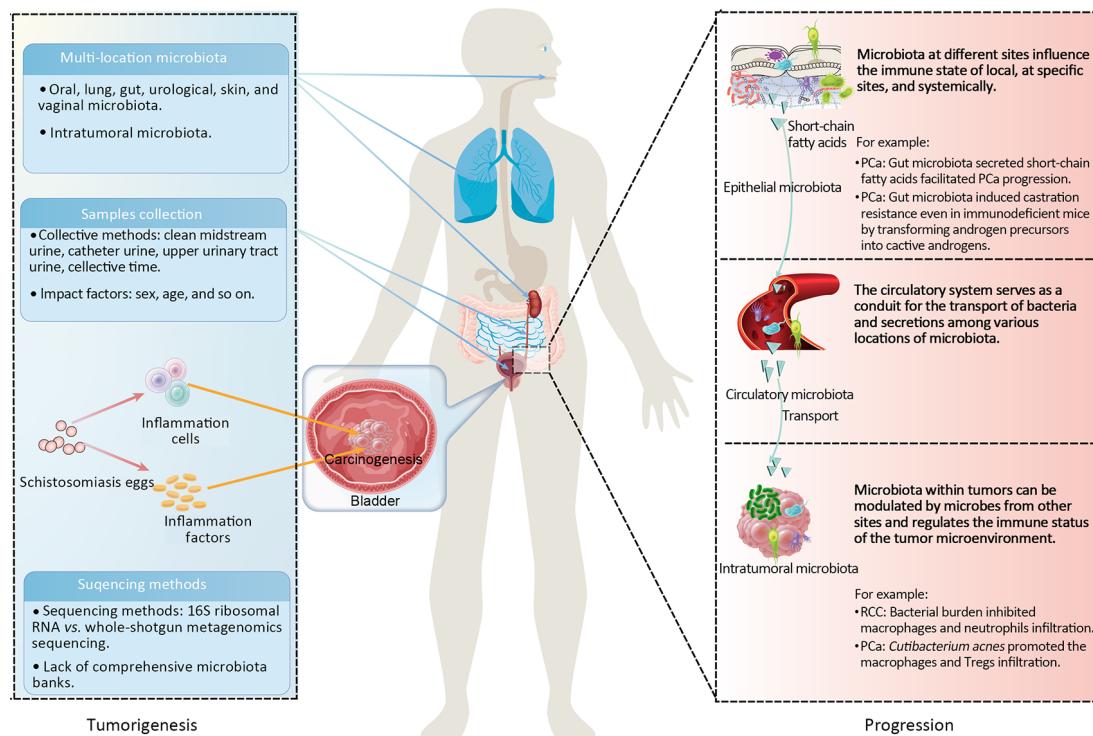
Specifically, *Lactobacillus* was identified as a protective bacterium, while *Desulfovibrionaceae* was associated with pro-tumorigenesis effects. In terms of BC, *Schistosoma haematobium* and its products within the urological tract have been implicated in promoting bladder carcinogenesis by modulating inflammation-induced immune activity (31). However, these studies merely reported a potential relationship between microbiota and urological carcinogenesis, lacking mechanistic insights or direct functional outcomes. Additionally, different BC studies have found inconsistent microbial species differences between normal and cancerous tissues (32-34). This phenomenon is not unique to BC but also extends to RCC (14,35,36) and PCa (37,38). Several factors may account for the inconsistent results. Firstly, sample collection methods can significantly influence study outcomes. For instance, some studies utilized clean midstream urine samples (34,39), while others obtained urine through catheterization (40). Additionally, one study extracted urine from the upper urinary tract (41). These variations in collective methods and locations may introduce data bias (5). Furthermore, sex and age could serve as potential sources of bias, as studies have already reported differences in microbiota between male and female urine samples and BC tissue comparisons (42,43). Moreover, contamination of samples during surgical collection and laboratory testing may occur, leading to biased results (44). Thus, standardizing sample collection procedures (including collective methods, locations, sex and age) is essential for future research. Secondly, microbiota sequencing is primarily conducted using two techniques: 16S ribosomal RNA (rRNA) sequencing and whole-shotgun metagenomics sequencing (WMS). However, these techniques possess varying detection capabilities. WMS can analyze genera that are less abundant and may be missed by 16S rRNA sequencing (45). This discrepancy can introduce biases in the results, potentially affecting studies focused on cancer initiation, progression, and treatment outcomes. In the process of data analysis, inconsistent results appeared between initial analysis and re-analysis (46). Moreover, low microbial biomass samples may generate false positive results without a proven sequencing and data analysis procedure (47). This potential bias should be significantly noticed in intratumoral study due to the low microbial biomass feature of tumor tissue (48). Additionally, the limited availability of data on gut and urological microbiota from healthy donors, along with the establishment of comprehensive microbiota banks, has complicated the

analysis process and may lead to errors in analysis. Fortunately, Sergaki *et al.* (WHO REFERENCE NUMBER: WHO/BS/2021.2403) have proposed a WHO collaborative study aimed at standardizing reagents for gut microbiome analysis. This initiative holds the potential to greatly enhance the reproducibility and comparability of future research endeavors in this field. Furthermore, there are other techniques that could also be applied to urological conditions, such as metatranscriptome and metaproteomics. Considering these factors, we can conclude that the interplay between microbiota and immunity may contribute to urological carcinogenesis. Nevertheless, further investigation is required to delineate and characterize the anti-tumor and pro-tumor microbial species involved in urological tumorigenesis.

What role does microbiota play in regulating cancer progression?

Microbes constitute the largest organic group in the human body and they can influence the development of tumors by interacting with tumor cells and the host immune system in a variety of ways (49,50). In terms of urological tumors, microbiota has been identified to affect cancer progression through the modulation of immune response. In RCC, Liss *et al.* (51) proved that RCC tissues had more diverse microbiomes compared with normal adjacent tissues. Interestingly, they also found that three common oral commensal microbial subjects were enriched in RCC tissues with overexpressed programmed cell death ligand 1 (PD-L1), compared to adjacent non-cancerous tissues. In another RCC study, the bacterial burden in RCC tissue was significantly lower than that in normal adjacent tissue. In further analysis, authors found that bacterial burden in cancer tissue was negatively correlated with the infiltration of PU.1+ macrophages and CD66b+ neutrophils (14). The infiltrated immune cells were positively associated with a good prognosis, suggesting that intratumoral microbiota affected the development of RCC by regulating the immune cell infiltration. *Cutibacterium acnes* (*C. acnes*) is a bacterium found in the normal skin microbiota that can survive intracellularly in macrophages and is substantially more frequent in PCa tissue than in normal prostate tissue (52). Davidsson *et al.* (53) found that stimulated with *C. acnes* significantly increased their expression and protein of immunosuppressive genes [PD-L1, C-C motif chemokine ligand (CCL)17, and CCL18] and infiltration of regulatory T (Treg) cells in tumor stroma and tumor epithelia.

Moreover, Treg cell infiltration was positively associated with the presence of *C. acnes* in the cohort consisting of 137 PCa patients. Furthermore, some studies have compared gut, urological, oral, and intratumoral microbiota (51,54), but the relationship between intratumoral microbiota and microbiota at other locations (such as gut, oral, and urological microbiota) remains unclear. In another PCa research, gut microbiota-secreted short-chain fatty acids could facilitate cancer cell autophagy and M2 macrophage polarization in tumor microenvironment (TME), enhancing the invasion and metastasis potential of castration-resistant PCa (16). Immune cells' development and activity can be altered by microbiota, which can also change where they are distributed and how they work within tumors (55). This study identified that some microorganisms may release poisonous compounds affecting the development of tumors. These above results indicated that the microbiota might potentiate tumor immune evasion by promoting an immune suppressive TME and thereby regulating the progression of urological tumors, where complement system and cytokines especially for chemokines may play a key role in the process. The complement system is involved in both innate and adaptive immunity, and dysregulation of complement activation can alter tissue pathology (56). The latest research by Dr. Wu *et al.* (57) suggested the gut has an independent complement system synthesized by intestinal cells where luminal C3 is induced by the microbiota and varies between individuals in both mice and human. Moreover, C3 is mainly originated from stromal cells located in intestinal lymphoid follicles and plays an important role in combating pathogens and maintaining gut bacterial homeostasis. Except for complement system, retinoic acid related orphan receptor γ t (ROR γ t) is a nuclear hormone receptor and attracts a great amount of attention as a critical regulator of anti-microbial immunity and a major target in the fight against inflammatory pathologies (58). Circadian rhythm significantly affects immune modulation (59). ROR γ t is also an intriguing molecule that is regulated by the circadian rhythm and includes cholesterol metabolites as ligands which thus links anti-microbial immunity with circadian rhythms and steroids (58). The regulation of intestinal immune homeostasis and inflammatory response, particularly the establishment of immunological tolerance to intestinal bacteria, is significantly influenced by ROR γ t+ immune cells including group 3 innate lymphoid cells, T helper (Th) 17 cells, Treg cells, invariant NKT cells, T γ δ cells and


extrathymic aire-expressing cells (58,60,61). In addition, patients with rectal cancer and inflammatory bowel disease can be seen to have different ROR γ t⁺ immune cell compositions and dysfunctions (62-64). Dr. Hepworth *et al.* (65,66) found that lymphoid tissue inducer-like ILC3s could present microbial antigens through major histocompatibility complex class II (MHCII) to screen and inhibit intestinal microbiota-specific Th17 cells, thereby maintaining intestinal homeostasis. Similarly, Dr. Lyu *et al.* (67) proved that ILC3s themselves could effectively promote the differentiation of antigen-specific T cells into ROR γ t⁺ Tregs, inhibit their differentiation into Th17 cells, and establish normal microbial immune tolerance in the gut. This process was induced by ILC3-mediated antigen presentation, α V integrin and competition for interleukin-2. Parallel findings were reported by other researchers (68,69). They proposed another novel pathway and challenged the traditional concept that dendritic cells are mainly responsible for the induction and promotion of Treg cell differentiation. Therefore, the above results demonstrate the tight relationship between microbiota and immune and the vital role of complement system and ROR γ t⁺ immune cells in regulating gut microbiota homeostasis and immune tolerance. However, whether these factors have an influence on peripheral Treg cells, effector Treg cells, other immune and non-immune cells and intratumoral microbiota and how to execute their functions are not clear now.

