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1.  INTRODUCTION

Deficits in early auditory information processing, as mea-
sured by event-related potentials (ERP), provide critical 
insights into the pathophysiology of psychosis and its 
connection to psychosocial functioning (Ro & Clark, 

2009; Thomas et  al., 2017). The mismatch negativity 

(MMN), an ERP component reflecting the brain’s capacity 

to automatically detect and encode novel or unexpected 

auditory events, has been especially useful in studying 

automatic sensory processing and its relationship to 
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psychosocial functioning (Friston, 2005; Garrido, Kilner, 
Stephan, et  al., 2009; Näätänen et  al., 2007). Notably, 
reductions in the MMN, along with the subsequent P3a 
component, have been linked to reduced psychosocial 
functioning in healthy adults (Light et  al., 2007) and 
across the psychosis spectrum (Carrión et  al., 2015; 
Hermens et al., 2010; Murphy et al., 2020).

Recent advances in computational neuroscience, par-
ticularly within the predictive coding framework, have 
reframed our understanding of the MMN as a reflection of 
prediction error (PE) processing in the brain (Friston, 
2003, 2005; Garrido, Kilner, Stephan, et al., 2009; Lieder, 
Daunizeau, et al., 2013; Rao & Ballard, 1999). The MMN 
is thought to reflect the brain’s inability to suppress PEs 
in response to unpredictable sensory input. This frame-
work emphasizes the hierarchical nature of information 
processing, where higher-level PEs encompass abstract, 
slowly changing information, while lower-level PEs focus 
on rapidly changing basic sensory features (Kiebel et al., 
2008; Wacongne et al., 2011).

The hierarchical Gaussian filter (HGF), a hierarchical 
Bayesian model of learning, illustrates this concept by 
modeling the impact of PEs through precision-weighted 
updates (Mathys et al., 2011, 2014). In this framework, 
the precision ratio serves as a learning rate that influ-
ences the balance between prior beliefs and new sensory 
input. Modulation of the precision ratio is thought to 
involve neuromodulatory gain control mechanisms, pos-
sibly involving N-methyl-D-aspartate (NMDA) and acetyl-
choline receptors, which encode precision as changes in 
neuronal excitability (Kanai et  al., 2015; Schöbi et  al., 
2021; Weber et al., 2022). In stable settings, high preci-
sion is assigned to our prior beliefs, minimizing the impact 
of sensory fluctuations. In volatile environments, the pre-
cision ratio (i.e., gain control) shifts to prioritize lower-
level sensory inputs, ensuring effective adaptation to 
environmental changes.

While much research has focused on the detection of 
the MMN at the sensor level, this approach provides lim-
ited insight into the specific cortical regions involved in 
generating and modulating PEs. Based on PE accounts 
of the MMN, we predict that low-level PEs are generated 
in early sensory regions (Parras et  al., 2017), whereas 
high-level PEs are computed in higher-level regions, 
including the inferior frontal gyrus (IFG) (Camalier et al., 
2019). Localizing the neural sources of PEs is crucial for 
identifying how different cortical areas contribute to pre-
dictive processing and interact during auditory learning, 
enabling non-invasive analysis of brain dynamics 
(Asadzadeh et al., 2020).

Prior research has demonstrated the sensitivity of the 
MMN to environmental volatility, showing larger MMN 
amplitudes in stable conditions, where deviant tones are 

less expected, and smaller amplitudes in volatile settings 
where deviant occurrences are more frequent (Dzafic 
et al., 2020; Kotchoubey, 2014; Todd et al., 2011, 2014; 
Weber et  al., 2022). Several of these studies used the 
local-global paradigm to show how changes in MMN 
amplitude are linked to variations in the regularity of audi-
tory stimuli. This paradigm distinguishes between local 
(tone-to-tone transitions) and global (sequence-to-
sequence transitions) regularities, suggesting that local-
rule violations are processed in lower-order cortical areas, 
whereas global-rule violations are detected by higher-
order areas (Fong et al., 2020).

Building on these findings, we employ a modified 
auditory oddball paradigm (Weber et al., 2022) with alter-
nating stable and volatile periods to better distinguish 
learning about tone probabilities and environmental vola-
tility. The manipulation of volatility is crucial as it allows us 
to explore how the brain dynamically adjusts its predic-
tive processes in response to environmental changes. In 
classic oddball paradigms, low-level and high-level PEs 
are often correlated (Charlton et al., 2022). Our paradigm 
is deliberately designed to decorrelate low-level and 
high-level PEs to achieve a clearer separation between 
these processes. Additionally, manipulating volatility 
broadens the range of environmental dynamics partici-
pants must learn about, extending beyond the fixed devi-
ant probabilities seen in the MMN paradigm. This 
approach allows us to examine how the brain flexibly 
adjusts its predictive mechanisms across a wider spec-
trum of true volatility, offering new insights into dynamic 
learning processes.

Unlike the local-global paradigm, which primarily 
examines “what” is changing (i.e., local or global devi-
ance), our study uses the HGF, which examines “how 
fast” these auditory changes occur at different hierarchi-
cal levels. The HGF assumes a specific relationship 
between hierarchically-coupled states that evolve in time 
as Gaussian random walks, linked through their vari-
ances (Hauke, 2022). This approach allows for a more 
nuanced and dynamic perspective of change, beyond 
the static learning process often assumed in classical 
MMN analyses.

