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Abstract

Objectives

Approximately 80% of people with epilepsy live in low- and middle-income countries

(LMICs), where limited resources and stigma hinder accurate diagnosis and treatment. Clin-

ical machine learning models have demonstrated substantial promise in supporting the

diagnostic process in LMICs by aiding in preliminary screening and detection of possible epi-

lepsy cases without relying on specialised or trained personnel. How well these models gen-

eralise to naïve regions is, however, underexplored. Here, we use a novel approach to

assess the suitability and applicability of such clinical tools to aid screening and diagnosis of

active convulsive epilepsy in settings beyond their original training contexts.

Methods

We sourced data from the Study of Epidemiology of Epilepsy in Demographic Sites dataset,

which includes demographic information and clinical variables related to diagnosing
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epilepsy across five sub-Saharan African sites. For each site, we developed a region-spe-

cific (single-site) predictive model for epilepsy and assessed its performance at other sites.

We then iteratively added sites to a multi-site model and evaluated model performance on

the omitted regions. Model performances and parameters were then compared across

every permutation of sites. We used a leave-one-site-out cross-validation analysis to assess

the impact of incorporating individual site data in the model.

Results

Single-site clinical models performed well within their own regions, but generally worse

when evaluated in other regions (p<0.05). Model weights and optimal thresholds varied

markedly across sites. When the models were trained using data from an increasing number

of sites, mean internal performance decreased while external performance improved.

Conclusions

Clinical models for epilepsy diagnosis in LMICs demonstrate characteristic traits of ML mod-

els, such as limited generalisability and a trade-off between internal and external perfor-

mance. The relationship between predictors and model outcomes also varies across sites,

suggesting the need to update specific model aspects with local data before broader imple-

mentation. Variations are likely to be particular to the cultural context of diagnosis. We rec-

ommend developing models adapted to the cultures and contexts of their intended

deployment and caution against deploying region- and culture-naïve models without thor-

ough prior evaluation.

Author summary

Epilepsy disproportionately affects people in low to middle income countries (LMICs).

Socioeconmic disadvantages make it hard to access diagnosis and treatment as these rely

on resources, personnel and time. Machine learning models may be able to provide cheap,

accessible options for diagnosis and screening. Our previous work has demonstrated that

such models can perform well. It is, however, crucial that tools are robust, safe, and

responsibly deployed, especially in LMICs where poor models may more easily result in

adverse impacts.

Models must be trained on data, which are necessarily sourced from certain regions.

Models show reduced performance when applied in regions that were not included in the

training data. They may also have different optimal parameters, including the thresholds

used to determine whether someone is a positive case.

There can also be a trade-off, whereby a model that performs better in regions not

included in the training data may perform worse in regions that were, but could make the

model more robust.

We recommend applying models in target regions and updating them as necessary.

We also caution against generic deployment of models developed and tested in one region

into a new area without careful, thorough testing and authentication.
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Introduction

Epilepsy is a common neurological condition that disproportionately affects people from dis-

advantaged socio-economic groups. Studies estimate that up to 75 million people have epilepsy

worldwide, with approximately 80% in low- and middle-income countries (LMICs) [1]. Epi-

lepsy accounts for over 13 million disability-adjusted life years annually and over 0.5% of the

global burden of disease. While an estimated 70% of people with epilepsy could live seizure-

free with anti-seizure medications, over 75% of those living with epilepsy in LMICs cannot

obtain a timely and appropriate diagnosis or any treatment [2,3].