In addition, human microbiota may influence cancer development and therapeutic efficacy through the following mechanisms (55,70). Firstly, gut microbiota can affect host cell function through its metabolites, such as short-chain fatty acids. These metabolites act as histone deacetylase inhibitors, blocking the cell cycle and inducing apoptosis, which promotes intestinal homeostasis (71,72). Moreover, Dr. Pernigoni *et al.* (73) found that species with the ability to transform androgen precursors into active androgens were more prevalent in the intestinal microbial community in mice and patients with castration-resistant PCa and antibiotic-induced ablation of the gut microbiota could postpone the emergence of castration resistance even in immune-deficient mice. Secondly, changes in the microbiota can also affect the integrity of the intestinal mucosal barrier. Damage to this barrier allows bacteria to enter the bloodstream, triggering systemic or local inflammatory responses in the host immune system and contributing to the development of tumors (74). Apart from the host's gut microbiota, the bacteria found within

tumors are also of significant importance. Goto *et al.* (75) have identified bacteria with anti-cancer effects from solid tumors. When these bacteria were used to treat mice, it was observed that intratumoral bacteria and their microbial combinations can stimulate systemic anti-tumor immunity, effectively killing primary tumors. Additionally, a recent study revealed that intratumoral oncolytic bacteria exhibit potent immunogenic anticancer effects, leading to the recruitment of immune cells and the cultivation of an anti-tumor immune microenvironment in breast, lung, and colorectal cancers (75). The above findings indicated that both gut microbiota and intratumoral microbiota might play an important role in the progression and therapeutic effect of cancer. *Figure 1* shows the correlation between human microbiota and urological tumors.

How does microbiota influence effectiveness of common clinical anti-tumor drugs?

Many drugs are susceptible to biotransformation or bioaccumulation, which can interact with gut microbiota and potentially impact their anti-tumor efficacy (73,76). For example, exposure to antibiotics can lead to an enrichment of *Proteobacteria* in patients with metastatic PCa. This enrichment results in increased gut permeability and higher levels of intratumoral lipopolysaccharide, further promoting PCa progression and docetaxel resistance through the activation of the NF- κ B/IL6/STAT3 axis in mouse models (77). Thus, many new therapies are created to treat PCa (78,79). Of these, a key task is still to elucidate the contributions of microbiota components to cancer, fostering the advancement of novel drugs and personalized therapeutic strategies. The native microbiota or microbiota influenced by treatments play a pivotal role in therapy resistance. Consequently, researchers are exploring methods such as fecal microbial transplantation (FMT) to cultivate anti-tumor microbiota, potentially restoring sensitivity to resistant therapies. In a BC research, Miyake *et al.* (80) discovered that a probiotic mixture of *Lactobacillus casei Shirota* and *Bifidobacterium breve* could effectively inhibit tumor growth in mice undergoing gemcitabine and cisplatin (GC) therapy. Specifically, GC could induce the depletion of *Pseudoclostridium* and promote the enrichment of *Robinsoniella*, *Merdimonas*, and *Phocea* in the gut of tumor-bearing mice. Meanwhile, the GC-induced TME led to a decreased recruitment of cancer-associated fibroblasts and Treg cells, while promoting the activation of CD8⁺ T cells

Figure 1 Research findings on correlation between human microbiota and urological tumors: Results, potential mechanisms, and existing issues. RCC, renal cell cancer; PCa, prostate cancer. Females do not have a prostate or develop prostate cancer. Completed by Figdraw (www.figdraw.com).

and dendritic cells, ultimately contributing to chemoresistance. Their further findings revealed that the probiotic supplementation reversed the transformation of TME, enhancing the efficiency of GC. The efficiency of FMT was also identified in another chemotherapy study. PCa could attenuate the relative abundance of *Akkermansia muciniphila* in the gut, while the bacterial could be recovered by receiving androgen deprivation therapy (ADT) (17). Oral administration of *Akkermansia* FMT was found to restore acquired immune defects in immunodeficient mice by upregulating circulating recent thymic emigrant cells, thereby enhancing the efficiency of ADT. The above findings suggest that medication can modulate gut microbiota, hence influencing the efficacy of drugs. The results from FMT highlight that manipulating gut microbiota could be a crucial approach to overcome therapy resistance.

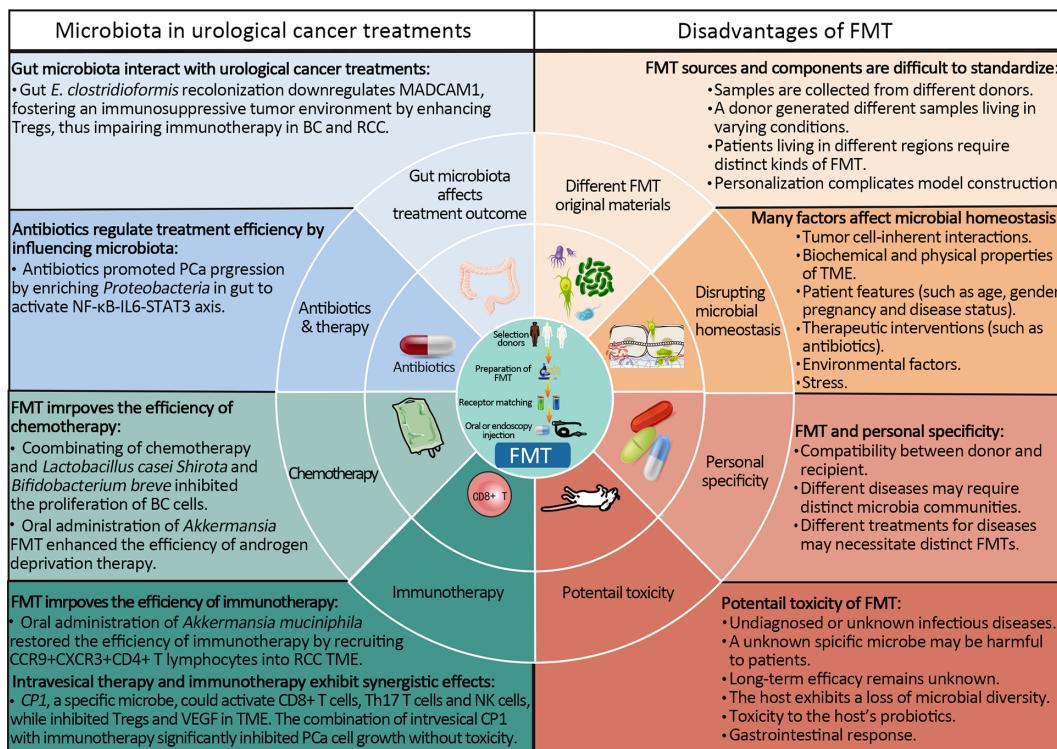
In addition to chemoresistance, FMT also involves in the regulation of immunotherapy resistance. For example, *Blautia coccoides*, enriched in the gut microbiota, could promote CD8+ T cell infiltration in the BC TME by secreting trigonelline (81). Specifically, *Blautia coccoides* secreted trigonelline into the bloodstream, which reached

the TME and inhibited β -catenin expression. Reduced β -catenin levels suppressed PD-L1 expression, alleviating PD-L1-mediated inhibition of IFN- γ and Granzyme B expression while reducing IL-1 β and TNF- α levels. This ultimately induced CD8+ T cell infiltration and activation, enhancing the efficiency of anti-PD-L1 therapy. Similarly, Wang *et al.* (82) found that gut *Parabacteroides* blocked the infiltration of CD4+ T and CD8+ T cells into the BC TME, attenuating anti-PD-L1 therapy efficacy. The recolonization of gut *E. clostridioformis* species induced by antibiotic exposure would decrease mucosal addressin cell adhesion molecule 1 (MAdCAM1) expression through the modulation of bile acid metabolism in BC and RCC, enhancing the infiltration of Treg17 cells in the TMEs of tumor-draining lymph nodes and tumor tissue and thereby suppressed the antitumor function of immune checkpoints inhibitors (ICIs) *in vivo*. The infiltration would be attenuated by feeding with FMT, restoring the efficiency of ICIs. Furthermore, the further result indicated that low-serum-soluble MAdCAM1 could predict the survival benefits of patients with BC or RCC and was deemed as a strong predictor (83). Similarly, another study also reported that antibiotics depressed the anti-tumor function of ICIs

through the disruption of gut microbiota composition (84). There was a positive correlation between ICIs efficiency and the enrichment of *Akkermansia muciniphila* in gut. In terms of mechanisms, oral administration of *Akkermansia muciniphila* and FMT with non-responder feces in RCC mice significantly increased the recruitment of CCR9+CXCR3+CD4+ T lymphocytes into the TME, thus restoring the efficacy of ICIs. The above result indicates that the composition of gut microbiota significantly affects the efficiency of current treatments via immune regulation in the TME. Another significant attention is the antibiotics. Based on the results, antibiotic exposure appears to promote chemoresistance and immunotherapy resistance. However, it's important to recognize the intricate interactions between various antibiotics and different cancer treatments. We can only suggest that antibiotic exposure plays a role in regulating therapy efficiency by modulating gut microbiota. Several issues still require investigation, such as the potential impact of antibiotics on urine microbiota, the differences between liver-metabolized antibiotics and renal-metabolized antibiotics in cancer treatment, and the potential influence of antibiotics on intratumoral microbiota.