In our exploratory study, we employ a computational 
approach using the HGF to model single-trial electroen-
cephalogram (EEG) data in a novel MMN paradigm. This 
approach diverges from traditional MMN analyses, which 
typically assess amplitude changes from a limited selec-
tion of trials. By modeling brain activity on a trial-by-trial 
basis with the HGF, we can capture intermediate learning 
signals for a more accurate depiction of the brain’s con-
tinuous and dynamic learning processes. We investigate 
the individual components of precision-weighted PEs—
precision ratios and unweighted PEs—and examine their 
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associations with psychosocial functioning in the general 
population. Furthermore, we use multiple sparse prior 
(MSP) source reconstruction (Friston et al., 2008) to local-
ize the cortical generators of PEs and their precision 
weights, offering insight into the interactions between 
brain regions during predictive coding. By integrating the 
HGF model with MSP source reconstruction, our explor-
atory study aims to provide a more comprehensive 
understanding of MMN generation and its relationship 
with psychosocial functioning.

2.  METHODS

2.1.  Participants

A total of 43 healthy controls (HC) were recruited through 
online and public advertisements in Basel, Switzerland. 
HCs were recruited as part of a larger study investigating 
persecutory ideation in early psychosis, described in 
greater detail elsewhere (Hauke et  al., 2024). Due to 
insufficient patient data, only results from HCs are pre-
sented here. Inclusion and exclusion criteria are detailed 
in the Supplementary Material. All participants provided 
written informed consent, and the study was conducted 
in accordance with the Declaration of Helsinki and 
approved by the local ethics committee (Ethikkommis-
sion Nordwest- und Zentralschweiz, no. 2017-01149).

2.2.  Demographic variables and functioning 
assessment

Demographic and functioning data were collected during 
an interview within 5 days of EEG data collection. Func-
tioning was assessed with the Global Functioning: Social 
(GF: Social) and the Global Functioning: Role (GF: Role) 
scales (Cornblatt et  al., 2007). The former measures 
social relationships and interpersonal activities, and the 
latter assesses performance and functioning in work, 
education, and home activities depending on the age of 
the individual. A single score for each scale was provided 
by trained raters, with higher scores indicating better per-
formance. The median score for GF: Social was 9 and for 
GF: Role was 9, with both scores ranging from 6 to 10. 
Demographic characteristics are summarized in Table 1.

2.3.  Mismatch negativity paradigm

EEG data were collected during the mismatch negativity 
paradigm specifically designed to minimize the correla-
tion between low-level and high-level precision-weighted 
prediction errors (for details, see Weber et al., 2022). As 
such, the task included periods of volatility, characterized 
by rapid changes in the probabilities of the tones, and 

periods of stochasticity, where the tone probability aver-
aged at 50%. Participants were presented with a series 
of tones delivered binaurally through Etymotics HF5 
headphones, while they engaged in a visual distraction 
task to direct participants attention away from the tones 
(see Supplementary Material for more details). The audi-
tory stimuli comprised two pure sinusoidal tones: a high 
(528  Hz) and a low (440  Hz) tone, each lasting 70  ms 
(including 5  ms fade-in/fade-out) with an inter-stimulus 
interval of 500 ms and totaling 1800 tones. Stimuli were 
presented at comfortable loudness determined by the 
participants. The task consisted of two types of phases: 
stable phases were defined as periods where the proba-
bility of hearing the same tone remained constant for at 
least 90 trials and volatile phases were all other phases 
(Fig. 1A). Auditory and visual stimuli were presented using 
PsychToolbox (PTB3, psychotoolbox.org; version 3.0.14) 
and Matlab (R2018a).

Participants’ responses during the visual distraction 
task were analyzed by computing mean reaction times 
and hit rates, which are reported in the Supplementary 
Material. One subject had a hit-rate below 75%, which 
may suggest that the individual was attending the tones 
instead of the visual task. To address this, we reanalyzed 
the data excluding this subject, and found that all subse-
quent results still held, unless otherwise specified.

2.4.  EEG recording and preprocessing

EEG data were collected using a 64-electrode cap 
(BioSemi MP150 System) with active electrodes and 
additional reference and ground electrodes. Electroocu-
lograms were recorded via electrodes placed on the 
supraorbital and infraorbital ridges of the left eye and on 
the outer canthi of both eyes. Signals were digitised at 
1024  Hz with a DC amplifier. EEG data were pre-
processed and analyzed using SPM12 (http://www​.fil​.ion​
.ucl​.ac​.uk​/spm/; version 7487) and Matlab (R2023a; ver-
sion 9.14.0.2206163). Continuous EEG data were high-
pass filtered (0.1  Hz), down-sampled to 256  Hz, and 
low-pass filtered (30  Hz) to ensure comparability with 
previous results (Weber et al., 2022). Data were epoched 

Table 1.  Participant characteristics.

Healthy controls

Age (mean [SD]) 22.9 [6.8]
Years of education (mean [SD]) 13.2 [3.3]
Working memory (mean [SD]) 6.6 [2.1]
Sex (f/m) 20/23
Handedness (l/r) 5/38
Cannabis (y/n) 27/16

Demographic characteristics of the study sample.