The diagnosis of epilepsy requires training, skilled personnel, time and additional resources

that are scarce in LMICs, for example access to specialised equipment such as electroencepha-

lograms (EEGs) [4]. A trained clinician’s expertise is irreplaceable, but training costs and

retention of skilled personnel can impede access to diagnosis in LMICs [4,5]. In such settings,

diagnostic tools that require less expertise, experience or specialist training could empower

primary healthcare workers to triage and prioritise people who may have epilepsy for referral

[6].
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Clinical machine learning (ML) models offer a practical solution to aid epilepsy diagnosis

in low-resource settings. Such models have demonstrated promising outcomes for epilepsy

diagnosis [7] and treatment [8]. Thus, their application in LMICs could reduce the diagnostic

and treatment gaps [9]. Given the potential impact of such models, their relevance, robustness

and appropriate deployment are crucial. Deployment could be built around the existing infra-

structure of personal mobile devices [10,11]

ML models developed on data from one region are not inherently reliable for use elsewhere

without prior validation [12]. The measure of model robustness in novel settings is termed

‘generalisability’. Failure of a model to generalise sufficiently to a novel setting can be due to,

for example, differences in clinical phenomenology or individual self-reporting [13] across the

regions. This is particularly applicable in epilepsy, where clinical diagnosis is primarily based

on self-reported history and can be nuanced [14]. This phenomenon can also be attributed to

the model ‘overfitting’, where the model learns to make predictions based on biases in the

dataset rather than developing a robust method for delineating between the desired diagnoses

of interest (or absence thereof) [15]. In the case of diagnostic tools, this can have substantial

consequences for the population on whom the model is deployed, resulting in missed cases,

over-diagnosis, wasted resources and even mistrust of the technology [15]. The issue of gener-

alisability has been well described in other medical domains, including variability in disease

prevalence, differences in treatment protocols, and disparities in healthcare infrastructure,

which can all affect how well models developed in one setting perform in another [15]. These

factors and the differences in clinical phenomenology and individual self-reporting underscore

the need to validate models carefully before they are applied in novel contexts.

We have previously developed a predictive model to support epilepsy diagnosis in LMICs

[7], trained on data from five sub-Saharan African regions. In this study we assess the perfor-

mance of such diagnostic models in novel settings with the aim of evaluating the need for com-

prehensive cross-regional validation with such models. We investigate the suitability of

diagnostic models for deployment in regions which do not contribute data to the models’

training. We also consider generalised seizures [14] separately due to their relatively homoge-

neous presentation, to investigate how incorporating seizure subtype in a model’s training

influences the model’s performance both on sites that were included in training and those that

were not.

Methods

Data acquisition, study design and pre-processing

We sourced data from the Study of Epidemiology of Epilepsy in Demographic Surveillance

Sites (SEEDS), which assessed the prevalence and risk factors of active convulsive epilepsy

(ACE) in five health and demographic surveillance (HDSS) sites across sub-Saharan Africa:

Agincourt (South Africa), Ifakara (Tanzania), Iganga (Uganda), Kilifi (Kenya) and Kintampo

(Ghana). This dataset has been described in detail elsewhere [16]. The dataset comprised anon-

ymised responses to an ACE-specific questionnaire, with questions administered in local lan-

guages specific to each study site: Twi in Kintampo, Xi-Tsonga in Agincourt, Lusoga in

Iganga, and Kiswahili in Kilifi and Ifakara. ACE was defined as two or more unprovoked sei-

zures occurring at least 24 hours apart with at least one episode in the preceding year. Convul-

sive epilepsy was explicitly chosen because convulsions are more easily identified and are

associated with higher morbidity, mortality and stigma. Participants were recruited as part of a

door-to-door survey conducted by the HDSS at each site. Trained clinicians evaluated the par-

ticipants, reviewing cases across all sites. To ensure consistency in the diagnostic process, a

panel of neurologists reviewed the case report forms and a consensus on the final diagnosis of
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each case was reached. The full protocol for the SEEDS study, including details on the percent-

age of participants recruited at this stage relative to the total screened, has been previously pub-

lished [16]. The outcome of this study was a clinical diagnosis of ACE (EEG supported where

possible) confirmed by an epilepsy-specialised neurologist. Individuals with and without epi-

lepsy (here considered as controls) are included in the dataset. Information on sociodemo-

graphic variables, historical risk factors and clinical history was collected from each

participant. The resulting dataset comprised sociodemographic information and approxi-

mately 170 unique variables for each individual in five domains: clinical history, clinical exam-

ination, seizure description and EEG interpretation [7].