In intratumoral microbiota, certain species can also influence the efficacy of current therapies against cancer. For instance, CP1, a specific microbe in the TME of PCa with MYC and PTEN mutation, could activate CD8+ T cells, Th17 T cells, mature dendritic cells, M1 macrophages, and NK cells, while inhibit Treg cells and VEGF in TME (85). The regulation induced an anti-tumor immune microenvironment. Furthermore, the combination of CP1 with ICIs significantly inhibited PCa proliferation and prolonged survival *in vivo*, demonstrating an anti-tumor effect within the TME without observable toxicity. This study suggested an alternative approach to overcoming therapy resistance by targeting the intratumoral microbiota. It is important to note that the effectiveness and safety of FMT depend significantly on the quality of the samples used. However, these samples are typically obtained from healthy volunteers without a standardized procedure, leading to heterogeneity in FMT preparations (86). This variability not only limits the widespread clinical application of FMT but also raises safety concerns for patients. Additionally, microbiota composition is influenced by various factors, including tumor cell-inherent interactions (such as microbiome-derived tumor-associated antigens and molecular mimetic antigen), biochemical and physical properties of TME

[immune cell components and phenotype, biochemistry-physical properties and composition of extracellular matrix (ECM)-like mechanical stresses, vascular formation and integrity, and status of energy metabolism], patient features (such as age, gender, pregnancy and disease status), therapeutic interventions (surgery, radiotherapy, and drug treatment) and environmental factors (such as diet, physical exercise, stress, circadian rhythm and geographical location) (87-89). Among these factors, we hereby specify three factors which are relatively less mentioned by other researchers. Currently, it is a common concept that specific antigen-induced T cell clone and differentiation mediate the anti-tumor immunity. The advancement of immunotherapy and T cell antigen identification help us characterize tumor-presented T cell antigens including tumor-specific antigen, tumor-related antigen and those sources of cancer antigens which are not widely accepted like microbiome-derived tumor-associated antigens (89). These antigens could be human endogenous retrovirus or the remnants of pathogens which are not eliminated and in turn mediate malignant transformation like *Helicobacter pylori*, human papillomavirus, and hepatitis B and C viruses (89,90). They might also trigger the cross-reacted response with other tumor-related antigens in the form of molecular mimicry like prophage in lung cancer and renal cancer (89,91). ECM of TME is a highly dynamic entity, which uses the interaction network of protein and proteoglycan to form cellular support structures, and to stockpile and insulate bioactive molecules in the form of concentration gradient, like receptors (especially integrin), growth factors and cytokines temporally or spatially (92). It provides physical barriers, anchoring points, or trajectories of motion for cellular movement through its physical properties including hardness, density, porosity, insolubility, and topography (spatial alignment and orientation). In addition, it could adjust the biological behaviors of cells through the array of signal transduction pathways mediated by ECM components like adhesion proteins such as fibronectin, integrin, and non-integrin receptors, as well as growth factors and related signaling molecules. Moreover, changes in the mechanical properties of TME are caused by remodeling of the ECM by tumor cells or activated stromal cells. These stromal cells normally secrete transforming growth factor β (TGF- β), leading to excessive deposition and cross-linking of ECM components such as collagen, fibronectin, and hyaluronic acid. Increased ECM deposition and crosslinking together lead to elevated ECM stiffness, which affects tumor cell


phenotype (93). Elena Cambria *et al.* (93) indicated that heterogeneous primary tumor cell populations induced by genetic instability and unregulated proliferation are selected by microenvironment barriers like immune surveillance, hypoxia, or mechanical stress. During this process, mechanical memory is formed and reserved through mechanotransduction and persistent epigenetic changes to keep biophysical adaptation of cells to mechanical stress and enable tumor cell extravasation, survival, and colonization in the distant organ (93). We speculated that introtumoral microbiome might also involve in remodeling the ECM and in turn was affected by ECM just as other cells in the TME.

In addition, several studies indicate that objective stressors (such as negative life events like the death of a spouse, divorce, or illness) and subjective stress (such as surgery-related stress, depression, or anxiety) might increase cancer susceptibility and progression in humans and mice (94-97). Horowitz *et al.* (97) summarize that in animal models, stress-induced glucocorticoids and catecholamines can directly govern cell death while also increasing tumor cell proliferation, treatment resistance, stemness characteristics, and dissemination. Furthermore, these substances can remodel the tumor matrix by stimulating angiogenesis, lymphogenesis, axonogenesis, and ECM development (98). For example, norepinephrine also confers anti-apoptotic effects on human prostate and breast cancer cells by inactivating the apoptotic promoter BAD (99). Glucocorticoid-induced and catecholamine-induced metabolic reprogramming also favors tumor growth and metastasis, which is dependent on transcriptional regulation of genes involved in glycolysis and oxidative phosphorylation (100,101). Moreover, stress-induced proinflammatory cytokines and neuroendocrine factors such as catecholamines, histamine, 5-hydroxytryptamine, and corticotropin-releasing hormone could result in gut leakage and ultimately imbalance of microbiota and derivate metabolites, thereby leading to immune dysregulation (88). Thus, it is worth investigating the intricate network of stress, microbiota and immune system in cancers including urinary tumors. Moreover, in urological tumors, it was discovered that arsenic exposure interfered with the composition of urine microbiota and the related metabolism of rats, leading to the development of bladder epithelial lesions (102). The high-fat diet promotes PCa progression by altering the proportion of intestinal microorganisms and causing overexpression of lipogenic genes (103). These differences and mutability

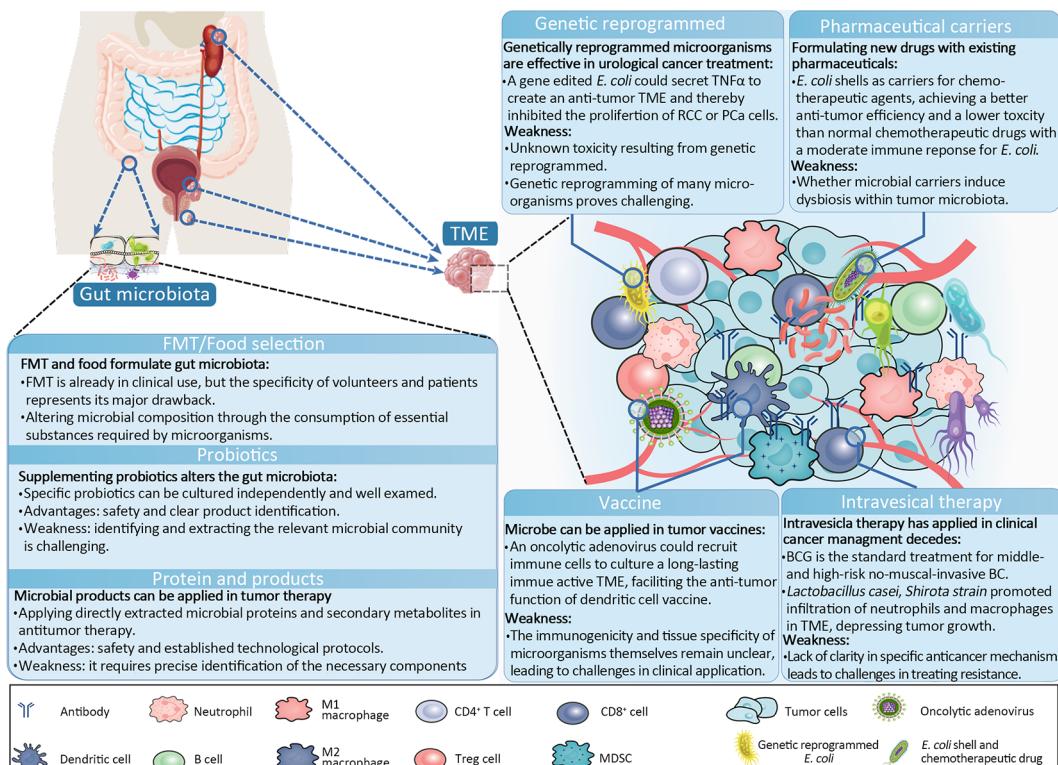
necessitate that FMT should be produced with reference to different conditions. Another limitation is the occurrence of side effects, such as diarrhea and gastroenteritis (104). Therefore, some researchers are exploring the use of specific bacteria or microbiota-derived products to overcome treatment resistance, which still requires extensive experimental data. *Figure 2* shows the correlation between the human microbiota and the treatment of urological tumors.

What strategies can be employed to enhance prognosis of urological malignancies through microbiota interventions?