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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into 600  ms segments around tone onsets (-100 to 
500 ms), and baseline correction was performed using a 
-100 to 0 ms peristimulus window. Eye movement arti-
facts were corrected using the signal space projection 
(SSP) eyeblink correction method in SPM12 (Nolte & 
Hämäläinen, 2001), which regresses out the leading 
component from the EEG data based on eye activity (see 
Supplementary Material for further details). Following 
eyeblink correction, trials with amplitudes ± 75 µV were 
considered as artefactual and excluded. Channels with 
over 20% artefactual trials were interpolated for analy-
ses. One participant had a single bad channel (P8). The 
median number of artifact-free trials, taken across all 
participants, was 1750 (25th percentile: 1623, 75th per-
centile: 1783). This total includes all recorded trials, 
encompassing not only trials defined as standard and 
deviant tones according to our definition but also all 
other trials presented during the task. Notably, our para-
metric model-based analysis incorporates data from all 
trials collectively, without differentiating between these 
conditions.

2.5.  Difference waveform analysis

In-line with Weber et al., 2022, trial types were defined 
as follows: deviant trials followed at least 5 repetitions of 
the other tone (N = 119), and standard trials were defined 
as the 6th repetition of the same tone (N = 106). In the 
standard condition, the median number of artifact-free 
trials was 103 (25th percentile: 97, 75th percentile: 106), 
and in the deviant condition, it was 116 (25th percentile: 
112, 75th percentile: 118). The difference waveform was 
obtained by subtracting the average standard ERP from 
the average deviant ERP. Additionally, separate stable 
and volatile difference waveforms were obtained by sub-
tracting the standard ERP from the deviant ERP during 

the respective phases. In the stable phase, there were 
51 standard tones and 55 deviant tones, whereas in the 
volatile phase, there were 55 standard tones and 64 
deviant tones.

For each subject, difference waveform ERPs were 
converted into scalp images for all 64 channels using a 
voxel size of 4.3 mm x 5.4 mm x 2.0 ms. In agreement 
with previous studies (0, 0, 0, 0), statistical analyses were 
limited to a 100–400 ms post-stimulus interval, to capture 
the MMN and P300 peaks and to reduce the amount of 
comparisons. Images were smoothed with a Gaussian 
kernel (FWHM: 16 x 16 mm) to meet the assumptions of 
Gaussian random field theory (Kiebel & Friston, 2004; 
Worsley et al., 1996).

Images from the first-level served as input to our 
second-level general linear models (GLMs). We tested for 
the effect of difference waveform expression across sen-
sor space and peristimulus time. Significant effects were 
inferred from thresholded F-statistical parametric maps 
(SPMs) at peak (p  <  0.05) and cluster (p  <  0.05) level, 
which were family-wise error corrected using Gaussian 
random field theory with a cluster-defining threshold of 
p < 0.001 (Flandin & Friston, 2019).

2.6.  Computational framework

Single-trial EEG data were modeled using the HGF, a 
hierarchical Bayesian model of learning under uncertainty 
(Mathys et al., 2011, 2014), which was previously used to 
model oddball paradigms (Charlton et al., 2022; Hauke 
et al., 2023; Weber et al., 2020) (Fig. 1B). The HGF was 
implemented using the tapas_ehgf_binary function  
of the HGF toolbox (version: 6.0), which is part of the 
open-source TAPAS software collection (version: 4.0.0) 
(https://github​.com​/translationalneuromodeling​/tapas​
/releases​/tag​/v4​.0​.0) (Frässle et al., 2021).

Fig. 1.  Mismatch volatility schedule and computational model. (A) Volatility schedule of mismatch negativity paradigm. 
(B) Three-level hierarchical Gaussian filter (HGF) binary perceptual model.

https://github.com/translationalneuromodeling/tapas/releases/tag/v4.0.0
https://github.com/translationalneuromodeling/tapas/releases/tag/v4.0.0
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Participants were exposed to a sequence of tones in 
which the high tone were either “deviant” or “standard” 
depending on their local frequency compared to low 
tones. We used the HGF to model an individual’s implicit 
learning of the tone sequence. Since the oddball para-
digm does not require behavioral responses, and there-
fore the model cannot be fit to behavior, participants 
were modeled as surprise-minimizing Bayesian observ-
ers (see Supplementary Material for more details). Per-
ceptual parameters were optimized to reduce overall 
surprise in response to the experienced tone sequence 
(see Supplementary Tables S1 and S2 for a summary of 
the parameters).

According to the model, participants’ beliefs are recur-
sively updated using the following equation:

	
Δµ i

(k ) ∝
π̂ i−1
(k )

π i
(k ) δ i−1

(k )

	

where Δµ i
(k ) denotes the change in the posterior belief at 

level i on trial k. After each tone is experienced, the pre-
diction error from the level below (δ i−1

(k )) is computed and 
then weighted by a ratio of precisions: the precision of 
the prediction about the level below (sensory precision) 
(π̂ i−1
(k )) and the belief precision at the current level (π i

(k )). 
The precision ratio functions as a dynamic learning rate, 
as it adjusts the magnitude of belief updates based on 
one’s confidence in the sensory input relative to their 
prior belief. For example, if the environment is stable, the 
learning rate may be small, resulting in more modest 
belief updates. By contrast, when the environment is vol-
atile, the learning rate can be increased, enabling greater 
belief updates and providing a mechanism for flexible 
adaptation to changing environments.