The study was approved by the ethics committees of University College London and the

London School of Hygiene and Tropical Medicine and by the ethics review boards in each par-

ticipating country. All participants or guardians gave written informed consent. The data col-

lection protocol is also reported elsewhere [7,16].

Data pre-processing. We selected participants with either a confirmed diagnosis of ACE

(cases) or absence of ACE (controls) following evaluation by a trained neurologist, a total of

5108 participants. We used predictors of epilepsy formatted as questions for the person with

suspected epilepsy. These predictors have been reported and validated in previous studies

from this cohort and were chosen for their maximally discriminative predictive ability to diag-

nose ACE [7]. The predictors were:

1. During these episodes, have you ever bitten your tongue?

2. Have you ever wet yourself during these episodes?

3. During these episodes, do you lose contact with your surroundings?

4. Has anyone told you that you appear dazed during these episodes?

5. During these episodes, does your body stiffen?

6. Do you experience stomach-ache before these episodes?

7. Do you see odd things (e.g. flashes or bright lights) before these episodes occur?

8. Do you think anything brings on these episodes?

We retained only participants with a confirmed diagnosis (cases) or absence of ACE (con-

trols). This was termed the ‘complete dataset’. We also considered a smaller subset in which

only participants with either a confirmed ‘generalised’ seizure type or absence of ACE were

retained (referred to as the ‘generalised dataset’). The purpose was to minimise inherent het-

erogeneity in individual symptomatology due to multiple seizure types within a single individ-

ual. Selecting for generalised seizures reduces potential confounding across sites due to the

inherently heterogeneous symptomatology of focal seizures and non-convulsive generalised

epilepsy. The datasets were then separated by study site. Imputation and weighting were per-

formed separately within each site. Predictors with missing values were imputed using the

multiple imputation by chained equation method [17]. To adjust for potential confounding

between study sites due to participant sex, age and seizure type (general, focal, or ‘other’) we

applied inverse propensity weighting [18].

Study site datasets were then split into model training and testing subsets in a 7:3 ratio.

When a model was trained on data from the generalised dataset, it was tested on data from the

generalised subset. The data processing procedure and the ten seizure/type site subsets and

data processing are summarised in Table 1 and S1 Fig.
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Model development

The models trained were Logistic Regression, Support Vector Machine (SVM) using a linear

kernel and Naive Bayes assuming a Bernoulli distribution. These models were selected because

they are computationally efficient, well-established in clinical prediction modelling in epilepsy,

and because they yield interpretable results [19]. They also have varied approaches to decision

boundaries [20]. If there were an observed difference in the performance of these algorithms

between study sites, it would likely be more attributable to the data than the model, i.e. an

issue with generalisability.

The primary performance metric was the area under the receiver-operator characteristic

curve (AUC). AUC is independent of a classification threshold, eliminating the need to iden-

tify a threshold parameter and is less sensitive to data imbalance than other metrics, such as

accuracy.

To ensure robustness, five-fold cross-validation was used to determine the performance of

models on the data they were trained on (internal validation). In this process, training data are

randomly split into five balanced subsets; four subsets are used to train the model and the

remaining subset is used to test the model and calculate the AUC. This is repeated four more

times (five folds total), ensuring each subset is used for testing. The median of the five AUC

values and the interquartile range are then used to determine the algorithm’s average perfor-

mance [21].

Models trained on data within only one study site are referred to hereafter as ‘single-site’. A

model was trained for every permutation of the three algorithms, five sites and two seizure

types, resulting in 30 single-site models. Five-fold cross-validation AUC scores were obtained

for each single-site model. Each single-site model was tested on the other four study sites,

resulting in four external performance AUC scores. These were used to evaluate the perfor-

mance of the models when tested on data from different regions. The Kolmogorov-Smirnov

(K-S) test was used to assess whether there was a significant difference between the single-site

AUC when tested on data from within the site (internal performance) and data from the other

four study sites (external performance). The magnitudes, signs and ranges of the weights

assigned to each predictor in each of the Logistic Regression models were also compared.