Many studies are trying to control disease using human microbiota-related treatment (105). Some of these studies focused on cancer management, particularly in the context of emerging findings in urological tumors (106,107). Notably, the use of dendritic cell vaccines presents a promising approach for cancer control (108,109). In RCC, Ding *et al.* (18) developed an oncolytic adenovirus to augment the efficacy of a dendritic cell vaccine for anti-tumor purposes. This oncolytic adenovirus improved the antigen-targeting capacity of the adenovirus-assembled dendritic cell vaccine, potentially impacting the microbiota within the TME. As a result, the combination of the oncolytic adenovirus and dendritic cell vaccine activated cytotoxic T lymphocytes to eliminate cancer cells and induced memory CD8+ T cells to maintain a long-lasting anti-tumor immune TME. This study not only proposes an effective therapy for RCC but also underscores the potential role of viruses in cancer management. In a bacteria study, a gene edited *E. coli* strain MG1655 was injected to the tumor or intravenous of mice with RCC or PCa (110). The *E. coli* consistently produced TNF α , attracting immune cell infiltration and suppressing tumor growth without causing toxicity in mice. These living bacteria could thrive and replicate in the TME, resulting in a sustained anti-tumor immune TME. This approach may offer an effective and convenient option for patients compared to current treatments. It cultivated an anti-tumor immune microenvironment by secreting immune factors after receiving gene editing. We still should notice the potential weakness of this approach. Firstly, genetic editing of many microbiomes presents significant challenges, limiting their widespread use. Furthermore, safety concerns must be addressed, as they may arise during the editing process. Additionally, utilizing intratumoral bacteria to control tumors raised some concerns about the presence of

Figure 2 Function of microbiota in treatment of urological tumors. Advantages and disadvantages of FMT. FMT, fecal microbial transplantation; TME, tumor microenvironment; RCC, renal cell cancer; PCa, prostate cancer; BC, bladder cancer; VEGF, vascular endothelial growth factor. Completed by Figdraw (www.figdraw.com).

resistant microbial communities or species within the drug-resistant tissues, potentially contributing to treatment failure, or the regulation of microbiota in other sites may lead to drug resistance in tumor tissues. As we mentioned above (75), intratumoral oncolytic bacteria established an anti-tumor immune microenvironment through their inherent immunogenicity in cancer tissue. The bacteria preferentially colonize the targeted tumor tissues, indicating the superiority of intratumoral delivery in tissue specificity and minimizing side effects. Leveraging this tissue selectivity, Ling *et al.* (111) successfully developed a novel bionic drug delivery system using *Escherichia coli* shells as carriers for the chemotherapeutic drug paclitaxel liposomes, encapsulated within a cancer cell membrane homologous to metastatic lung cancer cells. This innovative bionic drug-carrying bacterial formulation not only achieved significant tumor suppression but also substantially reduced the absorption and damage to normal tissues caused by chemotherapeutic drugs. Furthermore, this treatment significantly reduced the immunogenicity of *Escherichia coli*, preventing inflammatory storms. This study presents an alternative approach to utilizing intratumoral bacteria for cancer therapy, effectively controlling


immune responses in microenvironment. However, it has a notable limitation: the need for multiple injections discourages long-term efficacy. These novel anticancer pathways demonstrate considerable potential of intratumoral bacteria in tumor control, necessitating rapid establishment of standardized databases for normal and tumor microbiota as a foundation for further drug development.

In terms of BC, BCG has been utilized in BC management for decades (112). Intravesical BCG inhibits the BC cells by inducing an anti-tumor immune TME (21). Interestingly, a recent study found differences in urinary microbiota before and after BCG treatment (113). This alteration in composition underscores the interplay between BCG and urinary microbiota. However, there were still around 30% of patients failing to respond to BCG (114). A few studies tried to find new microbiota component to manage these patients (15). For instance, heat-killed *Lactobacillus casei, Shirota strain* (LC9018) exhibited significant anti-tumor function for BC *in vivo* (115). Specifically, intravesical LC9018 promoted the infiltration of neutrophils and macrophages in the TME, resulting in the depression of tumor growth. While BCG has been utilized in clinical practice for decades, the precise

anti-tumor mechanism of BCG remains unclear. Historically, the urological tract was considered sterile, but recent studies have confirmed the existence of normal urine microbiota (34). Furthermore, natural products may improve BC treatment efficacy through the microbiota and immune regulation (116,117). For instance, Psyllium plus inulin significantly depressed BC proliferation by recruiting CD8+ T cell infiltration (118). Similarly, the combination of icariin and curcumol could affect gut microbiota composition and function by regulating the metabolism of short-chain fatty acids and recruiting CD8+ T cell infiltration, blockading PCa progression (119). Current understanding of gut microbiota is more advanced than that of urine microbiota, and may provide a roadmap for developing studies that investigate urine microbiota interactions with host microbiota and tumors, thus offering a promising avenue for the development of biomarkers, risk classification and treatment advancements of such patients. Figure 3 shows new drugs based on human microbiota for urological tumors. Table 1 provides key references of this review.

How many clinical trials of microbiota-combined therapy for urologic tumors are in progress?

We conducted a search on the Chinese Clinical Trial Registry (<https://www.chictr.org.cn/>), ClinicalTrials (<https://clinicaltrials.gov/>), and the International Clinical Trials Registry Platform (<https://trialsearch.who.int/>). We identified and selected a total of 13 clinical trials which focused on the efficiency and safety of microbiota-combined therapy for urologic tumors. Five trials are designed to assess the potential of microbiota-combined therapy for RCC, all of which are in either phase I or phase II. There are seven trials assessing the safety and efficacy of microbiota-based therapy in BC, and one trial investigates female microbiota changes after receiving instillation therapy. Among these, both *nocardia rubra* cell wall skeleton and *pseudomonas aeruginosa* are registered in China and are in phase IV trials. As for PCa, three trials are dedicated to assessing the safety and efficacy of microbiota-based therapy. Additionally, one trial (NCT06126731) aims

Figure 3 New drugs based on microbiome are categorized into: Drugs targeting gut microbiota and drugs targeting intratumoral microbiota. FMT, fecal microbial transplantation; TME, tumor microenvironment; RCC, renal cell cancer; PCa, prostate cancer; BC, bladder cancer; BCG, *Bacillus Calmette-Guerin*. Females do not have a prostate or develop prostate cancer. Completed by Figdraw (www.figdraw.com).

Table 1 Key references

Ref.	Year	Cancer	Types	Results
(12)	2023	RCC	Gut microbiota	<i>Lactobacillus</i> was identified as a protective bacterium, while <i>Desulfovibrionaceae</i> was associated with pro-tumorigenesis effects.
(84)	2018	RCC	Gut microbiota	Oral supplementation with <i>A. muciniphila</i> after FMT with nonresponder feces restored the efficacy of PD-1 blockade in an interleukin-12-dependent manner by increasing the recruitment of CCR9+CXCR3+CD4+ T lymphocytes into mouse tumor beds.
(51)	2020	RCC	Oral/Intratumoral oral microbiota	Renal tumors have more diverse microbiomes than normal adjacent tissues. Identification of resident oral microbiome profiles in clear-cell renal cancer with tumor thrombus provides a potential biomarker for thrombus response to PD-L1 inhibition.
(14)	2022	RCC	Intratumoral microbiota	For the first time, we demonstrated a significant correlation between bacterial burden and the content of PU.1+ macrophages and CD66b+ neutrophils in kidney tumors.
(18)	2023	RCC	Virus	OAV-IL-12 potentiated DCs-CD137L/CAIX treatment generated a long-lasting protective effect against tumors by inducing memory CD8+ T cell immune responses.
(83)	2023	RCC/BC	Gut microbiota	The MAdCAM-1- α 4 β 7 axis constitutes an actionable gut immune checkpoint in cancer immunosurveillance.
(113)	2023	BC	Urine microbiota	BC patients with no recurrence and/or progression exhibited a different urinary microbiome profile compared to those with tumors.
(15)	2021	BC	Salmonella	IL-2, TRAIL and their MIX proteins in MB49 cells have cytotoxic potential and that this is associated with oxidative stress and apoptosis pathways.
(80)	2023	BC	Gut microbiota	The positive effects of a probiotic mixture of <i>Lactobacillus</i> and <i>Bifidobacterium</i> in enhancing anti-tumor effects through the gut-tumor immune response axis.
(115)	2001	BC	Shirota strain (LC9018)	LC9018 is potentially more potent and safer as a therapeutic agent than BCG for superficial bladder tumors.
(110)	2017	RCC/PCa	<i>E. coli</i> strain MG1655	Therapeutic efficacy and safety of TNF α expressing bacteria <i>in vivo</i> , highlighting the potential of non-pathogenic bacteria as a platform for restricting the activity of highly potent cancer agents to tumors.
(85)	2018	PCa	CP1	CP1 is an immunotherapeutic tool demonstrating how a tissue-specific microbe can increase tumor immunogenicity and sensitize an otherwise resistant cancer type to immunotherapy.
(16)	2023	PCa	Gut microbiota	Intervention of SCFAs-producing microbiotas may be a useful strategy in manipulation of CRPC.
(17)	2022	PCa	Gut microbiota	The potential clinical utility of reversing intestinal dysbiosis and repairing acquired immune defects in PC patients.
(53)	2021	PCa	Cutibacterium acnes	Cutibacterium acnes may contribute to an immunosuppressive tumor environment that is vital for PCa progression.
(81)	2024	BC	Gut microbiota	Blautia coccoides and its metabolic product, trigonelline, could serve as a synergistic treatment method with PD-1 inhibitors in clinical applications.

RCC, renal cell cancer; BC, bladder cancer; PCa, prostate cancer; PD-1, programmed cell death 1; PD-L1, programmed cell death ligand 1; CRPC, castration-resistant prostate cancer; BCG, *Bacillus Calmette-Guerin*.

to investigate the role of antibiotics in patients receiving enzalutamide, which is a significant topic in PCa treatment. The details of these trials are presented in *Table 2*.