From the model, we extracted trial-wise estimates of 
precision-weighted prediction errors (pwPE) at two levels 
of the hierarchy: low-level sensory pwPEs about the tone 
tendency ε2

(k ) and high-level volatility pwPEs that update 
the estimate of environmental volatility ε3

(k ).

2.7.  Sensor-level single-trial EEG analysis

EEG waveforms were converted to images and smoothed 
as outlined above. At the single subject level, a GLM with 
an intercept term and z-standardized computational tra-
jectories was constructed to explain changes in EEG 
amplitude across trials. Given that precisions may be 
connected to neurotransmitter-NMDAR (N-methyl-D-
aspartate receptor) interactions and PEs to AMPA (α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) 
signaling (Friston et al., 2016; Sterzer et al., 2018), two 
GLMs were included to unpack the effects of pwPEs. 

They consisted of the low-level unweighted PE δ1
(k ) and 

the corresponding precision ratio (ψ2), as well as the 
high-level unweighted PE δ2

(k ) and corresponding preci-
sion ratio (ψ3). The average collinearity between these 
regressors was r  =  0.088  ±  0.005 (mean  ±  SD) and 
r = 0.119 ± 0.004, respectively. Low-level pwPEs ε2

(k ) and 
high-level pwPEs ε3

(k ) also served as multiple regressors 
in an additional first-level GLM (r = 0.535 ± 0.004). Con-
sistent with previous studies (Weber et al., 2022), these 
regressors were not orthogonalized with respect to  
each other.

The same model-trajectories were used for all partici-
pants; however, following EEG preprocessing, these tra-
jectories varied slightly due to rejected trials following 
artifact rejection. For each computational quantity, we 
conducted an F-test at each point in 2D sensor space 
and each time point to test the null hypothesis that the 
correlation between the model-derived learning trajec-
tory and EEG amplitudes was zero, generating beta 
images that were used for second-level analysis.

At the group level, we specify separate GLMs for each 
computational quantity, in which beta images from the 
first-level served as input to the second-level. We identi-
fied significant effects using the same threshold criteria 
as described in Section 2.5.

2.8.  Source-level EEG analysis

Finally, we applied multiple sparse priors (MSP) source 
reconstruction to estimate the distribution of cortical 
sources that give rise to the sensor level single-trial EEG 
data (Friston et  al., 2008). We defined a prior set of 
sources in line with previous MMN studies, indicating the 
involvement of specific cortical regions, including bilat-
eral primary auditory cortices (A1), bilateral superior tem-
poral gyri (STG), and bilateral inferior frontal gyri (IFG) 
(Garrido et al., 2008, Garrido, Kilner, Kiebel, et al., 2009; 
Giard et al., 1990; Molholm et al., 2005; Opitz et al., 2002) 
(see Supplementary Table  S3 for source coordinates). 
Source reconstruction was applied to both MMN wave-
forms (MMN analysis) and single-trial data (computa-
tional analysis) to estimate source time courses. We 
further compared MSP with identically distributed (IID) 
source reconstruction, finding evidence in favor of MSP, 
and thus proceeded with the MSP analysis for all subse-
quent analyses (see Supplementary Material for details). 
For the computational analysis, we proceeded as in the 
sensor space analysis and defined three design matrices 
GLMs (low-level pwPE design: δ1 and ψ2; high-level pwPE 
design: δ2 and ψ3; pwPEs design: ε2 and ε3) with an inter-
cept term and z-standardized computational trajectories 
to explain changes in absolute source amplitude across 
trials at the first level. First-level betas (reflecting the  
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correlation between absolute source amplitude and com-
putational quantity) were converted to images and car-
ried to the second-level to test in which of the six sources 
and when in time each computational variable was 
expressed. The same statistical thresholds as in the sen-
sor analysis were used.

3.  RESULTS

3.1.  Effect of stability on mismatch negativity

Our sensor-level EEG analysis examined the influence of 
volatility on the mismatch response by comparing the dif-
ference waveform (deviant–standard) between stable and 
volatile periods (Fig. 2). For the stable condition, F-tests 
revealed a significant peak at 141 ms in frontal electrodes 
(peak, F(1,42) = 113.94; p < 0.001), aligning with the timing 
of the MMN effect. In the volatile condition, a significant 
peak occurred at 145  ms in frontal electrodes (peak, 
F(1,42) = 25.70; p = 0.034) (Supplementary Fig. S1).

Comparing stable versus volatile phases revealed sig-
nificant differences in the waveform amplitude. The dif-
ference waveform was significantly larger in stable 
phases peaking at 152  ms in central electrodes (peak, 
t(1,42) = 5.9; p  = 0.002; Fig.  3A) and 145 ms in parietal-
occipital electrodes (peak, t(1,42) = 5.1; p = 0.019; Fig. 3B). 
The difference wave showed greater negativity during 
stable phases in central electrodes, while parietal clus-
ters exhibited the opposite pattern due to polarity 
changes. The left-lateralized effect observed in central 

electrodes (Fig. 3A) likely results from a relatively weaker 
MMN component on the left side in the volatile condition, 
resulting in a more pronounced stable-volatile difference 
in the waveforms.