For each single-site model, we compared a set of incremental thresholds (20%, 50% and

80%) for classifying the probability output from each algorithm into a designation of ACE or

control. For example, cases with less than 20% probability were assigned to controls and other-

wise were assigned ACE. These thresholds were chosen to explore the effect on accuracy of

changing a threshold when using a diagnostic tool in practice. The accuracies were calculated

for the five study sites based on these classifications. We compared the relative change in accu-

racy between a) each study site from which a single-site model was developed, and b) the accu-

racy of each separate study site. This analysis adds an additional dimension, extending the

Table 1. Dataset breakdown. Table showing the size of each subset of the data as split by diagnostic class, epilepsy type and site. The rightmost column represents a subset

of the middle column. Participants with no clinical diagnostic information were excluded from the dataset. ACE = active convulsive epilepsy.

Seizure types

Controls Confirmed ACE Confirmed ACE & only generalised seizures

Site Agincourt 380 334 184

Ifakara 678 465 223

Iganga 498 259 152

Kilifi 793 791 209

Kintampo 516 394 233

Total 2865 2243 1001

https://doi.org/10.1371/journal.pdig.0000491.t001
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evaluation from AUC to a more clinical scenario where the direct classification of either ACE

or control is essential.

We then developed an iteratively inclusive multi-site model to evaluate the effect of adding

additional study sites. Beginning with one randomly chosen study site, a model for each of the

three algorithms was developed. The performance of each model was assessed on the remain-

ing study sites. Another randomly chosen site was added to the model, and the performance

was then re-evaluated for the remaining unincluded study sites. This was repeated until every

site except one (four training sites; one testing site) was included in the multi-site model,

resulting in a leave-one-site-out (LOSO) model. We repeated this procedure until every per-

mutation of study site order of inclusion was achieved. Lastly, we developed a multi-site model

that incorporated all study sites, splitting the data 70:30% into model training and validation

subsets.

Statistical analysis

Continuous variables were binned. The two-sided Mann-Whitney test, with a significance

level of 0.01, was used to evaluate for differences between internal and external datasets in the

single-site models. The two-sample Kolmogorov-Smirnov (K-S) test, with a significance

threshold of 0.05, was used to assess the significance of differences in model performances

resulting from training data on different sites. Analysis was performed using Python 3 [22].

Libraries used were Pandas [23], NumPy [24], SciPy [25], SKLearn [26], Seaborn [27], Pyplot

[28] and Plotnine [29].

Results

The complete dataset comprised 5,108 people with suspected epilepsy: 2,243 with confirmed

ACE (44%) and 2,865 (56%) confirmed not to have epilepsy. Missingness in the raw data

appeared random (S2 Fig).

Single-site model performance in novel settings

Single-site models performance was reduced on average when tested on new sites. The median

AUC when each single-site model was evaluated on novel data acquired from the same site

was 0.94 (interquartile range (IQR) 0.90–0.96). However, when these models were tested with

data from other study sites, the median AUC decreased significantly to 0.91 (IQR 0.89–0.93, t-

test: p<0.01). Agincourt and Kilifi demonstrated the greatest difference between internal and

external AUCs (Agincourt 0.96 internal, 0.88 external; p value <0.001, difference = -0.08

(7.9%); Kilifi 0.97 internal, 0.84 external, difference = -0.13 (13%), p<0.001). Table 2 and Fig 1

compare the AUC values across each study site for internal and external validation.

We performed hypothesis tests comparing the AUCs resulting from the validation of a sin-

gle-site model on a) the site whose data they were trained on and b) the other. These were sta-

tistically significant for eleven of thirty (see Table 1: ten data subsets, three models) cases.

There were seven significant differences for the dataset that considered all cases, and four for

the generalised seizure dataset (S1 Table). Each site had six tests in total: Agincourt and Kilifi

each had five significant tests, while the other sites had at least five insignificant tests.