Conclusions and perspectives

There is no doubt that microbiota research is an emerging field with great potential which is used to decode tumorigenesis and interactions between tumor cells and

immune cells and therefore formulate the therapeutic strategies for urinary tumors. In-depth investigation into these interactions and their impacts on tumor growth and therapy can shed light on the pathophysiological underpinnings of these cancers and result in more potent therapeutic approaches. This work issues a strong warning to researchers to change the way they conduct human urological cancer research. Researchers must acknowledge the key role that the microbiota play in oncogenesis,

Table 2 Clinical trials of microbiota-combined therapy for urologic tumors

Title	Cancer types	ID	Year	Status	No. of patients	Stage
MRx0518 in patients with solid tumors waiting surgical removal of the tumor (MICROBIOME)	RCC, PCa, BC	NCT03934827	2019-05-02	Active, not recruiting	120	Phase 1
The female microbiome in patients undergoing bladder instillation therapy	BC	NCT05414305	2023-10-11	Active, not recruiting	29	Phase 2
Role of gut microbiome and fecal transplant on medication-induced GI complications in patients with cancer	RCC, PCa, BC	NCT03819296	2019-01-28	Recruiting	800	Phase 1/2
A FIH combination treatment study with a single dose level of BMC128	RCC	NCT05354102	2022-04-29	Recruiting	12	Phase 1
Preventing toxicity in renal cancer patients treated with immunotherapy using fecal microbiota transplantation (PERFORM)	RCC	NCT04163289	2019-11-14	Recruiting	20	Phase 1
CBM588 in combination with Nivolumab and Cabozantinib for the treatment of advanced or metastatic kidney cancer	RCC	NCT05122546	2021-11-16	Recruiting	30	Phase 1
Combination study of Antibiotics with Enzalutamide (PROMIZE)	PCa	NCT06126731	2023-11-02	Recruiting	39	Phase 1/2
OH2 oncolytic viral therapy in advanced BC	BC	NCT05248789	2022-05-25	Recruiting	45	Phase 2
OH2 oncolytic viral therapy in non-muscle-invasive BC	BC	NCT05232136	2022-07-11	Recruiting	30	Phase 1/2
Oncolytic adenovirus combined with PD-1 inhibitor in patients with non-muscle-invasive BC	BC	NCT05564897	2022-08-26	Recruiting	25	Phase 2
HB-302/HB-301 therapy in participants with metastatic castration-resistant PCa	PCa	NCT05553639	2023-05-23	Recruiting	70	Phase 1/2
An exploratory clinical study of Nocardia rubra cell wall skeleton (N-CWS) for injection compared with BCG vaccine for medium- and high-risk non-muscularly invasive BC TURBT postoperative irrigation	BC	ChiCTR2100042774	2021-01-28	Prospective registration	30	Phase 4
The randomized controlled study for intravesical instillation of pseudomonas aeruginosa and gemcitabine in the prevention of postoperative recurrence of non-muscle invasive BC	BC	ChiCTR1900026643	2019-10-17	Prospective registration	40	Phase 4

GI, gastrointestinal; FIH, first-in-human; PD-1, programmed cell death 1; BCG, *Bacillus Calmette-Guerin*; TURBT, transurethral resection of bladder tumor; RCC, renal cell cancer; PCa, prostate cancer; BC, bladder cancer.

progression, and response to existing treatments and therefore not overlook metagenomic and other microbial methodologies in their experimental planning. With 99% of cells in the human body being bacteria, and with growing evidence showing us that these bacteria play a considerable role in cancer, we consider it no longer advisable to exclusively include human genes in large scale omics experiments. We suggest that this “human only” approach is now outdated, given the evidence presented herein. Our growing understanding of the field gives us the exciting opportunity to develop cutting-edge methods of diagnosis, therapy, and individualized care, ultimately enhancing the quality of lives of such patients. However, we must acknowledge that numerous issues remain to be

resolved from preclinical discoveries to clinical implementations.

As mentioned above, microbiota from different locations vary in composition and function. For example, intra-tumoral *Lachnospiraceae* and *Sutterella* promote BC progression by regulating immune infiltration (120), while another study found that gut *Blautia coccoides* enrichment exhibited a key role in inhibiting BC progression (81). These studies highlight the distinct tumor-promoting or tumor-suppressing microbiota species in different locations, warranting further exploration and comparison. Furthermore, different kinds of studies have reported varying results. For instance, in a prospective multi-center clinical trial, researchers compared the gut microbiota of

men with and without PCa using 16S rRNA sequencing (121). The results showed that *Prevotella 9* was highly enriched in the gut microbiota of PCa patients. However, a Mendelian randomization study indicated that PCa occurrence was positively associated with the abundance of *Verrucomicrobiae*, *Verrucomicrobiaceae*, *Verrucomicrobiales*, *Akkermansia*, and *Butyrivibrio* in the gut (122). Another Mendelian randomization study found that PCa development was significantly correlated with gut *Ruminococcus torques* group, *Oscillibacter*, *Barnesiella*, *Butyrivibrio*, and *Ruminococcaceae UCG005* (123). For BC, a Mendelian randomization study identified *Bilophila* as a key gut microbiota species distinguishing BC patients from healthy individuals (124). In contrast, in mouse models, *Faecalibaculum* was the primary gut microbiota species differentiating normal mice from BC mice (125). Additionally, based on TCGA data, researchers observed that aggressive BC was enriched with *Oleomonas*, *Cellulomonas*, *Rhodopirellula*, *Cycloclasticus*, *Candidatus Paracaedibacter*, *Prosthecobacter*, *Aphanizomenon*, and *Thiothrix* in the TME (126). BC urinary microbiota also showed significant enrichment of *Rhodanobacter*, *Cutibacterium*, *Alloscardovia*, *Moryella*, and *Anaeroglobus* compared to healthy controls (127). Differences in study methods, including microbiota sampling and research approaches, contribute to the variability in results. These inconsistent findings within and across locations highlight the need for standardized methodologies in microbiota research. This standardized procedure should include sample collection, DNA extraction, sequencing, and bioinformatics analysis. Additionally, a comprehensive microbiota database needs to be developed based on these standards, incorporating data from respiratory, vaginal, oral, skin, urological, and gut microbiota, rather than only focusing on gut microbiota. Furthermore, the project should consider collecting data on other microbial species, such as phages, fungi, and viruses, making it a substantial and resource-intensive endeavor. Notably, a project with these objectives has been initiated at The National Institute for Biological Standards and Control (<https://www.pharmabiotic.org/microbiome-standardisation-efforts-progressing-at-the-nibsc-mhra/>). Moreover, some public databases, such as the BIC database (<http://140.112.52.86:8888/bic/>) and TCMbio database (<https://microbiomex.sdu.edu.cn/>), also provide microbiota information, promoting microbiota exploration. Currently, studies primarily focus on elucidating the correlations between gut microbiota and urological tumors or treatment outcomes.

However, this represents just one facet of the intricate relationship between urological tumors and microbiota. The full scope of this relationship encompasses complex interactions among urine microbiota, oral microbiota, gut microbiota, vasculature microbiota, intratumoral microbiota, the TME, and various therapeutic interventions. Numerous unexplored fields within this realm await further investigation.

In a previous review, Dr. Ma *et al.* (128) defined intratumoral microbes and their products as the tumor microbe microenvironment and they proposed some underlying mechanisms through which intra-tumoral microbes and their products mediating the interaction between tumor cells and immune cells. Based on the current evidence, we can conclude that TME consists of tumor cells, immune cells, stroma cells, intracellular microbe and extracellular microbe, and inorganic substances. The interactions between living cells include direct contacts and bioactive molecules within the inorganic substances and the latter is predominant. In our opinion, we need to understand microbiota from both macroscopic and microscopic perspectives. Overall, we classified the microbiota into four levels: microorganisms outside the biological barrier, microorganisms within vasculature system, microorganisms within tissue, ECM and intracellular microorganisms. We cannot ensure whether these four layered microbes are able to physically transport to each other, but we can speculate that the properties of microorganisms and their derivatives have to undergo assimilation from the outside to the inside due to existence of innate and adaptive immune responses. On the other hand, the existence of microbiota and current evidence are indicative of growing inspirations from the understanding of tumor cells and immune or non-immune cells. Both myeloid and lymphoid hematopoietic cells must extravasate from the bloodstream into the tumor tissue to contain or eradicate malignant solid tumors. They also need to migrate to different specialized niches within the TME to interact functionally with non-hematopoietic stromal cells, with cancer cells, and with each other. Collectively, these interactions control the outcome of naturally occurring or therapeutically generated antitumor immune responses by regulating local immune cell survival, proliferative growth, differentiation, and their execution of pro-tumor or antitumor effector functions (129). These interactions are all coordinated and heavily reliant on the migratory chemical cues that chemokines and their receptors give and physical cues that ECM provides. During the local distribution of microbiota, we

characterized the important role of complement system, ECM, and chemokines, for a large family of chemotactic cytokines, and their receptors. The former is necessary to maintain the microbiota hemostasis and immune activation and the latter two play multifaceted roles in the recruitment and positioning of cellular constituents of the TME functional organization (92,93,129).