3.2.  Relationship between mismatch stability  
and functional impairment

Next, we examined the relationship between the sensor-
level difference waveform across both phases (stable and 
volatile) and functioning at baseline. Significant positive 
correlations were found between the difference wave-
form and GF: Social, peaking at 332 ms in central-frontal 
electrodes (cluster, t(1,41) = 4.5; p = 0.003; Fig. 4A), and 
GF: Role, peaking at 387  ms in temporal electrodes 
(peak, t(1,41) = 4.7; p = 0.049; Fig. 4B).

We investigated the relationship between functional 
impairment and stability, revealing a significant positive 
effect between the volatile difference waveform and GF: 
Social, peaking at 344  ms in central-frontal electrodes 
(peak, t(1,41) = 4.8; p = 0.036; Fig. 4C). We also observed a 
significant positive correlation between the stable differ-
ence waveform and GF: Role, peaking at 387 ms in tem-
poral electrodes (cluster, t(1,41) = 4.3; p = 0.049; Fig. 4D). 
However, after excluding one subject with poor behav-
ioral performance (based on a hit-rate below 75% in the 
visual distraction task), the effect with GF: Role fell just 
short of significance, possibly due to a loss of statistical 
power (cluster, t(1,40) = 4.3; p = 0.054).

Fig. 2.  Event-Related Potential (ERP) Scalp Topographies: On the left, scalp voltage topography maps displaying 
group mean grand-average ERPs. The MMN component was averaged from 150 to 200 ms post-stimulus, and the P3a 
component was averaged from 250 to 300 ms post-stimulus. All maps are plotted on the same voltage scale (μV). On 
the right, event-related potential difference waveforms at the FCz and Cz electrodes are shown for the overall difference 
waveform for the entire paradigm, along with the stable and volatile difference waveforms.
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These effects remained significant when including 
either working memory performance (assessed with the 
digit span backward task (Wechsler, 1981)), age, or can-
nabis consumption as covariates, except for the correla-
tion between GF: Role and stable difference waveform 
(Fig. 4D). This correlation was only marginally significant 
when either working memory, age, or cannabis was 
included as a covariate (pcluster  =  0.063, pcluster  =  0.054  
and pcluster  =  0.087 respectively). Given the borderline  
significance of this result prior to covariate adjustment 
(pcluster = 0.049), this result should be interpreted with cau-
tion and further validation with a larger sample size is 
needed. Notably, none of these covariates had a signifi-
cant impact on the difference waveform.

3.3.  Cortical source of mismatch stability and 
functional impairment relationship

Next, we identified the cortical sources underlying the 
difference waveform and its correlations with functioning, 
as shown in Figure  4. Source activity of the difference 
waveform is detailed in the Supplementary Material. We 
found a significant negative correlations between GF: 
Role and source activity in left STG peaking at 160 ms for 

the stable difference waveform (peak, t(1,41)  =  4.8; 
p < 0.001; Fig. 5A). Notably, this effect in source space 
coincides with the cluster identified in our sensor space 
analysis, which exhibited marginal significance in sensor 
space, peaking at 145  ms in the left temporal region 
(peak, t(1,41) = 4.1; p = 0.056; Fig. 4D). The presence of a 
significant effect in source space might suggest that our 
sensor space analysis lacked sufficient statistical power, 
as the sensor analysis was conducted across the entire 
sensor space, whereas the source analysis was con-
strained to six sources that were previously associated 
with MMN generation.

3.4.  Expression of hierarchical prediction errors 
and precision ratios

At the sensor level, we observed significant correlations 
between the low-level (sensory) and high-level (volatility) 
unweighted PEs and precision ratio trajectories with EEG 
amplitude (Fig. 6). Specifically, low-level PEs showed an 
early peak at 137 ms in frontal-central electrodes (peak, 
F(1,42)  = 140.9; p  < 0.001; Fig.  6A), while high-level PEs 
peaked at 141  ms in frontal-central electrodes (peak, 
F(1,42) = 136.2; p < 0.001; Fig. 6B). Additionally, the low-

Fig. 3.  Mismatch responses in volatile phases are reduced compared to stable phases. (A) Maximum intensity projection 
t-map illustrating the contrast between stable MMN < volatile MMN ERPs across anterior to posterior scalp locations (top). 
Significant peak-level effects (p < 0.05, whole-volume FWE-corrected) are outlined by black contours, while the coloured 
area indicates t-values exceeding the cluster-defining threshold of p < 0.001, uncorrected. The yellow bar at the bottom 
of the t-map indicates the time range of significant peak effects, from earliest to latest significant time points. On the left, 
the scalp map displays the peak effect of the given cluster using an F-map at the indicated PST, displayed on a 2D sensor 
layout. On the right, difference waveforms (deviant–standard) are shown for each phase, with the chosen sensor location 
on the scalp map marked with a star. (B) Expression of clusters in time x sensor space where ERPs to tones in stable 
phases were more positive than ERPs to tones in volatile phase. MMN: mismatch negativity; PST: peri-stimulus time;  
FWE: family wise error.