The weights assigned to the predictors of ACE in the logistic regression model differed

between sites (Fig 2). All eight predictors’ weights had broad ranges, both when not accounting

for seizure type (median range of weights 0.97, [IQR 0.72–1.5]) and when including only cases

with generalised seizures (median range of weights 1.01 [IQR 0.86–1.3]). Apart from two vari-

ables, all variable weights were negative in some site models and positive in others. These two

variables are as follows: only one predictor of ACE had consistently negative weights
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Table 2. Median and IQR of the model AUC values across each study site for internal and external validation.

Site Internal External Difference P value

Agincourt 0.96

(0.95–0.97)

0.88

(0.86–0.88)

-0.08

(7.9%)

<0.001

Ifakara 0.89

(0.89–0.91)

0.92

(0.89–0.96)

0.02

(2.7%)

<0.001

Iganga 0.93

(0.91–0.96)

0.88

(0.87–0.96)

-0.05

(5.1%)

<0.001

Kilifi 0.97

(0.96–0.97)

0.84

(0.78–0.89)

-0.13

(13.0%)

<0.001

Kintampo 0.90

(0.88–0.92)

0.92

(0.91–0.95)

0.02

(2.8%)

<0.001

https://doi.org/10.1371/journal.pdig.0000491.t002

Fig 1. Comparative Internal and External AUC Performance Across Single-Site Models. The Area Under the Receiver Operating

Characteristic Curve (AUC) performance of machine learning models trained and tested on data from single sites. Performance is compared

between internal validations (training and testing on the same site) and external validations (training on one site and testing on others). Five

distinct study sites in sub-Saharan Africa are evaluated: Agincourt (South Africa), Ifakara (Tanzania), Iganga (Uganda), Kilifi (Kenya), and

Kintampo (Ghana). Boxplots describe the distribution of AUC values obtained through bootstrap resampling, indicating the variance within

internal and external validations. At Agincourt, the internal AUC is 0.96 (interquartile range (IQR) 0.95–0.97), while the external AUC is 0.88

(IQR 0.86–0.88), demonstrating a statistically significant difference with a decrease of approximately 0.08 in performance when models are

externally validated. Similarly, Kilifi shows an internal AUC of 0.97 (IQR 0.96–0.97) against an external AUC of 0.84 (IQR 0.78–0.89), indicating a

significant decline in external validation performance. Iganga’s internal and external AUCs are 0.93 (0.91–0.96) and 0.88 (IQR 0.87–0.96),

displaying a smaller yet significant discrepancy. In contrast, Ifakara and Kintampo exhibit a converse trend, where external AUCs 0.92 (IQR 0.89–

0.96) and 0.92 (IQR 0.91–0.95) slightly exceed their internal counterparts 0.89 (0.89–0.91) and 0.90 (0.88–0.92), although these differences are also

statistically significant. These findings underscore the variability in model generalizability and the importance of external validation when

assessing the robustness of predictive models in healthcare settings. *** = p-value<0.001.

https://doi.org/10.1371/journal.pdig.0000491.g001
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Fig 2. Variation of model weights between sites. Boxplot illustrating the values taken by the weights in each logistic

regression model trained on a single site. Models were trained on a dataset in which positive cases were limited to

participants with generalised epilepsy. All weights show a spread of values, and most change sign between sites. Only

one covariate’s weights were consistently positive (‘Have you ever wet yourself during these episodes?’) and only one

covariate’s weights were consistently negative (‘Do you think anything brings on these episodes?’). In this context

positive weights correspond to a positive association with epilepsy, and negative weights to negative association. The

horizontal line at the origin serves to clarify the threshold between positive and negative weights. Central line is

median; lower edge of the box indicates first quartile, upper edge of the box indicates third quartile; points are extreme

weight values.

https://doi.org/10.1371/journal.pdig.0000491.g002
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(corresponding to the question ‘Do you think anything brings on these episodes?’: range 0.31

when considering all controls, 0.75 for generalised seizures), and only one was consistently

positive (corresponding to the question ‘Have you ever wet yourself during these episodes?’:

range 0.72 when considering all controls, 0.49 for generalised seizures).