Based on the above findings, we proposed a hypothesis of microbiome-mediated secretory phenotype (MMSP) which plays an important role in human diseases, including cancers. MMSP may encompass the range of secretory profiles induced or influenced by microbial presence, activity, or interaction within or around host cells. Therefore, MMSP should be categorized into two subtypes based on their secretory source. The first subtype is the original MMSP, which is produced by microbiota themselves, including enzymes, antibiotics, and metabolic by-products. For example, butyrate, a bacterial metabolite, triggers the differentiation of Treg cells and IL-10-producing T cells, fostering an anti-inflammatory microenvironment through the activation of GPR109A, thereby mitigating colon carcinogenesis (130). The second subtype is secondary MMSP, which is secreted by microbiota-influenced cells such as normal epithelial cells, glandular cells, immune cells, or cancer cells. Secondary MMSP may consist of toxins, chemokines, inflammatory cytokines, proteases, and other factors. Different microbes can secrete distinct types of original MMSP, which can culture either a pro-tumor or anti-tumor TME by influencing immune cells and immune factors. Similarly, various microbes can activate different cells to produce different forms of secondary MMSP, contributing to the modulation of the TME. Furthermore, anti-tumor treatments may affect microbiota to generate various MMSP, which, in turn, may influence the efficiency of these therapies. Microbiota in different location may interact each other by secreting MMSP. Specifically, MMSP is the messenger which promotes the intricate interactions and communications between distinct microbial communities residing in various human body sites. In a similar study involving butyrate, it was observed that patients who responded to oxaliplatin treatment exhibited elevated serum butyrate levels compared to non-responders. This observation highlights the potential role of microbial metabolites as MMSP (131). Recently, Jingushi *et al.* (132) examined and compared bacterial DNA in serum extracellular vesicles from five healthy donors and seven RCC patients using 16S rRNA metagenomic

analysis. They found that serum extracellular vesicles from RCC patients contained higher levels of *Cutibacterium acnes* DNA compared to those from healthy individuals. *Cutibacterium acnes* DNA was shown to promote RCC proliferation and angiogenesis, contributing to cancer progression. This study strongly supports the hypothesis that MMSP serves as a communication pathway among different locations in the human body. Human microbiota is a complicated microbiota network consisting of oral, gut, urine, vasculature, respiratory, vaginal (female) and intra-tumoral microbiome, where MMSP is expected to play an important role in their interactions. Furthermore, interactions within the internal microbiota or between microbiota and host cells can profoundly impact host health and disease. This hypothesis still needs to be explored and identified in many future studies.

Several of the most common preclinical models used in urological cancer research involve the use of mice – in particular xenografts and patient-derived xenografts (133). However, the microbiota between mice and human are quite different and they also change dynamically with time, disease stage, and environmental stimuli. Microorganisms, cancer, interventions, and hosts comprise an extensive and intricate network. More advanced models might be considered such as preclinical models including organoids and emerging bioengineering like microfluidics, nano-delivery materials, bioprinting, and microbiome editing, and their anti-tumor effects and induced immune response tested in preclinical experiments. More advanced microbiota analysis technologies, such as artificial intelligence, kinds of probe, and single-cell microbiome omics analysis, should be developed to improve the depth, breadth, and accuracy of sequencing identification (134-136). Moreover, it is currently challenging to isolate the intra-tumor microorganisms identified from the microbiota analysis due to various environmental contaminants and limitations of biobanks for microbial sequence alignment. This increases the difficulty of deepening our understanding of TME. Looking forward, despite the existing obstacles, including the need for better animal models and improved microbiota analysis tools, microbiota research holds significant potential for understanding the pathological mechanisms underlying urological malignancies. It also offers the promise of developing more potent therapeutic strategies to improve the quality of life for patients. What's more, we might leverage the key perspectives of integrated tumor biology to identify the optimal therapeutic nodes at systematic level rather than only focusing on the certain

risk factors of microbiota in cancer patients due to the evolving patient conditions and environmental variants.

Acknowledgements

This study was supported by Chinese Scholarship Council (No. 202206240086).

Footnote

Conflicts of Interests: The authors have no conflicts of interest to declare.

References

1. Walker AW, Hoyles L. Human microbiome myths and misconceptions. *Nat Microbiol* 2023;8:1392-6.
2. Wang B, Hu W, Zhang X, et al. Sarcopenia and gut microbiota alterations in patients with hematological diseases before and after hematopoietic stem cell transplantation. *Chin J Cancer Res* 2023;35:386-98.
3. Zou B, Li J, Ma RX, et al. Gut microbiota is an impact factor based on the brain-gut axis to Alzheimer's disease: A systematic review. *Aging Dis* 2023;14:964-1678.
4. Zha X, Su S, Wu D, et al. The impact of gut microbiota changes on the intestinal mucus barrier in burned mice: a study using 16S rRNA and metagenomic sequencing. *Burns Trauma* 2023;11:tkad056.
5. Markowski MC, Boorjian SA, Burton JP, et al. The microbiome and genitourinary cancer: A collaborative review. *Eur Urol* 2019;75:637-46.
6. Bibbò S, Porcari S, Del Vecchio LE, et al. Gut microbiota and immunotherapy of renal cell carcinoma. *Hum Vaccin Immunother* 2023;19: 2268982.
7. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* 2024;74:229-63.
8. Feng DC, Zhu WZ, Wang J, et al. The implications of single-cell RNA-seq analysis in prostate cancer: unraveling tumor heterogeneity, therapeutic implications and pathways towards personalized therapy. *Mil Med Res* 2024;11:21.
9. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J Clin* 2021;71:209-49.
10. Jin YH, Zeng XT, Liu TZ, et al. Treatment and surveillance for non-muscle-invasive bladder cancer: a clinical practice guideline (2021 edition). *Mil Med Res* 2022;9:44.
11. Adebayo AS, Suryavanshi MV, Bhute S, et al. The microbiome in urogenital schistosomiasis and induced bladder pathologies. *PLoS Negl Trop Dis* 2017;11:e0005826.
12. Yang BY, Zhao FZ, Li XH, et al. Alteration of pro-carcinogenic gut microbiota is associated with clear cell renal cell carcinoma tumorigenesis. *Front Microbiol* 2023;14:1133782.
13. Pernigoni N, Guo C, Gallagher L, et al. The potential role of the microbiota in prostate cancer pathogenesis and treatment. *Nat Rev Urol* 2023;20: 706-18.
14. Kovaleva OV, Podlesnaya P, Sorokin M, et al. Macrophage phenotype in combination with tumor microbiome composition predicts RCC patients' survival: A pilot study. *Biomedicines* 2022;10:1516.
15. de Lima Fragelli BD, Camillo L, de Almeida Rodolpho JM, et al. Antitumor effect of IL-2 and TRAIL proteins expressed by recombinant salmonella in murine bladder cancer cells. *Cell Physiol Biochem* 2021;55:460-76.
16. Liu Y, Zhou Q, Ye F, et al. Gut microbiota-derived short-chain fatty acids promote prostate cancer progression via inducing cancer cell autophagy and M2 macrophage polarization. *Neoplasia* 2023;43: 100928.
17. Terrisse S, Goubet AG, Ueda K, et al. Immune system and intestinal microbiota determine efficacy of androgen deprivation therapy against prostate cancer. *J Immunother Cancer* 2022;10:e004191.
18. Ding J, Zheng Y, Zhu F, et al. Adenovirus-assembled DC vaccine induces dual-targeting CTLs for tumor antigen and adenovirus to eradicate tumors. *Int Immunopharmacol* 2023;123:110722.
19. Li DX, Yu QX, Feng DC, et al. Systemic immune-inflammation index (SII) during induction has higher predictive value than preoperative SII in non-

muscle-invasive bladder cancer patients receiving intravesical bacillus calmette-guerin. *Clin Genitourin Cancer* 2023;21:e145-52.

20. Li DX, Wang XM, Tang Y, et al. Prognostic value of preoperative neutrophil-to-lymphocyte ratio in histological variants of non-muscle-invasive bladder cancer. *Investig Clin Urol* 2021;62:641-9.
21. Pettenati C, Ingersoll MA. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. *Nat Rev Urol* 2018;15:615-25.
22. He L, Wang W, Dang K, et al. Integration of single-cell transcriptome and proteome technologies: Toward spatial resolution levels. *VIEW* 2023; 4:20230040.
23. Liu W, Zu L, Wang S, et al. Tailored biomedical materials for wound healing. *Burns Trauma* 2023;11: tkad040.
24. Zhang Y, Wang Y. Recent trends of machine learning applied to multi-source data of medicinal plants. *J Pharm Anal* 2023;13:1388-407.
25. Feng X, Deng M, Zhang L, et al. Impact of gut microbiota and associated mechanisms on postprandial glucose levels in patients with diabetes. *J Transl Int Med* 2023;11:363-71.
26. Ozer MS, Incir C, Yildiz HA, et al. Comparison of tissue and urine microbiota in male, intervention naive patients with and without non-invasive bladder cancer. *Urol Int* 2024;1:8.
27. Xu H, Leng J, Liu F, et al. Tumor microbiota of renal cell carcinoma affects clinical prognosis by influencing the tumor immune microenvironment. *Heliyon* 2024;10:e38310.
28. Wang XL, Xu HW, Liu NN. Oral microbiota: A new insight into cancer progression, diagnosis and treatment. *Phenomics* 2023;3:535-47.
29. Iacovacci J, Serafini MS, Avuzzi B, et al. Intestinal microbiota composition is predictive of radiotherapy-induced acute gastrointestinal toxicity in prostate cancer patients. *EBioMedicine* 2024;106:105246.
30. Gonçalves MFM, Pina-Vaz T, Fernandes ÂR, et al. Microbiota of urine, glans and prostate biopsies in patients with prostate cancer reveals a dysbiosis in the genitourinary system. *Cancers (Basel)* 2023;15: 1423.
31. Santos LL, Santos J, Gouveia MJ, et al. Urogenital schistosomiasis-history, pathogenesis, and bladder cancer. *J Clin Med* 2021;10:205.
32. Liu F, Liu A, Lu X, et al. Dysbiosis signatures of the microbial profile in tissue from bladder cancer. *Cancer Med* 2019;8:6904-14.
33. Xu W, Yang L, Lee P, et al. Mini-review: perspective of the microbiome in the pathogenesis of urothelial carcinoma. *Am J Clin Exp Urol* 2014; 2:57-61.
34. Bučević Popović V, Šitum M, Chow CT, et al. The urinary microbiome associated with bladder cancer. *Sci Rep* 2018;8:12157.
35. Heidler S, Lusuardi L, Madersbacher S, et al. The microbiome in benign renal tissue and in renal cell carcinoma. *Urol Int* 2020;104:247-52.
36. Wang J, Li X, Wu X, et al. Uncovering the microbiota in renal cell carcinoma tissue using 16S rRNA gene sequencing. *J Cancer Res Clin Oncol* 2021;147:481-91.
37. Golombos DM, Ayangbesan A, O'Malley P, et al. The role of gut microbiome in the pathogenesis of prostate cancer: A prospective, pilot study. *Urology* 2018;111:122-8.
38. Cavarretta I, Ferrarese R, Cazzaniga W, et al. The microbiome of the prostate tumor microenvironment. *Eur Urol* 2017;72:625-31.
39. Wu P, Zhang G, Zhao J, et al. Profiling the urinary microbiota in male patients with bladder cancer in China. *Front Cell Infect Microbiol* 2018;8:167.
40. Oresta B, Braga D, Lazzeri M, et al. The microbiome of catheter collected urine in males with bladder cancer according to disease stage. *J Urol* 2021;205:86-93.
41. Barr-Beare E, Saxena V, Hilt EE, et al. The interaction between enterobacteriaceae and calcium oxalate deposits. *PLoS One* 2015;10:e0139575.
42. Pederzoli F, Ferrarese R, Amato V, et al. Sex-specific alterations in the urinary and tissue microbiome in therapy-naïve urothelial bladder cancer patients. *Eur Urol Oncol* 2020;3:784-8.
43. Li D, Yu Q, Wu R, et al. Interactions between oxidative stress and senescence in cancer: Mechanisms, therapeutic implications, and future perspectives. *Redox Biol* 2024;73:103208.