8

C.E. Charlton, D.J. Hauke, M. Wobmann et al.	 Imaging Neuroscience, Volume 3, 2025

Fig. 4.  Positive correlation of the difference waveform with psychosocial function. (A–D) Maximum intensity projection 
t-map illustrating the correlation between global function (GF) and difference waveform ERPs across and anterior to 
posterior scalp locations (top). Significant peak-level effects (p < 0.05, whole-volume FWE-corrected) are outlined by black 
contours, while the colored area indicates t-values exceeding the cluster-defining threshold of p < 0.001, uncorrected. The 
yellow bar at the bottom of the t-map indicates the time range of significant peak effects, from earliest to latest significant 
time points. In the absence of a yellow bar, only cluster-level effects were significant. Note the statistical analysis was 
limited to 100–400 ms post-stimulus. On the left, the grand-average ERPs for standard, deviant, and their difference 
waveform (deviant – standard) at the peak effect location are shown. The shaded gray area indicates the duration of the 
significant effect for the specified cluster. On the right, the scalp map highlights the selected sensor location, marked by a 
star. The scalp map displays the peak effect of the given cluster using an F-map at the indicated PST, displayed on a 2D 
sensor layout. PST: peri-stimulus time; FWE: family wise error.
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level precision ratio peaked at 117  ms in central elec-
trodes (peak, F(1,42) = 28.9; p = 0.015; Fig. 6C) whereas the 
high-level precision ratio peaked at 207  ms in frontal 
electrodes (peak, F(1,42) = 36.3; p = 0.002; Fig. 6D). Cor-
relations were also found between trial-wise EEG activity 
and both low-level and high-level pwPEs (Supplementary 
Fig. S2). No significant correlations were found between 
the model trajectories and functioning in sensor space.

3.5.  Cortical sources of hierarchical prediction 
errors and functional impairment relationships

Next, we analyzed the cortical generators of these 
sensor-level unweighted PE and precision effects. Our 

findings revealed low-level and high-level unweighted PE 
expression in the left STG (peak, F(1,42) = 17.4; p = 0.003 
and peak, F(1,42) = 21.2; p = 0.001, respectively), as well as 
high-level unweighted PE expression in the left (peak, 
F(1,42) = 18.3; p = 0.003) and right A1 (peak, F(1,42) = 22.4; 
p = 0.001).The left A1 was additionally associated with 
high-level precision ratio (peak, F(1,42) = 12.8; p = 0.022).

Although no correlations with function were found at 
the sensor level, significant correlations emerged at the 
source level. Similar to our mismatch analysis, this differ-
ence could be attributed to the increased power in the 
source analysis. Notably, significant negative correlations 
emerged between GF: Role and the expression of both 
low-level unweighted PE (peak, t(1,41)  =  5.2; p  <  0.001; 

Fig. 5.  Cortical sources associated with functional impairment. (A) A negative correlation between the stable mismatch 
response and GF: Role scores were observed, peaking at 160 ms (301–309 ms) in the left superior temporal gyrus (STG). 
The source activation estimated from the difference waveform (MMN) at the peak time point (160 ms) is depicted using 
an SPM-glass brain (left). Significant t-contrasts of the stable mismatch response and global function (GF) scores are 
presented for the given source (left STG) over peri-stimulus time (PST) (middle). The significance threshold using peak-
family wise error (FWE) correction is indicated by the red horizontal line, and all time points above this threshold are colored 
in blue. The peak time point is marked by the blue vertical line. The scatter plot (right) illustrates the relationship between 
GF scores and the stable MMN amplitude at the peak time point (160 ms) and source (left STG). (B) A negative correlation 
between the low-level (δ1) and (C) high-level (δ2) unweighted prediction errors (PEs) and global function (GF): Role scores 
was observed, peaking at 156 ms in the right STG. The source activation was estimated from the grand-averaged difference 
waveform (10% highest–10% lowest δ1 or δ2 trials, respectively) at the peak time point (156 ms). MMN: mismatch 
negativity; PST: peri-stimulus time; GF: global function; A1: primary auditory cortex; STG: superior temporal gyrus.
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Fig. 5B) and high-level unweighted PE (peak, t(1,41) = 4.4; 
p = 0.001; Fig. 5C) in the right STG peaking at 156 ms. 
These source effects remained significant when including 
either working memory performance, age, or cannabis 
consumption as covariates (see Supplementary Material 
for detailed discussion on the effect of covariates in the 
source-space analysis).

4.  DISCUSSION

In this study, we investigated the EEG signatures of hier-

archical predictive errors during ERP generation using a 

modified auditory oddball paradigm in healthy controls. 