Modulating the probability threshold for a positive diagnosis also resulted in variable accu-

racy. Increasing the threshold improved the performance in some sites and worsened perfor-

mance in others. Fig 3 displays the difference in performance observed when models are tested

outside of the development site. In Agincourt and Iganga, increasing the threshold from 0.2 to

0.5 to 0.8 resulted in a decrease in relative accuracy (Agincourt median -0.10, -0.13, -0.17,

p<0.01; Iganga median -0.06, -0.18, -0.19, p<0.01), while the inverse was true of Kintampo

and Kilifi (Kilifi median -0.38, -0.35, -0.05, p<0.01; Kintampo median -0.01, -0.01, 0.06,

p<0.05).

Incremental site inclusion

As additional sites were incorporated into the model, internal performance declined (initial

median AUC 0.94, IQR 0.11; final median AUC 0.93, IQR 0.01; p = 0.06), and external perfor-

mance improved (initial median 0.90, IQR 0.04; final median 0.92, IQR 0.02; p<0.01; Fig 4).

At the initial stage of this process, when only one site was included in the training data, inter-

nal performance was greater than external (mean AUC difference 0.050, p<0.01) and all exter-

nal performances were lower than all internal performances.

At the final stage, the two measures converged to a small final difference, and all the data

points from the external validation were higher than all the internal points (Fig 4). The mean

difference between final performance scores was 0.001 (p-value 0.83).

Fig 3. Effect of changing thresholds on accuracy. Heatmap showing how the accuracy of the logistic regression models was affected by changing

the threshold from 0.2 to 0.8, for each one-site model. Models were trained on only one site’s data and tested on each of the other sites in turn. The

performance of some site models worsened both internally and externally while the other sites’ performance improved. The overall mean change in

accuracy was 10% (min 0.4%, max 28%, standard deviation 7.6%).

https://doi.org/10.1371/journal.pdig.0000491.g003
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Leave one site out

Internal performance was higher in 3 sites: Ifakara (internal median 0.93, IQR 0.00; external

median 0.92, IQR 0.06; p = 0.55), Iganga (internal median 0.94, IQR 0.02; external median

0.91, IQR 0.03; p<0.01) and Kintampo (internal median 0.937, IQR 0.019; external median

0.89, IQR 0.006; p<0.01) (Fig 5). Kintampo’s external scores had a smaller range (p<0.01)

while the other two sites had a larger external range (Ifakara: p<0.01; Iganga: p = 0.80).

Agincourt (internal median 0.924, IQR 0.008; external median 0.95, IQR 0.03; p<0.05) and

Kilifi (internal median 0.91, IQR 0.025; external median 0.97, IQR 0.02; p<0.01) had higher

external performance, and these values displayed a larger range (Agincourt: p = 0.08; Kilifi:

p = 0.65).

Patterns emerge when comparing the one-site models with the LOSO models. For

instance, both model types showed that Agincourt and Kilifi had a wider range of external

performance scores than internal, with the inverse relationship evident at the other sites.

Agincourt and Kilifi demonstrated superior external median performance in the LOSO

model relative to their internal performance, and a trend contradicted at the remaining

sites. Kintampo consistently presented the lowest external variability in LOSO and one-site

models, further underscoring the site-specific patterns inherent in the performance of these

diagnostic tools.

Fig 4. Performance of LOSO models. Boxplot of AUC values resulting from the testing, on each site in turn, of

models trained on all but one site. Both internal and external performance is shown. Internal performance was higher

in 3 sites (internal median 0.93, external median 0.89). In the other two, AUC values displayed a larger range (internal

median 0.92, range 0.04; external median 0.96, range 0.05). AUC = area under receiver operating curve. Internal

performance = performance on sites included in training data. External performance = performance on the site that

was not included in training data. Central line is median; lower edge of the box indicates first quartile, upper edge of

the box indicates third quartile; points are extreme performance scores.

https://doi.org/10.1371/journal.pdig.0000491.g004
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Discussion

We demonstrate that deploying an epilepsy diagnostic model outside the cultural and geo-

graphical region in which it was developed can result in highly unpredictable, frequently sub-

optimal outcomes.