44. Eisenhofer R, Minich JJ, Marotz C, et al. Contamination in low microbial biomass microbiome studies: Issues and recommendations. *Trends Microbiol* 2019;27:105-17.

45. Durazzi F, Sala C, Castellani G, et al. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. *Sci Rep* 2021;11:3030.

46. Gihawi A, Ge Y, Lu J, et al. Major data analysis errors invalidate cancer microbiome findings. *mBio* 2023;14:e0160723.

47. Selway CA, Eisenhofer R, Weyrich LS. Microbiome applications for pathology: challenges of low microbial biomass samples during diagnostic testing. *J Pathol Clin Res* 2020;6:97-106.

48. Wu Y, Wang P, Zhao X, et al. Dynamic interplay of intratumoral microbiota within the colorectal cancer microenvironment. *VIEW* 2023;5:20230100.

49. Pei B, Ma X, Wu N, et al. Effect of microbiome group on immune checkpoint inhibitors in treatment of gastrointestinal tumors. *Chin J Cancer Res* 2023;35:252-65.

50. Yu H, Xu H, Yang X, et al. Gut microbiota-based pharmacokinetic-pharmacodynamic study and molecular mechanism of specnuezhenide in the treatment of colorectal cancer targeting carboxylesterase. *J Pharm Anal* 2023;13:1024-40.

51. Liss MA, Chen Y, Rodriguez R, et al. Microbiome within primary tumor tissue from renal cell carcinoma may be associated with PD-L1 expression of the venous tumor thrombus. *Adv Urol* 2020;2020:9068068.

52. Boyanova L. *Cutibacterium acnes* (formerly *Propionibacterium acnes*): friend or foe. *Future Microbiol* 2023;18:235-44.

53. Davidsson S, Carlsson J, Greenberg L, et al. *Cutibacterium acnes* induces the expression of immunosuppressive genes in macrophages and is associated with an increase of regulatory T-cells in prostate cancer. *Microbiol Spectr* 2021;9:e0149721.

54. Chorbińska J, Krajewski W, Nowak Ł, et al. Is the urinary and gut microbiome associated with bladder cancer? *Clin Med Insights Oncol* 2023;17:117 95549231206796.

55. Yang L, Li A, Wang Y, et al. Intratumoral microbiota: roles in cancer initiation, development and therapeutic efficacy. *Signal Transduct Target Ther* 2023;8:35.

56. Mastellos DC, Hajishengallis G, Lambris JD. A guide to complement biology, pathology and therapeutic opportunity. *Nat Rev Immunol* 2024; 24:118-41.

57. Wu M, Zheng W, Song X, et al. Gut complement induced by the microbiota combats pathogens and spares commensals. *Cell* 2024;187:897-913.e18.

58. Eberl G. ROR γ t, a multitask nuclear receptor at mucosal surfaces. *Mucosal Immunol* 2017;10:27-34.

59. Li D, Yu Q, Wu R, et al. Chronobiology of the tumor microenvironment: Implications for therapeutic strategies and circadian-based interventions. *Aging Dis* 2024. [Epub ahead of Print].

60. Yamano T, Dobeš J, Vobořil M, et al. Aire-expressing ILC3-like cells in the lymph node display potent APC features. *J Exp Med* 2019;216:1027-37.

61. Gardner JM, Metzger TC, McMahon EJ, et al. Extrathymic Aire-expressing cells are a distinct bone marrow-derived population that induce functional inactivation of CD4 $^{+}$ T cells. *Immunity* 2013;39: 560-72.

62. Martin JC, Chang C, Boschetti G, et al. Single-cell analysis of Crohn's disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. *Cell* 2019;178:1493-508.e20.

63. Smillie CS, Biton M, Ordovas-Montanes J, et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. *Cell* 2019;178:714-30.e22.

64. Goc J, Lv M, Bessman NJ, et al. Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer. *Cell* 2021;184:5015-30.e16.

65. Hepworth MR, Monticelli LA, Fung TC, et al. Innate lymphoid cells regulate CD4 $^{+}$ T-cell responses to intestinal commensal bacteria. *Nature* 2013;498:113-7.

66. Hepworth MR, Fung TC, Masur SH, et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4 $^{+}$ T cells. *Science* 2015;348:1031-5.

67. Lyu M, Suzuki H, Kang L, et al. ILC3s select

microbiota-specific regulatory T cells to establish tolerance in the gut. *Nature* 2022;610:744-51.

68. Akagbosu B, Tayyebi Z, Shibu G, et al. Novel antigen-presenting cell imparts T_{reg} -dependent tolerance to gut microbiota. *Nature* 2022;610:752-60.

69. Kedmi R, Najar TA, Mesa KR, et al. A ROR γ t⁺ cell instructs gut microbiota-specific T_{reg} cell differentiation. *Nature* 2022;610:737-43.

70. Zhang H, Wang X, Zhang J, et al. Crosstalk between gut microbiota and gut resident macrophages in inflammatory bowel disease. *J Transl Int Med* 2023;11:382-92.

71. Li L, Sun Y, Liu J, et al. Histone deacetylase inhibitor sodium butyrate suppresses DNA double strand break repair induced by etoposide more effectively in MCF-7 cells than in HEK293 cells. *BMC Biochem* 2015;16:2.

72. Hinnebusch BF, Meng S, Wu JT, et al. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. *J Nutr* 2002;132:1012-7.

73. Pernigoni N, Zagato E, Calcinotto A, et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. *Science* 2021;374:216-24.

74. Yan J, Xiao L, Feng D, et al. Vitamin A deficiency suppresses CEACAM1 to impair colonic epithelial barrier function via downregulating microbial-derived short-chain fatty acids. *Genes Dis* 2023; 11:1066-81.

75. Goto Y, Iwata S, Miyahara M, et al. Discovery of intratumoral oncolytic bacteria toward targeted anticancer theranostics. *Adv Sci (Weinh)* 2023; 10:e2301679.

76. Farhat EK, Sher EK, Džidić-Krivić A, et al. Functional biotransformation of phytoestrogens by gut microbiota with impact on cancer treatment. *J Nutr Biochem* 2023;118:109368.

77. Zhong W, Wu K, Long Z, et al. Gut dysbiosis promotes prostate cancer progression and docetaxel resistance via activating NF- κ B-IL6-STAT3 axis. *Microbiome* 2022;10:94.

78. Feng D, Li D, Xiao Y, et al. Focal ablation therapy presents promising results for selectively localized prostate cancer patients. *Chin J Cancer Res* 2023;35: 424-30.

79. Peng H, Yao F, Zhao J, et al. Unraveling mitochondria-targeting reactive oxygen species modulation and their implementations in cancer therapy by nanomaterials. *Exploration (Beijing)* 2023;3:20220115.

80. Miyake M, Oda Y, Owari T, et al. Probiotics enhances anti-tumor immune response induced by gemcitabine plus cisplatin chemotherapy for urothelial cancer. *Cancer Sci* 2023;114:1118-30.

81. Wang B, Shangguan W, Li W, et al. Blautia coccoides and its metabolic products enhance the efficacy of bladder cancer immunotherapy by promoting CD8⁺ T cell infiltration. *J Transl Med* 2024;22:964.

82. Wang B, Qiu Y, Xie M, et al. Gut microbiota parabacteroides distasonis enhances the efficacy of immunotherapy for bladder cancer by activating anti-tumor immune responses. *BMC Microbiol* 2024;24:237.

83. Fidelle M, Rauber C, Alves Costa Silva C, et al. A microbiota-modulated checkpoint directs immunosuppressive intestinal T cells into cancers. *Science* 2023;380:eabo2296.

84. Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. *Science* 2018;359:91-7.

85. Anker JF, Naseem AF, Mok H, et al. Multi-faceted immunomodulatory and tissue-tropic clinical bacterial isolate potentiates prostate cancer immunotherapy. *Nat Commun* 2018;9:1591.

86. Shao T, Hsu R, Hacein-Bey C, et al. The evolving landscape of fecal microbial transplantation. *Clin Rev Allergy Immunol* 2023;65:101-20.

87. Pantazi AC, Balasa AL, Mihai CM, et al. Development of gut microbiota in the first 1000 days after birth and potential interventions. *Nutrients* 2023;15:3647.

88. Ma Y, Kroemer G. The cancer-immune dialogue in the context of stress. *Nat Rev Immunol* 2024;24: 264-81.

89. Peri A, Salomon N, Wolf Y, et al. The landscape of T cell antigens for cancer immunotherapy. *Nat*

Cancer 2023;4:937-54.