We found that stability significantly impacted the differ-

ence waveform, with a reduced expression of the auditory 

Fig. 6.  Unweighted prediction error (PE) and precision ratio expression. Maximum intensity projection F-map illustrating 
the effect of (A) low-level sensory PEs (ε2), (B) high-level volatility PEs (ε3), (C) low-level sensory precision ratio (ψ2), and 
(D) high-level volatility precision ratio (ψ3) on EEG amplitudes across anterior to posterior scalp locations (top). Significant 
peak-level effects (p < 0.05, whole-volume FWE-corrected) are outlined by black contours, while the colored area 
indicates F-values exceeding the cluster-defining threshold of p < 0.001, uncorrected. The yellow bar at the bottom of the 
F-map indicates the time range of significant peak effects, from earliest to latest significant time points. On the left, the 
scalp map displays the peak effect of the given cluster using an F-map at the indicated PST, displayed on a 2D sensor 
layout. On the right, ERPs were averaged across the electrode at the peak of the significant clusters using the 10% largest 
and 10% smallest PE (or precision ratio) values. The selected electrode position indicated by a star on the scalp map. 
MMN: mismatch negativity; PST: peri-stimulus time; FWE: family wise error.
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MMN in volatile compared to stable phases. Importantly, 
despite using a novel auditory oddball task, these find-
ings replicate established effects in the literature (Dzafic 
et al., 2020; Kotchoubey, 2014; Todd et al., 2011, 2014; 
Weber et al., 2022), confirming the validity and effective-
ness of our experimental approach.

Importantly, we found that this difference waveform 
was differentially related to psychosocial functioning, 
with the stable condition correlating with Global Func-
tioning: Social scores and the volatile condition with 
Global Functioning: Role scores. Additionally, we 
observed that both PEs and precisions were expressed 
during the oddball task, with PEs correlating with ERPs 
over a larger time window and precision ratios at distinct 
points, and these PE expressions were linked to function-
ing in the superior temporal gyrus. These findings high-
light the nuanced role of predictive coding in social and 
role functioning, offering insights into the neurobiological 
underpinnings of psychosocial behaviors.

4.1.  Difference waveform and psychosocial 
functioning

We observed a positive correlation between the differ-
ence waveform across the entire paradigm and GF: 
Social scores, peaking at 332 ms post-stimulus (Fig. 4A). 
This correlation was significant during the volatile phase 
of the paradigm, peaking between 344 and 348 ms post-
stimulus (Fig. 4C), but was not significant during the sta-
ble phase. The timing and topography of this correlation 
corresponded with the P3a component, suggesting that 
smaller P3a amplitudes may be associated with reduced 
psychosocial functioning in HCs (Light et  al., 2007), a 
finding replicated across psychosis spectrum disorders 
(Carrión et al., 2015; Hermens et al., 2010; Murphy et al., 
2020). Given the age-related decline of P3a amplitudes 
(Kiang et al., 2009) and its reduction across clinical pop-
ulations (Chen et al., 2015; Kaur et al., 2011; Kim et al., 
2020; Light et  al., 2015; Solís-Vivanco et  al., 2015), a 
blunted P3a response may serve as an indicator of 
broader cognitive dysfunction.

This is particularly relevant given the inherent volatility 
of the social world, where accurate interpretation of 
social cues—integrating facial expressions, body lan-
guage, tone of voice and conversational context—is cru-
cial for inferring others’ intentions. Moreover, these cues 
must be weighed against their relative reliability (Griffin & 
Fletcher, 2017) and a failure to accurately integrate and 
interpret social information may lead to the generation of 
aberrant beliefs about others’ intentions or actions 
(Diaconescu et al., 2019).

Moreover, we identified an additional correlation 
between the difference waveform during the stable phase 

and GF: Role scores (Fig. 4B, D). Although this effect was 
of marginal significance, it suggests a potential link 
between neural responses and role functioning even in 
stable conditions. Caution is warranted in interpreting 
this finding, and replication in a larger sample is required 
to substantiate this effect.

Our source-level analysis further revealed that a more 
positive stable difference waveform amplitude within the 
left STG, peaking at 160  ms post-stimulus, correlated 
with poorer role functioning. This effect coincides with 
the timing of the MMN component. While previous stud-
ies have localized the MMN to the left STG and observed 
reductions in MMN amplitude among patients with 
schizophrenia (Erickson et al., 2016), our study is the first 
to link MMN amplitude in the left STG to role functioning 
within a healthy population. Interestingly, the left STG has 
consistently shown grey matter loss in patients with 
schizophrenia (Vita et al., 2012), and reductions in MMN 
amplitude have been associated with poorer psychoso-
cial functioning in this population (Hamilton et al., 2018; 
Thomas et  al., 2017). Our findings suggest that even 
among healthy individuals, variability in MMN amplitude 
in the left STG may be linked to individual differences in 
role functioning, offering new insights into the neurobio-
logical mechanisms underlying psychosocial behaviors.

4.2.  Multiple, hierarchically-related prediction 
errors underlie the MMN

In line with Weber et al. (2022) and other single-trial MMN 
analyses (Hauke et al., 2023; Stefanics et al., 2018; Weber 
et al., 2020), we found significant associations between 
hierarchical PE expression and trial-wise EEG activity 
(Fig.  6). Notably, correlations between unweighted PEs 
and EEG amplitudes occurred mainly in three distinct 
time windows or cluster groups, potentially correspond-
ing to the MMN, P3a, and reorienting negativity (RON) 
component. The RON, characterized by a negative wave-
form, signals attentional reorientation, expressed after 
the P3a component in frontal electrodes. These findings 
suggest a potential link between the MMN/P3a/RON 
complex and hierarchical PE expression.