As with other ML models, the generalisability of clinical epilepsy diagnostic tools is inher-

ently constrained. Extrapolating these models beyond their original regional parameters neces-

sitates a trade-off between internal and external performance. Performance scores within a

given region consistently exhibit lower variances and higher medians than those obtained

from cross-site applications. This is perhaps especially problematic given the volume of ML-

driven diagnostic models for epilepsy that have been developed using single regions [30].

Incorporating data from more sites into the model’s training set can help mitigate the risk of

ML models making erroneous assumptions and offering incorrect diagnoses. Whilst this

approach engenders a model with enhanced robustness and improved external performance,

it concomitantly decreases internal performance. This occurs as the model broadens its appli-

cability while becoming less tailored to specific sites. While analysis of generalizability has

been performed elsewhere [15], this study presents a novel and significant contribution to the

field of epilepsy diagnosis.

Fig 5. Performance of incremental models. Boxplot (with scatter graph) showing the change in AUC as the number

of sites included in training is increased. Both internal and external performance is shown. As sites were added,

internal performance worsened and external performance improved. At the stage when only one site was included in

the training data, all external performances were lower than all the internal performances. At the final stage, the two

measures converged to a small final difference, and all the data points from the external validation were higher than all

the internal. AUC = area under receiver operating curve. Internal performance = performance on sites included in

training data. External performance = performance on the site that was not included in training data. Central line is

median; lower edge of the box indicates first quartile, upper edge of the box indicates third quartile; scatter points are

individual performance scores.

https://doi.org/10.1371/journal.pdig.0000491.g005
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The weight of each ACE predictor and the optimal thresholds for a classification vary signif-

icantly between sites. At the extreme, a particular symptom might correlate positively with

ACE at one site and negatively at another. These disparities may result from the variance in

reporting of epilepsy-related symptoms across geographies.

Data underscore the importance of thoughtfully calibrating diagnostic procedures to the

unique specificities of each geographic locale. The observed threshold variability also high-

lights that a simplistic transposition of one site’s threshold for ACE classification to another

may lead to an unpredictable number of misdiagnoses, most concerningly false negatives,

where an individual remains undiagnosed and cannot access treatment. The findings empha-

sise the need to adjust model parameters to ensure their suitability for application in varying

settings.

A variety of explanations may account for differences in performance between the sites.

One reason may be that symptoms may be reported differently by those with epilepsy or their

carers, depending on the cultural and clinical context [13]. These cannot necessarily be pre-

dicted and accounted for and may differ between sites. For example, appearing dazed during

episodes was the single most prevalent symptom reported by individuals with seizures in

Iganga and one of the least prevalent in Ifakara (S3 Fig).

Based on the results of this study, we suggest that some degree of site-specific validation is

essential before a predictive model is deployed in practice. While complete re-training of all

model parameters on local data would be ideal and result in optimal performance, this is not

always feasible. Studies have shown that merely changing the intercept of a logistic regression

model may help recontextualise a model for new settings [31]. It may suffice to adjust only a

few parameters.

As performance is continually assessed, we propose that iteratively updating the model

throughout deployment can help fine-tune it further, with new improvements building upon

previous findings. Such a model would generally require a threshold to determine positive

cases, although, as shown, optimal thresholds vary between sites. The results suggest that sim-

ply validating a model’s threshold may also effectively update its performance in a new setting.

In this study, we observed a mean change in accuracy of 10% following a threshold

adjustment.

Limitations

This work is limited by the choice of dataset and its contents. The data were acquired from five

distinct sites from five different sub-Saharan African countries. We cannot necessarily draw

conclusions about, for example, training a model on data from a specific region and deploying

it in a nearby location in the same country with similar demographics. The dataset also fea-

tured limited accounting of seizure type. The results could be clouded by, for example, the

effects of non-convulsive seizure phenomena, which we could not account for.

We attempted to minimise this inherent heterogeneity by separating the generalised sei-

zures into a separate dataset. Generalised convulsive seizures were selected as they demonstrate

a higher degree of homogeneity in their clinical presentation than focal seizures [14]. Further

work should explore focal seizures to identify better how ML models may also help in their

diagnosis.