90. Wroblewski LE, Peek RM Jr, Wilson KT. *Helicobacter pylori* and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 2010;23:713-39.

91. Fluckiger A, Daillère R, Sassi M, et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 2020;369:936-42.

92. Yue B. Biology of the extracellular matrix: an overview. J Glaucoma 2014;23(8 Suppl 1):S20-3.

93. Cambria E, Coughlin MF, Floryan MA, et al. Linking cell mechanical memory and cancer metastasis. Nat Rev Cancer 2024;24:216-28.

94. Feng Z, Liu L, Zhang C, et al. Chronic restraint stress attenuates p53 function and promotes tumorigenesis. Proc Natl Acad Sci U S A 2012; 109:7013-8.

95. Schoemaker MJ, Jones ME, Wright LB, et al. Psychological stress, adverse life events and breast cancer incidence: a cohort investigation in 106,000 women in the United Kingdom. Breast Cancer Res 2016;18:72.

96. Wang YH, Li JQ, Shi JF, et al. Depression and anxiety in relation to cancer incidence and mortality: a systematic review and meta-analysis of cohort studies. Mol Psychiatry 2020;25:1487-99.

97. Horowitz M, Neeman E, Sharon E, et al. Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat Rev Clin Oncol 2015;12: 213-26.

98. Li D, Shao F, Yu Q, et al. The complex interplay of tumor-infiltrating cells in driving therapeutic resistance pathways. Cell Commun Signal 2024; 22:405.

99. Sastry KS, Karpova Y, Prokopovich S, et al. Epinephrine protects cancer cells from apoptosis via activation of cAMP-dependent protein kinase and BAD phosphorylation. J Biol Chem 2007;282: 14094-100.

100. Dwyer AR, Perez Kerkvliet C, Truong TH, et al. Glucocorticoid receptors drive breast cancer cell migration and metabolic reprogramming via PDK4. Endocrinology 2023;164:bqad083.

101. Tiwari RK, Rawat SG, Gupta VK, et al. Epinephrine facilitates the growth of T cell lymphoma by altering cell proliferation, apoptosis, and glucose metabolism. Chem Biol Interact 2023;369:110278.

102. Chen X, Cheng Y, Tian X, et al. Urinary microbiota and metabolic signatures associated with inorganic arsenic-induced early bladder lesions. Ecotoxicol Environ Saf 2023;259:115010.

103. Sato H, Narita S, Ishida M, et al. Specific gut microbial environment in lard diet-induced prostate cancer development and progression. Int J Mol Sci 2022;23:2214.

104. Yang Q, Wang B, Zheng Q, et al. A review of gut microbiota-derived metabolites in tumor progression and cancer therapy. Adv Sci (Weinh) 2023; 10:e2207366.

105. Chen C, Gong W, Tian J, et al. Radix paeoniae alba attenuates radix bupleuri-induced hepatotoxicity by modulating gut microbiota to alleviate the inhibition of saikosaponins on glutathione synthetase. J Pharm Anal 2023;13:640-59.

106. Wu R, Wang J, Li D, et al. Three-dimensional printing creates new trends of the technological revolution in urologic surgery. ACS Materials Letters 2024;6:3414-35.

107. Zhong L, Zheng J, Lin L, et al. Perspective on human papillomavirus infection treatment by vaginal microbacteria. Interdiscip Med 2023;1:e20220020.

108. Zhu P, Li SY, Ding J, et al. Combination immunotherapy of glioblastoma with dendritic cell cancer vaccines, anti-PD-1 and poly I:C. J Pharm Anal 2023;13:616-24.

109. Xie J, Ye F, Deng X, et al. Circular RNA: A promising new star of vaccine. J Transl Int Med 2023;11:372-81.

110. Murphy C, Rettedal E, Lehouritis P, et al. Intratumoural production of TNF α by bacteria mediates cancer therapy. PLoS One 2017;12: e0180034.

111. Ling D, Jia X, Wang K, et al. Cancer cell membrane-coated bacterial ghosts for highly efficient paclitaxel delivery against metastatic lung cancer. Acta Pharm Sin B 2024;14:365-77.

112. Li DX, Wang XM, Feng DC, et al. Lymphocyte-to-monocyte ratio (LMR) during induction is a better

predictor than preoperative LMR in patients receiving intravesical bacillus calmette-guerin for non-muscle-invasive bladder cancer. *Front Oncol* 2022;12:937638.

113. Hussein AA, Bhat TA, Jing Z, et al. Does the urinary microbiome profile change after treatment of bladder cancer. *World J Urol* 2023;41:3593-8.
114. Wu R, Li D, Zhang F, et al. Prognostic value of platelet-to-lymphocyte ratio in non-muscle invasive bladder cancer patients: Intravesical bacillus calmette-guerin treatment after transurethral resection of bladder tumor. *Front Surg* 2022; 9:907485.
115. Takahashi T, Kushiro A, Nomoto K, et al. Antitumor effects of the intravesical instillation of heat killed cells of the *Lactobacillus casei* strain Shirota on the murine orthotopic bladder tumor MBT-2. *J Urol* 2001;166:2506-11.
116. Li D, Wang J, Tuo Z, et al. Natural products and derivatives in renal, urothelial and testicular cancers: Targeting signaling pathways and therapeutic potential. *Phytomedicine* 2024;127:155503.
117. Chen JW, Chen S, Chen GQ. Recent advances in natural compounds inducing non-apoptotic cell death for anticancer drug resistance. *Cancer Drug Resist* 2023;6:729-47.
118. Then CK, Paillas S, Moomin A, et al. Dietary fibre supplementation enhances radiotherapy tumour control and alleviates intestinal radiation toxicity. *Microbiome* 2024;12:89.
119. Xu W, Li Y, Liu L, et al. Icaritin-curcumol activates CD8⁺ T cells through regulation of gut microbiota and the DNMT1/IGFBP2 axis to suppress the development of prostate cancer. *J Exp Clin Cancer Res* 2024;43:149.
120. Li Q, Sun Y, Zhai K, et al. Microbiota-induced inflammatory responses in bladder tumors promote epithelial-mesenchymal transition and enhanced immune infiltration. *Physiol Genomics* 2024;56: 544-54.
121. Kalinen S, Kallonen T, Gunell M, et al. Differences in gut microbiota profiles and microbiota steroid hormone biosynthesis in men with and without prostate cancer. *Eur Urol Open Sci* 2024;62:140-50.
122. Yue SY, Li WY, Xu S, et al. Causality investigation among gut microbiota, immune cells, and prostate diseases: a Mendelian randomization study. *Front Microbiol* 2024;15:1445304.
123. Yin Z, Liu B, Feng S, et al. A large genetic causal analysis of the gut microbiota and urological cancers: A bidirectional mendelian randomization study. *Nutrients* 2023;15:4086.
124. Yang H, Jin C, Li J, et al. Causal relationship between bladder cancer and gut microbiota contributes to the gut-bladder axis: A two-sample Mendelian randomization study. *Urol Oncol* 2024;S1078-439(24)00697-5.
125. Knežović D, Milić Roje B, Vilović K, et al. MyD88 signaling accompanied by microbiota changes supports urinary bladder carcinogenesis. *Int J Mol Sci* 2024;25:7176.
126. Zhang Y, Lin H, Liang L, et al. Intratumoral microbiota as a novel prognostic indicator in bladder cancer. *Sci Rep* 2024;14:22198.
127. Vendrell JA, Cabello-Aguilar S, Senal R, et al. Dysbiosis in human urinary microbiota may differentiate patients with a bladder cancer. *Int J Mol Sci* 2024;25:10159.
128. Ma J, Huang L, Hu D, et al. The role of the tumor microbe microenvironment in the tumor immune microenvironment: bystander, activator, or inhibitor. *J Exp Clin Cancer Res* 2021;40:327.
129. Mempel TR, Lill JK, Altenburger LM. How chemokines organize the tumour microenvironment. *Nat Rev Cancer* 2024;24:28-50.
130. Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. *Immunity* 2014;40:128-39.
131. He Y, Fu L, Li Y, et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8⁺ T cell immunity. *Cell Metab* 2021;33:988-1000.e7.
132. Jingushi K, Kawashima A, Tanikawa S, et al. *Cutibacterium acnes*-derived extracellular vesicles promote tumor growth in renal cell carcinoma. *Cancer Sci* 2024;115:2578-87.
133. Zaryouh H, De Pauw I, Baysal H, et al. Establishment of head and neck squamous cell carcinoma mouse models for cetuximab resistance

and sensitivity. *Cancer Drug Resist* 2023;6:709-28.

134. Chen H, Wang Q, Li J, et al. IFN γ transcribed by IRF1 in CD4+ effector memory T cells promotes senescence-associated pulmonary fibrosis. *Aging Dis* 2023;14:2215-37.

135. Yang Y, Guan S, Ou Z, et al. Advances in AI-based cancer cytopathology. *Interdiscip Med* 2023; 1:e20230013.

136. Zhang P, Li W, Liu C, et al. Molecular imaging of tumour-associated pathological biomarkers with smart nanoprobe: From “Seeing” to “Measuring”. *Exploration (Beijing)* 2023;3:20230070.

Cite this article as: Li D, Wu R, Yu Q, Tuo Z, Wang J, Yoo KH, Wei W, Yang Y, Ye L, Guo Y, Chaipanichkul P, Okoli UA, Poolman TM, Burton JP, Cho WC, Heavey S, Feng D. Microbiota and urinary tumor immunity: Mechanisms, therapeutic implications, and future perspectives. *Chin J Cancer Res* 2024;36(6):596-615. doi:10.21147/j.issn.1000-9604.2024.06.03