Previous studies have investigated hierarchical PE 
expression in the context of MMN generation using 
oddball-like paradigms, such as the local-global para-
digm. However, the nature of PEs identified through the 
HGF is distinct from those identified in the local-global 
paradigm. In the HGF, hierarchical levels are coupled via 
their variances, implying a temporal hierarchy where 
higher levels reflect the slower rates of change relative to 
the level below (Hauke, 2022). In contrast, the local-
global paradigm assumes a hierarchy based on “what” is 
changing—that is, local or global deviance. Hence, the 
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use of hierarchical Bayesian models is useful for under-
standing the dynamics of change, rather than just the 
occurrence of change.

Using source reconstruction, we found low-level and 
high-level unweighted PE expression in the left STG, 
coinciding with the timing of the MMN, and high-level 
precision ratio expression in the right STG, partially 
aligning with the P3a component. Contrary to our initial 
hypothesis that low-level PEs would be generated in 
early sensory regions and high-level PEs in higher-level 
regions, our findings suggest a more complex distribu-
tion of predictive coding processes across brain 
regions. Additionally, a negative correlation between 
GF: Role and unweighted low- and high-level PEs in the 
right STG was found at 156 ms post-stimulus, highlight-
ing the STG’s involvement in PE computation, with 
increased PE expression linked to diminished role func-
tioning. Notably, this effect aligns with the correlation 
between the positive stable difference waveform ampli-
tude and role functioning within the left STG, peaking at 
160  ms post-stimulus. Taken together, these ERP-
based and model-based findings suggest a role for the 
STG in MMN–PE expression and its association with 
role functioning.

Furthermore, higher volatility precision ratios (i.e., 
learning rate) correlated with decreased social function in 
the primary auditory cortex at 254 ms, suggesting that 
individuals with lower social function may be more sensi-
tive to environmental volatility. Previous work has shown 
that increased expectations of volatility are associated 
with higher levels of paranoia (Reed et  al., 2020) and 
emerging psychosis (Cole et  al., 2020; Hauke et  al., 
2024). This finding aligns with our earlier observations 
where the volatile difference waveform correlated with 
GF: Social (Fig. 4C), indicating a potential role for volatil-
ity precision ratio in later P3a expression. Higher cogni-
tive levels (e.g., frontal cortex) may represent expected 
predictions (e.g., anticipated tone), while lower levels 
(e.g., primary auditory cortex) compute weighted PEs 
about the tones and environmental volatility.

Notably, despite using a non-social task with healthy 
controls, we still observed that changes in volatile MMN 
expression and volatility learning were associated with 
reduced social functioning, specifically. More investiga-
tion is needed to understand how social context influ-
ences volatility perception in both healthy individuals and 
across psychosis spectrum disorders (Gibbs-Dean et al., 
2023).

4.3.  Limitations

This study has several limitations. First, as the MMN par-
adigm is a passive task, the HGF model could not be fit 

to participants’ behavior. Instead, belief trajectories were 
simulated based on the assumption of a Bayes-optimal 
learner, consistent with previous studies (Hauke et  al., 
2023; Weber et al., 2020, 2022). Future research should 
consider employing an active oddball task (Hamilton 
et al., 2019), which would allow for direct measurement of 
participants’ behavior. This approach would allow us to 
perform model selection based on participants’ behavior 
and to test the current computational approach against 
other theoretical models of MMN generation (Lieder, 
Stephan, et al., 2013). Second, since the data presented 
here were collected as part of an early psychosis study 
(Hauke et  al., 2024), the functioning assessment 
employed was not tailored to or developed for the 
assessment of broader populations (Cornblatt et  al., 
2007). However, our results suggest that there are rele-
vant relationships between early auditory information 
processing and psychosocial functioning. Thus, future 
studies should include more comprehensive assess-
ments of functioning to better characterize the effects 
(e.g., WHDAS 2.0) (Gold, 2014).

4.4.  Future directions

Future research should leverage computational models 
with greater physiological detail, like connectome-based 
neurophysiological modeling (Momi et  al., 2023) and 
dynamic causal modeling (David et  al., 2006; Friston 
et al., 2003, 2019), to delve deeper into the neurobiology 
of hierarchical PEs and MMN expression. These models 
can shed light on local neural dynamics, receptor densi-
ties, and the interplay between precisions, PEs, and 
AMPAR/NMDAR function. Finally, to enhance the exter-
nal validity of our findings related to early information 
processing in HCs, we recommend that future studies 
incorporate larger sample sizes and measures like 
WHODAS 2.0 to bolster the generalizability of the 
results.

5.  CONCLUSION

In conclusion, our exploratory study investigated the 
neural correlates of hierarchical PEs during MMN gener-
ation using a novel auditory oddball paradigm. We found 
a significant effect of stability on the mismatch difference 
waveform, with larger responses in stable phases and 
associations with psychosocial functioning. Moreover, 
we find evidence for the role of hierarchically-related PEs 
in the generation of the MMN and their association with 
functioning in the superior temporal gyrus. These results 
underscore the importance of predictive coding in under-
standing in early auditory information processing and 
psychosocial functioning.
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