There also may have been data collection and data entry issues: self-reporting may be influ-

enced by linguistic differences in how questions were asked, cultural differences in how

chronic conditions are perceived, or who asked the questions and how [13]. The clinicians

making diagnoses or the workers performing data entry may also vary in reliability. While the
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tools and questions were adapted to the local context and training was standardised before

data collection and monitored during [16], human factors may still play some role.

A potential limitation of our approach is the lack of exploration of deep transfer learning

models, which have shown potential in predicting outcomes on datasets distinct from those

included in the initial model training [32,33]. These models could mitigate the limitations of

small dataset sizes and enhance generalizability across diverse populations.

Conclusions

We demonstrate that, when developing models for epilepsy diagnosis, data collected from one

site cannot naïvely be used as representative for all other sites where a model could be

deployed. Given the needs of LMICs, ML models can be leveraged to have a significant impact.

Nonetheless, careful interrogation and dedication to rooting tools in the setting of their use

must be ensured to avoid such models associating with inadvertent harm, including missed

diagnoses resulting in delayed initiation of care. Whilst the present analysis has focused on

convulsive epilepsy, similar arguments are likely applicable across other seizure types and dis-

orders of mind-brain health more broadly. Future work could explore the application of deep

transfer learning models, which have shown the potential to generalise across datasets different

from those used in the initial model development. Incorporating such techniques could further

enhance the robustness and applicability of epilepsy diagnostic tools in LMICs.

Supporting information

S1 Fig. Data preparation. Flowchart showing the process of data preparation (see Table 1).

(TIFF)

S2 Fig. Missingness in the raw data. Heatmap showing where there was unexplained missing-

ness in the data before cleaning. Missing values are shown in yellow, others in green. The data

are sorted according to assessment date, in ascending order from earliest to latest.

(TIFF)

Key points

• Machine learning-driven clinical tools are becoming more prevalent in low-resource

settings; however, their general performance across regions is not fully established.

Given their potential impact, it is crucial models are robust, safe and appropriately

deployed

• Models perform poorly when making predictions for regions that were not included

in their training data, as opposed to sites that were

• Models trained on specific regions can have different optimal parameters and thresh-

olds for performance in practice elsewhere

• There is a trade-off between internal and external performance, where a model with

better external performance usually has worse internal performance but is generally

more robust overall
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S3 Fig. Covariate values per site. Stacked bar chart showing the percentage of yes/no answers

to the covariate questions. Values taken from the cleaned data, split by site and epilepsy diag-

nostic class.

(TIFF)

S4 Fig. Histogram showing propensity scores as calculated from the processed data, col-

oured by whether there was a diagnosis of epilepsy (blue) or not (red). There is a complete

overlap–the range of scores for the two diagnostic classes overlaps completely.

(TIFF)

S1 Table. Kolmogorov-Smirnov test p-values. Table summarizing the p-values of the statisti-

cal tests of the performances resulting from the testing of each one-site model on each of the

other sites in turn. The two samples in each test were the internal performances for that site

(from 5-fold cross validation) and the performances of that model on each other site. This was

done for each possible combination of the three model types (Logistic Regression, SVM using

a linear kernel, and Naive Bayes assuming a Bernoulli distribution) and the two datasets (the

whole dataset, and that with the positive cases limited to participants with generalised epi-

lepsy). Thus, there are 6 values for each site. The 2-sample Kolmogorov-Smirnov test has the

null hypothesis that the two samples are drawn from the same distribution. Statistical insignifi-

cance is taken as insufficient evidence to reject this. There were 7 significant tests for the whole

dataset and 4 for the generalised seizure dataset. Agincourt and Kilifi each had 5 significant

tests, while the other 3 sites each had at least 5 insignificant tests.

(DOCX)

S2 Table. Summary table of variables present in the data.

(DOCX)

S3 Table. Mean predictor weight values and associated p-values.

(DOCX)
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